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Resumo

A Intelixencia Artificial (IA) xoga un papel cada vez máis importante nunha gran cantidade de
ámbitos da vida diaria. As aplicacións de IA atópanse en numerosos produtos, dende a banca ata
a asistencia sanitaria, pasando pola fabricación ata a educación. Non obstante, o rápido progreso
da IA actual suscita preocupacións relacionadas coa súa interpretación e explicabilidade. Por
unha banda, os modelos de IA estanse facendo demasiado complexos para que un público xeral
comprenda a natureza dos sistemas de toma de decisións dos que forman parte. Isto pode socavar
a confianza nas decisións automatizadas producidas por tales sistemas e aumentar a reticencia
a usalos. Por outra banda, a transición de algoritmos de IA baseados en regras codificadas
a técnicas de aprendizaxe automática (AA) guiadas por datos provocou que a natureza destes
algoritmos se ocultase incluso aos seus desenvolvedores.

Para desmitificar tales algoritmos de “caixa negra” tanto para usuarios inexpertos como para
especializados do dominio, investigadores de numerosos campos da ciencia solicitaron que a IA
actual sexa explicable. Isto deu lugar a innumerables proxectos de investigación que forman
a base da comunidade de AI eXplicable (XAI) xurdida recentemente. En consonancia coas
aspiracións científicas, o uso omnipresente da IA provocou importantes cambios na normativa
legal, que se reflicten, por exemplo, no Regulamento Xeral de Protección de Datos (RXPD) da
Unión Europea (UE) ou na Proposta da Lei de IA (LIA), que foi votada polo Parlamento da
UE en xuño de 2023, estando na fase final antes de converterse en lei e entrar en vigor en cada
estado membro.

As escasas capacidades explicativas dos modelos de IA de “caixa negra” motivaron dis-
cusións sobre un uso favorable dos chamados modelos interpretables. En diante, o concepto de
modelos interpretables refírese á familia de algoritmos cuxos compoñentes internos son com-
prensibles por humanos. De feito, os modelos de AA máis interpretables pero (posiblemente)
menos precisos poden ser mais apropiados para resolver varios problemas desafiantes que os
algoritmos máis robustos pero menos transparentes, especialmente en casos de decisións de
alto risco. Non obstante, as subtarefas relacionadas coa xeración de explicacións como, por
exemplo, a avaliación e a comunicación seguen sendo tarefas esixentes mesmo para modelos
interpretables.

Unha gran cantidade de investigacións interdisciplinares sobre a natureza da explicación
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afirma que as explicacións deben satisfacer unha serie de propiedades para que sexan eficaces.
En primeiro lugar, as explicacións efectivas deben ser contrastivas, é dicir, non só explican
por que a decisión ou predición automatizada dada é o caso, senón que tamén dan razóns po-
las que non son aplicables os resultados alternativos. Ademais, deben ser selectivas, é dicir,
deben incluír só un número suficientemente pequeno das causas ou factores máis relevantes que
conducen á decisión ou predición dada. Por último, pero non menos importante, as explicacións
considéranse sociais, é dicir, son produto da interacción entre o explicador (o axente que explica
o fenómeno dado) e o explicado (o destinatario da explicación). Como resultado desta hipótese,
as explicacións automatizadas terán a máxima utilidade se se modelan de acordo cos requisitos
descritos anteriormente.

De acordo coa normativa vixente da Escola de Doutoramento Internacional da Universidade
de Santiago de Compostela, a presente tese preséntase en forma de compendio de publicacións.
En xeral, a tese divídese en nove capítulos. O Capítulo 1 introduce o tema da tese. No Capí-
tulo 2 exponse a hipótese probada e os obxectivos xerais e específicos da tese. No Capítulo 3
descríbese a metodoloxía aplicada para acadar os obxectivos da tese. O capítulo 4 ofrece unha
discusión xeral sobre as propiedades de explicación modeladas e as ferramentas de xeración
de explicacións desenvolvidas nesta tese. O capítulo 5 recolle as principais contribucións que
xurdiron neste proxecto. Os capítulos 6-8 están relacionados coa metodoloxía e as conclusións
recollidas nos artigos de revistas que forman o núcleo desta tese. O capítulo 9 extrae as principais
conclusións da presente tese. A continuación, resumimos capítulos 6-8 con máis detalle.

Nesta tese, levouse a cabo o deseño, implementación e validación dun novomarco de xeración
de explicacións que cumpre todos os requisitos xerais de explicaciónmencionados anteriormente
(é dicir, as explicacións xeradas son contrastivas, selectivas e sociais). Defendemos o uso de
modelos interpretables baseados en regras que se poidan utilizar (e cuxas predicións poidan ser
explicadas posteriormente) de forma independente ou como representates para explicar as predi-
cións de algoritmos de “caixa negra”. De calquera xeito, o marco proposto serve para explicar
o resultado dun clasificador interpretable (por exemplo, unha árbore de decisións ou un sistema
de clasificación difuso baseado en regras).

No contexto de XAI, a predición dun clasificador pode explicarse (non necesariamente de
forma contrastiva) en termos dos trazos máis característicos da instancia que conduciron á predi-
ción dada. En diante, referirémonos a tales explicacións como factuais. Para que as explicacións
resultantes sexan contrastivas, buscamos modelar explicacións complementarias ás factuais, é
dicir, que opoñen explícitamente o resultado da clasificación realmente predito a resultados al-
ternativos hipotéticos. Noutras palabras, a predición do clasificador dado explícase non só en
función das características que son máis relevantes para a predición, senón tamén en termos de
clasificacións non preditas. Ademais, tales explicacións poden suxerir cambios mínimos nos
valores das características para que o resultado previsto cambie da forma desexada. En XAI,
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estas explicacións tamén se denominan comúnmente como contrafactuais (CF). Nótese que con-
trafactuais refírense a exemplos xa observados no pasado, mentres que transfactuais refírense a
exemplos sintéticos aínda non vistos pero que se espera que se observen no futuro. Non obstante,
para simplificar a notación, remitirémonos ás explicacións CF no resto desta tese, sen importar
se os cambios suxeridos involucran a creación de exemplos sintéticos.

Para fins ilustrativos, consideremos un escenario bancario común. Unha cliente dun banco,
unha muller de mediana idade cuxos ingresos son 4.000 euros mensuais, solicita un préstamo
a un ano de 30.000 euros. Adestrado para prever se as solicitudes de préstamo deben ser acep-
tadas ou rexeitadas, o sistema de clasificación bancaria suxire que o funcionario bancario debe
rexeitar a solicitude da cliente. Para proporcionarlle ao cliente a recomendación máis relevante
sobre como se podería modificar a decisión, o sistema presenta a seguinte suxestión de CF: “A
solicitude de préstamo da cliente sería aprobada se os seus ingresos mensuais fosen polo menos
5.000 euros e tivese polo menos un préstamo activo menos”. Como se desprende do exemplo
anterior, as explicacións de CF no contexto de problemas de clasificación son inherentemente
contrastivas, xa que se opoñen de xeito explícito a diferentes resultados de clasificación.

As explicacións contrastivas e, máis específicamente, CF son estudadas dende hai moito
tempo nunha ampla gama de ciencias. Por exemplo, dise que forman parte integrante do ra-
zoamento humano. Arguméntase tamén que os contrafactuais representan o nivel máis alto de
causalidade. Ademais, pódense xerar para calquera clasificador. Por estes motivos, as expli-
cacións CF chamaron a atención de numerosos investigadores da XAI nos últimos anos. Con-
vencionalmente, os contrafactuais considéranse explicacións agnósticas do modelo, post-hoc e
locais. Son locais porque explican o comportamento do sistema a partir das súas predicións
individuais. Sábese que os contrafactuais explican as predicións de forma post-hoc, xa que se
xeran despois de obter a saída do sistema. Notablemente, esta familia de explicacións é coñe-
cida, en xeral, por ser independente do modelo, xa que os correspondentes métodos de xeración
de explicacións están deseñados para operar só na entrada dada e na saída prevista do sistema
sen acceder necesariamente aos elementos internos do sistema. Non obstante, a diversidade dos
métodos de xeración de explicacións contrastivas e CF recentemente emerxentes mostra que
non se limitan necesariamente a esta definición convencional.

No Capítulo 6, revisamos as teorías existentes sobre a explicación contrastiva e CF dunha
ampla gama de ciencias. Ademais, analizamos os marcos computacionais de última xeración
deseñados para a xeración dos dous tipos de explicación mencionados anteriormente. Ademais,
inspeccionamos o grao de sinerxía entre os enfoques teóricos da explicación contrastiva e CF e
as súas contrapartes computacionais de última xeración.

Cabe destacar que as explicacións CF posúen unha serie de propiedades importantes que
se poden utilizar como medidas de utilidade da explicación (validez, proximidade, accionabi-
lidade, diversidade, por citar algunhas). Nesta tese, centrámonos na modelización de CFs que
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se presume que son suficientes co seguinte subconxunto de propiedades. En primeiro lugar,
os CF deben ser válidos, é dicir, deben levar a predicións correctas correspondentes ao resul-
tado alternativo desexado. En segundo lugar, espérase que unha explicación CF inclúa só un
conxunto de cambios mínimos nos pares característica-valor da instancia para que cambie a
clasificación prevista. De feito, o axente explicado está interesado en recibir a explicación CF
máis relevante para a instancia que se está a considerar. Tendo en conta o exemplo bancario
anterior, mentres que un CF que indica que os ingresos mensuais deberían ser de 6.000 euros
ou máis seguirán sendo válidos neste escenario, o usuario final está interesado en manter este
valor o máis próximo posible aos seus ingresos reais, polo que a explicación CF sería preferible
indicar que os ingresos mensuais deberían ser de 5.500 euros (sempre que os dous CF sexan
válidos). En terceiro lugar, espérase que unha explicación CF sexa accionable, é dicir, só as
características que se poidan modificar de xeito viable forman parte da explicación. De feito,
se o sistema suxire que se reduza a idade do cliente, o CF correspondente é inútil, aínda que
todos os demais cambios se poidan facer con éxito. Por último, espérase que os contrafactuais
sexan diversos, é dicir, que abrangan varios CF válidos distintos (un punto único ou agrupados
en conxuntos) que teñan un poder explicativo equivalente e, idealmente, que se atopen disper-
sos nas rexións de datos que cobren. De feito, o usuario final pode atopar explicacións máis
satisfactorias que conteñan non só valores específicos das características CF dadas, senón in-
tervalos de tales valores. A presentación de CFs tan diversas pode aumentar a flexibilidade do
comportamento do usuario, xa que o destinatario da explicación ten a posibilidade a escoller o
escenario a seguir que mellor lle conveña. A diversidade de explicacións de CF baseadas en
regras pode manifestarse de varias maneiras. Por unha banda, as características de explicación
pódense representar numericamente, en forma de intervalos (por exemplo, “5.500 ≤ renda ≤
6.000”). Por outra banda, pódense ofrecer no seu lugar as correspondentes descricións textuais
(por exemplo, “a renda é alta”). En ambos casos, os CF xerados automaticamente inclúen un
conxunto de datos CF que permiten ao usuario final escoller o valor alternativo máis axeitado
para as funcións dadas entre o intervalo de valores suxerido. Non obstante, non está claro se
tales etiquetas lingüísticas (é dicir, “alta” do exemplo anterior) fan as características explicativas
correspondentes máis comprensibles ou fáciles de usar e, polo tanto, a explicación xeral máis
efectiva.

Para facer as explicacións selectivas, confiamos no uso de elementos internos de modelos
baseados en regras. Algúns destes algoritmos de clasificación interpretables por deseño agregan
información sobre as características que son máis relevantes para a predición dada. Por exem-
plo, as árbores de decisión conteñen os valores de características máis relevantes no camiño de
decisión. Polo tanto, a explicación fáctual pódese reconstruír resumindo a información agregada
no camiño desde a raíz ata o nodo folla previsto. Non obstante, a xeración de explicacións CF
efectivas para familias específicas de algoritmos interpretables, como árbores de decisión ou

4
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sistemas de clasificación baseados en regras difusas, seguen sendo pouco estudadas. Ademais,
estes clasificadores baseados en lóxica difusa ofrecen ferramentas que, por deseño, permiten aos
desenvolvedores constituír explicacións textuais equivalentes utilizando o repertorio de termos
lingüísticos. Así, potenciar árbores de decisión (difusas) e clasificadores baseados en regras di-
fusas con novos métodos de xeración de explicacións CF permítenos mellorar aínda máis o seu
potencial explicativo.

No Capítulo 7, propoñemos tres algoritmos de xeración de explicacións CF que producen
explicacións textuais factuais e CF para clasificadores baseados en regras preseleccionadas. En
primeiro lugar, deseñamos un algoritmo (en diante, denomínase XOR) que xera explicacións CF
ordenando as representacións vectorizadas das regras CF de acordo co seu grao de relevancia
para a instancia de proba. Supoñemos que tales explicacións baseadas en regras levan á xeración
de explicacións CF válidas. Posteriormente, introducimos unha variante alternativa do mesmo
algoritmo (en diante, denomínase EUC) que relaciona os vectores de funcións de pertenza difusa
coas regras CF mediante a medición da distancia euclidiana entre todos os pares de tales vec-
tores. Para ambos algoritmos, propoñemos ademais o mecanismo de aproximación lingüística, é
dicir, un método para asociar intervalos de características numéricas a termos lingüísticos. Esta
extensión permítenos xerar diversas explicacións automáticas equivalentes en formato numérico
ou puramente textual.

A pesar de que os dous algoritmos introducidos anteriormente ofrecen explicacións facil-
mente interpretables, son específicos do modelo, é dicir, requiren acceso aos elementos internos
do modelo e non se poden aplicar directamente a calquera clasificador. Non obstante, os algorit-
mos de xeración de explicacións CF independentes do modelo son capaces de explicar univer-
salmente a saída de calquera clasificador tanto de xeito factual como contrafactual. Así, tamén
propoñemos un algoritmo de xeración de explicacións CF xenética independente do modelo
(en diante, denomínase GEN) que produce explicacións CF optimizando a poboación inicial de
forma iterativa ata que se identifique o único punto de datos máis próximo á instancia de proba.
En conxunto, ambos grupos de algoritmos de xeración de explicacións CF (é dicir, aqueles es-
pecíficos do modelo e os agnósticos do modelo) poden usarse de forma complementaria entre
si, especialmente se as explicacións resultantes veñen en diferentes formatos.

Co fin de comparar a utilidade das explicacións específicas do modelo baseadas en coñece-
mentos imprecisos fronte a outras que apuntan a puntos de datos específicos, realizamos dous
estudos de avaliación humana (é dicir, Survey GM e Survey TS) onde comparamos a eficacia
das explicacións resultantes para as instancias de proba preseleccionadas. En ambos estudos,
adestramos sistemas de inferencia difusa de Mamdani que fan predicións utilizando o algo-
ritmo FURIA e xeran as explicacións correspondentes utilizando todos os algoritmos propostos
(é dicir, XOR, EUC e GEN). Adestramos aos clasificadores nun conxunto de datos de clasifi-
cación de tipos de cervexa para xerar posteriormente explicacións lingüísticas para os estímulos
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da enquisa preditos correctamente. Cabe sinalar que todas as explicacións xeradas supoñense
accionables debido á estrutura do conxunto de datos utilizado nos experimentos: en calquera
caso, sempre é posible modificar os valores das características dentro dos intervalos de valores
suxeridos.

Survey GM está deseñado para que o usuario poida avaliar a calidade da explicación au-
tomatizada en base ás catro máximas de Grice (cantidade, calidade, relevancia e forma), que
transformamos en cinco aspectos explicativos (informatividade, fiabilidade, precisión, relevan-
cia e lexibilidade) para que os participantes do estudo comprendan máis facilmente a súa tarefa
de avaliación. Durante o estudo, os participantes avaliaron cada aspecto das tres explicacións
(unha por cada método de explicación proposto) empregando unha escala Likert de 7 puntos.
Pola súa banda, Survey TS é unha variante simplificada de 5 puntos baseada na escala Likert
empregada en Survey GM onde se avalía unha única explicación en termos de fiabilidade e
satisfacción xeral. Ambas enquisas leváronse a cabo para un público obxectivo que tiña sufi-
ciente coñecemento do dominio e un alto nivel de experiencia. A investigación e os protocolos
experimentais foron aprobados polo comité ético da Universidade de Santiago de Compostela.

Mentres que se propuxeron un gran número de métricas computables automaticamente para
estimar a calidade das explicacións automatizadas, estas adoitan servir para avaliar a calidade
desde o punto de vista algorítmico (por exemplo, a distancia xeométrica á instancia de proba).
Non obstante, as métricas automáticas que estiman aspectos da percepción do usuario seguen
sendo escasas. Para abordar este problema, propoñemos a métrica da complexidade da expli-
cación percibida, é dicir, unha estimación do complexa que parece ser unha explicación desde o
punto de vista do usuario ao lela. A nova métrica proposta está inspirada no Gunning Fog Index
(un indicador da facilidade de entender o texto por parte do público destinatario). En particular,
baséase en dous factores que están presentes nas explicacións textuais baseadas en regras xe-
radas mediante os métodos de xeración de explicacións propostos: a lonxitude da explicación
e a relación agregada do número de termos lingüísticos de todas as características utilizadas na
explicación. Os resultados dos estudos de avaliación humana realizados mostran que a com-
plexidade da explicación percibida ten unha correlación positiva moderada coa informatividade
estimada polo usuario e unha forte correlación negativa coa relevancia e a lexibilidade estimadas
polo usuario, mentres que as puntuaciónsmétricas propostas non se correlacionan coa fiabilidade
ou a precisión. Polo tanto, pódese concluír que a métrica proposta comprende tres dos aspectos
de explicación mencionados anteriormente para usuarios que teñan coñecementos e experiencia
suficientes no dominio. Ademais, usar a puntuación de complexidade da explicación percibida
pode ser útil para diminuír os custos de avaliación humana (para o público obxectivo), xa que
se pode calcular para substituír (en parte) os estudos de usuarios correspondentes.

Compre sinalar que os algoritmos propostos no Capítulo 7 limítanse á xeración de expli-
cacións contrastivas selectivas non sociais, é dicir, carecen de calquera interacción directa co
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usuario final e só representan os datos CF máis relevantes desde o punto de vista algorítmico.
Nestas configuracións, o usuario final ten que tomar unha decisión sobre a fiabilidade das expli-
cacións automatizadas ofrecidas sobre a base dunha única información. Se a explicación non se
considera o suficientemente fiable ou satisfactoria, o usuario final pode querer descartala aínda
que sexa válida. Polo tanto, é indispensable que o usuario final explore o espazo de explicación
se o considera necesario.

Para facer sociais as explicacións resultantes, modelamos a interacción entre o sistema e o
usuario en forma de diálogo explicativo argumentativo onde o usuario é capaz de discutir sobre
pezas de explicación específicas e, deste xeito, explorar o espazo de explicación ata que poida
tomar unha decisión informada sobre a predición do sistema. Para iso, ampliamos os nosos algo-
ritmos de xeración de explicacións cun módulo de xeración de diálogos explicativos. Deseñado
como un axente conversacional, o modelo de diálogo resultante garante unha comunicación di-
alóxica interactiva entre o sistema e o usuario onde este está habilitado para solicitar e procesar
as explicacións necesarias ofrecidas de forma comprensible e humana. Ademais, esta exten-
sión mellora o marco de xeración de explicacións proposto coa opción de formar explicacións
interactivas dinámicas en contraste coas xenéricas estáticas.

No Capítulo 8 propoñemos o denominado “xogo de diálogo explicativo”, un modelo formal
de diálogo explicativo baseado no enfoque correspondente á modelización do diálogo a partir
da teoría da argumentación. O modelo de diálogo está deseñado de forma descendente, é dicir,
baséase nun protocolo de diálogo predefinido que contén catro posibles solicitudes de usua-
rios (as de explicación factual ou CF, detalle, aclaración e explicación alternativa), con varias
posibles respostas do sistema asociadas a distintas solicitudes do usuario. Ademais, xeneraliza-
mos o modelo de diálogo explicativo na forma dunha gramática de diálogo sen contexto para
facelo universalmente aplicable á saída de calquera sistema de clasificación baseado en regras
mellorado cun explicador que é capaz de producir explicacións textuais baseadas en regras.

Validamos o modelo de diálogo resultante realizando un estudo de avaliación humana me-
diante tres casos de uso: clasificación da posición do xogador de baloncesto, clasificación do tipo
da cervexa e clasificación da enfermidade da tiroide. Nestes escenarios de diálogo de busca de
información, unha das partes do diálogo (neste caso, o usuario) é inicialmente informada sobre
os datos que se están procesando e despois pretende dar sentido á información dada pola outra
parte (neste caso, a predición do sistema). Nos tres casos de uso, os diálogos pretenden explicar
a predición dun único sistema para unha instancia de datos previamente seleccionada e clasifi-
cada correctamente. Como neste experimento se aborda o aspecto comunicativo da xeración de
explicacións, utilízanse árbores de decisión nítidas como clasificadores, xunto co método XOR
empregado para xerar as explicacións correspondentes, co fin de garantir a transparencia dos
resultados experimentais.

Para analizar as transcricións de diálogos recollidas, aplicamos técnicas de minería de pro-
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cesos que tratan as instancias de diálogo explicativo como fíos de proceso. En particular, reali-
zamos a denominada comprobación de conformidade para relacionar o protocolo de diálogo e o
corpus de diálogos explicativos realmente rexistrados. Concluimos que os participantes no es-
tudo fan un uso activo de todos os tipos de solicitudes ofertadas. Polo tanto, o procedemento de
verificación da conformidade confirma a utilidade do modelo de diálogo proposto inicialmente
na súa totalidade. Ademais, rexistramos un gran número de solicitudes de explicacións de CF
alternativas (segunda e terceira mellor clasificadas polo sistema) para case todas as clases de CF
en todos os casos de uso. Esta observación apunta ademais á necesidade de presentar diversos
CFs múltiples en diálogos de busca de información.

Cabe destacar que todos os traballos de revistas e software que constitúen a base da presente
tese están a disposición do público. Finalmente, realizamos observacións finais e esbozamos
direccións para o traballo futuro no Capítulo 9.
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Summary

Artificial Intelligence (AI) plays an increasingly important role in a large number of daily life
activities. AI applications are found in numerous products, from banking to health care to manu-
facturing to education. However, the fast progress of the present-day AI raises concerns related
to its interpretability and explainability. On the one hand, AI models are rapidly becoming
overly complex for a general audience to understand the nature of the decision-making systems
that they make part of. This may undermine trust in automated decisions produced by such
systems and increases reluctance to use them. On the other hand, shifting from hard-coded rule-
based to data-driven machine learning (ML)-based AI algorithms has resulted in the nature of
such algorithms being concealed even from their developers.

In order to demystify such “black-box” algorithms to both lay users and domain experts,
researchers from numerous fields of science called for making the present-day AI explainable.
This resulted in countless research projects forming the basis of the recently emerged eXplain-
able AI (XAI) community. In line with scientific aspirations, the ubiquitous use of AI has led
to major changes in legal regulation, which are reflected in, for example, the European Union’s
(EU) General Data Protection Regulation (GDPR) or the recently proposed Artificial Intelli-
gence Act (AIA) which was voted for by the EU Parliament in June 2023, being in the final
stage before becoming law and coming into force in each member state.

Poor explanatory capacities of “black-box” AI models have motivated discussions on a
favourable use of so-called interpretable models, instead. Hereinafter, the concept of inter-
pretablemodels refers to the family of algorithms that grant access to their human-comprehensive
internals. Indeed, more interpretable but (possibly) less accurate ML models may appear to be
more efficiently applicable to solving various challenging problems than more robust but less
transparent algorithms, especially in cases of high-stakes decisions. Nevertheless, such explana-
tion generation-related sub-tasks as, for example, evaluation and communication remain being
demanding tasks even for interpretable models.

A large body of interdisciplinary research on the nature of explanation claims that explana-
tions should satisfy a number of properties for them to be effective. First, effective explanations
are claimed to be contrastive, i.e. they do not only explain why the given automated decision
or prediction is the case but also give reasons why alternative outcomes are not applicable. In
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addition, explanations should be selected, i.e. they should include only an adequately small
number of the most relevant causes or factors that lead to the given decision or prediction. Last
but not least, explanations are deemed social, i.e. they are a product of interaction between the
explainer (the agent that explains the given phenomenon) and the explainee (the recipient of the
explanation). As a result, automated explanations are hypothesised to have maximal utility if
modelled in accordance with the requirements outlined above.

In accordance with the actual regulations of the international doctoral school of the Univer-
sity of Santiago de Compostela, this thesis is presented in form of a compendium of publications.
Overall, it is divided into nine chapters. Chapter 1 introduces the topic of the thesis. Chapter 2
states the hypothesis tested and the general and specific objectives of the thesis. Chapter 3 de-
scribes the methodology applied to reach the thesis objectives. Chapter 4 provides the reader
with a general discussion on the explanation properties modelled and the explanation generation
tools developed in this thesis. Chapter 5 lists main contributions that emerged as part of the doc-
toral project. Chapters 6-8 relate to the methodology and findings reported in the journal papers
that form the core of this thesis. Chapter 9 draws main conclusions from the present thesis. Let
us now summarise Chapters 6-8 in more detail.

We design, implement, and validate a novel explanation generation framework whose output
explanations are claimed tomeet all the aforementioned general requirements to explanation (i.e.
being contrastive, selected, and social). We advocate the use of interpretable rule-based models
that can be used (and whose predictions can be subsequently explained) independently or as
proxies to explain predictions of “black-box” algorithms. Either way, the proposed framework
serves the purpose of explaining the outcome of a given rule-based interpretable classifier (e.g.,
a decision tree or a fuzzy rule-based classification system).

In the context of XAI, a classifier’s prediction can (not necessarily contrastively) be ex-
plained in terms of the most characteristic features of the test instance that led to the given
prediction. Hereinafter, we refer to such explanations as factual. To make the output explana-
tions contrastive, we pay particular attention to modelling explanations that are complementary
to factual ones, i.e. they explicitly oppose the actually predicted classification outcome to hy-
pothetical alternative outcomes. In other words, the given classifier’s prediction is explained
not only in terms of the features that are the most relevant to the prediction but also in terms of
non-predicted classifications. Further, such explanations can suggest minimal changes in feature
values so that the predicted outcome changes in a desired way. In XAI, these are also commonly
referred to as the so-called counterfactual (CF) explanations. Notice that, counterfactuals refer
to examples already observed in the past while transfactuals refer to synthetic examples not seen
yet but expected to be observed in the future. Anyway, for simplicity of notation, we will refer
to CF explanations in the rest of this thesis, no matter if suggested changes involve the creation
of synthetic examples.
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For illustrative purposes, let us consider a common banking scenario. A client of a bank, a
middle-aged woman whose income equals €4.000 per month, is applying for a one-year loan of
€30.000. Trained to predict whether loan applications should be accepted or rejected, the bank-
ing classification system suggests that the bank officer should decline the client’s request. To
provide the client with the most relevant recommendation of how the decision can be changed,
the system outputs the following CF suggestion: “The client’s loan application would be ap-
proved if her monthly income were at least €5.000 and if she had at least one active loan less.”
As follows from the example above, CF explanations in the context of classification problems
are inherently contrastive, as they explicitly oppose different classification outcomes.

Contrastive and, more narrowly, CF explanations have long been studied in a wide range of
sciences. For instance, they are claimed tomake an integrative part of human reasoning. Further,
counterfactuals are argued to represent the topmost level of causation. In addition, they can be
generated for any classifier under consideration. For these reasons, they have attracted attention
of numerous XAI researchers in recent years. Conventionally, counterfactuals are considered
local post-hoc model-agnostic explanations. They are local because they explain the system’s
behaviour on the basis of its individual predictions. Counterfactuals are known to explain pre-
dictions in a post-hoc manner, as they are generated after the system’s output has been obtained.
Remarkably, this family of explanations is, in general, known to be model-agnostic, since the
corresponding explanation generation methods are designed to operate only on the given input
and predicted output of the system without necessarily accessing the system’s internals. How-
ever, the diversity of the newly emerging contrastive and CF explanation generation methods
shows that they are not necessarily limited to this conventional definition.

In Chapter 6, we review existing theories of contrastive and CF explanation from a wide
range of sciences. Further, we analyse the state-of-the-art computational frameworks designed
for generation of the two aforementioned kinds of explanation. In addition, we therein inspect
the degree of synergy between the theoretical approaches to contrastive and CF explanation and
their state-of-the-art computational counterparts.

Noteworthy, CF explanations possess a number of important properties that can be used as
measures of explanation utility (validity, proximity, actionability, diversity, to name a few). In
this thesis, we focus on modelling CFs that are hypothesised to suffice the following subset of
such properties. First, CFsmust be valid, i.e. theymust lead to correct predictions corresponding
to the desired alternative outcome. Second, a CF explanation is expected to include only a set
of minimal changes to the test instance feature-value pairs for the predicted classification to
change. Indeed, the explainee is interested in receiving the piece of CF explanation that is the
most relevant to the test instance under consideration. Considering the banking example above,
whereas the CF stating that themonthly income should be €6.000 ormorewill still be valid in this
scenario, the end user is interested in keeping this value as close as possible to her actual income,
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so the CF explanation stating that the monthly income should be €5.500 would be preferred
(provided that both CFs are valid). Third, a CF explanation is expected to be actionable, i.e.
only the features that can be feasibly changed make part of the explanation. Indeed, if the
system suggests that the client’s age be decreased, the corresponding CF is useless, even if all
other changes can be made successfully. Last but not least, counterfactuals are expected to be
diverse, i.e. they should cover multiple distinct (either single-point or grouped in sets) valid
CFs that have equivalent explanatory power and, ideally, well dispersed in the data regions that
they cover. Indeed, the end user may find more satisfactory explanations that contain not only
specific values of the given CF features but ranges of such values. Presenting such diverse CFs
may increase the flexibility of user behaviour, as the recipient of the explanation then becomes
entitled to choose the scenario to follow that suits him or her best. Diversity of rule-based CF
explanations can be manifested in several ways. On the one hand, explanation features can be
represented numerically, in form of intervals (e.g., “5.500 ≤ income ≤ 6.000”). On the other
hand, the corresponding textual descriptions can be offered instead (e.g., “income is high”). In
both cases, automatically generated CFs embrace a set of CF data points letting the end user
to choose the most suitable alternative value for the given features from the suggested range of
values. However, it remains unclear whether such linguistic labels (i.e., “high” from the example
above) make the corresponding explanatory features more comprehensible or user-friendly and
therefore make the overall explanation more effective.

To make automated explanations selected, we rely on the use of internals of rule-based mod-
els. Some of such interpretable-by-design classification algorithms aggregate information on the
features that are most relevant to the given prediction. For example, decision trees contain the
most relevant feature values to the test instance in the decision path from the root to the pre-
dicted leaf node. The output factual explanation can therefore be reconstructed by summarising
the information aggregated in the decision path. However, effective CF explanation generation
for specific families of interpretable algorithms, e.g. (fuzzy) decision trees, fuzzy rule-based
classification systems, remains understudied. Further, such fuzzy logic-based classifiers offer
means that, by design, enable developers to constitute equivalent textual explanations using the
repertoire of linguistic terms. Thus, empowering (fuzzy) decision trees and fuzzy rule-based
classifiers with novel CF explanation generation methods allows us to further enhance their
explanatory potential.

In Chapter 7, we propose three CF explanation generation algorithms that output textual fac-
tual and CF explanations for preselected rule-based classifiers. First of all, we design an algo-
rithm (hereinafter, it is referred to as XOR) that generates CF explanations by ranking vectorised
representations of CF rules in accordance with their degree of relevance to the test instance. We
assume that such rule-based explanations lead to generation of valid CF explanations. Subse-
quently, we introduce an alternative variant of the same algorithm (hereinafter, it is referred to
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as EUC) that relates fuzzy membership function vectors to CF rules by measuring Euclidean
distance between all pairs of such vectors. For both algorithms, we additionally propose the
mechanism of linguistic approximation, i.e. a method of mapping intervals of numerical feature
values to linguistic terms. This extension allows us to generate diverse equivalent automated
explanations in either numerical or purely textual format.

Despite the fact that both of the algorithms introduced above offer easily interpretable ex-
planations, they are model-specific, i.e. they require access to the internals of the model and
cannot be directly applied to any classifier. Notwithstanding, model-agnostic CF explanation
generation algorithms are able to universally explain the output of any classifier both factually
and counterfactually. Hence, we additionally propose a model-agnostic genetic CF explanation
generation algorithm (hereinafter, it is referred to as GEN) which produces CF explanations
by optimising the initial population iteratively until the single closest-to-the-test-instance data
point is identified. Altogether, both groups of CF explanation generation algorithms (i.e., those
model-specific and model-agnostic ones) can be used complementarily to each other, especially
if the output explanations come in different formats.

In order to compare the utility of the fuzzy set-based textual model-specific explanations
using imprecise knowledge against model-agnostic ones pointing to specific data points, we
perform two human evaluation studies (i.e., Survey GM and Survey TS) where we compare
effectiveness of the output explanations for the pre-selected test instances. In both studies, we
train Mamdani fuzzy inference systems that make predictions using the FURIA algorithm and
generate the corresponding explanations using all the proposed algorithms (i.e., XOR, EUC,
and GEN). We train the classifiers on a beer style classification dataset to subsequently generate
linguistic explanations for the correctly predicted survey stimuli. It is worth noting that all the
generated explanations are assumed to be actionable due to the structure of the dataset used in
the experiments: in any case, it is always possible to modify feature values within the suggested
ranges of values.

Survey GM is designed to enable the user to assess the quality of the automated explanation
on the basis of the four Gricean maxims (those of quantity, quality, relevance, and manner),
which we transformed into five explanation aspects (i.e., informativeness, trustworthiness, ac-
curacy, relevance, and readability) for the study participants to more easily understand their
evaluation task. The study participants assessed each explanation aspect of the three explana-
tions (one per each explanation method proposed) on the basis of a 7-point Likert scale. In turn,
Survey TS is a simplified 5-point Likert scale-based variant of Survey GM where a single ex-
planation is assessed in terms of trustworthiness and overall satisfaction. Both of the surveys
were carried out for a target audience that had sufficient domain knowledge and a high level of
expertise. The research and experimental protocols were approved by the ethical committee of
the University of Santiago de Compostela.
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Whereas a high number of automatically computable metrics have been proposed for esti-
mating quality of automated explanations, those usually serve to assess quality from the algo-
rithmic point of view (e.g., the geometric distance to the test instance). However, automatic
metrics that estimate user-oriented aspects of explanation perception remain scarce. To address
this issue, we propose the metric of perceived explanation complexity, i.e. an estimate of how
complex an explanation appears to be from the user’s point of view upon reading it. The newly
proposed metric is inspired by the Gunning Fog Index (an indicator of how easy to understand
the given piece of text appears for the intended audience). In particular, it relies on two fac-
tors that are present in textual rule-based explanations generated using the proposed explanation
generation methods: the explanation length and the aggregated ratio of the number of linguistic
terms of all the features utilised in the explanation. The findings from the human evaluation
studies carried out show that perceived explanation complexity has a moderate positive correla-
tion with user-estimated informativeness and a strong negative correlation with user-estimated
relevance and readability whereas the proposed metric scores do not happen to correlate with
trustworthiness or accuracy. Hence, it can be concluded that the proposed metric encompasses
three of the aforementioned explanation aspects for users that have sufficient domain knowl-
edge and expertise. Further, using the perceived explanation complexity score can be useful to
decrease human evaluation costs (for the targeted audience), as it can be calculated to (partly)
substitute the corresponding user studies.

It is worth noting that the algorithms proposed in Chapter 7 are limited to the generation
of one-shot contrastive selected explanations, i.e. they are void of any direct interaction with
the end user and merely represent the most relevant CF data points from the algorithmic point
of view. In these settings, the end user has to make a decision on how trustworthy the offered
automated explanations are on the basis of a single piece of information. If the explanation is
not considered trustworthy or satisfactory enough, the end user may want to discard it even if it
is valid. It is therefore indispensable to enable the end user to explore the explanation space if
she finds it necessary.

To make the output explanations social, we model interaction between the system and the
user in the form of argumentative explanatory dialogue where the user is capable to argue over
specific pieces of explanation and, in this way, explore the explanation space until she can make
an informed decision about the system’s prediction. To do so, we extend our explanation gener-
ation algorithms with an explanatory dialogue generation module. Designed as a conversational
agent, the resulting dialoguemodel ensures interactive dialogic communication between the sys-
tem and the user where the latter is enabled to request and process necessary explanations offered
in a comprehensible, human-like manner. Further, this extension enhances the proposed expla-
nation generation framework with the option of forming dynamic personalised explanations in
contrast to static generic ones.
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In Chapter 8, we propose the so-called “explanatory dialogue game”, a formal model of
explanatory dialogue based on the corresponding approach to dialogue modelling from argu-
mentation theory. The dialogue model is designed in the top-down manner, i.e. it relies on the
predefined dialogue protocol that contains four possible user requests (those for factual or CF
explanation, detailisation, clarification, and alternative explanation), with various possible sys-
tem’s responses mapped to the user’s requests. Further, we generalise the proposed explanatory
dialogue model in the form of a context-free dialogue grammar to make it universally applicable
to the output of any rule-based classification system enhanced with an explainer that is able to
produce textual rule-based explanations.

We validate the resulting dialogue model by carrying out a human evaluation study using
three use cases: basketball player position classification, beer style classification, and thyroid
disease classification. In the so-called information-seeking dialogue settings, one of the dialogue
parties (in this case, the user) is initially informed about the data being processed and then
she aims to make sense of the information given by the other party (in this case, the system’s
prediction). In all three use cases, the dialogues aim to explain a single system’s prediction for
a pre-selected correctly classified data instance. As the communicative aspect of explanation
generation is addressed in this experiment, crisp decision trees are used as classifiers in this
experiment, with the XOR method employed to generate the corresponding explanations, in
order to ensure the transparency of the experimental results.

To analyse the collected dialogue transcripts, we apply process mining techniques treating
instances of explanatory dialogue as process threads. In particular, we perform the so-called
conformance checking to relate the dialogue protocol and the corpus of actually registered ex-
planatory dialogues. It turns out that the study participants make an active use of all the offered
types of requests. Hence, the conformance checking procedure confirms the utility of the ini-
tially proposed dialogue model in its entirety. Furthermore, we register a high number of re-
quests for alternative (second- and third-best ranked by the system) CF explanations for almost
all the CF classes across all the use-cases. This observation further points to the necessity for
presenting diverse multiple CFs in information-seeking dialogues.

It is worth noting that all the journal papers and software that form the basis of the present
thesis are made publicly available. Finally, we make concluding remarks and outline directions
for future work in Chapter 9.
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1 Introduction

1.1 OVERVIEW

Artificial Intelligence (AI) is living the era of data-driven algorithms whose striking accuracy is
often achieved at the expense of explainability of the predictions obtained [10]. As the number
of AI applications found in daily life is growing continuously, numerous ongoing discussions
raise awareness about the impact of the use of such applications on their users. Thus, the poorly
interpretable nature of most of the state-of-the-art data-driven algorithms has led to adoption
of novel legal regulations. For example, the European Union’s General Data Protection Reg-
ulation [28] addresses explainability-related issues of the present-day AI-based models in the
context of automated decision-making. Whereas individual AI strategies are developed at the
national level worldwide, the European Union is making a consolidated effort on shaping the
legal future of AI, which is expected to be discussed further in the so-called AI Act (AIA) [29].
AIA recognises the need to provide end users of AI applications with explanations for their auto-
mated predictions or recommendations. Researchers in the field of eXplainable AI (XAI) [1, 11]
are actively addressing the aforementioned challenges.

A large body of knowledge testifies that explanations have a diverse nature. In this thesis, we
adhere to modelling explanations that satisfy three main properties that automated explanations
are claimed to possess to be effective [23]. Namely, effective explanations are expected to be:

• contrastive, i.e., the given phenomenon is explained in terms of non-occurring hypothet-
ical alternatives;

• selected, i.e. only the most relevant pieces of information are included in the explanation;

• social, i.e. the explanation is a product of interaction between the explainer and the ex-
plainee.

To explain a fact contrastively means to answer the why-question of the form “Why P rather
than Q?” [20] where P is the fact under consideration and Q is a hypothetical, non-occurring
alternative (also referred to as a “foil”). In the context of XAI, contrastive explanations are, in
general, designed to oppose the predicted outcome to an alternative hypothetical prediction [25].
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In this regard, the property of contrastiveness is at the core of the so-called counterfactual ex-
planations (or counterfactuals, or CFs, for short), a sub-group of contrastive explanations that
suggest minimal changes to the input feature values so that the output changes in the desired
way [33]. Contrastive by nature, CFs are found to be inherent to human reasoning [4] and can
therefore greatly facilitate explanation processing by end users [5]. For these reasons, explain-
ing predictions counterfactually has become among key explainability issues, especially when
explaining “black-box” models [21].

Given an evident lack of transparency in the reasoning of many complex AI models (e.g.
neural networks), the use of possibly less accurate or robust but more interpretable models has
been actively argued for [32]. In light of this, we explore the potential of rule-based classification
systems to provide their end users with automated explanations for their predictions. Indeed, the
potential of interpretable models for explanations is left largely underexplored [19]. Enhancing
rule-based classification systems with effective methods of CF explanation generation allows
them to become self-explanatory while providing their end users with contrastive selected ex-
planations. Further, such self-explanatory rule-based interpretable classifiers can then be used
as part of more complex explainers to address the issue of explanability of “black-box” mod-
els. In order to preserve the state-of-the-art levels of performance while gaining explainability,
“black-box” models can be enhanced with explanation generation modules that make use of
(possibly, surrogate) interpretable models [9]. Such interpretable models (e.g., decision trees
or fuzzy rule-based classification systems) [2] have shown to effectively explain “black-box”
models in a post-hoc manner when, for example, trained on a local neighbourhood around the
test instance [41]. In this regard, they can serve as a proxy to approximate given single “black-
box”-based predictions.

As the need for explaining decisionsmade byAI-based systems is recognised legally, various
researchers are urging for making a step forward towards responsible, human-centric AI [6].
Whereas several automatic metrics have been designed to estimate the quality of automated CF
explanations with respect to their computational aspects [26], human evaluation remains among
the key challenges for truly effective CF explanation generation [43]. Indeed, only a limited
number of state-of-the-art CF explanation algorithms have undergone assessment by potential
beneficiaries of such explanations [16].

Human evaluation of automated explanations is closely connected with the social aspect
of explanation. It is often addressed in XAI by means of engaging the end user in explana-
tory dialogue with the system [42]. Further, insights from humanities and social sciences (e.g.,
argumentation) allow us to propose explanatory dialogue models that rely on a consolidated
body of knowledge about human reasoning and connect it to that of an AI-based agent. In fact,
argumentation makes an integrative part of certain explanation theories and therefore appears
to be a suitable methodological fit to bridge the gap between the explainer (the explanation
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generation module) and the explainee (the end user). Despite specific methodological differ-
ences, argumentation and explanation are found to greatly completement each other [3]. For
example, some theories of explanation conceptualise explanations as arguments [12]. Whereas
argumentation theories provide a diverse repertoire of frameworks that is capable of generat-
ing explanations for automatic predictions in a wide range of tasks [46], we aim to explore its
potential as a communication channel between the end user and the system to enhance the previ-
ously designed framework for contrastive-counterfactual selected explanations for interpretable
rule-based classification systems with a social dimension.

1.2 THESIS STRUCTURE

The present thesis contains nine chapters. The remainder of the thesis is structured as follows.
Chapter 2 states the hypothesis tested in this thesis as well as the general and specific objec-

tives. As we list the objectives of the thesis, we refer the reader to the publications where the
objectives were reached.

Chapter 3 describes the general methodology applied throughout the thesis and describes
specific tools that were used in order to reach the thesis objectives.

Chapter 4 provides the reader with a general discussion on explanation properties in the
context of XAI and analyses in detail the strengths and weaknesses of their modelling in this
thesis.

Chapter 5 lists the contributions of this thesis, i.e., the software developed to reach the thesis
objectives and all the publications that emerged during the doctoral project.

Chapter 6 provides the reader with the background information on contrastive and CF ex-
planations. In addition, it examines theoretical foundations thereof, the related state-of-the-art
computational frameworks, and inspects the degree of synergy between the former and the latter.

Chapter 7 introduces three algorithms for CF explanation generation (namely, XOR, EUC,
and GEN) used to explain predictions of an FRBCS. In addition to discussing technicalities of
the aforementioned algorithms, it evaluates the algorithms via two human evaluation studies.
Further, it proposes a novel metric of perceived explanation complexity (PEC) that aims to
facilitate evaluation of automatically generated explanations.

Chapter 8 proposes an argumentative framework for communication of automatically gen-
erated rule-based explanations. In particular, it formalises explanatory dialogue in form of the
so-called “dialogue game” and describes in detail the corresponding dialogue protocol. Further,
it additionally represents the protocol in form of context-free dialogue grammar to make the
protocol universally applicable to other explainer-classifier pairs that are capable of generating
textual rule-based explanations. Last but not least, it reports the results of a human evaluation
experiment that serves the purpose of validation of the proposed explanatory dialogue model.
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Finally, Chapter 9 presents main conclusions derived from the results of the doctoral project
and outlines prospective directions for future work that are relevant to the problems of CF ex-
planation generation, communication, and evaluation.
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2 Hypothesis and objectives

In this thesis, we develop an explanation generation framework for interpretable (i.e., “white-
box”) classifiers (e.g., decision trees) and semi-interpretable (i.e., “grey-box”) rule-based clas-
sification systems (e.g., fuzzy inference systems). Despite the fact that such models provide
predictions that can be easily interpreted factually, their CF potential remains understudied. We
formulate the main hypothesis tested in the present thesis as follows: “By modelling explana-
tions satisfying the properties specifically relevant for XAI and enhancing them with dialogic
interactive facilities, we can convey both factual and CF explanations that are appealing for a
good number of users in different application domains”.

The general objective of the present doctoral thesis is to advance state-of-the-art XAI tech-
nologies for (1) automatic generation of factual and CF explanations for interpretable rule-based
classifiers and (2) effective and comprehensive communication of such explanations. The im-
plemented explanation generation framework is expected to output explanations that satisfy the
aforementioned requirements to effective explanations (i.e. being contrastive, selected, and so-
cial). More precisely, the following specific objectives are considered to achieve the overall
goal:

O1. Design, implement, and validate a framework for factual and CF explanation generation
applied to given pretrained (semi-)interpretable rule-based classifiers. This objective has
been successfully reached in the following publications:

• Ilia Stepin, Jose M. Alonso, Alejandro Catala, and Martín Pereira-Fariña. “A Sur-
vey of Contrastive and Counterfactual ExplanationGenerationMethods for Explain-
able Artificial Intelligence”. IEEE Access, vol. 9, pp. 11974–12001, 2021. DOI:
10.1109/ACCESS.2021.3051315;

• Ilia Stepin, Jose M. Alonso-Moral, Alejandro Catala, Martín Pereira-Fariña. “An
empirical study on how humans appreciate automated counterfactual explanations
which embrace imprecise information”. Information Sciences, vol. 618, pp. 379–
399, 2022. DOI: 10.1016/j.ins.2022.10.098.

O2. Design, implement, and validate a conversational agent endowed with credibility via nat-
ural language processing and argumentation technologies in the context of XAI in order
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to communicate and customise automatically generated explanations. This objective has
been successfully reached in the following publication:

• Ilia Stepin, Katarzyna Budzynska, Alejandro Catala, Martín Pereira-Fariña, Jose
M. Alonso-Moral. “Information-seeking dialogue for explainable artificial intelli-
gence: Modelling and analytics”. Argument and Computation, in press, 2023. DOI:
10.3233/AAC-220011.

O3. Develop a human evaluation framework for the purpose of validation of the algorithms de-
signed to achieve O1 and O2. This evaluation framework serves the purpose of estimating
various aspects of automatically generated explanations and that of assessing the quality
of the process of communication of such explanations, respectively. This objective has
been successfully reached in the publications addressing both O1 and O2.
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3 Methodology

The methodology employed in this thesis bases on the iterative development approach. In order
to achieve the objectives listed in Section 2, the work on each of them presupposes the following
consecutive steps:

1. Requirement specification: defining the research objective while considering possible
limitations of the corresponding state-of-the-art AI techniques and software. Special at-
tention is paid to aspects of automatic explanation generation and communication (i.e.,
properties of explanation, requirements to the communicative aspects of the language
used for modelling argumentative explanatory dialogue, use cases, target audience, etc.);

2. Literature review: a bibliographic study that serves to identify the state-of-the-art con-
ceptual, theoretical, and computational frameworks designed to address the goal-specific
problems. This study includes an analysis of the advantages and disadvantages of the
identified methods;

3. Implementation: design and development of conceptual models and algorithms aimed
at producing advances with respect to the state-of-the-art. Theoretical contributions are
followed by software implementations to be validated empirically at the next step;

4. Validation: the process of verification of the software as well as revision of the algorithm
or model implemented if the experimental results obtained are not satisfactory;

5. Integration: once validated, the new algorithms or prototypes are integrated with those
validated previously so that they make part of the unified framework.

In order to achieve objective O1, we first perform a systematic literature review (SLR) of
the state-of-the-art methods of contrastive and CF explanation generation in the context of XAI
following the guidelines for performing SLRs in software engineering [17, 18]. In particular, we
formulate a series of research questions to be addressed, design a search strategy, and extract and
synthesise data in accordance with the predefined inclusion and exclusion criteria. In addition,
we perform the so-called “snowballing” procedure, i.e. a revision of the bibliography lists of the
previously collected studies, following the corresponding guidelines [45]. Subsequently, based
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on the insights from our SLR,we develop a conceptual framework for factual andCF explanation
generation for interpretable rule-based classifiers that outputs contrastive selected explanations.
The framework includes one model-agnostic and two model-specific explanation generation
algorithms. To generate automatic explanations in natural language, we adapt one of the most
commonly used natural language generation (NLG) pipelines [7, 31]. We opted for using a
template-based NLG approach instead of an end-to-end neural NLG approach to maximise the
fidelity to the data of the generated narratives versus their naturalness. Accordingly, the use of
pre-trained large language models for NLG falls outside the scope of this thesis. Consequently,
we evaluate the proposed methods in a series of human evaluation experiments contributing to
reaching objective O3, as we adhere to the human evaluation guidelines designed specifically
for XAI [13].

To accomplish objective O2, we develop an argumentative conversational agent relying
on the “dialogue game”-based theoretical approach to argumentative dialogue modelling [30].
More specifically, we design a set of original requests and responses that constitute a newly
proposed explanatory dialogue protocol. Similarly to O1, we evaluate the designed argumen-
tative framework by performing a human evaluation study and analyse the collected dialogue
transcripts. In addition, we employ concepts from process mining to perform the so-called “con-
formance checking” treating instances of the collected explanatory dialogues as processes [27].

To reach objective O3, we design a software framework relying on human evaluation guide-
lines for XAI [13] and implement it as a stand-alone application. Its flexible structure allows
us to adapt it to the needs of specific experiments carried out as part of the present thesis. As
a result, we use it to evaluate all the CF explanation generation and communication methods
proposed in this thesis.

In order to see the connection between the research questions posed and the tools developed
to answer them (as well as the publications addressing them), we kindly refer the reader to
Fig. 5.1 from Chapter 5 which lists the main contributions of this thesis.
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4 General discussion

In this thesis, we explore the potential of interpretable rule-based classification systems to gen-
erate effective automated explanations in accordance with recent requirements to the quality of
such explanations. Recall that effective explanations are claimed to be contrastive, selected, and
social [23]. In this section, we discuss peculiarities of modelling automated explanations ensur-
ing encapsulation of these key properties in the context of the explanation generation framework
for interpretable rule-based classifiers developed in this thesis. In particular, we first inspect
computational aspects of contrastive and CF explanations for classification problems. Then, we
discuss how one-shot selected CF explanations can be generated for predictions made by inter-
pretable rule-based classification systems. Finally, we inspect how a social layer can be added
on top of the previously proposed explanation framework. More specifically, we focus on ex-
planatory dialogue modelling as a means of explanation communication. We thus examine (1)
the most relevant aspects of formal explanatory dialogue modelling for textual rule-based expla-
nations and (2) a general architecture of the corresponding argumentative conversational agent.
As a result, we propose an explanation generation framework whose output embraces all the
aforementioned properties of explanations for interpretable rule-based classifiers (see Fig. 4.1).

The general discussion on enhancing automated explanations with the aforementioned prop-
erties is structured in the following manner. Section 4.1 discusses computational aspects of CF
explanations and their connection with the family of contrastive explanations as defined in the
literature. Section 4.2 examines aspects of one-shot, selected CF explanation generation for
interpretable rule-based classification systems. Section 4.3 explores how insights from argu-
mentation theory can enhance the social aspect of automated explanations in the context of
explanatory dialogue systems.

4.1 MAKING EXPLANATIONS CONTRASTIVE(-COUNTERFACTUAL)

Explanations are argued to be contrastive, as the facts that they explain are (sometimes, im-
plicitly) opposed to pieces of information related to a contrast case [23]. They can be defined
as answers to the contrastive why-question (i.e., “Why P rather than Q?”) where P is the fact
being explained and Q is an alternative non-observed foil. Then, P is said to be explained
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Figure 4.1: Explanation properties that the proposed argumentative conversational agent embraces.

contrastively if a causal difference between P and not-Q is verified (the so-called “difference
condition”) [20]. Ensuring that automatically generated explanations are contrastive is claimed
to greatly contribute to their readability, as contrastive explanations are said to prune the space
of all causal factors aiding finer-grained understanding [15].

Theories of contrastive explanation largely rely on causal accounts of explanation. How-
ever, a number of existing explanation generation algorithms offer purely non-causal explana-
tions [25]. Further, the notion of contrastive explanation is found to greatly overlap with that of
CF explanation in the XAI community, despite certain methodological differences. Thus, causal
accounts of contrastive explanation imply that CF explanations can be deemed contrastive so
long as they respect the difference condition [24]. Nevertheless, CF explanations are imposed
a number of additional constraints that make them a sub-group of contrastive explanations if
causality is not being considered.

In the context of classification problems, contrastive and/or CF explanations differentiate the
given piece of factual information (e.g., “Your loan application has been rejected because your
monthly income is too low”) from someCF information (e.g., “Your loan applicationwould have
been approved if you had at least one active loan less”). Altogether, a combination of factual
and CF explanations enables the end user to construct a mental representation of the AI-based
agent’s reasoning for all possible outcomes.

CF explanations are a powerful tool for explaining predictions or decisions made by AI-
based agents. In addition to factual explanations, they provide complementary information to
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Chapter 4. General discussion

explain the AI-based agent’s reasoning, so that a combination of factual and CF explanations
can explain all possible predictions of the AI-based agent irrespective of whether they took
place or not. CF explanations are said to be post-hoc (i.e., they explain predictions of pretrained
models) and local (i.e., they are designed to explain individual predictions). In addition, CFs
can be model-agnostic (i.e., the corresponding explanation generation method operates only on
the input feature values and the output prediction of the classifier) or model-specific (i.e., the
explainer also has access to the classifier’s internals). Automated CF explanations are claimed
to have a number of properties (see [8, 26] for an exhaustive list thereof):

• Validity. ACF explanation is said to be valid iff the corresponding CF leads to the desired
CF prediction;

• Proximity. A CF is said to be proximate iff the distance between the test instance and the
CF data point that the given CF explanation is related to is as small as possible;

• Sparsity. A CF is said to be sparse iff it contains the minimal number of features in
comparison to other valid CFs;

• Diversity. CFs are said to be diverse iff they form a set of valid CF data points that
are at the same time maximally different from each other so that the explainee is offered
a number of legit suggestions on how to change the given prediction to the alternative
desired one.

Whereas the quantitative metrics defined to measure the properties listed above are com-
monly used for evaluating CFs [43], some may be incompatible with others. For example, there
exists a trade-off between proximity and diversity: no CF explanation generation method is
claimed to maximise both due to their divergent treatment of CFs with respect to the distance
from the test instance [26]. In this case, other factors (e.g., the target audience or the application
domain) may become crucial to estimate the quality of automated CFs.

In addition, researchers distinguish various other properties that automated CF explanations
are desired to have. These include actionability (i.e., themere ability to change the feature values
as the given CF explanation suggests), causality (i.e., establishing causal relations between the
features with respect to a given causal model and ensuring that such relations are maintained in
the given CF), and fairness (i.e., the given CF explanation is unbiased with respect to specific
protected features, e.g., gender or race). Indeed, theoretical accounts of contrastive and CF
explanations are found to largely differ from each other in terms of their relation to the causal
aspect of explanation. A vast majority of theoretical academic studies appeal to the causal nature
of contrastive and/or CF explanation [36]. However, modelling CFs that possess these properties
falls outside the scope of this thesis and is left for future work.
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CF explanations are inherently contrastive when generated in the classification problem set-
tings, as they oppose the actual output of the AI agent and an alternative hypothetical outcome.
Approaches to automated CF explanation generation are shown to form a highly diverse set of
algorithms. Our interdisciplinary SLR on state-of-the-art contrastive and CF explanations [36]
shows that there exist various dimensions in which CF explanation generation algorithms can
be categorised. Thus, we believe that the following four dimensions adequately encompass the
state-of-the-art CF explanation generation methods:

• the problem that the corresponding AI agent aims to solve (e.g., classification, regression,
knowledge engineering, planning, recommendation ranking, or conflict resolution);

• the generality of the given CF explanation generation method (model-specific or model-
agnostic);

• the output representation of the automated CFs (numerical, linguistic, visual, or multi-
modal);

• the strategy applied to evaluate the given CF explanation generation algorithm (intrinsic
or extrinsic and subjective or objective).

Notably, CF explanation generation algorithms are found helpful at explaining different
kinds of AI agents: from those solving such classic AI problems as classification and regression
to those addressing recommendation ranking or planning tasks in robotics, with a notable focus
on explaining classification algorithms.

Model-specific CF explanation generation methods exploit the internals of the agent that
they are trying to explain (provided that they are available). Whereas they can be claimed to
specifically target the reasoning of the given model, the generality of this family of methods
is restricted to specific AI-based models. On the other hand, model-agnostic CF explanation
generation methods oftentimes focus on exploring optimal solutions to the corresponding opti-
misation problem mainly using the mechanism of feature perturbation.

CF explanations have different modalities. Depending on the application domain and/or
the target audience (among other decisive factors), CF explanations can be presented in tabular
form, framed in natural language, visualised in form of, for example, heat maps, or be a mixture
of the above making multi-modal CFs.

Importantly, existing CF explanation generation methods differ in how their performance is
evaluated. Given a diverse nature of CF explanation generation methods, there is no uniform
set of metrics consolidated for evaluation of automated CFs. Whereas there exist numerous au-
tomatically computable metrics [26], applying properly human evaluation techniques remains
among the key challenges for effective CF explanation generation, validation, and communica-
tion.
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Some of the aforementioned differences (as categorised above) make distinct CF explanation
generation methods poorly comparable to each other. It may be impossible to directly compare
distinct CF explanation generation algorithms due to, for example, the use of different evaluation
techniques or the inability of the given CF explanation generation algorithms to produce expla-
nations in the same settings. As the design of CF explainers is oftentimes domain-dependent,
quantitative evaluation metrics for explaining, e.g., classification algorithms may be irrelevant
or even non-applicable to explainers for planning tasks.

4.2 MAKING EXPLANATIONS SELECTED

Whereas CF explanations are designed to describe minimal changes to the test instance’s fea-
tures, this does not necessarily imply that the number of features making part of such an expla-
nation is minimal. Indeed, as shown above, sparsity is known to be one of indicators of quality
of automated CF explanations. It is therefore important to find a balance between proximity and
sparsity of the output CFs.

In this thesis, we focus on generation and communication of explanations to classifica-
tion problems. Given a low degree of interpretability of black-box models, a wider use of in-
terpretable models is advocated instead [32]. Indeed, such classifiers as decision trees (DT)
or fuzzy rule-based classification systems (FRBCS) are designed to provide interpretable and
human-comprehensive output. DTs provide straightforward means for generating factual expla-
nations. Thus, a factual explanation can be generated for the given DT prediction by aggregating
the information on the feature-value pairs found along the decision path that is responsible for
the given prediction. Since there exists only one decision path to the given prediction in this
case, a summary of the feature-value pairs can unambiguously explain the given prediction fac-
tually. In the case of FRBCSs, one may inspect all the activated rules leading to the predicted
class. A factual explanation can then be generated solely on the basis of the feature-value pairs
found in the antecedent of the rule that has the highest activation degree or by aggregating in-
formation from all the activated rules [2]. It is also possible considering the use of linguistic
quantifiers for signalling how likely each given rule is responsible for the given prediction. For
consistency, we choose to rely on single decision paths or rules to generate factual explanations
for all the considered classification systems.

However, the problem of CF generation for interpretable rule-based classifiers remains far
from trivial, as it poses numerous important algorithmic challenges. First, it is fundamental to
determine how the CF space is pruned given a possibly infinite set of CFs taking into consid-
eration that candidate CFs should be formatted to be compatible for comparison with the test
instance. Second, distinct node of decision paths or conditions on predicting features of rules
may aggregate information on the same feature. Hence, an aggregation of the relevant feature
values may form intervals or sets, resulting in the predicting feature being a CF set. Therefore, it
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becomes essential to quantify the relevance of such CF sets to the given prediction. Third, some
data-driven FRBCS learning algorithms (e.g., FURIA [14]) are known to return rules where the
predicting values are not grounded semantically (e.g., “Height is MF0” where MF0 stands for
membership function 0). In this case, it is essential to transform such feature values into (ap-
proximated) linguistic terms. Whereas the previously mentioned research problems barely form
a small subset of all CF generation-related problems (even for classification problems alone),
we focus on addressing only the aforementioned challenges in this thesis.

We address these challenges by proposing two algorithms for CF explanation generation
(i.e., XOR and EUC). Both of them operate on the internals of the given interpretable rule-
based classifier and are designed to follow the reasoning of the pretrained rule-based classifiers
to output comprehensive explanations in natural language. In this way, resulting explanations
present only the most important features (as listed in the decision path or rule) leading to the
prediction. Since both algorithms can be universally applied to (crisp or fuzzy) DTs or FRBCSs,
we can summarise them in the following pipeline of four steps:

• CF rule representation. First of all, the test instance under consideration and the avail-
able internals of the classifier are transformed into rules. For example, a DT can be tra-
versed to inspect distinct decision paths from the root to the leaf to aggregate all the in-
formation found relevant along the given decision path. In the case of FRBCSs, the rules
are straightforwardly retrieved from the rule base. Subsequently, all CF rules and the test
instance are vectorised to ensure their compatibility for subsequent calculations. Both CF
rules and the test instance can be vectorised in terms of all the flags of presence or absence
of all k conditions found in the tree nodes in the case of DTs or membership function val-
ues for all m feature-linguistic term pairs in the case of FRBCSs. The same procedure
is then applied to the test instance so that a k- or m-dimensional test instance vector is
obtained, respectively.

• Relevance estimation. Recall that CF explanations describe, by convention, minimal
changes to the characteristics of the test instance under consideration to be made for the
given prediction to change. Hence, once the test instance and CF rules are vectorised, they
can be inspected for closeness with respect to each other. To do so, a measure of vector
distance can be calculated for each pair of test instance vector and CF rule. As the test
instance vector and all rule vectors for DTs are binary, we suggest that the eXclusive-OR
(XOR) function be calculated for all such pairs of vectors. For FRBCSs, measuring the
Euclidean distance (EUC) between the test instance vector and the given CF rule vector
is suggested instead, as it allows for better capturing (possibly, real-valued) differences in
membership function values without information loss. The resulting pairs are sorted by
distance. The closest CF rule is deemed to be the most relevant to the test instance under
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consideration. If two or more CF rules are claimed to be the most relevant, the most sparse
of them is selected (i.e., the one whose antecedent has a minimal number of features). If
there exists more than one CF rule that are equally distant from the test instance vector
being equally sparse, such rules are claimed to have equal explanatory power. In this case,
the most relevant of such CF rules can be selected randomly.

• Linguistic approximation. To ensure further applicability of the proposed explanation
generation method, it may be necessary to introduce an extra-linguistic layer if CF feature
values are either desired to be converted from numerical to linguistic format or if they
are not semantically meaningful. In the former case, intervals capturing feature values
(e.g., “180cm ≤ Height ≤ 200cm”) can be mapped to predefined intervals defining the
corresponding linguistic terms (e.g., “Height is tall”). In the latter case, fuzzy sets learnt
from the data may not be automatically mapped to the given linguistic terms. Then, the
fuzzy set corresponding to the given feature value (e.g., “Height is MF0”) is mapped to
the most similar linguistic term (e.g., “Height is short”) given an alpha-cut. In both cases,
similarity measures are calculated for the given feature value interval and all intervals
corresponding to linguistic terms. Then, the most similar linguistic term is selected to
make part of the explanation for the given feature.

• Surface realisation. Once the CF rule is selected and all its feature values are defined in
a human-comprehensive manner (i.e., they are semantically grounded), the resulting rule
is verbalised using NLG techniques. In this thesis, we rely on preselected templates that
follow the structure of the rules, as described below.

Factual explanations that the proposed algorithms produce are designed to follow the tem-
plate “The test instance is [CLASS] because [FEATURE] is [VALUE]” where [CLASS],
[FEATURE], and [VALUE] are variables representing the predicted class, the most rel-
evant features, and the corresponding feature values, respectively. In turn, CF expla-
nations follow the template “The test instance would be [CLASS] if [FEATURE] were
[VALUE].” In both examples above, the explanation templates are designed to have only
one explanatory feature-value pair. Nevertheless, both automatically generated factual
and CF explanations can contain multiple feature-value pairs following the structure of
the underlying rule or the decision path. The subject of the main clause of the template
(i.e., “The test instance”) remains constant but can be preselected arbitrarily depending
on the application domain (e.g., “The patient” in health-care settings).

Recall that the proposed explanation generation algorithms (we also refer to them as qual-
itative) follow the structure of the CF rule that is deemed to be the most relevant to the test
instance. On the one hand, this is assumed to lead to the generation of valid CFs, as the under-
lying CF rule would fire if the feature values of the given test instance were set accordingly.
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On the other hand, the resulting CF rules may possibly contain all the features from the dataset
preventing them from being truly selected. In this case, such rules can be filtered out from the
initial collection of vectorised CF rules in favour of, possibly, less relevant CF explanations but
more concise and, possibly, actionable equivalents.

Notably, selected explanations generated on the basis of the internals of interpretable clas-
sifiers have several limitations. First, the utility of such explanations can be undermined if
the feature space is not interpretable. Second, such explanations are model-specific, i.e. they
cannot be directly generated when applied to non-rule-based classifiers using the same expla-
nation generation method. Third, the property of being selected of the given explanation may
be questioned if the corresponding explanation contains too many features due to a high com-
plexity of the classifier. There exist various strategies to overcome some of the aforementioned
limitations. For instance, model-specific CF explanation generation methods for DTs can be
transformed into model-agnostic ones if, for example, a DT is trained on some data around the
test instance generated synthetically [9].

The explanation generation methods proposed above rely on the decision paths or rules re-
trieved from the internals of the classifier. However, a large number of state-of-the-art CF ex-
planation generation algorithms output explanations referring to single CF data points that are
minimally different from the test instance under consideration. To perform a comparative human
evaluation of the algorithms, we additionally propose a genetic algorithm for CF explanation
generation (GEN) that outputs single-point CF explanations (we also refer to it as quantitative)
and perform a user study to estimate the utility of both formats of CF explanations. GEN is
designed to solve an optimisation problem operating on available numerical feature values and
includes the following steps: initial population, fitness function calculation, binary tournament
selection, crossover, mutation, and elitist selection. Verbalisation of CF explanations generated
using the GEN algorithm follows the same template-based method that was defined above for
rule-based CF explanations.

4.3 MAKING EXPLANATIONS SOCIAL

The methods discussed in Section 4.2 allow for generating textual one-shot CF selected ex-
planations for interpretable rule-based classification systems. Whereas the resulting individual
responses to, e.g., why- or why-not questions can be useful for explaining single predictions of
AI-based classifiers, such explanations are void of the social aspect. Indeed, automated (factual
or CF) explanations may be questioned by the end user. A lack of the communication chan-
nel that the user may want to use to provide his or her feedback concerning the quality of an
automatically generated explanation may lead to mistrust in the given prediction, even if the pre-
diction is correct. Conversely, interaction with the explainer in natural language may facilitate
the user’s willingness to make an informed decision with respect to the system’s prediction.
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Establishing a communication channel for user-system interaction appears to bring indis-
pensable benefits to the end user. First, it makes it possible to structure and formalise the ex-
planation communication process. Second, the user becomes able to clarify any components of
the offered explanation. Third, the user becomes able to examine the entire explanation space.
Let us now go into detail with the advantages of the proposed communication channel.

To ensure fair and transparent interaction between the explainer and the user, it is hypoth-
esised that user-explainer communication should rely on a predefined protocol where dialogue
states and transitions between them are defined unambiguously. Taking into consideration the
known structure of automated explanations, it is essential to establish rules that facilitate under-
standing of the classifier’s reasoning iteratively.

Given explanation templates defined in Section 4.2, every explanation generated by means
of the proposed explanation generation methods contains three variable components: [CLASS],
[FEATURE], and [VALUE]. The examples above presuppose that a predicting attribute (i.e.,
an explanation feature) can be defined both numerically and linguistically. Hence, an effec-
tive explanation is claimed to include the possibility to question all variable components of the
templates. In this manner, the end user becomes able to retrieve not only explanations but also
fully understand their nature. Assuming that the feature space is given and interpretable, the
variable [FEATURE] can relate to any feature retrieved from the dataset (e.g., Height) whereas
the variable [VALUE] can be presented in two formats: textual (e.g., tall) or numerical (either
single, e.g. 185cm, or interval-based, as in 180cm ≤ Height ≤ 200cm).

In the case of factual explanations, the variable [CLASS] refers to the class predicted by
the classifier. The user may want to question it by asking a why-not question, e.g. “Why is
the test instance not [CLASS′]?”. Then, the user is assumed to start exploring the set of CF
explanations available for the given prediction. In the case of CF explanations, the variable
[CLASS] refers to the desired CF class. It can then be questioned by the end user if she submits
the same why-not question to the system referring to another CF class, e.g. “Why is the test
instance not [CLASS′′]?” if there exist multiple CF classes. The user may want to question the
value of the variable [FEATURE] by asking for a definition of the given feature (e.g., “What
is Height?”). Questioning the value of the variable [VALUE] can be modelled by providing a
shift from the textual modality to the numerical modality of the given feature value (“In what
range is tall defined?”). Enabling the user to question any of the explanation components can
be beneficiary for both expert and lay users. In the former case, the user is able to request only
the most necessary details about the explanation under consideration. In the latter case, the user
can iteratively request sufficient information to make an informed decision with respect to the
system’s prediction, especially when she has little domain knowledge (if any).

Importantly, there may exist multiple factual explanations for the given prediction as well
as numerous CF explanations for any of CF classes. Further, the explanation that the explainer
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finds to be the most relevant for the given (factual or CF) class may not coincide with user
expectations or preferences, leading to decreased utility of such an explanation. It is therefore
of paramount importance to enable the end user to inquire alternative explanations so that the
user can prune the explanation space until she is fully satisfied with the information accumulated
along the explanatory dialogue.

To ensure that the desired aforementioned advantages of user-system interaction are achieved
fully, argumentation theory methods can be used to model a communication channel between
the user and the explainer. In this thesis, we design explanatory user-system dialogue applying
the so-called “dialogue game” approach to argumentation [22]. This mechanism allows us to
(1) formalise and integrate request types described below, (2) enable the end user to iteratively
explore the explanation space by arguing over the explanations offered previously, (3) person-
alise explanations giving to the end user full freedom to request only necessary and sufficient
information about the dataset, prediction, or explanation components.

The corresponding dialogue protocol establishes a typology of user’s requests, explainer’s
responses, and transitions between the dialogue states. Thus, the set of the proposed dialogue
requests includes the following categories:

• Factual and CF explanation requests. These include why and why-not questions to the
explainer for factual and CF classes, respectively.

• Detailisation requests. These tackle the switch from purely linguistic values of specific
features that make part of the given piece of explanation to their numerical counterparts.

• Clarification requests. These requests are meant to question definitions of specific fea-
tures that make part of the given piece of explanation.

• Alternative explanation requests. These requests are designed to enable the user to
explore the explanation space. Notably, they aremade unavailable for factual explanations
in the case of DTs, as alternative decision paths could be erroneous with respect to the
actual prediction and do not adequately explain the classifier’s reasoning for the given
test instance.

The proposed formal model of explanatory dialogue has been implemented in form of a
task-oriented dialogue system1. The dialogue system’s main tasks are to (1) communicate to the
end user explanations generated automatically by an explainer and (2) handle follow-up user
requests concerning explanation-related details. Adapting a classic pipeline for task-oriented

1The source code is made publicly available at https://gitlab.citius.usc.es/ilia.stepin/
fcfexpgen, branches “dialgame” and “dialgame_nlu”.
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Figure 4.2: The dialogue system pipeline making use of the proposed argumentative explanatory model.

spoken dialogue systems [44] to (textual) explanatory dialogue modelling, we designed an ar-
gumentative conversational agent that handles user requests sequentially in accordance with the
pipeline of dialogue system components that comprises the following four components:

• The natural language understanding (NLU) module. It serves two purposes: (1) to
identify user’s intent and (2) recognise all entities that the request has (if any).

• The dialogue state tracker (DST). It defines the state that the dialogue is currently in
based on the user’s intent recognised by the NLU module.

• The dialogue policy manager (DPM). It selects the most appropriate response among
those available at the given dialogue state passed by DST.

• The NLG module. It generates well-formed, grammatical system’s responses based on
the information received from DPM.

Altogether, DST and DPM are said to constitute the dialogue manager. The argumentative
dialogue protocol serves as the basis of the dialoguemanager, as it tracks the state of the dialogue
and defines all possible transitions among dialogue states.

Fig. 4.2 illustrates the pipeline of the components of the implemented conversational agent.
Let us consider a beer style classification problem to illustrate request processing. Given a pre-
trained beer style classifier, the user passes the characteristics of a specific beer (e.g., colour,
bitterness, and strength) to the classification system and obtains the classifier’s prediction (e.g.,
“This beer is Blanche”). Then, the user seeks an explanation for the given prediction and sub-
mits the corresponding request to the dialogue system (e.g., “Why is this beer Blanche?”). At
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first, the NLU module analyses the user’s request to (1) identify what category it belongs to
and (2) recognise all entities that the request contains. In our example, the NLU module first
attempts to solve the user intent classification problem where it assigns probabilities to each
category of user requests, e.g., (“why-explain”, 0.95). The same procedure is applied to entity
recognition. The intent and entity rankings are passed on to DST. Then, DST selects the most
probable intent (in this case, “why-explain”) and switches the dialogue to the corresponding state
(in our example, that of a factual explanation request). Given the dialogue state, DPM seeks the
most adequate response among the possible options. In accordance with the dialogue protocol,
the system is allowed to respond to a factual explanation request (i.e., “why-explain”) by either
offering a factual explanation to the end user (i.e., “explain-f ”) if it is able to generate it or
refusing to offer it, otherwise (i.e., “no-explain-f ”). In our example, the system finds that the
decision path responsible for the given prediction can be summarised in terms of two features
(i.e., colour and bitterness) with the corresponding values (i.e., black and high, respectively).
The explanatory feature-value pairs are then passed on to the NLG module, which generates a
well-formed, grammatical utterance. Once the NLG module returns the system’s utterance (in
this example, “The beer is Blanche because its colour is black and bitterness is high.”), it is
presented to the end user.

Similarly to the factual explanation request from the example above, the explanatory di-
alogue system follows the aforementioned pipeline to handle all other types of user requests
defined in the argumentative dialogue protocol (i.e., CF explanation, detailisation, clarification,
and alternative explanation requests). In each case, DPM makes calls to external modules if
necessary (e.g., the explainer when generating explanations or the knowledge base containing
domain knowledge when processing clarification requests).

The proposed explanatory dialogue protocol provides a transparent means of explanation
communication in information-seeking settings. Being transparent, the proposed model can be
aligned with regulatory requirements to automatic explanation generation. Furthermore, it is
shown to take into account user preferences, as it favours diversity of the output explanations
and allows the user to further question all variable components of such explanations. The pro-
posed argumentative dialogue model can be potentially used as a tool for assessing effectiveness
of CF explanations generated by other rule-based CF explanation generation algorithms. To fa-
cilitate adaptation to different rule-based CF explainers, the proposed dialogue model is further
conceptualised using the formalism of dialogue grammars.

Notably, the proposed dialogue protocol also allows us to quantitatively estimate the ne-
cessity in diversity of qualitative CF explanations. Recall that the proposed dialogue protocol
represents the explanation space for each (possibly, CF) class as a list of explanations ranked by
relevance, as measured by the explainer. Given a corpus of explanatory dialogues collected, we
can compare the explainer-measured relevance to the demand in the given explanations based on
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the data collected from actual users. Statistics of alternative explanation requests for each class
can be useful for this purpose. On the one hand, a large number of alternative explanations asked
for may be a signal of little utility of the initially offered explanations. On the other hand, the
empirical data from end users may not adequately reflect their satisfaction with the explanation
space in its entirety, as end users are at all times exposed to only a part of the explanation space
unless they sequentially request all the explanations that the system can offer to them. In this
regard, a metric of similarity between the set of explanations (at least, potentially) generated and
that of actually requested may be useful for assessing automatically the user satisfaction with
the explanation space, in general.

Finally, the concept of diversity of CF explanations regarded in terms of a set of single
alternative explanations allows us to question the nature of the mere definition of a CF explana-
tion. Indeed, automated CFs generated following the conventional definition search minimally
different feature-value pairs that ensure a different classification. However, if there is a strong
tendency to disregard minimally different CF data points that form the basis of a CF explanation
and it is shown to be consistent for different explainers and audiences, it may be timely to recon-
sider the definition of a CF explanation or empower it with the property of human-centricity that
goes beyond existing automatically computable metrics. Whereas the piece of work presented
in this thesis only makes the first step in this direction, it can serve an inspiring source of ideas
for elaboration on the user-centric prospects of automated CF explanations.
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5 Contributions

The work on the present thesis resulted in (1) several pieces of software developed to reach
the thesis objectives and (2) various publications that emerged as a result of the studies carried
out during the doctoral project. Section 5.1 details the software produced as part of the thesis.
Section 5.2 lists all the publications that this thesis bases upon.

5.1 SOFTWARE

The following pieces of software have been developed in order to achieve the thesis objectives:

C1: FCFExpGen1 – a framework for factual and CF explanation generation for interpretable
rule-based classification systems. The proposed framework includes the following three
algorithms:

XOR: a model-specific algorithm that selects candidate CF rules and ranks them by rele-
vance to the test instance using the eXclusive-OR (XOR) function. The rule claimed
to be the most relevant represents a set of CF data points that are minimally different
from the test instance in terms of their features. This CF set forms the basis of the
output CF explanation;

EUC: a model-specific variant of the XOR algorithm that utilises Euclidean distance as
a metric of relevance of the candidate CF rule to the test instance (i.e., it measures
proximity of the vector representation of the CF rule to the test instance in the se-
lected n-dimensional space);

GEN: a model-agnostic genetic algorithm that solves an optimisation problem looking for
the closest single CF data point w.r.t. the test instance under consideration.

C2: DialGame2 – an argumentative conversational agent for communication of automatically
generated textual rule-based factual and CF explanations. Noteworthy, the dialogue man-

1https://gitlab.citius.usc.es/ilia.stepin/fcfexpgen (branch “xor_euc_gen”)
2https://gitlab.citius.usc.es/ilia.stepin/fcfexpgen (branches “dialgame” and “dial-

game_nlu”)

https://gitlab.citius.usc.es/ilia.stepin/fcfexpgen
https://gitlab.citius.usc.es/ilia.stepin/fcfexpgen
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ager (i.e., an integrative part of the conversational agent) implements a dialogue protocol
basing on the argumentation theory-based technique referred to as “dialogue game” [30].

C3: SurveyGenerator3 – a web-tool for carrying out human evaluation experiments designed
for assessing various explanation aspects as well as the quality of explanation communi-
cation. Examples of the experiments carried out include:

– Survey GM : the explanation evaluation survey that enables the end-user to rate a
series of distinct explanations for the same test instance in terms of informativeness,
trustworthiness, accuracy, relevance, and readability;

– Survey TS: a simplified version of Survey GM which welcomes the end-user to rate
a single explanation for the given test instance in terms of trustworthiness and sat-
isfaction.

It is worth noting that all the source code, the data used in the human evaluation experiments
and the corresponding experimental results are made publicly available and can be reached at a
public Gitlab repository.

5.2 PUBLICATIONS

The work on the present doctoral thesis has resulted in three journal papers, three papers pre-
sented at international conferences and included in conference proceedings (both main and other
tracks), and one book chapter. Namely, the following journal publications cover the algorithms
developed and evaluated within the doctoral project [36, 37, 38]:

• Ilia Stepin, Jose M. Alonso, Alejandro Catala, Martín Pereira-Fariña. “A survey of con-
trastive and counterfactual explanation generation methods for explainable artificial intel-
ligence”. IEEEAccess, vol. 9, pp. 11974–12001, 2021. DOI: 10.1109/ACCESS.2021.3051315;

• Ilia Stepin, Jose M. Alonso-Moral, Alejandro Catala, Martín Pereira-Fariña. “An empir-
ical study on how humans appreciate automated counterfactual explanations which em-
brace imprecise information”. Information Sciences, vol. 618, pp. 379–399, 2022. DOI:
10.1016/j.ins.2022.10.098;

• Ilia Stepin, KatarzynaBudzynska, AlejandroCatala, Martín Pereira-Fariña, JoseM.Alonso-
Moral. “Information-seeking dialogue for explainable artificial intelligence: Modelling
and analytics”. Argument and Computation, in press. DOI: 10.3233/AAC-220011.

3https://gitlab.citius.usc.es/jose.alonso/surveygenerator
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Further, the work in progress has been presented at several international conferences (in-
cluding main tracks, workshops, and doctoral consortia), which resulted in the following publi-
cations [34, 35, 39]:

• Ilia Stepin, Alejandro Catala, Jose M. Alonso, Martín Pereira-Fariña. “Paving the way
towards counterfactual generation in argumentative conversational agents”. In Proceed-
ings of the 1st Workshop on Interactive Natural Language Technology for Explainable
Artificial Intelligence (NL4XAI) collated with the Conference on International Natural
Language Generation (INLG), pp. 20-25, Tokyo (Japan), 2019. DOI: 10.18653/v1/W19-
8405;

• Ilia Stepin, Jose M. Alonso, Alejandro Catala, M. Pereira-Fariña. “Generation and evalu-
ation of factual and counterfactual explanations for decision trees and fuzzy rule-based
classifiers”. In Proceedings of the IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), Glasgow (UK), 2020. DOI: 10.1109/FUZZ48607.2020.9177629;

• Ilia Stepin. “Argumentation-based interactive factual and counterfactual explanation gen-
eration”. In Proceedings of the 1st Doctoral Consortium at the European Conference
on Artificial Intelligence (DC-ECAI 2020), pp. 61-62, Santiago de Compostela (Spain),
2020.

Notably, further experiments concerning specific technicalities of the XOR algorithm for au-
tomated factual and CF explanation generation can be found in the following book chapter [40]:

• Ilia Stepin, Alejandro Catala, Martín Pereira-Fariña, Jose M. Alonso. “Factual and coun-
terfactual explanation of fuzzy information granules”. In: Pedrycz, W., Chen, SM. (eds)
Interpretable Artificial Intelligence: A Perspective of Granular Computing. Studies in
Computational Intelligence, vol 937. Springer, Cham. DOI: 10.1007/978-3-030-64949-
4_6

In addition, a proof of concept of the argumentative framework for factual and CF expla-
nation communication was presented orally at the European Conference on Argumentation in
Rome (Italy) on September 30, 2022. The full paper is currently under review, pending to be
finally published by College Publications in their “Studies in Logic and Argumentation” book
series4 in 2023. Besides, one of the model-specific interpretable fuzzy rule-based explanation
generation algorithms (i.e., EUC) is presented in an immersive article entitled “How to build self-
explaining fuzzy systems: From interpretability to explainability” and submitted to the special
issue “Artificial Intelligence eXplained” (AI-X) of the IEEE Computational Intelligence Mag-
azine. At the moment of writing, the manuscript is undergoing a second review round.

4https://www.collegepublications.co.uk/logic/sla/
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Fig. 5.1 visualises the main contributions (i.e., software and journal papers) listed in Sec-
tions 5.1-5.2, respectively.

Figure 5.1: Main research questions and answers (regarding techniques, software and publications).
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6 State-of-the-art methods of contrastive and
counterfactual explanation generation

As discussed in Chapter 4, the problem of contrastive and CF explanation generation is among
the most trending XAI topics [21]. The recent rise of attention to contrastive and CF explanation
encourages a discussion about the nature of these concepts and their (mis-)use in XAI. Whereas
XAI is a newly emerged research field, the notion of explanation, in general, and its contrastive
and CF sub-types, in particular, have long been discussed in social sciences. It is therefore
important to know how theoretical concepts related to contrastive and CF explanation can guide
XAI researchers in developing effective explanation generation methods.

In this chapter, we (1) inspect theoretical foundations of the concepts of contrastive and CF
explanation, (2) explore technical aspects of the state-of-the-art computational frameworks of
generation of contrastive and/or CF explanations, and (3) discuss how theoretically grounded the
computational frameworks are. We show that a majority of state-of-the-art contrastive and CF
explanation generation frameworks only loosely (if at all) rely on theoretical models of explana-
tion from social sciences. Instead, they mainly represent data-driven solutions to optimisation
problems oftentimes neglecting a wide body of knowledge about the nature of explanation ac-
cumulated over the centuries. As a consequence, it sometimes leads to terminological confusion
and makes us strive for standardisation of the explanation-related notions used across sub-fields
of XAI.

The results from this chapter are published in the following paper [36]:

Ilia Stepina, Jose M. Alonsoa, Alejandro Catalaa, Martín Pereira-Fariñab. “A survey of con-
trastive and counterfactual explanation generationmethods for explainable artificial intelligence”.
In IEEE Access (Open Access), vol. 9, pp. 11974-12001, ISSN: 2169-3536, 2021. DOI:
10.1109/ACCESS.2021.3051315

a Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santi-
ago de Compostela, Rúa de Jenaro de la Fuente Domínguez, s/n, 15782 Santiago de Compostela,
Spain
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b Departamento de Filosofía e Antropoloxía, Universidade de Santiago de Compostela, Plaza
de Mazarelos, s/n, 15705 Santiago de Compostela, Spain

Scientific production indicators:
IEEE Access, the journal where Chapter 6 was published, had, in the year of publication, a

CiteScore index of 6.7 (calculated by Scopus on 05 May, 2022) and an impact factor of 3.476
(2021 Journal Citation Reports). In addition, it had the following positions in the categories
listed below:

• Scopus: Q1 (rank #28/300) inGeneral Engineering (the 90th percentile), Q1 (rank #34/231)
in General Computer Science (the 85th percentile), Q1 (rank #124/708) in Electrical and
Electronic Engineering (the 82th percentile), Q1 (rank #104/455) (the 77th percentile) in
General Materials Science;

• JCR: Q2 (rank #79/164) in Computer Science and Information Systems, Q2 (rank #43/93)
in Telecommunications, Q2 (rank #105/276) in Electrical & Electronic Engineering.

As of 29 June 2023, the publication has, according to distinct citation databases, the follow-
ing number of citations: 199 (GoogleScholar), 94 (Scopus), 65 (WoS).

Personal authorship statement:
In accordance with the Contributor Roles Taxonomy (CRediT), the personal authorship con-

tribution comprises the following roles: investigation, data curation, writing - original draft, vi-
sualization.

Publishing rights:
The journal paper where the results of this Chapter are published is licensed under a Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 License. The individual or entity
exercising the licensed rights (hereinafter, “the user”) is free to copy and redistribute the material
in any medium or format under the following terms1:

• Attribution: The user must give appropriate credit, provide a link to the license, and
indicate if changes were made. The user may do so in any reasonable manner, but not in
any way that suggests the licensor endorses the user or the user’s use.

• NonCommercial: The user may not use the material for commercial purposes.

• NoDerivatives: If the user remixes, transforms, or builds upon the material, the user may
not distribute the modified material.

1For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
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7 Counterfactual explanation generation for
rule-based classification systems

As follows from Chapter 6, a variety of CF explanation generation algorithms explain the output
of ML classifiers. However, they mainly focus on explaining “black-box” classification models
leaving the explanatory potential of interpretablemodels largely unexplored [19]. Whereas some
interpretable rule-based models can be trivially explained factually, CF explanation generation
methods for such classifiers remain scarce due to a number of open challenges. In this chapter,
we propose two algorithms of amodel-specific CF explanation generationmethod for explaining
the output of interpretable rule-based classification systems. We show how both algorithms can
be applied to interpretable rule-based classifiers. Operating on the internals of the classifier,
they generate rule-based CFs in natural language using imprecise knowledge that is codified
in the corresponding rules. In addition, we propose a genetic model-agnostic CF explanation
algorithm that outputs textual explanations that refer to a single CF data point that is minimally
different from the test instance under consideration.

Human evaluation remains one of the greatest challenges for CF explanation generation [43].
Despite being costly and difficult to design, human evaluation experiments are indispensable to
ensure the utility of automated CFs for their end users. In this chapter, we evaluate the proposed
CF explanation generation methods, as we perform two human evaluation studies. Further, we
propose a metric of perceived explanation complexity for textual rule-based explanations. We
show that it correlates with several explanation aspects (such as informativeness, relevance, and
readability) for the selected target audience (in this case, expert users that have a high degree
of expertise in XAI or related fields). Consequently, the proposed metric can be used in future
studies where it can help to reduce (some of) human evaluation costs.

The results from this chapter are published in the following paper [37]:

Ilia Stepina,b, Jose M. Alonso-Morala,b, Alejandro Catalaa,b, Martín Pereira-Fariñac. “An em-
pirical study on how humans appreciate automated counterfactual explanations which embrace
imprecise information”. In Information Sciences (Open Access), vol. 618, pp. 379-399. ISSN:
0020-0255. Elsevier, 2022. DOI: 10.1016/j.ins.2022.10.098
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(rank #8/127) in Theoretical Computer Science (the 94th percentile), Q1 (rank #17/286) in
Control and Systems Engineering (the 94th percentile), Q1 (rank #9/140) in Information
Systems and Management (the 93rd percentile), Q1 (rank #32/404) in Software (the 92nd
percentile), and Q1 (rank #26/301) in Artificial Intelligence (the 91st percentile);

• JCR: Q1 (rank #13/158) in Computer Science and Information Systems.
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8 Argumentative explanation communication for
rule-based classification systems

The CF explanation generation algorithms proposed in Chapter 7 offer one-shot textual CFs.
Whereas such explanations can be generated for a variety of CF classes, they are limited to
providing only static information about the underlying reasoning of the classifier. Being void of
any interaction with the end user, such explanations run the risk of losing their utility (possibly,
partly), as one-shot explanations may ignore the user’s needs and/or preferences.

In this chapter, we propose to address this issue by establishing an argumentative communi-
cation channel between the explainer (or, more generally, the system) and the user. To do so, we
rely on the formalism of so-called “dialogue games” [22]. Based on this well-known argumenta-
tion mechanism, our explanatory dialogue model allows for generating interactive explanations.
The end user is allowed to request necessary additional information while ensuring the balance
between the system’s capacity to offer specific details about the prediction and user’s needs to
make an informed decision with respect to that prediction.

The proposed argumentative dialogue model has been implemented in form of an argumen-
tative conversational agent. This allows for transparent human evaluation of the formal explana-
tory dialogue model. Hence, we carried out an experiment to estimate how useful the proposed
model is in the information-seeking explanatory dialogue settings. The results show that users
actively use all types of the modelled requests to make a decision (i.e., acceptance or rejection)
with respect to the classifier’s prediction. Further, a high number of requests for alternative CFs
demonstrates the need to enable the user to explore the explanation space by arguing over the
offered pieces of information.

The results from this chapter are published in the following paper [38]:

Ilia Stepina,c, KatarzynaBudzynskab, AlejandroCatalaa,c, Martín Pereira-Fariñad, JoseM.Alonso-
Morala,c. “Information-seeking dialogue for explainable artificial intelligence: Modelling and
analytics”. In Argument and Computation (Open Access), ISSN print: 1946-2166; ISSN online:
1946-2174. IOS Press, in press. DOI: 10.3233/AAC-220011
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9 Conclusion

In this thesis, we addressed the problem of explanation generation and communication for in-
terpretable rule-based systems. More specifically, we focused on the task of generation of in-
teractive CF explanations, which meet theoretically grounded requirements to quality explana-
tions for XAI. To address this challenge, we first performed a literature review of theoretical
foundations of the family of contrastive and CF explanations and the state-of-the-art methods
of their automatic generation, which resulted in a two-level taxonomy of contrastive and CF
explanations. Taking into consideration the insights from the review, we then designed, imple-
mented, and validated a computational framework for generating factual and CF explanations
associated to interpretable rule-based classification systems. It includes one model-agnostic and
two model-specific algorithms, all of which offer human-comprehensive explanations in natu-
ral language. Further, we enhanced the framework with an argumentative dialogue generation
module, which allows for interactive explanations in agreement with end user’s needs. All in
all, the generated explanations have been shown to be contrastive, selected, and social.

In what follows, we summarise main lessons learned from the work carried out during this
doctoral project. Section 9.1 encapsulates our concluding remarks for each piece of research
reported in Chapters 6-8. Section 9.2 outlines prospective directions for future work.

9.1 CONCLUDING REMARKS

The literature review on contrastive and CF explanations revealed several gaps in the inspected
sub-field of XAI. First, the state-of-the-art computational frameworks of contrastive and CF ex-
planation generation are scarcely grounded on explanation theories from social sciences. This
is, in part, due to the fact that the existing theories and computational frameworks mainly ad-
dress distinct aspects of explanation generation. Thus, theories of contrastive explanation often
discuss products of the explanatory process in terms of cause-and-effect relationships whereas
a large number of computational contrastive and/or CF explanation generation methods focus
on non-causal (e.g., spacial) relations between the test point whose prediction is to be explained
and potential CF data points. Second, it turns out that the terms “contrastive” and “counter-
factual” are often used interchangeably in the XAI community despite certain methodological
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differences. This observation calls for standartisation of the terminology used in the field. In
order to unify the terminology (where applicable), we suggest that the term “contfactual” be
promoted for contrastive-CF explanations. We believe that this term adequately encompasses
the aspect of contrastiveness in CF explanations and vice versa. Third, the state-of-the-art com-
putational frameworks have been observed to greatly lack human evaluation support. In fact, a
vast majority of contrastive and CF explanation generation methods have only been evaluated
using data-driven automatically computed metrics. Nevertheless, human evaluation studies are
indispensable for shifting towards human-centric AI despite being expensive and difficult to
design.

In order to reduce the gap between the automatic data-driven and human evaluation-based
metrics, we proposed the metric of perceived explanation complexity (PEC), i.e. a measure of
how complex the given piece of textual explanation seems to be for the end user to process it.
For the target audience (in this case, users who have a high degree of expertise in XAI or re-
lated fields), human evaluation experiments have shown that the computed PEC scores correlate
with informativeness, relevance, and readability of automated generations. Thus, the proposed
metric can effectively replace human evaluation experiments measuring the aforementioned ex-
planation aspects for domain experts or highly qualified specialists. Overall, the quality of the
explanations generated by all the proposed algorithms was positively evaluated in the human
evaluation studies that we carried out in this thesis. In terms of all the assessed explanation as-
pects (i.e. informativeness, trustworthiness, accuracy, relevance, readability, and satisfaction),
the resulting scores were above average for all the proposed CF explanation generation meth-
ods. However, none of these methods has been found to consistently outperform the others in
all the explanation aspects. In this regard, we conclude that the methods modelling imprecise
knowledge (e.g., XOR and EUC) and those making use of precise feature values (e.g., GEN)
are best used complementarily to each other to satisfy the needs of a wider audience of users.

Whereas such complementary information can be aggregated in a single piece of text, the
social aspect of explanation remains unaddressed in case of one-shot explanations. To over-
come this issue, we proposed an argumentative dialogue protocol to model information-seeking
explanatory dialogues and developed a corresponding conversational agent. The human eval-
uation results of the dialogue protocol validation prove the necessity for all the proposed types
of requests and responses for effective explanation communication. Further, a large number
of requests for alternative CF explanations testify that the most relevant CF explanations from
the algorithmic point of view may oftentimes not seem optimal from the user’s point of view.
Whereas further comparative studies are necessary to analyse explanatory power of distinct ex-
planation generation algorithms from the cognitive point of view, it can be concluded at this stage
that the best-ranked CFs (i.e., most relevant or minimally different CFs from the test instance)
may have to be combined with one or more alternatives given a set of multiple candidate CFs.
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Chapter 9. Conclusion

Striving for enabling the end user to play a decisive role in the process of explanation commu-
nication, we believe that it is indispensable to further emphasise the social aspect of automated
explanations, e.g., by designing additional metrics of the quality of explanation communication
similarly to the PEC score proposed in this thesis.

In light of the statements made above, we conclude that the explanation generation frame-
work proposed in this thesis offers factual and CF explanations that turn out to be appealing to
end users. Thus, textual explanations generated in both modalities (those modelling imprecise
knowledge and those outputting specific numerical values or intervals thereof) received higher-
than-average estimates from the target audiences in all the experiments carried out. In addition,
end users appreciated their interaction with the argumentative conversational agent which was
carefully designed to communicate automated factual and CF explanations.

9.2 FUTURE WORK

The research results presented in this thesis indicate several directions for future work. From
the theoretical point of view, the proposed framework can be extended to introduce causal rela-
tions between the predicted data and related features. In fact, this could further bridge the gap
between theoretical and computational paradigms of contrastive and CF explanation generation
and therefore appears highly desirable in light of the results obtained from the performed liter-
ature review. From the algorithmic point of view, the proposed explanation generation frame-
work should be further extended with a surrogation approach to handle other types of classifiers
(including those non-interpretable and non-rule-based). Nevertheless, in the absence of access
to the internals of the classifier and/or the feature space, it may be essential to transform the pro-
posed model-specific explanation generation algorithms into their model-agnostic equivalents.
Further, different settings may require changes in the dialogue protocol that models the com-
munication process between the explainer and the user for the sake of deeper customisation. In
addition, further extension is required to guarantee properties of CF explanations not addressed
in this thesis. For example, the presented algorithms do not allow to assess straightforwardly
how actionable the generated CFs are. Hence, enhancing output CF explanations with other
desired CF properties is believed to further increase effectiveness of such explanations.

Importantly, it seems impossible to achieve the state of human-centric AI without formalis-
ing and modelling ethical relations on the basis of the data being processed. Thus, bias mitiga-
tion, yet another highly relevant line of research in the XAI community, is another algorithmic
challenge to address. Finally, it is of our particular interest to further adapt the designed human
evaluation framework for future experiments on explanation, trustworthiness, and satisfaction.
Altogether, the prospective extensions of the work presented in this thesis are believed to have
great potential for moving forward from XAI to Trustworthy AI.
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The experiments whose results are reported in the present thesis were designed to involve human
evaluation. Therefore, a prior permission to carry them out had been obtained from the Ethics
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ABSTRACT Anumber of algorithms in the field of artificial intelligence offer poorly interpretable decisions.
To disclose the reasoning behind such algorithms, their output can be explained by means of so-called
evidence-based (or factual) explanations. Alternatively, contrastive and counterfactual explanations justify
why the output of the algorithms is not any different and how it could be changed, respectively. It is of crucial
importance to bridge the gap between theoretical approaches to contrastive and counterfactual explanation
and the corresponding computational frameworks. In this work we conduct a systematic literature review
which provides readers with a thorough and reproducible analysis of the interdisciplinary research field under
study. We first examine theoretical foundations of contrastive and counterfactual accounts of explanation.
Then, we report the state-of-the-art computational frameworks for contrastive and counterfactual explanation
generation. In addition, we analyze how grounded such frameworks are on the insights from the inspected
theoretical approaches. As a result, we highlight a variety of properties of the approaches under study and
reveal a number of shortcomings thereof. Moreover, we define a taxonomy regarding both theoretical and
practical approaches to contrastive and counterfactual explanation.

INDEX TERMS Computational intelligence, contrastive explanations, counterfactuals, explainable artificial
intelligence, systematic literature review.

I. INTRODUCTION
In the last few decades, the field of Artificial Intelligence
(AI) has witnessed major changes. As available computa-
tional resources have grown significantly, AI algorithms are
attracting a significant amount of attention in industry and
research [1].While a great number of such algorithms present
strikingly accurate decisions, their decision-making appara-
tus is frequently left unclear to users of such applications.
In particular, a number of Machine Learning (ML)-based
algorithms are often perceived as ‘‘black-box’’ algorithms
because they are overloaded with millions of hardly inter-
pretable parameters to be optimized at the training stage. This
fact makes the algorithm’s output hard to explain. A lack of

The associate editor coordinating the review of this manuscript and
approving it for publication was Francesco Piccialli.

the ability to explain such automatic decisions undermines
users’ trust and hence decreases usability of such systems [2].
Furthermore, it prevents users from a responsible exploita-
tion of their decisions [3]. In addition, many of the existing
eXplainable AI (XAI1) methods provide summaries of auto-
matically made predictions rather than true explanations [4].
As a result, the need to motivate automatic decisions with a
clear explanation of why the algorithm outputs a particular
decision has made the XAI research field grow quickly [5].

Since the number of high-stakes AI applications found
in daily life increases, the requirements to their explana-

1XAI stands for eXplainable Artificial Intelligence. This acronym was
made popular by the USA Defense Advanced Research Projects Agency
when launching to the research community the challenge of designing
self-explanatory AI systems (https://www.darpa.mil/program/
explainable-artificial-intelligence).

11974
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021



I. Stepin et al.: Survey of Contrastive and Counterfactual Explanation Generation Methods for Explainable AI

tory capacity increase accordingly. This also provokes the
introduction of regulations and laws concerned with expla-
nation requirements for AI-based applications. For instance,
the need for explaining reasoning mechanisms behind such
applications is now legally regulated in the European Union
by means of the General Data Protection Regulation.2

According to these legal provisions, the data subject must
be provided with ‘‘meaningful information about the logic
involved’’ in the automatic decision making process, which is
commonly referred to as the ‘‘right to explanation’’ [6]. Thus,
an AI application is expected not only to provide accurate
decisions but also to justify them in a comprehensive manner
to end-users.

The goal of approaching human-centric AI has led towards
a deeper research on the nature of explanation. However,
no agreement about a definition of explanation has been
reached despite the fact that explanation has called a signif-
icant amount of attention in, e.g., philosophy of science [7],
[8]. In its most general form, explanation is normally treated
as ‘‘an answer to the question of why something is the case’’
[9]. In the context of AI, it often bases on judgments about
why a certain outcome is predicted by an AI algorithm and
hypotheses about causes with respect to given effects [10].

The need of generating more human-like explanations has
attracted AI researchers’ attention to particular properties of
explanation as well as its sub-types [11]. Thus, it appears
particularly challenging to explain a given algorithm’s output
in terms of reasonable yet non-occurring alternatives given a
possibly infinite set of such options. Furthermore, this can be
enhanced with the ability of suggesting relevant changes in
the input so that the algorithm outputs a different decision.

Given a rising interest towards these types of explanation
(referred to as contrastive and counterfactual, respectively)
within the XAI community, it is of crucial importance to
review the existing theoretical accounts of contrastive and
counterfactual explanation as well as state-of-the-art compu-
tational frameworks for automatic generation thereof. Thus,
the aim of this study is to fulfill the next three objectives:
(1) to scrutinize theoretical works on the contrastive and
counterfactual accounts of explanation; (2) to summarize
state-of-the-art methods in the field of automatic explanation
generation thereof; and (3) to discuss a degree of synergy
between the revised theories and their related up-to-date
implementations.

The rest of the manuscript is organized as follows.
Section II introduces the notions of contrastive and coun-
terfactual explanation as well as their main application
areas. Section III presents the terminology used through-
out the review, poses the research questions, and describes
the methodology employed to address the given questions.
Section IV presents the main findings collected within the
present survey and the emerging taxonomy thereof. Section V
discusses peculiarities of the existing theoretical and compu-

2https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:
02016R0679-20160504

tational frameworks of contrastive and counterfactual expla-
nation. Finally, we conclude in Section VI.

II. BACKGROUND
A. CONTRASTIVE EXPLANATION
Findings on explanation accumulated in humanities and
social sciences show that it is intrinsically contrastive [11].
The property of contrastiveness presupposes that an expla-
nation answers the given why-question regarding the cause
of the event in question (‘‘Why did P happen?’’) in terms of
hypothesized non-occurring alternatives (‘‘Why didP happen
rather than Q?’’) [12]. Thus, supporters of the pragmatic
approach to explanation argue that it is exactly the ability
to distinguish the answer to an explanatory question from
a set of contrastive hypothesized alternatives that provides
the explainee with sufficiently comprehensive information on
the reasoning behind the question [13]. This approach is also
claimed to set a minimum criterion that an explanation must
fulfill: it must favor the probability of the observed event P
to all the hypothetical alternatives (Q1,Q2, . . . ,Qn) [14].

Contrastive explanation is among influential topics in cog-
nitive science [15]–[17]. Thus, contrastive explanations are
claimed to be inherent to human cognition [16]. Indeed,
we are used to question those decisions that we once made,
especially if such decisions or coinciding circumstances
resulted in tragic events [18].

In addition, contrastive reasoning forms the basis of abduc-
tive inference [19], i.e., the process of inferring certain facts
that render some observation plausible [20]. In other words,
a given observation can be explained on the basis of the most
likely among a pool of competing hypotheses [21].

B. COUNTERFACTUAL EXPLANATION
Given the property of contrastiveness, it is possible to imagine
explanatory alternatives to how things would stand if a differ-
ent decision had been made at some point. They can serve to
explain potential consequences of such contrastive non-taken
alternative decisions. In this case, the mind is assumed to
construct and compare mental representations of an actually
happened event and that of some event alternative to it [22].
Cognitive scientists refer to such mental representations of
alternatives to past events as counterfactuals (‘‘contrary-to-
fact’’) [15]. The process of ‘‘thinking about past possibili-
ties and past or present impossibilities’’ is therefore called
counterfactual thinking [23]. Alternatively, the combination
of imagining an alternative scenario in relation to the one that
actually happened and the exploration of its consequences
is referred to as counterfactual reasoning [24]. In addition,
counterfactual reasoning is claimed to be a key mechanism
for explaining adaptive behavior in a changing environment
[25], [26].

Counterfactuals describe events or states of the world that
did not occur and implicitly or explicitly contradict factual
world knowledge [27]. Formulated in natural language, coun-
terfactuals are usually presented in the form of conditional
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statements. Broadly speaking, they contain: (1) an antecedent
describing an outcome alternative to an actual event; (2)
a consequent describing (a set of) consequences, had the
antecedent been the case; and (3) a binary counterfactual
dependency relation between them. Thus, Grahne defines
a counterfactual to be a conditional statement where the
antecedent ‘‘can contradict the current state of affairs, or our
current knowledge thereof’’ [28]. However, despite a gen-
eral agreement on structural properties of counterfactuals,
existing interpretations of counterfactual conditionals still
compete. As such, further constraints imposed on their struc-
ture differ depending on the approach adopted. According to
Ginsberg [29], a counterfactual is a conditional statement of
the form ‘‘If P, then Q’’ where P is ‘‘expected to be false’’.
Aumann limits a counterfactual to be a conditional with a
false antecedent only [30]. In contrast, Spohn argues that both
the antecedent and the consequent of a counterfactual must
be false [31]. All in all, counterfactual conditional statements
are claimed to enable people to produce utterances that are
factually false yet truthful irrespective of the interpretation
adopted [32].

A line of research devoted to modeling human counterfac-
tual reasoning has been thoroughly investigated in computer
science. Thus, counterfactual reasoning in computer science
is defined as the process of evaluating conditional claims
about alternative possibilities and their consequences [33].
It is argued to be valid arising from antecedents that are
true in a hypothetical model but false in reality [34]. In this
setting, the truth of a counterfactually inferred statement is
resolved by: (1) modeling a situation where the smallest
possible change in features of the actual world (as set in the
antecedent) leads to a different (possibly, desired) state of
things (the so-called ‘‘closest’’ or ‘‘nearest’’ possible world);
and (2) estimating what is true in that setting [35].

Moreover, counterfactuality is among the most fundamen-
tal concepts in theories of causation [36], [37]. Indeed, coun-
terfactuals are argued to represent a causal relation between
the event happened in reality and its imaginary counterpart.
A counterfactual definition of a cause of an arbitrary event
traces back to Hume [38]. According to him, a cause is
an object (antecedent) that justifies the existence of another
object (consequent) which it is followed by: ‘‘If the first
object had not been, then the second never had existed’’.
Therefore, once a causal connection between the antecedent
and the consequent is established, a counterfactual condi-
tional can be generalized to be a conditional claim about an
alternate possibility and its consequences of the form ‘‘If X
were to occur, then Ywould (or might) occur’’ [33]. Similarly,
Kment applies a similarity-based approach between possible
worlds to formulate a general account of counterfactuals [39]
driven by a non-epistemic interpretation of explanation (i.e.,
factors that serve as reasons for some fact to obtain are
responsible for that fact).

The conditional structure of counterfactual statements gave
rise to a probabilistic account of such statements. Thus, Pearl
extended the definition of the causal counterfactual to esti-

mate the probability of the truth of the consequent caused by
the antecedent (‘‘a probability statement about the truth of
y, had x been true, when it is known that y had been false
when x was false’’) [37]. This approach to counterfactuals
motivated a number of experiments on the existence of the
relation between counterfactuals and conditional probability.
In support of this assumption, Over et al. [40] showed the
existence of connection between counterfactuals and con-
ditional probability, as they experimented with probability
judgments about counterfactuals. Thus, they proposed that
the subjective probability of the counterfactual at the present
time is the same as the conditional probability P(y|x) at some
earlier time. Twenty-six subjects were asked to estimate the
probability of truth of thirty-two counterfactual conditionals
with both affirmative and negative antecedents and conse-
quents. Their findings point to a strong correlation between
the probability of the counterfactual conditional and causal
strength judgments. On a similar note, Edgington regarded
counterfactual judgments as uncertain conditional statements
and therefore evaluated them by estimating their conditional
probability given some endorsing event [41].

C. DISTINCTION BETWEEN CONTRASTIVE AND
COUNTERFACTUAL EXPLANATION
It is important to note that some researchers tend to either
collapse or intentionally distinguish contrastive reasoning
from counterfactual reasoning despite their conceptual sim-
ilarity. For instance, Lombrozo treated counterfactual and
contrastive explanations as equivalent assuming hypothe-
sized events non-occurred in reality to be ‘‘counterfactual
cases’’ where a subset of these cases forms a contrastive
explanation [10]. In contrast, McGill and Klein distinguished
contrastive reasoning from its counterfactual counterpart
[42]. According to them, contrastive reasoning is concerned
with situations where different target situations are analyzed
(‘‘What made the difference between the employee who
failed and the employees who did not fail?’’). On the other
hand, counterfactual reasoning is claimed to deal with cases
where the antecedent is altered to account for changes in
the outcome (‘‘Would the employee have failed had she not
been a woman?’’). Alternatively, Fang et al. [43] referred
to contrastive reasoning as a procedure operating on ‘‘but-
statements’’, as in ‘‘all cars are polluting, but hybrid cars are
not polluting’’, which serves a principally different explana-
tion generation task in comparison with the other aforemen-
tioned approaches.

D. CONTRASTIVE AND COUNTERFACTUAL EXPLANATION
IN THE CONTEXT OF XAI
The stochastic nature of predictions made by various AI
algorithms is claimed to be among the main obstacles in
reaching a true explanation [44]. Research on automatic
contrastive and counterfactual explanation generation shows
a number of considerable observations that help overcome
this issue. Thus, empirical studies prove that incorporating
contrastiveness improves the quality of explanations offered
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to the end-user [45]. Furthermore, contrastive explanations
can be used to personalize human-machine interaction when
a user is engaged in an explanatory dialogue with an AI
application. Thus, they can be employed with the aim of
adjusting the contents of the explanation for the algorithm’s
output in accordance with the user’s preferences [46]. Finally,
the ability to explain a decision contrastively is claimed to
lead to responsible decision-making [47].

It is important to note that contrastive explanations point
to the difference between the actual and a hypothetical deci-
sion. On the other hand, counterfactual explanations specify
necessary minimal changes in the input so that a contrastive
output is obtained. However, these terms are sometimes used
interchangeably in the context of XAI [48], [49].

Various families of techniques have been proposed to
generate contrastive and counterfactual explanations of AI
algorithm output. In the context of XAI, an explanation for an
automatic decision or prediction, treated as an observation,
can be obtained abductively by attempting the search prob-
lem over the set of the known information concerning that
observation [50]. Alternatively, counterfactual explanation is
widely addressed in the paradigm of case-based reasoning,
i.e., a family of problem solving methods based on appeals
to precedent solutions. In this setting, generating the most
suitable counterfactual may be viewed as a search problem
where the most similar precedent is looked for among those
making part of the case database [14]. Furthermore, Keane
et al. argue that applying case-based reasoning techniques
for generating counterfactuals increases their explanatory
competence [51].

Counterfactual explanations are normally considered con-
trastive by nature and therefore present a source of valuable
complementary information to a given automatic predic-
tion [52]. For instance, a counterfactual explanation of an
ML-based algorithm prediction may describe ‘‘the small-
est change to the feature values that changes the predic-
tion to a predefined output’’ [53]. An important advantage
of counterfactual explanations over their non-counterfactual
analogs is that they are devoid of any prerequisites to the
data or model. Indeed, counterfactual explanations are data-
agnostic as they can be based on the features of the neigh-
bouring data examples extracted from the same training set
and/or on the data generated synthetically around the data
instance in question. In addition, counterfactual explanations
are, in principle, model-agnostic, as they are suitable to
explain the output of any black-box algorithm in a post-hoc
manner.

Whereas counterfactual explanation generation is con-
cerned with a number of technical challenges, it also requires
to take into account several ethical aspects. For instance,
their use is expected to be safe (revealing model’s internals
through counterfactuals may lead to model stealing) [54], fair
(discriminatory explanations should be avoided) [55], action-
able (suggested changes in the input should be feasible) [56],
and accountable (ensuring responsibility for the explanations
provided) [57].

III. METHODOLOGY
The present survey has been undertaken as a systematic lit-
erature review following the guidelines by Kitchenham and
Charters [58], Kitchenham et al. [59], and Wohlin [60]. The
background notation necessary to follow the findings of the
review is specified in Section III-A.

In short, the study comprises three phases as established in
the research method by Kitchenham and Charters [58]: (1)
planning the review procedure; (2) conducting the review;
and (3) reporting the results. During the first phase, three
research questions (RQ1, RQ2, and RQ3) were specified
(see Section III-B). Subsequently, we determined a search
strategy to retrieve primary studies, i.e., we collected all
the relevant publications investigating the research ques-
tions (see Section III-C). Then, we developed inclusion and
exclusion criteria (see Section III-D) in order to select the
studies relevant for this article. When the same publication
was retrieved from multiple sources, all-but-one instances
of the publication (duplicates) were discarded. In addition,
we identified and added manually other relevant publica-
tions extracted from the bibliography lists of the previously
selected manuscripts to ensure a maximum coverage of the
related subject areas. It is worth noting that this additional
procedure is informally known as snowballing [60]. Finally,
we extracted and synthesized the data necessary to address
the research questions (see Section III-E).

A. PRELIMINARY TERMINOLOGY
As has been shown in Section II, contrastive and counterfac-
tual explanations presuppose a diverse nature across various
application domains. Hence, let us now define the general
terms used henceforth in this manuscript. As we are primarily
concerned with explainability of AI algorithms, we define
explanation in terms of the observed output of such an algo-
rithm. Thus, we regard an explanation as a non-empty set of
pieces of information justifying the given algorithm’s output
for an input data instance. The explanation for the given
output on the basis of the features of the input data instance
is deemed as factual. An explanation opposing the actual
outcome to one of possible other outcomes is considered to be
contrastive (e.g., ‘‘The data instance is of class A and not B
because . . . ’’). An explanation containing instructions on how
the output could have been changed constitutes a counterfac-
tual explanation (e.g., ‘‘The data instance would be of class B
if . . . ’’). Explanations exhibiting patterns of both contrastive
and counterfactual explanation are deemed to be contrastive-
counterfactual explanations (e.g., ‘‘The data instance is of
class A and not B because . . . . However, it would be of class
B if . . . ’’).

We distinguish between contrastive and counterfactual
explanation throughout the rest of the manuscript if and
only if only one of these two terms is used in the given
primary study. In contrast, we unify the notions of counterfac-
tual and contrastive explanation introducing the term ‘‘con-
tfactual explanation’’ or ‘‘contfactual’’ to identify potential
similarities and differences of both types of explanation
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within a broader scope of literature. This term is used here-
after wherever both terms for contrastive and counterfactual
explanation can be used interchangeably. The terms ‘‘con-
trastive explanation’’ and ‘‘counterfactual explanation’’ are
only used when they are found in the corresponding study and
cannot be used interchangeably in the given context. Notice
that the term ‘‘contfactual explanation’’ is not equivalent
to ‘‘contrastive-counterfactual explanation’’ but covers both
independently used types of explanation as well as their
fusion.

A theoretical framework providing justification and a rea-
soning mechanism for obtaining a contfactual explanation is
regarded as a theory of contfactual explanation. Altogether,
we use the term contfactual explanation generation to refer
to the process of automatic composition of contfactual expla-
nations for a given output of an AI algorithm in the form of
a complementary piece of information associated to a factual
explanation.

B. RESEARCH QUESTIONS
In order to reach the three objectives of the study as formu-
lated in Section I, the following three research questions were
specified:

• RQ1: How are contfactual explanations defined in the
literature?

• RQ2: What are the state-of-the-art methods of contfac-
tual explanation generation?

• RQ3: How grounded are the state-of-the-art contfac-
tual explanation generation methods on the theoretical
approaches to contfactual explanation?

C. SEARCH STRATEGY
We selected the digital libraries Scopus and Web of Science
(WoS) to retrieve relevant publications from. These libraries
do not only include research publications in computing but
also index studies across all scientific fields, which allows
for an objective analysis of the interdisciplinary literature
relevant to the research questions posed.

Subsequently, we performed six queries over the title,
abstract, and author keywords in the aforementioned libraries
(see the overall structure of the query pipeline in Fig. 1).
It is worth noting that the proximity operator NEAR is used
following theWoS notation whereas the equivalent proximity
operator W is used for the same queries in Scopus. The
following search strings were used for querying the digital
libraries:
q1 = counterfactual* W/3 expla*
q2 = contrastive* W/3 expla*
q3 = q1 OR q2
q4 = q3 AND (defin* OR theor* OR infer* OR implic*)
q5 = q3 AND (generat* OR implement* OR framework*

OR develop* OR software* OR model* OR artificial intel-
ligence OR AI) AND SUBJAREA(Computer Science OR
Mathematics OR Engineering)
q6 = q4 AND q5

FIGURE 1. A pipeline of the queries executed. The queries found in the
dashed area are considered preparatory to those directly addressing the
research questions.

The search was performed on October 2nd , 2020. The
search web tools of the selected digital libraries allow
researchers to reproduce the original study. Furthermore, their
use guarantees performing equivalent queries across both
libraries. In order to capture all relevant publications, we only
used the corresponding word-stems to allow for maximal
diversity of the retrieved papers. For instance, the search item
‘‘expla*’’ was used to cover all publications containing such
word-forms as ‘‘explanation’’, ‘‘explaining’’, ‘‘explanatory’’,
and so on and so forth.

Queries q1 and q2 embrace all the up-to-date publica-
tions containing mentions of counterfactual and contrastive
explanation, respectively, found across all subject areas.
In addition, we used a window span of three words (i.e.,
‘‘NEAR/3’’) to ensure that the attributes ‘‘counterfactual’’
and ‘‘contrastive’’ relate to explanation. The resulting sets of
publications were then unified (q3).

Subsequently, the preprocessed collection of publications
was split into two overlapping subsets aiming to distinguish
the publications covering theoretical accounts of contfactual
explanation with the aim of extracting the related defini-
tions, theories (or their inferences or implications) (q4) and
existing computational frameworks for contfactual expla-
nation generation (q5). The terms ‘‘definition’’, ‘‘theory’’,
‘‘inference’’, and ‘‘implication’’ as well as their correspond-
ing word-forms (q4) were expected to appropriately limit
the pool of the unified set of publications with the aim of
retrieving definitions as required for addressing RQ1. Sim-
ilarly, we used the terms ‘‘generation’’, ‘‘implementation’’,
‘‘framework’’, ‘‘development’’, ‘‘software’’, ‘‘model’’, and
their corresponding word-forms (q5) to retrieve publica-
tions concerning contfactual explanation generation frame-
works. In addition, the terms ‘‘artificial intelligence’’ and
‘‘AI’’ were used to ensure retrieving relevant AI-related pub-
lications. Since RQ2 addresses purely technical issues of
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state-of-the-art implementations of such tools, we further
imposed an additional restriction on q5 so that it would
return only publications from such subject areas as computer
science, mathematics, and engineering. Last but not least,
the findings from q4 and q5 were merged to examine the
connection between the existing theories of contfactual expla-
nation and frameworks for automatic contfactual explanation
generation in the context of XAI (q6).

It is important to note that publications retrieved as a
result of q4 form an exhaustive set of papers address-
ing RQ1. Similarly, publications obtained as a result of
q5 address RQ2. Finally, the papers that q6 returned
address RQ3.

D. INCLUSION AND EXCLUSION CRITERIA
The publications retrieved during the initial search were sub-
sequently inspected on the basis of the following inclusion
and exclusion criteria. To address the epistemology of con-
tfactual explanation, we filtered the retrieved publications
to include in the collection of primary studies only those
satisfying the following criteria: (1) a publication proposes
a contrastive or counterfactual or contrastive-counterfactual
approach to explanation or (2) it contains a clearly formulated
definition of counterfactual or contrastive explanation refer-
ring to other publications in the corresponding field. In order
to capture existing computational frameworks for contfactual
explanation generation, we included publications that: (1)
present a novel approach, method, or framework for contfac-
tual explanation generation whose output can serve to explain
the reasoning of an AI algorithm and (2) are found in such
subject areas as computer science, mathematics, engineering
as well as in their sub-fields.

In contrast, we excluded duplicate reports of the same
studies appeared in both Scopus and WoS. As for the pub-
lications related to RQ1, we also removed: (1) the studies
whose contents did not introduce any contfactual theory of
explanation or (2) those containing no formal or informal
definition of contrastive or counterfactual or contrastive-
counterfactual explanation. As for the publications related
to RQ2, we discarded: (1) the publications which were
not related to AI algorithms or applications as well as
(2) those where the proposed framework did not pro-
vide any human-comprehensible contfactual explanations as
output.

E. DATA EXTRACTION AND SYNTHESIS
Table 1 shows the number of publications retrieved after each
independent query, duplicates found among them in Scopus
and WoS, as well as Candidate Primary Studies (CPS). Note
that the numbers of duplicates indicated in Table 1 refer
only to within-query duplicates, i.e., the same publications
retrieved from Scopus and WoS for the given single query.
Recall that q4 and q5 exhaustively cover all the three research
questions. Hence, the numbers of CPS are calculated as a sum
of the publications retrieved after q4 and q5. Furthermore,
CPS are reduced by the number of publications addressing

TABLE 1. Numbers of publications retrieved after each single query as
well as those forming the pool of candidate primary studies. The numbers
of publications making part of the primary studies are highlighted in bold.

FIGURE 2. A flow diagram of the primary study selection on the basis of
queries q4 and q5 (n is the number of publications at each stage).

RQ3 because they are found in both sets of publications
collected for RQ1 and RQ2 and are therefore duplicates.

Fig. 2 displays the flow diagram of the primary study
selection. A sum of 338 publications (207 from Scopus and
131 fromWoS) made up the collection of CPS addressing the
research questions. 107 within-query duplicates were identi-
fied and removed from further analysis. In addition, 29 more
duplicates were excluded when merging the sets of publica-
tions retrieved after q4 and q5. All in all, 136 duplicates were
removed.

The title, abstract, and author keywords of each candidate
primary study were screened to discard the studies irrele-
vant to the research questions posed. As shown in Fig. 2,
75 publications were deemed irrelevant and filtered out at this
stage. A deeper analysis of the remaining 127 publications
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FIGURE 3. A taxonomy of contfactual explanation emerging from our systematic literature review.

TABLE 2. The exhaustive list of all the primary studies in relation to each
research question.

enforced us to discard 33 studies which did not satisfy the
inclusion criteria. Finally, 19 papers were added to the review
upon inspecting the bibliography of the primary studies. As a
result, 113 unique publications formed the exhaustive pool of
primary studies.

Table 2 presents the list of primary studies selected for the
review. Thus, a collection of 74 out of 113 (65.49%) origi-
nal primary studies were found to formulate definitions for
contfactual explanation and/or address theoretical accounts
thereof (RQ1). In addition, 52 out of 113 (46.02%) publi-
cations describe frameworks (or extensions of other frame-
works) for contfactual explanation generation (RQ2). Note
that 13 out of 113 (11.50%) primary studies were found to
address both RQ1 and RQ2 and therefore answer RQ3.

The following data were extracted from each primary
study: title, authors, year of publication, author keywords.
In addition, all publications related to RQ1 were read to ana-
lyze contfactual theories of explanation and, subsequently,
extract the sought-for definitions of contfactual explanation.
As RQ2 concerned a broader number of technical character-
istics of contfactual explanation frameworks, we additionally

extracted the following information: (1) the problem that the
retrieved framework aims to solve; (2) the method proposed
for contfactual explanation generation; (3) the form of output
explanation (for instance, textual or visual); and (4) the cor-
responding evaluation methods. Based on the data extracted
from the primary studies, the publications were grouped and
classified in accordance with the aforementioned criteria.

IV. RESULTS
Prior to answering the research questions, we carried out a
bibliometric analysis over the results of the general indepen-
dent queries on counterfactual and contrastive explanation (q1
and q2, respectively) as well as their union (q3). We report
the results of the bibliometric analysis in Section IV-A. The
findings related to the theoretical accounts of contfactual
explanation (RQ1) are presented in Section IV-B. The analy-
sis of the computational frameworks for contfactual explana-
tion generation (RQ2) can be found in Section IV-C. Finally,
the publications describing theoretically grounded computa-
tional frameworks (RQ3) are reported in Section IV-D.

An emerging taxonomy of contfactual explanation frame-
works is depicted in Fig. 3 and forms the core of the results
discussed in the rest of the manuscript.

A. BIBLIOMETRIC ANALYSIS
The bibliometric analysis over the queries q1, q2, and q3
allows us to obtain a big picture of the research area of cont-
factual explanation generation and spot its key characteristics.
To illustrate the state of affairs within the field, we report
annual scientific production and maps of author keywords
revealing the main problem-specific notions. The reference
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FIGURE 4. The map of author keywords for the q1 publications.

FIGURE 5. Annual scientific production for the publications retrieved
after q1 (the red line), q2 (the blue line), and q3 (the green line).

manager Mendeley was used to filter out duplicate publica-
tions. In addition, we utilized the tool VOSViewer [162] to
generate the author keyword maps.

It can be seen that contfactual explanation appears to attract
an increasing attention across all subject areas in the past two
decades. Furthermore, Fig. 5 shows a rapid rise in the number
of publications in the past three years. It is worth noting that
the number of publications in 2020 is limited to the search
date.

Author keyword maps allow us to present an overview of
the terms most relevant to those specified in the preparatory
queries (q1, q2, and q3). For illustrative purposes, non-linked
keywords were deemed to be outliers and filtered out from
the analysis. Table 3 shows the overall number of keywords
as well as that of linked keywords for each preparatory query.

TABLE 3. Numbers of linked and non-linked keywords in the preparatory
query results (q1, q2 and q3).

Fig. 4 shows a graph containing the most popular author
keywords for counterfactual explanation. It can be concluded
that counterfactual explanation is often investigated in the
context of causation (pay attention to such keywords as ‘‘cau-
sation’’, ‘‘causal inference’’ or ‘‘causal models’’) as well as
cognitive science (as reflected by the keywords ‘‘imagina-
tion’’, ‘‘reasoning’’, etc.) and AI (‘‘machine learning’’, ‘‘data
models’’, ‘‘black-boxmodels’’). Similar notions are observed
to be essential for contrastive explanation (see Fig. 6). How-
ever, a distinction between different clusters in the latter case
is visible more clearly. This is hypothesized to be due to a
more diverse usage of the term ‘‘contrastive explanation’’
across various scientific areas.

A stronger impact of counterfactual explanation in the
results of the joint query q3 appears to affect significantly
the overall allocation of the related keywords in the corre-
sponding keyword map (see Fig. 7). The keywords identified
in the studies related to q3 testify that the issue of contfactual
explanation is highly interdisciplinary and finds application
in both humanities and natural sciences.

B. CONTFACTUAL EXPLANATION AS DEFINED IN RELATED
THEORIES (ANSWER TO RQ1)
As presented in Section II, the surface form of contfactual
explanation is found to preserve the same syntactic structure
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FIGURE 6. The map of author keywords for the q2 publications.

FIGURE 7. The map of author keywords for the q3 publications.

in general. However, a major factor discerning theoretical
approaches to contfactual explanation is found to consist
in their relation to causation. As will be shown below,
several accounts of contfactual explanation presuppose a
causal nature and establish a causal contfactual dependency
between the phenomenon to be explained and the expla-
nation itself. In contrast, other theoretical frameworks seek
purely non-causal dependencies in explanation. In addition,
several researchers attempt to unify causal and non-causal
contfactual explanation under the same paradigm. Hence,
we distinguish three main groups of contfactual explana-
tion that encompass all the retrieved primary studies: causal,

TABLE 4. A classification of approaches defining contfactual explanation.

non-causal, and hybrid. The exhaustive list of the retrieved
publications in accordance with the suggested taxonomy is
presented in Table 4 and discussed further in the following
sections.

Remind that contfactual explanation embraces contrastive,
counterfactual, and contrastive-counterfactual explanation.
Each type of contfactual explanation is present in the find-
ings, causal counterfactual making up a majority of the con-
sidered theoretical frameworks (see Fig. 8). Hence, we ana-
lyze each contfactual explanation type independently in terms
of causality in this section to draw a comparison between
different approaches. In addition, we consider (1) the issue
of quantitative evaluation of causality for causal contfactuals
as reflected in specific primary studies and (2) different sub-
categorizations of causal, non-causal, and hybrid contfactual
explanation.

1) CAUSAL CONTFACTUAL EXPLANATION
• Causal contrastive explanation is frequently found
to be designed as an answer to a why-question of
the following canonical form: ‘‘Why P rather than
Q?’’ where P is an explanandum (i.e., the fact to be
explained), Q being a foil (i.e., one of alternative non-
occurring options) [21]. Lipton introduces the notion of
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FIGURE 8. Numbers of identified theoretical contfactual explanation
frameworks with respect to causality.

‘‘difference condition’’: the contrast between the fact
and the foil is explained by identifying the cause of the
fact and proving the absence of the corresponding cause
of foil [103]. Following Lipton [103], Kean redefines
a contrastive explanation to be the difference between
the causal explanations for the question and the contrast
[93]. Barnes further requires that ‘‘P and Q be culmi-
nating events of a single type of natural causal process’’
[63]. Similarly, Day and Botterill introduce the concept
of differential inference, i.e., a form of inference based
on contrastive explanation that ‘‘can be used in order to
generate causal hypotheses’’ [77].
Van Fraassen formalizes a contrastive question to be the
triple 〈P,X ,R〉 where P is a topic (explanandum), X
is a contrast space or contrast-class (i.e., a set of alter-
native answers to the given question), and R being the
corresponding relevance criteria [13]. Then, the answer
to a why-question must differentiate the topic from the
contrast space. Contrarily, Chien excludes the contrast
class when taking contrastive explanation as a model for
scalar implicature [75].
Hitchcock generalizes the notion of contrastive expla-
nation over all explanations bearing contrastive stress
irrespective of their syntactic structure [88]. Con-
versely, Aguilar-Palacios et al. oppose the alternative
explanation-seeking question ‘‘Why P rather than Q?’’
to the congruent question ‘‘Why P but Q?’’ [61]. This
formulation of the question generalizes the explanation
to justify why some fact P occurs in the current situation
whereas some foilQ occurred in different circumstances
with the aim of establishing a cause and effect rela-
tion between the fact and the foil. Similarly, Tsang and
Ellsaesser claim that a contrastive explanation should
point to the importance of identifying the most relevant
factors differing the causal histories of the fact and the
foil where both fact and foil must be true [124].
Contrastive explanations may not only concern the
explanandum but also the answers to contrastive ques-

TABLE 5. Counterfactual explanation theories reflected in the primary
studies.

tions (often referred to as explanans). Thus, Sober
stresses that the question of whether some hypothesis
H explains why a non-contrastive proposition E is true
is ‘‘incomplete until H is contrasted with an alternative
hypothesis’’ [119]. In addition, the canonical forms of
the contrastive question and the corresponding explana-
tory answer (i.e., the core of contrastive explanation)
have raised a number of epistemological concerns in
philosophy of science. For instance, Dickenson refor-
mulates the contrastive explanation-seeking question to
be: ‘‘What explains how it is possible that an agent can
act on R1 other than R2, given that R2 is present?’’ [78]
(where reason R1 is the cause of some action and R2
is not). The notion of contrastive explanation is further
developed in the agent-causal theory of free will. Thus,
contrastive explanation is applied to agent’s decision-
making (i.e., why the agent makes a choice refraining
from an alternative choice) [82], [101].
Campbell redefines a contrastive explanation in terms of
the so-called ‘‘structuring causes’’, i.e., the traits of the
structure of the causal system that trigger actual causes
of some event to happen [73]. A cause of this kind is
responsible for the connection between the types C and
M in a system S. A contrastive explanation thus explains
why a system S is claimed to be ‘‘wired’’ in such a
way that an internal state of type C regularly causes
a movement of type M . Similarly, Kim et al. regard
contrastive explanation as a constraint for a system to
be satisfied by a specific set of plan traces [94].
Finally, Boulter illustrates the use of contrastive expla-
nations to distinguish between actual and non-actual bio-
logical forms [70]. Claiming all explanations in biology
to be causal, the researcher introduces the following
template for a causal relation in contrastive explanation:
‘‘c1 rather than c2 or c3 or cn causes e1 rather than
e2, or e3 or en’’ leaving contrasting causes implicit.

• Causal counterfactual explanation. Most of the con-
sidered studies on causal counterfactual explanation
relate to either of the four theoretical milestones: Lewis-
Stalnaker’s theory of closest possible worlds [36], [120],
Pearl’s Structural Causal Models (SCM) [37], Wood-
ward’s Counterfactual Theory of Explanation (CTE)
[125], or the Neyman-Rubin Causal Model (NRCM)
[107], [115] (see Table 5).
The Lewis-Stalnaker approach codifies a counterfactual
conditional as a logical proposition where the antecedent
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and the consequent are connected by means of the
‘‘might’’- or ‘‘would’’-conditional operator. Exploiting
the mechanism of possible world semantics, the truth-
fulness of a counterfactual is assessed by assigning to it
a binary truth-value in accordance with its proximity to
the world in question.
Following this approach, Kutach defines counterfactu-
als in natural language to be ‘‘propositions obeying a
logic whose semantics is given in terms of a compar-
ative similarity relation among possible worlds’’ [99].
Similarly, Strohminger and Yli-Vakkuri assume that the
counterfactual modus ponens preserves truth-functional
possibility (‘‘If it is possible that p and p counterfactually
implies q, then it is possible that q’’) [123] where p
is a logical proposition and q is a conjunction of such
propositions.
Briggs extends the Lewis-Stalnaker model by apply-
ing causal modeling language to comprise logically
complex antecedents [72]. Schweder considers a coun-
terfactual to be an implicit claim within the explana-
tory answer to an explanation-seeking question [117].
In addition, Pruss and Rasmussen take into account
antecedents that are not necessarily ‘‘contrary-to-fact’’
and define a counterfactual to be a contingent proposi-
tion establishing a causal connection between a specific
description of the circumstances of a choice and a report
of an action in such circumstances [109].
Pearl’s SCMoperates on a predefined causalmodelM =
〈U ,V , F〉 consisting of sets of background variables
determined by factors outside the model (U ) and within
it (V ) and a set of functions F = {fi | 1 ≤ i ≤ n}
mapping from U ∪ (V \ Vi) to Vi, that associates each
variable Vi with all the variables from U and V . Given
a set of variables X ∈ V and a causal submodel Mx =

〈U ,V , Fx〉 so that Fx = {fi : Vi /∈ X} ∪ {X = x} and
by defining a minimal change in M required to make
a selected variable X = x (X ∈ V ) hold true under
any u ∈ U , a causal counterfactual is formally defined
as the solution for some subset Y ∈ V on the set of
equations Fx [37]. Counterfactuals are thus pruned by
interventions on the antecedent component [113], which
leads to interpreting counterfactuals as non-observable
hypothetical contrasts [71].
Similarly to Pearl’s SCM, Woodward’s CTE establishes
the counterfactual dependence between the two vari-
ables by means of the intervention mechanism. Thus, for
two variables X and Y taking on some values x and y,
respectively, to explain the value of y counterfactually
is to show that Y would have taken on some value
y’ if X had taken some counterfactual value x’ [125].
In other words, some small enough change in the value
of X from x to x’ would cause a change in Y from
y to y’ in the absence of changes in values of other
variables.
Following Woodward’s theory, Schneider and Rohlf-
ing define a counterfactual as ‘‘a theoretically relevant

manipulation of the observed case in order to ascertain
whether this manipulation would make a difference to
the outcome’’ [116]. Further, Bertossi defines a causal
counterfactual explanation to be a set of the original
feature values in the given data instance that are affected
by a minimal counterfactual intervention [67] (where
minimality is assumed to be based on a partial order
relation on counterfactual interventions).
Conversely, Andreas and Casini reconsider explanatory
counterfactuals to be ‘‘hypothetical assumptions about
the values of quantities or the values of propositions’’.
They argue that Woodward’s interventionist account of
explanation cannot handle the cases where interven-
tions are physically impossible (e.g., due to violations
of laws of nature) [62]. Applied to theorem proving,
Gijsbers leaves out the mechanism of intervention from
Woodward’s CTE. He states that a mathematical proof
has explanatory power only when the explanandum is
complemented with a contrasting claim that shows how
the mathematical object in question varies in the process
of theorem proving. Also, Fang infers counterfactual
dependencies in the form of counterfactual claims: ‘‘in
the model M , had the variable X taken such-and-such a
value xi, then the variable Y would have taken such-and-
such a value yj’’ [79].
Last but not least, Holland argues that causal counterfac-
tuals are highly relevant to research in social sciences.
Thus, he follows NRCM interpreting counterfactuals
in terms of potential outcomes of a dependent causal
variable given some intervention with respect to that
variable [90].

• Causal contrastive-counterfactual explanation is
sometimes considered to include ‘‘all kinds of subjunc-
tive conditionals, regardless of whether the antecedent is
true in the actual world or not’’ [126]. Thus, Kuorikoski
and Ylikoski elaborate on a contrastive counterfactual
theory of explanation claiming that the property of con-
trastiveness helps to resolve linguistic ambiguity inher-
ent in explanation [97]. In this setting, interventions
(or manipulations) specify the truth conditions of such
explanations: ‘‘c [c∗] causes e [e∗] if we can bring about
e∗ [e] by bringing about c∗ [c]’’ [127] (where c and c∗
are causes, e and e∗ being the corresponding effects).
Following Kuorikoski and Ylikoski [97], Northcott
examines explanatory relevance of counterfactuals
placed in a contrastive framework [106]. Similarly,
Hohwy regards causal counterfactuals as an integra-
tive part of causal contrastive explanations. Thus, he
claims counterfactuals supported by laws are able to ‘‘go
into contrastive explanations even though unfavourable
conditions ensure that the forces they describe are not
actually occurring in the way described by any law taken
alone’’ [89]. On a similar note, Steglich-Petersen [121]
proposes two-level semantics of contrastive causal state-
ments requiring specific semantically complete counter-
factual justifications.
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• Degree of causality in causal contfactuals. Causal
relations between the variables in explanation are not
always considered binary (i.e., in the presence/absence
of a cause). There have been several attempts to measure
a degree of causality in contfactual explanation. Since
causal contrastive explanations describe a certain aspect
of the explanandum, Rips and Edwards claim them to
be partial by nature [113]. In other words, the explana-
tory power of such explanations can be quantified and
compared with that of others. In light of this assump-
tion, Northcott defines the degree of causation (i.e.,
causal strength of a cause variable) to be the difference
between the values that the effect variables take on in
the actual and counterfactual cases [106]. In this regard,
he determines a counterfactual to be the value of the
effect variable. A counterfactual can thus be measured
quantitatively as the distance between the target levels
of the causal effect variables. Similarly, Ylikoski and
Kuorikoski distinguish five dimensions of explanatory
power of contrastive explanations: (1) non-sensitivity
(i.e., how sensitive the explanation is to background
conditions); (2) precision (i.e., how precisely the expla-
nation characterizes the explanandum); (3) factual accu-
racy (i.e., a proportion of true facts captured by the given
explanation in comparison with another); (4) degree
of integration (i.e., unification to a larger theoretical
framework); and (5) cognitive salience (i.e., ‘‘the ease
with which the reasoning behind the explanation can be
followed’’) [126].

• Subtypes of causal contfactuals. It is worth noting that
several subcategorizations of causal contfactuals have
been suggested within some of the aforementioned the-
oretical frameworks.
As for contrastive explanation, Franklin follows
Hitchcock [88] differentiating ‘‘technically correct
contrastive explanation’’ (the explanation citing
explanatory relevant information) and ‘‘pragmati-
cally adequate/defective contrastive explanations’’ (the
explanation providing more information than explana-
tory relevant) [82]. Levy distinguishes between weak
contrastive explanation (if the agent is not able to explain
how the agent-causal power was exercised for reasons)
and strong contrastive explanations (otherwise) [101].
As for counterfactual explanation, Holland points to a
deceptive use of ‘‘empty’’ counterfactuals, i.e., coun-
terfactuals whose antecedent ‘‘could never occur in
any real sense’’ [90]. Steglich-Petersen distinguishes
between primary counterfactuals (i.e., those that relate
two events A and B as the cause and the effect) and
secondary ones (i.e., those that establish the fact that
it is event A that causes B to happen) [121]. Finally,
Schneider and Rohlfing claim counterfactuals to be
either easy or difficult [116]. From this perspective, easy
counterfactuals are ‘‘the assumptions about the outcome
of logical remainders’’ that simplify theoretical expec-
tations. In contrast, the assumptions that simplify the

solution ‘‘but run counter to our theoretical expectations
about whether single conditions involved in a remainder
should or should not contribute to the outcome’’ are
assumed to be difficult.

2) NON-CAUSAL CONTFACTUAL EXPLANATION
• Non-causal contrastive explanation. Notably, non-
causal contrastive explanations can address the phys-
ical nature of a modeled system. Hence, they can be
used to explain the properties and relations inherent to
such systems. Thus, Chakravartty extends the concept of
contrastive explanation to answering non-causal what-
questions, e.g.: ‘‘What dispositions of p are relevant
to circumstances x as opposed to y?’’, where p is the
object whose traits require an explanation and x and
y are the circumstances determined by the question-
dependent context [74].
In contrast to Dickenson [78] (see Sect. IV-B1), Botterill
appeals to a non-causal nature of contrastive explana-
tions [69]. Thus, the researcher argues that ‘‘the fact that,
in the absence of R2 but with R1 still present the agent
would perform an action of some kind does not show
that when both R1 and R2 are present an agent does not
act in that way because of both those reasons’’ (where
reason R1 is the cause of some action and R2 is not).

• Non-causal counterfactual explanation. Reutlinger
develops a non-causal counterfactual theory of
explanation to apply it to Euler’s explanation3 and the
renormalization group theory4 [110]. This counterfac-
tual theoretical framework is subsequently extended to
capture non-causal explanations in metaphysics [111].
Driven by the assumption that physical facts and mathe-
matical models share certain features, Baron et al. apply
a structural equation modelling framework to model
counterfactuals that could explain physical facts in terms
of non-causal mathematical explanations [64]. Further,
Baron introduces the concept of the so-called ‘‘coun-
terfactual scheme’’ applied to mathematical explana-
tion [65]. A counterfactual scheme is thus defined as
a triple containing (1) a counterfactual statement with
non-logical expressions substituted with variables, (2)
instructions stating which parts of the statement can
be substituted to produce a counterfactual, and (3) a
classification for evaluating the given counterfactual.
A counterfactual is then claimed explanatory if all the
instances of a counterfactual scheme are true and at
least two counterfactual schemes are distinct so that the
corresponding physical laws relevant for evaluation of
the given counterfactuals are different. Also, Hird uses

3Reutlinger refers to the phenomenon found in the city of Königsberg
where no-one succeeded to cross the seven bridges located in four different
parts of the city exactly once. Euler provided a non-causal explanation for
this phenomenon in terms of graph theory.

4According to Reutlinger, renormalization group explanations are
intended ‘‘to provide understanding of why microscopically different physi-
cal systems display the same macrobehavior when undergoing phase transi-
tions’’ [110].
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the term ‘‘counterfactual’’ to define projects that have
been funded in the absence of congressional committee
influence [87].
In addition, a number of definitions for non-causal coun-
terfactual explanation come from AI. In the context of
automatic decision-making, counterfactuals are found to
be most generally defined as counterarguments for an
alternative prediction [86]. Fernández et al. refer to a
counterfactual as an effective type of explainable ML
technique that explains predictions by describing the
changes needed in a sample to flip the outcome of the
prediction [81]. More precisely, Fernández et al. define
a counterfactual for classification tasks as a ‘‘hypothet-
ical instance similar to an example whose explanation
is of interest but with different predicted class’’ [80].
Kanehira et al. attempt to explain counterfactually video
classification output framing a (visual-linguistic) coun-
terfactual explanation in the form of the conditional
statement ‘‘X would be classified as B and not A if C
and D are not in X ’’ [91] (where X is the data example
requiring an explanation, A is the class predicted for
X , B is the contrast-class in question, C and D are
specific visual patterns present or absent in the given
video frame X ). On a similar note, Laugel et al. treat
a counterfactual explanation as a specific data instance,
close to the observation whose prediction is explained,
but predicted to belong to a different class [100]. Kos-
tic defines a counterfactual to be a statement describ-
ing a hypothetically different situation to the actual
state of affairs [96]. He distinguishes between vertical
and horizontal counterfactuals. Thus, a counterfactual
is considered vertical if ‘‘a global topological property
determines certain general properties of the real-world
system’’. In contrast, a counterfactual is deemed hori-
zontal if ‘‘a local topological property determines certain
local dynamical properties of the real-world system’’.
Finally, Stepin et al. point that a counterfactual explana-
tion should refer to a set of features ‘‘minimally different
from those inherent to the original data point’’ [122].

• Non-causal contrastive-counterfactual explanation.
Poyiadzi et al. do not distinguish between counterfactual
and contrastive explanations assuming counterfactuals
to be the new state of the considered object [49].

3) HYBRID CONTFACTUAL EXPLANATION
• Hybrid contrastive explanation. Chin-Parker and
Bradner [17] as well as Chin-Parker and Cantelon [76]
provide a unified theoretical framework for causal and
non-causal contrastive explanation for category learn-
ing. Emphasizing the crucial importance of context for
an explanation, they consider a contrast class to be a set
of non-occurring alternates that delimits the set of poten-
tially relevant information irrespective of the inherent
causal relations.

• Hybrid counterfactual explanation. Explanatory plu-
ralism is as well recognized in the research on coun-

terfactual explanation. Thus, Byrne states that ‘‘not all
counterfactuals are about causes, and counterfactuals
that imply a causal relation differ in systematic ways
from counterfactuals that identify other sorts of rela-
tions, such as intentions’’ [22]. Indeed, a large body
of research on both causal and non-causal counterfac-
tual explanation testifies that counterfactuals have a
diverse nature with respect to causality [104]. Thus,
Lowe claims counterfactuals to be causal ‘‘when the
modality involved is evidently natural or causal neces-
sity’’. Contrarily, other explanation cases such as those
arising in mathematics ‘‘clearly do not involve this
sort of necessity, but instead something like logical
necessity’’ [104]. Further, Knowles and Saatsi discuss
the notion of explanatory generality presuming both
causal and non-causal nature of counterfactuals argu-
ing that ‘‘explanatory counterfactuals are appropriately
directed and change-relating, capturing objective, mind-
independent modal connections that show how the value
of the explanandum variable depends on the value of the
relevant explanans variables’’ [95].
In light of this, there have been several attempts
to unify causal and non-causal counterfactuals within
one framework. Hence, a hybrid approach, originating
from monism,5 has been adopted to unify causal and
non-causal counterfactual explanation. Following this
approach, Reutlinger introduces a unified explanation
framework consisting of the following elements: a state-
ment about the explanandum E , a set of generaliza-
tions (or explanans) G1,. . . ,Gm, and a set of auxiliary
statements setting initial conditions for the explanatory
system [112]. A relation between an explanandum and
a set of explanans is claimed to be explanatory if and
only if at least one of the explanans supports the counter-
factual statement ‘‘had S1,. . . ,Sn been different than they
actually are (in at least one way deemed possible in the
light of the generalizations), then E or the conditional
probability of E would have been different as well’’.
At the same time, the generalizations and auxiliary state-
ments must logically entail the explanatory statement
in question. As such, both causal and non-causal expla-
nations are argued to be captured because they ‘‘reveal
counterfactual dependencies between the explanandum
and the explanans’’. Following Reutlinger’s account of
explanation, Held argues that the notion of counterfactu-
als can hardly be supported only by generalizations [85].
Furthermore, true generalizations (e.g., ‘‘all ravens are
black’’) might not allow for counterfactual situations at
all. Instead, he weakens the counterfactual dependency
to shift from generalizations to plain counterfactuals.
Mothilal et al. suggest a feature-based counterfactual
explanation generation framework where importance of
independent features is evaluated [105]. Nevertheless,

5Monism is a philosophical account of explanation that captures both
causal and non-causal explanations reducing them to a single entity [112].
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TABLE 6. A classification of the contfactual explanation generators by AI
problem.

they emphasize the need for causal attribution, as ignor-
ing causal relations may lead to generating unfeasible
counterfactuals. Therefore, they suggest a hybrid frame-
work for counterfactual explanation generation.

• Hybrid contrastive-counterfactual explanation.
Kuorikoski and Ylikoski point to the multifaceted nature
of contrastive-counterfactual explanation. They argue
‘‘there exist constitutive and possibly formal counter-
factual dependencies as well as combinations of these’’
[98]. Similarly, Pexton suggests a two-level hierarchy
of explanation [108]: microphysical explanations are
non-causal and form the lower-level of the hierarchy
whereas manipulable causal explanations are placed at
the higher-level.

C. CONTFACTUAL EXPLANATIONS AS DEFINED IN
AUTOMATIC GENERATION FRAMEWORKS (ANSWER TO
RQ2)
The analysis of the primary studies related to RQ2 allows us
to categorize the state-of-the-art contfactual explanation gen-
eration frameworks in accordance with the following criteria:
(1) the problem the solution for which is to be explained (i.e.,
the AI problem); (2) the method employed to generate such
an explanation (i.e., the explainability method); (3) the out-
put representation of the explanation; and (4) the evaluation
method thereof.

1) AI PROBLEM
Contfactual explanations are used to justify automatic deci-
sions obtained for a variety of AI-related problems. Table 6
provides the reader with a taxonomy of the state-of-the-
art frameworks from the primary studies. It is derived from
the considered publications in terms of the domain tasks
that these frameworks are used for. As depicted in Fig. 9,
most contfactual explanation generation frameworks deal
with counterfactual explanation (31 out of 52 frameworks;
59.62%). In contrast, 17 out of 52 (32.69%) generate con-
trastive explanations. Only four studies (7.69%) fuse con-
trastive and counterfactual explanations. One of these studies
[129] deals with both classification and regression.

• Contfactuals for classification. A vast majority of
state-of-the-art AI applications that generate contfac-
tuals (42 out of 52; 80.77%) are used to explain the

FIGURE 9. Numbers of frameworks grouped by AI problem with respect
to the type of contfactual explanation generated.

outcome of ML-based classifiers, i.e., algorithms that
learn a mapping function f : X −→ Y from a training
dataset of n labeled examples X = {xi | 1 ≤ i ≤ n} to
a discrete output variable (class) Y = {yj | 1 ≤ j ≤ m}
where m is the number of classes. Indeed, contfactuals
are particularly suitable for informing the end-user why
a given data example is assigned a particular class label.
Thus, the outlined classification-oriented frameworks
are evaluated on classifiers based on logistic regression
[55], [136], [153], [158], decision trees [46], [80], [122],
[140], [150], [155], [159], gradient boosted decision
trees [147], support vector machines [131], [138], [146],
random forests [81], [86], [142]–[144], neural networks
[6], [48], [49], [91], [129], [130], [133], [135], [139],
[141], [145], [148], [151], or combinations of these
[100], [105], [134], [152], [154], [160]. In three studies
[67], [128], [137], the classifiers used in the experiments
are not specified.

• Contfactuals for regression. One of the classification-
oriented frameworks [129] is extended to also handle the
regression problem, i.e., learning a mapping function f
from a training dataset X to a continuous output vari-
able Y . However, the continuous output is, in this case,
subsequently converted to a lower-scale discrete value
mapped to a textual description similar to that typical of
a classification problem. The other frameworks address-
ing the regression problem aim to leverage gradient-
boosted decision trees [61] and indicate how large errors
in regression tasks could be overcome [56].

• Contfactuals for knowledge engineering. The first of
the considered frameworks (in chronological order) [93]
offers explanations by reasoning abductively over the
information extracted from a given knowledge base to
answer a specific contrastive question. In this setting,
an explanation is considered to be a consistent set of
disjunctive literals for the explanation-seeking question.
It is worth noting that the framework is not designed to
provide explanations for ML algorithms.
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TABLE 7. A classification of the contfactual explanation generators by
explainability method.

• Contfactuals for planning. Contfactual explanation
generation appears highly relevant to sequential tasks
in robotics such as automatic planning [94], [157],
[161]. Moreover, some of the robotics-related frame-
works found in reinforcement learning settings provide
explanations for policies that a robot selects at a given
time step [132], [156].

• Contfactuals for recommendation. Ghazimatin et al.
propose a graph-based recommendation system in a
counterfactual setup [84]. They obtain a counterfactual
explanation by removing a minimal set of user actions
so that the output recommendation changes.

• Contfactuals for conflict resolution. Mosca et al.
introduce an argumentation-based framework for social
network management [149]. They use contrastive expla-
nations to answer critical questions about agent actions
in the context of multi-user privacy conflict.

2) EXPLAINABILITY METHOD
All the frameworks generating contfactual explanations can
be classified by their explainability method as either model-
specific or model-agnostic. The former type of implemen-
tations is meant for explaining decisions of particular AI
algorithms. The frameworks of the latter type generate expla-
nations irrespective of the nature of the underlying algorithm.
Table 7 presents the publications under study grouped in
terms of the explainability method that they apply. The dis-
tribution of model-specific and model-agnostic explainabil-
ity methods for generation of different types of contfactual
explanation is shown in Fig. 10. Most frameworks deal with
counterfactual model-agnostic methods.
• Model-specific contfactual explanation generators.
Several model-specific frameworks generate counter-
factuals to explain the output of decision trees [46], [80],
[122], [155]. For instance, Fernández et al. [80] present a
recursive algorithmwhich extracts counterfactuals in the
form of contrast-class decision tree nodes. The relevance
of the generated counterfactuals is thenmeasured by cal-
culating a variant of the Gower distance. The proposed
metric penalizes the number of feature changes when
traversing the tree so that sparsity is promoted. Alterna-
tively, Sokol and Flash rely on the Manhattan distance
measuring leaf-to-leaf distance in the tree to retrieve
the most relevant counterfactuals [46], [155]. Designed
specifically for decision trees, their ‘‘Glass-box’’ frame-

FIGURE 10. Numbers of frameworks grouped by explainability method
with respect to the type of contfactual explanation generated.

work is argued to be easily extendable to capture the
output of other logical (rule-based) models. Aguilar-
Palacios et al. generate contrastive explanations using
gradient boosted decision trees to forecast promotional
sales [61]. The researchers make use of the weighted
Euclidean distance to present the forecast as a contrast
to the neighbouring vectorized promotions. Stepin et al.
retrieve counterfactuals from a rule matrix where each
rule is encoded in terms of all possible feature values
[122]. Subsequently, the generated counterfactuals are
ranked using a XOR-based distance to find the most
relevant counterfactual pertinent to the given contrast
class. This method is further extended to generating
counterfactuals for fuzzy decision trees.
A number of frameworks address specific properties of
counterfactuals. Thus, Ustun et al. tackle the problem
of actionability, i.e., constraining the generated coun-
terfactuals in such a manner that the imposed changes
‘‘do not alter immutable features’’ and that they ‘‘do
not alter mutable features in an infeasible way’’ [158].
To approach this problem, a mixed integer program-
ming method is employed. Russell et al. adopt a similar
approach to encompass continuous and discrete vari-
ables as well as the combination of the two [153]. The
main focus of the work is however placed on assessing
coherence and diversity of generated counterfactuals.
In order to guarantee the coherence of the counter-
factual data example used for explanation, an integer
programming-based method is proposed. In addition,
the generated counterfactual explanations are claimed
to be diverse, as diversity constraints are applied iter-
atively to a set of candidate counterfactuals. However,
this framework is limited to: (1) explaining predictions
of only linear classifiers and (2) a simple structure of the
textual explanation template.
A large number of frameworks are limited to explain-
ing the output of particular models due to task-specific
constraints. For instance, several explanation generators
address computer vision tasks. Hendricks et al. bind
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an input visual image with a paired textual counterfac-
tual explanation generated by a recurrent neural net-
work [86]. In their framework, a number of candidate
explanations (both image-relevant and non-relevant) are
generated, paired, and ranked. The best counterfactual
explanation is then selected to be the most class-specific
to the counterfactual image while being the most rel-
evant to the input image. Goyal et al. argue that their
model is more faithful by design, as it generates visual
explanations directly from ‘‘the target model based on
the receptive field of the model’s neurons’’ [139].
Two model-specific frameworks are found in the con-
text of video processing. For instance, Akula et al.
[128] present an empirical study where input video
frames are paired with the corresponding AND-OR
graphs, i.e., compositional recursively defined graph-
based knowledge representations capturing contextual
information. The explanations based on such graphs
are passed on to human subjects to evaluate the con-
trastive answers to the predefined questions. Alterna-
tively, Kanehira et al. train a post-hoc explanatory model
to justify a video classifier’s output [91]. A counterfac-
tual explanation is, in this case, dependent on how likely
a selected region in the given frame is classified positive
and not negative, hence all such regions are scored and
normalized.
In accordance with the findings in the previous
Section IV-C1, contfactual explanations have a great
potential for automatic planning-related tasks. Most
explanation generators meant for planning-based tasks
are model-specific due to the problem- and approach-
specific restrictions preventing them from being used for
other AI challenges. For instance, Kim et al. employ a
Bayesian probabilistic model for generating contrastive
explanations [94]. Thus, the framework operates on a
pair of plan traces defined in terms of linear temporal
logic templates. The problem of obtaining contrastive
explanations is designed as a Bayesian inference prob-
lem, with the posterior distribution to be maximized
defined as the probability of a contrastive explanation
given a set of positive and negative plan traces. Con-
versely, Sreedharan et al. consider the task of automatic
analysis of counterfactual explanations in their ‘‘Hier-
archical Expertise-Level Modeling’’ framework [156].
A robot provides a user with a plan for the next action
to take. Then, the robot expects the user to respond with
a set of foils. The robot’s task is then to convincingly
refute the foils by offering a minimal explanation for
why the foils are not acceptable under the given cir-
cumstances. In addition, Chakraborti et al. formulate
the multi-model planning problem as a tuple consisting
of the planner’s model of the problem and the corre-
sponding human approximation thereof [132]. As plan
explicability is reformulated in terms of its comprehen-
sibility by an end-user. The robot’s model is adapted to
the updates of human’s model of the problem.

The problem of contrastive explanation generation for
planning is also found to be framed in the reinforcement
learning setting. For instance, Sukkerd et al. formulate
the planning problem as the shortest stochastic path
problem and develop the corresponding problem solver
to obtain a contrastive explanation [157]. Hence, their
objective is to find an optimal policy ‘‘that minimizes
the expected cumulative cost of reaching a goal state
over all closed policies’’. The explanation is believed
to justify the rejection of the policies alternative to the
optimal one. In addition, Zhao and Sukkerd explain
an autonomous system’s behaviour modeling it as a
Markov decision process [161]. Thus, a contrastive
explanation is presented as a product of the analysis of
the optimal policy at the next time step and an opposing
policy on the basis of the objective values.

• Model-agnostic contfactual explanation generators.
A large number ofmodel-agnostic frameworks treat con-
tfactual explanation generation as an optimization prob-
lem in a post-hocmanner.Wachter et al. design a generic
counterfactual explanation framework to find the closest
point to the test data example [6]. Fixing the optimal
set of weights of a trained classifier, the objective func-
tion minimizes the distance between the nearest data
points of opposing classes. Note that counterfactual data
points can be synthesized artificially. The researchers
suggest the use of the Manhattan distance weighted by
the inverse median absolute deviation to calculate the
proximity of a counterfactual to the input data example.
Another case of counterfactual explanation generation
regarded as an optimization problem is the ‘‘Constrained
Adversarial Examples’’ framework [148]. Adversarial
examples that could serve as the basis for the counterfac-
tual explanation of the output of deep learning models
are searched for with the aim of minimizing the loss
with respect to the attributes (features) between the orig-
inal and counterfactual data examples. The researchers
attempt to find the best counterfactual explanation by
minimizing the number of attributes changed. Further-
more, the gradient direction is constrained to ensure the
ethical adequacy of the explanation generated. Dandl
et al. [134] formulate counterfactual search as a multi-
objective optimization problem using a distance metric
for mixed feature spaces aiming to obtain sparse and
most plausible counterfactuals. Labaien et al. gener-
ate contrastive explanations for time-series data [141].
The explanation generation is considered a two-fold
optimization problem of finding pertinent positives and
negatives. Pawelczyk et al. make use of an autoencoder
architecture for a pretrained classifier performing coun-
terfactual search in the nearest neighbor style [151].
Model-agnostic frameworks are largely found to use
decision trees as part of the reasoning mechanism
instead of explaining their output. In contrast to the
model-specific frameworks operating on decision tree
output, Guidotti et al. employ decision trees as part
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of reconstructing the reasoning behind any arbitrary
classifier in a post-hoc fashion [140]. In their ‘‘Local
Rule-based Explanation’’ framework, they generate a
local neighbourhood for the given pre-classified data
example using a genetic algorithm and subsequently
train a decision tree on that newly obtained dataset
to select a minimally distant foil within that local
neighbourhood. Similarly, van der Waa et al. randomly
sample or generate a data set in the neighbourhood
local to the data point in question [159]. A decision
tree is then trained to select the foil based on the
minimum number of nodes between the original data
point and the candidate foils. Furthermore, their ‘‘Foil-
Trees’’ framework provides the methodological basis
for perceptual-level contrastive explanation generation
within the ‘‘Perceptual-Cognitive Explanation’’ frame-
work [150]. Subsequently, the generated contrastive
explanations are attributed to a specific group of users
by means of ontology engineering at the cognitive level
of the framework to make the explanations adaptive. In
contrast, Martens and Provost argue that decision trees
are an inadequate tool for representing, e.g., large doc-
uments [146]. Hence, they suggest the model-agnostic
‘‘Search for Explanations for Document Classification’’
algorithm for retrieving counterfactual explanations.
However, it is only directly applicable to binary linear
classifiers, whereas heuristics are proposed for non-
linear models.
Several model-agnostic frameworks aim at measuring
specific properties of contfactuals. Anjomshoae et al.
[129] focus on contrastive explanations that maximize
contextual importance and contextual utility. On the
one hand, contextual importance measures the extent to
which the input feature values affect the black-box algo-
rithm’s output. On the other hand, contextual utility testi-
fies how favorable the values of the selected features are
for a given decision. Thus, the context-based values are
calculated for each feature used by a black-box model
observing the changes in the output as the input varies
across the range of all possible input values. Being based
on model-agnostic and problem-independent concepts,
this framework is shown to be universally applicable to
various classification and regression algorithms. How-
ever, the scalability of such an algorithm is limited to
the use-cases operating on a small number of features.
A similar limitation is observed due to possibly high
variability of the input. Laugel et al. raise the issue of
justification for counterfactual explanation [144]. They
argue that a synthesized counterfactual data point must
be connected to the training data. Counterfactuals are
selected from a local neighbourhood circling around
the test example with the radius of the distance to the
closest correctly predicted data point of a contrast-class.
The candidate counterfactuals are then clustered, as the
initial local neighbourhood is updated to become a more
extensive hyperspherical layer, until it can no longer

be extended. Laugel et al. [100] enhance the work on
justified counterfactual explanations. They argue that
the distance from the test instance to a counterfactual
does not sufficientlymeasure counterfactual’s relevance,
as the counterfactual in question may appear discon-
nected from the ground-truth data. Thus, a counterfac-
tual is deemed justified if it can be connected to an asso-
ciated ground-truth data instance without crossing the
decision boundary. Fernández et al. introduce the notion
of counterfactual sets to enhance counterfactual diver-
sity [81]. They explain random forest predictions by
fusing different tree predictors so that the resulting coun-
terfactual set contains the most relevant counterfactual.
The other neighboring counterfactuals serve to diversify
the output explanation. Mothilal et al. are also con-
cerned with counterfactual diversity [105]. They design
a loss function with a diversity metric over the generated
counterfactuals to provide end-users with multiple rele-
vant counterfactual explanations. Kusner et al. propose
a causal model to assess the so-called ‘‘counterfactual
fairness’’ [55]. It is worth noting that counterfactuals are
presented in the form of conditional distributions and not
structural equations despite the fact that the causalmodel
employed follows Pearl’s formalism [37].
Similarly to the model-specific frameworks, numerous
model-agnostic explanation generators are found to be
task-specific. In computer vision-related classification
tasks, Chang et al. find the smallest region in the image
whose substitution would change the classifier’s predic-
tion [133]. They employ a generative model to construct
a saliency map while masking the other regions of the
input image. Similarly, Dhurandhar et al. address an
optimization problem over a perturbation variable to
produce a contrastive explanation for the image classifi-
cation task [135]. However, the proximity of the selected
counterexample to the test point is, in this case, guaran-
teed by using an autoencoder.

3) OUTPUT REPRESENTATION
The considered frameworks output contfactual explanations
in several ways. Depending on the problem considered, cont-
factuals are presented in the form of: (1) intervals or specific
values of the appropriate feature values whose alteration
would have changed the output (i.e., numerical or feature-
based output); (2) single- or multiple-sentence coherent text
(i.e., linguistic output); (3) specific regions in the input image
(i.e., visual output); or (4) a multi-modal combination of
(some of) the above (see Table 8). As depicted in Fig. 11,
most frameworks focus on numerical counterfactual output.

• Numerical (feature-based) contfactual explanation.
Numerical values (or intervals of values) associated to
the most relevant features usually explain the behavior
of AI algorithms. They can be represented as logical
formulas [67], [93], [94] or in tabular form reflecting
necessary changes to affect the decision [55], [56], [61],
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TABLE 8. A classification of the contfactual explanation frameworks by
output representation.

FIGURE 11. Numbers of frameworks grouped by output representation
with respect to the type of contfactual explanation generated.

[81], [105], [136], [147], [148], [151], [154], [158],
[160]. They can be extracted from interpretable feature-
value pairs as a result of pruning in the search space
[132]. In addition, they can replicate the internals of the
classifier’s structure, e.g., in the form of decision tree
nodes or rules [80], [140], [152].

• Linguistic contfactual explanation is a piece of gram-
matical single- or multiple-sentence text in natural lan-
guage. Single-sentence textual explanations combine
a textual description with explicitly stated numerical
feature values [6]. Such explanations suggest feature-
value based instructions [48], [122], [131] or alterna-
tive actions for a possible output change [84], [149].
They also answer end-user’s inquiries with respect to the
automatic decision in question [128], [159]. In contrast,
multiple-sentence explanations provide end-users with
specific details for the given decision [153], [156], [157],
[161] or explain multiple decisions at once [146].

• Visual contfactual explanation. On the one hand,
visual explanations for non-visual input data (i.e.,
datasets containing continuous or categorical feature-
value pairs) plot feature-value pair dependencies
[134], [141], [142]. On the other hand, visual input
data (i.e., images) are associated with saliency maps
[133] or explained by contrastive patterns between the
given data example and that of an opposing class in one

iteration [130], [144] or a series thereof [49]; by depict-
ing critical regions absent in the input data example that
determine what lacks in the image to be classified differ-
ently [135]; or by visualizing spatial regions associated
to data examples of opposed classes [139].

• Multi-modal contfactual explanation is a combination
of numerical and/or linguistic and/or visual explana-
tions. Multi-modal explanations are claimed to enhance
human-robot interaction [46]. They are often selected to
be the most appropriate where the problem addressed
is concerned with pairing a computer vision problem
with a natural language processing task such as object
detection and language grounding [86]. In addition,
visual-linguistic explanations identify counterfactuality
in videos [91] and allow for dialogic interaction [150].
Such hybrid counterfactuals (in terms of their output rep-
resentation) may as well complement each other while
addressing the same task. For instance, Gomez et al.
visualize the generated explanations in the form of bar
plots combining them with explicitly stated numerical
values [138]. Alternatively, Liu et al. combine feature
importance bar plots with visual input and output [145].
While a textual explanation summarizes the degree of
importance of the selected features, a visual explanation
may present contextual in-method metrics that justify
the classifier’s reasoning [129]. Contfactual explana-
tions, as a mixture of tabular and visual output represen-
tations, appear also in an augmented reality framework
[137]. Nevertheless, explanations of different modalities
are not necessarily merged. To ensure the universality of
the proposed approaches, specific feature values are pre-
sented for taskswith datasets containing only continuous
features, i.e., where the same method is used to output
images for a handwritten digit classification problem
[143]. Finally, interaction with users can be enhanced
by means of voice-based explanations combined with
textual explanations [46], [155].

4) EVALUATION METHOD
Evaluation of generated contfactual explanations is an issue
of main concern. Unfortunately, despite an increasingly
expanding use of contfactual explanations, no uniform set of
evaluationmethods has been adopted so far. Hence, it is worth
taking a look at evaluation methods from other generation-
oriented sub-areas of AI. For instance, it is common to dis-
tinguish between intrinsic and extrinsic evaluation methods
in natural language generation [163]. Intrinsic evaluation
implies assessing the performance of a natural language gen-
eration system (or its modules) as an isolated unit. In contrast,
extrinsic (task-based) methods are designed to estimate how
successfully the system performs with respect to an exter-
nal task. In addition, Gatt and Krahmer make a distinction
between ‘‘objective’’ (automatic, corpus-based) and ‘‘subjec-
tive’’ (human judgements) metrics [164]. Objective metrics
include (but are not limited to) precision- and/or recall-
oriented scores, number of insertions/deletions/substitutions,

VOLUME 9, 2021 11991



I. Stepin et al.: Survey of Contrastive and Counterfactual Explanation Generation Methods for Explainable AI

TABLE 9. A classification of the contfactual explanation generators by
evaluation method.

FIGURE 12. Numbers of frameworks grouped by evaluation method with
respect to the type of contfactual explanation generated.

etc. In turn, subjective metrics measure readability, accuracy,
relevance of the generated text, as perceived by humans.
Thanks to their methodological universality, they can be
extrapolated to other (non-linguistic) modalities of generated
explanations (e.g., numerical, visual, or multi-modal) and are
therefore used to form the basis of the evaluation method
classification in this review. It is worth noting that all the
considered frameworks are evaluated by means of intrinsic
(either subjective or objective) metrics. Hence, we only make
a clear distinction between subjective and objective evalua-
tion methods in this study (see Table 9 for details). A distinc-
tion between the use of different types of evaluation metrics
can be seen in Fig. 12. It is easy to appreciate how most
frameworks deal with objective evaluation of counterfactuals.
Let us give further details below, regarding the four groups of
publications in Table 9.
• No evaluation details provided. 17 out of 52 (32.69%)
of the considered publications do not evaluate their
frameworks, i.e., neither automatic metrics for contfac-
tual explanation generation are suggested nor a human
evaluation survey is presented in such publications.
However, whereas certain publications do not provide
any specific evaluation method, some do stress that
human evaluation should be encouraged to estimate the
quality and effectiveness of the generated counterfactu-
als [46], [150], [153].

• Subjective evaluation. The subjective methods include
human preferences for certain types of contfactual

explanation over others. For instance, Akula et al. show
that that contrastive explanation-seeking questions are
in general better answered by means of contfactual
explanations [128]. They classify contrastive questions
in the following 10 categories suggesting the template
questions for arbitrary objects x, x1, and x2 (all being of
some class X ) and y, y1, and y2 (all being of some other
class Y ):

– WH-X: ‘‘Why x rather than not x?’’;
– WH-X-NOT-Y: ‘‘Why x rather than y?’’;
– WH-X1-NOT-X2: ‘‘Why x1 rather than x2?’’;
– WH-NOT-Y: ‘‘Why not y?’’;
– NOT-X: ‘‘Is it x rather than not x?’’;
– NOT-X1-BUT-X2: ‘‘Is it x1 rather than x2?’’;
– NOT-X-BUT-Y: ‘‘Is it x rather than y?’’;
– DO-X-NOT-Y: ‘‘What if it is x rather than y?’’;
– DO-NOT-X: ‘‘What if it is not x?’’.
– DO-X1-NOT-X2: ‘‘What if it is x1 and not x2?’’

It is worth noting that 6 out of 10 question types
(WH-NOT-Y,NOT-X,NOT-X1-BUT-X2, NOT-X-BUT-
Y, DO-NOT-X, and DO-X1-NOT-X2) matched with
automatically generated contfactuals are shown to be
highly preferred to factual explanations.
In addition, Ferrario et al. propose an augmented reality-
based setting to favor interactivity and facilitate explain-
ing ML algorithm output to non-experts [137].
However, the two aforementioned studies [128], [137]
lack an evaluation of the quality of the generated cont-
factual explanations themselves.
Lucic et al. asked 75 subjects to judge interpretabil-
ity, actionability, and trustworthiness of the generated
contfactual explanations [56]. They concluded contfac-
tual explanations are highly interpretable and actionable.
In addition, they help users understand why the model
makes large errors while solving a regression problem
but do not support users’ trust in the model’s output.
In addition, Hendricks et al. provide results of human
evaluation for the generated explanations [86]. However,
these only include evaluations for factual explanations
and are therefore excluded from the taxonomy group
being discussed.

• Objective evaluation. A majority of the researchers
propose objective (automatic) methods for evaluating
automatically generated contfactuals. A number of the
frameworks are evaluated by means of accuracy-based
metrics [61], [91], [94], [159]. Kanehira et al. propose
one accuracy-based evaluation metric for visual and lin-
guistic explanations each: negative class accuracy and
concept accuracy, respectively [91]. Negative class accu-
racy estimates the quality of the visual explanation as
the ratio of the probability of the contrast class after the
image region in question is masked out. In turn, concept
accuracy estimates how compatible the output linguistic
explanation is to its visual counterpart. It is calculated
as the intersection over union between a given region
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and all bounding boxes in the image. Kim et al. define
the domain-specific accuracy for the automatic planning
problem of unique contrastive explanations as a sum of
the number of traces in a positive set of traces satisfying
a contraint for a contrastive explanation and those of the
negative set where the constraint is unsatisfied over all
plan traces [94]. The consistency of output explanations
is otherwise shown by measuring their accuracy on the
basis of mean error, mean absolute error, and mean
absolute percentage error [61].
An extensive number of evaluation methods are found
to be strictly task- or approach-specific. Hendricks et al.
measure word detection (i.e., which words are not image
relevant by holding out one word at a time from the sen-
tence to determine the least relevant word in the explana-
tion) andword correction (i.e., a number of replacements
of the foiled word with words from a set of target words)
[86]. Similarly, Martens and Provost estimate explana-
tion complexity by calculating the average number of
words in the shortest explanation and problem complex-
ity according to the overall number of generated expla-
nations [146]. Fernández et al. evaluate the relevance
of the generated counterfactuals measuring a Gower
distance-based metric in comparison with the number
of feature changes and minimum distance (in terms of
decision tree nodes) between the leaves in the given
decision tree classifier [80]. Van der Waa et al. evaluate
the generated explanations by means of such model-
specific metrics as the average length of the explanation
in terms of decision tree nodes and the F1-score of the
foil-tree on the test set compared to the model’s output
[159]. Kusner et al. estimate counterfactual fairness on
the basis of the density of the predicted data for their
causal models [55]. Laugel et al. claim that understand-
ability of the generated explanations can be estimated
by means of their sparsity defined as the number of non-
zero coordinates of the explanation vector [143]. Moore
et al. measure the number of solutions, the distances to
the nearest training set data points, and the transferabil-
ity of the generated counterfactuals to other datasets and
classifiers [148]. Sreedharan et al. calculate the number
of predicates that are used to generate the model lattice
[156]. Similarly, Chakraborti et al. calculate the number
of nodes in the search space remaining after pruning
[132]. Goyal et al. report how often the discriminative
regions lie inside the test data example segmentations
as well as relevant specific key regions [139]. Labaien
et al. calculate the number of changes to switch from
the original to the selected contrastive sample following
the dataset constraints [141]. To estimate faithfulness
of the generated counterfactuals, Pawelczyk et al. sug-
gest calculating the so-called degree of difficulty of a
counterfactual suggestion to measure how costly it is to
achieve the state of the given suggestion [151]. Aiming
to provide realistic counterfactuals, Sharma et al. intro-
duce the counterfactual explanation robustness-based

score defined as the expected distance between the input
instances and their corresponding counterfactuals [154].
In addition, the generated counterfactuals are inspected
in terms of fairness which is calculated as the expected
distance between the input and a counterfactual over
distinct values for a specified feature set. Merrick and
Taly evaluate output explanations in terms of mean
feature attributions to show the importance of relevant
references [147]. Gomez et al. evaluate counterfactuals
in terms of data distribution, feature importance, as well
as possible and actionable changes to the input [138].
Dandl et al. use the hypervolume indicator metric to
estimate the quality of the estimated Pareto front during
counterfactual search [134]. In addition, Chang et al.
measure the weakly supervised localization error for an
image detection task – the intersection-over-union ratio
over 0.5 with any of the ground truth bounding boxes
and the saliency metric, i.e., ‘‘the log ratio between the
bounding box area and the in-class classifier probability
after upscaling’’ [133].
Several metrics can be extended to be applied to other
approaches. Lash et al. estimate how much the prob-
ability of a given prediction reduces given a feature
perturbation as determined by a contrastive explanation
[142]. Dhurandhar et al. employ the concept of pertinent
positives (i.e., ‘‘factors whose presence is minimally
sufficient in justifying the final classification’’ [135])
and pertinent negatives (i.e., ‘‘factors whose absence is
necessary in asserting the final classification’’) to evalu-
ate factuals and counterfactuals, respectively, for a given
classification task. Both types of evaluation methods
highlight the features supporting evidence as formulated
in the contrastive explanation on the basis of the values
that a perturbation variable takes on. Fernández et al.
evaluate counterfactuals in terms of the average of the
pairwise distances based on the feature type and the
percentage of valid counterfactuals [81].
Mothilal et al. stress that counterfactuals should be
evaluated in terms of validity (i.e., whether a generated
counterfactual really leads to a different outcome), prox-
imity (i.e., feature-wise distance between the original
and counterfactual samples), sparsity (i.e., number of
features differing in the original and counterfactual sam-
ples), and diversity (i.e., feature-wise distance between
each pair of counterfactuals) [105]. Similarly, Stepin
et al. calculate factual and counterfactual explanation
length to estimate conciseness of the generated expla-
nations [122]. They also compute the number of coun-
terfactuals and their best minimal distance to the factual
explanation to assess the relevance of counterfactuals.
Rajapaksha et al. consider coverage (as an indicator of
representativeness of a rule for a given dataset), con-
fidence (i.e., the percentage of instances in the dataset
which contain the consequent and antecedent together
over the number of instances which only contain the
antecedent), lift (i.e., an association between antecedent
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and consequent), leverage (i.e., the observed frequency
between the antecedent and consequent), and the num-
ber of features in explanation for evaluating their frame-
work against other rule-based methods [152]. Also,
White and Garcez reintroduce fidelity to the underlying
classifier on the basis of distance to the decision bound-
ary [160].
In addition, some of the model-agnostic frameworks
[140], [159] allow for measuring how well the output
of black boxes (i.e., actual output to be explained) and
grey boxes (i.e. interpretable intermediate predictors)
mimic the local neighbourhood (i.e., fidelity) and the
data example to be explained (i.e., hit). Laugel et al.
measure how justified counterfactuals are by averaging a
binary score (one if the explanation is justified following
the proposed definition, zero otherwise) over all the
generated explanations [100], [144].
It is worth noting that the run-time of explanation gen-
eration algorithms is reported in addition to the evalua-
tion metrics for several frameworks [132], [139], [146],
[152], [156], [159].

• Hybrid evaluation. Two frameworks are evaluated
in terms of both automatic metrics and human judg-
ments. Ghazimatin et al. calculate explanation length
to discuss comprehensiveness of explanations as well
as estimate their usefulness and credibility by survey-
ing 500 subjects [84]. In addition, Le et al. compute
fidelity, conciseness, information gain, and influence
[48]. Automatic metrics are complemented with a user
study on intuitiveness, friendliness, comprehensibility,
and understandability of generated explanations.

D. LINKS BETWEEN THEORETICAL AND PRACTICAL
CONTRIBUTIONS TO CONTFACTUAL EXPLANATION
GENERATION (ANSWER TO RQ3)
We find that only few of the existing computational frame-
works are grounded on theories of contfactual explanation.
Indeed, only 13 out of 113 studies (11.50%) were present in
both of the pools of primary studies related to RQ1 and RQ2.
Table 10 summarizes the characteristics of such theoretically
grounded contfactual explanation generation frameworks.

Moreover, only 3 out of the 13 (23.08%) studies interpret
the insights from the theoretical foundations to propose their
own contfactual explanation definition for problem-oriented
purposes. Kean states that ‘‘explanation in artificial intel-
ligence is based on the inference of deduction’’ [93]. He
complements a deductive evidence-based explanation with a
redefined abductive contrastive explanation drawing parallels
to the ‘‘inference to the best explanation’’ [103]. He models
Lipton’s theoretical framework distinguishing two types of
contrastive explanation: non-preclusive (i.e., non-restrictive)
and preclusive. The key aspect distinguishing the two types of
contrastive explanation is in regard to how a model explains
the contrast given an explanation-seeking question. Thus,
a non-preclusive contrastive explanation is ‘‘irrelevant to the
model of explaining the contrast’’ being ‘‘necessary in the

model of explaining the question’’. On the contrary, a preclu-
sive contrastive explanation is assumed to be restricted by a
negated model of the contrast.

Aguilar-Palacios et al. [61] refer to Lipton’s definition of
contrastive explanation [12]. Referring to Pearl [37], Bertossi
redefines causal explanation in the context of XAI to be ‘‘a
set of feature values for the entity under classification that is
most responsible for the outcome’’ [67].

The rest of works redefine contfactual explanation on
the basis of the problem-specific constraints without explic-
itly referring to the theoretical foundations described in
Section IV-B. Driven by the task of automatic planning, Kim
et al. define a contrastive explanation to be a constraint satis-
fied by a specific set plan traces [94]. Fernández et al. define
a counterfactual to be a set of feature changes that turn the
given data example to be classified differently [80]. Whereas
this definition is applicable to the classification problem in
general, the applicability of the framework is restricted to
decision trees only. Similarly, Hendricks et al. explain visual
concepts for the image classification task on the basis of the
so-called counterfactual evidence (i.e., an attribute discrimi-
native enough for another class of objects in the image absent
in the given image) [86]. Ghazimatin et al. [84] define a
counterfactual on the basis of their model’s internal structure:
an explanation is deemed counterfactual if after removing the
edges from the recommendation graph, the user receives a
different top-ranked recommendation. In addition, Kanehira
et al. only specify the linguistic form of a counterfactual
explanation without defining it explicitly [91].

Finally, there is a number of marginal interpretations of
contfactuals among the RQ3-related studies. Laugel et al.
denote a counterfactual as a specific data instance that
changes the algorithm’s prediction [100]. Poyiadzi et al.
denote a counterfactual to be ‘‘the new state of the object’’
[49]. Nevertheless, the most commonly acceptable definition
of a contfactual in the observed RQ3-related studies states
that a contfactual explanation is a set of minimal feature
modifications that makes the model change the prediction
[81], [105], [122].

V. DISCUSSION
The findings show that a large body of research has been
elaborated on theoretical accounts of contrastive, counterfac-
tual, and contrastive-counterfactual explanation. In addition,
the topic has recently attracted attention from researchers
in XAI (see Fig. 13). Thus, 50 out of the 52 considered
state-of-the-art contfactual explanation generation frame-
works (96.15%; RQ2) have been developed from 2017 to
2020.

The results of the study, in relation to RQ1, show that a
majority of the considered theoretical accounts of contfactual
explanation (49 out of 74; 66.22%) speculate on the causal
nature of explanation. However, whereas most researchers
in philosophy of science have mainly used the concept of
counterfactuality to explain causal relations between enti-
ties in question, causal inference is poorly addressed in the
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TABLE 10. A summary of characteristics of theoretically grounded computational frameworks for contfactual explanation generation. CT stands for
contrastive explanation, CF means counterfactual explanation, and CT-CF is contrastive-counterfactual explanation.

FIGURE 13. Numbers of theoretical and computational contfactual explanation generation frameworks
grouped by year of publication. For illustrative purposes, only the studies published from January 1990 to
September 2020 are displayed.

pool of publications concerning computational frameworks
of contfactual explanation generation. Kean directly refers
to a causal account of contrastive explanation to address the
problem of abductive reasoning [93]. In addition, Lucic et al.
[56] explicitly specify that their method is based on previous
work on philosophical accounts of contrastive explanation
[12] as well as on causal attribution [165], [166]. Kusner et al.
[55] make use of causal inference models and the correspond-
ing tools provided by Pearl [37]. They assess how discrimi-
natory the generated counterfactual explanations are for the
given classification task output. On the other hand, Bertossi
redefines the concept of causal explanation [67]. Following
a causal account of contfactual explanation, Fernández et al.
introduce weakly causal irreducible counterfactual explana-
tion [136]. As most of the current ML-tasks are centered

around singling meaningful patterns out from unstructured
data, establishing causal relations appears to be among the AI
problems that are yet to attract global attention. This partly
explains why most of the modern contfactual explanation
generators focus on feature perturbation when searching for
the most relevant contfactuals and not establishing causal
relations between them.

At the same time, the other computational frameworks
are primarily non-causal. Furthermore, a strikingly low num-
ber of such frameworks appear to be rooted in theoretical
accounts of explanation due to an imbalance in favor of
causality-oriented theoretical accounts. However, the amount
of publications forRQ3 may be somewhat misleading, as con-
tfactual explanations are often redefined without specifically
referring to theoretical contributors in explanation. This is
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hypothesized to be due to the problem-specific necessities
ignored in previous theoretical works from different branches
of science. For instance, Laugel et al. emphasize that the
minimal perturbations required to change the predicted class
of a given observation enable a user to understand which
features locally impact the prediction and therefore how it
can be changed [144]. In this interpretation, counterfactual
explanations are conceptually most similar to counterfac-
tuals as defined by Lewis [36]. Indeed, while the concept
of ‘‘the closest possible world’’ does not always appear in
the related publications, it turns out to be implicitly wired
in almost all works. Instead, other considered frameworks
do not appeal directly to any of the theoretical accounts
of explanation addressed in RQ1. Hence, it is worthwhile
taking a look at how contrastive and counterfactual expla-
nations are redefined in the frameworks not appearing in
Section IV-D.

In general, a consensus among researchers has been
observed on how contfactual explanations are defined irre-
spective of the theoretical framework proposed by individual
authors. In humanities and social sciences, a major difference
in various contfactual theories of explanation is observed to
concern the causal nature of explanation and its extrapolation
to non-causal cases. In computer science and AI, notions of
counterfactual and contrastive explanation are found to be the
most dissimilar when applied to non-overlapping problems.
Nevertheless, the corresponding line of research in AI makes
little use of the rich theoretical background accumulated by
now. While some rule-based approaches used in expert sys-
tems are justified theoretically (e.g., see [93]), newly emerg-
ing tasks present novel challenges for theorists and call for
updating the theories developed so far.

More precisely, ML-specific contfactual explanations are
designed to answer the question: ‘‘Why was the outcome Y
observed instead of Y ′?’’ [148]. Anjomshoae et al. define
finding a contrastive explanation as ‘‘contrasting instance
against the instance of interest’’ [129]. Fernández et al. spec-
ify that a counterfactual is generally regarded as a hypo-
thetical instance similar to an example whose explanation
is of interest but with a different predicted class [80]. Also,
counterfactual explanations ‘‘show a difference in a particular
scenario that causes an algorithm to change its mind’’ [155].

As a majority of the considered frameworks are designed
for tackling classification problems, contfactual explanations
operate on the notion of a contrast-class (e.g., see [155])
answering the question: ‘‘How is the prediction altered when
the observation changes, given a classifier and an observa-
tion?’’ Furthermore, these changes are normally expected to
be minimal [143].

However, certain application domains as well as the selec-
tion of a classifier require researchers to redefine contfactuals
imposing task-dependent constraints, which makes it nearly
impossible to connect them to any of the existing theories of
contfactual explanation. For instance, Martens and Provost
define a contrastive explanation for a document classification
task to be aminimal set of words such that removing all words

within this set from the document changes the predicted class
from the class of interest [146]. In addition, Guidotti et al.
reformulate a counterfactual to be a set of split conditions of a
decision tree describing theminimal number of changes in the
feature values of a test example [140]. In image classification,
it is found necessary to detect specific regions in the given
test image. For this type of tasks, the contrastive explanation-
seeking question is formulated as follows: ‘‘Which parts of
the image, if they were not seen by the classifier, would most
change its decision? or which inputs, when replaced by an
uninformative reference value, maximally change the classi-
fier output?’’ [133], [139]. Similarly, Dhurandhar et al. ask
what should be minimally and necessarily present and absent
in the given image to justify its classification [135]. Alter-
natively, counterfactuals are viewed as ‘‘solutions that are
guaranteed to map back onto the underlying data structure’’
[153]. Redefined contrastive explanations are also found in
the domain of robotics and automatic planning. According
to Sukkerd et al., a contrastive explanation answers the
question why a generated behavior is optimal with respect
to the planning objectives of an autonomous system [157].
Alternatively, contrastive explanations are used to answer
why-not questions about the system’s behavior in which the
consequences of the counterfactuals in question are pointed
out [161].

In addition, the nature of the explanation-seeking questions
for computational frameworks deserves further discussion.
Sokol and Flash distinguish three types of counterfactual
explanations: (1) a plain counterfactual (‘‘Why?’’) generated
as the shortest possible class-contrastive counterfactual; (2) a
counterfactual explanation not conditioned on the indicated
feature(s) (‘‘Why despite?’’); and (3) a (partially) fixed coun-
terfactual explanation (‘‘Why given?’’) which is conditioned
on a predetermined set of features [46]. Hilton proposes
different types of contrastive questions such as: (1) ‘‘Why X
rather than not X?’’; (2) ‘‘Why X rather than the default value
for X?’’ and (3) ‘‘Why X rather than Y?’’ [166]. Following
this distinction, Akula et al. extend this set of contrastive
questions to formulate ten contrastive question types for
counterfactual explanation generation [128] (see Section IV-
C4). Alternatively, only linguistic templates for such expla-
nations are defined without any theoretical grounding in
accordance with any accounts described in Section IV-B. For
instance, Sokol and Flash define a counterfactual explanation
to be a piece of text following the template: ‘‘The prediction
is 〈prediction〉. Had a small subset of features been differ-
ent 〈foil〉, the prediction would have been 〈counterfactual
prediction〉 instead’’ [155].

Remarkably, a wide range of frameworks favor automatic
evaluation methods. Thus, they rarely place the end-user in
the center of the explanation evaluation process. However,
we find an increasing number of interactive frameworks that
attempt not only to present the automatically generated expla-
nations to the end-user but also interact with him or her [46],
[150], [155]. Promoting interactivity (e.g., by engaging the
end-user to participate in an explanatory dialogue with the
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system) is expected to make explanation social and further
increase user’s trust in the system’s output.

VI. CONCLUDING REMARKS
In this work, we made two main contributions. First, we pro-
vided readers with an overview on theoretical accounts
of contrastive, counterfactual, and contrastive-counterfactual
explanation as well as frameworks of automatic generation
thereof. This overview was based on a systematic literature
review. This research methodology allowed us to carry out
an unbiased reproducible study from an interdisciplinary
topic-specific search in reputable and trustworthy sources.
Second, we proposed a two-level taxonomy of the aforemen-
tioned types of explanation with the aim of providing a well-
established tool that allows us to jointly analyze different
proposals in this research field. As a result, this taxonomy
facilitates the comparison of approaches and publications.
We expect that it raises awareness in researchers in the com-
munity about main categories (definitions, practical frame-
works, etc.) and subcategories (causal, non-causal, etc.) in the
taxonomy. Moreover, we hope that it helps properly charac-
terize the body of work and leverages a deeper collaboration
and citation among similar related work.

The findings allow us to draw the following remarks. Con-
trastive and counterfactual explanations are found to be in
great demand across various sub-fields of AI. Mainly applied
to a wide range of tasks in computer vision and natural lan-
guage processing, they present a powerful tool that enhances
human-machine interaction and allows for further person-
alization of the output generated by various AI algorithms,
including ML-based black-box algorithms.

In our systematic review, we introduced the term ‘‘cont-
factual explanation’’ to unify the aforementioned families of
explanation to subsequently analyse the existing approaches
to them from three points of view.

First, we investigated theoretical accounts of contfactual
explanation to infer the similarities and differences among
the existing theoretical approaches. Contfactuals are found
to address both causal and non-causal dependencies. Hence,
being a significant challenge, unification of causal and non-
causal explanatory engines within a contfactually-driven
framework opens new perspectives for the XAI community.

Second, existing computational frameworks for contfac-
tual explanation generation have been inspected. Despite the
fact that the notion of contfactual explanation is found to
be highly task- and domain-specific, the most commonly
accepted definition of a contfactual explanation in the context
of XAI refers to a minimal set of feature modifications that
makes the model change the prediction. A crucial short-
coming relevant to the inspected frameworks is a lack of
standardization with respect to the evaluation methods.While
designing a set of standard evaluation metrics is particularly
complicated due to a different nature of the tasks that these
explanations serve, this is hypothesized to be among major
factors preventing researchers from making faster progress
in solving the problem of contfactual explanation generation,

as it complicates a fair evaluation of newly developed frame-
works against the state-of-the-art equivalents. Furthermore,
as automatically generated explanations are meant to be user-
oriented, more effort is needed to include end-users in the
process of assessing the generated explanations.

Third, a synergy between the related theories and compu-
tational frameworks has been investigated. We find that a gap
between philosophical accounts of contfactual explanation
to scientific modeling and ML-related concepts makes the
theoretical frameworks poorly applicable to XAI. In addi-
tion, the existing methodological differences affect greatly
the definition of contfactual explanation found across various
approaches. In fact, definitions vary depending on domains of
science and even approaches used for solving specific tasks.

Finally, we believe a joint interdisciplinary effort of
researchers from both humanities and computational sciences
can be particularly fruitful for further progress in contfactual
explanation generation.
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a b s t r a c t

The explanatory capacity of interpretable fuzzy rule-based classifiers is usually limited to
offering explanations for the predicted class only. A lack of potentially useful explanations
for non-predicted alternatives can be overcome by designing methods for the so-called
counterfactual reasoning. Nevertheless, state-of-the-art methods for counterfactual expla-
nation generation require special attention to human evaluation aspects, as the final deci-
sion upon the classification under consideration is left for the end user. In this paper, we
first introduce novel methods for qualitative and quantitative counterfactual explanation
generation. Then, we carry out a comparative analysis of qualitative explanation genera-
tion methods operating on (combinations of) linguistic terms as well as a quantitative
method suggesting precise changes in feature values. Then, we propose a new metric for
assessing the perceived complexity of the generated explanations. Further, we design
and carry out two human evaluation experiments to assess the explanatory power of the
aforementioned methods. As a major result, we show that the estimated explanation com-
plexity correlates well with the informativeness, relevance, and readability of explanations
perceived by the targeted study participants. This fact opens the door to using the new
automatic complexity metric for guiding multi-objective evolutionary explainable fuzzy
modeling in the near future.
� 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Artificial intelligence (AI)-based algorithms show striking accuracy in a wide range of domains and applications [1]. How-
ever, the most accurate models are known to produce scarcely explainable decisions [2]. This lack of explainability may dam-
age the overall trust in AI [36]. In the light of possible negative consequences of following such automatic decisions without
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having them explained, legal regulations concerning data processing are becoming widely adopted, e.g. the General Data
Protection Regulation (GDPR) in the European Union [33]. Moreover, a new European regulation on AI is in progress and
highlights the importance of preserving the European values by promoting trustworthy and responsible human-centric AI
[9,34].

The gap between obscurity of automatic decisions and their explainability can be overcome by using interpretable models
[37]. Among all AI tools, such soft computing techniques as fuzzy sets and systems have been shown to be not only inter-
pretable but also explainable [3]. Thus, two key advantages are distinguished when relating the properties of interpretability
and explainability of fuzzy systems. First, their transparent (i.e., interpretable) structure allows for making unambiguous
inferences of why the given output was produced. Second, the use of linguistic variables and rules enables such systems
to be explainable, i.e., to produce comprehensible explanations in natural language.

Nevertheless, the ability to demonstrate evidence on why specific output is produced (i.e., explain the factual output) may
not be sufficient to display the underlying reasoning to the end user. Therefore, a factual explanation may need to be com-
plemented with an explanation of why some other output was not produced. Opposed to factual explanations justifying the
given prediction, counterfactual (CF) explanations (or counterfactuals) inform the end user about minimally different alter-
ations to the input features for the outcome to change [41]. In the context of classification problems, CF explanations are
typically designed as answers to the template question ‘‘Why was P predicted rather than Q?” where P is the output (factual)
class and Q is a non-predicted hypothesized alternative CF class [29].

CF explanation generation is often regarded as an optimization problem in search of the data point of another class which
represents the closest data point alternative to the test instance in an n-dimensional Euclidean space [46]. In the context of
fuzzy sets and systems, however, such minimal changes may be described not only by means of a continuous variable rep-
resenting numerical feature values (which we call ‘‘quantitative CFs” in this paper) but also by a discrete linguistic variable
whose values are linguistic terms (which we refer to as ‘‘qualitative CFs” in this paper). In the former case, distinctive (nu-
merical) features point to specific values, which are minimally different from those the test instance has, that should be set
for the outcome to change. In the latter case, linguistic terms represent sets of suitable CF feature values in form of text and
conceal the underlying numerical intervals.

The difference in end user’s perception of these types of CF explanations remains unclear [45]. On the one hand, it may be
affected by peculiarities of the structure of explanation, such as the number of explanatory features or explanation length.
On the other hand, user’s perception may be influenced by a degree of precision of the explanation content. Thus, qualitative
CFs may be regarded as pieces of imprecise information which can facilitate understanding of the communicated explana-
tion but may, however, be underinformative or even misleading to the end user. Conversely, quantitative CFs specify fine-
grained changes to values of features. Last but not least, existing metrics for measuring quality of CF explanations (e.g., valid-
ity, proximity, diversity, among others) are strongly related to the data used for explanation generation [31]. However, those
metrics ignore perceptual skills of the explanation’s recipient and may not be sufficient for assessing the overall explanation
effectiveness. In order to make another step towards human-centric AI, it therefore appears necessary to propose novel
means of capturing and assessing human perception of explanations.

As part of previous work [41], we introduced a method for generating qualitative CF explanations applied to decision trees
(DT). Then, we generalized this method to fuzzy information granules [43]. In this paper, our contribution is fourfold. First,
we extend our previous work with a generalized Euclidean distance-based metric for CF explanation generation which better
grasps membership function values. Second, we propose a novel genetic-based quantitative CF explanation generation
method. Third, we define a newmetric for assessing the complexity of automated explanations. Fourth, we carefully validate
both qualitative and quantitative CF explanations via human evaluation in agreement with the best known practices for fair
and sound evaluation of Natural Language Generation (NLG) and analyze the findings in terms of explanation complexity as
expected to be perceived by the end user.

The rest of the manuscript is structured as follows. Section 2 presents a brief overview of existing methods for quantita-
tive and qualitative CF explanation generation. Section 3 introduces our methods for generating CF explanations associated
to fuzzy rule-based classification systems (FRBCS). Section 4 describes the key characteristics of the experimental design for
subsequent human evaluation studies. Section 5 goes in detail with the analysis of the data collected in two evaluation sur-
veys. Section 6 discusses the findings and offers suggestions on how they can be exploited. Finally, we outline directions for
future work and conclude in Section 7.

2. Related work

CF explanation generation has in recent years attracted increasing attention from researchers in the AI field. As CFs
oppose actual and potential outcomes, they are most widely used to explain the output of various classifiers, from linear
machine learning models to deep neural networks [42]. Further, they are extensively found across different application
domains. For example, CFs are found applicable in healthcare where they, e.g., serve to provide a patient with a bigger picture
of the risk of developing diabetic retinopathy [26] or in banking where CFs suggest recommendations on necessary changes
to have a loan application approved if previously rejected [16]. In addition, CF explanations are as well extensively used in
robotics (e.g., in planning – to justify the choice of a robot over other feasible but unfavored possible solutions [44]). Despite
numerous potential application domains, the use of CFs is advised to be controled due to possible malicious implications. As
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such, they have been misused or misinterpreted (what may lead to data breaches) in cases of, e.g. password masking or e-
voting [20]. Other privacy concerns include inferring sensitive patterns of the training data or manipulations with the
revealed internals of the model [40].

In the context of qualitative CFs, a number of generation methods output CF sets to support diversity. For example, Sokol
and Flash inspect the internal structure of DTs in their ‘‘Glass-Box” framework for generating CF sets [40]. Thus, the authors
retrieve CF sets from the decision paths ranking them by their leaf-to-leaf distance to the actual prediction. On a similar note,
Stepin et al. generate set-based (i.e., qualitative) CFs from either crisp or fuzzy DTs [41] but also regarding fuzzy information
granules [43] while introducing an extra-linguistic layer to approximate numerical intervals or membership function values,
respectively, using predefined linguistic terms.

Whereas the aforementioned methods are model-specific, i.e., they only allow for explaining counterfactually the given
output of the DT itself, DT-based approaches are also used for model-agnostic methods. In their LOcal Rule-based Explana-
tion (LORE) method, Guidotti et al. employ a genetic algorithm to first synthesize a local neighborhood around the test
instance which is subsequently used to train a DT and generate CF sets [17]. The collection of CF sets is then reconstructed
from the decision paths. Then, the minimally different CF set is selected on the basis of the (minimal) number of Boolean split
conditions of the DT that the given CF path does not satisfy. Maaroof et al. extend LORE to fuzzy logic-based applications by
proposing Contextualised LORE for Fuzzy attributes (C-LORE-F) [26]. Alternatively to LORE, the researchers formulate a local
neighborhood generation approach for solving the uniform cost search problem. Potential neighbors are generated by apply-
ing iterative changes over a single feature taking into account intersections between two corresponding fuzzy sets. Further,
the authors propose to induce the rules instead of building up a DT using the Dominance-based Rough Set Approach (DRSA)
where the decision rules take into consideration the preference directions of the input variables. In addition, Fernández et al.
extract CF sets from a random forest classifier by partly fusing individual tree predictors [12]. Further, their Random Forest
Optimal Counterfactual Set Extractor (RF-OCSE) prunes the search space of candidate CFs using the minimum observable
approach to filter out CFs whose distance to the test instance exceeds the best up-to-now distance.

On the other hand, quantitative (i.e., single-point-output) CF explanation generation methods address the optimization
problem searching for an individual data point found to be minimally different from the test point under consideration in
accordance with the selected distance function, e.g., Manhattan distance weighted by the inverse median absolute deviation
[46]. Similarly, Moore et al. use a differentiable model on the basis of a gradient-based method over the cross entropy loss
function to identify a single minimally distant CF data point [30].

Alternatively, genetic algorithms are also frequently used to generate CFs [39]. Model-agnostic genetic algorithms are
used not only to generate a local neighborhood but also to identify a specific optimal CF data point. In addition to the stan-
dard genetic algorithm, Lash et al. apply local search to non-mutated children so that the best solution is preserved for the
next generation [24]. Sharma et al. propose another approach called Counterfactual Explanations for Robustness, Trans-
parency, Interpretability, and Fairness of Artificial Intelligence (CERTIFAI) where a genetic algorithm based on natural selec-
tion, mutation, and crossover appeals to user feedback (regarding feature mutation, feature range specification, and
enquiries for a specific number of explanations) [39]. Whereas these user constraints allow for generating actionable
human-centric explanations, imposing too severe restrictions may overreduce the search space resulting in generating null
explanations. In addition, Schleich et al. make use of a complete search space in their GeCo framework [38]. Thus, the authors
present a customizable genetic algorithm enhanced with two optimization techniques to reduce memory costs and running
time. The compressed d-representation of the input features reduces the memory storage required for mutation-related cal-
culations whereas the so-called partial evaluation optimizes the evaluation of the classifier, as static components of the clas-
sifier can be pre-evaluated using an equivalent sub-model of the same classifier [38].

Finally, both qualitative and quantitative generation methods are primarily evaluated with automatically computable
metrics (e.g., fidelity, validity, proximity, or diversity) [12,17,31]. Unfortunately, empirical studies involving human evalua-
tion for assessing the goodness of automated CFs are scarcely found in the literature. Baaj and Poli show that explanations
based on the use of linguistic terms appear rather satisfactory and convincing despite being overly repetitive for a general
audience [5]. Wang and Yin state that CFs increase understanding for users who have sufficient domain knowledge but fail to
calibrate trust in the model [47]. Further, Lucic et al. demonstrate that CFs help users understand why a model makes large
errors [25]. Olson et al. show that CFs can be also effective for non-expert users in the identification of flawed agents [32]. In
addition, Woodcock et al. stress that lay users trust CFs only if the information gap in the existing domain knowledge
between them and expert users is not significant, specifically in the healthcare domain [48]. Nevertheless, unlike our work,
none of the aforementioned studies contrasts the output of single-point-output quantitative generation methods and set-
based qualitative ones.
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3. Explanation generation methods

3.1. Notation

The methods proposed in this study address a multi-class classification problem, i.e., learning a mapping function
h : X�!Y from a dataset X ¼ xif gjni¼1 containing n labeled instances to a discrete output variable (class) Y ¼ yj

� �jmj¼1 where

m is the number of classes. The dataset is characterized by the set of p numerical1 features F ¼ f kf gjpk¼1, which are mapped

to the corresponding linguistic variables. By definition [49], each feature is a tuple f k ¼ Lf k ; Tf k
L ;U

fk ;Gfk ;Mfk
D E

;8f k 2 F where

Lfk is the name of the feature f k; T
f k
L ¼ tf kl

n o
jsl¼1 is the set of linguistic terms defined in the universe of discourse Ufk ;Gfk and

Mfk being syntactic and semantic rules, respectively. Let VT ¼ S
Tf k
L ;8f k 2 F denote the set of all linguistic terms.

In our experiments (see Sections 4 and 5), we aim to explain (both factually and counterfactually) the output of an FRBCS
[23] which is defined by the following components:

� a knowledge base containing a set of input and output variables and a rule base which represents a set R ¼ ri wið Þf gjjRji¼1 of

weighted fuzzy rules of the form ri wið Þ : IF Lf 1 is tf 11 AND . . . Lf k is tf kk . . . AND . . .
h i

THENy ISyi, where ri 2 R;wi 2 0;1½ � is the
rule weight (i.e., the higher wi the more relevant ri), t

f k
k 2 Tf k

L ; f k 2 F; yi 2 Y;
� a fuzzy processing structure containing fuzzification and defuzzification interfaces as well as a fuzzy reasoning mecha-
nism. Given an input vector x ¼ x1; . . . ; xp

� �
and a rule ri 2 R, its activation degree ai is computed as ai(x)

¼ l
t
f1
1

x1ð Þ � . . .� l
t
f k
k

xkð Þ � . . .� l
t
f p
p

xp
� �

, being l
t
f k
k

xkð Þ the membership degree of the value xk for the linguistic term tk

associated to feature f k, and � is a t-norm such as minimum or product.

Any rule ri can be denoted as a tuple ri wið Þ ¼ ACi; cqih i where ACi is an antecedent (i.e., a non-empty set of feature-value
pairs) and cqi is a consequent (i.e., a class label).

The output class yFAC 2 Y predicted by an FRBCS is said to be the factual explanation class. All the rules from the rule base
that lead to the predicted outcome form a set of factual explanation rules RFAC ¼ S

rj2R
rjjcqj ¼ yFAC

� �
, being RFAC #R. Similarly,

all the non-predicted classes form a set of CF classes, with a collection of the corresponding rules mapped to each of them:

RCF ¼
S
rj2R

rjjcqrj
¼ yCF

n o
;YCF ¼ yCF jyCF 2 Y n yFACf g.

Given an FRBCS s, a data instance x 2 X, and the classification output yFAC predicted by s, each class yj 2 Y is associated
with a single explanation of why x is classified in the given way. Hence, there exists only one factual explanation EFAC sð ,
x,yFACÞ. In addition, there is a non-empty set of CF explanations ECF sð ,x,YCFÞ ¼

S
yCF2YCF

ECF sð ,x,yCFÞ for each non-predicted class

yCF 2 YCF .
Throughout the manuscript, we assume that the output is explained in its entirety if the corresponding explanation con-

tains a factual explanation specifying why the given decision is made as well as jY j � 1 CF explanations indicating why all the
alternative classification options are discarded. Therefore, a (full) explanation for a data instance x 2 X is assumed to contain
one factual explanation and a non-empty set of CF explanations: E sð ,x,YÞ ¼ EFAC sð ,x,yFACÞ [ ECF sð ,x,YCFÞ. Accordingly, explana-
tion generation methods aim to produce (1) a factual explanation for the test instance and (2) the most relevant CF expla-
nations for all the CF classes.

3.2. Factual explanation generation

We design the process of explanation generation to include three main stages (text planning, sentence planning, and sur-
face text realization) as in the NLG pipeline proposed by Reiter and Dale [35]. We selected this NLG pipeline because it is by
far the most commonly used in the scientific community [14]. It is worth noting that we apply the same NLG pipeline no
matter if we consider either factual or CF explanations:

� Text planning, where the information to be conveyed in the text is identified (content determination), as well as some
order and general structure of the text is planned. In the case of CF explanations, content determination relies on rele-
vance estimation (as described in the next section).

� Sentence planning, which includes grouping of messages when needed (sentence aggregation) and decisions about the
words/expressions to be used (referring expression generation and/or lexicalization). This stage is crucial to avoid repe-
titions and make the output text more natural.

1 The use of categorical features is out of the scope of this work.
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� Surface text realization, which consists of generating a syntactically, morphologically, and orthographically correct text.
This last stage is implemented using a pool of templates dynamically instantiated, populated and mixed with a Python
wrapper of the SimpleNLG library [6].

Specifically, the factual explanation generation process presupposes the following steps: factual explanation rule selec-
tion, linguistic approximation of the feature values used in the antecedent (optionally), and linguistic realization. First,
the factual explanation rule is selected from all the rules whose consequent is the predicted class. To do so, we calculate
the product of the activation degree aj of each rule rj 2 R and its associated rule weight wj, s.t. argmax wj � aj, i.e., the factual
explanation rule has the maximum product of the activation degree aj and rule weight wj. Second, if the rules are semanti-
cally grounded, i.e., if they use meaningful strong fuzzy partitions (SFP), the feature values in the factual explanation are
readily available and mapped to the corresponding linguistic terms (e.g., ‘‘IF Color IS Pale AND Strength IS Standard THEN
Beer style IS Blanche” where Pale and Standard are expert-defined linguistic terms). Otherwise, i.e., if only local semantics
are available (e.g., ‘‘IF Color IS MF0 AND Strength IS MF1 THEN Beer-style IS Blanche” where MF0 and MF1 are two member-
ship functions with local semantics), linguistic approximation is necessary to generate a meaningful explanation. Notice that
the mechanism of linguistic approximation is also used for qualitative CF explanation generation and will be described in
detail in the next section. Finally, once the relevant pieces of information are identified, linguistic realization is performed.

3.3. Qualitative counterfactual explanation generation

In this section, we introduce a new method for generating qualitative CF explanations (hereinafter denoted as EUC). This
method can be regarded as an extension of our previously proposed method (hereinafter denoted as XOR) [43]. The EUC
method aims to be more sensitive than XOR to variations in membership functions. Despite certain methodological differ-
ences, both methods form a pipeline containing the following steps to be described in detail below (see Fig. 1): CF rule rep-
resentation, relevance estimation, linguistic approximation (optional in terms of the local/global semantics attached to the
FRBCS), and textual explanation generation.

CF rule representation. First of all, the test instance (as well as all the CF candidates) must be represented in a compatible
form. Both EUC and XOR methods reason over the information retrieved from the rule base. Multiple candidates form CF sets
which are labeled in accordance with the selected linguistic terms for the given features. Thus, we regard CF sets as collec-
tions of data instances covered by the rules leading to the desired CF class. In this sense, there exist as many potential CFs as
there are rules that lead to the desired CF class.

For a given FRBCS, a test instance x 2 X can be represented as a vector x ¼ x1�jVT j ¼ lx tið ÞjjVT j
i¼1

h i
of membership function

values of each linguistic variable. Similarly, each CF rule can be regarded in terms of the membership function values that
the linguistic variables take on. Therefore, each CF rule rCF 2 RCF is vectorized over VT for compatibility purposes so that
the collection of such vectorized rules makes up a rule-term matrix MjRCF j�jVT j where the i-th row corresponds to a CF rule
and the j-th column corresponds to the given linguistic term tj 2 VT . Hence, the rule-term matrix is populated with such
membership values as functions of a given linguistic term Mij ¼ lx tij

� �
.

Fig. 1. CF explanation generation pipeline. The shadowed building blocks influence the surface realization of the output explanation.
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It is worth noting that the XOR method additionally binarizes both the test instance vector and the rule-term matrix, at
the cost of information loss because of the test instance and rule vectors being approximated. Instead, the EUC method rep-
resents the original information without further approximation. This is claimed to better capture fuzzy variable ambiguity
and avoid potential information loss.

Relevance estimation. Given vector representations of the candidate CF rules, it becomes essential to identify the CF set
that is minimally different from (and therefore most relevant to) the test instance. Whereas XOR calculates relevance by min-
imizing the number of different bits, EUC relates each vectorized CF rule to the test instance vector in a jVT j-dimensional
space and measures CF relevance as the Euclidean distance d between pairs of vectors x; rCFi

� 	
;1 6 i 6 jRCF j; being

rCFi ¼ Mi;� the vector associated to row i in matrix M, i.e., the vector which corresponds to CF rule i.

� dXOR x; rCFi
� � ¼

P
j
jxj�rj

CFi
j

jVT j 2 0;1½ �;

� dEUC x; rCFi
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j xj � rjCFi

� �2
r

2 0;1½ Þ.

where xj and rjCFi are the j-th elements in vectors x and rCFi , respectively.
The candidate CF rules are then ranked in accordance with the given distance metric. Subsequently, we include the min-

imally distant (or most relevant) CF rules for each CF class in the pool ECF of the resulting CF explanations for the given test
instance x. If multiple CF rules are equally minimally distant from x, such rules are deemed equally explanatory. In this case,
the most relevant CF is selected randomly. Representing the test instance and CF rules in a Euclidean jVT j-dimensional space
is hypothesized to better capture fuzzy-specific properties of an FRBCS. For example, the Euclidean distance appears more
sensitive to changes in membership function values. The number of unique values that the XOR-based distance can take
on is limited by jVT j. In consequence, several CF rules may result in having the same relevance score while being distinct
in the number of features or their labeling. On the contrary, EUC provides a more flexible and diverse measure of relevance
of different CF rules and therefore gives a better insight into the fuzzy system’s behavior.

Linguistic approximation. If the linguistic terms are not based on a SFP and therefore not semantically grounded, the
selected CF rule must be enhanced with an additional linguistic layer so that the output explanation is meaningful to the
end user. Once the CF rules are ranked by relevance and the most relevant CF is identified, it must therefore be linguistically
approximated. To do so, each fuzzy set corresponding to the linguistic term of the selected CF rule is mapped to the gold
standard annotations. Note that this mapping is actionable if the a-cut is applied to such a fuzzy set given some threshold
value d. To illustrate the process of linguistic approximation, consider a fuzzy set FS characterized by a trapezoidal member-
ship function and three linguistic terms (T ¼ t1; t2; t3f g) which are candidates to be associated with FS (see Fig. 2 for details).
Given some cut-off threshold value d1, the fuzzy set FS can be projected to an interval of numerical values L ¼ vd1 ;vd2

� �
. In

addition, each linguistic term ti 2 T can be projected to an interval tid1 1 6 i 6 jTjð Þ. Then, the interval L can be compared with
the intervals tid1 using the Jaccard Similarity Index [13]:

8L 	 tfa 2 VT : S tid1; Lð Þ ¼ tid1 \ L
tid1 [ L

2 0;1½ �; ð1Þ

Fig. 2. Illustrative example of the linguistic approximation mechanism.
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where tid1 is the numerical interval closer to the linguistic term ti, and L is the numerical interval associated to the selected a-
cut. As follows from Fig. 2, S t3d1; Lð Þ > S t2d1; Lð Þ > S t1d1; Lð Þ. Hence, the feature f j characterized by fuzzy set FS is verbalized as
‘‘f j is t3” in this case.

Note that the threshold value d for the a-cut serves as a hyperparameter. The previously proposed XOR method uses
heuristics to specify d manually. Instead, both qualitative CF generation methods now use major voting in order to reduce
possible approximation error. Thus, given some small enough step, we inspect all the approximated linguistic terms over
the cut-off interval 0;1½ � for each term in the given CF rule and assign a confidence score to each term ti as follows:
c tið Þ ¼ #ti

1þ 1
step
, being #ti the number of times ti is the winner.

For each feature f j involved in the classification and considered in the output explanation, we apply major voting to iden-
tify which linguistic term is covered by the widest range of the inspected approximations using the approximation confi-
dence score c tið Þ as a reference, so that the selected linguistic term is tj 2 VT jargmax c tj

� �
. Considering the example in

Fig. 2, let step be 0.01. We therefore perform n ¼ 1þ 1=0:01 ¼ 101 linguistic approximations. Suppose that the term under
consideration is mapped to the set of linguistic terms as indicated in Table 1.

Approximation confidence scores are calculated for all the competing linguistic terms. Since we aim to use the most fre-
quently found term among all the considered threshold values, the linguistic term that has the highest score (in this case, t3)
is selected for the output explanation. It is worth noting that in this illustrative example, the selected linguistic term is the
same as the one selected when considering only d1. However, in the general case they may be different. Therefore, it is rec-
ommended to follow the major voting approach instead of relying only on a single d value selected heuristically.

As only two building blocks (relevance estimation and linguistic approximation) influence the output explanation (see
the shadowed blocks in Fig. 1), XOR and EUC generate CFs following one of the three scenarios below:

� the two methods select the same rule to be the most relevant, the approximation algorithm gets the same semantically
grounded linguistic terms;

� the two methods select two different CF rules (e.g., ‘‘IF f 1 IS MF0 and f 2 IS MF0 THEN ycf ” and ‘‘IF f 1 IS MF1 and f 2 IS MF1

THEN ycf ”) which nevertheless generate identical CF explanations due to a large enough overlap between the correspond-
ing fuzzy sets. This scenario is possible when all the features used in both rules are identical and their non-semantically
grounded values overlap to a large enough extent;

� the two methods select two different CF rules (e.g., ‘‘IF f 1 IS MF0 and f 2 IS MF0 THEN ycf ” and ‘‘IF f 1 IS MF2 and f 3 IS MF4

THEN ycf ”) where feature values are approximated to different linguistic terms.

Textual explanation realization. At the last stage, the selected factual and CF pieces of information are converted to
explanations in natural language while applying the NLG pipeline introduced in the previous section. It is worth noting that
the text and sentence planning along with text realization for a factual explanation follow the structure of the corresponding
winner rule from the rule base. Thus, a factual explanation is assumed to include a subordinate clause of cause (e.g., ‘‘The
data instance x is of class yf because f 1 is v1 and f 2 is v2”), which lists the features and the corresponding values or linguistic
terms that influenced the actual decision. On the other hand, a CF explanation is verbalized in natural language as a complex
conditional sentence that adopts the structure of the rule, e.g., ‘‘x would be of class ycf if f 1 were v2 and f 3 were v4” for the
given CF class ycf .

Implementation details. The XOR and EUC methods are implemented as open source software in Python and are made
publicly available at a Gitlab repository2.

3.4. Quantitative counterfactual explanation generation

In this section, we present a new method for CF explanation generation which is grounded in evolutionary and bio-
inspired computation algorithms for explainable AI [11]. More precisely, we have implemented a Genetic Algorithm (here-
after denoted as GEN) which takes as the starting point the genetic fuzzy tuning approach previously proposed by Alonso
et al. [4]. Indeed, the original algorithm was first introduced by Cordon and Herrera [7] and later adapted to explainable
SFP tuning in [4].

GENmanages a population P with N individuals which evolve in g generations. The given test instance x is used for build-
ing the first individual of the population. Each individual is associated to a real-coded chromosome which is made up of p

Table 1
Approximation confidence score calculation.

Term d Approximation confidence

t1 [0.0, 0.3) 30/101 = 0.297
t2 [0.3, 0.5) 20/101 = 0.198
t3 [0.5, 1.0] 51/101 = 0.505

2 https://gitlab.citius.usc.es/ilia.stepin/fcfexpgen (branch ‘‘xor_euc_gen”)
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genes, with each gene representing one of the features in F. Since all the features are numerical, gene i 2 1; p½ � encodes the
double value associated to feature i. The rest of the population is generated randomly. Thus, a random value is assigned to
each gene i within its variation interval which is determined by the numerical range associated to feature i. The pseudocode
of the developed algorithm is as follows (see the GEN shadowed block in Fig. 1):

1. Initialize the generation counter, g ¼ 0, and evaluate the initial population, P 0ð Þ. Evaluating a population means comput-
ing Fitness for each individual in the population. Here, Fitness is computed as the Euclidean distance between the data
instance x̂ associated to the current chromosome and the original test instance x, if the inferred output is in agreement
with the target CF class. Otherwise, Fitness equals the maximum distance which comes out from the Euclidean distance
between the two vectors representing the extreme values (min/max) for the variation intervals associated to each feature.
Hence, the smaller Fitness, the better.

2. while g < MaxGener and Fitness PStopThres and Nbest 6NrepThres

g :¼ g þ 1

Select PðgÞ from Pðg�1Þ

Crossover PðgÞ

Mutate PðgÞ

Elitist selection Pðg�1Þ

Evaluate PðgÞ

end while

The procedure ends either when the maximum number of generations (MaxGener) is reached, or Fitness is under the pre-
defined threshold (StopThres), or the number of consecutive generations for which the best fitness value remains the same
(Nbest) is greater than the predefined threshold (NrepThres). On the one hand, MaxGener should be defined empirically in
terms of the complexity of the dataset under consideration. It must be large enough to guarantee that GEN converges to a
good enough solution. On the other hand, StopThres and NrepThres are threshold values to speed up the procedure, so that
the algorithm stops before MaxGener is reached in case Fitness is small enough or becomes constant for a large enough num-
ber of generations. For each generation, the following steps are repeated:

� The selection of P gð Þ from P g�1ð Þ is made as a deterministic tournament selection procedure. Each individual in the new
population, P gð Þ, is chosen from the previous one, P g�1ð Þ, after making a tournament that involves TS individuals randomly
selected from P g�1ð Þ. The best individual is selected in any tournament. The selection pressure can be adjusted by changing
TS 6 N. The larger TS, the smaller the chance of weak individuals to be selected. For example, if TS ¼ N, then all the indi-
viduals in P gð Þ are equal to the best one in P g�1ð Þ, what is unsatisfactory from the point of view of diversity in the
population.

� The BLX � a crossover operator [10] is applied to P gð Þ. The parents, i.e., the selected chromosomes in the current popula-
tion, are crossed over in pairs. Each pair of parents, dad ¼ d1; � � � ; dp

� �
andmom ¼ m1; � � � ;mp

� �
, is replaced in the new pop-

ulation by two offsprings, Od ¼ od1; � � � ; odp
� �

and Om ¼ om1; � � � ; omp
� �

, where odj and omj are random values from the

intervals [mindj;maxdj] and [minmj;maxmj], respectively. Ij=[I
l
j; I

u
j ] is the variation interval of gene j. According to the taxon-

omy for the crossover operator presented by [21], a ¼ 0:3 is a suitable value for letting BLX � a exploit the nature of real
coding as follows:

mindj = maximum Ilj; dj � a � jdj �mjj
� �

maxdj = minimum dj þ a � jdj �mjj; Iuj
� �

minmj = maximum Ilj;mj � a � jmj � djj
� �

maxmj = minimum mj þ a � jmj � djj; Iuj
� �

� A uniformmutation operator is considered. The value of the selected gene is changed by another one generated randomly
within its variation interval.

� The elitist selection ensures perpetuating the best individual from the given generation to the next one. If the best indi-
vidual, Bi in P g�1ð Þ, is not included in P gð Þ, then the worst individual in P gð Þ is replaced by Bi.
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Once GEN ends, we have identified a new data instance x̂ that is assumed to minimally change the original test instance x
while making the FRBCS infer the desired CF output3. Then, it is time for generating the related CF explanation in natural lan-
guage. To do so, we once again apply the NLG pipeline described previously. First of all, we compute the percentage of modi-

fication Dj ¼ 100 � x̂j�xj
Ij

associated to each feature j to go from x to x̂. The text which describes Dj is as follows: xj is [slightly]

increased j decreased; where increased appears if Dj > 0. On the contrary, decreased is used if Dj < 0. In addition, the linguistic
modifier slightly appears only in case of small modifications, i.e., only if 0:9 6 Dj 6 5, which means the percentage of modifica-
tion is smaller or equal than 5%. Notice that nothing is said about feature j if Dj < 0:9. In this case, we consider the feature j to
remain the same assuming that such a small change (less than 0.9%) does not have sufficient explanatory power for the recip-
ient of the explanation. This assumption is made heuristically in accordance with our previous experience with designing NLG
systems while keeping in mind the limited processing capability of human beings [28]. As a result, the generated textual expla-
nations are shorter and easier to process while referring only to relevant changes.

Afterwards, at the sentence planning stage, for the sake of simplicity and naturalness, we aggregate those pieces of infor-
mation associated to different features which are affected by the same type of modification (e.g., ‘‘f 1 and f 2 are slightly
increased” replaces to ‘‘f 1 is slightly increased and f 2 is slightly increased”). We also apply lexicalization for each feature to
be described in a fully meaningful way. Therefore, increased and decreased are replaced by more meaningful terms (e.g.,
strength is bigger or color is darker).

Finally, text realization is done again using the following template and the SimpleNLG library with the aim of ensuring
syntactically, morphologically and orthographically correct final text: ‘‘[Output Class Name] would be [CF Class Name] if
[Name of the most Relevant Featurej] were [linguistic description of Dj] (new data value) [AND. . .]”. Notice that the new val-
ues for the features associated with the most relevant changes are given in brackets.

Implementation details. The GENmethod is implemented as a piece of open source software in Python and is made pub-
licly available at a Gitlab repository4. It is also integrated with the open source software GUAJE5 which is devoted to facilitating
the design of explainable fuzzy systems [3]. The following GEN parameters are considered when generating the quantitative CF
explanations under evaluation in the rest of the paper: population length (N ¼ 30), tournament size (TS ¼ 2), mutation proba-
bility (mprob ¼ 0:1), crossover probability (cprob ¼ 0:8), a-crossover (a ¼ 0:3), MaxGener = 1000, StopThres = 0, NrepThres = 30.
The interested reader is kindly referred to Appendix A for further details about how such parameters were selected.

4. Evaluation design

In this section, we specify some of the key features that subsequent human evaluation studies rely upon. Section 4.1
introduces the dataset and FRBCS whose classifications are explained. Then, Section 4.2 presents a novel metric for measur-
ing the complexity of automated explanations.

4.1. Dataset and fuzzy inference system

The experiments have been carried out using the BEER dataset6. It contains characteristics of 400 instances of beer each of
which belongs to one of 8 classes (Blanche, Lager, Pilsner, IPA, Stout, Barleywine, Porter, or Belgian Strong Ale). All data instances
are described in terms of three features: color, strength, and bitterness. The corresponding linguistic terms and their ranges of
values are displayed in Table 2. It is worth noting that all linguistic terms are commonsense and fully meaningful because they
were provided by expert brewers.

In our experiments, we generate explanations for an FRBCS associated with the Fuzzy Unordered Rule Induction Algo-
rithm (FURIA) [22]. The min–max inference mechanism [27] is applied so that both conjunction (AND) and implication
(THEN) are implemented by the t-norm minimum, and the output accumulation is done by the t-conorm maximum. All
membership functions are trapezoidal. All rule weights are set to the default value of 1. In addition, it is necessary to apply
linguistic approximation as part of the explanation generation pipeline because FURIA rules are endowed only with local
semantics. It is worth noting that such a linguistic approximation makes use of meaningful SFP-based linguistic terms as well
as their combinations. Thus, explanations may contain combinations of adjacent terms (e.g., ‘‘Feature1 is Term1 or Term2”)
with the aim of enhancing further their explanatory capacity. Fig. 3 illustrates the SFP associated to color.

In this work, we use the same FRBCS that was previously designed and evaluated in [43] with 10-fold cross-validation,
achieving 95.5% of correctly classified instances and F1-score equals 0.954 (see the confusion matrix in Table 3 for further
details). Notice that, with the aim of avoiding generation of misleading explanations and mainly because the present work
focuses on the intended human evaluation, the misclassified test instances are excluded from further analysis in the rest of
this manuscript. Whereas explaining misclassification is a challenging problem, it falls outside the scope of this work.

3 Due to the well-known random heuristic nature of genetic algorithms, they avoid stacking in a local minimum but they can not always guarantee the
convergence to the global minimum. Anyway, as shown in Appendix A, GEN succeeds to be effective in the search of ‘‘sub-optimal” solutions which are
expected to be close enough to the optimal one.

4 https://gitlab.citius.usc.es/ilia.stepin/fcfexpgen (branch ‘‘xor_euc_gen”)
5 https://gitlab.citius.usc.es/jose.alonso/guaje/
6 The BEER dataset is publicly available athttps://dx.doi.org/10.13140/RG.2.2.20313.67680
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4.2. Perceived explanation complexity

The use of explanations in natural language poses the problem of adequate estimation of explanation complexity. For
example, it remains unclear whether the use of adjacent linguistic terms in an explanation (e.g., ‘‘. . .if color were pale or
straw”) increases or decreases understandability (and therefore effectiveness and usability) of such an explanation.

As the starting inspiring point for our proposal of automatic calculation of explanation complexity, we refer to existing
readability tests in linguistics, which estimate how easily a text can be read by the intended audience. More precisely,
the well-known Gunning Fog Index [19] is the weighted average of the normalized sentence length and the percentage of
complex words in the text. Similarly, an estimate of complexity of a feature-based linguistic explanation (as perceived by
the end user) may rely on the explanation length as well as on the number of features and linguistic terms used in the
explanation.

Fig. 3. Interpretation of SFP-based linguistic terms associated to Color.

Table 3
FURIA confusion matrix. UC stands for Unclassified instances.

Predicted class

Observed class BLA LAG PIL IPA STO BAR POR BSA UC

Blanche (BLA) 50
Lager (LAG) 48 1 1
Pilsner (PIL) 1 49

IPA 1 43 5 1
Stout (STO) 50

Barleywine (BAR) 5 43 1 1
Porter (POR) 1 1 47 1

Belgian Strong Ale (BSA) 1 1 1 47

Table 2
Numerical intervals associated to each SFP-based linguistic term.

Feature Linguistic term Range of values

Color Pale [0.0, 3.0]
Straw [3.0, 7.5]
Amber [7.5, 19.0]
Brown [19.0, 29.0]
Black [29.0, 45.0]

Bitterness Low [7.0, 21.0]
Low-medium [21.0, 32.5]
Medium–high [32.5, 47.5]

High [47.5, 250.0]
Strength Session [0.035, 0.052]

Standard [0.052, 0.067]
High [0.067, 0.090]

Very high [0.090, 0.136]
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In light of the above, we formally define the perceived explanation complexity (PEC) of an automated explanation e as
follows:

PEC eð Þ ¼ k �min l eð Þ;rð Þ
r

þ 1� kð Þ � 1
jFj

XFe
i¼1

tf i

jTf i
L j

ð2Þ

where k 2 0;1½ � is the weight regularizing the impact of the explanation length and number of features and terms used in the
explanation, l eð Þ is the explanation length in characters, r is a normalization hyperparameter over the explanation length, jFj
is the total number of features in the dataset, Fe is the number of unique features used in the given explanation, tf i is the

number of terms associated with the i-th feature used in the explanation, jTf i
L j is the power of the set of linguistic terms

of the i-th feature.
In the case of the qualitative methods XOR and EUC, the basic linguistic terms to take into account are those already

described in Table 2. However, in order to guarantee a fair comparison between quantitative and qualitative CF explanations,
it is necessary to linguistically represent numerical feature value changes suggested by the quantitative method GEN. The
sets of linguistic terms associated to each feature by the GEN method are the following:

TL Colorð Þ ¼ fdarker, slightly darker, lighter, slightly lighterg.
TL Bitternessð Þ ¼ fsmaller, slightly smaller, bigger, slightly biggerg.
TL Strengthð Þ ¼ fsmaller, slightly smaller, bigger, slightly biggerg.
To illustrate computation of PEC(e), let us consider the following example: given a data instance, k ¼ 0:5 and r ¼ 150, we

have three alternative CF explanations with their corresponding complexity scores.

� XOR: ‘‘Beer style would be Stout if color were black.”
PEC eð Þ ¼ 0:5 � 46

150 þ 0:5 � 1
3 � 1

5 ¼ 0:153þ 0:033 ¼ 0:186
� EUC: ‘‘Beer style would be Stout if bitterness were low or low-medium, color were black, and strength were standard or
high or very high.”

PEC eð Þ ¼ 0:5 � 130
150 þ 0:5 � 1

3 � 2
4 þ 1

5 þ 3
4

� � ¼ 0:433þ 0:242 ¼ 0:675

� GEN: ‘‘Beer style would be Stout if color were bigger (30.501) and strength were smaller (0.078).”

PEC eð Þ ¼ 0:5 � 90
150 þ 0:5 � 1

3 � 1
4 þ 1

4

� � ¼ 0:300þ 0:083 ¼ 0:383

Noteworthy, it always holds that PEC eð Þ 2 0;1½ �. PEC(e) is null only if the explanation is empty and the associated weight
k ¼ 1. On the contrary, the highest value of PEC(e) is obtained when the explanation length is equal to the normalization
hyperparameter r or all the dataset features and all the linguistic terms are included in the explanation. However, both
of these special cases are of no interest, as the empty explanation has got null explanatory power whereas explanation
including all the possible categories of features is clearly misleading.

5. Human evaluation

The human evaluation study consisted of two online questionnaires that allowed us to assess how the metric PEC is
related to different explanation aspects. Section 5.1 presents the instruments and design of the first questionnaire (here-
inafter referred to as Survey GM because the items to rate are associated to the so-called Gricean Maxims [15] as we will show
below) as well as the analysis of collected data and the discussion of main results. In the light of lessons learned from this
survey, we developed a subsequent one (hereinafter referred to as Survey TS because the focus is on assessing Trustworthiness
and Satisfaction of the given explanations) whose experimental design and main discoveries are described in Section 5.2. In
both surveys, all the subjects participated voluntarily and anonymously. This research obtained ethics approval from the
University Ethics committee.

5.1. Survey GM: Evaluating CF explanations in terms of Gricean Maxims

5.1.1. Experimental settings
The first experiment was designed as a within-subject study. In order to perform a comparative analysis of qualitative and

quantitative CF explanations, we considered only those test instances for which the qualitative methods (XOR and EUC) gen-
erated distinct explanations (thus avoiding misleading repetitions).

Since the BEER dataset has 8 classes, given a test instance we have 1 factual class and 7 alternative CF classes. Because the
FURIA rules were trained and evaluated with 10-fold cross-validation, the 400 data instances in the BEER dataset were split
10 times into training set (90%) and test set (10%). As a result, we built 10 sets of FURIA rules. They were used to make pre-
dictions for all test instances in each fold (see details in Table 4). Then, we filtered out unclassified and misclassified test
instances with the aim of avoiding the inclusion of void or misleading explanations to be evaluated in the survey. Notewor-
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thy, only 3 out of the 400 (0.75%) test instances (across all the folds) were unclassified, whereas 20 out of the 400 (5%) test
instances were misclassified. Then, we generated CF explanations for each given prediction using the qualitative methods
XOR and EUC. All in all, after careful screening, we identified all unique pairs of distinct CFs to exclude pieces of repeated
explanations from the survey. Then, we picked 5 test instances representing illustrative cases (among the instances associ-
ated to all the previously identified unique CF pairs) that would be used as stimuli in the human evaluation study. After-
wards, we generated quantitative CF explanations for the selected stimuli using the GEN method.

Hence, Survey GM includes the following 5 tasks which were presented in a randomized order to each subject (see Table 5
for details). Task 1 (predicted class: Barleywine, CF class: IPA) and Task 2 (predicted class: IPA, CF class: Barleywine) represent
pairs of classes where the classifier predicted the greatest number of incorrect results (see the confusion matrix from Table 3
in the previous section for details). Hereinafter we therefore refer to the first two tasks as ‘‘confusing” (CONF) while the rest
of the tasks are deemed ‘‘non-confusing” (NON-CONF). In addition, the last three stimuli were selected by their relation to
color. In Task 3 (predicted class: Pilsner, CF class: Lager) both the predicted and CF classes are characterized by low values of
color (i.e., from Pale to Amber in Table 2). In contrast, Task 4 (predicted class: Belgian Strong Ale, CF class: Stout) the corre-
sponding classes presume high values of color (i.e., Brown or Black in Table 2) for both factual and CF classes. Finally, the
stimulus for Task 5 (predicted class: Blanche, CF class: Porter) was selected to have contrastive values of color for the pre-
dicted and CF classes (i.e., Pale for Blanche versus Black for Porter).

Table 5
Test instances and the corresponding CF explanations under study.

Task Feature Factual
class

CF class CF explanations

Color Bitterness Strength XOR EUC GEN

1 17 87 0.096 Barleywine IPA

Beer style would be IPA
if strength were
high (PEC=0.195)

if color were pale or straw or
amber and strength were
session or standard or high

(PEC=0.582)

if strength were
smaller (0.085)
(PEC=0.232)

2 8 69 0.083 IPA Barleywine

Beer style would be Barleywine
if strength were

very high
(PEC=0.235)

if color were amber or
brown or black and strength
were very high (PEC=0.465)

if strength were
bigger (0.096)
(PEC=0.252)

3 5 34 0.068 Pilsner Lager
Beer style would be Lager

if bitterness were
low or low-medium
or medium-high
and color were

amber (PEC=0.488)

if bitterness were low or
low-medium or medium-

high and color were straw or
amber (PEC=0.552)

if color were
slightly darker
(6.500)
(PEC=0.255)

4 28 38 0.091 Belgian Stout
Beer style would be Stout

Strong Ale
if color were black
(PEC=0.186)

if bitterness were low or
low-medium, color were
black, and strength were
standard or high or very

high (PEC=0.675)

if color were
darker (30.501)
and strength were
smaller (0.078)
(PEC=0.383)

5 3 16 0.054 Blanche Porter Beer style would be Porterif color were brown
and strength were
session or standard
(PEC=0.400)

if bitterness were low-
medium or medium-high or
high, color were brown, and
strength were session or
standard (PEC=0.699)

if color were
darker (16.001)
and strength were
slightly smaller
(0.052)
(PEC=0.416)

Table 4
Screening of test instances for defining the survey stimuli in terms of XOR and EUC CF explanations generated fold by fold. Unclassified instances are those for
which no rule was activated. Misclassified instances are those where the FRBCS prediction does not match the ground-truth class label. Wrong factuals
correspond to test instances for which wrong factual explanations were generated.

Fold CV0 CV1 CV2 CV3 CV4 CV5 CV6 CV7 CV8 CV9

Test instances 40 40 40 40 40 40 40 40 40 40
Unclassified instances – – 2 – – 1 – – – –
Misclassified instances 2 2 3 1 3 1 2 – 3 3

Wrong factuals 1 – 1 – 1 2 – 1 – 2
Screened instances 37 38 34 39 36 36 38 39 37 35
CF explanations 259 266 238 273 252 252 266 273 259 245
Distinct CF pairs 25 28 29 24 20 36 32 74 28 38
Unique CF pairs 6 5 6 4 2 7 8 10 3 5
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The survey was implemented as an online questionnaire7 which was developed in Python8. Each task screen included two
panels. On the left panel, the factual explanation was given in the upper-left corner (for reference only) followed by three dif-
ferent CF explanations, each corresponding to one of the methods under study. The given test instance was depicted as a parallel
coordinates plot below the explanations. On the right panel, the subjects were asked to rate each CF explanation on a 7-point
Likert scale regarding several explanation aspects which are linked to the following Gricean Maxims [8,15]: Maxim of quantity
(make your contribution as informative as is required without making it more informative than required); Maxim of quality (do
not give information that is untruthful or lacks evidence); Maxim of relevance (present information pertinent to the discussion);
and Maxim of manner (be clear and orderly, avoid ambiguity and obscurity).

It is worth noting that these four maxims were transformed into five explanation aspects (see Table 6). First, informative-
ness is related to the maxim of quantity and estimates whether the information present in the explanation sufficiently
describes a necessary feature perturbation and whether it contains any unnecessary information. Then, the maxim of quality
is represented by two explanation aspects. On the one hand, trustworthiness measures how credible the suggested changes
are perceived (without them necessarily being accurate). On the other hand, accuracy indicates whether the suggestions
found in the explanation are perceived to be correct and truly leading to the desired different outcome. In addition, the
aspect of relevance aims to estimate how adequate the suggested changes are with respect to the test instance characteris-
tics. Further, the aspect of readability estimates how grammatical and easy to read the given explanation is. Finally, in order

Table 6
Explanation aspects under evaluation in Survey GM.

Related maxim
of

Evaluation
aspect

Description

Quantity Informativeness An estimate of how complete a CF explanation is perceived to be
Quality Trustworthiness An estimate of how credible a CF explanation is perceived to be

Accuracy An estimate of how precisely a CF explanation describes the CF class instances
Relevance Relevance An estimate of how pertinent the CF explanation details are in order to make a minimal change in feature

values
Manner Readability An estimate of how grammatical a CF explanation is perceived to be

Table 7
Self-reported demographic data (Survey GM). The number of subjects comes along with the percentage in brackets for each category.

Demographic parameter Number of participants

(a) Age
18–25 3 (16.67%)
26–35 7 (38.89%)
36–45 5 (27.78%)
46–55 3 (16.67%)

(b) Gender
Male 15 (83.33%)
Female 2 (11.12%)
Preferred 1 (5.55%)
not to say

(c) Education
Doctorate (Ph.D) 10 (55.56%)
Master’s (M.A./M.Sc.) 7 (38.89%)
Bachelor’s (B.A./B.Sc.) 1 (5.55%)

(d) English proficiency
Native speaker 3 (16.67%)
Proficient (C2) 7 (38.89%)
Advanced (C1) 4 (22.22%)
Upper intermediate (B2) 4 (22.22%)

(e) Areas of expertise
Explainable AI 12 (66.67%)
Fuzzy logic 9 (50.00%)
Mathematics 6 (33.33%)
Engineering 8 (44.44%)
Computer science 14 (77.78%)
Computational linguistics 4 (22.22%)
Social sciences 1 (5.56%)

7 https://tec.citius.usc.es/qxaisurvey1/
8 https://gitlab.citius.usc.es/jose.alonso/surveygenerator
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to estimate a degree of association between PEC and the estimated explanation aspects, Spearman’s rank correlation coeffi-
cients (q) were calculated pairwise for the PEC scores and mean human evaluation scores of each explanation aspect. The
threshold of p ¼ 0:05 was used to confirm whether the correlation between PEC and the given explanation aspect exists.

5.1.2. Results
A total of 18 subjects participated in the Survey GM, each evaluating all the three explanation generation methods. All the

demographic data collected from participants in Survey GM as well as their self-reported areas of expertise can be found in
Table 7. To sum it up, 15 participants were males (83.33%), two were females (11.12%), and one person (5.55%) did not dis-
close its gender. In addition, all the participants held at least a Bachelor degree and had expertise in a wide range of sciences.
Further, all the participants had at least the B2 level of English proficiency and represented various areas of expertise. Note
that participants were allowed to select multiple areas.

Table 8 shows the mean and median human evaluation scores in Survey GM as well as the corresponding standard devi-
ation (St.dev.). On average, the EUC explanations are perceived more informative than GEN or XOR explanations. However,
the quantitative GEN method is perceived to generate more trustworthy explanations, XOR explanations being the second
most credible, and the EUC method offering the least trustworthy explanations among the three methods. The GEN explana-
tions are found more accurate than those generated by XOR and EUC methods. The GEN method also appears to generate
more relevant explanations than XOR and EUC. Nevertheless, XOR explanations are perceived as grammatical as those offered
by GEN, with EUC offering the least readable explanations, possibly due to their increased length.

As we consider all the sample explanations collectively, we observe important correlations between PEC and averaged
scores for several explanation aspects. Thus, explanation complexity is found to moderately correlate with informativeness
(q ¼ 0:545; p ¼ 0:036). In addition, strong negative correlations are observed between PEC and relevance
(q ¼ �0:688; p ¼ 0:005) but also between PEC and readability (q ¼ �0:871; p < 0:001). On the other hand, no conclusion
can be made regarding the correlation either between PEC and trustworthiness (q ¼ �0:3; p ¼ 0:278) or between PEC and
accuracy (q ¼ 0:07; p ¼ 0:804).

As for the ‘‘confusing” tasks alone, a strong negative correlation is found only between PEC and trustworthiness
(q ¼ �0:87; p ¼ 0:024). The human evaluation scores for the other explanation aspects do not allow us to draw any other
significant conclusions on their association with PEC. As for the ‘‘non-confusing” tasks alone, the findings testify that more
complex explanations are perceived less readable (q ¼ �0:983; p < 0:001).

The main lessons learned from this survey are as follows: (1) most participants agreed that the online questionnaire was
long because it involved many different evaluation aspects for the three different methods; and (2) PEC turned out to be a
good estimate for some of the explanation aspects under study. Then, we may take profit from these facts when designing
future surveys: provide subjects with short questionnaires that regard only those specific aspects which cannot be inferred
from PEC.

5.2. Survey TS: Evaluating Trustworthiness and Satisfaction of explanations

5.2.1. Experimental settings
In the light of lessons learned from previous survey, we defined a subsequent one. Survey TS was designed to have a sim-

plified structure and follow a between-subject design where each subject would assess only one given explanation genera-
tion method. We considered the same stimuli as in the previous survey but focused only on trustworthiness and satisfaction
of explanations instead. In the new questionnaire9, the subjects were asked to evaluate the given CF explanation only in terms
of trustworthiness and satisfaction. In addition, we adhered to the DARPA10 [18] guidelines for assessing these explanation
aspects on a 5-point Likert scale.

As designed previously, the task screens were presented in a randomized order to each subject. Similarly to Survey GM,
Spearman’s rank correlation coefficients (q) were calculated to estimate the association between PEC scores and human eval-
uation scores for trustworthiness and satisfaction. The same threshold value of p ¼ 0:05 was used to verify whether such
correlations existed.

5.2.2. Results
Sixty subjects participated in Survey TS. Each method was assessed by 20 participants independently. All the demographic

data collected from participants are detailed in Table 9. Out of all the participants, a total of 57 (95 %) disclosed their demo-
graphic data. Thus, 32 of all the participants reported to be males (56.14%), 21 participants were females (36.84%) whereas 4
people (7.02%) preferred not to indicate their gender. Similarly to Survey GM, all the participants self-assessed their English
language proficiency to be of at least the B2 level, and 53 out of 57 subjects disclosed their area of expertise.

Table 10 summarizes the human evaluation scores in Survey TS. Regarding trustworthy, XOR and GEN explanations are on
average perceived nearly the same, the EUC explanations slightly falling behind. A similar pattern is observed for satisfaction.
The quantitative GEN explanations are, in general, found to be the most satisfying. Nevertheless, the qualitative XOR expla-

9 https://tec.citius.usc.es/cfsurvey/
10 The acronym DARPA stands for Defense Advanced Research Projects Agency, which is the research and development agency of the USA.
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Table 8
Survey GM results. ALL corresponds to the average for the five tasks. CONF averages only confusing tasks (1 and 2). NON-CONF averages only non-confusing tasks (3, 4 and 5). The highest average values for each (group
of) task(s) and explanation aspect are highlighted in bold. Notice that, PEC values for ALL, CONF, and NON-CONF are averaged scores for the corresponding groups of tasks.

Task Method PEC Informativeness Trustworthiness Accuracy Relevance Readability

Mean Median St.dev. Mean Median St.dev. Mean Median St.dev. Mean Median St.dev. Mean Median St.dev.

1 XOR 0.195 4.667 4.500 1.152 4.889 5.000 1.451 4.667 5.000 1.609 4.722 5.000 1.447 5.778 7.000 1.592
EUC 0.582 5.333 5.000 1.188 4.333 5.000 1.749 4.667 5.000 1.814 3.611 3.500 1.754 4.500 4.500 1.917
GEN 0.232 5.222 6.000 1.517 5.222 5.000 1.166 5.500 6.000 1.581 5.056 6.000 1.697 5.556 6.000 1.580

2 XOR 0.235 4.611 4.500 1.614 4.778 5.000 1.396 4.778 5.000 1.592 5.111 5.000 1.323 6.222 7.000 1.003
EUC 0.465 5.000 5.000 1.414 4.222 5.000 1.865 3.889 4.500 2.083 4.611 5.000 1.685 4.333 4.500 1.815
GEN 0.252 4.722 4.500 1.742 4.778 5.000 1.353 4.667 5.000 1.715 5.278 5.500 1.487 5.611 6.000 1.501

3 XOR 0.488 4.722 5.000 1.526 4.111 4.000 1.676 4.444 4.000 1.688 4.389 5.000 1.335 4.556 4.500 1.617
EUC 0.552 4.833 5.000 1.339 4.333 5.000 1.414 4.167 4.000 1.618 4.167 4.000 1.383 4.333 4.500 2.058
GEN 0.255 4.333 4.500 1.572 4.167 4.500 1.791 4.278 4.000 1.447 4.667 5.000 1.572 6.000 6.000 1.237

4 XOR 0.186 4.500 4.000 1.581 4.389 4.500 1.819 3.889 3.500 1.676 4.667 4.500 1.879 6.278 6.000 0.826
EUC 0.675 5.389 6.000 1.501 4.944 5.000 1.211 4.778 5.000 1.734 4.278 5.000 1.487 3.833 3.000 2.121
GEN 0.383 5.556 6.000 1.338 5.833 6.000 1.200 5.833 6.000 1.339 5.611 5.500 1.290 5.778 6.000 1.166

5 XOR 0.400 4.722 5.000 1.638 5.000 5.000 1.495 5.000 5.000 1.283 4.889 5.000 1.451 5.667 6.000 1.609
EUC 0.699 4.889 5.000 1.231 4.667 5.000 1.534 5.056 5.000 1.474 4.389 4.000 1.787 4.056 4.000 1.893
GEN 0.416 4.889 5.000 1.323 4.333 5.000 1.749 4.833 5.000 1.791 4.889 5.500 1.676 5.389 6.000 1.539

ALL XOR 0.301 4.644 5.000 1.553 4.633 5.000 1.575 4.556 5.000 1.187 4.756 5.000 1.486 5.700 6.000 1.480
EUC 0.595 5.089 5.000 4.944 4.500 5.000 1.560 4.511 5.000 1.769 4.211 4.000 1.625 4.211 4.000 1.934
GEN 0.308 4.944 5.000 1.531 4.867 5.000 1.567 5.022 5.000 1.649 5.100 5.000 1.551 5.667 6.000 1.398

CONF XOR 0.215 4.639 4.500 1.570 4.833 5.000 1.404 4.722 5.000 1.579 4.917 5.000 1.381 6.000 7.000 1.331
EUC 0.524 5.167 5.000 1.298 4.278 5.000 1.783 4.278 5.000 1.966 4.111 4.500 1.769 4.417 4.500 1.842
GEN 0.242 4.972 5.000 1.630 5.000 5.000 1.265 5.083 5.500 1.680 5.167 6.000 1.577 5.583 6.000 1.519

NON-CONF XOR 0.358 4.648 5.000 1.556 4.500 5.000 1.680 4.444 5.000 1.598 4.648 5.000 1.556 5.500 6.000 1.551
EUC 0.642 5.037 5.000 1.359 4.648 5.000 1.389 4.667 5.000 1.625 4.278 4.000 1.535 4.167 4.000 1.979
GEN 0.351 4.926 5.000 1.478 4.778 5.000 1.745 4.981 5.000 1.642 5.056 5.000 1.547 5.722 6.000 1.433
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Table 9
Self-reported demographic data (Survey TS). The number of subjects comes along with the percentage in brackets for each category.

Demographic parameter Number of participants

(a) Age
18–25 9 (15.79%)
26–35 19 (33.33%)
36–45 10 (17.54%)
46–55 10 (17.54%)
56–65 7 (12.28%)
66+ 2 (3.52%)

(b) Gender
Male 32 (56.14%)
Female 21 (36.84%)
Preferred 4 (7.02%)
not to say

(c) Education
Doctorate (Ph.D) 33 (57.89%)
Master’s (M.A./M.Sc.) 17 (29.82%)
Bachelor’s (B.A./B.Sc.) 5 (8.77%)
Short-cycle terciary 1 (1.76%)
Post-secondary non-terciary 1 (1.76%)

(d) English proficiency
Native speaker 9 (15.79%)
Proficient (C2) 20 (35.09%)
Advanced (C1) 21 (36.84%)
Upper intermediate (B2) 7 (12.28%)

(e) Areas of expertise
Explainable AI 29 (54.72%)
Fuzzy logic 14 (26.42%)
Mathematics 6 (11.32%)
Engineering 11 (20.75%)
Computer science 35 (66.04%)
Computational linguistics 22 (41.51%)
Social sciences 5 (9.43%)

Table 10
Survey TS results. ALL corresponds to the average for the five tasks. CONF averages only confusing tasks (1 and 2). NON-CONF averages only non-confusing tasks
(3, 4 and 5). The highest average values for each (group of) task(s) and explanation aspect are highlighted in bold. Notice that, PEC values for ALL, CONF, and
NON-CONF are averaged for the corresponding groups of tasks.

Task Method PEC Trustworthiness Satisfaction

Mean Median St.dev. Mean Median St.dev.

1 XOR 0.195 3.100 3.000 1.221 2.750 2.000 1.545
EUC 0.582 3.000 3.000 1.183 2.550 2.000 1.161
GEN 0.232 3.100 3.500 1.338 3.100 3.000 1.375

2 XOR 0.235 3.100 3.000 1.179 2.900 3.000 1.261
EUC 0.465 2.850 3.000 1.108 2.800 2.000 1.288
GEN 0.252 3.300 3.500 1.308 2.950 3.000 1.117

3 XOR 0.488 3.700 4.000 1.345 3.150 3.500 1.352
EUC 0.552 2.850 3.000 1.108 2.650 2.000 1.108
GEN 0.255 3.150 3.000 1.152 2.950 3.000 1.203

4 XOR 0.186 3.300 3.000 1.382 3.150 3.000 1.424
EUC 0.675 3.300 3.500 1.145 2.900 3.000 1.044
GEN 0.383 3.800 4.000 1.030 3.900 4.000 1.179

5 XOR 0.400 3.700 4.000 1.100 3.550 4.000 1.203
EUC 0.699 3.600 4.000 1.020 3.400 4.000 1.158
GEN 0.416 3.400 3.000 1.020 3.200 3.000 1.077

ALL XOR 0.301 3.380 4.000 1.279 3.100 3.000 1.389
EUC 0.595 3.120 3.000 1.151 2.860 2.500 1.192
GEN 0.308 3.350 4.000 1.203 3.220 3.000 1.246

CONF XOR 0.215 3.100 3.000 1.200 2.825 3.000 1.412
EUC 0.524 2.925 3.000 1.149 2.675 2.000 1.233
GEN 0.242 3.200 3.500 1.327 3.025 3.000 1.255

NON-CONF XOR 0.358 3.567 4.000 1.296 3.283 3.500 1.343
EUC 0.642 3.250 3.000 1.135 2.983 3.000 1.147
GEN 0.351 3.450 4.000 1.102 3.350 3.000 1.222
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nations turn out more satisfying for certain tasks (3 and 5) whereas the EUC explanations appear less favorable in 4 out of the
5 tasks as well as on average.

Considering all the methods and tasks together, the findings from Survey TS do not allow us to make any conclusion
regarding the correlation either between PEC and trustworthiness (q ¼ 0:07; p ¼ 0:803) or between PEC and satisfaction
(q ¼ �0:081; p ¼ 0:775). The same situation is observed irrespective of the ‘‘confusing” nature of the tasks. On the one hand,
there is a negative correlation but not enough statistical evidence for making distinctive conclusions in the case of ‘‘confus-
ing” tasks: PEC versus trustworthiness (q ¼ �0:516; p ¼ 0:295); and PEC versus satisfaction (q ¼ �0:371; p ¼ 0:468). On the
other hand, correlation coefficients are smaller but, once again, lack evidence in case of ‘‘non-confusing” tasks: PEC versus
trustworthiness (q ¼ �0:025; p ¼ 0:949); PEC versus satisfaction (q ¼ �0:209; p ¼ 0:589).

6. Discussion

The explanation generation methods under study have a number of strengths and weaknesses. The qualitative methods
favor two essential properties of CFs. First, the output CFs turn out to be diverse, as they can be mapped to a set of individual
data points that are all equally minimally different on a categorical scale. Second, these methods are expected to maximize
the validity of the generated CFs, as the corresponding explanations mimic the rules from the rule base. Therefore, following
such explanations maximizes the probability of the corresponding CF rule to fire. On the other hand, the proposed qualitative
methods may generate explanations that include a high number of features, some of them possibly being irrelevant or poorly
explanatory.

The human evaluation study testifies that more complex explanations are perceived to be more informative, whereas
increasing complexity jeopardizes readability and relevance. These findings specify the necessity of a careful design of auto-
mated explanations for specific tasks and/or application domains and/or intended audience. Thus, high-stakes decisions may
require the corresponding explanations to be more informative and therefore encourage the use of methods that guarantee
higher PEC scores of their output explanations (EUC). On the other hand, if the intended audience involved only lay users,
more readable and therefore less complex explanations (XOR or GEN) may be preferred.

PEC scores allow us not only to quantify the perceived complexity of automatically computed CFs but also discern the
most favorable of them. Lower PEC values appear to represent lower explanation complexity from user’s point of view
and therefore be more comprehensive. It can be seen that explanation length has a major impact on explanation complexity
if the number of explanation features is low or if the linguistic terms used for such features are selected from a wider range of
terms. Indeed, the terms covering narrower intervals appear more characteristic for the corresponding features and therefore
more comprehensive. Further, the use of the proposed metric favors shorter but more informative (in terms of the number of
features and/or linguistic terms used) explanations. Hence, driven by a complexity-oriented approach to evaluating CFs, a
better understanding of a feature-based explanation can be reached by finding a balance between short enough explanation
length and the number of unique features and/or linguistic terms used in the explanation.

Importantly, PEC can help to choose among alternative but semantically equivalent explanations. For example, the piece
of explanation ‘‘if color were pale or straw or amber or brown” can be replaced by the shorter ‘‘if color were not black” (see
Fig. 3). Then, it becomes essential to define how many linguistic terms are necessary to be properly understood to guarantee
a consistent use of the metric. We thus suggest two strategies to calculate the number of terms associated to a feature if the
term under consideration is negated. On the one hand, it may be sufficient to calculate the sum of the non-negated terms. In
this case, the number of linguistic terms in the aforementioned explanation tColor ¼ j pale; straw; amber; brownf gj ¼ 4 (see
Fig. 3b). On the other hand, it may be argued that, to fully understand the meaning of the negated term, it is only necessary
to understand the meaning of the negated term itself (black, in this case) as well as that of the collective linguistic terms
covering all the contrasting linguistic terms (i.e., lighter/darker than black). Thus, if the negated linguistic variable takes
on either of the extreme values (e.g., pale or black), the number of terms associated with the given explanation for feature
tf i always equals 2. Moreover, if the fuzzy partition presumes that both lower and higher values can be captured by other
linguistic terms with respect to the negated term (e.g., ‘‘. . .if color were not amber”), the number of the associated terms
always includes the negated term as well as the values from the extended set of terms covering both smaller and higher cor-
responding intervals (see Fig. 3c).

7. Concluding remarks and future work

In this paper, we presented one quantitative method (GEN) of CF explanation generation and two methods (XOR and EUC)
of qualitative CF explanation generation for FRBCSs. As all of them provide the end user with output of different kinds, they
can be used solely or complementarily to offer explanations on demand and customized for different user profiles. In addi-
tion, we proposed the new metric PEC for estimating the complexity of a given explanation (as expected to be perceived by
an end user).

To evaluate the proposed methods, we collected human evaluation scores in an empirical study which comprised two
online questionnaires. In addition, we computed PEC scores for each of the explanations under consideration in the study.
We observed that a more complexly structured within-subject questionnaire (Survey GM) appears to provide a better insight
into the goodness of automated explanations given an equivalent number of participants. However, collecting data in such a
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survey is costly as it requires higher cognitive load and more time from the participants. Therefore, calculating PEC automat-
ically allows the survey designer to set up and deploy a shorter questionnaire and thus easier to fill (Survey TS). It is worth
noting that PEC strongly correlates with several explanation aspects but does so in different directions, so an FRBCS designer
is advised to carefully select the method of explanation generation based on the peculiarities of the application domain and/
or intended audience.

All in all, the insights from this work are expected to advance methods of generation and evaluation for various explana-
tion approaches. As such, they are expected to be helpful for designing future human evaluation surveys in the area of
explainable AI. Moreover, as part of future work, we will go deeper with selecting and fusing CF explanations with the
aim of customizing them for users having different profiles in different application scenarios. Further research is therefore
necessary: (1) to extend the proposed CF explanation generation methods beyond numerical features; (2) to better assess the
impact of the PEC hyperparameters (r and k); and (3) to better understand the connection between complexity and trust-
worthiness of automated explanations. Notice that, the conclusions derived from the current study are only applicable to the
target population under consideration. As part of future work, for the sake of generalization, we intend to design and carry
out other similar experiments with a larger and wider panel of respondents, including non-expert lay users. Finally, we plan
to use PEC as one of the criteria to optimize when designing explainable multi-objective evolutionary fuzzy systems.
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Appendix A

In addition to the human evaluation study on the automatically generated CFs, we performed three independent experi-
ments on the genetic algorithm hyperparameter fine-tuning. In particular, we estimated the impact of the following hyper-
parameters associated to the GEN method: (i) the size of the population, (ii) the crossover probability and the corresponding
alpha value, and (iii) the mutation probability. All the experiments were run for the five survey stimuli where both the pre-
dicted classes and the CF classes were known. The experimental results were assessed in terms of the best achieved fitness
scores.

Fig. 4 summarizes the impact of the population size (10, 20, 30, 40, 50). It can be observed that the default population size
(30) provides good results, on average, for all the test instances under consideration.

Fig. 4. An empirical assessment of the impact of the population size in the GEN method.
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Fig. 5 shows the results of the experiment on the crossover probability values (0.7, 0.8, 0.9), considering different a values
(0.2, 0.3, 0.4). In short, the combination of the crossover probability (0.8) and a ¼ 0:3 yields the best results for the consid-
ered CF data points.

Fig. 6 illustrates the impact of the selected mutation probability values (0.05, 0.1, 0.15, 0.2). It can be seen that doubling
the default mutation probability value may result in worsened performance of the algorithm.

To sum it up, the analysis carried out allows us to conclude that the selected hyperparameter values do not only agree
with the guidelines found in the literature (e.g., [21]) but also prove to be effective in the given experiments and can indeed
be recommended for future use. All the detailed calculations as well as additional plots and the source code for replicating
this experimental analysis can be found in our Gitlab repository:https://gitlab.citius.usc.es/ilia.stepin/fcfexpgen (branch
‘‘xor_euc_gen”).

Fig. 5. An empirical assessment of the impact of the crossover hyperparameters (the crossover probability and the a crossover operator) in the GEN
method.

Fig. 6. An empirical assessment of the impact of the mutation probability in the GEN method.

I. Stepin, J.M. Alonso-Moral, A. Catala et al. Information Sciences 618 (2022) 379–399

397



References

[1] A. Abdul, J. Vermeulen, D. Wang, B.Y. Lim, and M. Kankanhalli. Trends and trajectories for explainable, accountable and intelligible systems: An HCI
research agenda. In Proceedings of the Conference on Human Factors in Computing Systems (CHI), pages 1–18, Montreal QC, Canada, 2018. Association
for Computing Machinery. https://doi.org/10.1145/3173574.3174156.

[2] A. Adadi, M. Berrada, Peeking inside the black-box: A survey on explainable artificial intelligence (XAI), IEEE Access 6 (2018) 52138–52160, https://doi.
org/10.1109/ACCESS.2018.2870052.

[3] J.M. Alonso, C. Castiello, L. Magdalena, C. Mencar, Explainable Fuzzy Systems - Paving the Way from Interpretable Fuzzy Systems to Explainable AI
Systems, volume 970, Springer International Publishing (2021), https://doi.org/10.1007/978-3-030-71098-9.

[4] J.M. Alonso, O. Cordón, S. Guillaume, and L. Magdalena. Highly interpretable linguistic knowledge bases optimization: Genetic tuning versus solis-
wetts. Looking for a good interpretability-accuracy trade-off. In Proceedings of the IEEE International Conference on Fuzzy Systems, pages 901–906,
London, UK, 2007. https://doi.org/10.1109/FUZZY.2007.4295485.

[5] I. Baaj and J.-P. Poli. Natural language generation of explanations of fuzzy inference decisions. In Proceedings of the IEEE International Conference on
Fuzzy Systems, pages 1–6, New Orleans, LA, USA, 2019. https://doi.org/10.1109/FUZZ-IEEE.2019.8858994.

[6] A. Cascallar-Fuentes, A. Ramos-Soto, A. Bugarín, Adapting SimpleNLG to Galician Language, in: In Proceedings of the International Conference on
Natural Language Generation, Association for Computational Linguistics (ACL), 2018, https://doi.org/10.18653/v1/W18-6507.

[7] O. Cordón, F. Herrera, A Three-Stage Evolutionary Process for Learning Descriptive and Approximate Fuzzy Logic Controller Knowledge Bases from
Examples, International Journal of Approximate Reasoning 17 (4) (1997) 369–407, https://doi.org/10.1016/S0888-613X(96)00133-8.

[8] R. Dale, E. Reiter, Computational Interpretations of the Gricean Maxims in the Generation of Referring Expressions, Cognitive science 19 (2) (1995)
233–263, https://doi.org/10.1016/0364-0213(95)90018-7.

[9] V. Dignum, Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way. Artificial Intelligence: Foundations, Theory, and
Algorithms, Springer, Cham, 2019, https://doi.org/10.1007/978-3-030-30371-6.

[10] L.J. Eshelman and J.D. Schaffer. Real-Coded Genetic Algorithms and Interval-Schemata. In L. Darrell Whitley, editor, Foundations of Genetic Algorithms,
volume 2 of Foundations of Genetic Algorithms, pages 187–202. Elsevier, 1993. https://doi.org/10.1016/B978-0-08-094832-4.50018-0.

[11] A. Fernandez, F. Herrera, O. Cordon, M. Jose del Jesus, F. Marcelloni, Evolutionary Fuzzy Systems for Explainable Artificial Intelligence: Why, When,
What for, and Where to?, IEEE Computational Intelligence Magazine 14 (1) (2019) 69–81, https://doi.org/10.1109/MCI.2018.2881645.

[12] R.R. Fernández, I.M. de Diego, V. Aceña, A. Fernández-Isabel, J.M. Moguerza, Random forest explainability using counterfactual sets, Information Fusion
63 (2020) 196–207, https://doi.org/10.1016/j.inffus.2020.07.001.

[13] S. Fletcher, M.Z. Islam, Comparing sets of patterns with the Jaccard index, Australasian Journal of Information Systems 22 (2018), https://doi.org/
10.3127/ajis.v22i0.1538.

[14] A. Gatt, E. Krahmer, Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation, Journal of Artificial
Intelligence Research 61 (2018) 65–170, https://doi.org/10.1613/jair.5477.

[15] H.P. Grice, Logic and Conversation, in: P. Cole, J.L. Morgan (Eds.), Syntax and Semantics: Speech Acts, Academic Press, 1975, pp. 41–58, https://doi.org/
10.1163/9789004368811_003.

[16] R. Guidotti, Counterfactual explanations and how to find them: literature review and benchmarking, Data Mining and Knowledge Discovery (2022) 1–
55, https://doi.org/10.1007/s10618-022-00831-6.

[17] R. Guidotti, A. Monreale, F. Giannotti, D. Pedreschi, S. Ruggieri, F. Turini, Factual and Counterfactual Explanations for Black Box Decision Making, IEEE
Intelligent Systems 34 (6) (2019) 14–23, https://doi.org/10.1109/MIS.2019.2957223.

[18] D. Gunning, E. Vorm, J.Y. Wang, M. Turek, DARPA’s explainable AI (XAI) program: A retrospective, Applied AI Letters 2 (4) (2021), https://doi.org/
10.1002/ail2.61 e61.

[19] R. Gunning, Technique of clear writing, McGraw-Hill, 1968.
[20] C. Herley and W. Pieters. If You Were Attacked, You’d Be Sorry: Counterfactuals as Security Arguments. In Proceedings of the 2015 New Security

Paradigms Workshop, NSPW ’15, pages 112–123, New York, NY, USA, 2015. Association for Computing Machinery. https://doi.org/10.1145/2841113.
2841122.

[21] F. Herrera, M. Lozano, A.M. Sánchez, A Taxonomy for the Crossover Operator for Real-Coded Genetic algorithms: An Experimental Study, International
Journal of Intelligent Systems 18 (3) (2003) 309–338, https://doi.org/10.1002/int.10091.

[22] J. Hühn, E. Hüllermeier, FURIA: an algorithm for unordered fuzzy rule induction, Data Mining and Knowledge Discovery 19 (3) (2009) 293–319, https://
doi.org/10.1007/s10618-009-0131-8.

[23] H. Ishibuchi, T. Nakashima, M. Nii, Classification and modeling with linguistic information granules: Advanced approaches to linguistic Data Mining,
Springer Science & Business Media (2004), https://doi.org/10.1007/b138232.

[24] M. Lash, Q. Lin, N. Street, J. Robinson, and J. Ohlmann. Generalized Inverse Classification. In Proceedings of the International Conference on Data Mining
(SDM), pages 162–170. Society for Industrial and Applied Mathematics, 2017. https://doi.org/10.1137/1.9781611974973.19.

[25] A. Lucic, H. Haned, and M. de Rijke. Why Does My Model Fail? Contrastive Local Explanations for Retail Forecasting. In Proceedings of the 2020
Conference on Fairness, Accountability, and Transparency, FAT* ’20, pages 90–98, Barcelona, Spain, 2020. Association for Computing Machinery.
https://doi.org/10.1145/3351095.3372824.

[26] N. Maaroof, A. Moreno, A. Valls, M. Jabreel, M. Szelag, A Comparative Study of Two Rule-Based Explanation Methods for Diabetic Retinopathy Risk
Assessment, Applied Sciences 12 (7) (2022) 1–18, https://doi.org/10.3390/app12073358.

[27] E.H. Mamdani, Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Systems, IEEE Transactions on Computers 26 (12) (1977) 1182–
1191, https://doi.org/10.1109/TC.1977.1674779.

[28] G.A. Miller, The magical number seven, plus or minus two: Some limits on our capacity for processing information, Psychological Review 63 (2) (1956)
81–97, https://doi.org/10.1037/0033-295x.101.2.343.

[29] T. Miller, Explanation in artificial intelligence: Insights from the social sciences, Artificial Intelligence 267 (2019) 1–38, https://doi.org/10.1016/j.
artint.2018.07.007.

[30] J. Moore, N. Hammerla, and C. Watkins. Explaining deep learning models with constrained adversarial examples. In Proceedings of the Pacific Rim
International Conference on Artificial Intelligence (PRICAI), pages 43–56. Springer, 2019. https://doi.org/10.1007/978-3-030-29908-8_4.

[31] R.K. Mothilal, A. Sharma, and C. Tan. Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations. In Proceedings of the 2020
Conference on Fairness, Accountability, and Transparency, FAT* ’20, pages 607–617, Barcelona, Spain, 2020. Association for Computing Machinery.
https://doi.org/10.1145/3351095.3372850.

[32] M.L. Olson, R. Khanna, L. Neal, F. Li, W.-K. Wong, Counterfactual state explanations for reinforcement learning agents via generative deep learning,
Artificial Intelligence 295 (2021) 1–29, https://doi.org/10.1016/j.artint.2021.103455.

[33] Parliament and Council of the European Union. General Data Protection Regulation (GDPR), 2016. URL:http://data.europa.eu/eli/reg/2016/679/oj.
[34] Parliament and Council of the European Union. A European Approach to Artificial Intelligence, 2022. URL:https://digital-strategy.ec.europa.eu/en/

policies/european-approach-artificial-intelligence.
[35] E. Reiter, R. Dale, Building Natural Language Generation Systems, in: Studies in Natural Language Processing, Cambridge University Press, 2000,

https://doi.org/10.1017/CBO9780511519857.
[36] M.T. Ribeiro, S. Singh, and C. Guestrin. ”Why should I trust you?”: Explaining the predictions of any classifier. In Proceedings of the International

Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 1135–1144, San Francisco, California, USA, 2016. Association for Computing
Machinery. https://doi.org/10.1145/2939672.2939778.

I. Stepin, J.M. Alonso-Moral, A. Catala et al. Information Sciences 618 (2022) 379–399

398



[37] C. Rudin, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, Nature Machine
Intelligence 1 (5) (2019) 206–215, https://doi.org/10.1038/s42256-019-0048-x.

[38] M. Schleich, Z. Geng, Y. Zhang, and D. Suciu. GeCo: Quality Counterfactual Explanations in Real Time. In Proceedings of the Very Large Data Bases
(VLDB) Endowment, volume 14(9), pages 1681–1693, 2021. https://doi.org/10.14778/3461535.3461555.

[39] S. Sharma, J. Henderson, J. Ghosh. CERTIFAI, A Common Framework to Provide Explanations and Analyse the Fairness and Robustness of Black-
Box Models, Association for Computing Machinery, 2020, pp. 166–172, https://doi.org/10.1145/3375627.3375812.

[40] K. Sokol and P. Flach. One Explanation Does Not Fit All: The Promise of Interactive Explanations for Machine Learning Transparency. KI – Künstliche
Intelligenz, 2020. https://doi.org/10.1007/s13218-020-00637-y.

[41] I. Stepin, J.M. Alonso, A. Catala, and M. Pereira-Fariña. Generation and evaluation of factual and counterfactual explanations for decision trees and fuzzy
rule-based classifiers. In Proceedings of the IEEE World Congress on Computational Intelligence (WCCI), Glasgow, UK, 2020. https://doi.org/10.1109/
FUZZ48607.2020.9177629.

[42] I. Stepin, J.M. Alonso, A. Catala, M. Pereira-Fariña, A Survey of Contrastive and Counterfactual Explanation Generation Methods for Explainable Artificial
Intelligence, IEEE Access 9 (2021) 11974–12001, https://doi.org/10.1109/ACCESS.2021.3051315.

[43] I. Stepin, A. Catala, M. Pereira-Fariña, J.M. Alonso, Factual and Counterfactual Explanation of Fuzzy Information Granules, in: Interpretable Artificial
Intelligence: A Perspective of Granular Computing, Springer International Publishing, 2021, pp. 153–185, https://doi.org/10.1007/978-3-030-64949-
4_6.

[44] R. Sukkerd, R. Simmons, D. Garlan, Toward Explainable Multi-Objective Probabilistic Planning, in: IEEE/ACM 4th International Workshop on Software
Engineering for Smart Cyber-Physical Systems (SEsCPS), Gothenburg, Sweden, 2018, pp. 19–25.

[45] S. Verma, J. Dickerson, and K. Hines. Counterfactual explanations for machine learning: A review. In Proceedings of the Machine Learning:
Retrospectives, Surveys and meta-Analyses (ML-RSA) Workshop at the Conference on Neural Information Processing Systems (NeurIPS), 2020.

[46] S. Wachter, B. Mittelstadt, C. Russell, Counterfactual Explanations Without Opening the Black Box: Automated Decisions and the GDPR, Harvard
Journal of Law & Technology 31 (2) (2018) 841–887, https://doi.org/10.2139/ssrn.3063289.

[47] X. Wang, M. Yin, Are Explanations Helpful? A Comparative Study of the Effects of Explanations in AI-Assisted Decision-Making, in: 26th International
Conference on Intelligent User Interfaces, IUI ’21, Association for Computing Machinery, 2021, pp. 318–328, https://doi.org/10.1145/
3397481.3450650.

[48] C. Woodcock, B. Mittelstadt, D. Busbridge, G. Blank, et al, The Impact of Explanations on Layperson Trust in Artificial Intelligence-Driven Symptom
Checker Apps: Experimental Study, Journal of Medical Internet Research 23 (11) (2021), https://doi.org/10.2196/29386 e29386.

[49] L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Information Sciences 8 (3) (1975) 199–249, https://doi.
org/10.1016/0020-0255(75)90036-5.

I. Stepin, J.M. Alonso-Moral, A. Catala et al. Information Sciences 618 (2022) 379–399

399



CORRECTED  P
ROOF

Argument & Computation -1 (2023) 1–59 1
DOI 10.3233/AAC-220011
IOS Press

Information-seeking dialogue for explainable
artificial intelligence: Modelling and
analytics

Ilia Stepin a,c,∗, Katarzyna Budzynska b, Alejandro Catala a,c, Martín Pereira-Fariña d and
Jose M. Alonso-Moral a,c

a Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de
Compostela, Rúa de Jenaro de la Fuente Domínguez s/n, 15782 Santiago de Compostela, A Coruña,
Spain
E-mails: ilia.stepin@usc.es, alejandro.catala@usc.es, josemaria.alonso.moral@usc.es
b Laboratory of The New Ethos, Warsaw University of Technology, plac Politechniki 1, 00-661, Warsaw,
Poland
E-mail: katarzyna.budzynska@gmail.com
c Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, Rúa Lope
Gómez de Marzoa, s/n, 15782 Santiago de Compostela, A Coruña, Spain
d Departamento de Filosofía e Antropoloxía, Universidade de Santiago de Compostela, Plaza de
Mazarelos s/n, 15705 Santiago de Compostela, A Coruña, Spain
E-mail: martin.pereira@usc.es

Abstract. Explainable artificial intelligence has become a vitally important research field aiming, among other tasks, to justify
predictions made by intelligent classifiers automatically learned from data. Importantly, efficiency of automated explanations
may be undermined if the end user does not have sufficient domain knowledge or lacks information about the data used for
training. To address the issue of effective explanation communication, we propose a novel information-seeking explanatory
dialogue game following the most recent requirements to automatically generated explanations. Further, we generalise our
dialogue model in form of an explanatory dialogue grammar which makes it applicable to interpretable rule-based classifiers
that are enhanced with the capability to provide textual explanations. Finally, we carry out an exploratory user study to validate
the corresponding dialogue protocol and analyse the experimental results using insights from process mining and argument
analytics. A high number of requests for alternative explanations testifies the need for ensuring diversity in the context of
automated explanations.
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1. Introduction

Explainability in the context of Artificial Intelligence (AI) has long attracted attention of researchers
from computer science [57] and argumentation [21]. The first explanation generation methods turned up
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in the 1980s along with the so-called Expert Systems [74]. More precisely, the first explainers addressed
the challenge of explaining the output of expert systems and logic programs [7], which eventually led
to the emergence of the research field that we now call Computational Argumentation. Recent years
have witnessed a new boost of interest in developing eXplainable AI (XAI), as novel machine learning
(ML) algorithms produce highly accurate yet oftentimes poorly explainable predictions [1]. As defined
at present, XAI aims to (1) generate explainable models preserving a high level of accuracy and (2)
enable the end user, e.g., a client of a bank or a patient of a hospital, with the opportunity to understand,
trust, and manage the given AI-based systems [2,29] (e.g., querying a bank loan management system
to identify reasons for the loan application being rejected or a hospital information system to receive
treatment-related recommendations).

The obscure nature of the underlying reasoning of the state-of-the-art predictive algorithms has given
way to the so-called “right to explanation” [80]. The corresponding legal regulations are being increas-
ingly adopted worldwide [87]. For example, the European Union (EU)’s General Data Protection Reg-
ulation (GDPR) acknowledges the right of the user “not to be subject to a decision evaluating personal
aspects relating to him or her which is based solely on automated processing and which produces ad-
verse legal effects concerning, or significantly affects, him or her” [51]. In addition, current EU’s le-
gal regulations in, for example, the financial domain require that algorithmic transparency be provided
for automatic trading techniques (see the Directive 2014/65/EU on Markets in Financial Instruments,
commonly known as MiFID II [52] for details). Being a controversial topic of primary importance for
numerous stakeholders, its juridical basis is constantly updated. Thus, the newly proposed EU’s AI Act
(AIA) [53] establishes a taxonomy of AI-based systems and requires that high-risk AI applications offer
explanations for their decisions or recommendations to their end users.

In order to mitigate algorithmic transparency issues of the state-of-the-art AI algorithms, a use of
interpretable models is advised [59]. Interpretable rule-based models (such as, e.g., decision trees (DT)
or decision rules) are known to provide user-friendly explanations [47]. Remarkably, DTs can be used
as part of more complex model-agnostic explainers that are able to justify predictions of other arbitrary
classifiers if they are, for example, trained on a local synthetically generated neighbourhood around the
test instance [28]. Despite the fact that only few XAI frameworks offer explanations in natural language
[12], DTs have also been shown to be a powerful tool for communicating textual explanations to end
users, e.g., by engaging the user in an explanatory dialogue [70,79].

Explanations are claimed to have to necessarily be embedded in a dialogical interaction so that the end
user is able to challenge the aspects of an explanation that have not been understood [63]. For illustrative
purposes, let us consider a beer style classification problem (see Table 1 for details). Given a number of
predefined classes (i.e., beer styles) and an instance of beer, the classifier (System) makes a prediction
on what beer style the test instance is (move m1). The end user (User) engages in a dialogue with the
System to inquire an explanation for the given prediction (m2). Then, the System provides the User
with a factual explanation based on the most distinctive features, pertinent to the test instance, that led
to the given prediction (m3). Then, given the factual explanation, the User may want to clarify specific
features (e.g., bitterness) that the offered explanation contains (m4). In response, the System offers a
definition for the requested feature (m5). Alternatively, the User may inquire the System to explain why
the given test instance is not predicted to be of another class (m6, m10). The pieces of such counterfactual
explanations offered in response suggest minimal changes to the input so that its classification changes
in the desired manner (m7, m11). Given the initial explanation, the User may want to specify a more
precise description of the given feature (m8). Then, the System may present detailed information over the
corresponding numerical interval (subject to availability) over which the feature is defined (m9). Further,
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Table 1

An illustrative explanatory dialogue

Move Agent Utterance

m1 System The present beer is Blanche.
m2 User Could you explain why you think so?
m3 System It is Blanche because colour is pale and bitterness is low.
m4 User What do you mean by bitterness?
m5 System Bitterness is a harsh, acrid taste that is one of the four basic taste sensations.
m6 User But is the beer not stout?
m7 System It would be Stout if colour were black and bitterness were high.
m8 User Could you specify how high bitterness is defined?
m9 System Sure! I define bitterness as high because it lies in the range from 47 to 250.
m10 User But why is it not Porter?
m11 System It would be Porter if colour were brown.
m12 User I am not quite satisfied with your explanation. Could you offer me another one?
m13 System Sure! It would be of class Porter if colour were brown and strength were session.
m14 User Ok, now I trust your prediction.
m15 System Thank you for your trust in me. Bye!

the User may disagree with the explanation offered and argue over it (m12). The System should then
offer an alternative explanation that would satisfy the User’s needs (m13). When the User is sufficiently
informed about the reasons that led to the given prediction, he or she makes an informed decision on
whether the System’s prediction should be trusted or not (m14). The explanatory dialogue ends with the
System’s farewell locution (m15).

As follows from Table 1, we consider two types of explanations: factual and counterfactual. Assuming
knowledge of the feature space, factual explanations (illustrated with move m3 in Table 1) aim to explain
the given classifier’s prediction in terms of the most relevant feature values that led to that prediction. On
the contrary, counterfactuals (illustrated with moves m7, m11, and m13 in Table 1) are post-hoc example-
based explanations that suggest a minimal change in feature values to those of the given data instance so
that the system’s prediction changes as desired [71].

This paper introduces an explanatory dialogue game for communicating factual and counterfactual
explanations for interpretable rule-based classifiers. We assume that the classifier is associated with an
explainer that is capable of providing textual (rule-based) explanations. Based on the dialogue typology
proposed by Walton and Krabbe [82], we model the information-seeking type of explanatory dialogue
equipping it with a specific collection of locutions tailored for the aforementioned types of explanation
that the user may ask the system. As a starting point, we consider the typology of dialogue moves pro-
posed by Budzynska et al. [9]. In our work, we extend this typology of dialogue moves with a repertoire
of locutions allowing for communication of factual and counterfactual explanations to enable the end
user to interactively explore the explanation space. Then, we propose a context-free dialogue grammar
to generalise the formal structure of the resulting dialogue model. Despite an empirically shown strong
need in both factual and counterfactual explanations [41] and at least a hundred of counterfactual expla-
nation generation methods proposed by now in the context of XAI, less than a third of these methods
are evaluated in user studies [37]. To address this issue, we subsequently perform a pilot user study to
evaluate the proposed dialogue model. Moreover, we analyse the collected dialogue transcripts treating
instances of explanatory dialogue as processes using the state-of-the-art techniques from process mining
and argument analytics [43].
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As a result, we bridge the gap between ML practitioners and the argumentation community by making
the following contributions:

• we model information-seeking explanatory dialogue based on the fundamental notions from the
argumentation theory and apply the dialogue model in the context of XAI;

• we propose a set of original dialogue locution types that are found specifically suitable for effective
communication of factual and counterfactual explanations;

• we demonstrate the explanatory utility of the proposed dialogue protocol via a human evaluation
study based on three use cases for an interpretable rule-based classifier leaving open-source imple-
mentations of the dialogue game and the human evaluation toolkit available for public use;

• we suggest formal means for extending the proposed protocol to make it applicable to modelling
dialogic human-machine interaction for classification tasks in other applications.

The rest of the manuscript is structured as follows. Section 2 introduces the classification problem
formally and outlines the common properties of explanations claimed to be essential for explaining so-
lutions to such a problem. In addition, we subsequently discuss possible discrepancy between automati-
cally generated explanations and user-preferred explanations. Section 3 defines an explanatory dialogue
game as an interface between an explanation generation module and the end user. Section 4 introduces
essential process mining concepts and shows how we apply them to explanatory dialogue analysis. Sec-
tion 5 presents the experimental settings of the human evaluation study carried out to assess the utility of
the proposed dialogue protocol. Section 6 reports the experimental results obtained from the human eval-
uation study. Section 7 discusses the dialogue model validation results. Section 8 presents an overview of
related work regarding formal explanatory dialogue models as well as recent argumentation-based tech-
niques for explanatory dialogue modelling. Finally, we outline prospective directions for future work
and conclude in Section 9.

2. Preliminaries

In this section, we first outline a definition of the classification problem and assumptions about the
nature of classifiers and explainers that we are driven by (see Section 2.1 for details). Then, we formally
define essential explanation-related concepts that we utilise throughout the manuscript in Section 2.2.
Finally, we draw reader’s attention to possible discrepancies between the user-preferred explanations
and those offered to him or her by the explainer in Section 2.3.

2.1. The classification problem

As outlined in Section 1, we focus on communicating to the end user automated explanations for
the output of an interpretable rule-based ML classifier. Figure 1 depicts a general architecture of the
modelled explanation communication process. The System is assumed to include, at least, the following
core components: an interpretable rule-based classifier, an explainer, a knowledge base, and a dataset that
the classifier is trained on. The User starts the communication process by sending a classification request
for a specific test instance to the System in form of the test instance’s characteristics (i.e., features). The
classifier is pretrained on a given dataset X = {xi}|ni=1 containing n labelled instances to learn a mapping
function c : X −→ Y where Y = {yj }|mj=1 is a discrete output variable (class), m being the number of
classes.
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Fig. 1. A schema of the modelled system-user explanation communication process. This paper focuses on designing an ex-
planatory dialogue game for communication of factual and counterfactual explanations for interpretable rule-based classifiers
(the shaded block).

In this work, we assume knowledge of the feature space: the dataset is said to contain linearly scaled
numerical features. In addition, all the numerical feature values are said to be mapped to the corre-
sponding feature-dependent linguistic variable [86]. Therefore, each data instance xi ∈ X = 〈Fi, yi〉 is
associated to class yi ∈ Y and defined over the set of p 3-tuple features Fi = {〈f k, vk, tk〉}|pk=1 where
each feature f k is assigned to the corresponding numerical value vk and linguistic term t k (e.g., 〈age,
20, young〉). The values of the linguistic variables (i.e., the so-called linguistic terms) may be defined
by an expert. In this case, they are mapped to expert knowledge-based numerical intervals covering all
the values of the corresponding feature. Otherwise, the linguistic variable is assigned to a set of textual
values and mapped to equal-size numerical intervals. In this respect, the set of textual values that the
linguistic variable can take on is of arbitrary cardinality.

The classifier predicts the class label ŷ for the given test instance xtest = 〈Ftest, ytest〉 on the basis of the
learned mapping function c. The test instance classification is predicted correctly if the predicted class
label and the actual test instance class label are the same (i.e., ŷ = ytest). Otherwise, the predicted class
is deemed wrong (i.e., ŷ �= ytest). Altogether, the interpretable rule-based classifier and the explainer are
said to form an explainable classifier. Once the classifier outputs a prediction, the associated explainer
attempts to generate an explanation in natural language for that prediction. Upon request, the explanation
is passed to the User via the explanatory dialogue game, which serves as a communication channel
between the explainable classifier and the User. During their intercourse, the User is assumed to be
able to submit further explanation-related requests and receive responses processed by the dialogue
game module whereas the dialogue game module can query the explainer for further explanation-related
information.

2.2. Explanation to the classification

The upsurging need for explaining a classifier’s output is raising interest in the mere nature of the ex-
planation. For instance, social sciences testify that explanations are expected to be contrastive, selected,
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and social [45]. First, the property of contrastiveness implies establishing a relation not only between
the cause and effect of the phenomenon under consideration but also another relation between the cause
and a given non-observed effect (i.e., another alternative effect). Second, explanations are as well argued
to be selected, i.e., only the most relevant causes should make part of a specific explanation. Third, ex-
planations are claimed to be social, i.e., they are a product of interaction between the explainer and the
explainee.

Contrastiveness plays an important role when explaining a solution to the classification problem, as
different classes are opposed to the others on the basis of distinctive feature values. Further, contrastive-
ness is inherent to counterfactual (CF) explanations (or counterfactuals, for short). In the context of XAI,
counterfactuals suggest minimal changes in feature-value pairs for a different outcome to be obtained
[71]. CFs are said to be post-hoc (i.e., they are generated for pretrained classifiers) and local (i.e., they
explain the classifier’s output w.r.t. a specific test instance) [27]. CFs may be (1) model-agnostic if they
operate only on the given input (i.e., a test instance) and output (i.e., a prediction) of the classifier or (2)
model-specific if they utilise the internals of the classifier to explain the given output [47,71].

CF explanations are claimed to have a number of desired properties against which CF explanation
methods can be evaluated [27]. For example, CFs should be valid (i.e., CFs should truly lead to the
desired hypothetical outcome), proximate (i.e., CFs should suggest only minimal changes to the test
instance w.r.t. the selected distance metric), sparse (i.e., CFs should minimise the number of features
whose values are to be changed), actionable (i.e., CFs should suggest feasible changes), and diverse
(i.e., CFs should offer multiple alternatives). An exhaustive list of such properties can be found in recent
surveys on CF explanation generation and evaluation [27,49,78]).

A large number of explanation generation methods are evaluated using automatically computable
metrics that assess the aforementioned properties of CF explanations [49]. However, such metrics of-
tentimes do not take into consideration user feedback at all. Whereas considering the social factor may
not be necessary when, e.g., measuring validity, estimating CF diversity may have to directly involve
capturing effects of the interaction between the system and the user. Indeed, CF explanations suggesting
minimal changes in feature values may not always be equally appreciated by end users. Given a variety
of potential CFs, different users may prefer distinct CFs for the same hypothetical output. Further, the
social aspect of explanation becomes crucially important when two alternative automatically generated
pieces of explanation are deemed equally explanatory (e.g., when the distances from the test instance
to two or more closest CF data points are the same or when two CF sets have the same coverage). As
the state-of-the-art AI technologies are shifting towards being user-centric [83], it appears indispensable
to enhance existing explanation generation modules with a system-user communication interface that
would allow end users to produce such inquiries for alternative CFs in the course of an explanatory
dialogue, even if the user is not aware of the dataset-related peculiarities.

Various state-of-the-art CF explanation generation frameworks are known to offer diverse CFs
([15,17,35,49,60,62,75,85], among others). However, the format of such CFs raises several important
concerns. First, most of such frameworks lack any interaction with end users leaving the users without
further guidance when interpreting the generated explanations. Second, some explainers output a set of
distinct CFs altogether [49,60]. In these settings, the Grice’s maxim of quantity [25] may be violated,
as only a subset of the offered explanations can be sufficient for the end user. Third, a large number of
diverse CF explanation generation frameworks provide their output in tabular form [15,17,35,49,62,75].
Whereas natural language generation tools can be used to transform tabular data into text, a taxonomy
of necessary explanation-related requests and responses remains missing. To address these issues, we
propose a transparent explanatory dialogue model for diverse factual and counterfactual explanation
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communication that allows the end user to explore the explanation space iteratively until he or she can
make an informed decision on whether the system’s prediction can be trusted.

In light of the aforementioned considerations, a classifier’s prediction can be explained factually and/or
counterfactually. As we focus on the social factor of explanation generation in this paper, we assume that
an explainer provides us with automatically generated textual factual and CF explanations operating in
the settings described in Section 2.1. Below, we define both aforementioned types of explanation in
terms of their linguistic realisation.

Driven by the assumptions above, both factual and CF explanations can be represented in two forms:
using linguistic terms or numerical values (intervals). On the one hand, a purely textual explanation may
be more intuitive and comprehensive to the explainee (e.g., “The test instance is of class Blanche because
colour is pale and bitterness is low” or “The test instance would be of class Porter if colour were brown
and strength were high”). On the other hand, explanations that incorporate numerical information may
offer more detailed (and, perhaps, more precise) information while possibly requiring additional domain
knowledge (e.g., “The test instance is of class Blanche because 0 � colour � 3 and 2 � bitterness � 5”
or “The test instance would be of class Porter if colour ranged between 20 and 30 and strength ranged
between 100 and 200”). In this work, we refer to explanations of both modalities as “high-level” and
“low-level” explanations, respectively.

Definition 1. A high-level explanation eh(ŷ, [y ′])1 is a set of feature-value pairs that explains the classi-
fier’s prediction ŷ for the given test instance either factually or counterfactually in terms of the linguistic
terms associated to the corresponding linguistic variable.

Definition 2. A low-level explanation el(ŷ, [y ′]) is a set of feature-value pairs that explains the classi-
fier’s prediction ŷ for the given test instance either factually or counterfactually in terms of the corre-
sponding numerical values (intervals).

Paired explanations of both modalities may be found complementary to each other, as they may target
different groups of end users. High-level explanations may facilitate understanding thereof by lay users.
In turn, low-level explanations may be necessary for expert users to be able to further verify the validity
of the offered explanation without linguistic ambiguity. Hereinafter, we assume that both factual and
CF explanations to be paired two-level structures. To meet the requirement of being selective [45], all
such explanations should be designed to reflect only the most characteristic features of the test instance
that influence the classifier’s prediction or its hypothetical counterpart. Let us now define factual and CF
explanations in terms of their high- and low-level components.

Definition 3. A factual explanation ef (ŷ) = 〈eh
f (ŷ), el

f (ŷ)〉 is a 2-tuple of affirmative sentences an-
swering the question “Why is the test instance predicted to be of class ŷ?” where eh

f (ŷ) and el
f (ŷ) are

the corresponding high- and low-level explanations, respectively.

The given test instance’s prediction can be explained in a (possibly, infinite) number of ways. At the
same time, different explanations for the same phenomenon may have distinct degrees of explanatory
power. Hence, all possible factual explanations are assumed to be ranked by an explainer in terms of
their relevance to the test instance. Importantly, the notion of relevance in Definition 3 is determined by

1Hereinafter, [y′] is used as an optional parameter to refer to the requested CF class whenever a CF explanation is being
processed. This parameter is omitted for the same request when a piece of factual explanation is being considered.
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peculiarities of the explanation generation method, which falls outside the scope of this paper. The set
of all factual explanations Ef for the predicted class ŷ is defined as follows:

Ef (ŷ) =
∞⋃

i=1

ef i(ŷ) (1)

where ef 1 is the most relevant factual explanation for the test instance’s prediction, ef |Ef | is the least
relevant one, i being the rank of the given piece of explanation. On the other hand, a CF explanation is
assumed to suggest a minimal set of feature value changes that lead to a different desired classification.
Then, a CF explanation is defined as follows.

Definition 4. A counterfactual (or, shortly, CF) explanation ecf (ŷ, y ′) = 〈eh
cf (ŷ, y ′), el

cf (ŷ, y ′)〉 for
the given CF class y ′ ∈ Y \ {ŷ} is a 2-tuple of conditional sentences answering the question “Why is
the test instance not predicted to be of class y ′ instead of ŷ?” where eh

cf (ŷ, y ′) and el
cf (ŷ, y ′) are the

corresponding high- and low-level explanations, respectively.

Similarly to factual explanations, all possible CFs are assumed to be ranked by their relevance to the
test instance in accordance with a preselected criterion (for example, the distance metric from the test
instance to the closest data point that the explanation includes). Then, the set of all the CF explanations
for the given CF class is defined as follows:

Ecf

(
ŷ, y ′) =

∞⋃

i=1

ecf i

(
ŷ, y ′) (2)

where ecf 1(ŷ, y ′) is the most relevant counterfactual explanation to the test instance’s prediction ŷ for
the given CF class y ′, ecf |Ecf | is the least relevant one, i being the rank of an explanation.

Altogether, all ranked candidate factual and CF explanations for the given prediction are assumed to
be unique and said to constitute an explanation space for the given prediction. The explanation space
therefore contains all the pieces of factual and CF explanations that the system can offer to the end user
w.r.t. the given test instance. Consequently, a given classifier’s prediction cannot be explained by any
piece of explanation that the explanation space does not contain.

Definition 5. An explanation space Espace(ŷ) is the union of all possible factual and CF explanations that
an explainer can generate for the given prediction ŷ, s.t. Espace(ŷ) = Ef (ŷ) ∪ Ecf (ŷ, y ′), ∀y ′ ∈ Y \ {ŷ}.

2.3. Explainer-preferred vs. explainee-preferred explanations

Whereas any single piece of explanation may be satisfactory for the given user, it may have to be
combined with other explanation instances for other users. For example, the end user may (1) request and
be satisfied with the offered (factual and/or counterfactual) piece of explanation, (2) request and not be
satisfied with the offered explanation, or (3) not request any explanation for, e.g. an alternative CF class,
at all. In addition, not all the most relevant pieces of explanation from the system’s point of view may
seem as relevant to the user. To inspect the differences between such combinations of explanations, we
therefore introduce the notions of explainer-preferred and explainee-preferred explanation. Explanation



CORRECTED  P
ROOF

I. Stepin et al. / Information-seeking dialogue for XAI 9

rankings provided by the explainer allow us to single out the most relevant pieces of CFs for each CF
class from the system’s point of view:

Ecf 1(ŷ) = ∪ecf 1
(
ŷ, y ′), ∀y ′ ∈ Y \ {ŷ} (3)

Then, an explainer-preferred explanation is said to comprise all the most relevant (both factual and
counterfactual) pieces of explanation from the explainer’s point of view.

Definition 6. An explainer-preferred explanation is the union of the most relevant automatically gen-
erated factual explanation for the predicted class and the most relevant explanations for each of the CF
classes:

Eexplainer(xtest, ŷ) = ef 1(ŷ) ∪ Ecf 1(ŷ) (4)

An explainer-preferred explanation may be claimed to comprehensively explain the output of the
given classifier to any end user. Given a set of multiple candidate factual and/or counterfactual explana-
tions from the explanation space, the explanation generation module ranks them by relevance to the test
instance (e.g., a distance metric) and subsequently presents the most relevant pieces of explanation to
the end user. However, the explanation generation module output ignores end user preferences in these
settings. Therefore, we define an explainee-preferred explanation as follows.

Definition 7. An explainee-preferred explanation is the union of all the pieces of explanation that the
explainee finds the most satisfactory, as he or she explores the explanation space Espace when being
explained the given prediction.

For illustrative purposes, consider the classification task for a dataset of four classes: Y =
{y1, y2, y3, y4}. Let some test instance xtest be predicted to be of class y1. An explainer-preferred ex-
planation would therefore include the most relevant piece of factual explanation for class y1 as well as
the most relevant explanations for all the other (CF) classes:

Eexplainer(xtest, y1) = ef 1(y1) ∪ ecf 1(y1, y2) ∪ ecf 1(y1, y3) ∪ ecf 1(y1, y4) (5)

The explainee may consider (a part of) the offered explanation irrelevant, redundant, or poorly ex-
planatory. Figure 2 illustrates a possible discrepancy between the automatically generated and some
user-preferred explanations. Whereas the factual explanation may be satisfactory for him or her, the ex-
plainee may find optimal the third most relevant CF explanation (from the explainer’s point of view) for
class y2 (if it were offered), the second most relevant CF explanation for class y3, and not require any
CF explanation for class y4. In this case, the reconstructed user-preferred explanation could be formally
represented as follows:

Eexplainee(xtest, y1) = ef 1(y1) ∪ ecf 3(y1, y2) ∪ ecf 2(y1, y3) (6)

As shown in the example above, there may exist only a slight overlap between the most relevant
explainer-preferred explanation and that expected by the explainee. It therefore appears indispensable to
provide end users with a means of interaction with the explanation generation module to enable them
to interactively explore the explanation space and, subsequently, shape the explanation in accordance
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Fig. 2. A schema of a classification problem. Class y1 is predicted by the classifier to be the solution to the problem. The other
possible solutions (classes y2, y3, y4) are considered hypothetical and form the set of CF classes. The corresponding expla-
nations in solid rectangles (additionally marked with * as superscript) are those generated automatically. The explanations in
dashed rectangles (additionally marked with + as subscript) are those preferred by the end user. Notably, the factual explanation
in a double-dashed rectangle (that for class y1) is both explainer-preferred and explainee-preferred.

with their preferences. To do so, it is helpful to consider the classifier’s reasoning from the argumenta-
tive point of view. Argumentation is regarded as an effective mechanism to communicate explanation
in natural language [8]. Thus, various argumentation frameworks are shown to be particularly useful in
the field of XAI for their ability to generate explanations of different modalities (e.g., textual, graphi-
cal, hybrid) [16]. Further, recent work on argumentation-based explanation generation shows that such
frameworks provide efficient explanatory interfaces between AI-based systems and users of such sys-
tems, particularly, in the form of dialogue [77]. In addition, argumentation is shown to logically connect
with, for example, abductive reasoning tools that are widely used for counterfactual reasoning [11].

In these settings, a prediction may be treated as a claim proposed by the classifier. Such a claim is
then supported by the decisive feature value pairs (either specific values or intervals of values) that led
the classifier to make the corresponding prediction (see Fig. 3(a)). However, ground-truth data-based
premises cannot be attacked directly, as they can by no means be claimed invalid. Therefore, it appears
necessary to introduce an intermediate explanation layer that approximates the premises and serves as
an attackable natural language interface between the premise and the claim (see Fig. 3(b)).

Throughout this paper, we claim that rule-based explanations from interpretable classifiers serve this
purpose well. First, they reflect the features retrieved from the data that the classifier is trained on.
Second, their natural language representation allows the end user to construct a comprehensive mental
representation of the underlying data. Following Hempel’s definition of explanation [31], explanations
themselves can be regarded as arguments. In the context of explanatory dialogue between the system
and the user, explanations can then be attacked in the dialogic intercourse between the dialogue parties.
In this manner, the end user is given the opportunity to interactively inspect explanations from the ex-
planation space that do not make part of the explainer-preferred explanation by arguing over the initially
(and, if necessary, also subsequently) offered pieces thereof.

3. Dialogue game for XAI

In this section, we formally define a dialogue game that serves to communicate explanation(-s) gen-
erated automatically by an explanation generation module (paired with the corresponding interpretable
rule-based classifier) to its end user. Thus, Section 3.1 proposes formal components of explanatory di-
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Fig. 3. Schematic representations of classifier’s reasoning from the argumentative point of view.

alogue. Subsequently, Section 3.2 presents an example of an explanatory dialogue modelled in accor-
dance with the principles outlined in Section 3.1. Finally, Section 3.3 generalises the proposed approach
to explanatory information-seeking dialogue modelling in form of an explanatory context-free dialogue
grammar.

3.1. Formal description of explanatory information-seeking dialogue

In order to construct a communication channel between the system and the end user, we propose
that explanatory dialogue be modelled on the basis of the so-called “dialogue game” approach to argu-
mentation [54]. Taking into consideration the aforementioned requirements to explanation, we formally
define an explanatory dialogue between the explanation generation module and end user as a 10-tuple
D = 〈P, M, R, Pr , K, E, DET, CLAR, CFS, KB 〉 where

• P is the set of dialogue participants;
• M is the set of dialogue moves that the dialogue participants make in the course of a dialogue;
• R is the set of requests and responses that specify allowed utterances in the course of explanatory

dialogue;
• Pr is the dialogue protocol governing the flow of the conversation in accordance with the set of

predetermined locution rules specifying types of legitimate utterances;
• K is the knowledge store, i.e. the dynamically populated set of all the pieces of explanation that the

user requests and receives during his or her interaction with the system;
• E is the explanation store, i.e. the dynamically updated set of the last offered pieces of explanation

for each class under consideration;
• DET is the detailisation store, i.e. the set of features of the actually processed piece of high-level

explanation whose values (i.e., linguistic terms) can be inspected for further details;
• CLAR is the clarification store, i.e. the set of features of the actually processed piece of explanation

whose definitions can be requested;
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Fig. 4. A typology of requests and replies. Individual requests/responses are in bold. In addition, sets of request/responses are
named with uppercase letters (i.e., REQ-/REP-).

• CFS is the CF class store, i.e. the set of CF classes whose explanations can be potentially offered to
the end user;

• KB is a knowledge base containing the domain knowledge for the addressed problem.

Let us now define each component of the proposed explanatory dialogue model in detail.
1) Participants. An explanatory dialogue serves as an interface between two parties: the explainable

classifier (or, in general, the system S) and the human agent interacting with the system (the user U ).
Therefore, the set of participants is defined to always consist of two items P = {S, U} where the system
S always plays the role of the explainer whereas the user U is always the explainee.

2) Moves. A single instance of a dialogue can be regarded as a sequence of finite legitimate moves
M = 〈m0, m1, . . . , mn〉, each of which is generated in accordance with the locution rules as well as
those making part of the corresponding dialogue protocol.

3) Responses and requests. Our explanatory dialogue model presupposes that the explainer (i.e., the
system) has the ability to present all the information available to it to the explainee (i.e., the user). The
user is, in turn, capable of inquiring all such information. It is therefore crucially important to find a
balance between the information that the user may require from the system and the information the
system can provide the user with.

Driven by the assumption that high- and low-level explanations may accommodate both expert and
lay users and inspired by previous work on formal explanatory dialogue modelling [9], we distinguish
four types of user requests and responses that form the corresponding set R = {REQ, REP}. Namely,
those are the requests for (either factual or CF) explanation, detailisation, clarification, and alternative
explanation of either of the considered kinds. Figure 4 summarises all possible types of user’s requests
and the corresponding system’s responses. All locutions generated by both parties fall into either of the
two symmetric classes.
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On the one hand, the set of requests from the user to the system REQ={REQ-explanation(ŷ), req-
detailisation(ŷ, e, �), req-clarification(ŷ, e, �), req-alternative(ŷ, e)} consists of the following items:2

• REQ-explanation(ŷ): the set of user requests for explanation for system’s prediction ŷ;
• req-detailisation(ŷ, e, �): the user request for further details on feature � (i.e., the corresponding

numerical intervals) that makes part of a high-level (either factual or CF) explanation e for predic-
tion ŷ;

• req-clarification(ŷ, e, �): the user request for clarification of the meaning of a specific feature �

that makes part of (either factual of CF and either high-level or low-level) explanation e for predic-
tion ŷ;

• req-alternative(ŷ, e): the user request for an alternative (either factual or CF and either high-level or
low-level) explanation provided that the user is not satisfied with the previously offered explanation
e for system’s prediction ŷ.

Further, the set of user explanation requests REQ-explanation(ŷ) consists of the following possible
locutions:

• req-why(ŷ): the user request for a factual explanation for the system’s prediction ŷ;
• req-why-not(ŷ, y ′): the user request for a CF explanation concerning the CF class y ′ ∈ Y \ {ŷ} for

prediction ŷ (i.e., to specify why some CF class y ′ was not predicted instead of ŷ).

On the other hand, the set of responses (replies) that the system sends back to the user REP={REP-
explanation(ŷ), REP-detailisation(ŷ, e, �), REP-clarification(ŷ, e, �), REP-alternative(ŷ, e)} mirrors
the set of user requests:

• REP-explanation(ŷ): the set of system responses in an attempt to explain prediction ŷ;
• REP-detailisation(ŷ, e, �): the set of system responses in an attempt to provide details (i.e., numer-

ical intervals) with respect to feature � of explanation e for system’s prediction ŷ;
• REP-clarification(ŷ, e, �): the set of system responses in an attempt to clarify feature � making

part of (either factual or CF) explanation e for prediction ŷ;
• REP-alternative(ŷ, e): the set of system responses in an attempt to provide the user with an expla-

nation alternative to the previously offered (either factual or CF and either high-level or low-level)
explanation e for prediction ŷ.

In addition, the set of replies to requests for (initial, non-alternative) explanation REP-explanation(ŷ)
consists of the following items:

• rep-why(ŷ): the system attempts to factually explain the prediction ŷ on the basis of the known
features that led to that decision and offers a factual explanation if it is able to, or refuses to offer it,
otherwise;

• rep-why-not(ŷ, y ′): the system attempts to provide the user with a CF explanation for prediction ŷ

for the given CF class y ′ or refuses to offer it, otherwise.

The set of replies to detailisation requests REP-detailisation(ŷ, e, �) consists of the following items:

• rep-detailisation(ŷ, e, �): the system provides the numerical intervals over which the corresponding
linguistic term of the requested explanation feature � making part of explanation e is defined;

2Sets of requests are denoted using uppercase letters (as in, e.g., REQ-explanation) whereas single instances of requests are
denoted using only lowercase letters (as in, e.g., req-detailisation).
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• rep-no-detailisation(ŷ, e, �): the system refuses to provide numerical intervals on the requested
feature’s linguistic term in explanation e, e.g. due to their unavailability.

The set of replies to clarification requests REP-clarification(ŷ, e, �) consists of the following items:

• rep-clarification(ŷ, e, �): the system provides the user with a definition of the requested feature �

making part of explanation e for prediction ŷ retrieving it from the knowledge base;
• rep-no-clarification(ŷ, e, �): the system refuses to clarify the requested feature � making part of

explanation e for prediction ŷ due to, e.g., its absence in the knowledge base.

The set of replies to alternative explanation requests REP-alternative(ŷ, e) consists of the following
items:

• rep-alternative(ŷ, e): the system recognises the fact that the user is not satisfied with the offered
(factual or CF) explanation e for prediction ŷ, seeks the most relevant alternative to it, generates
and offers an alternative explanation to the user;

• rep-no-alternative(ŷ, e): the system recognises the fact that the user is not satisfied with the offered
(factual or CF) explanation e for prediction ŷ, seeks the most relevant alternative to it, but is unable
to generate it.

4) Dialogue protocol. An explanatory dialogue between the system and the user is modelled following
the rules specified in the dialogue protocol. The protocol determines turntaking rules, the rules governing
user’s and system’s allowed moves at each stage of the explanatory dialogue, and the termination states
of the dialogue. Thus, the locution types above are directly mapped to the speech acts produced by the
system and the user as specified in the dialogue protocol. All of the aforementioned protocol rules are
specified in Appendix B.

5) Knowledge store. Let K be the knowledge store which accumulates user’s knowledge w.r.t. expla-
nations requested during his or her interaction with the system. Knowledge store K is initialised to be
an empty set: K = ∅. When the system generates a factual or CF explanation (locutions explain-f (ŷ,
E, ef ) and explain-cf (ŷ, E, y ′, ecf ), as specified in the dialogue protocol), the corresponding piece of
explanation is added to the knowledge store: K = K ∪ ef (ŷ) or K = K ∪ ecf (ŷ, y ′), respectively. The
same applies to alternative explanations of either kind (locutions alter-f (ŷ, E, ef , e′

f ) and alter-cf (ŷ, E,
y ′, ecf , e′

cf )).
6) Explanation store. Let E be the explanation store which tracks the current state of the explainee-

preferred explanation throughout the dialogue. Explanation store E is initialised to be an empty set:
E = ∅. Similarly to the knowledge store, a factual or CF explanation is added to the explanation store
once generated: E = E ∪ ef (ŷ) or E = E ∪ ecf (ŷ, y ′), respectively. If the user finds the offered
factual or CF explanation not satisfactory enough and asks for an alternative explanation (locutions why-
alternative(ŷ, E, ef ) and why-not-alternative(ŷ, E, y ′, ecf ), respectively), the corresponding explanation
is removed from the explanation store: E = E \ ef (ŷ) or E = E \ ecf (ŷ, y ′), respectively. Noteworthy,
the user cannot request an alternative explanation to any explanation non-offered previously. Further, the
user can only submit explanation-related requests (detailisation, clarification, alternative) for the piece of
explanation being processed. The resulting explainee-preferred explanation is the union of all the pieces
of explanation found in the explanation store when a terminal dialogue state is reached.

7) Detailisation store. Let DET be the store that contains the features of the currently processed
high-level explanation for which further details can be requested. DET is initialised to be empty, as
the explanatory dialogue starts: DET = ∅. The user can submit a detailisation request to the system
only if a high-level (either factual or CF) explanation e = eh

f |eh
cf is being processed. Recall that for
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each feature � of the currently processed high-level explanation e, the feature is defined in terms of
a linguistic variable mapped to the corresponding linguistic terms. When a new piece of high-level
explanation is offered to the end user, DET is reinitialised with the set of features that the currently
processed explanation contains: DET = {�}, ∀� ∈ e. The user can ask the system to provide him or her
with the numerical intervals for the linguistic term of the given explanation feature only once during a
sub-dialogue concerning a specific piece of explanation. Thus, the corresponding feature is eliminated
from the detailisation store once the system has generated a response θ (locution elaborate(ŷ, E[,y ′],
e, �, θ)): DET = DET \{�}. If DET = ∅, it is prohibited for the user to submit a detailisation request
(locution what-details(ŷ, E[,y ′], e, �)). When the user makes the final decision w.r.t. the system’s claim
(i.e., either accepts or rejects it), the detailisation store is nullified: DET = ∅.

8) Clarification store. Let CLAR be the clarification store that contains the explanation features whose
meaning can be clarified. Similarly to the detailisation store, CLAR is initialised to be empty: CLAR = ∅.
When a new piece of explanation is offered, CLAR is populated with all the features that the explanation
being processed e = eh

f |eh
cf |el

f |el
cf contains: CLAR = {�}, ∀� ∈ e. Noteworthy, the definitions for all

the features that the dataset contains are precollected, mapped to one another by an expert or retrieved
from a dictionary, and stored in the knowledge base. The user can ask to clarify a specific feature from the
clarification store only once during a sub-dialogue concerning a specific piece of explanation. Then, the
corresponding feature is eliminated from the clarification store after the system’s response υ (locution
clarify(ŷ, E[,y ′], e, �, υ)): CLAR = CLAR \{�}. If CLAR = ∅, it is prohibited for the end user to submit
a clarification request (locution what-is(ŷ, E[,y ′], e, �)). When the user makes the final decision w.r.t.
the system’s claim (i.e., either accepts or rejects it), the clarification store is nullified: CLAR = ∅.

9) CF class store. Let CFS be the CF class store that contains all CF classes. It is initialised upon
the successful execution of the factual explanation request (locution explain-f (ŷ, E, ef )) so that CFS
= Y \ {ŷ} for some prediction ŷ ∈ Y . The user is allowed to request a CF explanation for each class
from CFS only once (locution why-not-explain(ŷ, E, y ′)). In addition, the user is allowed to ask for a
(series of) alternative CF explanation(-s) for the same CF class (locution why-not-alternative(ŷ, E, y ′,
ecf ) as many times as there are alternative CFs for that class. Once a CF explanation is requested for
some CF class y ′, it is eliminated from the CFS store: CFS = CFS \{y ′}. When the user makes the
final decision w.r.t. the system’s claim (i.e., either accepts or rejects it), the CF class store is nullified:
CFS = ∅.

10) Knowledge Base. The knowledge base contains the dataset-related domain knowledge including a
specification of all the dataset features (e.g., linguistic terms, the corresponding intervals, and definitions
of all the features that the dataset contains).

3.2. Illustrative example

Having introduced the proposed formalism for explanatory information-seeking dialogue modelling,
let us now illustrate it taking the previously considered example for reference (see Table 1 for details).
Thus, we are considering the beer style classification problem for the beer dataset that contains the fol-
lowing classes: Ybeer = {Blanche, Lager, Pilsner, IPA, Barleywine, Stout, Porter, Belgian strong ale}.
Table 2 outlines the states of the detailisation, clarification, and CF class stores of the example explana-
tory dialogue after each dialogue move. Table 3 outlines the states of the knowledge and explanation
stores for the same example dialogue.

Initially, the system claims that some instance of beer is of class Blanche (move m1). All the stores
that make part of the dialogue model (K, E, DET, CLAR, CFS) are initialised to be empty. At the next
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Table 2

A move-by-move formal description of the stores governing the example of explanatory dialogue from Table 1

Move Locution DET CLAR CFS

m1 claim (ŷ, E) ∅ ∅ ∅
m2 why-explain (ŷ, E) ∅ ∅ ∅
m3 explain-f (ŷ, E, ef ) {colour, bitterness} {colour, bitterness} {Lager, Pilsner, IPA, Barleywine,

Stout, Porter, Belgian strong ale}
m4 what-is(ŷ, E, ef , �) {colour, bitterness} {colour, bitterness} {Lager, Pilsner, IPA, Barleywine,

Stout, Porter, Belgian strong ale}
m5 clarify (ŷ, E, ef , �, υ) {colour, bitterness} {colour} {Lager, Pilsner, IPA, Barleywine,

Stout, Porter, Belgian strong ale}
m6 why-not-explain (ŷ, E, y′) {colour, bitterness} {colour} {Lager, Pilsner, IPA, Barleywine,

Stout, Porter, Belgian strong ale}
m7 explain-cf (ŷ, E, y′, ecf ) {colour, bitterness} {colour, bitterness} {Lager, Pilsner, IPA, Barleywine,

Porter, Belgian strong ale}
m8 what-details (ŷ, E, ecf , �) {colour, bitterness} {colour, bitterness} {Lager, Pilsner, IPA, Barleywine,

Porter, Belgian strong ale}
m9 elaborate (ŷ, E, ecf , �, θ) {colour} {colour, bitterness} {Lager, Pilsner, IPA, Barleywine,

Porter, Belgian strong ale}
m10 why-not-explain(ŷ, E, y′′) {colour} {colour, bitterness} {Lager, Pilsner, IPA, Barleywine,

Porter, Belgian strong ale}
m11 explain-cf (ŷ, E, y′′, ecf ) {colour} {colour} {Lager, Pilsner, IPA, Barleywine,

Belgian strong ale}
m12 why-not-alternative(ŷ, E, y′′, ecf ) {colour} {colour} {Lager, Pilsner, IPA, Barleywine,

Belgian strong ale}
m13 alter-cf (ŷ, E, y′′, ecf , e′

cf ) {colour, strength} {colour, strength} {Lager, Pilsner, IPA, Barleywine,
Belgian strong ale}

m14 accept-u (ŷ, E) ∅ ∅ ∅
m15 accept-s (ŷ, E) ∅ ∅ ∅

step, the user requests a factual explanation for the given prediction (m2). The system provides the user
with a factual explanation (m3). As the factual explanation is generated, both DET and CLAR stores are
populated with the corresponding features (colour and bitterness). Further, the piece of factual expla-
nation ef (ŷ = Blanche) is placed to both the knowledge store and the explanation store. In addition,
the CF store CFS is populated with all the CF classes. At the next stage, the user asks the system to
clarify the notion of bitterness (m4) and receives the corresponding definition from the system (m5). As
the clarification request for a given feature can only be submitted once while processing a specific piece
of explanation, bitterness is then eliminated from the CLAR store.

Once the factual explanation is offered, the user may commit to the factual explanation offered and
inquire a CF explanation for some CF class. In the present example, the user seeks, at this stage, to know
why the classifier did not predict the given beer to be Stout (m6). Then, the classifier presents the most
relevant piece of CF explanation for this CF class in accordance with its ranking (m7). The CF expla-
nation ecf (y ′ = Stout) is then added to both the knowledge and explanation stores, whereas the class
Stout is removed from the CFS store. Then, the DET and CLAR stores are updated with the features that
the newly offered CF explanation contains. As the user requires more detailed information on bitterness
(m8), the system retrieves the requested numerical interval over which the value of bitterness is defined
to be high (m9). The feature bitterness is then removed from the DET store. Then, the user proceeds to
request a CF explanation for class Porter (m10). Similarly to the previously offered explanations, DET
and CLAR are updated accordingly, as the most relevant piece (from explainer’s point of view) of CF
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Table 3

An example explanatory dialogue schema

Block Move Utterance K E

C m1 System: The test instance is of class y. ∅ ∅
E m2 User: Could you explain why you think so? ∅ ∅

m3 System: It is of class y because 〈feature1〉 is 〈term1〉. {ef (ŷ)} {ef (ŷ)}
m4 User: What do you mean by 〈feature1〉? {ef (ŷ)} {ef (ŷ)}
m5 System: 〈feature1〉 is 〈definition f or feature1〉. {ef (ŷ)} {ef (ŷ)}
m6 User: But why is it not of class y′? {ef (ŷ)} {ef (ŷ)}
m7 System: It would be of class y′ if 〈feature1〉 {ef (ŷ), ecf (y′)} {ef (ŷ), ecf (y′)}

were 〈term2〉 and 〈feature2〉 were 〈term3〉.
m8 User: Could you specify how 〈feature1〉 is defined? {ef (ŷ), ecf (y′)} {ef (ŷ), ecf (y′)}
m9 System: 〈feature1〉 is defined to be 〈term2〉 because {ef (ŷ), ecf (y′)} {ef (ŷ), ecf (y′)}

it is found in the interval 〈[term2min, term2max]〉.
m10 User: But why is the test instance not of class y′′? {ef (ŷ), ecf (y′)} {ef (ŷ), ecf (y′)}
m11 System: It would be of class y′′ if 〈feature1〉 {ef (ŷ), ecf (y′), ecf (y′′)} {ef (ŷ), ecf (y′), ecf (y′′)}

were 〈term3〉 and 〈feature3〉 were 〈term3〉.
m12 User: I am not quite satisfied with your explanation. {ef (ŷ), ecf (y′), ecf (y′′)} {ef (ŷ), ecf (y′)}

Could you offer me another one?

m13 System: Sure! It would be of class y′′ if... {ef (ŷ), ecf (y′), ecf (y′′), e′
cf (y′′)} {ef (ŷ), ecf (y′), e′

cf (y′′)}
T m14 User: Okay, I trust your prediction. {ef (ŷ), ecf (y′), ecf (y′′), e′

cf (y′′)} {ef (ŷ), ecf (y′), e′
cf (y′′)}

m15 System: Thank you for your trust in me. Bye! {ef (ŷ), ecf (y′), ecf (y′′), e′
cf (y′′)} {ef (ŷ), ecf (y′), e′

cf (y′′)}
In the left-hand side column (“Block”), C stands for claim, E – for explanation, T – for termination).

explanation is generated and offered for the class Porter (m11). Then, the class Porter is excluded from
the CFS store whereas the newly offered CF explanation is added to the knowledge and explanation
stores. However, as the user is left dissatisfied or not convinced enough with the offered explanation, he
or she inquires an alternative explanation to the previously offered one (m12). Then, the latest offered
explanation is removed from the explanation store. Subsequently, if the next best ranked alternative can
be offered, it is added to the explanation store (m13). The DET and CLAR stores are then updated accord-
ingly. Having processed the presented explanations in their entirety, the user makes an informed decision
that the classifier’s prediction can be accepted (m14). The system terminates the dialogue outputting a
farewell locution (m15).

Table 3 generalises the presented example of explanatory dialogue for any dataset where features, lin-
guistic terms, and classes serve as dataset-specific variables. It is possible to generalise any explanatory
dialogue modelled in accordance with the proposed framework using the suggested template utterances.
Noteworthy, three main building blocks of such explanatory dialogue (C – claim, E – explanation, and
T – termination) can be distinguished. Figure 5 presents the corresponding (partial, for illustrative pur-
poses) parse tree of such a generalised explanatory dialogue.

3.3. Explanatory dialogue grammar (EDG)

As follows from the example of dialogue presented in Section 3.2, the proposed dialogue model has a
hierarchical structure with respect to its main building blocks. This observation allows us to reflect the
modular composition of explanatory dialogue (following our model) in a context-free dialogue grammar.
As the transitions between the states of the dialogue are finite and predefined, the use of the correspond-
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Fig. 5. A parse tree of the example of explanatory dialogue. Shaded nodes are non-terminals corresponding to specific speech acts. The subtrees in the dashed
regions represent dialogue moves.
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ing EDG allows us to (1) generate any explanatory dialogue that is valid in accordance with the dialogue
protocol restrictions and (2) parse any actually valid explanatory dialogue or make a conclusion that
the present explanatory dialogue is invalid with respect to the dialogue model constraints. Further, a
grammar-based dialogue model can take into account modifications in the dialogue protocol if those are
deemed necessary.

In light of the above, we define an EDG following Chomsky’s definition of a context-free grammar as
a tuple G = 〈T , N, P, S〉 where T is the set of terminals, N is the set of non-terminals, P is the set of
production rules (productions), and S is the start token. In our model, T corresponds to a sentence actu-
ally uttered by each participant in the course of a dialogue. N encompasses the internal building blocks
of the dialogue as well as the speech acts involved (see the shaded nodes in Fig. 5 for details). Thus,
any explanatory dialogue is said to have three main building blocks (those corresponding to the non-
terminals CLAIM, EXPLANATION, TERMINATION). In accordance with current legal requirements to
explanation for AI, the block EXPLANATION enables the user to exercise the right to explanation and
is made optional. All the non-terminals produced from the non-terminal EXPLANATION are designed
in accordance with the predefined requests and responses (see Section 3.1 for details). In addition, P

is composed in accordance with the dialogue protocol settings (see Appendix B for details). Note that
productions can be subdivided in two groups, i.e., dataset-independent and dataset-specific productions.
Dataset-independent production rules form the core of the proposed explanatory dialogue model and
can be used in any application domain so long as it meets the settings of the classification problem as
described in Section 2.1. The dataset-independent rules valid for the illustrative example of an explana-
tory dialogue are outlined in Appendix C. In turn, dataset-specific rules follow the structure of the given
dataset and they are restricted by the information provided by the given interpretable rule-based classifier
and the corresponding knowledge base. Finally, the start token S is known to always be the non-terminal
DIALOGUE node, i.e., the root node in the tree depicted in Fig. 5.

4. Process mining for dialogue analytics

The proposed model of explanatory dialogue is designed in a top-down manner, which signals certain
shortcomings. Thus, the dialogue protocol bases on the assumption that the taxonomy of requests and
responses proposed in Section 3 inspired by findings from the literature exhaustively covers user’s needs
and system’s abilities when engaged in an explanatory dialogue. However, in the absence of any em-
pirical evaluation, such assumptions may result being purely speculative. For example, specific requests
may be utilised to a very limited extent or even not utilised at all. Alternatively, there may exist requests
that are not included in the original model, which may nevertheless be considered essential for human-
machine interaction by the explainees. Either way, modifications to the model should be grounded on
the data obtained from the end users. As such data-driven conclusions on the utility of the top-down
dialogue model can only be made upon empirical evaluation, a user study is necessary to validate the
proposed model.

In addition to analysis of free-form user feedback, evaluation of a dialogue model can be automated
by inspecting dialogue patterns in the collected dialogue transcripts. In these settings, dialogues can be
treated as iterative processes whose key patterns allow us to discern strengths and weaknesses of the
dialogue model. To analyse dialogues as processes, we propose a use of process mining techniques.

Process mining is the subfield of data science that aims to provide tools for discovering insights into
operational processes and thus supports process improvements [76]. Following the process mining ter-
minology [50], an instance of a process (i.e., a specific explanatory dialogue) is denoted as a trace τ .
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Table 4

An example of an event log (the activities in bold are those produced by the system; the user-produced activities are those in
italics)

Case Activity Start End

Dialogue1 claim 2022-06-09 11:54:12 2022-06-09 11:54:12
Dialogue1 why-explain 2022-06-09 11:54:12 2022-06-09 11:54:21
Dialogue1 explain-f 2022-06-09 11:54:21 2022-06-09 11:54:22
Dialogue1 what-details 2022-06-09 11:54:22 2022-06-09 11:54:42
Dialogue1 elaborate 2022-06-09 11:54:42 2022-06-09 11:54:42
Dialogue1 why-not-explain 2022-06-09 11:54:42 2022-06-09 11:55:58
Dialogue1 explain-cf 2022-06-09 11:55:58 2022-06-09 11:56:00
Dialogue1 what-details 2022-06-09 11:56:00 2022-06-09 11:56:32
Dialogue1 elaborate 2022-06-09 11:56:32 2022-06-09 11:56:33
Dialogue1 accept-u 2022-06-09 11:56:33 2022-06-09 11:57:28
Dialogue1 accept-s 2022-06-09 11:57:28 2022-06-09 11:57:28
Dialogue2 claim 2022-06-15 17:03:34 2022-06-15 17:03:34
Dialogue2 why-explain 2022-06-15 17:03:34 2022-06-15 17:04:22
Dialogue2 explain-f 2022-06-15 17:04:22 2022-06-15 17:04:23
Dialogue2 what-is 2022-06-15 17:04:23 2022-06-15 17:04:50
Dialogue2 clarify 2022-06-15 17:04:50 2022-06-15 17:04:50
Dialogue2 why-not-explain 2022-06-15 17:04:50 2022-06-15 17:05:38
Dialogue2 explain-cf 2022-06-15 17:05:38 2022-06-15 17:05:40
Dialogue2 why-not-alternative 2022-06-15 17:05:40 2022-06-15 17:06:12
Dialogue2 alter-cf 2022-06-15 17:06:12 2022-06-15 17:06:13
Dialogue2 what-details 2022-06-15 17:06:13 2022-06-15 17:06:59
Dialogue2 elaborate 2022-06-15 17:06:59 2022-06-15 17:07:00
Dialogue2 reject-u 2022-06-15 17:07:00 2022-06-15 17:07:49
Dialogue2 reject-s 2022-06-15 17:07:49 2022-06-15 17:07:49

Subsequently, each trace consists of the set of activities A (in this case, locutions). In turn, a specific
instance (realisation) of an activity α ∈ A (i.e., a dialogue move) is referred to as an event ε. Altogether,
a collection of explanatory dialogues makes up the so-called event log.

An example of an event log basing on a collection of explanatory dialogues is depicted in Table 4.
It contains two traces (i.e., Dialogue1 and Dialogue2) that represent instances of the recorded explana-
tory dialogues between (possibly, different) user(-s) and the given system (i.e., an interpretable rule-
based classifier). In total, the process model contains 22 events each of which is essentially a specific
dialogue move paired with the corresponding locution. Figure 6 illustrates the corresponding process
model graph. The visual representation of the process model facilitates detection of the activity patterns
(i.e., subprocesses characterising common parts of distinct dialogues) taking place in the collection of
dialogues.

A dialogue protocol can be represented as a finite state machine whose nodes are the locutions mod-
elled, edges being legitimate transitions between different states of the dialogue (e.g., from a request
to all possible responses). In terms of process mining, one can represent the dialogue protocol as the
so-called process model – a directed graph M = 〈N, E〉 where the set of nodes N ⊆ A ∪ {Start, End} is
composed of the process activities and the set of edges E ⊆ N×N represents (possibly, causal) relations
between pairs of activities where Start and End are, respectively, the start and end time of execution of
the corresponding activity.
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Fig. 6. The graphical view of the process model corresponding to the example Dialogue1 in Table 4.

To analyse the actually recorded dialogues quantitatively, we suggest that the so-called conformance
checking procedure be applied. In process mining, conformance checking is applied to relate the events
in the actually registered processes and the process model in order to identify commonalities and dis-
crepancies between the former and the latter. In the case of evaluating the proposed dialogue game, all
the moves made by both dialogue game players follow the previously defined dialogue protocol. Hence,
no deviation from the protocol can be observed. Instead, conformance checking allows us to highlight
the most (and the least) frequent dialogue patterns in the event log and evaluate it against the process
model (i.e., the dialogue protocol). Conformance checking can lead to obtaining data-driven knowledge
of the least frequently submitted requests and/or dialogue state transitions, which can be used to modify
the originally proposed dialogue protocol in order to increase its quality.

To sum it up, the proposed dialogue model can be evaluated in two complementary ways: qualita-
tively and quantitatively. On the one hand, qualitative free-form user feedback (e.g., in the form of a
post-experiment survey) can point to missing requests or transitions between existing requests in the
dialogue protocol. On the other hand, the least frequent dialogue patterns may signal their futility for
explanatory purposes of the dialogue model. In process mining, a frequency threshold value can, for
example, be set to subsequently optimise the process model by removing the least observed model pat-
terns. Similarly, the least frequent requests or responses may be removed from the dialogue protocol if
the empirically grounded threshold value is available and set prior to evaluation. As a result, process
mining is shown to serve as a methodological basis for quantitative evaluation of the proposed dialogue
model. In combination with free-form user feedback for qualitative evaluation of the dialogue protocol,
process mining is able to provide us with further insights w.r.t. the quality of a dialogue model.

5. Experimental settings

In order to evaluate the proposed model of explanatory dialogue following the aforementioned evalu-
ation framework, we carried out an exploratory user study. In the remainder of this section, we describe
the setup of the human evaluation study. Thus, Section 5.1 describes the datasets used as the basis for
training the classifiers for the study. Section 5.2 outlines technicalities of the explanation generation
method used in the given experiment. Section 5.3 outlines the distinctive characteristics of the classifiers
trained on the aforementioned datasets. Section 5.4 discusses the stimuli selection as well as the design
of the dialogue system used in the experiment.

5.1. Datasets

In our study, we used the following three datasets: basketball player position [3], beer style [13],
and thyroid disease diagnosis [19]. All three datasets serve to solve a multiclass classification prob-
lem in three different application domains. First, the basketball players position dataset presupposes
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five classes related to the following player positions: Ybasketball = {point-guard, shooting-guard, small-
forward, power-forward, center}. Second, the beer style dataset (as was used in the illustrative ex-
ample in Section 3.2) categorises instances of beer to belong to one of the following eight classes:
Ybeer = {Blanche, Lager, Pilsner, IPA, Barleywine, Stout, Porter, Belgian strong ale}. Third, the thy-
roid disease dataset presupposes the following four potential labels: Ythyroid = {no hypothyroid, primary
hypothyroid, compensated hypothyroid, secondary hypothyroid}.

To guarantee consistent and comparable results, only numerical continuous features were used for
training the corresponding classifiers. Further, all the features were mapped to linguistic terms as follows.
The beer style dataset was annotated by an expert brewer, therefore it contains original feature-value
partitions. The features from the other datasets were split in three uniform intervals of equal length,
each of which was mapped to the following linguistic terms: 〈low, medium, high〉 (except for the feature
height, which is described with 5 linguistic terms, in the basketball player position dataset). Table 5
summarises information on the features from all the datasets as well as the corresponding linguistic
terms, with the numerical intervals attached.

5.2. Explanation generation method

To evaluate the dialogue game proposed in this paper as a communication interface between the sys-
tem and the user, we generate multiple factual and CF explanations using the XOR method [72]. This
explanation generation method operates on the rule base (i.e., a set of decision paths to each class) of
a rule-based interpretable classifier (e.g., a fuzzy rule-based classification system or a decision tree DT
where branches are first transformed into a list of rules). All automatic explanations follow the structure
of the decision path (in the case of the factual explanation) or the minimally different decision path
leading to the given CF class (in the case of the CF explanation). The following pipeline of four steps
constitutes the explanation generation process:

(1) Rule vectorisation. Each rule found in the rule base is represented as a (binary, in the case of
the XOR method) vector of all possible feature-value pairs. In the case of a DT, the values of the
vector are all the unique conditions (e.g., “bitterness � 10”) found in the set of DT nodes.

(2) Relevance estimation. Once the rules are vectorised, a distance is calculated between vectors
representing the decision path vector (responsible for the prediction) and each rule leading to the
given (factual or CF) class. In the case of the XOR method, the exclusive-OR function calculates
the distance between the vectors. The vectors are then ranked in accordance with the distances.
The minimally distant rule is selected as a template for the output explanation following the con-
ventional definition of a CF explanation.

(3) Linguistic approximation. Each interval found in the selected rule is mapped to the predefined
linguistic terms by measuring the similarity between the set of numerical values corresponding
to this interval and each set of numerical values for the corresponding feature. The most similar
linguistic term is selected for the given feature.

(4) Surface realisation. The linguistically approximated rule is passed on to the surface realisation
module that outputs a template-based grammatically correct high-level explanation. Similarly, the
corresponding numerical intervals are used to generate a low-level explanation.

For DTs, factual explanations are essentially the feature-value intervals aggregated along the decision
path. This explanation generation method presupposes that alternative factual explanations cannot be
generated because alternative decision paths leading to the same predicted class would not adequately
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Table 5

Numerical intervals of the features as well as the corresponding linguistic terms

Feature Linguistic term Range of values

Height Short [1.810, 1.888]
Medium-height [1.888, 1.966]

Tall [1.966, 2.044]
Very tall [2.044, 2.122]

Extremely Tall [2.122, 2.200]

Minutes Low [8.410, 14.290]
Medium [14.290, 20.160]

High [20.160, 26.040]

Points Low [2.800, 6.200]
Medium [6.200, 9.600]

High [9.600, 13.000]

2-points field
points percentage

Low [34.400, 45.500]
Medium [45.500, 56.600]

High [56.600, 67.700]

3-points field
points percentage

Low [0.000, 15.170]
Medium [15.170, 30.330]

High [30.330, 45.500]

Free throws Low [43.900, 59.300]
Medium [59.300, 74.700]

High [74.700, 90.100]

Rebounds Low [1.600, 3.330]
Medium [3.330, 5.070]

High [5.070, 6.800]

Assists Low [0.200, 1.930]
Medium [1.930, 3.670]

High [3.670, 5.400]

Blocks Low [0.000, 0.570]
Medium [0.570, 1.130]

High [1.130, 1.700]

Turnovers Low [0.200, 0.630]
Medium [0.630, 1.070]

High [1.070, 1.500]

Global
assessment

Low [4.000, 8.370]
Medium [8.370, 12.730]

High [12.730, 17.100]
(a) Basketball player position

Feature Linguistic term Range of values

Colour Pale [0.000, 3.000]
Straw [3.000, 7.500]
Amber [7.500, 19.000]
Brown [19.000, 29.000]
Black [29.000, 45.000]

Bitterness Low [7.000, 21.000]
Low-medium [21.000, 32.500]
Medium-high [32.500, 47.500]

High [47.500, 250.000]

Strength Session [0.035, 0.052]
Standard [0.052, 0.067]

High [0.067, 0.090]
Very high [0.090, 0.136]

(b) Beer style

Feature Linguistic term Range of values

Thyroid-
stimulating
hormone (TSH)

Low [0.000, 3.333]
Medium [3.333, 6.666]

High [6.666, 10]

Low [0.050, 3.560]
Triiodothyronine
(T3)

Medium [3.560, 7.080]
High [7.080, 10.060]

Total thyroxine
(TT4)

Low [2.000, 94.660]
Medium [94.660, 187.330]

High [187.330, 280.000]

Thyroxine
utilization (T4U)

Low [0.250, 7.900]
Medium [7.900, 15.550]

High [15.550, 23.200]

Free thyroxine
(FTI)

Low [2.000, 84.660]
Medium [84.660, 167.330]

High [167.330, 250.000]
(c) Thyroid disease

explain the exact reasoning of the DT for the given test instance. On the contrary, alternative CF explana-
tions are considered for explaining hypothethical, non-predicted outcomes. Once the explainer generates
an explanation, it is then passed on to dialogue system upon request.
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Table 6

Main characteristics of the datasets and the corresponding classifiers used in the experiments

Dataset # of instances Accuracy Precision Recall F-score

Basketball 50 54.000% 0.535 0.540 0.529
Beer 400 93.500% 0.936 0.935 0.935
Thyroid 3772 95.334% 0.947 0.953 0.948

Table 7

Number of decision paths and CF classes for each dataset under consideration

Dataset Class # of decision paths # of alternative CF explanations

Basketball Point-guard 2 1
Shooting-guard 2 1
Small-forward 3 2
Power-forward 3 2
Center 4 3

Beer Blanche 1 –
Lager 2 1
Pilsner 6 5
IPA 8 7
Barleywine 4 3
Stout 2 1
Porter 4 3
Belgian strong ale 1 –

Thyroid No hypothyroid 220 219
Primary hypothyroid 49 48
Secondary hypothyroid 2 1
Compensated hypothyroid 186 185

5.3. Classifiers

In our human evaluation study, we use DTs as classifiers. Notably, DTs offer interpretable rule-based
explanations that can be retrieved from their readily available internal structure. Three variants of DTs
(J48, RandomTree, REPTree) were generated using the data mining tool Weka [30] and inspected for all
the considered datasets. All the DTs were trained using 10-fold cross-validation.

It turns out that only the RandomTree algorithm generates at least two decision paths to all the classes
in all the datasets under consideration (except for classes Blanche and Belgian Strong Ale in the beer
style dataset). First, this guarantees the existence of at least one CF explanation for any class in each
dataset for any test instance selected. Subsequently, it provides at least one alternative explanation for
the given CF class. Since the other inspected DT algorithms did not provide at least one alternative CF
explanation for the considered datasets, the RandomTree-based DTs were selected for all the use cases as
classifiers whose predictions were to be explained in the study. Table 6 summarises main characteristics
of the DTs used in the human evaluation study. Table 7 indicates numbers of decision paths for each CF
class for each dataset.
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Fig. 7. An example of a dialogue game human evaluation survey (the beer style dataset scenario).

5.4. Online evaluation settings

In order to execute human-machine interaction governed by means of the dialogue game proposed,
we designed and implemented an online evaluation system. The corresponding ethical considerations
are outlined in Appendix A. Figure 7 presents an example screen of the implemented software tool.3

Further, the source code of the dialogue game survey, the DTs used in the experiments, and the collected
experimental data are made publicly available.4

In the course of the study, the participants were presented the characteristics of a test instance follow-
ing the chosen scenario (dataset). The participants did not have any prior knowledge about the dataset.
They were asked to interact with the system until they could make an informed decision on acceptance or
rejection of the system’s claim. The participants determined the flow of the dialogue, as they requested
necessary information to make a final decision.

Three test instances (one per dataset) were selected so that they would represent correctly predicted
real data. Table 8 outlines the characteristics of the test instances used in the study. The following factual
explanations were generated for the considered test instances:

3https://tec.citius.usc.es/dialgame
4https://gitlab.citius.usc.es/ilia.stepin/fcfexpgen (branch “dialgame”).
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Table 8

Test instance characteristics
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1.85 21.19 9.2 43.1 40.0 81.9 1.9 3.8 0.0 0.7 8.8 Point-guard
(a) Basketball player position

Colour Bitterness Strength Class

2 18 0.049 Blanche
(b) Beer style

Thyroid-stimulating Triiodothyronine Total thyroxine Thyroxine utilization Free thyroxine Class
hormone (TSH) (T3) (TT4) rate (T4U) index (FTI)

4.6 1.2 48 0.89 54 Secondary hypothyroid
(c) Thyroid diagnosis

• Basketball: “The player’s position is point-guard because the number of rebounds is low and the
number of assists is high.”

• Beer: “The beer style is Blanche because colour is pale, bitterness is low and strength is session.”
• Thyroid: “The patient has secondary hypothyroid because thyroid-stimulating hormone is medium,

triiodothyronine is medium and total thyroxine is low.”

Similarly, all the high-level automatically generated CF explanations contained only textual descrip-
tions of the features involved. As all the features are numerical (either integer or real-valued), responses
to detailisation requests would provide subjects with intervals to which the linguistic terms are mapped.
Further, the users were then informed about the classifier’s numerical intervals found for the given fea-
ture along the given decision path. These details were assumed to facilitate matching the system’s claim
with the feature-value pairs of the test instance.

Noteworthy, the same study participants could select multiple datasets to play the dialogue game.
Therefore, the numbers of records for each dataset do not represent unique users. For this reason, when-
ever we hereinafter mention the study participants (subjects), we refer to the actually collected transcripts
of explanatory dialogues.

Upon completion of the experiment, the study participants were asked to optionally provide their
demographic data and leave free-text responses to the following questions and/or suggestions:

Q1 “If you could add other types of requests to the system, what would those be?”;
Q2 “Did the interaction with the system change your initial (dis-)belief in the system’s prediction?

Why (not)?”;
Q3 “If you have any other comments for us, please leave them in the textbox below.”

Last but not least, all the collected dialogue transcripts were transformed into event logs. On the basis
of the event logs, process models were then constructed for each use case. In addition, a global process
model of all the event logs was calculated.



CORRECTED  P
ROOF

I. Stepin et al. / Information-seeking dialogue for XAI 27

Table 9

General properties of the collected dialogues

Property Dataset All datasets
Basketball Beer Thyroid

Number of dialogue moves
Mean 12.57 15.76 10.11 14.17
Median 12.00 15.00 9.00 13.00
St.dev. 6.98 7.00 3.18 6.83

Time taken (min)
Mean 04 m 09 s 08 m 47 s 05 m 17 s 07 m 10 s
Median 04 m 01 s 05 m 42 s 04 m 54 s 04 m 35 s
St.dev. 01 m 39 s 09 m 39 s 02 m 31 s 07 m 55 s

6. Experimental results

In this section, we report the collected human evaluation results. Section 6.1 presents the quantitative
results of the study (i.e., descriptive analytics of the collected dialogues and insights from the process
models). Section 6.2 reports the qualitative results of the evaluation study (i.e., the free-form feedback
that the study participants left optionally after their interaction with the dialogue system).

6.1. Dialogue analytics

A total of 60 dialogue transcripts have been collected in the course of the empirical study. In partic-
ular, 14 (23.33%) of the records relate to the basketball player position dataset. In turn, 37 (61.67%)
transcripts are composed as the result of interaction with the classifier trained on the beer style dataset.
In addition, 9 (15.00%) records reflect user interaction with the thyroid dataset-based classifier. All the
collected dialogue transcripts were converted into event logs. The event logs were subsequently used to
generate two process models: (1) the one related to the main building blocks of the modelled explanatory
dialogue (i.e., claim, explanation, and termination) and (2) the one covering all the locutions produced
by the study participants. Process model (1) gives a high-level overview of the user behaviour whereas
process model (2) provides insights w.r.t. specific moves made by the study participants.

On average, it took the dialogue game participants around 14 moves for the users to make their fi-
nal decision with respect to the system’s claim. As for the time taken to complete the dialogue game,
the study participants spent about 7 minutes to either accept or reject the claim. Table 9 reports av-
erage numbers of dialogue moves and the time taken to complete the dialogue for each dataset under
consideration.

Figure 8 illustrates the process model corresponding to the three main building blocks of the proposed
dialogue game (i.e., claim, explanation, and termination). Thus, all but three participants required (at
least, factual) explanation for the given prediction. Almost all of them eventually accepted the system’s
claim. In the remainder of this section, we are analysing only those transcripts where explanations were
requested.

Figure 9 depicts the process model of the collection of explanatory dialogues that displays all the
locutions produced. Thus, 331 explanation-related requests (all those covered by the EXPLANATION
non-terminal in EDG) have been registered from the 57 participants who required explanation for the
system’s claim. The edge labels for the explanation-related requests in Fig. 9 show that the study partic-
ipants actively exploited all the explanation-related requests that were designed in the original protocol.
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Fig. 8. The process model of all the collected explanatory dialogues based on the main EDG building blocks. The block
“termination” is split into “accept” and “reject”.

On the one hand, a majority of the participants submitted further explanation-related requests (in this
case, detailisation or clarification) upon receiving the factual explanation. On the other hand, a quarter of
all the study participants considered the factual explanation sufficiently comprehensive to immediately
request a (set of) CF explanation(-s).

The locution-level process model (see Fig. 9 for details) allows us to observe the answers to which re-
quests were the most decisive for the participants to make their final decisions. Thus, the system’s claim
was mainly accepted immediately after CF explanations (including those alternative) were presented
whereas only one participant accepted the system’s claim did so as soon as the factual explanation was
offered. The other explanation-related requests (i.e., detailisation and clarification) are found to have
contributed less to immediate acceptance of the system’s claim. As for claim rejections, alternative CF
explanations happen to most frequently trigger negative user decisions. Notably, alternative CF explana-
tions were requested for nearly a half of all 76 CF explanations offered. In most cases, study participants
stopped exploring the explanation space for the given CF class after the second-best ranked CF explana-
tion was offered. However, third-best ranked CFs were requested to a limited extent.

It is worth noting that further insights into the quantitative results for individual use cases can be found
in Appendix D.

6.2. User feedback

In this section we present all the free-form comments that the study participants left upon finishing
their interaction with the system and summarise the most informative of them. Recall that study partic-
ipants were encouraged to leave answers to two questions (Q1 and Q2) and/or indicate their free-form
suggestions (Q3) unrelated to Q1 or Q2 after their interaction with the implemented dialogue system.
The collected responses to Q1–Q3 are presented in Tables 10–12. As all the comments shown are orig-
inal, some may contain grammatical, lexical, and/or orthographic errors. All the users’ statements are
codified as follows: “Cx.y” where C stands for “comment”, x is the corresponding question number and
y is the answer number.

Table 10 presents all the answers to Q1 (“If you could add other types of requests to the system, what
would those be?”) that we collected throughout the study. Two comments (C1.1 and C1.2) are related to
the basketball player position. Six statements (C1.3–C1.8) were made as a result of interaction with the
system in the beer style case settings. One study participant left his or her comment (C1.9) after playing
with the thyroid disease diagnosis scenario.

Regarding Q1, the study participants would like to extend the actual dialogue model so that it could
inform them about the second most probable decision, or the technicalities of the decision-making sys-
tem (e.g., the accuracy of the system). In addition, further definitions of notions related to the domain
knowledge (see Comment C1.6, Table 10) were desired. Notably, concerns were raised about the in-
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Fig. 9. The full process model of all the collected explanatory dialogues. For illustrative purposes, pairs of termination nodes,
i.e. {accept-u, accept-s} and {reject-u and reject-s}, are merged into accept and reject, respectively.
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Table 10

Study participants’ answers to Q1 (“If you could add other types of requests to the system, what would those be?”)

ID User’s statement
C1.1 “I’m unsure”
C1.2 “explain what is your primary goal for the predictions you are making”
C1.3 “Summarisation”
C1.4 “In clarifications, I’d like to not only get the definition of the strength but also the types of strength that exist.

For example, Blanche’s strength is session but I have no idea what session means.”
C1.5 “It would be good to have some clarification of different terms than fixed one like color”
C1.6 “I would add more elaborated set of definitions, i.e. definitions of technical terms which are used for

definitions.”
C1.7 “how did you measure the (.); what is the accuracy of this measurement tool? What is the probability of your

prediction?; how did you calculate this probability?”
C1.8 “I would like the possibility of going back to previous points. It seems to me that after the counterfactual

explanation I was stuck on it, and going back to the original prediction was at least not intuitive. A graph of the
history of dialogue that would allow me to travel through explanations would be great. Predefined options were
not very clear to me I think a better explanation with examples would be beneficial. There might be corner
cases on different topics that would make differentiating those options even harder.”

C1.9 “Second most probable choice (differential diagnoses in the case of the thyroid case)”

ability to post-process the pieces of explanation that had already been discussed (see Comment C1.8,
Table 10).

Table 11 shows all the collected answers to Q2 (“Did the interaction with the system change your ini-
tial (dis-)belief in the system’s prediction? Why (not)?”). Five study participants (C2.1–C2.5) answered
Q2 after making their decision on the automatic basketball player position classification. Ten statements
(C2.6–C2.15) were made as a result of interaction with the system in the beer style case settings. Two
study participants (C2.16–C2.17) commented on their interaction with the system, as the thyroid disease
classification scenario was executed.

Regarding Q2, a fair number of commentators found the offered automated explanations convincing
and satisfactory. Comment C2.5 (Table 11) illustrates that this was, in part, achieved due to the possibility
to opt for factual explanations. In addition, some study participants positively assessed the ability to
query the system for CF explanations (see Comment C2.8, Table 11) and further details and clarifications
(see Comment C2.3, Table 11). Some of the commentators whose initial (dis-)belief in the system’s claim
did not change in the course of their interaction with the system remarked that the explanations offered
were nevertheless satisfying (see Comment C2.2, Table 11) and supportive enough w.r.t. the system’s
claim (see Comment C2.11, Table 11).

Table 12 presents all users’ free-form suggestions (Q3: “If you have any other comments for us, please
leave them in the textbox below.”). One comment (C3.1) was left after a dialogue with system w.r.t. the
basketball player position classification whereas two statements (C3.2–C3.3) were made as a result of
interaction with the system in the beer style case settings.

Regarding Q3, one study participant commented that the system’s responses were too fast (see Com-
ment C3.1, Table 12). In addition, another participant pointed out the need for supportive visualisation
tools, a clearer distinction between detailisation and clarification requests, and different structures for
alternative explanations for the same CFs (see Comment C3.2, Table 12). Finally, predictions for other
data instances are found desired to be inspected to develop big picture thinking about the reasoning of
the system (see Comment C3.3, Table 12).
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Table 11

Study participants’ answers to Q2 (“Did the interaction with the system change your initial (dis-)belief in the system’s predic-
tion? Why (not)?”)

ID User’s statement
C2.1 “Yes. It provided a counter argument of why they had provided that prediction specifically and not another that

I suggested.”
C2.2 “No because the system had the numbers, so I believed it from start to finish.”
C2.3 “I have no knowledge of basketball but the explanations were convincing so I was happy to accept the

prediction after asking further questions”
C2.4 “It made me feel that the system has a certain etos but did not teach me about how these predictions are

actually computed”
C2.5 “The system was able to successfully convince me of the prediction based on the factual information it

provided.”
C2.6 “No”
C2.7 “It didn’t describe the details of the low bitterness when I asked about bitterness following a discussion about

ipa. It provided me with details about high bitterness and outlined that ipa has high bitterness. I could not
clarify the bitterness low level range that was the suggested prediction of Blanche.”

C2.8 “Yes, seeing the classifications of the other types that is suspected made me accept that this prediction must be
correct”

C2.9 “Yes, it gave me a deeper understanding of beer classification. It is a nice way to learn and to gain trust in AI
system.”

C2.10 “The system responses were good and straight to the point so it was quite convincing.”
C2.11 “It did not. I thought it was pretty accurate from the start and given the example before the experimental item I

could already gather a good idea of what was expected.”
C2.12 “yes, in the beginning I didn’t understand one of the words and my first thought was that the word, which was

awkward to me, was an effect of system’s malfunctioning.”
C2.13 “I did not have a strong initial belief about the system prediction. However, it was convincing enough for me.”
C2.14 “No – I had no experience or grounds on which to doubt what I was being told. The questions and answers

seemed a matter of technical specification and not a matter of beliefs.”
C2.15 “Not really, I know it is difficult for an AI system to have long dialogues as it needs to take account with

everything that has been said before.”
C2.16 “Not really, because I didn’t have any expectations”
C2.17 “Clarification of the prediction terms as well as the features would be useful. For example, what hypothyroid

means etc”

7. Discussion

The findings reported in the previous section enable us to outline several remarkable observations. As
expected, high numbers of detailisation and clarification requests have been registered from the users
interacting with a classifier in the settings where they did not have any prior knowledge of the dataset
that the classifier had been trained on. As the users started their interaction with the system only having
feature-value pairs of the test instance at their disposal, they oftentimes required not only an explanation
to the system’s claim but, perhaps, more importantly, definitions of the features that made part of the
explanation or the numerical ranges over which the features were defined. The fact that a high number of
requests for alternative explanations have been registered across all the use cases confirms that the most
relevant explanation from the system’s point of view may be far from the most relevant (or satisfactory)
from the user’s point of view.

As the same prediction can be explained in different ways, it turns out to be particularly important
to extend the protocol so that it does not only offer the opportunity to rephrase the initially offered
explanation but also enables the system to send requests to the user. For instance, if two pieces of
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Table 12

Study participants’ suggestions w.r.t. to Q3 (“If you have any other comments for us, please leave them in the textbox below”)

Comment ID User’s statement
C3.1 “The responses were very fast, a slight delay after receiving a request would improve how the answer appears”
C3.2 “In the beginning, it’d be nice to have some kind of photo prompt together with the beer data to help vizualise

what we are talking about. It’s a bit hard to distinguish between detalisation and clarification. I didn’t see the
difference in the structures of counterfactual explanation and alternative explanation. In my case, for the
counterfactual explanation, I asked about pilsner and when giving me an alternative explanation the system
also used pilsner so I didn’t get new information from the last request.”

C3.3 “I would be curious to learn more about other topics and other predictions on the subject I took (in this case,
beer).”

explanation are deemed equally relevant by the explanation generation module, requiring additional
information from the user about his or her preferences may be crucially important for successful fine-
tuning of the explanation being processed. On the one hand, both such explanations can be presented
simultaneously. Then, the user is to decide the format and/or ordering of the output explanations. On
the other hand, the system can submit a request to the user to infer the actual user’s needs taking into
consideration the known differences between two explanations.

The qualitative results of the human evaluation study allow us to suggest a number of empirically-
driven critical questions (CQ) to the system’s prediction. Recall that our factual and CF textual expla-
nations (in the simplest form) follow the templates “The test instance is [CLASS] because [FEATURE]
is [VALUE]” and “The test instance would be [CLASS] if [FEATURE] were [VALUE]”, respectively.
We can therefore address CQs both to the prediction (variable CLASS in the example above) and to
(components of) the explanation (the variables FEATURE and VALUE in the example above). Driven
by the registered user feedback, the prediction-related CQs (CQ1, CQ2, and CQ3) can be exemplified as
follows:

CQ1 Is the system’s prediction correct?
CQ2 What is/are the accuracy/precision/recall/F-score of the system that predicted [CLASS]? (fol-

lowing C1.7 from Table 10);
CQ3 How were the accuracy/precision/recall/F-score calculated? (following C1.7 from Table 10).

In turn, the features and values of the given explanation may give rise to explanation-related CQs. For
example, the feature values may be subject to explanation-related CQs that may occur when processing
responses to detailisation requests (CQ4 and CQ5) while the definitions of the features themselves may
be questioned upon performing clarification requests (CQ6):

CQ4 What data justify [VALUE] for [FEATURE]? (in the case of high-level explanations);
CQ5 Is [VALUE] consistently defined for [FEATURE] in [INTERVAL]? (where [VALUE] is the

linguistic term of some high-level explanation’s feature and [INTERVAL] is the corresponding
numerical interval of the low-level explanation);

CQ6 Is the source of information of the definition of [FEATURE] credible?

The proposed dialogue model has a number of limitations. As it can be applied directly only to inter-
pretable rule-based classifiers enhanced with explainers providing textual explanations, the communi-
cation between the system and the user may appear overly restricted. In light of the assumptions made
in Section 2, parts of the protocol may have to be adjusted when dealing with, for example, categorical
variables or a poorly interpretable feature space. In addition, the structure of the protocol may have to
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be made more flexible, as handling the previously processed explanations (for example, those for other
CF classes) is not permitted.

Remarkably, the set of locutions included in the presented protocol is by no means exhaustive. The
qualitative results of the human evaluation study signal a number of desired extensions to the proposed
dialogue model. The users would, for example, appreciate to know more about the definitions of the
linguistic terms. The modular architecture of the EDG production rules allows for adapting the dialogue
game for developer’s as well as user’s needs. In this regard, the clarification requests can be made
applicable not only to the features themselves but also to the values of the linguistic variable that appear
in high-level explanations as well as domain knowledge-related terms. In addition, the proposed dialogue
protocol might as well incorporate visual information (e.g., pictures of the domain knowledge available
upon request) for detailisation requests.

8. Related work

A variety of computational argumentation models have proven to be efficient tools for explanatory
dialogue modelling in the context of XAI. For instance, Arioua et al. [4] propose a formal model of
argumentative explanatory dialogue to acquire new knowledge in inconsistent knowledge bases. Cale-
gari et al. [10] implement a mechanism of reasoning over defeasible preferences using elements of
abstract and structured argumentation. Groza et al. [26] model explanatory dialogues combining rule-
based arguments extracted from both ML classifiers and expert knowledge in favour or against a given
classification of retinal disorder. Subsequently, the arguments are used to persuade the other parties in
multi-agent system settings.

Argumentative explanatory dialogues are of particular interest among XAI researchers, as they pro-
vide means for customisation of automated CF explanations in light of the collected user feedback [70].
There exist a large number of distinct techniques that allow for integrating user feedback to person-
alise initially generated CF explanations. For example, Suffian et al. [73] operate on user’s preferred
features and the corresponding ranges of values to fine-tune the originally generated explanation. Their
FCE method first generates synthetically a set of CF data points where the preferred features range
in the selected intervals. Then, the model aims to detect the most relevant (yet personalised) CF by
searching for the minimally different (in terms of distance) CF data point from the generated synthetic
data. Behrens et al. [6] propose a dynamically updated framework for user-specific explanation gen-
eration for knowledge graphs. More precisely, the user expresses his or her preferences by selecting
two desired sets of graph nodes and, subsequently, ordering the selected generated meta-paths (i.e.,
sequences of alternated nodes and edges). Ghazimatin et al. [24] collect user feedback on explana-
tions themselves for a recommender system to improve its performance. In this case, the user feed-
back is essentially a binary value signalling the similarity of an explanation to the recommendation. De
Toni et al. [18] consider the problem of causal CF explanation generation as algorithmic recourse (i.e.,
overturning unfavourable ML-based model’s prediction). In their reinforcement learning-based model,
the user is asked to choose the best subsequent action from the so-called “choice set”. The user’s re-
sponses are then used to optimise the model’s weights via Bayesian estimation and update the user’s
state.

Early computational models of explanatory dialogue stress that the context of explanation should de-
pend on user’s familiarity with the concepts presented to him or her [14]. Further, the end user is argued
to necessarily build a sound mental model of the system to successfully interact with it [84]. However,
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only a few of argumentative explanatory dialogue implementations allow for direct dialogic interaction
between an AI-based system and a given user for explanation customisation. Despite little evidence,
human evaluation of the automatically generated explanations may lead to groundbreaking conclusions.
For instance, Rago et al. [56] emphasise the need for multi-modality of the generated argumentative ex-
planations, as users are found to generally prefer tabular explanations over textual ones but also textual
over conversational. In addition, explanations containing a greater number of features (aspects) are, in
general, found to be preferred.

Formal dialogue games provide an intuitive transparent tool of information exchange between the
agents involved [54]. They have been extensively used in a wide range of AI applications, such as
multi-agent systems [44] and recommendation systems [42]. Dialogue games have shown to have great
potential for explanatory dialogue modelling [36]. The first dialogue games for (computational) explana-
tory dialogue modelling trace back to works by Walton [81] and Modgil and Caminada [46]. Arioua and
Croitoru [5] propose a dialogue game to formalise Walton’s dialectical system of explanatory dialogues.
However, their formalism does not take into account some key properties of explanation (contrastive,
selected, and social) as well as user-specific needs addressed in the field of XAI. On the other hand,
Shao et al. [67] explain a neural network’s classification output enabling the user to adjust the clas-
sifier’s prediction by enabling the user to prove feedback on the arguments correcting the prediction.
Shaheen et al. [65] design two dialogue game-based protocols for generating and communicating ex-
planations for satisfiability modulo theory (SMT) solvers. Thus, their approach distinguishes between a
passive explanatory dialogue game where the explainee only inquires explanation and an active game
where the user is explicitly asked to confirm or refute the system’s assertion. Unfortunately, both pro-
tocols lack any empirical evaluation. Alternatively, Sklar and Azhar [69] perform a user study to eval-
uate a dialogue game-based framework for making cooperative actions in the treasure hunt game. They
show that explanations communicated using a dialogue game-based communication protocol lead to
above-average user satisfaction. Shams et al. [66] design a dialogue game to explain and justify the
best agent’s plan in normative practical reasoning settings. Finally, argumentative dialogue game-based
models have been proposed for generating model-agnostic local explanations to justify given predic-
tions [55]. To the best of our knowledge, no other dialogue games (including those aforementioned)
have ever been evaluated (quantitatively) using process mining techniques like those introduced in this
paper.

The previously mentioned protocols were mainly proposed for modelling information-seeking or in-
quiry explanatory dialogues. However, the formalism of dialogue games is also suitable for (and ex-
tensively applied to) modelling persuasive explanatory dialogues. Thus, Sassoon et al. [61] center ex-
planatory dialogue around instances of a domain-specific argumentation scheme guided with the corre-
sponding critical questions. Depending on the degree of agreement between the agents, the explanatory
dialogue is then modelled in one of the three following modalities: information-seeking, deliberation, or
persuasion. Morveli-Espinoza et al. [48] propose a protocol for persuasive negotiation dialogues where
agents exchange explanatory and rhetorical arguments. Similarly to our approach, they consider alterna-
tive responses to be, in part, attacks to the previously uttered arguments. However, their protocol does
not tackle CF explanations.

Last but not least, a large body of research has attempted to formalise dialogue by means of dia-
logue grammars [32,58]. Thus, they have been regarded as a natural interface between the underly-
ing speech acts and actually produced utterances [64]. Dialogue grammars have been shown to dis-
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ambiguate between distinct dialogue flow patterns (e.g., elaboration, digression, problem resolution, to
name a few) [33]. In addition, dialogue grammars facilitate induction of task-based dialogue systems
[22]. Beneficially, such grammars can be learned from dialogic data in an unsupervised manner [23].
Further, dialogue grammars are scalable yet universally induced from any domain [38]. Subsequently,
the grammar-based approach to dialogue modelling has been enhanced with methods of corpus-based
query generation for natural language understanding [34].

Dialogue grammars are found to model human-human dialogue [68] as well as human-machine dia-
logue [39]. Thus, dialogue grammars appear particularly useful for multimodal human-machine inter-
action. For instance, hybrid multiset grammars are proposed to govern speech and textual input jointly
[20]. On a similar note, Kottur et al. [40] propose a dialogue grammar for visual co-reference resolution.
In contrast to the aforementioned approaches where the explanatory dialogue is formalised by means
of dialogue grammars, our EDG allows for producing natural language output only. However, a high
degree of modularity that dialogue grammars offer makes it possible to extend the dialogue model so
that it also outputs visual data (e.g., saliency maps) if such visual explanations are included in the set of
terminals of the grammar.

9. Conclusions and future work

In this paper, we presented a new approach for explanatory dialogue modelling. Namely, we designed
a dialogue game for the task of communicating explanations for predictions of interpretable rule-based
classifiers. Unlike previous approaches, the dialogue protocol proposed in this work allows for effective
communication of both factual and CF explanations for expert and lay users. The protocol offers a
transparent means of conveying personalised textual rule-based explanations. Its use can be extended
to other interpretable rule-based classifiers (e.g., other DT algorithms or fuzzy rule-based classification
systems).

Subsequently, we validated the dialogue protocol by carrying out a human evaluation study. The quan-
titative results (i.e., the reconstructed process models) confirm the necessity in all the proposed requests
for explanatory dialogue between the classifier and its user and therefore proves them indispensable for
explanatory dialogue modelling. Thus, detailisation and clarification requests are found particularly use-
ful when natural language explanations are presented in the settings where users have no prior knowledge
of the dataset. In addition, end users show a high degree of interest in CF explanations in addition to their
factual counterparts. Further, they appear to appreciate the possibility to question the initially offered CF
explanations across different application domains. Provided that such CF explanations are generated au-
tomatically and presented to the user in accordance with their relevance to the test instance (e.g., the
distance from the test instance), the proposed protocol allows the explainer to communicate multiple
explanations. Hence, it favours diversity of the offered explanations, which is shown to increase their
explanatory power. Moreover, the qualitative results show that the proposed dialogue game appears to
be an effective tool to convey appealing explanations which were convincing enough for a good number
of users. In this sense, the set of the proposed requests and replies turns out to be a potentially effective
tool for measuring the effectiveness of (counter-)factual explanation generation frameworks outputting
textual explanations in the course of interaction with end users. Finally, the protocol is flexible enough
to be adapted in the near future for estimating the trustworthiness, satisfaction, or persuasive capability
of automatically generated explanations while preserving the original structure of the given explanatory
dialogue modelled. Nevertheless, the proposed protocol may be found somewhat overrestrictive, as it
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does not enable end users to submit explanation-related requests for the pieces of explanation whose
processing is considered finalised.

The present piece of research opens the door for several lines of future work. Importantly, the pro-
posed dialogue model should be adapted to handle other types of classifiers including those that do
not reveal any interpretable information about their internals. In many settings, knowledge of the fea-
ture space is unavailable or hard to interpret. Then, the detailisation requests may result being of little
utility unless additionally adapted to the functionality of the given classifier. In addition, we intend
to enlarge the argumentative potential of the proposed dialogue model by developing further meth-
ods of capturing user’s preferences. Further work is also necessary to incorporate explanations of
other modalities (e.g., visual) for dialogic communication. Whereas the concept of explanation space
may be directly applicable to other settings (e.g., a prediction can be explained by means of differ-
ent pieces of visual information), this may require redefinition of sub-components of the explanation
space.

Another important line of future work consists in extending the actual protocol to incorporate expla-
nations of different content and tasks. For instance, it is of peculiar interest to test the applicability of
the dialogue protocol in the settings of regression, recommendation, or planning tasks. Finally, we aim
to design and carry out further human evaluation experiments on the trade-off between the limitations
of the protocol (e.g., underrepresentated locution types) and the persuasive power of explanations that
it communicates. Such experiments (e.g., disabling users to perform specific acts) would allow us to
estimate the impact of specific requests and further shape the protocol.

Appendix A. Ethical considerations

All the information collected from the human evaluation study participants was in agreement with
the European Union’s General Data Protection Regulation (GDPR). In addition, this piece of research
has been approved by the Ethics Committee of the University of Santiago de Compostela (Spain). Hu-
man evaluation was based solely on non-personal or anonymous data. Further, all the participants gave
informed consent confirming the following:

• the participant reached the age of majority;
• participation in the study was completely voluntary;
• participation in the study could be terminated at any time;
• participant’s anonymous responses would be used for research purposes in accordance with GDPR.

Appendix B. Dialogue protocol

In our model, any explanatory dialogue is modelled in accordance with the protocol outlined below.
Thus, the protocol presupposes the following rules:

(1) Turntaking. The system initiates the dialogue, i.e. it makes the move m1 by claiming the pre-
diction from the domain-specific finite set of all possible predictions Ŷ = {ŷ1, ŷ2, . . . , ŷn} corre-
sponding to the dataset classes. Every subsequent even (m2, m4, . . .) and odd (m3, m5, . . .) moves
are made by the user and the system, respectively. Each participant is allowed to produce only one
locution at a time.

(2) User’s U allowed moves.
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(a) why-explain(ŷ, E): U requests to factually explain ŷ. The explanation store E remains empty.
The system is allowed to respond in either of the following ways:

• explain-f (ŷ, E, ef ) iff S is able to produce a factual explanation;
• no-explain-f (ŷ, E) otherwise.

(b) why-not-explain(ŷ, E, y ′): U requests to counterfactually explain why ŷ and not y ′. E must
contain a factual explanation for ŷ: E = {ef (ŷ)}. The system is allowed to produce either of
the following locutions:

• explain-cf (ŷ, E, y ′, ecf ) if S is able to produce a CF explanation;
• no-explain-cf (ŷ, E, y ′) otherwise.

(c) what-details(ŷ, E[,y ′], e, �) where e = eh
f |eh

cf : U requests details on a feature � used in a
previously uttered (factual or CF) high-level explanation e (� ∈ e). In response, S generates
one of the locutions below:

• elaborate(ŷ, E[,y ′], e, �, θ ) if S is capable of providing U with details on feature �;
• no-elaborate(ŷ, E[,y ′], e, �) otherwise. Note that the parameter y ′ is optional and passed

on iff e = eh
cf .

(d) what-is(ŷ, E[,y ′], e, �) where e = eh
f |eh

cf |el
f |el

cf : U requests a definition of a specific feature
� being part of (factual or CF, high- or low-level) explanation e (� ∈ e). The system is
allowed to respond using one of the following locutions:

• clarify(ŷ, E[,y ′], e, �, υ) if S can provide U with such a definition;
• no-clarify(ŷ, E[,y ′], e, �) otherwise. Note that the parameter y ′ is optional and passed on

iff e = eh
cf |el

cf .

(e) why-alternative(ŷ, E, ef ): U disagrees (or is not satisfied) with the offered factual explanation
ef and requires an alternative factual explanation. The system responds producing one of the
following locutions:

• alter-f (ŷ, E, ef , e′
f ) if S is capable of providing U with a different factual explanation;

• no-alter-f (ŷ, E, ef ) otherwise.

(f) why-not-alternative(ŷ, E, y ′, ecf ): U disagrees with the offered CF explanation ecf and re-
quires that S provide an alternative CF explanation. The system replies using one of the fol-
lowing locutions:

• alter-cf (ŷ, E, y ′, ecf , e′
cf ) provided that an alternative CF explanation e′

cf can be offered;
• no-alter-cf (ŷ, E, y ′, ecf ) otherwise.

(g) accept-u(ŷ, E): U accepts the prediction ŷ. In response, the system generates the fairwell
locution accept-s(ŷ, E).

(h) reject-u(ŷ, E): U rejects the prediction ŷ. In response, the system generates the fairwell locu-
tion reject-s(ŷ, E).

(3) System’s S allowed moves.

(a) claim(ŷ, E): S claims prediction ŷ. The knowledge store K and the explanation store E are
initialised to be empty. U is allowed to:
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• require a factual explanation (locution why-explain(ŷ, E));
• accept prediction ŷ without any subsequent explanation (locution accept-u(ŷ, E));
• reject prediction ŷ without any subsequent explanation (locution reject-u(ŷ, E)).

(b) explain-f (ŷ, E, ef ): S factually explains ŷ with ef and provides U with its high-level compo-
nent (recall that ef (ŷ) = 〈eh

f (ŷ), el
f (ŷ)〉). The factual explanation is added to the knowledge

store K = K ∪ ef (ŷ) and the explanation store E = E ∪ ef (ŷ). The detailisation and clar-
ification stores are populated with the features making part of the explanation ef . User U is
then allowed to:

• require a CF explanation for some CF class y ′ ∈ CFS (locution why-not-explain(ŷ, E, y ′));
• ask for details on a feature � ∈ DET of the factual explanation (locution what-details(ŷ, E,

ef , �));
• demand a definition of some feature � ∈ CLAR making part of the factual explanation ef

(locution what-is(ŷ, E, ef , �));
• disagree with the factual explanation ef for prediction ŷ and require an alternative factual

explanation (locution why-alternative(ŷ, E, ef ));
• accept prediction ŷ (locution accept-u(ŷ, E));
• reject prediction ŷ (locution reject-u(ŷ, E)).

(c) no-explain-f (ŷ, E): S is unable to factually explain ŷ. U may nevertheless:

• require a CF explanation for some CF class y ′ (locution why-not-explain(ŷ, E, y ′));
• accept prediction ŷ (locution accept(ŷ, E));
• reject prediction ŷ (locution reject(ŷ, E)).

(d) explain-cf (ŷ, E, y ′, ecf ): S counterfactually explains why ŷ and not y ′ with ecf and pro-
vides U with its high-level component (recall that ecf (ŷ, y ′) = 〈eh

cf (ŷ, y ′), el
cf (ŷ, y ′)〉). The

CF explanation is added to the knowledge store K = K ∪ ecf (ŷ, y ′) and the explanation
store: E = E ∪ ecf (ŷ, y ′). The CF class y ′ is then eliminated from the CF class store:
CFS = CFS \{y ′}. In response, U is allowed to:

• require details on some feature � ∈ DET for the given CF explanation (locution what-
details(ŷ, E, y ′, ecf , �));

• request a definition of a feature making part of the CF explanation ecf (locution what-is(ŷ,
E, y ′, ecf , �));

• disagree with the offered CF explanation and ask for an alternative one for the same CF
class (locution why-not-alternative(ŷ, E, y ′, ecf ));

• require a CF explanation for another CF class from the CF class store y ′′ ∈ CFS (locution
why-not-explain(ŷ, E, y ′′));

• accept prediction ŷ (locution accept(ŷ, E));
• reject prediction ŷ (locution reject(ŷ, E)).

(e) no-explain-cf (ŷ, E, y ′): S is unable to counterfactually explain why ŷ and not y ′. The CF class
y ′ is eliminated from the CF class store: CFS = CFS \{y ′}. User U is allowed to:

• require a CF explanation for another CF class y ′′ ∈ CFS (locution why-not-explain(ŷ, E,
y ′′));
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• disagree with the factual explanation and require an alternative to it provided that it is the
only explanation that the explanation store E contains (locution why-alternative(ŷ, E, ecf ))
iff � ecf ∈ E;

• accept prediction ŷ (locution accept(ŷ, E));
• reject prediction ŷ (locution reject(ŷ, E)).

(f) elaborate (ŷ, E [,y ′], e, �, θ) where e = eh
f |eh

cf : S provides required details θ on feature �

of a high-level (factual or CF) explanation e. The feature � is therefore excluded from the
detailisation store: DET = DET \{�}. U is allowed to:

• require further details on another feature of the same explanation remaining in the detaili-
sation store (�′ ∈ DET) (locution what-details(ŷ, E[,y ′], e, �′) where �′ �= �;

• require a CF explanation for an arbitrary CF class y ′ ∈ CFS if a factual explanation is being
processed (locution why-not-explain(ŷ, E, y ′)) or require a CF explanation for another CF
class if a CF explanation is being processed (locution why-not-explain(ŷ, E, y ′′));

• specify how a feature � of the explanation e is defined (locution what-is(ŷ, E[,y ′], e, �)
where � ∈ CLAR;

• disagree with the factual explanation and require an alternative to it, provided that it is
the only explanation that E contains (locution why-alternative(ŷ, E, ef )) iff the currently
processed explanation is factual (i.e., e = eh

f and � ecf ∈ E);
• require another CF explanation for the same CF class (locution why-not-alternative(ŷ, E,

y ′, ecf ) iff the explanation currently processed is counterfactual (i.e., e = eh
cf );

• accept prediction ŷ (locution accept-u(ŷ, E));
• reject prediction ŷ (locution reject-u(ŷ, E)).

(g) no-elaborate(ŷ, E[,y ′], e, �) where e = eh
f |eh

cf : S is unable to provide details on feature � ∈ e

because either all the available details have already been provided or the details required are
not found in the knowledge base of the system. U can respond using one of the following
locutions:

• require further details on another feature of the same explanation remaining in the detaili-
sation store (�′ ∈ DET) (locution what-details(ŷ, E[,y ′], e, �′) where �′ �= �;

• require a CF explanation for an arbitrary CF class y ′ ∈ CFS if a factual explanation is being
processed (locution why-not-explain(ŷ, E, y ′)) or require a CF explanation for another CF
class if a CF explanation is being processed (locution why-not-explain(ŷ, E, y ′′));

• specify how a feature � of the explanation e is defined (locution what-is(ŷ, E[,y ′], e, �)
where � ∈ CLAR;

• disagree with the factual explanation and require an alternative to it, provided that it is
the only explanation that E contains (locution why-alternative(ŷ, E, ef )) iff the currently
processed explanation is factual (i.e., e = eh

f and � ecf ∈ E);
• require another CF explanation for the same CF class (locution why-not-alternative(ŷ, E,

y ′, ecf ) iff the explanation currently processed is counterfactual (i.e., e = eh
cf );

• accept prediction ŷ (locution accept-u(ŷ, E));
• reject prediction ŷ (locution reject-u(ŷ, E)).

(h) clarify(ŷ, E[,y ′], e, �, υ): S provides a definition υ for feature � of the currently pro-
cessed explanation e. The explanation e can be of any modality: factual or CF, high-level
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or low-level. The corresponding feature is then eliminated from the clarification store:
CLAR = CLAR \{�}. U uses one of the following locutions to respond:

• require details on a feature � ∈ e remaining in the detailisation store (� ∈ DET) (locution
what-details(ŷ, E[,y ′], e, �));

• require a CF explanation for an arbitrary CF class y ′ ∈ CFS if a factual explanation is being
processed (locution why-not-explain(ŷ, E, y ′)) or require a CF explanation for another CF
class if a CF explanation is being processed (locution why-not-explain(ŷ, E, y ′′));

• specify how another feature � of the explanation e is defined (locution what-is(ŷ, E[,y ′], e,
� ′) where � ′ ∈ CLAR;

• require an alternative factual explanation (locution why-alternative(ŷ, E, e)) iff e = eh
f |el

f ;
• require an alternative CF explanation for the same CF class (locution why-not-alternative

(ŷ, E, e)) iff e = eh
cf |el

cf ;
• accept prediction ŷ (locution accept-u(ŷ, E));
• reject prediction ŷ (locution reject-u(ŷ, E)).

(i) no-clarify(ŷ, E[,y ′], e, �): S is unable to provide a definition of the feature � ∈ e because
the feature is specified incorrectly, or the definition is not found in the system’s knowledge
base, or the definition has already been provided. U is allowed to respond using one of the
following locutions:

• require details on a feature � ∈ e remaining in the detailisation store (� ∈ DET) (locution
what-details(ŷ, E[,y ′], e, �));

• require a CF explanation for an arbitrary CF class y ′ ∈ CFS if a factual explanation is being
processed (locution why-not-explain(ŷ, E, y ′)) or require a CF explanation for another CF
class if a CF explanation is being processed (locution why-not-explain(ŷ, E, y ′′));

• specify how another feature � of the explanation e is defined (locution what-is(ŷ, E[,y ′], e,
� ′) where � ′ ∈ CLAR;

• require an alternative factual explanation (locution why-alternative(ŷ, E, e)) iff e = eh
f |el

f ;
• require an alternative CF explanation for the same CF class (locution why-not-alternative(ŷ,

E, e)) iff e = eh
cf |el

cf ;
• accept prediction ŷ (locution accept-u(ŷ, E));
• reject prediction ŷ (locution reject-u(ŷ, E)).

(j) alter-f (ŷ, E, ef , e′
f ): S provides U with a factual explanation e′

f alternative to ef . The previous
(possibly also alternative to the original) piece of factual explanation is removed from the ex-
planation store. The newly generated alternative factual explanation is added to the knowledge
store K = K ∪ e′

f and the explanation store E = E ∪ e′
f . The detailisation and clarification

stores are populated with the features of the newly generated alternative factual explanation.
U responds using one of the following locutions:

• require details on a feature � of the offered alternative factual explanation e′
f (locution

what-details(ŷ, E, e′
f , �));

• require a CF explanation for some CF class y ′ (locution why-not-explain(ŷ, E, y ′));
• specify how a feature � of the offered alternative factual explanation e′

f is defined (locution
what-is(ŷ, E, e′

f , �));
• require another alternative factual explanation (locution why-alternative(ŷ, E, e′

f ));
• accept prediction ŷ (locution accept-u(ŷ, E));
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• reject prediction ŷ (locution reject-u(ŷ, E)).

(k) no-alter-f (ŷ, E, ef ): S is unable to offer a factual explanation alternative to ef because there
exists no explanation alternative to the factual or all the alternatives have already been offered.
U responds using one of the following locutions:

• require details on a feature � of the latest offered (either original or alternative) factual
explanation (locution what-details(ŷ, E, ef , �));

• require a CF explanation for some CF class y ′ (locution why-not-explain(ŷ, E, y ′));
• specify how a feature � of the latest offered (either original or alternative) factual explana-

tion is defined (locution what-is(ŷ, E, ef , �));
• accept prediction ŷ (locution accept-u(ŷ, E));
• reject prediction ŷ (locution reject-u(ŷ, E)).

(l) alter-cf (ŷ, E, y ′, ecf , e′
cf ): S provides U with a CF explanation e′

cf alternative to ecf . The
previous (possibly also alternative to the original) piece of CF explanation is removed from the
explanation store. The newly generated alternative CF explanation is added to the knowledge
store K = K ∪ e′

cf and the explanation store E = E ∪ e′
cf . The detailisation and clarification

stores are populated with the features of the newly generated alternative CF explanation. U is
allowed to respond using one of the following locutions:

• require details on a feature � of the offered alternative CF explanation e′
cf (locution what-

details(ŷ, E, y ′, e′
cf , �));

• require a CF explanation for some other CF class y ′′ (locution why-not-explain(ŷ, E, y ′′) iff
y ′′ �= y ′);

• specify how a feature � of the offered alternative CF explanation e′
cf is defined (locution

what-is(ŷ, E, y ′, e′
cf , �));

• accept prediction ŷ (locution accept-u(ŷ, E));
• reject prediction ŷ (locution reject-u(ŷ, E)).

(m) no-alter-cf (ŷ, E, y ′, ecf ): S is unable to offer a CF explanation alternative to ecf . U is allowed
to make one of the following actions:

• require details on a feature � of the latest offered alternative CF explanation e′
cf (locution

what-details(ŷ, E, y ′, e′
cf , �));

• require a CF explanation for some other CF class y ′′ (locution why-not-explain(ŷ, E, y ′′) iff
y ′′ �= y ′);

• specify how a feature � of the latest offered alternative CF explanation e′
cf is defined (lo-

cution what-is(ŷ, E, y ′, e′
cf , �));

• accept prediction ŷ (locution accept-u(ŷ, E));
• reject prediction ŷ (locution reject-u(ŷ, E)).

(4) Termination states. The dialogue ends when the system generates a concluding locution (either
accept-s(ŷ, E) or reject-s(ŷ, E)) immediately after the end user accepts or rejects the system’s
prediction, respectively.

An explanatory dialogue is governed in accordance with the aforementioned rules. Table 13 sum-
marises and exemplifies the dialogue protocol outlined above.
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Table 13

The set of allowed moves for the participants of an explanatory dialogue game

Locution Interpretation Utterance template Possible response(-s)
System (S):

claim(ŷ, E) S claims prediction ŷ to
be true

The test instance is of
class ŷ.

• why-explain(ŷ, E)
• accept-u(ŷ, E)
• reject-u(ŷ, E)

explain-f (ŷ, E, ef ) S factually explains ŷ
with ef

The test instance is
of class ŷ because
〈feature1〉 is 〈term1〉 [and
〈feature2〉 is 〈term2〉,. . . ].

• why-not-explain(ŷ, E, y′)
• what-details(ŷ, E, ef , �)
• what-is(ŷ, E, ef , �)
• why-alternative(ŷ, E, ef )
• accept-u(ŷ, E)
• reject-u(ŷ, E)

no-explain-f (ŷ, E) S is unable to factually
explain ŷ

Sorry, I don’t have a fac-
tual explanation for you.

• why-not-explain(ŷ, E, y′)
• accept-u(ŷ, E)
• reject-u(ŷ, E)

explain-cf (ŷ, E, y′, ecf ) S counterfactually ex-
plains why ŷ and not y′
with ecf

The test instance
would be of class
y′ if 〈feature1〉 were
〈term2〉 [and 〈feature2〉
were 〈term1〉,. . . ].

• what-details(ŷ, E, y′, ecf , �)
• why-not-explain(ŷ, E, y′′) iff y′′ �=

y′
• what-is(ŷ, E, y′, ecf , �)
• why-not-alternative(ŷ, E, y′, ecf )
• accept-u(ŷ, E)
• reject-u(ŷ, E)

no-explain-cf (ŷ, E, y′) S is unable to counterfac-
tually explain why ŷ and
not y′

Sorry, I don’t have a CF
explanation for you.

• why-not-explain(ŷ, E, y′′) iff y′′ �=
y′

• why-alternative(ŷ, E, ef ) iff �ecf ∈
E

• accept-u(ŷ, E)
• reject-u(ŷ, E)

elaborate(ŷ, E[,y′], e, �,
θ ) where e = eh

f |eh
cf

S provides requested de-
tails θ on feature � of a
high-level explanation e

I define � to be 〈term〉, as
it ranges from 〈minterm〉
to 〈maxterm〉.

• what-details(ŷ, E[,y′], e, �′) iff
�′ �= �

• why-not-explain(ŷ, E, y′) iff e = eh
f

or why-not-explain(ŷ, E, y′′) iff e =
eh
cf and y′′ �= y′

• what-is(ŷ, E[,y′], e, �)
• why-alternative(ŷ, E,e) iff e = eh

f

• why-not-alternative(ŷ, E, y′, e) iff
e = eh

cf

• accept-u(ŷ, E)
• reject-u(ŷ, E)

no-elaborate(ŷ, E[,y′], e,
�) where e = eh

f |eh
cf

S is unable to provide
details on feature � of
a high-level explanation
e (e.g., because all the
required details have al-
ready been provided)

Sorry, I don’t have details
on �.

• what-details(ŷ, E[,y′], e, �′) iff
�′ �= �

• why-not-explain(ŷ, E, y′) iff e = eh
f

or why-not-explain(ŷ, E, y′′) iff e =
eh
cf and y′′ �= y′

• what-is(ŷ, E[,y′], e, �)
• why-alternative(ŷ, E,e) if e = eh

f

• why-not-alternative(ŷ, E,e) if e =
eh
cf

• accept-u(ŷ, E)
• reject-u(ŷ, E)
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Table 13

(Continued)

Locution Interpretation Utterance template Possible response(-s)
clarify(ŷ, E[,y′], e, �, υ)
where e = eh

f |eh
cf |el

f |el
cf

S provides definition υ
for feature � making part
of explanation e

� is υ. • what-details(ŷ, E[,y′], e, �)
• why-not-explain(ŷ, E, y′) iff e =

eh
f |el

f or why-not-explain(ŷ, E, y′′)
iff e = eh

cf |el
cf and y′′ �= y′

• what-is(ŷ, E[,y′], e, � ′) iff � ′ �= �
• why-alternative(ŷ, E,e) iff e =

eh
f |el

f

• why-not-alternative(ŷ, E, y′, e) iff
e = eh

cf |el
cf

• accept-u(ŷ, E)
• reject-u(ŷ, E)

no-clarify(ŷ, E[,y′],
e, �) where
e = eh

f |eh
cf |el

f |el
cf

S is unable to provide
a definition for feature
� ∈ e (e.g., because it is
absent in the knowledge
base or the inquired term
is not found in the set of
features)

Sorry, I cannot clarify
what � is.

• what-details(ŷ, E[,y′], e, �)
• why-not-explain(ŷ, E, y′) iff e =

eh
f |el

f or why-not-explain(ŷ, E, y′′)
iff e = eh

cf |el
cf and y′′ �= y′

• what-is(ŷ, E[,y′], e, � ′) where
� ′ �= �

• why-alternative(ŷ, E, e) iff e =
eh
f |el

f

• why-not-alternative(ŷ, E, e) iff e =
eh
cf |el

cf

• accept-u(ŷ, E)
• reject-u(ŷ, E)

alter-f (ŷ, E, ef , e′
f ) S provides a factual ex-

planation e′
f alternative

to ef

The test instance is
of class ŷ because
〈feature1〉 is 〈term3〉 [and
〈feature2〉 is 〈term4〉,. . . ].

• what-details(ŷ, E, e′
f , �)

• why-not-explain(ŷ, E, y′)
• what-is(ŷ, E, e′

f , �)
• why-alternative(ŷ, E, e′

f )
• accept-u(ŷ, E)
• reject-u(ŷ, E)

no-alter-f (ŷ, E, ef ) S is unable to provide a
factual explanation alter-
native to ef

Sorry, I don’t have an al-
ternative factual explana-
tion for you.

• what-details(ŷ, E, ef , �)
• why-not-explain(ŷ, E, y′)
• what-is(ŷ, E, ef , �)
• accept-u(ŷ, E)
• reject-u(ŷ, E)

alter-cf (ŷ, E, y′, ecf ,
e′
cf )

S provides a CF explana-
tion e′

cf alternative to ecf

for some CF class y′

The test instance
would be of class
y′ if 〈feature1〉 were
〈term4〉 [and 〈feature2〉
were 〈term3〉,. . . ].

• what-details(ŷ, E, y′, e′
cf , �)

• why-not-explain(ŷ, E, y′′) iff y′′ �=
y′

• what-is(ŷ, E, y′, e′
cf , �)

• accept-u(ŷ, E)
• reject-u(ŷ, E)

no-alter-cf (ŷ, E, y′, ecf ) S is unable to provide
a CF explanation alterna-
tive to ecf

Sorry, I don’t have an al-
ternative CF explanation
for you.

• what-details(ŷ, E, y′, ecf , �)
• why-not-explain(ŷ, E, y′′) iff y′′ �=

y′
• what-is(ŷ, E, y′, ecf , �)
• accept-u(ŷ, E)
• reject-u(ŷ, E)

accept-s(ŷ, E) S utters the farewell locu-
tion, as the user accepted
the system’s claim

Ok, thank you for your
trust in me. Bye!

–
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Table 13

(Continued)

Locution Interpretation Utterance template Possible response(-s)
reject-s(ŷ, E) S utters the farewell locu-

tion, as the user rejected
the system’s claim

Sorry about my poor
explanatory capacities.
Bye!

–

User (U):
why-explain(ŷ, E) U requests to factually

explain prediction ŷ
Could you explain why
you think so?

• explain-f (ŷ, E, ef )
• no-explain-f (ŷ, E)

why-not-explain(ŷ, E, y′) U requests to counterfac-
tually explain why ŷ and
not y′

But why not y′? • explain-cf (ŷ, E, y′, ecf )
• no-explain-cf (ŷ, E, y′)

what-details(ŷ, E[,y′], e,
�) where e = eh

f |eh
cf

U requests details on
a specific feature � of
a (factual or counterfac-
tual) high-level explana-
tion e (� ∈ e)

Could you provide me
with details on �?

• elaborate(ŷ, E[,y′], e, �, θ )
• no-elaborate(ŷ, E[,y′], e, �)

what-is(ŷ, E[,y′], e, �)
where e = eh

f |eh
cf |el

f |el
cf

U requests a definition
for a specific feature �
making part of (factual or
counterfactual, high- or
low-level) explanation e
(� ∈ e)

What do you mean by �? • clarify(ŷ, E[,y′], e, �, υ)
• no-clarify(ŷ, E[,y′], e, �)

why-alternative(ŷ, E, ef ) U disagrees with the of-
fered factual explanation
ef and requires an al-
ternative factual explana-
tion

I do not agree (or, I am
not satisfied/convinced)
with your (factual) expla-
nation. Could you offer
me another one?

• alter-f (ŷ, E, ef , e′
f )

• no-alter-f (ŷ, E, ef )

why-not-alternative(ŷ, E,
y′, ecf )

U disagrees with the of-
fered CF explanation ecf

and requires an alterna-
tive CF explanation for
some CF class y′

I do not agree (or, I am
not satisfied/convinced)
with your (CF) explana-
tion. Could you offer me
another one?

• alter-cf (ŷ, E, y′, ecf , e′
cf )

• no-alter-cf (ŷ, E, y′, ecf )

accept-u(ŷ, E) U accepts all pieces of
explanation contained in
explanation store E and
therefore definitely ac-
cepts prediction ŷ

Ok, I trust (or agree/am
satisfied/am convinced)
with your prediction.

• accept-s (ŷ, E)

reject-u(ŷ, E) U rejects (a) piece(-s)
of explanation contained
in explanation store E
and therefore definitely
rejects prediction ŷ

I don’t really trust (or am
not satisfied/am not con-
vinced/agree with) your
prediction and you won’t
be able to convince me.

• reject-s (ŷ, E)

Appendix C. Explanatory dialogue grammar productions

Recall that an EDG can be formalised by means of a context-free grammar G = 〈N, T , R, S〉 (see
Section 3.3 for details). Outlined below is the set of the generalised dataset-independent production rules
(R):

(1) DIALOGUE → CLAIM EXPLANATION TERMINATION
(2) CLAIM → The test instance is of class CLASS.
(3) EXPLANATION → FACT-EXPLANATION (CF-EXPLANATION)* | ε
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(4) TERMINATION → ACCEPT-U ACCEPT-S | REJECT-U REJECT-S
(5) ACCEPT-U → Okay, I trust your prediction.
(6) ACCEPT-S → Thank you for your trust in me. Bye!
(7) REJECT-U → I don’t trust your prediction and you won’t convince me.
(8) REJECT-S → Sorry for my poor explanatory capacities. Bye!
(9) FACT-EXPLANATION → WHY-EXPLAIN [EXPLAIN-F | NO-EXPLAIN-F]
(10) WHY-EXPLAIN → Could you explain why you think so?
(11) EXPLAIN-F → SURE INTRO-F [B|b]ecause F-EXPL (and F-EXPL)*. [DETAILISATION |

CLARIFICATION | ALTERNATIVE-F | ε]
(12) INTRO-F → It is of class CLASS | ε

(13) F-EXPL → FEATURE is VALUE
(14) NO-EXPLAIN-F → Sorry, I don’t have a factual explanation for you.
(15) SURE → Sure! | ε

(16) CF-EXPLANATION → WHY-NOT-EXPLAIN [EXPLAIN-CF | NO-EXPLAIN-CF]
(17) WHY-NOT-EXPLAIN → But why is it not of class CLASS?
(18) EXPLAIN-CF → SURE It would be of class CLASS if CF-EXPL (and CF-EXPL)*. [DETAIL-

ISATION | CLARIFICATION | ALTERNATIVE-CF | ε]
(19) CF-EXPL → FEATURE were VALUE
(20) NO-EXPLAIN-CF → I don’t have an explanation for why it is not of class CLASS.
(21) DETAILISATION → WHAT-DETAILS [ELABORATE | NO-ELABORATE] [DETAILISA-

TION | CLARIFICATION | ALTERNATIVE-F | ALTERNATIVE-CF | ε]
(22) WHAT-DETAILS → Could you FURTHER specify how TERM FEATURE is defined?
(23) ELABORATE → Sure! FEATURE is defined to be TERM because it lies in the range RANGE.
(24) NO-ELABORATE → Sorry, I don’t any FURTHER details on the requested term. [CLARIFI-

CATION | ALTERNATIVE-F | ALTERNATIVE-CF | ε]
(25) FURTHER → further | ε

(26) CLARIFICATION → WHAT-IS [CLARIFY | NO-CLARIFY]
(27) WHAT-IS → What do you mean by FEATURE?
(28) CLARIFY → FEATURE is DEFINITION. [DETAILISATION | CLARIFICATION |

ALTERNATIVE-F | ALTERNATIVE-CF | ε]
(29) NO-CLARIFY → Sorry, I cannot clarify the term FEATURE. [DETAILISATION |

ALTERNATIVE-F | ALTERNATIVE-CF | ε]
(30) ALTERNATIVE-F → WHY-ALTERNATIVE [EXPLAIN-F | NO-EXPLAIN-F]
(31) ALTERNATIVE-CF → WHY-NOT-ALTERNATIVE [EXPLAIN-CF | NO-EXPLAIN-CF]
(32) WHY-ALTERNATIVE → REQ-ALTERNATIVE-BEG EXPL-TYPE-F REQ-ALTERNATIVE-

END
(33) WHY-NOT-ALTERNATIVE → REQ-ALTERNATIVE-BEG EXPL-TYPE-CF REQ-

ALTERNATIVE-END
(34) REQ-ALTERNATIVE-BEG → I am not quite satisfied with your
(35) REQ-ALTERNATIVE-END → explanation. Could you offer me another one?
(36) EXPL-TYPE-F → factual | ε

(37) EXPL-TYPE-CF → counterfactual | ε
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Table 14

Aggregated self-reported demographic user data for all the use cases

18–25 14 (26.92%)
26–35 24 (46.16%)
36–45 10 (19.23%)
46–55 3 (5.77%)
56–65 1 (1.92%)

(a) Age

Male 28 (53.85%)
Female 24 (46.15%)

(b) Gender

Doctorate (Ph.D) 20 (38.46%)
Master’s (M.A./M.Sc.) 25 (48.08%)
Bachelor’s (B.A./B.Sc.) 6 (11.54%)
Prefer not to say 1 (1.92%)

(c) Education

Native speaker 20 (38.46%)
Proficient (C2) 17 (32.69%)
Advanced (C1) 10 (19.23%)
Upper intermediate (B2) 5 (9.62%)

(d) English proficiency

Student 30 (57.69%)
Non-student 22 (42.31%)

(e) Occupation

Appendix D. Further details on human evaluation use cases

This appendix outlines the quantitative results of the human evaluation study. First, we report the de-
mographic data of all the study participants who decided to disclose it. Recall that 60 people participated
in the evaluation of the proposed dialogue game. All in all, 52 out of all the 60 (86.67%) study partic-
ipants disclosed their demographic data. In summary, the overall collection of dialogue transcripts is
gender-balanced. In addition, the participants who reported their education level had at least a Bachelor
degree. Further, all the subjects had at least the B2 level of English proficiency. Table 14 summarises all
the self-reported demographic data collected from all the participants.

Subsequently, we provide the reader with the demographic data of the study participants and the
process models grouped by use case. Thus, Section D.1 presents the results for the collection of the bas-
ketball dataset-related data. Section D.2 displays the results for the beer style classification explanatory
dialogues. Section D.3 highlights the results collected for the thyroid disease classification scenario.

D.1. Basketball player position classification

Fourteen (23.33%) of the 60 collected dialogue transcripts relate to the basketball player position
dataset. 12 out of the 14 (85.71%) participants who selected the basketball player position scenario
attached their demographic data. In summary, 7 (58.33%) participants who chose this scenario and dis-
closed the demographic data were males, 5 (41.67%) were females. In addition, all the participants who
disclosed their demographic data reported to have at least a Bachelor degree and the C1 level of English
proficiency. Table 15 summarises all the self-reported demographic data collected from the participants
who selected the basketball player position scenario.

Fig. 10 depicts the process model based on the main building blocks (i.e., claim, explanation, and
termination) within the collected explanatory dialogues (see Rule 1 of the EDG, Appendix C, for refer-
ence). Thus, 12 out of 14 (85.71%) participants required (at least, factual) explanation(-s) for the given
prediction. Further, 11 out of 12 (91.67%) such participants accepted the system’s prediction after pro-
cessing the explanation offered. On the contrary, only one out of the 12 (8.33%) participants rejected
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Table 15

Self-reported demographic data of the users who interaction with the classifier trained on the basketball player position dataset

18–25 5 (41.67%)
26–35 6 (50.00%)
36–45 1 (8.33%)

(a) Age

Male 7 (58.33%)
Female 5 (41.67%)

(b) Gender

Doctorate (Ph.D) 2 (16.67%)
Master’s (M.A./M.Sc.) 8 (66.66%)
Bachelor’s (B.A./B.Sc.) 2 (16.67%)

(c) Education

Native speaker 8 (66.66%)
Proficient (C2) 2 (16.67%)
Advanced (C1) 2 (16.67%)

(d) English proficiency

Student 10 (83.33%)
Non-student 2 (16.67%)

(e) Occupation

Fig. 10. The process model of the collected basketball player position classification explanatory dialogues based on the main
EDG building blocks.

the claim after the explanation was presented. Alternatively, 2 out of 14 (14.29%) participants did not
require any explanation for the system’s claim. Both of them eventually accepted the system’s claim.

As for all the 12 participants who required explanation for the system’s claim, 67 explanation-related
requests (i.e., those for factual or (alternative) CF explanation, detailisation, and clarification) have been
registered. Figure 11 depicts the locution-level process model for the collected explanatory dialogues.
Thus, 12 out of the 67 requests (17.91%) were those for factual explanation. In addition, 18 out of
the 67 (26.87%) explanation-related requests were those for CF explanation. Further, alternative CF
explanations were requested 9 times (13.43%). In addition, 15 out of 67 (22.39%) requests addressed
numerical details for the offered linguistic terms whereas only 13 out of 67 requests (19.40%) were
clarification requests.

The factual explanation seemed clear and explanatory enough to a half of the participants. Thus, 6
out of 12 (50.00%) study participants who requested a factual explanation did not inquire any further
details or clarifications before requesting their first CF explanation. As for the other 6 participants, de-
tailisation requests have been more frequently registered for the factual explanation offered: 7 out of 15
times (46.67%) – 5 (33.33%) times immediately after the factual explanation was offered, 2 (13.33%)
times subsequently to the first detailisation request related to the factual explanation. Also, clarification
requests are found when processing 6 out of 13 factual explanations (46.15%): once – immediately after
it was generated, five times – following detailisation requests. On the other hand, 5 of the 12 (41.67%)
participants who requested explanation in the first place were interested in obtaining CF explanations
(recall that the 5 participants submitted 18 CF explanation requests altogether). Further, numerical inter-
vals specifying linguistic terms of the corresponding CF explanations were inquired 8 out of the overall
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Fig. 11. The full process model of the basketball player position classification explanatory dialogues. For illustrative purposes,
pairs of termination nodes, i.e. {accept-u, accept-s} and {reject-u and reject-s}, are merged into accept and reject, respectively.
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Table 16

Number of times the CF explanations (sorted by rank) were requested by participants (basketball player position classification)

CF class
CF rank Shooting guard Small forward Power forward Center

#1 5 6 5 2
#2 3 2 1 1
#3 – 2 – –

15 times (53.33%), 5 of them submitted as soon as the corresponding CF was offered. In addition, 7
(53.85%) out of all the 13 clarification requests were registered when processing CF explanations, 3 of
them – submitted immediately upon receiving the corresponding CF explanation.

Importantly, the locution-level process model (see Fig. 11 for details) shows us the responses to which
requests were the most decisive for the study participants to make their final decisions. Recall that 11 out
of the 12 participants who required explanation accepted the system’s claim. Thus, 3 (27.27%) of the 11
participants accepted the system’s claim immediately after a CF explanation had been presented. Further,
5 out of 11 participants (45.46%) found themselves in the position to make the final decision after an
alternative CF explanation was displayed. For 2 out of the 11 (18.18%) participants who accepted the
claim, the response to their clarification requests triggered their final decision. In addition, 1 out of 11
(9.09%) such participants accepted the system’s claim after (s-)he was provided with the details on the
inquired feature. Recall that only one subject rejected the claim after having been provided with the
explanation. In this case, a response to a clarification request motivated that decision.

Recall that 18 CF explanation requests were registered in the basketball player position classification
dialogues. All such CF explanations are those deemed most relevant to the test instance by the system.
However, there have as well been registered 9 requests for alternative CF explanations, 7 of them being
an alternative to the best ranked CFs.

Table 16 presents numbers of CF explanation requests for each CF class (row “#1”) as well those
related to second and third best-ranked alternative CF explanations (rows “#2” and “#3”, accordingly).
Thus, in 7 out of the 18 (38.89%) cases where (the best-ranked) CF explanations were offered, the users
did not find them satisfactory. Further, when exposed to 2 out of the 7 (28.57%) second-best ranked CF
explanations were offered, the participants required third-best ranked CFs. In particular, both such cases
occur when CF explanations were asked for the CF class “Small forward”. Importantly, 5 out of all the
9 (55.56%) alternative CF explanations turned out to be crucially decisive from the end user’s point of
view (i.e., they led to making an immediate decision – in this case, acceptance of the system’s claim).

D.2. Beer style classification

Thirty-seven (61.67%) of all the collected dialogue transcripts relate to the beer style classification
scenario. All in all, 31 out of the 37 (83.78%) participants who played the beer scenario disclosed their
demographic data. In summary, 17 (54.84%) of all the participants who chose this scenario and left their
demographic data were males, 14 (45.16%) – females. In addition, all the participants who reported
their education level had at least a Bachelor degree and the B2 level of English proficiency. Table 17
summarises all the self-reported demographic data collected from the participants who selected the beer
style dataset as the basis of the dialogue game.

Fig. 12 illustrates the process model corresponding to the three main building blocks of the proposed
dialogue game. Thus, 36 out of 37 (97.30%) participants required (at least, factual) explanation for the
given prediction. Further, 33 out of the 36 (91.67%) participants accepted the system’s prediction after
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Table 17

Self-reported demographic user data (the beer style classification dataset)

18–25 6 (19.35%)
26–35 14 (45.16%)
36–45 8 (25.81%)
46–55 2 (6.45%)
56–65 1 (3.23%)

(a) Age

Male 17 (54.84%)
Female 14 (45.16%)

(b) Gender

Doctorate (Ph.D) 16 (51.61%)
Master’s (M.A./M.Sc.) 12 (38.71%)
Bachelor’s (B.A./B.Sc.) 2 (6.45%)
Prefer not to say 1 (3.23%)

(c) Education

Native speaker 9 (29.03%)
Proficient (C2) 11 (35.48%)
Advanced (C1) 8 (25.81%)
Upper intermediate (B2) 3 (9.68%)

(d) English proficiency

Student 14 (45.16%)
Non-student 17 (54.84%)

(e) Occupation

Fig. 12. The process model of the collected beer style classification explanatory dialogues based on the main EDG building
blocks.

processing the explanation offered whereas only 3 (8.33%) rejected the system’s prediction. In addition,
only 1 out of 37 (2.70%) participants did not require any explanation for the system’s claim. Eventually,
that participant accepted the system’s claim.

Figure 13 depicts the locution-level process model for the collected explanatory dialogues. Thus, 235
explanation-related requests (all those covered by the EXPLANATION non-terminal in EDG) were reg-
istered from the 36 participants who required explanation for the system’s claim. More precisely, 36 out
of the 235 (15.32%) requests were those for factual explanation. In addition, 50 out of the 235 (21.28%)
explanation-related requests were those for CF explanation. Further, alternative CF explanations were
requested 25 times (10.64%). Moreover, 78 out of 235 (33.19%) requests addressed numerical details
for the offered linguistic terms whereas 46 out of 235 (19.57%) requests were clarification requests.

It is worth noting that the factual explanation seemed rather unclear to most of the participants. Thus,
31 out of the 36 (86.11%) study participants who requested a factual explanation inquired either further
details or clarifications before requesting their first CF explanation. Thus, 52 out of all the 78 detailisa-
tion requested registered were concerned with the factual explanation. In 24 (46.15%) cases, numerical
intervals for specific features were requested as soon as the factual explanation was presented whereas
the other 28 (53.85%) cases of detailisation requests were follow-ups to other (including detailisation)
requests. Also, 32 out of 46 (69.57%) clarification requests were found when processing the factual
explanation: 7 times (21.88%) – immediately after it was generated, 25 times (78.12%) – following
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Fig. 13. The full process model of the collected beer style classification explanatory dialogues. For illustrative purposes, pairs
of termination nodes, i.e. {accept-u, accept-s} and {reject-u and reject-s}, are merged into accept and reject, respectively.



CORRECTED  P
ROOF

52 I. Stepin et al. / Information-seeking dialogue for XAI

Table 18

Number of times the CF explanations (sorted by rank) were requested by participants (beer style classification)

CF class
CF rank Lager Pilsner IPA Barleywine Stout Porter BSA

# 1 12 9 10 5 5 3 6
# 2 7 6 3 1 3 2 1
# 3 1 1 – – – – –

detailisation or other clarification requests. On the other hand, 29 of the 36 (80.56%) participants who
requested explanation in the first place were interested in obtaining CF explanations. Further, numerical
intervals specifying linguistic terms of the corresponding CF explanations were inquired 26 out of the
overall 78 times (33.33%), a half of them submitted as soon as the corresponding CF was offered. In
addition, 14 (30.43%) out of all the 46 clarification requests were registered when processing CF expla-
nations, 3 of them – immediately after the CF explanation was presented. Last but not least, out of the
25 alternative CF explanations requested, 14 (56.00%) were requested immediately after the questioned
CF was presented whereas 11 (44.00%) – after detailisation or clarification requests concerning the CF
explanation in question or subsequent to other alternative CF requests.

The locution-level process model (see Fig. 13 for details) also shows the responses to which requests
were the most decisive for the study participants to make their final decisions in the beer style classifica-
tion scenario. Thus, 10 out of the 33 participants (30.30%) who inquired an explanation and accepted the
system’s claim did so immediately after a CF explanation was presented. Further, 8 out of 33 participants
(24.24%) found themselves in the position to make the final decision after an alternative CF explanation
was displayed. In addition, 2 out of 33 participants (6.06%) accepted the system’s prediction despite the
fact that the system could not offer the participant an alternative CF upon request. In addition, for 3 out
of the 33 (9.09%) participants who accepted the claim, the response to their clarification requests trig-
gered their final decision. Finally, 10 out of 33 (30.30%) such participants accepted the system’s claim
after (s-)he was provided with the details on the inquired feature. On the other hand, 2 out of 3 (66.67%)
participants rejected the claim when offered details on a specific explanation feature whereas 1 out of 3
(33.33%) did so upon receiving an alternative CF explanation.

Recall that 50 CF explanation requests were registered in the beer style classification scenario dia-
logues. The best ranked CFs (from the system’s points of view) were questioned in 23 out of 50 (46.00%)
cases, as the participants asked for an alternative CF explanation. Further, in 2 of the 23 (8.70%) such
cases, third-best ranked CFs were requested. Table 18 shows the distribution of requests for CF expla-
nation as well as their alternative variants by CF class. Remarkably, 8 out of the 25 (32.00%) alternative
CFs turned out to be decisive (led to immediate acceptance of the system’s prediction) whereas 1 al-
ternative CF (4.00%) motivated immediate rejection of the system’s claim. Finally, 2 out of all the 33
(6.06%) positive decisions made by the participants who requested an explanation were made after the
system did not manage to offer an alternative CF explanation.

D.3. Thyroid diagnosis classification

Nine (15.00%) of all the 60 collected dialogue transcripts relate to the thyroid disease dataset. In sum-
mary, 4 (44.44%) participants who chose this scenario were males, 5 (55.56%) were females. Similarly
to the other classification scenarios, all the participants reported to, at least, have a Bachelor degree and
the B2 level of English proficiency. Table 19 summarises all the self-reported demographic data collected
from the participants who selected the thyroid disease classification scenario.
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Table 19

Self-reported demographic data of the users who interacted with the classifier trained on the thyroid disease dataset

18–25 3 (33.33%)
26–35 4 (44.45%)
36–45 1 (11.11%)
46–55 1 (11.11%)

(a) Age

Male 4 (44.44%)
Female 5 (55.56%)

(b) Gender

Doctorate (Ph.D) 2 (22.22%)
Master’s (M.A./M.Sc.) 5 (55.56%)
Bachelor’s (B.A./B.Sc.) 2 (22.22%)

(c) Education

Native speaker 3 (33.33%)
Proficient (C2) 4 (44.45%)
Upper intermediate (B2) 2 (22.22%)

(d) English proficiency

Student 6 (66.67%)
Non-student 3 (33.33%)

(e) Occupation

Fig. 14. The process model of the collected thyroid diagnosis classification explanatory dialogues based on the main EDG
building blocks.

Fig. 14 illustrates the process model related to the three main building blocks of the proposed model
of explanatory dialogue. Thus, all the 9 out of 9 (100.00%) participants required (at least, factual) expla-
nation for the given prediction. Eventually, 5 out of 9 (55.56%) participants accepted the system’s claim.
On the contrary, 4 out of 9 (44.44%) study participants rejected the system’s claim.

As for all the 9 participants who required explanation for the system’s claim, 29 explanation-related
requests have been registered. Figure 15 depicts the locution-level process model for the corresponding
collection of explanatory dialogues. Due to the design of the protocol, 9 out of the 29 requests (31.04%)
were those for factual explanation. In addition, 8 out of the 29 (27.59%) explanation-related requests
were those for CF explanation. Further, 3 alternative CFs were inquired (10.34% of the explanation-
related requests). In addition, 6 out of the 29 (20.69%) requests addressed numerical details for the
offered linguistic terms whereas only 3 out of 29 requests (10.34%) were clarification requests.

Out of the nine participants who required (factual) explanation for the system’s claim, three (33.33%)
requested details for one of the corresponding features that the factual explanation contained. In addition,
one participant (11.11%) requested to clarify a term that the factual explanation contained. Besides, one
person (11.11%) concluded the dialogue by accepting the system’s claim immediately after the factual
explanation was displayed whereas four (44.44%) study participants inquired a CF explanation right
after processing the factual explanation. Most of the detailisation (4 out of 6, 66.67%) and clarification
requests (2 out of 3, 66.67%) addressed the factual explanation. All but one detailisation requests were
submitted to the system as soon as the factual explanation was processed whereas one detailisation
request followed one of the previously sent detailisation requests. One of the clarification requests was
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Fig. 15. The full process model of the collected thyroid disease classification explanatory dialogues. For illustrative purposes,
pairs of termination nodes, i.e. {accept-u, accept-s} and {reject-u and reject-s}, are merged into accept and reject, respectively.
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Table 20

Number of times the CF explanations (sorted by rank) were requested by participants (thyroid disease classification)

CF class
CF rank No hypothyroid Primary hypothyroid Compensatory hypothyroid

# 1 4 2 2
# 2 2 1 –

sent to the system immediately after the factual explanation was generated whereas the other clarification
request followed a detailisation request. Conversely, two (33.33%) detailisation requests were registered
for all the CF explanations generated.

The locution-level process model (see Fig. 15 for details) shows the responses to which requests
were the most decisive for the study participants to make their final decisions. Out of the 5 participants
who accepted the system’s claim, one (20.00%) did so immediately after a factual explanation was
presented. Similarly, 1 out of 5 (20.00%) accepted the claim in response to a CF explanation offered and
a detailisation request each. In addition, 2 (40.00%) participants accepted the system’s claim after having
received a response to their clarification requests. Out of the 4 participants who rejected the claim, three
(75.00%) did so after an alternative CF explanation was offered whereas one (25.00%) was driven by a
response to his or her detailisation request.

Finally, recall that 8 CF explanation requests were registered in the thyroid disease classification dia-
logues. Table 20 presents occurrences of CF explanation requests for each CF class as well those related
to alternative CF explanations. Thus, three participants requested an alternative CF explanation for the
CF class (two for the class “No hypothyroid” and one – for the class “Primary hypothyroid”. Hence,
almost a half of the CF explanation requests (3 out of 8, 37.50%) left end users with unsatisfactory re-
sponses. Further, all the three such alternative CF explanations turned out to be the final users’ dialogue
moves before they made their decision (in all the cases the system’s claim was eventually rejected).
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Recent years have witnessed a striking rise of artificial 
intelligence algorithms that are able to show outstanding 
performance. However, such good performance is oftentimes 
achieved at the expense of explainability. Not only can the lack 
of algorithmic explainability undermine the user's trust in the 
algorithmic output, but it can also cause adverse consequences. 
In this thesis, we advocate the use of interpretable rule-based 
models that can serve both as stand-alone applications and 
proxies for black-box models. More specifically, we design an 
explanation generation framework that outputs contrastive, 
selected, and social explanations for interpretable (decision 
trees and rule-based) classifiers. We show that the resulting 
explanations enhance the effectiveness of AI algorithms while 
preserving their transparent structure.
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