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A B S T R A C T   

In this paper, we propose a framework for the automatic generation of natural language descriptions of 
healthcare processes using quantitative and qualitative data and medical expert knowledge. Inspired by the 
demand of novel ways of conveying process mining analysis results of healthcare processes (Rojas et al., 2016), 
our framework is based on the most widely used Data-To-Text (D2T) pipeline (Reiter, 2007) and on the usage of 
process mining techniques. Backed by a general model that handles process data, this framework is able to 
quantify attributes in time during a process life-span, recall temporal relations and waiting times between events 
and its possible causes and compare case (patient) attributes between groups, among other features. Through 
integrating fuzzy quantification techniques, our framework is able to represent relevant quantitative process 
information with some degree of uncertainty present on it and describe it in natural language involving uncertain 
terms. A real application over the Aortic Stenosis Integrated Care Process of the University Hospital of Santiago 
de Compostela is presented, showcasing the potential of our framework for providing natural language de
scriptions of healthcare processes addressed to medical experts. Following the standards of D2T systems, manual 
human validation was conducted for the generated natural language descriptions by fifteen medical experts in 
Cardiology. Validation results are very positive, since a global average of 4.07/5.00 was achieved for questions 
related to understandability, usefulness and impact of the natural language descriptions on the medical experts 
work. More precisely, results indicate i) that the modality which conveyed the information most efficiently was 
natural language ii) a very clear preference of texts over the usual graphic representation of process information 
as the way for conveying information to experts (4.28/5.00), and iii) natural language descriptions provide 
relevant and useful information about the process, allowing for its improvement.   

1. Introduction 

Processes allow organizations to represent and structure the activ
ities that take place within them and their information systems as well as 
how data and resources are managed. 

In healthcare organizations, processes, commonly referred to as 
healthcare processes [3], structure and organize clinical and non-clinical 
activities aimed to diagnose, treat and prevent diseases on patient health 
[4]. In recent years, as a response to an increasing pressure in improving 

medical and organizational efficiency and effectiveness, the need for 
enhancing processes has risen in healthcare organizations worldwide 
[4,5]. 

Process mining is a data-driven, process-centric approach, whose aim 
is to exploit recorded event data. By automatically discovering the un
derlying process model from an event log, it can extract valuable 
process-related information that can be used to provide insights, 
determine performance and detect and identify bottlenecks, which helps 
to understand and improve processes [6]. Due to the nature of 
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healthcare processes (highly dynamic, complex, ad-hoc and increasingly 
multi-disciplinary [7]), processes with a high number of distinct activ
ities and relationships among them are the norm. Commonly called 
spaghetti processes, they often derive in highly complex process mining 
analysis results [6]. These results are referred to be quite difficult to 
understand by medical experts, the final stakeholders of the analysis, 
whom, in general, are not specialized in process mining nor visual 
analysis techniques (the common way of conveying process mining 
analysis results) [1,4,8] and who should invest their efforts in improving 
healthcare processes and not in “deciphering” process mining analysis 
results. Moreover, authors highlight the lack of good visualization 
techniques for process models and process mining analysis results in the 
state-of-the-art, especially, in dynamic, complex and less-structured 
processes such as those present in the healthcare domain. Emphasizing 
the need for improved visualization techniques and visual analytics to 
facilitate the interpretation of process mining analysis results [1]. This 
raises the need of proposing novel and different ways of conveying the 
results of healthcare process mining analysis to users in a clear, direct 
and comprehensible way, adapted to the real needs of medical experts 
both in content and form [9]. 

Natural Language Generation (NLG) techniques aim to provide users 
with natural language texts that summarize the most relevant features of 
some data in a way that can be easily consumed [10]. As natural lan
guage is the inherent way of communicating for humans, NLG tech
niques do not rely on users capabilities to extract relevant information 
and patterns from visual analytics. Furthermore, the use of uncertain 
terms and expressions, common in natural language, is very effective for 
the summarization and communication of data. 

Added to the lack of good visualization techniques for process mining 
analysis results, research suggests [11] that in some domains, expert 
knowledge is also a complementary requirement to visual analysis 
techniques for users to fully understand graphical information. In 
particular, it has been proved that in the healthcare domain, medical 
experts can take better decisions when presented together with textual 
summaries rather than when presented with graphical displays [12]. In 
this sense, NLG techniques seem like a good approach to enhance the 
understanding of healthcare processes and its analytics for medical ex
perts. Different methods for generating insights on data through natural 
language have already been applied both on healthcare [13,14] and 
process data [15,16]. However, healthcare processes have been 
neglected in the NLG state-of-the-art. This highlights the need for a new 
approach focused on the description of healthcare process mining 
analysis results in natural language. 

In this paper, we present a process mining-based framework for the 
generation of qualitative and quantitative natural language descriptions 
of healthcare processes. Our proposed framework is based on the most 
widely used Data-To-Text (D2T) pipeline [2]. It integrates process 
mining techniques for the extraction of the relevant features of a process 
with fuzzy logic techniques as a way to handle the inherent imprecision 
of natural language through the modeling of uncertain expressions. 
Parting from event log data (recorded while a process was executed in a 
real-life scenario), the framework is able to automatically extract the 
underlying process model with the use of discovery algorithms. Through 
the replay of the event log over the discovered process model, infor
mation about the time perspective is gathered and added to the existing 
control-flow, case and resource perspectives extracted from the event 
log, giving place to an enriched event log (which contains the original 
features and the new extracted ones), to which data-driven and LDD 
techniques can be applied in order to generate natural language de
scriptions. Extracting the underlying process model from an event log 
and replaying it for obtaining an enriched model and event log are the 
cornerstone of our approach. This way, the proposed framework is able 
to encompass all perspectives of a process, unlike previous state-of-the- 
art approaches. The generation of the natural language descriptions is 

backed by a general model that handles both qualitatively and quanti
tatively process data: events and its attributes, cases (patients when 
talking about healthcare processes) and its attributes, resources involved 
in the process, temporal relations and wait times between events, etc. 
These descriptions are given to the user as sentences regarding each of 
the aspects of the process highlighted as relevant. They are constructed 
with the use of fuzzy logic techniques, where fuzzy terms can be used in 
order to generate descriptions that are able to summarize information in 
easy and conveniently abstracted ways e.g. “The wait time between the 
heart team meeting of a patient and its intervention is expected to be lower 
than 30 days. However, in approximately half of cases (59.30%) the patient 
had a wait time between its heart team meeting and its intervention higher 
than 30 days”. The generality of the model means it can be easily applied 
to other processes different to the one here presented (even to processes 
from domains other than healthcare), where attention may be drawn to 
other elements of the process or with other language requirements. 

This framework is applied to the Aortic Stenosis Integrated Care 
Process (AS ICP) implemented in the Cardiology Department of the 
University Hospital of Santiago de Compostela. In this process, consul
tations and medical examination (x-rays, echocardiograms, Computed 
Tomography (CT) scans, etc.) are performed to patients with AS in order 
to decide the procedure they will undergo. Once decided, patients are 
intervened and followed up during their recovery and discharge from 
the process. Through multiple meetings with medical experts, we clar
ified their needs and the elements of healthcare processes they need a 
better understanding of in order to find the most improvement oppor
tunities and generate descriptions that help answer the most commonly 
asked questions when analyzing healthcare processes [1,4,17]. This 
way, based on the elements of healthcare processes medical experts 
show most interest on, particularly on the healthcare process here pre
sented as a use case (AS ICP), our proposed model is able to quantify case 
(patient) attributes in time during a process life-span (e.g. number of 
patients with a particular characteristic such as type of intervention a 
patient underwent), recall temporal relations between activities in the 
process extracted through process mining techniques (e.g. order and 
wait time between the execution of two complementary medical tests), 
and describe differences between care paths followed by different 
groups of patients (e.g. difference in care paths followed by patients with 
ambulatory admittance vs. emergency admittance), among other fea
tures. To the best of our knowledge, our proposal is the first one which 
integrates process mining, D2T and fuzzy logic techniques for the 
description of processes in natural language involving terms with un
certainty, with an application in a healthcare process. 

The following sections are structured as follows. Section 2 gives a 
background in the application of NLG, Fuzzy Logic and Process Mining 
techniques to healthcare and process data as well as a brief analysis on 
the current proposals of natural language descriptions of processes. 
Section 3 presents the Aortic Stenosis Integrated Care Process and the 
problem of healthcare process understanding. Section 5 introduces the 
proposed pipeline of the framework and explains all the processing done 
from the input of the data to the generation of the final descriptions. 
Section 6 contains the proposed descriptions and how they were 
generated for the Aortic Stenosis case study. Second to last, Section 7 
shows the results of the validation conducted with the medical experts in 
charge of the AS process. Finally, Section 8 presents some concluding 
remarks. 

2. Background and related work 

2.1. Process mining 

Processes allow organizations to represent and structure the activ
ities that take place within them and their information systems as well as 
how data and resources are managed. They are usually represented 
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graphically as process models (in a plethora of notations), and data 
about their execution is recorded in what are called event logs. Process 
mining goal is to exploit this recorded event data in a way that can be 
used to understand what is really happening in a process in order to 
anticipate problems, streamline and improve processes by conjugating 
classical business process model analysis and data mining techniques. 
“The idea of process mining is to discover, monitor and improve real 
processes (i.e., not assumed processes) by extracting knowledge from 
event logs readily available in today’s systems.”[6]. More specifically, 
process mining techniques try to provide support to a process life-cycle, 
in which a theoretic process model is originally designed (often an 
idealized version of the process), implemented, executed and monitored 
(while the process is executed event data is recorded in event logs), 
diagnosed and re-designed. However, in most organizations, the diag
nosis phase is not systematically implemented, resulting in perfor
mances lower that initially planned, as many differences between the 
original theoretic (and idealized) process model and its execution, arise: 
failures in design, exceptions, changes in the process and more, trigger 
(unplanned) behaviours that where not originally embodied in the 
initial process model. This is where process mining shines, automatically 
discovering1 [6] the underlying (and real as per the execution data) 
process model, to extract with it valuable, process related information in 
a meaningful way, allowing for the evaluation (comparison with the 
theoretic process model, reviewing of quality values defined for key 
performance indicators, etc.) and enhancement (re-designing the pro
cess control-flow, adding resources where the evaluation of the process 
indicate is needed, etc.) of processes. Fig. 1 shows the relationship be
tween an initial theoretically defined process model, its execution and 
monitoring and the application of discovery algorithms (process mining) 
in order to extract the real process model from the event log resulting 
from the execution of the process. 

An event log consists in a recording of executed activities α (being an 
activity each well-defined step in a process) that takes the form of a 
multi-set of cases. Being a case c a particular execution of the process and 
a trace ̂c the ordered sequence of events that characterizes it. An event e 
represents the execution of an activity α in a particular instant and it is 

defined by two mandatory attributes: the name of the executed activity α 
and the time of its execution (timestamp). However, events can have 
additional attributes such as its associated resources (e.g. medical expert 
in charge of the event), duration, etc. As events, cases have attributes, 
compulsorily its corresponding trace and an identifier. Other attributes 
may be its throughput time, the patient involved in the case, the origin of 
admission of the patient involved in the case, or in a process that takes 
place outside of the healthcare domain it could be the cost associated to 
the execution of that particular instance of the process (case), among 
many others. 

Process mining has been applied multiple times in the healthcare 
domain: from discussing its applicability and challenges [5,17], to 
defining methodologies and reference models to increase the quality of 
healthcare process data and the application of process mining analysis to 
it [3,4]. In the last 5 years, two literature reviews have been published 
[1,8], showing that the application of process mining analysis in 
healthcare is a fast-paced evolving field. 

2.2. Natural language generation 

NLG systems are aimed to produce natural language texts from some 
underlying non-linguistic representation of information [10]. These 
systems use domain knowledge as well as linguistic knowledge in order 
to automatically generate texts or documents that summarize the most 
relevant aspects of some input data. They have been applied in multiple 
domains since their inception: from environmental information systems 
(weather forecasting reports [18]) to the health and related realms 
(textual summaries from neonatal Intensive Care Unit data [14], systems 
to support interaction of kids with complex communication needs [19]). 
Within the NLG field, D2T concerns to systems which generate text from 
numeric input data. 

Previous to NLG and D2T systems, using knowledge from the Fuzzy 
Logic domain, the paradigms of Computing with Words [20] and Lin
guistic Descriptions of Data (LDD) [21] emerged with the aim of 
modelling and managing the inherent uncertainty present in natural 
language through the use of fuzzy sets. These paradigms are based on the 
fuzzy sets theory and the use of protoforms [22], predefined structures 

Fig. 1. Schema of the relationship between a hand-defined theoretic process model, its execution and recording, resulting in an event log and the application of 
discovery algorithms to discover the underlying process model. Further, replaying employs both the event log and the discovered model. 

1 By applying a discovery algorithm i.e. a function capable of mapping an 
event log onto a process model such that the model is representative of the 
behaviour recorded on the event log. 
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(or templates) used to generate textual summaries (fuzzy quantified 
statements) involving linguistic terms with some degree of uncertainty 
present on them. 

Even having different origins and degrees of complexity, NLG and 
Fuzzy Logic techniques can be used together in order to develop more 
intelligent systems: LDD techniques provide ways of handling uncer
tainty and determining the most relevant characteristics of some non- 
linguistic data (the first stage of NLG and D2T systems), and NLG de
fines a pipeline able to generate well written, understandable, full nat
ural language texts with rich semantics [23]. This way, LDD techniques 
are valid on the framework of a more complex NLG system, as they can 
be used in the context of determining an intermediate language repre
sentation in the content determination phase, aiding on the selection 
and summarization of the most relevant aspects of the non-linguistic 
input data to the system. 

2.3. Related work 

Different natural language generation techniques have been applied 
in healthcare data and process data. However, no approach has yet been 
proposed for the generation of natural language descriptions of health
care processes. In the healthcare domain, multiple systems have been 
developed based on NLG techniques, one of the most well known is the 
NLG system Baby-Talk [14], developed for the automatic generation of 
textual summaries from neonatal intensive care data. Following the LDD 
approach, Almeida et al. [13] propose a system able to generate lin
guistic summaries of time series data for septic shock patients. 

Regarding the description of processes in natural language, two 
different approaches can be found, each, pairing a natural language 
generation technique with a particular process perspective2: NLG and 
the control-flow perspective and LDD and the case perspective. 
Following a NLG approach [15,24,25] propose a pipeline for the 
description of process models (control-flow perspective) in natural 
language as a way of maintaining a stable representation of a process 
model during its life-cycle. They aim to provide ways of supporting 
process model validation and inconsistency detection through natural 
language descriptions of process models. However, by focusing only on 
process models and ignoring the real execution data captured on event 
logs, this model-centric technique cannot respond to process-related 
questions further than describing the structure of a process via its 
model. As no process discovery techniques are applied, this approach is 
capable of describing the theoretical ordering of activities of a process 
via the structure of its model and the information contained in its 
labeled elements (activity and gateway labels of the model). Thus, this 
approach is very useful when dealing with structured process models, 
but falls short when addressing highly unstructured processes like the 
ones in the healthcare domain. Healthcare processes are highly dy
namic, complex, ad-hoc and increasingly multi-disciplinary. Typically, 
many discrepancies are found between the theoretic and the actual 

running processes [3,5]. Furthermore, they usually derive in spaghetti 
processes, with a high number of distinct activities and relationships. 
The description of the model of these processes is unmanageable or does 
not contribute to a better understanding of the process execution. 
Specially, medical experts show no interest in getting descriptions of 
theoretic process models, but of the results of its execution. In spite of 
this, no comparison is possible between this approach and the one 
presented in this paper, as they target different types of processes and 
pursue different objectives. 

Opposite to classical business process-model analysis, data-driven 
techniques focus on exploiting recorded data by extracting statistics, 
association rules, etc. from data stored in tables. In this sense, the LDD 
and case-focused approach relies on the application of data mining 
techniques to event logs [16,26], again, without paying attention to the 
alignment between process model and reality, but now focusing on 
event log data, instead. By applying data-driven and LDD techniques to 
event logs, knowledge can be extracted from the process execution data 
and natural language descriptions can be generated. However, by 
focusing only on event data, the scope of the process analysis is limited, 
as both the control-flow and time and frequency perspectives are 
neglected. In this approach, only resource and case perspectives can be 
described due to the lack of usage of any type of process model (not 
hand-made nor discovered from the log). As for describing the control- 
flow and timing perspectives, a process model is needed in order to 
infer relations between activities and their wait times by replaying3 the 
recorded event log over its corresponding process model. Data-driven 
and LDD techniques are able to recall basic case statistics, but cannot 
be used to analyze bottlenecks, wait times, compare behavior among 
groups of cases or deviations in the process flow, etc. So this approach is 
not able to answer frequent questions that arise when dealing with 
complex processes as those found in the healthcare domain. 

We can conclude that existing approaches are not able to provide a 
complete view of what is happening in a process, as the former generates 
natural language descriptions of process models, ignoring the execution 
data, and the later generates linguistic descriptions of case and resource 
data from event logs, ignoring the underlying process model. Aiming to 
fill the gap that exists in the application of NLG techniques to processes 
state-of-the-art, we propose a framework for the generation of qualita
tive and quantitative natural language descriptions of processes. Table 1 
summarizes which natural language descriptions (from the elements of 
processes the state-of-the-art highlights as relevant) each of the ap
proaches is able to generate. 

3. Healthcare processes: the aortic stenosis integrated care 
process 

In this proposal we will focus on cardiology healthcare processes, 
more specifically on the Aortic Stenosis Integrated Care Process of the 
Cardiology Department of the University Hospital of Santiago de Com
postela. As heart diseases (in particular ischemic cardiopathy) are still 
the most frequent cause of death worldwide [27], analysis of cardiology 

Table 1 
Type of descriptions (from a series of elements of processes the state-of-the-art highlights) each approach is able to generate.  

Approach Frequency of 
events 

Quantify 
event/case 
attributes 

Quantify 
relations 
between 
attributes 

Temporal 
contextualization of 
attributes 

Frequency and wait 
times of relations 
between events 

Compliance with 
expected values 

Comparison 
between groups of 
cases 

Ordering of 
activities 

[16,26] ✓ ✓ ✓ 
Our approach ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  

2 The different “dimensions” in which a process can be observed or analyzed: 
the control-flow perspective focuses on the ordering of activities, the case 
perspective focuses on properties (attributes) of cases, the resource perspective 
focuses on information about resources (actors) involved in the process and the 
time perspective is concerned with the timing and frequency of events. 

3 Process replay establishes a strong relation between a process model and the 
event log the process model is discovered from by relating events in the log to 
activities in the process. It will be further discussed in the next sections. 
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healthcare processes is of great interest. 
Aortic stenosis (AS) is a chronic disease and the most prevalent 

valvular heart disease, especially in elderly patients [28]. In the absence 
of treatments, valve replacement is currently the only intervention with 
the potential to improve the prognosis of AS patients [29]. However, 
when intervention is indicated, it is generally not performed immedi
ately. the paradigm of care for the patient with AS involves different 
professionals who at different times and places provide care that is 
fragmented, with little continuity of care and a high risk of lack of co
ordination. In contrast, Integrated Care Processes (ICP) seek to ensure 
the effectiveness of clinical actions through greater coordination and a 
guarantee of continuity of care [30]. In January 2018, an ICP of AS was 
implemented in the Valvulopathy Service of the Cardiology Department 
of the University Hospital of Santiago de Compostela, with the aim of 
managing the care of patients requiring intervention and guaranteeing 
the correct and coordinated functioning of each one of its phases[31]. 

3.1. Process definition 

The AS ICP covers all diagnostic and therapeutic interventions, from 
the heart team meeting4 (formal inclusion of the patient in the process) 
to the patient return to normal activity (patient exit from the process). 
The following stages are distinguished:  

1. Stage 0: Prior to the inclusion of the patient in the process, all the 
necessary tests will be requested and evaluated for presentation at 
the heart team meeting with the objective of identifying severe AS 
patients amenable of intervention.  

2. Stage 1: From the decision to intervene in the heart team meeting to 
the valve replacement procedure.  

3. Stage 2: Surgical or percutaneous valve replacement procedure.  
4. Stage 3: Rehabilitation and follow-up after intervention in order to 

facilitate the patient’s recovery after surgery. 

In order to monitor the results of the AS ICP, a registry of clinical data 
of the patients included in the process has been established. Information 
about the execution of all diagnostic and therapeutic interventions as 
well as patient management activities are recorded. Monitoring of un
expected events (e.g. mortality, unscheduled admission due to cardio
vascular causes, emergency room attendance due to cardiovascular 
causes) is available in the registry as well. 

3.2. Problem definition 

Process and outcome quality indicators are defined to analyze safety, 
identify funnels, bottlenecks and futile actions, and implement im
provements. The aim is to reduce unexpected events and unscheduled 
admissions, reduce overall delays in patient care, improve adherence to 
scientific recommendations and care protocol, and implement contin
uous quality improvement initiatives. 

Multiple key process indicators (KPIs) are defined to evaluate the 
results of the AS ICP. Medical experts in the Valvulopathy Service show 
genuine interest in applying process mining techniques to extract 
valuable knowledge and relationships between the different KPIs 
defined. The KPIs of interest for the AS ICP, and that will be described in 
this work are the following: proportion of patients with emergency 
admittance, compliance with the standard of wait time between the 
heart team meeting and the intervention of a patient, relation between 
the type of intervention and the wait time for a patient, delay between 
the heart team meeting and the intervention caused by CT scanning of a 

patient and influence of the type of admittance in the wait time. 
Due to the complexity of the process and the numerous variables and 

scopes defined for its evaluation, a problem arises when conveying the 
process mining results to the medical experts in the Valvulopathy ser
vice, as severe difficulties arise in its comprehension. The lack of good 
visualization techniques for process mining analysis results in the state- 
of-the-art, emphasizes the need of proposing novel ways of conveying 
the results of process mining analysis to users in a clear, and compre
hensible way. At this stage, medical experts show interest in natural 
language descriptions of the AS ICP and its process mining analysis re
sults, which can help in the understanding the process and the imple
mentation of improvements. As the elements under description are 
common to any other healthcare process, and to any process outside the 
healthcare domain: relating case attributes to KPIs, analyzing the 
control-flow perspective (paths followed by cases in the process), getting 
insights about frequency and timing of events, reducing unexpected or 
undesired behavior (reduce unexpected events), reduce wait times 
(overall delays in cases), among may others. We propose a general 
model, able to encompass all these process elements, and therefore 
applicable to processes in any domain. 

4. Fuzzy quantified statements 

Fuzzy quantified statements can be used to extract relevant infor
mation from an input dataset and a knowledge base for summarizing 
knowledge about variables and their values in a given domain. These 
statements follow predefined formal structures or templates, that are 
referred to as protoforms. Fuzzy quantified sentences of type-I and type- 
II have been the most used ones in the literature since their inception in 
early 1980’s. Formally, a protoform [22] is an abbreviation of proto
typical form, an abstracted prototype (model) of a quantified proposi
tion, which is composed of the following four elements:  

• Referential X: A set of objects for which certain property or set of 
properties holds. For example, the set of cases from an event log.  

• Summarizer A: Used to indicate some property or aggregation of 
properties of the referential of interest. For instance, if the referential 
is the set of cases on an event log, the summarizer can be any of the 
attributes (or aggregation of the attributes) of the cases.  

• Quantifier Q: Used to express the quantity or proportion of data from 
the referential which fulfills the properties indicated by the sum
marizer (e.g. most). 

• Truth degree T: A numerical value in the [0, 1] range, which in
dicates the degree of fulfillment or validity of the protoform for a 
given case. 

This way, quantified statements like “In most cases, activity α1 was 
executed” can be instantiated from an event log with type-I protoform: 

Q X′s are A (1)  

where quantifier Q is most, summarizer A is activity α1 was executed and 
referential X is the set of cases from an event log. These protoforms can 
be used for modelling processes in any domain, as the referential can 
represent any set of objects, and the summarizer can make reference to 
any property that holds for said set of objects. 

A qualifier can be added to the description to narrow the scope of the 
sentence, giving place to type-II protoforms:  

• Qualifier B: As the summarizer, can make reference to any property 
or aggregation of properties of the referential. It defines a subset of 

4 The heart team meeting is a multidisciplinary clinical session in which 
cardiac surgeons, vascular surgeons, clinical cardiologists, and cardiac imaging 
experts evaluate patients with heart disease amenable to surgical treatment. 
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elements of the referential which fulfills the property or properties 
defined by B to a certain degree. This subset is taken as the referential 
that will be evaluated against summarizer and quantifier. 

Statements like “In most cases, where activity α2 was executed, ac
tivity α1 was executed” can be instantiated from a type-II protoform: 

Q BX′s are A (2)  

Where Q,X and A are as before, and qualifier B is activity α2 was executed. 
As it can be seen, activity α2 was executed acts as a discriminant and 
activity α1 was executed as the property to which the subset is evaluated 
against. 

Instancing a protoform involves assigning values to its elements and 
computing its truth degree T ∈ [0, 1], i.e. the degree to which the pro
toform correctly summarizes the referential. The closer it is to one the 
more truthful the summary is. In our approach, Zadeh’s quantification 
model is used for computing the truth degrees [20], although any valid 
quantification model could be used on its behalf [32,33]. 

4.1. Linguistic variables 

Both summarizer, qualifier and quantifier in the protoforms are 
usually defined as linguistic variables. Linguistic variables model the 
partitioning of the domain of a numeric or categorical variable into 
several properties. Each property is known as a linguistic value and is 
associated to a membership function that measures the degree in which 
different values of the original variable fulfill that property. A mem
bership function μA(x) of linguistic value A, associates with each 
element x of a referential X a real number in the interval [0, 1]; with the 
value of μA(x) at x representing the “degree of membership” of x in A i.e. 
the degree to which x satisfies the property indicated by A. These 
membership functions are usually represented trapezoid functions T[a,b,
c,d]:, defined as follows: 

μT[a,b,c,d](x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, (x ⩽ a) or (x > d)
x − a
b − a

a < x ⩽ b

1, b < x ⩽ c
d − x
d − c

c < x ⩽ d

(3)  

For example, variable waiting time originally defined as a numerical 
variable ranging the interval [0, 100] can be modeled as a linguistic 
variable with linguistic values {very short, short, as expected, longer than 
expected, really long} over the domain [0, 100] of the original numerical 
variable, as Fig. 2 shows. A set of proportional quantifiers (relating a 
proportion over the domain [0,1]) can be defined as a series of positive, 
non-monotonous fuzzy sets (trapezoids) as in Fig. 3. 

The use of linguistic variables allows to capture and manage the 
uncertainty and vagueness present inherently in human natural lan

guage and use it in the description of variables including along the time 
and space dimensions. In cases where more fine grained information is 
needed (or the original variable is categorical), crisp linguistic values 
can be used. The membership of an element x to a crisp linguistic value 
can be computed straightforward by taking a = b and c = d in expres
sion (3). Resulting in an interval with crisp (instead of fuzzy) limits, the 
membership of an element x to these functions can only be {0,1}. When 
the original variable is categorical, then, a linguistic value A := [a, d] is 
defined for each category and its membership function is defined as: 

μ[a,d](x) =
{

1, if x ∈ [a, d]
0, otherwise (4)  

4.2. Generation process 

The generation of protoforms is based on its instantiation and the 
evaluation of its truth degree. Once the referential and combination of 
summarizer, qualifier and quantifier are chosen, the first step is taking 
the set of values of the properties of the referential the summarizer makes 
reference to, i.e. taking from the dataset subject to description the column 
(or columns) corresponding to the variable (or variables) the summarizer 
makes reference to. For example, the dataset object to description is an 
event log, and the referential is defined as the set of cases from the log. If 
the summarizer relates short waiting time, then, the set of values of the 
referential that must be taken for evaluation i.e. the column of the dataset 
(the event log in this case) will be waiting time. This referential can be seen 
in Table 6 in column 9 and an abstraction of it in Fig. 4a, where yi rep
resents each of the elements on the selected column of the dataset. 

The second step is evaluating this set of values over the chosen 
summarizer. This is done by evaluating each element of the set with the 
membership function of the summarizer e.g. linguistic value short for 
linguistic variable waiting time with its corresponding membership 
function defined as in Fig. 4b. This evaluation gives place to a collection 
of membership values on the domain [0,1], each of them indicating the 
membership of each of the elements of the referential to the selected 
linguistic value. The collection of membership values resulting from 
evaluating the referential Fig. 4a over the linguistic value Fig. 4b can be 
seen in Fig. 4c. Each yi represents the membership value of each of the 
elements taken from the referential to the linguistic value. 

Finally, the membership degree of the referential to the summarizer 
must be evaluated against the quantifier in use. To do this, the collection 
of membership values obtained in the previous step is aggregated. When 
using a proportional quantifier, a proportion of membership is 
computed. Then, this aggregated value is evaluated against the mem
bership function of the quantifier and a truth value T for the protoform is 
obtained. Eq. (5) summarizes the complete evaluation process: 

T = μQ

(
1
n
∑n

i=1
μA(pi)

)

(5)  

where pi is each of the elements in the referential, n is the number of 
elements in the referential and μA the membership function of summa
rizer A. 

For type-II protoforms, where a qualifier is used, an additional step is 
necessary. This is, previous to the evaluation of the referential against 
the summarizer, the referential is evaluated against the membership 
function of the qualifier, effectively acting as a discriminant over the 
elements of the referential that will be evaluated against the summa
rizer. The resulting equation for the evaluation process is then: 

T = μQ

⎛

⎜
⎜
⎝

∑n

i=1
μA(pi) ∧ μB(pi)

∑n

i=1
μB(pi)

⎞

⎟
⎟
⎠ (6)  

Instead of single variables, complex expressions involving, for instance, 
several variables, values and relationships among them can be used as 

Fig. 2. Linguistic values defined for linguistic variable “waiting time” on the 
domain [0, 100]. 

Fig. 3. Proportional quantifiers defined on domain [0, 1].  
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summarizers, qualifiers or quantifiers, thus allowing flexibility and 
expressiveness of the protoforms. This, added to the capability of these 
protoforms to be applied in any domain, gives place to rich and 
insightful descriptions of processes. For instance, for the AS ICP, the 
following description can be generated “Wait time between the heart team 
meeting of a patient and its intervention is expected to be lower than 30 days. 
However, in approximately half of cases (59.30%) patient had a wait time 
between its heart team meeting and its intervention higher than 30 days.” In 
Section 5.4 a series of extensions of the type-I and type-II protoforms for 
the description of processes are presented, and its instantiation over the 
AS ICP can be found in Section 6. 

In classical LDD approaches, linguistic summaries are generated by a 
search (exhaustive or non-exhaustive) through the semantic space5 

guided by quality measures as the truth value. By contrast, in the D2T 
and NLG systems pipeline (as this proposal) expert knowledge, usually 
in the form of sets of rules, is used in the main stages of the generation 
process related to handling of data (data interpretation and document 
planning) to determine which messages (protoforms in our case) must be 
included and realized into the final text. 

5. Pipeline for the generation of natural language descriptions 
of processes 

In this section, the Process-To-Text (P2T) framework for the auto
matic generation of natural language descriptions of healthcare pro
cesses is presented. This framework is based on the most widely used 
architecture for D2T 6 systems [2], and is composed of four stages: 
preprocessing, data interpretation, document planning, and linguistic 

Fig. 4. Elements that constitute the protoform evaluation process.  

Fig. 5. The Process-to-Text pipeline for the automatic generation of natural 
language descriptions of processes. First the original data registry is converted 
into an event log. In the data interpretation phase the process model is 
discovered and process analysis and extraction of relevant features of the pro
cess take place. In the document planning stage protoforms are generated. 
Finally, protoforms are realized into natural language texts. 

5 The semantic space is the power set of all protoform instances that can be 
built using the defined quantifiers, qualifiers and summarizers 

6 Data-to-Text is a sub-discipline of the Natural Language Generation field 
aimed at generating texts from numerical input data. 
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realization. In the preprocessing stage, the raw event log data is con
verted into an event log readily available for applying process mining 
techniques to it. Next, the data interpretation phase consists in the 
process model discovery, process analysis (process replay and mining of 
additional perspectives), and extraction of relevant features of the pro
cess that might be of interest. Second to last, the document planning 
stage consists in the generation of fuzzy quantified statements that 
summarize this information. Finally, in the linguistic realization phase, 
the fuzzy quantified statements are transformed into natural language 
texts using a hybrid template based approach and a natural language 
realization engine [34]. 

Fig. 5 illustrates the pipeline from start to end and Fig. 6 illustrates 
the transformations of data that take place in the pipeline, helping un
derstand the different stages the pipeline is comprised of and what data 
processing takes place in each stage. In the following these stages will be 
described in detail. 

5.1. Preprocessing 

As being really ad-hoc, processes (from any domain) are recorded in 
many different ways by the information systems in which they are 
implemented, so no standard way of extracting information from pro
cesses exists. However, process mining defines a model on how process 
elements relate to one another, this way, parting from the raw data, and 
based on this model, it is possible to generate event logs to which process 
mining techniques can be applied. The input to this stage is the original 
process log. Manipulation by a process expert is required. We will use 
the AS ICP as an illustrative example, as commonly some preprocessing 
is needed in order to apply process mining techniques to healthcare data 
[1]. An outline of the original registry of clinical data from the AS ICP is 
shown in Table 2 (only some columns are shown, as the original number 
of variables is too large for including all). As it can be seen it does not 
look as a classical event log used in process mining analysis, but rather as 
a data table in which each tuple represents a patient, and each column 
one variable defined for the process. These variables include patient 
characteristics, such as origin of admission (Origin), results of fragility 
test (Fragilty), type of intervention (Interv), or sex of the patient (Sex), 
the dates of execution of diagnostic and therapeutic interventions, such 
as date of the last unscheduled admission (Date_UA), date on which a CT 
scan was performed on the patient (Date_CT), date of the heart team 
meeting of a patient (Date_MS), or date of its intervention (Date_Interv), 
among others. 

As this registry is not suitable, as is, for applying process mining 
techniques to it, some preprocessing is necessary. An event log is con
structed using the patient id as the case identifier, i.e. each patient will 
represent a case in the process, and the sequence of diagnostic and 
therapeutic interventions it goes through will represent the trace it 
follows. Thus, each diagnostic or therapeutic intervention will represent 
an event in the process. The distinct set of all events in the process 
represents the possible activities that can be executed, these are: the 
diagnostic or therapeutic interventions that can be performed on pa
tients, patient management activities, and unexpected events. All attri
butes will be considered case attributes (apart from the executed activity 

Fig. 6. Data transformations that take place within the Process-to-Text pipe
line. The original raw log is converted into a preprocessed event log, after 
applying a discovery algorithm a process model is obtained. With the process 
model and the event log, process replay and mining of additional perspectives 
can happen, and with feature extraction techniques, a dataset for applying data 
mining and fuzzy quantification is obtained. Then, protoforms are generated 
from this dataset. Finally, the protoforms are realized into natural lan
guage text. 

Table 2 
Extract of the original registry of clinical data from the Aortic Stenosis Integrated Care Process.  

ID Origin Date_UA Date_CT Date_RX Frailty Date_MS Interv Date_Interv Date_Rel Sex Birthdate 

1 1 – 13/01/2018 24/11/2017 0 26/01/2018 0 07/06/2018 12/06/2018 1 04/04/1938 
2 1 – 22/08/2017 04/10/2017 – 18/12/2017 0 26/06/2018 24/08/2018 1 12/04/1956 
3 1 31/05/2018 15/03/2018 – 0 16/03/2018 1 03/07/2018 02/10/2018 0 13/09/1936 
4 1 14/08/2018 10/04/2018 03/10/2016 1 27/04/2018 1 31/07/2018 10/10/2018 0 22/01/1934 
5 1 – 09/01/2018 26/09/2017 1 02/11/2017 1 19/04/2018 30/10/2018 0 15/04/1936 
6 1 04/02/2018 – 28/06/2017 1 05/12/2017 0 01/06/2018 24/09/2018 1 11/03/1942 
7 1 06/02/2020 27/03/2018 28/07/2014 0 06/04/2018 0 05/09/2018 17/10/2018 1 06/05/1935 
8 1 04/03/2019 15/07/2018 15/01/2018 0 06/07/2018 0 06/11/2018 19/12/2018 1 18/04/1935  

Table 3 
Preprocessed event log extracted from the original AS ICP registry from Table 2. 
Columns starting with “event_” refer to event attributes, and columns starting 
with “case_” refer to case attributes.  

case_id event_activity event_time case_sex case_age case_fragility 

1 consultation 2013-06-04 
09:00 

Male 84 1 

1 special- 
consultation 

2012-06-14 
09:00 

Male 84 1 

1 echocardiogram 2012-06-21 
09:00 

Male 84 1 

1 consultation 2012-06-21 
10:00 

Male 84 1 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
21657 echocardiogram 2012-10-25 

09:00 
Female 76 0 

21657 consultation 2012-10-25 
10:00 

Female 76 0  
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and the timestamp of an event), as in the original log attributes refer to 
each patient, and as each patient is considered a case, all attributes are 
understood as case attributes. The output of this stage is an event log in 
the correct format for applying process mining techniques. Table 3 
shows an excerpt of the event log constructed from the AS ICP original 
registry. 

5.2. Process discovery 

The next step is to discover the underlying process model from the 
event log by applying a discovery algorithm [6,35]. Traditionally these 
algorithms have followed different approaches, such as the heuristic 
miner [36], the inductive miner [37] or the evolutionary-based algo
rithms [38], among others. Here we use the inductive miner algorithm 
as it provides sound models with fitness 17, allowing in further stages to 
replay the whole behavior observed in the event log. Fig. 7 shows the 
process model of the AS ICP extracted from the event log. The input of 
this stage is an event log, and the outputs are both the event log and the 
discovered process model. 

5.3. Mining additional perspectives 

Process mining techniques not only allow to show what is happening 
with a process through process models extracted with discovery tech
niques (control-flow perspective), but can also generate insights on 
compliance, performance and efficiency: timestamps and frequencies of 
activities can be used to identify bottlenecks and diagnose other 
performance-related problems, and case data can be used to better un
derstand decision-making and analyze differences among cases. 

Process model replay establishes a strong relation between a process 
model and reality (as in the form of the event log the process model is 
extracted from) by relating events in the log to activities in the process. 
Using an event log and a process model as inputs, each trace is played 
over the model: events and relationships between events are fired over 
the model following the order indicated by each trace from start to 

finish. So, having the process model as a base, each case from the log is 
taken, and each of its events is fired following the control-flow indicated 
by the model. Fig. 8 shows an example of how replay works. 

Fig. 7. Model of the valvulopathy process discovered with the inductive miner in the ProM v6.9[6] tool and represented as a Petri Net. The names of the activities are 
in Spanish as it is the original language of the process. 

Fig. 8. Replaying of trace = 〈a, b, d, e, f〉 on top of its corresponding model 
(represented as a Petri Net). 

7 Fitness refers to the quality of a process model of supporting or modeling 
the behavior seen in the event log, it measures “the proportion of behavior in 
the event log possible according to the model”. 
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5.3.1. Time and frequency 
During the replay of the log over the model, as each activity and 

transition is executed, a collection that associates for each case its 
executed activities and relationships between activities, and how much 
time was spent in each of them is recorded. An example of this collection 
can be seen in Table 4. This collection allows to see which parts of the 
model are visited frequently (how many times each activity and rela
tionship between activities has been executed) and how much time is 
spent in each part of the process. 

Even though discovery is a necessary step, as it allows for deter
mining how activities relate between them (this is unknown in the event 
log as parallels and choices are not represented in it), it is important to 
notice that this temporal information can not be obtained only by 
discovering the underlying process model. Replay is a requirement for 
discovering the temporal perspective, as only by relating the data 
recorded in the log to the control-flow perspective, we can collect fre
quency and timing information. The output of this stage is an enhanced 
event log, which now contains as new case attributes, the collected 
frequency and timing information. 

Table 5 shows an excerpt of the output of this stage for the AS ICP case. 
The log is now enhanced with the collection of durations for the transition 

between activities heart team meeting and CT scan and the duration of the 
stage between the heart team meeting and the intervention of each case. 

5.3.2. Feature extraction and data analysis 
Collecting performance information is not enough to completely 

understand what is happening in the AS ICP or any process without 
further analysis. Once a deviance in a KPI or a delay has been detected, 
one of the most important questions is still unanswered: What is the 
reason for the deviance or the delay? We will refer to this step as feature 
extraction and data analysis: having as input the enhanced event log 
obtained in the replay stage, the goal is to describe cases in terms of a 
vector of variables, the features, that allows for applying multiple 
analysis techniques. This stage is guided by the knowledge of experts on 
the process domain. At the start of the pipeline, experts relate the in
formation of the process they consider relevant and want to get insights 
on. Now, what features or variables are required for generating the 
descriptions that fulfill these requirements must be defined, selected and 
created (by combining existing features) when necessary. So now, we 
have data about cases (patients when talking about processes in the 
healthcare domain) in the process as a dataset in the form of a table, 
containing all the relevant features of each case, namely: its identifier, 
its corresponding trace and case attributes, including the frequency and 
temporal information discovered in the previous stage. Additional fea
tures may be computed at this stage e.g., for the AS ICP, a patient’s age is 
computed through its birth date and the current date, volume variable 
num_tests is computed by the sum of all complementary test performed to 
a patient, volume variable num_events is computed by the sum of all 
unexpected events that took place during a patient stay in the service, 
etc. Table 6 shows the dataset corresponding to the AS ICP, and 
extracted from the enhanced log resulting from the previous stage. Only 
some features are shown, as the complete set of features characterizing 
the cases is too large. 

Decision mining aims to find rules explaining choices in the process 
in terms of the features of a case. However, this is not limited to 
explaining choices in the process via rules, as any combination of pre
dictor and response variables can be used, classification algorithms, 
statistical analysis, fuzzy quantification and many other techniques can 
be used. This way, attention can be focused on explaining deviation and 

Table 4 
Excerpt of durations (expressed in days) between the heart team meeting session 
and the intervention of a patient and the heart team meeting and the CT scan
ning of a patient. Duration is positive if origin event precedes destination event 
and negative if destination event precedes origin event.  

case_id MS-intervention MS-CTscan 

1 131 − 13 
2 188 − 118 
3 107 − 1 
4 86 − 10 
5 167 68 
6 176 - 
⋮ ⋮ ⋮ 

21654 120 9 
21655 28 28 
21656 54 − 7 
21657 155 49  

Table 5 
Enhanced event log with the wait time (expressed in days) between the heart team meeting session and the intervention of a patient and the heart team meeting and the 
CT scanning of a patient extracted through replaying. Duration is positive if origin event precedes destination event and negative if destination event precedes origin 
event. Columns starting with “event_” refer to event attributes, and columns starting with “case_” refer to case attributes.  

case_id event_activity event_time case_sex case_age case_fragility case_MS-intervention case_MS-CTscan 

1 consultation 2013-06-04 09:00 Male 84 1 46 − 13 
1 special-consultation 2012-06-14 09:00 Male 84 1 46 − 13 
1 echocardiogram 2012-06-21 09:00 Male 84 1 46 − 13 
1 consultation 2012-06-21 10:00 Male 84 1 46 − 13 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

21657 echocardiogram 2012-10-25 09:00 Female 76 0 23 − 118 
21657 consultation 2012-10-25 10:00 Female 76 0 23 − 118  

Table 6 
Dataset corresponding to AS ICP event log with its original attributes as well as the newly calculated with process mining techniques.  

case_id trace admittance age sex int_year num_events num_tests HTM_INT CT_HTM 

1 〈incl,valor, ergo, coro, ...〉 ambulatory 82 male 2018 0 3 46 − 13 
2 〈incl,valor, coro,CT, ...〉 ambulatory 64 male 2017 0 2 23 − 118 
3 〈emerg, emerg admi, incl,valor, ...〉 ambulatory 84 female 2018 1 2 24 − 1 
4 〈emerg, emerg admi, incl,valor, ...〉 ambulatory 86 female 2018 1 3 32 − 10 
5 〈incl,valor, coro,CT, ...〉 ambulatory 84 female 2017 1 4 41 68 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

21655 〈incl,valor, coro,CT, ...〉 ambulatory 78 male 2017 0 2 48 75 
21656 〈emerg admi, incl,valor,coro, ...〉 ambulatory 85 male 2018 0 2 46 − 7 
21657 〈emerg admi, incl,valor,coro, ...〉 ambulatory 85 male 2018 0 3 67 49  

Y. Fontenla-Seco et al.                                                                                                                                                                                                                         



Journal of Biomedical Informatics 128 (2022) 104033

11

delays related to KPIs such as checking if the execution of certain ac
tivity influences the wait time on a case (relating control-flow and time 
and frequency information), how attributes affect the executed activities 
on a case, correlating the wait time between two activities to the result 
of variable of the process, etc. 

A key element in this approach is the usage of statistical analysis 
techniques and expert knowledge to guide the generation of the natural 
language descriptions, i.e., statistical analysis is used to decide which 
descriptions are relevant and should be generated for a process. Statis
tical testing allows to determine whether statistically significant differ
ences exist between expected and real values of features, the value of 
some feature for different groups of cases, the proportion of cases having 
certain feature, etc. Furthermore, as any combination of features is 
possible, this comparisons can be performed over newly discovered 
features regarding relationships between activities, allowing to describe 
and compare the control-flow and time and frequency perspectives for 
groups of cases (grouped by some other feature). This way, based on 
expert knowledge, hypotheses are established and statistical analysis 
techniques (according to the type of data under analysis in each case) are 
applied in order to confirm or disprove said hypotheses. Particularly, 
group comparison and proportion tests are used, adapted to the nature 
of the data: ANOVA, Mann-Whitney-Wilcoxon, Wilcoxon signed-rank 
test, one sample t-tests, etc. As an example, on the AS ICP, by 
applying the Mann–Whitney-Wilcoxon test to feature HTM_INT, which 
relates the waiting time between the heart team meeting and the 
intervention of a patient, and comparing groups based on feature 
admittance, it was found that patients from emergency origin have lower 
wait times between activities heart team meeting and intervention. In a 
similar manner it was found that cases in which a CT scan is performed 
tend to have longer throughput times that those which not. 

The output of this stage is the new dataset with the additional 
discovered and computed features that characterize each of the cases, 
plus the knowledge obtained by applying statistical analysis techniques. 

5.4. Protoforms for the description of processes 

At this stage, utilizing the dataset constructed in the previous stage 
and fuzzy quantification techniques, guided by expert knowledge 
(included the one acquired in the previous stage), fuzzy quantified 
statements are generated. In this approach we propose a series of ex
tensions and modifications of the type-I and type-II protoforms pre
sented in Section 4 for the description of processes. Table 7 shows a 
summary of the proposed extensions, their associated protoform, and an 
example of its instantiation. In Section 6 the instantiaton of these pro
toforms for a specific health process (the AOS ICP) is presented. 

5.4.1. Temporal contextualization of features 
The first question experts try to solve when analyzing a process is 

how cases characterize and how their features evolve during the 
execution of the process. This can be done by generating descriptions 
that relate the value of case features, and how features relate to each 
other, in different time intervals of the process. This gives a first un
derstanding of what is happening in the process and helps on detecting 
groups of cases (grouped by the same feature or set of features) or parts 
of the process that may need to be analyzed in further detail. For the 
generation of these statements, protoforms (1) and (2) are extended with 
the temporal characterization to the following protoforms respectively: 

In Ti, Q cases had feature P (7)  

In Ti, Q cases with feature C had feature P (8)  

As in (1), Q is the quantifier and C and P are the qualifier and summa
rizer respectively. They can make reference to any of the features (or 
combination of features) of a case. Finally, Ti is the time interval in 
which attention on the feature (or combination of features) described by 
C and P is focused. It is defined as a crisp linguistic value. With (7) de
scriptions as the following can be generated e.g. “In year 2020, many 
cases had a long waiting time.” And (8) allows to check if any type of 
relation between features holds in a particular period of the process e.g., 
“In year 2020, in most cases where resource MANAGER was involved, case 
had a short waiting time.”. 

Truth value of (7) can be directly calculated using [39]. For the 
evaluation of (8) we propose the following extension: 

T = μQ

⎛

⎜
⎜
⎝

∑n

i=1
μTi(pi) ∧ μP(pi) ∧ μC(pi)

∑n

i=1
μT(pi) ∧ μC(pi)

⎞

⎟
⎟
⎠ (9)  

Where n is the number of cases, p represents a case, ∧ represents the t- 
norm8 minimum which is used as conjunction. 

5.4.2. Frequency and temporal relations between activities 
For understanding and improving wait times and control-flow, in

formation about activity relationships is needed. Frequency and tem
poral relation protoforms aim to give a good understanding of the 
different paths cases follow (control-flow perspective), the frequency 
and wait times of activity relationships (frequency and time perspective) 
and how case features may influence case paths and wait times. These 
descriptions help to answer questions like “which are the most 
commonly followed paths and what exceptional paths are followed?”, 

Table 7 
Proposed extensions of type-I and type-II protoforms for the description of processes.  

Extension Protoform Example 

Temporal contextualization of 
features 

In Ti, Q cases had feature P In year 2020, many cases had a long waiting time 
In Ti, Q cases with feature C, case had feature P In year 2020, most cases where resource MANAGER was involved had a short waiting time 

Frequency and temporal relations 
between activities 

In Ti, in Q cases, R In the first semester of year 2021, in approximately half of cases, activity A takes place 
shortly after activity B 

In Ti, in Q cases with feature C, R In the first semester of year 2021, in many cases where the wait time was long, activity C took 
place long after activity A 

Compliance In Ti,P1 is expected. However, in Q cases with 
feature C, had feature P2. 

In year 2020, a wait time of 30 days between activity A and activity B is expected. However, 
in many cases where activity C is executed, wait time between activities A and B is higher 
than 30 days 

Comparison between groups In Ti,Q1 cases with feature C1 had feature C2. 
However, Q2 cases with feature C2 had feature P2 

In year 2020, many cases where resource MANAGER was involved had a short waiting time 
between activities C and D. However, most cases where resource APPRENTICE was involved 
had a long waiting time between activities C and D.  

8 A t-norm is a binary operation that generalizes in fuzzy logic the conjunc
tion operation. 
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“where are the bottlenecks in the process?” or “what may have caused 
the bottleneck?” which are some of the most frequent questions when 
applying process mining techniques, specially, on healthcare processes 
[1]. 

Information about frequency and timing of relationships between 
activities has been extracted and stored as case features when mining the 
time perspective as explained in Section 5.3 allowing for the generation 
of descriptions following the proposed protoforms: 

In Ti, in Q cases R (10)  

In Ti, in Q cases with feature C, R (11)  

Where Ti,Q and C are as defined in (7) and R makes reference to a case 
feature which states whether a transition between two activities in the 
process takes place in a case. So for each case Ci,Ri is empty if the 
transition between two chosen activities does not take place (in that 
particular case), positive if an event representing the execution of the 
activity chosen as origin in the transition precedes an event representing 
the execution of the activity chosen as destination and negative in the 
opposite case. Evaluation process is similar as before, where truth de
gree T for (10) is computed as in [39] and for (11), as (9). Substituting P 
for R respectively in both cases. Following (10) descriptions as the 
following can be generated e.g. “In the first semester of year 2021, in 
approximately half of cases, activity A takes place shortly after activity B”. 
By following (11) relations between features and activity relationships 
can be described e.g. “In the first semester of year 2021, in many cases 
where the wait time was long, activity C takes place long after activity A.” 

5.4.3. Compliance 
Compliance descriptions highlight deviances that happen in the 

process. By adding the expected value (the value originally defined by 
experts) of a feature to its description makes it easier for users to detect 
and understand deviances taking place in the process. By using a type-II 
protoform as in (8) descriptions of features causing deviance over the 
expected value of some other features can be generated e.g. describing 
how the participation of one particular resource in a case makes the wait 
time of transition between two activities longer than initially expected. 

These descriptions are obtained by composing two protoforms: the 
first relates the expected value of some feature (defined by an expert) 
and the second contrasts the actual value of said feature in the process 
and is generated as defined in Section 5.4.2. Both statements are related 
through a semantic relation as in [40]. The composed protoform is 
structured as: 

In Ti, P1 is expected.However, in Q cases with feature C had feature P2 (12)  

This composite protoform allows for the generation of descriptions as 
“In year 2020, a wait time of 30 days between activities A and B is expected. 
However, in most cases where activity C is executed, wait time between ac
tivities A and B is higher than 30 days”.Its truth degree T is derived from 
the aggregation of the truth values of its constituents through any t- 
norm. For simplicity and consistency with the previously presented 
protoforms we propose the use of the t-norm minimum. If we refer to the 
expected value protoform “In Ti P1 is expected” as S1 and to the con
trasting protoform “However, in Q2 cases, patients with attribute C had 
attribute P2” as S2 the truth degree T of (12) is computed as: 

T = T(S1) ∧ T(S2) (13)  

As the first statement is done over a known value (the value initially 
defined by experts), its truth value is always maximum. So, as by 
conjunction properties, the truth value of the deviance protoform is 

equal to the truth value of protoform S2. For this second protoform, 
truth value is computed as (8) or (11), depending if S2 describes a 
temporal relation between activities or other feature. 

5.4.4. Comparison between groups of patients 
Protoforms (8) and (11) give a first look at how two features relate: 

by using a feature on the qualifier and another on the summarizer one 
can see how the feature selected as qualifier affects that selected as 
summarizer9. Comparison descriptions aim at highlighting differences 
in traces, attributes case features between different groups of cases by 
comparing how a feature selected as summarizer behaves (which is its 
value) for different values of a feature selected as qualifier. Giving a 
comparison description, users can easily see if differences in a feature 
exist for different groups of cases e.g. seeing if differences for the wait 
time between two activities exist based on the execution of a particular 
activity on the process. 

As compliance protoforms described in Section 5.4.3, these are 
composite protoforms. In this case, both protoforms relate the value of 
certain feature (summarizer) for a particular group of cases. The 
resulting composite protoform is defined as: 

In Ti, Q1 cases with feature C1, had feature P1.

However, Q2 cases with feature C2 had feature P2.
(14)  

Qualifiers C1 and C2 take different values of the same feature, and are 
used to define different groups of cases e.g. two of the possible resources 
in charge of a particular activity. C1 and C2 make reference to the same 
linguistic variable (qualifier) but take different linguistic values. Sum
marizers P1 and P2 work in a similar way: they convey different lin
guistic values of the linguistic variable under observation (summarizer) 
e.g., lower than 30 days vs. higher than 30 days for linguistic variable wait 
time between activity A and activity B. As before, the truth value is derived 
from the aggregation of the truth values of the constituents protoforms 
through any t-norm (we again propose the use of t-norm minimum). We 
refer to the first protoform “In Ti, in Q1 cases where patient had attribute 
C1, patient had attribute P1” as S1 and to the contrasting protoform 
“However, in Q2 cases where patient had attribute C2 patient had attribute 
P2” as S2. So the truth value of both S1 and S2 is computed as for (8) if P 
refers to a case feature or (11) if P refers to a transition between two 
activities. The truth value of the composite protoform is computed as 
(13). Following (14) descriptions as the following can be generated e.g. 
In year 2020, many cases where resource MANAGER was involved had a 
short waiting time between activities C and D. However, most cases where 
resource APPRENTICE was involved had a long waiting time between ac
tivities C and D. 

5.5. Realization 

The final stage of the pipeline is the linguistic realization phase. 
Generating fuzzy quantified statements into natural language texts 
which provide the final information to the users. Apart of being infor
mative and relevant, the texts should be correct from all linguistic points 
of view (grammatical, morphological, lexical and orthographic). 

In our framework, we follow a hybrid template-based realization 
approach, which integrates domain expert knowledge with text tem
plates for generating the final texts. This approach is richer and more 
flexible than basic fill-in-the-gap template approaches, but simpler and 
quicker than full fledged NLG system implementations [41,42]. The 
SimpleNLG-ES [34] realization engine, (the Spanish version of the 
original SimpleNLG engine [43]) was used at this stage. For each of the 
proposed extended protoforms (temporal contextualization of features, 
frequency and temporal relationships between activities, compliance 

9 In (11), the summarizer specifically makes reference to a transition between 
two activities 
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and comparison between groups of patients), a base structure is defined. 
So even represented as separated stages in the pipeline, the generation of 
the fuzzy quantified statements its coupled with its realization. The basic 
template of each of the proposed extended protoforms is defined as a 
function which takes as inputs the data relative to the referential under 
evaluation and the quantifiers, qualifiers and summarizers (in the form 
of linguistic variables) which want to be used in the description. With 
the defined template for each protoform, the elements that constitute it, 
and the SimpleNLG realization engine, the protoform is evaluated and 
generated into a natural language text. The elements used in the pro
toform (referential, quantifiers, qualifiers and summarizers) can be 
chosen manually based on some knowledge or algorithms for choosing 
them can be used. As introduced in Section 5.3.2, for our approach, 
expert knowledge (what information is relevant for the users) and sta
tistical analysis techniques are used for deciding which protoforms to 
generate. 

This way, the basic syntactic structure of the description is fixed, but 
the terms used in it (summarizer, qualifier, quantifier) are selected and 
accordingly modified (number, tense, negation, etc.) for each of the 
natural language descriptions generated. Some additional logic exists in 
the templates; for example, when using an aggregation value as a feature 
summary (e.g. using the average value of a certain feature to give a quick 
insight of it instead of using a quantifier), the part of the template that 
relates “In Q cases…” gets replaced to “Cases…”. Also, if multiple 
properties are used as a summarizer or qualifier, certain modifications 
need to happen, as using the correct connectives in each place is 
necessary for the correctness of the description. 

6. Natural language descriptions of the AS ICP 

Following the extended protoforms proposed in the previous section, 
we show how these descriptions are generated with the proposed 
framework, what information is used in each case and what knowledge 
or techniques are used for guiding the generation process of the de
scriptions. More specifically descriptions about temporal contextuali
zation of case (patient) features, frequency and temporal relations 
between activities, compliance with clinical guidelines and comparison 
between groups of patients, are generated. 

6.1. Temporal contextualization of features 

One of the AS ICP concerns in respect of temporal contextualization 
of features is how many complementary tests are performed on a patient 
in Stage 110. The following descriptions are generated:  

• In year 2018, an average of 3 complementary tests are performed to a 
patient between the heart team meeting and its intervention.  

• In year 2019, an average of 2 complementary test are performed to a 
patient between the heart team meeting and its intervention. 

The generation process of these descriptions is as follows:  

1. Feature number of complementary tests is created and computed by 
summing the number of complementary test performed between 
activities heart team meeting and intervention for each patient.  

2. Years 2018 and 2019 are defined as crisp time intervals Ti and 
summarizer P is defined as the new computed feature number of 
complementary tests. Interval Ti works as a qualifier, defining a subset 
of the referential that will be evaluated against the summarizer P. 
This way, only cases starting in year 2018 are selected for the first 

description, and cases starting in year 2019 are selected for the 
second description.  

3. The average number of tests for each subset defined by Ti is 
computed.  

4. As an average value is given, no quantifier Q is needed and as this 
value summarizes each entire subset, therefore no evaluation is 
needed, the truth value of both protoforms is 1. 

Experts are also interested in analyzing how the COVID-19 pandemic 
has affected patient characterization. By defining different years for Ti, 
experts can easily grasp if any difference in proportion of patients for 
some feature exists. The decision of generating these protoforms is based 
on the statistical analysis performed over feature admittance. By 
applying a proportion test on the data, comparing the proportion of 
emergency admittance patients in years 2019 and 2020, a statistically 
significant difference in proportion was found. The following de
scriptions are generated:  

• In year 2019, in some cases (38,8%), patients had emergency 
admittance.  

• In year 2020, in approximately half of cases (50,6%) patients had 
emergency admittance. 

These descriptions allow experts to get some first insights and even 
see how the feature they are interested on, evolves during time. The 
generation process is as follows:  

1. A set of proportional quantifiers is defined as in Fig. 3.  
2. As before, Ti is defined as a crisp time interval and acts a qualifier. All 

cases are evaluated against qualifier Ti.  
3. In this case, summarizer P makes reference to the type of admittance 

patients have in the process, this is feature admittance of cases 
(patients).  

4. Feature admittance of all cases is selected and evaluated against 
membership function of summarizer P. As feature admittance only 
has two possible categorical values, a membership function for each 
category (each linguistic value) is defined as in Eq. (4). Linguistic 
value emergency admittance is taken for the evaluation.  

5. Conjunction of sets of membership degrees to Ti and C is computed 
and aggregated into a membership proportion.  

6. Membership proportion is taken and evaluated against the selected 
quantifier.  

7. Protoform is generated. 

6.2. Frequency and temporal relations between activities 

On the AS ICP, attention is mainly focused on analyzing and reducing 
wait times in Stage 1. So medical experts show interest in descriptions 
that address activity relationships in this stage, mostly, how the CT 
scanning of a patient temporally relates to the heart team meeting and, if 
the CT scanning takes place after the heart team meeting, how much of a 
bottleneck represents for the intervention of the patient11. Medical 
expert knowledge is used to determine which protoforms to generate 
based on the interest in analyzing particular KPIs of the process. The 
following descriptions are generated:  

• In approximately half of cases (52.72%), patient had a wait time 
between its CT scanning and its intervention lower than 30 days. 

10 Stage 1 spans from the decision to intervene a patient in the heart team 
meeting, to the actual valve replacement procedure 

11 Performing a CT scan is a requirement when percutaneous prosthesis im
plantation (TAVI) is performed, so the performance of the CT scan entails the 
main possible bottleneck between the decision to intervene a patient and its 
actual intervention. 
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• In approximately half of cases (56.28%) where patients were inter
vened via TAVI, a CT scan is performed after its corresponding heart 
team meeting. 

• In approximately half of cases (51.57%) where patients were inter
vened via TAVI, patient had a wait time between its CT scanning and 
its intervention lower than 30 days, with a median value of 35 days.  

• In most cases (90%) where patients were intervened via TAVI and to 
whom a CT scan was performed after its corresponding heart team 
meeting, patient had a wait time between its heart team meeting and 
its CT scanning lower that 30 days. 

For the generation of these protoforms, the required columns of the 
dataset are: intervention (type of intervention performed on a patient), 
CT_HTM (wait time between the CT scanning and the heart team 
meeting of a patient) and CT_INT (wait time between the CT scanning 
and the intervention of a patient). These will be used as both qualifier C 
and summarizer R depending on the particular protoform instance. 
Linguistic values before and after are defined as crisp linguistic values 
with membership functions: 

μbefore(x) =
{

1, if x < 0
0, otherwise (15)  

μafter(x) =
{

1, if x > 0
0, otherwise (16)  

Where x is each of the elements of the newly computed attribute 
CT_HTM (wait time between the CT scanning and the heart team 
meeting of a patient) or CT_INT (wait time between the CT scanning and 
the intervention of a patient)12. In a similar way, summarizer wait time 
between CT scanning and its intervention lower than 30 days is defined as a 
crisp linguistic value with membership function: 

μwait time(x) =
{

1, if x < 30
0, otherwise (17)  

Value 30 days is used as it is established as the maximum number of days 
of wait time between the heart team meeting and the intervention of a 
patient for providing quality care on the AS ICP clinical guideline. 

Additional to the use of fuzzy quantifiers, a specific quantity is given 
in parentheses, this way, the granularity of the summary is chosen by the 
user, allowing him/her to grasp a general idea by focusing on the fuzzy 
quantifier, or getting the exact proportion of patients by focusing on the 
percentage. Same idea is followed with the median value of the wait 
time between the CT scanning and the intervention of the patient. With 
these elements protoforms are generated and evaluated as following:  

1. A set of proportional quantifiers is defined as in Fig. 3.  
2. Even time interval Ti can be used, the generated protoforms address 

the whole process time-span, so no need for defining or evaluating 
time intervals.  

3. For type-II protoforms (all except the first), feature intervention of all 
cases is taken and used as qualifier. This feature is a categorical 
variable so, when defined as a linguistic variable, a membership 
function for each category (linguistic value) is defined as in Eq. (4). 
Linguistic value intervened via TAVI is selected.  

4. Feature intervention of all cases is selected and evaluated against the 
membership function associated to qualifier C.  

5. The corresponding feature used in each protoform (summarizer) is 
selected for all cases and evaluated against the membership function 
of the selected linguistic value of the summarizer P (wait time or 
temporal relation between activities).  

6. Conjunction between the sets of membership degrees for qualifier C 
and summarizer P is computed.  

7. The resulting set of membership degrees from the conjunction is 
aggregated and the proportion of membership is computed.  

8. Membership proportion is evaluated against all possible quantifiers 
defined in step 1. Selecting the one with a higher truth degree.  

9. Protoform is generated. 

As quantity (e.g. approximately half of cases), temporal reasoning (e.g. 
after) and duration (e.g. less than 30 days) of a relationship between two 
activities (e.g. intervention and CT scanning) is given, this descriptions 
provide revealing insights to medical experts about where and how 
frequently bottlenecks in the process occur. Also, as the extended pro
toforms include a qualifier (e.g. patients were intervened via TAVI) 
relating other features of a case (patient) to the frequency and timing 
perspective, this allows to further analyze if any relation holds between 
patient characteristics (e.g. type of admittance, age of the patient, year 
of inclusion in the process, etc.) or volume variables (e.g. number of 
events suffered, number of complementary tests performed, etc.) with 
process variables (compliance with care protocol standards related with 
timing, delays and bottlenecks and paths followed by patients), thus 
helping answer the question “what caused the bottleneck?”. 

6.3. Compliance 

In the AS ICP interest is focused again on the wait time for Stage 1. By 
adding the expected wait time for this stage, descriptions help on 
detecting more easily compliance (or not) with guidelines. Also, medical 
experts from the Cardiology Department, but not involved in the AS ICP 
may need to participate in the process at some point, as healthcare 
processes are highly multidisciplinary [3,1,6]. In those cases, new 
participating experts may not know the clinical guidelines that support 
the process, thus, basic frequency and temporal descriptions, without 
further context, may not convey all the necessary information this ex
perts need. By adding this context, all the necessary information for 
grasping whether a deviance in behavior or timing exists. The following 
description is generated:  

• Wait time between the heart team meeting of a patient and its 
intervention is expected to be lower than 30 days. However, in 
approximately half of cases (59.30%) patient had a wait time be
tween its heart team meeting and its intervention higher than 30 
days. 

Medical expert knowledge is used to determine which protoforms to 
generate based on the interest in analyzing particular variables of the 
process. Also, statistical testing was used to assess if statistically signif
icant differences exist between the real and expected values of feature 
wait time between heart team meeting and intervention. In particular, a one- 
sample t-test was used to discover that statistically significant differ
ences exist between the expected and real value of the feature. This 
knowledge also determines the usage of the semantic relation “How
ever”, as the relevant aspect experts are trying to analyze is if deviances 
respect to guidelines or expected behaviors are taking place. 

6.4. Comparison between groups of patients 

In the AS ICP great interest is shown in analyzing if patient charac
terization affects output or process variables, specially how patient 
admittance, type of intervention and year of admittance affect wait 
times. The following descriptions are generated: 

12 Functions before and after are defined the same way for any temporal dis
tance attribute computed, here is exeplified with attributes CT_HTM and CT_ 
INT. 

Y. Fontenla-Seco et al.                                                                                                                                                                                                                         



Journal of Biomedical Informatics 128 (2022) 104033

15

• In many cases (76.70%) where patient had ambulatory admittance, 
patient had a wait time between its heart team meeting and its 
intervention higher than 30 days. However, in many cases (64.64%) 
where patient had emergency admittance, patient had a wait time 
between its heart team meeting and its intervention lower than 30 
days. 

• In approximately half of cases (42.25%) where patient was inter
vened in year 2019, patient had a wait time between its heart team 
meeting and its intervention lower than 30 days. However, in many 
cases (77.50%) where patient was intervened in year 2020, patient 
had a wait time between its hear team meeting and its intervention 
lower than 30 days.  

• Cases where patient was intervened via valve replacement had a wait 
time between its heart team meeting and its intervention of 83 days 
in average. However, cases where patient was intervened via TAVI 
have a wait time between its heart team meeting and its intervention 
of 49 days in average. 

By comparing wait times between different years it is possible to analyze 
how the process has evolved and, if changes made during those years are 
fruitful and reducing wait times. The generation process is as follows:  

1. A set of proportional quantifiers is defined as in Fig. 3.  
2. Even time intervals Ti can be used, the generated examples refer to 

the whole process time-span. In the example were years 2019 and 
2020 are compared, time intervals are used directly as qualifiers 
referring to a case feature intervention year.  

3. Feature used as qualifiers C1 and C2 (e.g. intervention_year) is taken 
for S1 and S2 respectively, and cases (patients) are classified and 
grouped based on the selected linguistic values (e.g. 2019 as C1 and 
2020 as C2). This is done by evaluating the selected feature of all 
cases against the membership function of qualifier C1 for S1 and C2 
for S2 respectively.  

4. The feature used in each protoform as summarizer (e.g. wait time 
between its heart team meeting and its intervention) is taken for all cases 
and evaluated against the membership function of the selected lin
guistic values P1 and P2 (e.g. lower than 30 days and higher than 30 
days).  

5. Conjunction between the sets of membership degrees for qualifier C 
and summarizer P is computed for each protoform S1 and S2.  

6. The resulting set of membership degrees from the conjunction is 
aggregated and the proportion of membership is computed for S1 and 
S2 respectively.  

7. Membership proportion is evaluated against all possible quantifiers 
defined in step 1. Selecting the one with a higher truth degree for 
each S1 and S2. 

8. Semantic relation “However” is used, as this protoform conveys dif
ferences between groups of patients. 

Statistical testing is used to check if statistically significant differ
ences exist between groups and decide which descriptions to generate. 
For these protoforms, proportions tests where used to assess if differ
ences in the number of cases with a waiting time lower than 30 days was 
statistically significant between patients with different admittance 
origin and between patients intervened in years 2018 and 2019. A 
Mann–Whitney–Wilcoxon test was used to determine if statistically 
significant differences exist for the average waiting time of patients 
intervened via valve replacement and via TAVI. Based on medical expert 
hypotheses and using statistical testing accurate descriptions of the 
process are generated. 

7. Evaluation 

In this section we present the evaluation of our proposal in a real 
healthcare environment, the AS ICP. Following the current standards of 
manual human expert evaluation of the NLG field [44], this evaluation 
was conducted by 15 medical experts of the Cardiology Department of 
the University Hospital of Santiago de Compostela who did not partic
ipate in the definition of the system requirements. Manual evaluation by 
human experts is the appropriate evaluation methodology for this case, 
since automatic metric-based cannot be performed due to the lack of 
corpus or available datasets and to the vivid discussion on the NLG 
community about the validity of the metrics used. Comparison to other 
approaches cannot be performed since, to the best of our knowledge, this 
is the first system which deals with the problem of describing healthcare 
processes using NLG and particularly the AS ICP. 

7.1. Set-up 

The goal of human expert validation of a NLG system is, in general, to 
assess to what extent the generated natural language descriptions are 
understandable for its users and provide truthful and relevant infor
mation. Additionally, for the AS ICP, we are also interested in assessing 
if the descriptions are helpful in order to improve users work quality 
and, ultimately, if they give answer to any of the questions medical 
experts may have when dealing with and analyzing the AS ICP, or other 
possible healthcare processes. Following the best practices of human 
expert evaluation in NLG systems [44], we created a Likert-scale ques
tionnaire where the dimensions to be assessed are asked to the human 
evaluators over different cases. Availability of human experts is one of 
the critical issues when performing manual validation in NLG, since 
medical experts, who are the human experts for this application, have 
very limited quality time for performing these tasks. This general 
problem is solved by focusing the assessment items and the cases 
included in the questionnaire on the most critical issues to be evaluated, 
avoiding creating a very long questionnaire involving too many different 
questions. As described in what follows, each human evaluator 
answered 9 questions about 6 different cases or scenarios, and 6 more 
general questions about the approach as a whole. We found this as a very 
good compromise between the evaluation needs and the limited avail
ability of the medical experts. 

The proposed questionnaire consists of 6 cases or scenarios regarding 
different elements of the AS ICP medical experts have identified as 
relevant and on which they have interest in get insights of. For each 
scenario, the natural language description generated with the frame
work here proposed is presented next to the corresponding graphical 
representation that would be used in classical process mining analysis. 
Fig. 9 illustrates a scenario in which a natural language description 
regarding the expected and real wait times between the heart team 
meeting and the intervention of a patient is shown next to the histogram 
representing the wait times (in days) for the patients between said ac
tivities on the process. For each scenario, 9 questions were asked, on a 
five-level Likert scale ranging from “strongly agree” to “strongly 
disagree”. As a hybrid template-based realization approach is used, form 
aspects regarding linguistic quality of the descriptions (i.e., spelling and 
grammatical correctness) do not need to be assessed. Therefore, the 
evaluation process is mainly focused on content-related aspects, aiming 
to evaluate if natural language descriptions help on the understanding of 
process mining analysis results, its relevance and usefulness for the 
users, and if the descriptions provide interesting information for medical 
experts. Table 8 shows the questions asked for each scenario. 
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Questions were grouped based on the aspect they evaluate: first two 
questions (I1-I2) assess the content presented on the scenario, helping 
understand if the information presented is interesting and novel for the 
medical experts. The second group of questions (R1-R4) focuses on the 
preferred modality of conveying information for medical experts (nat
ural language vs. graphical displays). They aim at evaluating if natural 
language descriptions are preferred over graphical representations of 
the same information, by directly asking which representation of the 
information, or if the combination of both (and in which order of pref
erence) was the most efficient in conveying the information of the sce
nario. It is relevant to emphasize that this is one of the main objectives of 
this evaluation, assess whether medical experts can better understand pro
cess related information based on natural language descriptions rather than 
on graphical representations. Next two questions (C1-C2) assess the 
quality of the natural language descriptions by asking medical experts to 
evaluate the ease of understanding the information presented in the 
natural language description and whether the information was conveyed 
in a comprehensible way. The last question (F1) regards the use of fuzzy 
quantification and fuzzy terms in the descriptions, by asking if the de
gree of concreteness in which the information is conveyed in the natural 
language description (by the use of average values, fuzzy quantifiers, 
etc.) is adequate and not too succinct to not be informative or too 
detailed to not give a general enough description of what is happening in 
the process. 

For facilitating and reducing the amount of time users spend when 
answering of the test, question R2 is shown only whenever the medical 
expert has selected a value “Neutral” or worse for R1. Similarly, R3 and 

Table 8 
Questions asked for each scenario on the proposed evaluation test.  

Id Question 

I1 The information this scenario provides is interesting for me. 
I2 The information this scenario provides is new for me (I was unaware of it until 

now).  

R1 The representation which provided me with information most efficiently has 
been the natural language description. 

R2 The representation which provided me with information most efficiently has 
been the graphical representation. 

R3 Natural language description coupled with the graphical representation has 
provided me with information in the most efficient way. Without the natural 
language description I would not have understood the scenario. 

R4 Graphical representation coupled with the natural language description has 
provided me with information in the most efficient way. Without the graphical 
representation I would not have understood the scenario.  

C1 Understanding the information this natural language description provides is 
easy for me 

C2 I perceive information is expressed in a comprehensible way.  

F1 The degree of concreteness in which the information is expressed in this natural 
language description is adequate (neither too detailed nor too succinct).  

Fig. 9. One of the scenarios presented in the evaluation questionnaire of the pipeline over the AS ICP (originally in Spanish). In this scenario a natural language 
description regarding the expected and real wait times between the heart team meeting and the intervention of a patient is shown next to the histogram representing 
the wait times (in days) for the patients between said activities on the process. 
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R4, are only shown when previous questions are answered with values 
“Neutral” or worse. The answer for all hidden questions in this category 
was set to “Strongly Disagree”, as by agreeing to the previous questions 
user is implicitly disagreeing with them. This was done after a revision of 
a preliminary version of the questionnaire, since the AS ICP coordinators 
highlighted that users would probably consider answering to all four 
questions as redundant and repetitive, and would not fully complete the 
questionnaire because of their very limited time availability. This em
phasizes the availability of human experts as a critical issue when 
evaluating NLG systems, as pointed out earlier. Under these challenging 
circumstances, having fifteen human experts is a rather unusually high 
number of participants, which makes the results conclusive for this 
application. 

A simplified version of the Technology Acceptance Model [45] 
adapted to linguistic summarization used in [16] is used as a set of 
general questions asked at the end of the evaluation process in order to 
evaluate the natural language description of healthcare processes as a 
whole. This way, once evaluated whether experts prefer natural lan
guage or graphical displays, and assessing the quality of the de
scriptions, direct questions about perceived usefulness and intention of 
use are asked. Table 9 shows this set of questions. Questions G1-G4 
evaluate usefulness and intention of use and question P1 assesses how 
familiar the medical expert who is performing the evaluation is with 
the AS ICP. Through this question, conclusions can be drawn about to 
what extent the descriptions are found more/less useful or more 
difficult/easier to understand based on the different medical expert 
profiles. 

The questionnaire was deployed as a web page with two introductory 
screens followed by the six scenarios created. The first screen related the 
objective of the evaluation process, the second one showed instructions 
regarding what information is shown in each scenario, what each 
question is trying to assess and how to answer the questions. 

7.2. Results 

Table 10 shows the validation results for each of the proposed 
questions. Results are shown in a 5-level numerical scale derived from 
the Likert-scale used in the questionnaire, where 1 equals “Strongly 
disagree” and 5 equals “Strongly agree”. The table shows the average 
value and its confidence interval at a 95% confidence (CI) (computed 
using the t-student distribution as the population standard deviation is 
not known), standard deviation (SD), mode, median and interquartile 
range (IQR) for each of the asked questions. 

As we can see with questions I1-I2, in average, results show most 
descriptions are found to provide really interesting (4.11/5.00) and 
novel information (3.69/5.00). This is specially relevant, considering 
that 13 out of the 16 participants (81.25%) were already familiar with 

the AS ICP. Questions R1-R4, in particular question R1, show that nat
ural language descriptions are (by far) the preferred way of conveying 
information for almost all users, who show a very clear preference for 
natural language descriptions (4.28/5.00) over graphical displays 
(1.30/5.00). Questions C1-C2 prove information was found to be quite 
easy to understand (4.40/5.00) and no user has had any trouble un
derstanding the proposed descriptions because the information was 
expressed in a comprehensible way (4.38/5.00). Finally, the degree in 
which information was presented, evaluated with question F1 is found 
correct with a high agreement (4.22/5.00). So, not only natural lan
guage descriptions convey information in a more convenient way than 
graphical displays but also users that interact on a daily basis with the 
AS ICP find novel information on the descriptions. This proves the 
techniques proposed in this framework are helpful on extracting and 
conveying process mining analysis results to medical experts in a 
comprehensible and easy to understand way, utilizing fuzzy terms that 
help on the summarization of numerical data. Fig. 10 shows the histo
grams of response values for each of the asked questions. 

The general questions regarding the whole approach also show very 
positive results, with an average value higher than “agree” (4.07/5.00) 
for all questions. Table 11 shows the average value and its confidence 
interval (CI) (computed using the t-student distribution as the popula
tion standard deviation is not known), standard deviation (SD), mode, 
median and interquartile range (IQR) for each of the asked questions. 
Results prove that users are keen on incorporating natural language 
descriptions into their daily workflow as they find them useful (4.12/ 
5.00) and easy to understand (4.44/5.00). Users also state that natural 
language descriptions provide a better understanding of what happens 
at their job (4.06/5.00), allow them to complete tasks quicker (4.06/ 
5.00) and increase the quality of their work (3.69/5.00). Thus, rein
forcing the conclusions extracted from the results obtained in the pre
vious part of the evaluation test. Question P1 is not used nor shown on 
Table 11 as all evaluators except three were already familiar with the 
process, thus, not allowing us to extract any valuable information from 
this question. Fig. 11 shows the histograms of response values for each of 
the asked questions. 

Table 10 
Expert validation results for the AS ICP descriptions when taking the whole 
answer set (6 scenarios per 15 users). Results are shown in a 5-level numerical 
scale derived from the Likert-scale used in the questionnaire (1 equals “Strongly 
disagree” and 5 equals “Strongly agree”). Average value and its confidence in
terval at a 95% confidence (CI), standard deviation (SD), mode, median and 
interquartile range (IQR) are shown for each of the asked questions.   

Average CI SD Mode Median IQR 

I1 4.11 [3.94, 4.27] 0.95 5 4 1.75 
I2 3.69 [3.48, 3.89] 1.16 4 4 2.00        

R1 4.28 [4.13, 4.41] 0.79 5 4 1.00 
R2 1.30 [1.15, 1.44] 0.80 1 1 0.00 
R3 1.26 [1.22, 1.38] 0.76 1 1 0.00 
R4 1.12 [1.03, 1.20] 0.47 1 1 0.00        

C1 4.40 [4.26, 4.53] 0.75 5 5 1.00 
C2 4.38 [4.23, 4.52] 0.82 5 5 1.00        

F1 4.22 [4.06, 4.35] 0.78 4 4 1.00  

Table 9 
General questions asked at the end of the evaluation test.  

Id Question 

P1 I am familiar with the AS ICP 
G1 Natural language descriptions would provide me a better understanding of 

what happens in my job. 
G2 Natural language descriptions would allow me to complete tasks quicker. 
G3 Natural language descriptions would increase the quality of my work. 
G4 I would find natural language descriptions useful in my job. 
G5 I find natural language descriptions easy to understand.  
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8. Conclusions and future work 

In this paper we presented a framework for the generation of qual
itative and quantitative natural language descriptions of healthcare 
processes addressed to medical experts. The framework is complete, 
since it is able to handle all stages of the generation, from the 

preprocessing of clinical registries to event logs, to the final generation 
of the natural language texts. It is based on the most widely used Data- 
To-Text (D2T) pipeline [2], on the usage of process mining techniques, 
and fuzzy quantification techniques which allow to model uncertain 
terms in the natural language descriptions. 

The framework is able to handle relevant healthcare process data 

Fig. 10. Histograms of response frequencies for the questions asked in each scenario.  
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such as events and its attributes, temporal relations between events, 
patient attributes, and quantify them during process life-span, recall 
temporal relations and waiting times between events and its possible 
causes and compare patients attributes between groups, among other 
features. 

A real application of the framework was presented and validated, 
over the Aortic Stenosis Integrated Care Process of the University Hos
pital of Santiago de Compostela. Following the usual standards of D2T 
systems, manual human validation was conducted for the generated 
textual descriptions by 16 medical experts in Cardiology. Validation 
results are very positive, since from a quantitative point of view a global 
average of 4.07/5.00 was obtained for the general questions related to 
the understandability and usefulness of the natural language de
scriptions as well as the capability of medical experts (those who 

validated the approach) to complete tasks easier and increase the quality 
of their work. Furthermore, numerical assessment for question R1 (the 
representation which provided the users with information most effi
ciently was the natural language descriptions) was 4.28/5.00, which is 
much better than the assessment for graphical representations or com
binations of both (1.30/5.00, 1.26/5.00, and 1.12/5.00, respectively). 
More specifically, they show i) that the modality which conveyed the 
information most efficiently about the process was natural language; ii) 
a very clear preference of texts over the usual graphic representation of 
processes information as the way for conveying information to experts; 
and iii) natural language descriptions provided relevant and useful in
formation about the process, providing ways for its improvement. 

As future work, we will aim to increase the expressiveness of the 
content conveyed in the descriptions and extend it to other relevant 
variables, attributes and indicators, obtained through applying other 
process mining techniques. For instance, frequent and infrequent pat
terns can be introduced, since they may give an easy understanding of 
how a process is taking place in reality and if unexpected behaviors are 
taking place. Also, decision mining and data mining techniques apart 
from statistical analysis can be included. The discovery of rules 
explaining associations between process elements can help in the gen
eration of new natural language descriptions that provide insights yet 
unknown. Also, the discovered rules may be used in the content deter
mination stage as an indicator of which information is may be described, 
helping on the automation of said stage of the framework. Finally, richer 

Fig. 11. Histograms of response frequencies for the questions asked in each scenario.  

Table 11 
Expert validation results for the general questions of the AS ICP. Average value 
and its confidence interval (CI), standard deviation (SD), mode, median and 
interquartile range (IQR) are shown for each of the asked questions.   

Average CI SD Mode Median IQR 

G1 4.06 [3.72, 4.40] 0.77 4 4 1.25 
G2 4.06 [3.72, 4.40] 0.77 4 4 1.25 
G3 3.69 [3.34, 4.04] 0.79 4 4 1.00 
G4 4.13 [3.81, 4.44] 0.72 4 4 1.00 
G5 4.44 [4.16, 4.71] 0.63 5 5 1.00  
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textual descriptions will be built through a more complex and complete 
NLG realization stage. For instance, adding a lexicalization stage would 
allow for generating a greater variety of natural language descriptions, 
as same concepts could be realized using different terms, allowing for 
example to generate texts conveying the same information with different 
words for different medical expert profiles (e.g. a surgeon and a cardiac 
imaging expert). The addition of referring expression generation and 
aggregation phases will allow to generate better structured descriptions 
and combine them when needed (when two texts refer to the same 
subject) enhancing this way the readability of the texts and allowing to 
generate richer and more cohesive descriptions, giving place to whole 
process mining analysis result description documents. 
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