
UNIVERSITY OF SANTIAGO DE COMPOSTELA

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

CENTRO DE INVESTIGACIÓN EN TECNOLOXÍAS DA INFORMACIÓN

(CITIUS)

PhD DISSERTATION

PERFORMANCE COUNTER-BASED STRATEGIES TO IMPROVE

DATA LOCALITY ON MULTIPROCESSOR SYSTEMS:

REORDERING AND PAGE MIGRATION TECHNIQUES

Author:
Juan Ángel Lorenzo del Castillo

PhD supervisors:
Prof. Francisco Fernández Rivera
Dr. Juan Carlos Pichel Campos

Santiago de Compostela, October 2011

Prof. Francisco Fernández Rivera, professor at the Computer Architecture Group of the University

of Santiago de Compostela

Dr. Juan Carlos Pichel Campos, researcher at the Computer Architecture Group of the University of

Santiago de Compostela

HEREBY CERTIFY:

That the dissertation entitled Performance Counter-based Strategies to Improve Data Locality on
Multiprocessor Systems: Reordering and Page Migration Techniques has been developed by Juan
Ángel Lorenzo del Castillo under our direction at the Department of Electronics and Computer Science

of the University of Santiago de Compostela in fulfillment of the requirements for the Degree of Doctor

of Philosophy.

Santiago de Compostela, October 2011

Francisco Fernández Rivera, Profesor Catedrático de Universidad del Área de Arquitectura de

Computadores de la Universidad de Santiago de Compostela

Juan Carlos Pichel Campos, Profesor Doctor del Área de Arquitectura de Computadores de la

Universidad de Santiago de Compostela

HACEN CONSTAR:

Que la memoria titulada Performance Counter-based Strategies to Improve Data Locality on Mul-
tiprocessor Systems: Reordering and Page Migration Techniques ha sido realizada por D. Juan
Ángel Lorenzo del Castillo bajo nuestra dirección en el Departamento de Electrónica y Computación

de la Universidad de Santiago de Compostela, y constituye la Tesis que presenta para optar al tı́tulo de

Doctor por la Universidad de Santiago de Compostela.

Santiago de Compostela, Octubre de 2011

Francisco Fernández Rivera
Codirector de la tesis

Juan Carlos Pichel Campos
Codirector de la tesis

Juan Ángel Lorenzo del Castillo
Autor de la tesis

To my parents,
Mari Carmen and Juan

If you’re not spending every waking moment of your life

radically rethinking the nature of the world - if you’re not

plotting every moment boiling the carcass of the old order -

then you’re wasting your day.

Douglas Coupland, JPod

The true artist is quite rational as well as imaginative and

knows what he is doing; if he does not, his art suffers. The

true scientist is quite imaginative as well as rational, and

sometimes leaps to solutions where reason can follow only

slowly; if he does not, his science suffers.

Isaac Asimov, The Roving Mind

“So computers are tools of the devil?” thought Newt. He had

no problem believing it. Computers had to be the tools of

somebody, and all he knew for certain was that it definitely

wasn’t him.

Neil Gaiman and Terry Pratchett, Good Omens

Ooh, look at me, I’m an information worker. My job is clean

and environmentally friendly and futuristic.

Douglas Coupland, JPod

Table of Contents

LIST OF FIGURES xi

LIST OF TABLES xv

ACKNOWLEDGEMENTS xvii

ABSTRACT xix

CHAPTER

1 Introduction 1
1.1 The problem in a nutshell . 2
1.2 Thesis statement . 3
1.3 Related Work . 4
1.4 Experimental setup . 8
1.5 How this dissertation is structured . 8

2 Evaluating the FinisTerrae Architecture 13
2.1 Introduction . 13
2.2 FINISTERRAE architecture . 14
2.3 Intel Itanium2 . 14
2.4 Performance Evaluation on FINISTERRAE 22
2.5 Performance Evaluation of Dense Codes . 23
2.6 Performance Evaluation of Sparse Codes . 29
2.7 Performance model of FINISTERRAE . 37

ix

2.8 Conclusions . 50

3 Accessing Hardware Counters on Itanium2 Montvale. The Perfmon interface 53
3.1 Introduction . 53
3.2 Perfmon programming . 56
3.3 Evaluation of Perfmon on FINISTERRAE 60
3.4 Conclusions . 68

4 Locality Improvement on Irregular Codes 71
4.1 Introduction . 71
4.2 Locality optimisation technique . 72
4.3 Locality optimisation using randomly sampled matrices 76
4.4 Locality optimisation using hardware counters 81
4.5 Locality optimisation using latency information 93
4.6 Conclusions . 101

5 Page Migration 103
5.1 Introduction . 103
5.2 Development of a page migration infrastructure 105
5.3 Operating tests . 115
5.4 Affinity decisions . 127
5.5 Access-based migration algorithm for N-cell nodes 127
5.6 Latency-based migration algorithm for N-cell nodes 129
5.7 Evaluation in a dedicated environment . 133
5.8 Evaluation in a multiprogrammed environment 136
5.9 Conclusions . 145

6 Conclusions and Future Work 147

Resumen 153

References 163

x

LIST OF FIGURES

2.1 HP Integrity rx7640 node (taken from [1]). 15
2.2 Block diagram of an HP Integrity rx7640 node. 15
2.3 Instruction group boundary. 16
2.4 1.6 Ghz Dual-Core Intel Itanium2 Montvale (9140N) architecture [2]. 18
2.5 Montecito/Montvale Processor Performance Monitor Register Set [2]. 19
2.6 Data Event Address Configuration Register (PMC40). 21
2.7 Data Event Address Register Format (PMD32,33,36). 21
2.8 Average L1 DTLB misses per access for the memspeed benchmark. 25
2.9 Latency of memory accesses when the data are allocated in memory local to the

core, in memory on the other cell or in the interleaving zone. 30
2.10 Compressed-Sparse-Row (CSR) format example and a basic CSR-based sparse

matrix-vector (SpMV) product. 32
2.11 SpMV performance using different loop distributions. 34
2.12 Influence of the data allocation on a rx7640 node. 35
2.13 Influence of the thread allocation on a rx7640 node. 36
2.14 Effect of NUMA optimisations on a rx7640 node. 38
2.15 Roofs of FINISTERRAE Roofline Model. 40
2.16 Ceilings added to the FINISTERRAE Roofline Model. 41
2.17 Locality walls for the SpMV-FINISTERRAE combination. 42
2.18 Roofline Model of SpMV for matrices pct20stif and exdata. 45
2.19 Experiment #2 setup. 47
2.20 Exploiting thread distribution of SpMV (experiment #2) for matrices

pct20stif (a) and exdata (b). 49

xi

3.1 Sampling process flowchart . 58
3.2 Effect of attaching a context to a monitored thread. 59
3.3 The sampling buffer is mapped to user level when it gets full. 59
3.4 Set of matrices used to study the SpMV. 64
3.5 Ratio between the number of sampled entries of vector X and its size. 66
3.6 Percentage of time consumed by the Perfmon and libpfm functions on a

SpMV program. 68

4.1 Calculation example of nelemsw(g), aelemsw(g) and aelems(g,h). 74
4.2 Example of windows of locality with variable size: sparse matrix example and

distance histogram. 75
4.3 Examples of nmos3 randomly sampled matrices. Matrices with 1%, 2%, 5%,

10% and 20% of the nonzeros with respect to the original matrix. 77
4.4 Normalised SpMV performance obtained by the reorderings generated using the

locality optimisation technique (w = 1) and the information provided by the
randomly sampled matrices on the Itanium2 platform. 79

4.5 Normalised SpMV performance obtained by the reorderings generated using the
locality optimisation technique (w = variable) and the information provided by
the randomly sampled matrices on the Itanium2 platform. 80

4.6 Example of sampled matrix using the hardware counters. 83
4.7 Entries per row (red) and sampled percentage (blue) of nine generated matrices. . 87
4.8 sme3Da original and sampled matrix generated by the hardware counters. 88
4.9 Normalised SpMV performance obtained by the reorderings generated using the

locality optimisation technique and the information provided by the hardware-
counter sampled matrices for windows of size w = 1 and variable size. 89

4.10 Overhead reduction of the locality optimisation technique using as a reference the
time required to perform the reordering using windows of fixed size w = 1 and
the original (non-sampled) matrices. 92

4.11 Figures display, for a particular row size interval (X axis), the percentage of
these rows with latency=0 (without sampled nonzeros) in the latency histogram
(Y axis). Interval a corresponds to rows of the matrix with [5a,5(a+1)) nonzeros. 95

4.12 Normalised performance of the matrices reordered using latency information with
respect to the original reordering technique. 96

4.13 Average overhead of the reordering technique: comparison with METIS library. . 99

xii

4.14 Normalised performance of the matrices reordered using latency information with
respect to the original matrices. 100

5.1 Time intervals in a profiling process. 106
5.2 Waiting on multiple contexts. 108
5.3 Sampling section from our page migration infrastructure. 109
5.4 Flow diagram from the main function of the monitoring tool. 112
5.5 Flow diagram from the interruption handler of the monitoring tool. 113
5.6 Number of different cache lines accessed per page and per thread. Only one

access per cache line is shown. 115
5.7 Total number of cache lines accessed per page and per thread. The sum of all

accesses per cache line are shown. Y-axis in log scale. 116
5.8 Sum of latencies of all references to a given page. Y-axis in log scale. 117
5.9 Number of threads accessing a given page. 117
5.10 Access latency from threads on each cell. No migration. 120
5.11 Access latency from threads on each cell. Migration. 120
5.12 Migration throughput (MB/s) between Cells 0 and 1. 123
5.13 Average distance for 2 and 4 threads . 124
5.14 Average distance for 8 and 16 threads . 125
5.15 HP Superdome node . 128
5.16 Superdome Node Graph . 128
5.17 Number of accesses and latencies for BT. No page migrations. 139
5.18 Number of accesses and latencies for BT. Access-based page migration. 140
5.19 Number of accesses and latencies for BT. Latency-based (Latreal) page migration. 141
5.20 Number of accesses and latencies for BT. Latency-based (Latavg) page migration. 142

xiii

LIST OF TABLES

1.1 Matrix test set used in this dissertation. 9

2.1 Median memory access latency (in ticks) of memtest benchmark for different
configurations. 24

2.2 Duration (ticks/access) of the producer-consumer benchmark to transfer the
allocated data between two cores. 28

2.3 Matrix benchmark suite used in the performance evaluation. 32
2.4 Imbalance of matrices pct20stif and exdata 1. 44

3.1 List of the matrix test set and percentage of sampled entries by Perfmon for 2,
4, 8 and 16 threads. 63

4.1 Matrix benchmark suite used in our sampling tests. 76
4.2 Characteristics of the sampled matrices generated by the hardware counters. . . . 88
4.3 SpMV performance comparison between the original matrices and the

reorderings obtained by the locality optimisation technique (in GFLOPS). 91
4.4 Comparison between the latency histograms of SpMV iterations 2, 4 and 6. . . . 97
4.5 Number of windows of locality using different criteria in the windows creation

process. 99

5.1 Average execution time (sec.) of a data-intensive benchmark, with and without
page migration. 121

5.2 Performance of the OpenMP NAS suite using the default first-touch policy and
the page migration strategies proposed in a dedicated environment. 135

xv

5.3 Performance of the OpenMP NAS suite using the default first-touch policy and
the page migration strategies proposed in a multiprogrammed environment. . . . 138

5.4 Locality statistics of BT for each page migration strategy. 145

xvi

Acknowledgements

What a long, rewarding and enthralling journey! Although research is sometimes
portrayed as a lonely job, shut away in a laboratory far from the madding crowd, the truth
is that it is actually a team work. During these years, I have come across a lot of people who
have influenced me one way or another in my personal and professional life. None of this
work would have been accomplished if it had not been for their advice and support. Now is
the time to share the credit and show my gratitude to them all.

First and foremost, I would like to thank Francisco F. Rivera (Fran) and Juan Pichel, my
PhD advisors, for their guidance towards the completion of this thesis. The synergy of mature
experience and witty youth has turned out to be the perfect recipe to achieve fruitful results.

To Tomás F. Pena, Jose Carlos Cabaleiro (Caba) and Dora Blanco. I have learnt a lot
from them during our discussions and project meetings. Their suggestions and help proved
invaluable. To me, they are also advisors of this thesis. I would also like to thank David E.
Singh, for the technical discussions and ideas that have positively impacted my work.

To the Department of Electronics and Computer Science. I could not have found a
more enriching environment to develop my work. Their members are a truly model of
professionalism and good rapport, and their parties are epic!

To my colleagues and friends from my department who have accompanied me during
these years: Marı́a, Ronald, Óscar, Cris, Xulio, Julián, Bea, Fabián, Josito, Jose Carlos, Noe,
Álvaro, Sergio, Diego, Manolo and Adri. They have been there for me in the good and bad
times, and are now part of my life. I want to thank them all and also the rest of folks at the
department for the shared moments and the countless discussions about the most outlandish
ideas.

To Montserrat Bóo. Thanks for the conversations, the support, the advice and the sincere
friendship.

xvii

To Petr Tůma, member of my PhD committee and host during my two research stays at
the Department of Distributed and Dependable Systems of Charles University in Prague. He
and his group have been a reference of good methodology and well-done work. I did not
enjoy the food, though.

To Mark Bull, Gavin J. Pringle and Catherine Inglis at EPCC in Edinburgh. In addition
to the academic benefits, my research stay in UK was an unforgettable experience from a
personal perspective.

To Stéphane Eranian and the Perfmon mailing list. The knowledge gained from them
has been a major input to my thesis.

To my present and former teachers from my graduate and undergraduate courses, in
Santiago and Valladolid. They are largely responsible for who I am today and my vocation
for research.

To my friends from Galicia and Valladolid: Sonia, Susana and Pablo, Luismi and Marta,
Álvaro, Nuria, Sara and Eva. So many years and neither time nor distance has diminished our
friendship.

I want to express my appreciation to the institutions without whose funding this
work would not have been possible. The development of this dissertation was partially
supported by Hewlett-Packard under contract 2008/CE377, by the Spain’s Ministerio de
Educación y Ciencia through the research grant TIN2007-67537-C03-01, FEDER funds
under contract TIN2010-17541, Spain’s Xunta de Galicia under contract 2010/28 and project
09TIC002CT, and Spain’s High Performance Computation in Heterogeneous Architectures
Network (CAPAP-H) through research grant TIN2007-29664-E. I also wish to thank the
supercomputer facilities provided by the Galicia Centre of Supercomputing (CESGA) and
the High Performance and Embedded Architecture and Compilation European Network
(HiPEAC-2). Early work on this dissertation was funded by Spain’s Xunta de Galicia Marı́a

Barbeito predoctoral contract.
Por último, y no por ello menos importante, quiero dar las gracias a mi familia. A mis

padres, Mari Carmen y Juan, por su apoyo y fe en mi incluso cuando las fuerzas flaqueaban.
A mi hermana Ana Marı́a, a Mariano y a mis sobrinillos, Sandra y Gonzalo. Gracias a todos
por estar ahı́ a lo largo de este viaje.

Santiago de Compostela, October 2011

xviii

Abstract

Over the last years, we have witnessed an important evolution in the available
computational resources in science and engineering. The line that has traditionally
separated multicomputers from multiprocessors is getting blurred, and nowadays most
modern supercomputers include several multicore, NUMA (Non Uniform Memory Access)
multiprocessor nodes interconnected by a high-speed network. In this context, data locality
becomes a subject of paramount importance for the performance of parallel codes.

As systems have grown in complexity, the need for understanding what is happening inside
a program has also increased. Profiling, understood as a performance monitoring technique
that records information about a running code, has proven very useful to narrow down its
bottlenecks. In this way, the performance monitoring hardware counters, included in the vast
majority of modern microprocessors, provide an essential tool to monitor and gain an insight
into the system during the execution of a program.

Recently, a new player came on stage. Precise Event-Based Sampling (PEBS) is a
performance counter-based profiling technique that has been enhanced in the Intel Itanium
family with respect to their predecessors. Their performance counters have reached a
precision level to the point of returning not only the exact address at which an event occurs,
but also the latency of that access. This opens the door to the development of new performance
techniques based on that information.

In this dissertation, we approach the study of PEBS techniques to improve the performance
of applications on a NUMA, Itanium2-based system. We demonstrate that a low-cost,
PEBS profiling can support strategies to improve the performance of an important group
of computational and scientific codes in runtime. In addition, the accurate information
provided by the new Event Adress Registers (EAR) of the Itanium2 architecture helps foster
the development of new data allocation strategies. Following this line, we have also developed

xix

a series of dynamic page migration PEBS strategies. Specifically, two problems are addressed:
how to improve the performance of locality optimisation techniques for irregular codes in
runtime, particularising for the Sparse Matrix-Vector product kernel, and how to develop
strategies for dynamic page migration.

The main contributions of this dissertation are:

1. A study of the different factors that affect the performance, as well as data and thread
allocation policies, in the FINISTERRAE supercomputer, the target platform in which
this thesis relies on.

2. The implementation of a performance model for FINISTERRAE.

3. The development of hardware counter-based strategies to assist reordering techniques
for irregular codes in order to reduce their cost and improve their behaviour.

4. The development of novel hardware counter-guided, dynamic page migration
algorithms that take advantage of the new features provided by the PEBS.

As a software contribution, we present a user-level page-migration framework to monitor,
sample and control an application in runtime.

xx

1

Introduction

Understanding the performance of a program requires answering the question: how and

where is the time spent?. Factors such as the underlying system or the type of workload can
lead to bottlenecks, or points where most of the time is spent. These points can be identified by
the action of collecting information related to how an application or system performs when
executing, known as performance monitoring. Characterising the nature and cause of the
bottlenecks using this information allows us to answer our initial question, understanding
therefore why a program behaves in a particular way.

Performance monitoring is particularly important in modern shared-memory, multipro-
cessor systems. The interplay of the cache coherency and consistency, memory hierarchy,
buses and processors is fairly complicated and far from being intuitive. Hence, these systems
cannot be accurately modelled, so other techniques must be used to characterise the behaviour
of an application executed in such systems. Profiling is a time-based sampling technique that
records information at regular intervals and is based on the statistical fact that the more often
an address is issued, the more likely is that the program spends more time there [3].

While the classic application of profiling has been to collect data in order to find out what
is going wrong, another not-so-widespread use consists in applying that information to take
effective decisions either in runtime or in a pre-execution stage – regarding, among others,
data locality or load balancing – that may lead to a performance improvement.

A research field where the data locality is of paramount importance is the case of irregular
codes. An application is said to be irregular (as opposite to a regular one) if it presents
indirections that prevents us from finding out, at compile time, the set of memory accesses
performed by the application. Examples of these accesses are those performed by pointers, the
indirection arrays whose content is unknown at compile time, or the use of external functions
that access memory and whose structure cannot be determined a priori. Irregular codes present

2 Chapter 1. Introduction

a low locality and, due to the unpredictability of their accesses, the effective reuse of the
memory hierarchy is scarce. Hence, the memory hierarchy is the most important bottleneck
for the efficient execution of most of these codes and, therefore, one of the issues where
performance can be improved best. Since irregular codes are the core of many important
scientific applications, several widespread techniques to improve their data locality exist in
the literature [4, 5, 6, 7, 8], many of them developed for Symmetric Multi-Processor systems
(SMP). Among them, those based on data reordering techniques [9], whose major drawback
is the cost of the analysis stage.

Nowadays, performance monitoring counters, also known as hardware counters, are a
powerful monitoring mechanism included in the PMU (Performance Monitoring Unit) [3] of
most of the modern microprocessors. Their use is gaining popularity as an analysis and vali-
dation tool for profiling, since their effect in the monitored program is virtually imperceptible
and their precision has noticeably increased thanks to the new Precise Event-Based Sampling

(PEBS) [10] features. However, although the PMU can harvest very useful information, it is
not always exploited to the fullest of its capabilities. Indeed, the lack of standard tools and
libraries to program the hardware counters and access all the information that can be collected
keep them restricted to very specific issues, so that many of the possibilities that they offer
have not been fully exploited.

In this dissertation, I address the problem of using hardware counters in situations in which
they can support strategies to improve the performance of an important group of applications
in runtime. In particular, shared-memory parallel codes are considered in the Intel Itanium
architecture. This chapter provides an introduction to the work presented in this dissertation,
including the structure and contributions of each chapter.

1.1 The problem in a nutshell

The problem I address in my dissertation can be flesh out in two specific issues:

– How to improve the performance of locality optimisation techniques for irregular codes
in runtime. Particularly, the Sparse Matrix-Vector product (SpMV) irregular kernel.

– How to develop strategies for page management to improve the data locality of parallel
codes in runtime.

1.2. Thesis statement 3

The approaches to both issues share a common denominator: they take advantage of the
PEBS features introduced by the hardware counters in the Intel Itanium architecture to provide
low-cost, meaningful information that can be helpful in the decision-taking process.

Generally, many of the strategies to improve data locality on irregular codes involve a
preliminary stage in which the data are inspected and reordered attending to memory locality
criteria. Typically, the overhead of this stage is important and increases with the size of
the data. In this dissertation, I demonstrate how some of these reordering-based strategies
can benefit from an important overhead reduction and improve their performance by using
incomplete information from a hardware counter-based profile.

Regarding page management, most of the parallel applications have not been programmed
taking into account that their data will be allocated in the memory of a NUMA (Non-Uniform

Memory Access) underlying architecture. The cost of accessing data that is physically allo-
cated in a remote memory can unnecessarily increase the execution time of an application.
I will demonstrate how a user-level application can profile a target program and, based on
algorithms that rely on the hardware support of performance counters, smartly migrate data
in runtime to reduce the execution time.

1.2 Thesis statement

The main objective of this dissertation is to effectively use on-chip hardware counters to
improve the performance of the memory accesses in runtime on the Itanium2 architecture.
Two different contexts have been considered: the efficient execution of irregular codes and
the development of page migration strategies to improve the execution of parallel codes.

To accomplish these objectives, the following goals must be met:

G1-ARCHEVAL (Architecture Evaluation): The first step consists of acquiring a good un-
derstanding of the architecture in which this dissertation frames. Issues such as the
memory and thread allocation policies, cache coherency and consistency, the NUMA
factor, the bus latency and bandwidth and others that may affect the performance need
an experimental assessment.

G2-HWCSTUDY (Hardware Counters Study): The use of hardware counters as a source of
information to guide runtime optimisations of sequential and parallel irregular codes
must be validated. This entails establishing procedures to get, store and manage the

4 Chapter 1. Introduction

information they provide. The existence of specific libraries to access the newest fea-
tures of the Itanium2 PMUs is scarce, as well as their documentation. As a part of
this validation process, the available libraries are analysed to select one that meets our
requirements.

G3-REORDTECHIMPRV (Reordering Techniques Improvement): This goal aims to charac-
terise locality (between pairs of different references) and affinity (between references
and processes) of irregular accesses using models based on the information provided
by the hardware counters. The existing reordering techniques for irregular codes can
benefit from these models to improve their performance.

G4-PAGEMIGINFR (Page Migration Infrastructure): Prior to developing strategies for page
migration, a software infrastructure to support the implementation and test of such
strategies is required. It must provide a low-cost monitoring system and a mechanism
to migrate pages in runtime when required.

G5-PAGEMIGALG (Page Migration Algorithms): Comprises the development of hardware
counter-based solutions to improve the execution of parallel codes in shared memory
multiprocessors using page migration.

1.3 Related Work

Many works that deal with the optimisation of the sparse matrix-vector product can be
found in literature. Techniques for increasing the locality of SpMV can be mainly divided
into two groups: data reordering and code restructuring techniques.

Standard reordering techniques are considered classical methods for increasing the loca-
lity in the execution of the SpMV code. The most used techniques are the bandwidth reduc-
tion algorithms, which derive from the Cuthill-McKee algorithm [11]. In a recent work [12],
authors evaluate minimum degree-based heuristics such as the approximate minimum degree

algorithm [13] on multicore processors. Oliker et al. [14] show the benefits that are offered
by the application of some of these reordering algorithms to sparse codes when executed on
different multiprocessor architectures. Note that, unlike standard reordering algorithms, the
main objective of the data reordering technique considered in this work is to increase the data
reuse and, as a consequence, the data locality. Coutinho et al. [15] perform a comparison of

1.3. Related Work 5

different data reordering algorithms for the SpMV in edge-based unstructured grid computa-
tions. However, they only focus on serial executions.

Techniques based on restructuring the code, like blocking or tiling, have been success-
fully applied to different irregular codes such as the product of a sparse matrix by a dense
matrix [16, 17] and stationary iterative methods [18]. Im et al. [19] propose register and
cache blocking as optimisation techniques for the SpMV. In [20], a performance model for
the blocked SpMV is presented, which allows picking in nearly all cases the actual optimal
blocksize. In these last two works the authors use a randomly sampled matrix at runtime
to detect the best blocking size. Vuduc et al. [21] extend the notion of blocking in order to
exploit variable block shapes by decomposing the original matrix to a proper sum of subma-
trices storing each submatrix in a variation of the blocked CSR format. In a recent work [22],
a comparative study of different blocking storage techniques for sparse matrices on several
multicore platforms is performed. One of the main drawbacks of these techniques is the
strong dependence with the sparsity pattern of the matrix. For example, register blocking
only achieves good performance for matrices with small dense-blocks in the pattern. Unlike
these solutions, our locality optimisation technique is effective for matrices with any kind of
pattern [12]. Finally, Belgin et al. [23] introduce a representation for sparse matrices based
on the observation that many matrices can be divided into blocks that share a small number
of different patterns. The goal is to reduce the SpMV memory bandwidth requirements by
reducing the index overhead.

Some authors have demonstrated that both groups of techniques are complementary. In
particular, Toledo [24] evaluates different standard reordering techniques and combines them
with blocking, showing that SpMV performance increases significantly depending on the size
and sparseness of the considered matrix. Pinar and Heath [25] introduce a reordering tech-
nique that favors the creation of dense blocks on the pattern of the sparse matrix, and in this
way the efficiency of the blocking technique proposed by Toledo is increased. Moreover, a
comparison between their reordering technique and some standard reordering techniques is
carried out. In another work [26], a combination of data reordering algorithms and register
blocking has been applied to the SpMV on shared memory multiprocessors, finding little be-
nefit. The locality optimisation technique used in the present dissertation can also be applied
to codes where data are stored using a blocked scheme. An example was published in [27]
where a reordering of the sparse matrix in combination with blocking techniques was suc-
cessfully applied to the SpMV. The technique was evaluated on different uniprocessors and
on distributed memory multiprocessors.

6 Chapter 1. Introduction

Moreover, there are several papers that deal with the SpMV optimisation problem using
compression. In a recent work [28], the authors propose two different compression methods
targeting index and numerical values. Williams et al. [29] apply an index reduction tech-
nique, in which 16-byte indices are used when it is possible. In the same work the authors
propose several additional optimisation techniques for the SpMV, which are evaluated on di-
fferent multicore platforms. Authors examine among others: software pipelining, prefetching
approaches, register and cache blocking, etc. Nevertheless, they do not consider data reor-
dering techniques in order to increase locality.

Research regarding the use of hardware counters is mainly focused on the characterisation
and analysis of possible bottlenecks in the performance of applications [30, 31]. However,
some works use hardware counters for different optimisations such as improving cache utili-
sation [32], reducing memory access stalls [33], selecting compiler optimisation settings [34]
and dynamic page migration [35]. To the best of our knowledge, researchers have never dealt
with the locality optimisation of the SpMV in runtime using only the information provided by
the hardware counters.

Regarding strategies for page management, numerous works study the proper memory
placement of data on NUMA systems. These studies have usually been performed in UNIX
systems such as Solaris or Irix. In [36], Antony et al. compare the NUMA awareness of
Solaris and Linux, stating the fact that the NUMA support in Linux is more recent (from
kernel 2.6) than in Solaris and, therefore, lacks some features that have been present for a
long time in other systems. As an example, some modes of memory placement, such as
next-touch policies, are not available yet in the Linux mainstream kernel.

Most of the developed migration techniques can be categorised in those developed as a
user-level tool and those somehow embedded in the operating system kernel. Tikir et al. [35]
introduce a user-level, profile-driven page migration scheme using performance counters on
an Sun Fire 6800 server. Their migration algorithm is based on the number of times a page
is accessed by a processor, and uses the built-in move-on-next-touch feature of Solaris 9. It
achieves a time improvement in some applications by up to 16%, although it requires inserting
instrumentation code into the monitored application. The same authors had also previously
proposed a dynamic user-level page migration scheme based on an approximate trace of me-
mory accesses obtained by sampling the network interconnect [37]. Marathe et al. [38]
introduce a hardware-assisted page placement scheme based on automated profiling on a SGI
Altix architecture. They use the libpfm library to access the hardware counters of the Itanium2
processors. Their method firstly runs a truncated version of an OpenMP program to extract an

1.3. Related Work 7

approximate trace of its memory accesses. Then, the program is effectively executed, forcing
the page placement by touching its pages so that the first-touch feature places them in the
desired allocation. Therefore, once the data have been placed, they cannot be reallocated.
The authors admit that their solution involves a substantial execution overhead that erases the
gain for several benchmarks. Closely related to the previous work, Thakkar [39] uses libpfm

on Itanium2-based, SGI Altix and x86-64 Opteron platforms and studies the use of hardware
counters to assist dynamic page placement on Linux. His proposal of a latency-based algo-
rithm considers that the access latencies from a given node are constant. His work on the
Itanium2 platform was abandoned due to the instability of the traces obtained, and his results
on Opteron show an improvement of 8-15%.

Bull and Johnson study the tradeoffs between page migration, replication and data distri-
bution for OpenMP applications on the Sun WildFire system [40]. They suggest that page
replication can be even more beneficial than migration.

Tao et al. propose three page migration algorithms supported by memory access his-
tograms on a shared memory in a Lan-like Environment PC clusters [41]. Their algorithms
require a large amount of references issued before a migration decision can be taken. Addi-
tionally, they assume that if a page is accessed, the neighbouring pages will be also accessed
by the same node.

Nikolopoulos et al. present in [42] and [43] two algorithms for moving virtual memory
pages to the nodes that reference them more frequently on an IRIX 6.5.5 system. The first
one, for OpenMP iterative codes, assumes that the page reference pattern of one iteration will
be repeated throughout the execution of the program. The second algorithm checks for hot
memory areas and migrates the pages with excessive remote references.

A more recent work of Nikolopoulos et al. dynamically collocates threads and me-
mory affinity sets of iterative programs in the presence of unpredictable scheduler interven-
tions [44]. The architecture tested was a SGI Origin2000. It takes into account the impact of
thread migrations and preemptions as well as the memory placement based on a speculative
page migration criterion. This proposal requires compiler support by linking the monitored
program to a page-migration library.

Wilson and Aglietti [45] implement a Dynamic Page Placement (DPP) strategy by a repli-
cation/migration decision tree on a cc-NUMA multiprocessor simulator, proposing several
ideas for improving DPP.

One of the most renowned approaches to kernel-level dynamic page migration is presented
by Goglin et al. in [46] and [47]. The authors develop an implementation of a next-touch

8 Chapter 1. Introduction

memory placement for the Linux kernel in the i386 architecture given that, contrary to other
systems such as Solaris, Linux lacks one. Their proposal modifies the kernel to have a page
migrated close to the thread that last accessed it. This implementation is yet to be included in
the mainstream kernel.

1.4 Experimental setup

The work outlined in this dissertation involves testing locality improvement techniques.
The Sparse Matrix-Vector Product (SpMV) has been used as a test irregular kernel. A wide
set of sparse matrices with different features has been chosen as an input for this kernel.

There exist several sparse matrix compilations available. The most renowned are the
Matrix Market collection [48] and the Tim Davis collection from the University of Florida
(UFL) [49]. These compilations provide a large number of matrices from numerous applica-
tions which range from finite element problems (FEM) to device simulation problems.

Table 1.1 enumerates the set of square matrices used throughout this dissertation. Their
dimensions (N), number of nonzeros (NNZ), ratio of nonzero elements per row, application
field and chapter in which each of them have been used are shown.

1.5 How this dissertation is structured

The work developed in this thesis unfolds in the following chapters:

Chapter 2: Evaluating the FINISTERRAE Architecture. This chapter describes the archi-
tecture of the supercomputer in which this dissertation has been carried out. The per-
formance of dense and sparse codes is evaluated in order to define some thread and data
allocation recommendations and, finally, a Roofline Model is implemented for a node
of this system. This chapter expands on the work presented in the following papers:

Juan A. Lorenzo, Francisco F. Rivera, Dora B. Heras, José C. Cabaleiro, Tomás F. Pena, Juan C. Pichel
and David E. Singh. Thread Allocation Issues for Irregular Codes in the Finisterrae System. XX Jornadas
de Paralelismo. A Coruña, Galicia, Spain, September 2009.

Juan A. Lorenzo, Petr Tůma, Juan C. Pichel, and Francisco F. Rivera. On the Influence of Thread Allo-
cation for Irregular Codes in NUMA Systems. 10th Int. Conf. on Parallel and Distributed Computing,
Applications and Technologies (PDCAT). Hiroshima, Japan, December 2009.

1.5. How this dissertation is structured 9

Matrix N NNZ NNZ
N Description Chapter(s)

af23560 23560 484256 21 Airfoil eigenvalue calculation 3
av41092 41000 1683902 41 Irregular finite-element 2
bcsstk04 132 1890 14 Symm. stiffness matrix, oil rig 2
bcsstk05 153 1288 8 Transmission tower 2
bcsstk17 10974 219812 20 Elevated pressure vessel 3
bcsstk18 11948 80519 7 R.E. Ginna Nuclear Power Station 3
bcsstk20 485 1810 4 Frame within a suspension bridge 3
bcsstk23 3134 24156 8 Part of a 3D globally triang. building 3
bcsstk24 3562 81736 23 Winter sports arena 3
bcsstk25 15439 133840 9 Columbia 76-story skyscraper 3
bcsstk28 4410 111717 25 Solid element model, linear statics 3
bfw398b 398 2910 7 Bounded Finline Dielectric Waveguide 3
crystk03 24696 1751178 71 FEM crystal free vibration matrix 4
e40r0000 17281 553956 32 Driven cavity 3
e40r0100 17000 553562 33 Fluid dynamics 2
exdata 1 6000 2269501 378 Linear equations 2
fidap019 12005 259863 22 Finite element modeling 3
fidapm29 13668 186294 14 Finite element modeling 3
garon2 13535 390607 29 2D FEM, Navier-Stokes 2, 4
gyro k 17361 1021159 59 Bone Micro-Finite Element 2, 4
lnsp131 131 536 4 Fluid flow modeling 3
lnsp3937 3937 25407 6 Fluid flow modeling 3
mbeaflw 496 49920 101 Economic modeling 3
memplus 17758 126150 7 Electronic circuit design 3
mhd416a 416 8562 21 Magnetohydrodynamics 3
mhd4800b 4800 27520 6 Magnetohydrodynamics 3
mixtank new 29957 1995041 67 POLYFLOW mixing tank 2, 4
msc10848 10848 1229778 113 Structural engineering 2, 4
nd3k 9000 3279690 364 ND problem 2, 4
nmos3 18588 386594 21 Semiconductor device simulation 2, 4
pct20stif 52329 2698463 52 CT20 Engine Block - Stiffness matrix 2, 4
psmigr 1 3140 543162 173 Intercounty migration 2, 3
rajat15 33000 443573 13 Circuit simulation 2
sherman2 1080 23094 21 Oil reservoir simulation 3
sme3Da 12504 874887 70 3D structural mechanics problem 2, 4
syn12000a 12000 1436806 120 Linear equations 2
tsyl201 20685 2454957 119 Part of condeep cylinder 2, 4
west0381 381 2157 6 Chemical Engineering plant 3
west2021 2021 7353 4 Chemical engineering plant 3

Table 1.1: Matrix test set used in this dissertation.

10 Chapter 1. Introduction

Juan A. Lorenzo, Juan C. Pichel, David LaFrance-Linden, Francisco F. Rivera and David E. Singh.
Lessons Learnt Porting Parallelisation Techniques for Irregular Codes to NUMA Systems. 18th Eu-
romicro Conference on Parallel, Distributed and Network based Processing (PDP). Pisa, Italia, February
2010.

Juan A. Lorenzo, Juan C. Pichel, Tomás F. Pena, Marcos Suárez and Francisco F. Rivera. Study of
Performance Issues on a SMP-NUMA System using the Roofline Model. 17th Int’l Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA’11). July 18-21, 2011, Las Vegas, USA.

Oscar G. Lorenzo, Juan A. Lorenzo, J.C. Cabaleiro, Dora B. Heras, Marcos Suárez and Juan C. Pichel,
A Study of Memory Access Patterns in Irregular Parallel Codes Using Hardware Counters Based Tools.
17th Int’l Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’11).
July 18-21, 2011, Las Vegas, USA.

Chapter 3: Accessing Hardware Counters on Itanium2 Montvale. The Perfmon inter-
face. The adoption of an interface that provides an adequate access to the hardware
counter features is studied. The Perfmon interface is tested and analysed in the target
platform, evaluating its access to the features provided by the PEBS in several scena-
rios. The papers pointed out in Chapter 2 can also be included as contributions for this
chapter.

Chapter 4: Locality Improvement on Irregular Codes. This chapter assesses the feasibi-
lity of increasing the locality of irregular codes –particularly for the sparse matrix-
vector product– in which only a subset of the memory accesses, that are provided by
the PEBS, is available in the optimisation process. The work presented in this chapter
expands on the work developed in the following papers:

Juan C. Pichel, Juan A. Lorenzo, Dora B. Heras and José C. Cabaleiro. Evaluating Sparse Matrix-Vector
Product on the FinisTerrae Supercomputer. 9th Int. Conference on Computational and Mathematical
Methods in Science and Engineering (CMMSE). Gijón, Spain, June 2009.

Juan C. Pichel, Juan A. Lorenzo, Dora B. Heras, José C. Cabaleiro and Tomás F. Pena. Analyzing the
Execution of Sparse Matrix-Vector Product on the Finisterrae SMP-NUMA System. Journal of Super-
computing, pages 1-11, Springer Netherlands, ISSN 0920-8542, 2010.

Juan C. Pichel, Juan A. Lorenzo, Francisco F. Rivera, Dora B. Heras and Tomás F. Pena. Using sampled
information, is it enough for the SpMV locality optimization?. Concurrency and Computation: Practice
and Experience, 2011 (under review).

1.5. How this dissertation is structured 11

Chapter 5: Page Migration. As a software contribution, an infrastructure to dynamically
monitor an application and perform data migration is presented. This chapter relies on
this infrastructure to evaluate novel PEBS-based migration algorithms.

This dissertation concludes with Chapter 6, discussing the results achieved and the future
work that may follow from this work.

2

Evaluating the FinisTerrae Architecture

2.1 Introduction

As mentioned in Chapter 1, most of the existing irregular kernels were conceived to work
in SMP systems, where the memory access latency is the same for all processors. However,
state-of-the-art architectures involve many cache levels in complex several-node NUMA con-
figurations with different number of multi-core processors. A good example is the supercom-
puter FINISTERRAE installed at the Galicia Supercomputing Centre (CESGA) [50] in Spain.
FINISTERRAE is a SMP-NUMA system with more than 2500 processors, 19 TB of RAM
memory, 390 TB of disk storage and a 20Gbps Infiniband network, orchestrated by a SuSE
Linux distribution. Designed to undertake great technological and scientific computational
challenges, it is one of the largest shared-memory supercomputers in Europe.

In such a complex infrastructure, the observations we can make are not straightforward,
because the interplay of cache contention, bus contention, cache coherency and other mecha-
nisms is far from transparent and therefore requires experimental assessment. In this context,
the memory allocation and the thread-to-core distribution may become very important in the
performance of a generic code and, more noticeably, in irregular codes, whose structure does
not make an efficient use of the cache hierarchy, as it happens in iterative kernels (sparse

matrix-vector multiplication, irregular reduction, etc). Hence, different latencies, depending
on the processor the data are assigned to, can significantly affect the performance.

Since the work presented in this dissertation has been carried out in this supercomputer, the
first step consisted in acquiring a good understanding of its architecture. This is a process that
cannot rely on browsing through manuals and datasheets solely, but it requires to undertake
a hands-on assessment of how both dense and irregular techniques behave on this machine.
This chapter meets the goal G1-ARCHEVAL stated in Section 1.2.

14 Chapter 2. Evaluating the FinisTerrae Architecture

The structure of this chapter is as follows: the following section outlines the FINIS-
TERRAE infrastructure focusing on the architecture of a single node. Next, a brief review
of its Itanium2 Montvale processors is presented, subsequently exploring in more detail its
Performance Monitoring Unit. An in-depth explanation of some of their performance coun-
ters is also carried out. Once presented the architecture, the actual evaluation of the system
is undertaken. Several dense and sparse tests were used to study the influence and impact
on the performance of thread and memory allocations. Moreover, a well-known insightful
performance model was adapted to FINISTERRAE to graphically illustrate our observations.
Finally, some discussion and conclusions are drawn.

2.2 FINISTERRAE architecture

FINISTERRAE is an SMP-NUMA machine which comprises 142 HP Integrity rx7640
computation nodes. Each node consists of eight 1.6Ghz-DualCore Intel Itanium2 Montvale
(9140N) processors arranged in a two-SMP-cell NUMA configuration1. Figure 2.1 shows a
diagram of a cell related to the I/O system and to the other cell. Figure 2.2 shows the block
diagram of a whole node as well as its core disposition. As seen in the former, each cell
is composed of two buses at 6.8 GB/s, each connecting two sockets (four cores) to a 64GB
memory through a sx2000 cell controller. This controller maintains a directory-based, cache-
coherent memory system and connects both cells through a 27.3 GB/s crossbar. It yields a
theoretical peak processor bandwidth of 13.6 GB/s and a peak memory bandwidth of 16 GB/s
(four buses at 4 GB/s).

The main memory address range handled by the cell controller can be split in two modes:
three fourths of the address range map to addresses in the local memory, the remaining one
fourth maps in an interleaved manner to addresses in both local and remote memory.

2.3 Intel Itanium2

The Intel Itanium architecture (formerly called IA-64) broke with the past when it first
appeared in 2001. Developed together with Hewlett-Packard, it implements an Explicitly Pa-

rallel Instruction Computing (EPIC) instruction set, to the detriment of other traditional ones
such as CISC and RISC [51]. EPIC [52] was conceived with the goal of moving beyond
RISC performance bounds with explicitly-parallel instruction streams. Typically, traditional

1There exists a 143th Superdome node composed of 128 Montvale cores and 1 TB memory.

2.3. Intel Itanium2 15

Figure 2.1: HP Integrity rx7640 node (taken from [1]).

Figure 2.2: Block diagram of an HP Integrity rx7640 node. Four dual-core Itanium2 Montvale are connected to
their local memory in every cell through a Cell Controller, which uses a crossbar to communicate with
an identical second cell.

16 Chapter 2. Evaluating the FinisTerrae Architecture

mov r31 = ip //1st group
ld r2 = [r3];; //1st group
st [r4] = r2 //2nd group
add r5 = r6, r7 //2nd group

{ .mii
mov r31 = ip

}
{ .mmi

ld4 r2 = [r3];; //load
st4 [r4] = r2 //store
add r5 = r6, r7 //int op

}

Figure 2.3: Instruction group boundary.

architectures showed a limited parallelism where a compiler translated a source code into a
sequential machine code. This machine code was interpreted by the hardware in order to ex-
tract the maximum parallelism in run-time, so that most of the multiple CPU functional units
were efficiently used. Unfortunately, this is a hard task to perform, and traditional processors
are often about 60% idle.

Whereas RISC architectures approach a processing limit of one instruction per clock cy-
cle, the Explicit Parallelism allows multiple instructions in one cycle. The parallelisation
effort is now delegated to the compiler, which is tightly tied to the target architecture and
whereby it owns a wider scope of the whole execution scenario. This fact enables the com-
piler to determine in advance which instructions can be executed in parallel, generating a
parallel machine code which allows a more efficient use of the execution resources.

Itanium2 implements a form of Very Long Instruction Word (VLIW). Each instruction
word contains three 41-bit instructions together with a 5-bit template field grouped into 128-
bit aligned containers called “bundles”, which can only be treated as atomic [53]. Each ins-
truction group is selected by the compiler to present no RAW or WAW dependencies, so
that instructions can be issued in parallel depending on the available resources. Whenever
possible, the compiler can take advantage of this, allowing the processor to execute up to 2
bundles (6 instructions) per cycle, which is claimed to be one of the main advantages of EPIC
paradigm. Figure 2.3 shows an example of a sequence of instructions (left) and a bundle
(right). On the left, the instructions have been splitted up in two groups (delimited by two
semi-colons) to avoid the RAW dependency caused by the accesses to r2. Note that a sin-
gle instruction group can span multiple bundles, which is what is actually done in this case:
the assembler can only package instructions into some predefined bundle formats, such as
.mii (memory-instruction-instruction) or .mmi (memory-memory-instruction). Therefore,
it naı̈vely breaks the first group across two bundles. The first bundle will contain only a mov
operation between two no-op instructions. Since the RAW dependency still exists because
of the problematic instructions packaged together in the second bundle, an intra-bundle stop

2.3. Intel Itanium2 17

is forced (’;;’), which offers absolutely no performance benefit at all. This example stresses
the importance of having a compiler smart enough. Given that the instructions are issued
and executed exactly as they are packaged – since Itanium processors contain no out-of-order
execution or implicit scheduling –, it is the compiler’s responsibility to find the optimal com-
binations of bundles for maximum performance.

2.3.1 Itanium2 Montvale

Figure 2.4 shows the block diagram of an Itanium2 9100 series (codenamed Montvale)
processor. It comprises two 64-bit cores and three cache levels per core. This architecture
has 128 General Purpose Registers and 128 Floating Point (FP) registers. The specific model
installed in FINISTERRAE is 9140N, which runs at 1.6 Ghz and has a 9MB L3 cache memory.

Each core has its own cache hierarchy up to the L3 level. The first level (L1) caches are
4-way set associative, 64-byte line-sized caches each and hold 16 KB of instruction or data.
They are accessed in a single cycle. The data cache, which is write-through, is an integer-only
memory. Therefore, FP operations bypass L1. Montvale provides a dedicated 1 MB L2 cache
for instructions. This cache is 8-way set associative with a 128 byte line size and 7 cycles per
instruction access. The 256 KB L2D is a write-back cache whose hit latency is 5 cycles for
integer and 6 cycles for floating-point accesses. The third level (L3) is a unified, on-chip 9MB
memory with the same line size than L2. Its theoretical hit latency is 14 cycles or higher.

2.3.2 Itanium2 Montvale PMU

Although performance counters were introduced in Chapter 1, the performance monito-
ring features of the Montvale Processor Monitoring Unit (PMU) deserve a separate explana-
tion, given that its hardware counters exhibit some particular features that have been profusely
used through the rest of this work.

The Montvale processor provides twelve 48-bit performance counters per thread, more
than 200 monitorable events, and several advanced monitoring capabilities. The Montvale
processor performance monitor architecture focuses on two usage models: workload charac-
terisation and application profiling. To undertake any of them, performance monitors allow
processor events to be monitored by programmable counters. Two sets of performance moni-
tor registers are defined. Performance Monitor Configuration (PMC) registers are used to con-
trol the monitors. Performance Monitor Data (PMD) registers either provide data values from
the monitors, or hold data values used by the PMU. As seen in Figure 2.5, Montvale provides

18 Chapter 2. Evaluating the FinisTerrae Architecture

Figure 2.4: 1.6 Ghz Dual-Core Intel Itanium2 Montvale (9140N) architecture [2].

12 generic performance counter pairs assigned to PMC/PMD4−15 and 4 performance counter
overflow status registers (PMC/PMD0−3). The Event Address Registers (EARs, explained
in Section 2.3.3) and the Execution Trace Buffer (ETB) are controlled by three configura-
tion registers (PMC37,40,39). Captured event addresses and cache miss latencies are accessible
to software through five event address data registers (PMD34,35,32,33,36) and a branch trace
buffer (PMD48−63). Additionally, monitoring of some events can be constrained to a instruc-
tion address range by appropriately setting the Instruction Breakpoint Registers (IBR) and the
instruction address range check register (PMC38) and turning on the checking mechanism in
the opcode match registers (PMC32,33,34,35). Two opcode match register sets and an opcode
match configuration register (PMC36) allow monitoring of some events to be qualified with a
programmable opcode. For memory operations, events can be qualified by a programmable
data address range by appropriate setting of the data breakpoint registers (DBRs) and the data
address range configuration register (PMC41).

For a W bit-width PMDi counter, an overflow interrupt occurs when the event of a counter
increments thus causing carry out from bit W − 1. The counter wraps, the overflow bit

2.3. Intel Itanium2 19

Figure 2.5: Montecito/Montvale Processor Performance Monitor Register Set [2].

(PMCi.oi) and freeze bit (PMC0. f r) are set and these generate an interrupt in the PMU. Until
the software does not clear those bits, no further interrupts are generated.

20 Chapter 2. Evaluating the FinisTerrae Architecture

2.3.3 Event Address Registers

Event Address Registers (EAR) are a special type of performance counters found in all
models of the Itanium2 processor. They provide event resolution for instruction and data
cache misses.

Two types are available: Instruction Event Address Registers (IEAR) and Data Event

Address Registers (DEAR). IEAR trigger on instruction fetches that miss the L1 instruction
cache, and record the virtual instruction address and the number of cycles of the instruction
that was in flight. DEAR trigger on either L1 data cache load misses, FP loads, L1 data
TLB misses, or ALAT misses, and record the actual data delivery latency and the exact vir-
tual instruction and data address at which they occur. These features allow an unambiguous
localisation of given latency data and instruction accesses.

EARs enable two types of profiling: EventBased Sampling (EBS), where the information
is recorded at some interval expressed as a number of occurrences of an event, and TimeBased

Sampling (TBS), where the information is recorded at some interval expressed as a unit of
time. It is possible to emulate time-based sampling using an event with a high correlation to
time (e.g. number of elapsed cycles).

EBS is carried out by configuring a performance counter to count, for example, the num-
ber of data cache misses. The corresponding PMC is set up to interrupt the processor after
a predetermined number of events have been observed. The DEAR repeatedly captures the
instruction and data addresses of data cache load misses. When the number of misses reaches
the predetermined threshold, the counter overflows, an interrupt is delivered to software, and
event collection is suspended until the EAR is read by software. Afterwards, a new observa-
tion interval can be setup by rewriting the corresponding PMC.

Note that the hardware does not track all potential DEAR events, but it creates a statistical
profile of cache misses of an arbitrary event resolution depending on the configured sampling
period.

In this work we have focused on DEARs configured exclusively to capture cache misses,
since our main goal is to perform a workload characterisation based on the latency of memory
accesses, as it will be explained in Chapter 4. Figures 2.6 and 2.7 show, respectively, the PMC
and PMD registers which actually comprise the Data Event Address register format. The most
relevant fields are explained next. A detailed explanation of the whole EAR register set can
be found in [2].

2.3. Intel Itanium2 21

Figure 2.6: Data Event Address Configuration Register (PMC40).

Figure 2.7: Data Event Address Register Format (PMD32,33,36).

PMC40 in Figure 2.6 can be programmed to monitor either L1 data cache load misses,
FP loads, L1 data TLB misses, or ALAT misses, depending on the values set in the field
mode. When set up to monitor L1 misses, the umask field is used as a power-of-two latency
threshold (in cpu cycles) over which misses are captured.

Figure 2.7 shows the associated event address data registers PMD32,33,36. When an event
is captured, PMD32 will contain the address of the data which issued the event. PMD33 will
record, among other data, the latency of that access. PMD36 will store the address of the
instruction which was in flight when the event was issued. Note that these Event Address
Data registers contain valid data only when event collection is frozen (PMC0. f r is set).

To count the number of L1 data cache load misses, the pair PMC5/ PMD5 must be used
together with PMC40/PMD32,33,36. PMC5 must have one of its fields configured to measure
DATA EAR EVENTS events. PMD5 will increment every time a L1 data cache load miss
occurs until it overflows, freezing the monitoring process and raising an interruption, as ex-
plained in Section 2.3.2. PMD5 can be precharged with an initial value from which to start
counting so that the difference between this value and its length W determines a sampling
period p. That is:

pmd precharge = 2W − p

22 Chapter 2. Evaluating the FinisTerrae Architecture

To our research, an important issue was that floating point operations bypass the L1. In
fact, we confirmed that all floating points operations are considered as a L1 data cache miss.
Therefore, by setting the DEAR threshold so that the counter increases in all cache misses
with latency equal or higher than 5 cycles (i.e. an access to L2), we were able to detect
all data accesses, not only those which caused a cache miss, thus increasing the number of
captured events.

The details of programming EARs using Perfmon present some particularities. Given
that EAR programming is not one of the objectives of this chapter, focused solely on des-
cribing the FINISTERRAE architecture, this issue will be addressed in Chapter 3 where our
sampling methodology, as well as our related findings, will be presented.

2.4 Performance Evaluation on FINISTERRAE

The beginning of this chapter discussed the reasons why such a complex infrastructure as
FINISTERRAE requires experimental assessment. Section 2.2 presented a infrastructure com-
prising a number of nodes in which there exist numerous factors such as several dual-core
processors sharing a bus, interacting with similar buses in the same cell in a SMP configu-
ration and, in turn, each couple of cells sharing memory in a NUMA distribution. In this
context, the SMP behaviour is not obvious, the interaction of each core with its neighbour is
not properly stated in the literature and it is by no means clear when bottlenecks can occur and
in which cases saturation of a bus can compromise the SMP behaviour. Furthermore, dense
and irregular codes behave in a different manner because of their inner nature. A dense code
will access data sequentially, so it exhibits a stronger locality of references and, therefore,
fewer conflict cache misses and a more efficient use of the memory hierarchy. Besides, the
processor’s prefetching will contribute to fetch the data before it is needed. On the contrary,
a sparse code will access part, if not all, of its data non-sequentially, so the use of the cache
memory will not be so beneficial. Since a good performance of many parallel scientific ap-
plications depends on the correctness of our assumptions, a study was carried out focused
on quantifying the behaviour of a FINISTERRAE node depending on how the data allocation,
the memory latency and the thread-to-core mapping can influence a code’s final performance.
Subsequent sections present this study for dense codes (Section 2.5) and sparse codes (Section
2.6).

2.5. Performance Evaluation of Dense Codes 23

2.5 Performance Evaluation of Dense Codes

2.5.1 Experiment setup

In addition to the load balance of the problem under study, there exist three main issues
which can affect noticeably the performance of a parallel code on a rx7640 node of FINIS-
TERRAE:

– The thread-to-core mapping: every four cores share a bus. Having several threads
assigned to cores in the same bus can lead, depending on the traffic, to a performance
decrease because of the competition for the bus.

– The cache coherency and consistency mechanisms require some additional traffic: ap-
plications with a high number of cache-line replacements may result in a poor perfor-
mance when the data intended to keep coherent is far (another bus or even cell) or the
inter-bus coherence directory must be accessed.

– The data affinity: accessing data allocated in a remote memory (that is, a memory of
another cell) will take longer than accessing data in a local one. These latencies must
be quantified.

The study of these issues was addressed by testing representative dense loads with ap-
propriate thread-to-core mappings. The system was benchmarked using Rip [54], a suite
consisting of several dense benchmarks. To manually allocate threads in cores and data in
memory, the numactl command [55] was used.

The Rip suite, written in C++, was compiled with the Intel’s 10.0 Linux C compiler. All
the results shown in the next section were obtained using the compiler optimisation flag -O2.
The system kernel is Linux 2.6.16.

2.5.2 Experiment #1: Influence of Thread Allocation in Bus Contention

The first issue studied was the influence of the thread allocation in relation to the cell
buses. Considering that four cores share a bus (see Figure 2.2), it was reasonably foreseeable
that any allocation which spreads out the threads as much as possible through different buses
would get a better performance than another one which maps several threads in cores within
the same bus, due to a possible bandwidth competition.

24 Chapter 2. Evaluating the FinisTerrae Architecture

Cores
Memory allocated

10KB 64MB 1GB 10GB

Cell 1
8−0 4.0 338.6 349.8 532.7
8−2 3.9 338.8 349.6 534.5
8−4 4.0 338.4 349.6 532.6
8−6 3.9 338.6 349.6 532.8

Cell 0
8 3.5 329.0 340.6 525.7

8−9 3.5 352.9 366.4 546.2
8−10 3.5 354.3 366.0 550.2
8−12 3.5 342.3 353.7 539.3
8−14 3.5 342.2 353.6 537.4

Table 2.1: Median memory access latency (in ticks) of memtest benchmark for different configurations. Depending
on the second core involved, Core 8 will share with it the bus, the cell or none of them. Measurements
with Core 8 alone for each memory size are also shown as a reference.

To quantify this effect, a benchmark from the suite Rip called memtest was used. Memtest

focuses on how multiple cores share the bandwidth to memory. It allocates a given-sized, pri-
vate block of memory per core filled with a randomly linked pointer trail. Then, it goes
through it reading and writing the data, which creates traffic associated to the data read and,
subsequently, written-back to memory. To quantify the effect of sharing a bus, several confi-
gurations comprising different thread allocations were used. To avoid the system allocating
the data in different memory regions (local, remote or interleaved) during the tests, all data
were allocated in Cell 0. One thread was always mapped to Core 8. The other one was mapped
to a core in the same cell, either to Core 9 (same socket, same bus), Core 10 (different socket,
same bus), Core 12 (different socket, different bus) or Core 14 (different socket, different bus).
Additionally, tests between Core 8 and some cores in Cell 1 (cores 0, 2, 4 and 6) were also
performed to quantify the effect of using two cores which do not share any resources inside a
cell. For comparative purposes, a test mapping just one thread to Core 8 was also carried out.
Table 2.1 quantifies the outcomes of those configurations for memory blocks of 10KB, 64MB,
1GB and 10GB in clock ticks per memory access. Note that, since the RDTSC instruction
was used to measure the memory access time, the final average calculation will include the
access time but also some overhead. Depending on the two cores involved in each test and the
size of the memory allocated, a decrease in performance was expected as long as the traffic in
the bus increases (because of bigger memory sizes) when both cores share the same bus. That

2.5. Performance Evaluation of Dense Codes 25

Figure 2.8: Average L1 DTLB misses per access for the memspeed benchmark. The y-axis represents the number
of events. The x-axis, the memory size in bytes for the considered cases.

is, a memory size of 10KB is not expected to consume too much bandwidth since the data fits
in L1 and, once loaded in cache, the bus will not be used until write-back. For block sizes
bigger than 9MB (the L3 size) the traffic in the bus is expected to increase, not only because
of write-back, but also because of the cache replacing. Therefore, a poorer performance is
expected when two threads are mapped to two cores in the same bus and a large amount of
memory is allocated.

The outcomes in Table 2.1 for 10KB show that, regardless of the pair of cores involved in
Cell 0, the number of required clocks to access the data is the same (3.5 ticks). As expected,
for a data block small enough to fit into L1 there is almost no traffic in the bus and, therefore,
no performance differences are observed. When the second core belongs to Cell 1 the time to
access the data is also almost constant (about 3.9 ticks) and higher than the previous case, as
can be expected because all data are allocated in Cell 0 and must be transferred to a remote
cell.

When the size of the block is increased over the L3 size (64MB and 1GB) three different
cases can be identified. Focusing on Cell 0, the lowest average latency access occurs when
Core 8 is alone in the bus. A second case with the highest latency access appears when Core
8 shares the bus with a core in the same processor (Core 9) or in a different socket but in the

26 Chapter 2. Evaluating the FinisTerrae Architecture

same bus (Core 10). Indeed, a data size large enough not to fit into cache can generate enough
traffic in the bus to decrease the performance when both cores compete for it. The third case
appears when two cores access memory from different buses (Cores 12 and 14). In this case,
the performance decrease is not as important as in the case when the bus is shared. Taking into
account that the latency is not as low as the one-core case and that the throughput in the Cell
Controller-to-memory bus is the same regardless of the pair of cores used, we must conclude
that the Cell Controller introduces a small delay when dealing with traffic from both buses.
Besides, since there are no significant differences between allocating a thread in the same
socket or in other socket sharing the bus, we can also conclude that, regarding bus sharing,
each core can be considered as an independent processor in this context. Focusing on Cell 1,
the latency is approximately constant regardless of the core and bus involved (∼338 cycles for
64MB case and∼349 for 1GB) and lower than using two cores in the same cell. This upholds
our conclusion about the Cell Controller introducing a certain delay.

The last case studied (10GB) shows the same three latency regions. However, the latency
increases noticeably whereas the 64MB and 1GB scenarios showed little difference between
them. It seemed reasonable to think that the randomly linked pointer in such a large block
size was increasing the page eviction. To confirm it, we studied the behaviour of the TLB.
Figure 2.8 shows the L1 DTLB misses. Indeed, we can see that the number of cache misses is
similar for both the 64MB and 1GB cases. However, the 10GB case yields a higher number
of TLB misses. Even if some page requests can be satisfied by the L2 DTLB, the rest will
produce page faults which will increase the access latency noticeably.

We can therefore conclude that it seems advisable that the threads, regardless of the data
size (assuming it is larger than the cache size), be distributed as much as possible in different
buses.

2.5.3 Experiment #2: Influence of Thread Allocation in Cache Coherency

The second issue under study was the influence of the thread allocation upon the memory
coherency protocols. The rx7640 memory coherency is implemented in two levels. A standard
snooping bus coherence (MESI) protocol [56] is used for the two sockets sharing a bus, having
on top of it an in-memory directory (MSI) to keep inter-bus coherence. Therefore, higher
latencies are expected when the coherence has to be kept up between two cores in different
buses than for two cores in the same bus since, in the former case, the directory must be read.

2.5. Performance Evaluation of Dense Codes 27

To quantify the effect of sharing a variable between two cores, a producer-consumer

benchmark from the suite Rip was used. The producer allocates and accesses a whole data
block filled with a randomly linked pointer trail, subsequently modifying the data after fetch-
ing it into cache. Once the producer has finished, the consumer just reads the whole data. We
defined a configuration where Core 14 is always the producer and different cores play the role
of the consumer. Table 2.2 shows the ticks per access to transfer the data from the producer
to different consumers. 10KB, 128KB, 6MB and 1GB data sizes were used to make them fit
in the L1, L2, L3 or in memory, respectively.

At the sight of the results we can observe that if the consumer is in the same bus as the
producer the time to fetch a cache line is shorter than if both are in different buses, which is
the case of Cores 12 and 15 for 10KB, 128KB and 6MB. This is due to the behaviour of the
MESI protocol implemented at bus level, which is faster than accessing the directory. It is
also noticeable that the time is the same regardless of whether the consumer shares the socket
with the producer or not. Remembering also that cores in an Itanium2 Montvale processor
do not share any cache level, we can conclude that, regarding cache coherency, each core
behaves as an independent processor in this context. When the consumer is in a different bus
than the producer, which is the case of Cores 0, 8 and 10, the directory must be read to check
in which bus the requested data are, with the subsequent rise in the access time. Cores 8 and
10 are in the same cell, so their latencies are similar and lower than the latency from Core 0,
which is in another cell. In this latter case, since the data must be brought through another
Cell Controller, it exhibits the highest latency.

Despite all data fitting in any cache in the previous cases (10KB, 128KB and 6MB), it
can be noticed that the time increases slightly with the data size. This fact can be explained
arguing that we are observing the effect of cache collisions due to the limited associativity of
the caches.

An exception to the observed outcomes occurs for 1GB. In that case, the time to fetch a
cache line is practically identical regardless of the cores involved, as long as they belong to the
same cell. The cause for this behaviour lies in the size of the allocated memory. For 10KB,
128KB and 6MB the data can reside in the L1, L2 or L3. However, for 1GB the producer
must flush the data back to memory after modifying it, so the consumer must fetch the data
from main memory in most cases instead of doing it from another cache. Note also that the
time to retrieve a data from a core in a remote cell is higher than from the local memory, as it
is seen in the 14-0 case for 1GB, compared to the 6MB case.

28 Chapter 2. Evaluating the FinisTerrae Architecture

Prod−Cons
Memory allocated

10KB 128KB 6MB 1GB

14−0 317.6 353.2 353.2 296.8
14−8 220.0 258.4 261.2 194.4
14−10 225.2 258.4 261.2 194.4
14−12 79.2 79.2 87.2 192.0
14−15 79.2 79.2 87.2 192.0

Table 2.2: Duration (ticks/access) of the producer-consumer benchmark to transfer the allocated data between two
cores.

We can conclude that, to minimise the effect of cache coherency, any parallel application
working with a reduced amount of shared data –not much bigger than the cache size– should
map its threads to the available cores in the same bus regardless of the socket in which they
are. When this is not possible, the best choice is the adjacent bus in the same cell and, as a last
option, a core in a different cell. On the contrary, a parallel application which allocates a large
amount of memory might saturate the bus (as shown in Section 2.5.2) with the subsequent
decrease in performance. In this case, mapping the threads to cores in different buses of the
same cell might be the best option since, as shown in Table 2.2, for a big amount of memory
the latencies due to cache coherency become the same for all buses. Therefore, the application
should firsty be characterised to find out whether the restricting factor is the traffic in the bus
due to the amount of allocated memory or due to the cache coherency, in order to take a proper
decision.

2.5.4 Experiment #3: Influence of Memory Affinity

As explained in Section 2.2, processors on a rx7640 node are arranged in a two SMP-
Cell NUMA configuration. Each cell has a 64GB memory module. Therefore, data can be
allocated on a local memory (threads and data are in the same cell) or on a remote memory
(threads and data are in different cells). Additionally to these two modes, about one fourth of
each memory module can be used to allocate data using an interleaved policy. When inter-
leaved memory is used, 50% of the addresses are to memory on the same cell as the requesting
processor, and the other 50% of the addresses are to memory on the other cell (distributed in
a round-robin fashion). The main goal of using interleave memory is to decrease the average
access time when accessing data simultaneously from cores belonging to different cells. Me-

2.6. Performance Evaluation of Sparse Codes 29

mory latencies provided by the manufacturer [57] are: ∼185 ns (local memory) and ∼249 ns
(interleaving memory). Latencies to remote memory are not given.

In this section, an experiment was carried out to compare the theoretical memory latency
given by the manufacturer [57] with our observations. We measured the memory access la-
tency of a small Fortran program which creates an array and allocates data in it. The measure-
ments were carried out using EARs through the pfmon tool. Pfmon’s underlying interface,
Perfmon, samples the application at run-time using EARs, getting the memory position and
access latency of a given sample accurately.

Figure 2.9 depicts the results when allocating the data in the same cell as the used core
(a), in the remote cell (b) and in the interleaving zone (c). In all cases, many accesses happen
within 50 cycles, corresponding to the accessed data which fit in cache memory. There is
a gap and, then, different values can be observed depending on the figure. Figure 2.9(a)
shows occurrences between 289 and 383 cycles when accessing the cell local memory. The
processors frequency is 1.6 Ghz, which yields a latency from 180.9 to 239.7 ns. Its average
value is 210.3 ns, slightly higher than the 185 ns given by the manufacturer.

When accessing data in a remote memory we measured occurrences between 487 and 575
cycles, that is, from 304.8 to 359.8 ns, with an average value of 332.3 ns. The manufacturer
does not provide any values in this case.

In the case of accessing data in the interleaving zone, the manufacturer value is 249 ns.
Our measurements give two zones, depending on whether the local or remote memory are
accessed. Indeed, the average access time in the interleaving zone is the average of combining
accesses to the local or remote memory. Our outcomes gave an average value of 278.3 ns.

We can conclude that, when working with codes mapped to cores in a same cell (especially
for those who demand a high level of cache replacement), the data should be allocated in the
same cell’s memory. The access to remote memory becomes very costly so, only if cores in
both cells must be used, the allocation of the data in the interleaving memory makes sense.

2.6 Performance Evaluation of Sparse Codes

The most demanded applications in computational science are those related to simulations
in physics, chemistry and biology, like fluid mechanics, weather forecast simulations, semi-
conductor devices, etc. In these simulations, which are often solved using iterative methods,
the solution of large sparse linear equation systems is required. These methods involve work-
ing with sparse matrices, whose irregular memory access patterns can cause a scarce reuse of

30 Chapter 2. Evaluating the FinisTerrae Architecture

(a)

(b)

(c)

Figure 2.9: Latency of memory accesses when the data are allocated in memory local to the core (a), in memory on
the other cell (b) or in the interleaving zone (c). The y-axis shows the number of occurrences of every
access. The x-axis shows the latency in cycles per memory access. Regions of interest have been
zoomed in.

2.6. Performance Evaluation of Sparse Codes 31

the data in cache memory. This fact, together with an inadequate thread and data allocation
policy, often lead to a noticeable performance decrease. This section estimates the influence
of these factors on FINISTERRAE for irregular codes. The sparse matrix-vector multiplica-
tion (SpMV) was chosen as a case of study in order to evaluate its performance. This kernel,
central piece of numerous scientific applications and base of iterative methods for equation
systems solvers, is notorious for sustaining low fractions of peak processor performance due
to its indirect and irregular memory access patterns. Therefore, gaining a good understan-
ding of the behaviour of SpMV on FINISTERRAE is very important in order to achieve a high
performance.

Subsequent sections will state the prerequisites, explain the performance tests and show
the results and conclusions of the experiments carried out to evaluate the data and thread
allocation of irregular codes in the FINISTERRAE machine.

2.6.1 Experiment setup

Consider the operation y = A×x, where x and y are dense vectors, and A is a n×m sparse
matrix. One of the most common data structures used for storing a sparse matrix to calculate
a SpMV is the Compressed-Sparse-Row format (CSR) [58]. da, index and ptr are the three
vectors (data, column indices and row pointer) that characterise this format. Figure 2.10
shows an implementation of SpMV using CSR storage. This implementation enumerates the
stored elements of A by streaming both index and val with unit-stride, and loads and stores
each element of y only once. However, x is accessed indirectly, and unless we can inspect
index at run-time, it is difficult or impossible to reuse the elements of x explicitly. Note
that the locality properties of the accesses to x depend directly on the sparsity pattern of the
considered matrix.

All codes were written in C and compiled with the Intel’s 10.0 Linux C compiler (icc).
OpenMP directives were used to parallelise the irregular code of Figure 2.10. All the results
shown in the next section were obtained using the compiler optimisation flag -O2. The pa-
rallel codes use a block distribution of the sparse matrix rather than a cyclic one due to the
better performance achieved (see Section 2.6.2). Tests have been performed on a rx7640 node
of the FINISTERRAE supercomputer.

To perform the experiments, fifteen sparse matrices from the matrix test set presented in
Table 1.1 were selected. Table 2.3 summarises their main features as well as their sparsity
patterns.

32 Chapter 2. Evaluating the FinisTerrae Architecture

Figure 2.10: Compressed-Sparse-Row (CSR) format example and a basic CSR-based sparse matrix-vector (SpMV)
product.

Matrix # rows (n) # nonzeros (nnz) nnz/row

av41092 41000 1683902 41
e40r0100 17000 553562 32
exdata 1 6000 2269501 378
garon2 13535 390607 29
gyro k 17361 1021159 59
mixtank new 29957 1995041 67
msc10848 10848 1229778 113
nd3k 9000 3279690 364
nmos3 18588 386594 21
pct20sti f 52329 2698463 52
psmigr 1 3140 543162 173
ra jat15 33000 443573 13
sme3Da 12504 874887 70
syn12000a 12000 1436806 120
tsyl201 20685 2454957 119

Table 2.3: Matrix benchmark suite used in the performance evaluation.

2.6. Performance Evaluation of Sparse Codes 33

2.6.2 Experiment #1: Loop distribution

In this experiment, we evaluate the performance of the SpMV when different parallelisa-
tion strategies are applied to the code of Figure 2.10. In particular, block and cyclic distribu-
tions of loop i are considered.

Figure 2.11 shows the SpMV performance of both strategies using different number of
threads. According to the results, we conclude that the block distribution outperforms the
cyclic one. Only for matrix exdata 1 this behaviour is not observed. We must highlight
that in most of the cases the block distribution achieve higher performance than the cyclic
strategy using less threads. For example, this is the case when, in Figure 2.11(a), the re-
sults corresponding to the cyclic distribution with four threads are hidden by the performance
obtained with two threads and block distribution (it happens for all the matrices with the ex-
ception of exdata 1 and psmigr 1). Similar behaviour is observed in Figure 2.11(b) for 8
and 16 threads.

Better results of the block distribution are due to the fact that threads work with disjoint
parts of the sparse matrix when the code is parallelised using this strategy. This distribution fits
better than the cyclic one in the Itanium2 architecture, where the cache hierarchy is not shared
among cores (see Figure 2.4). Therefore, a block distribution is preferred over the cyclic one.
For this reason, subsequent results were always obtained using a block distribution of the
SpMV code.

2.6.3 Experiment #2: Memory affinity

The experiment of Section 2.5.4 was repeated using the SpMV code. Irregular codes are
susceptible of displaying more remote accesses due to their irregular accesses (to array x, in
this case) so it was important to find out the most adequate placement of data.

In order to guarantee the correct allocation of the data (memory affinity), the libnuma

library [59] was used to map threads to cores (processor affinity). Next, the influence of the
data allocation in the SpMV performance is studied. As an example, we show in Figure 2.12
the behaviour of SpMV code using two threads mapped to cores 8 and 12 (see Figure 2.2).
Data are allocated in the memory module of the cell of cores 8 and 12 (local), in the memory
of the other cell (remote), and using the interleaved policy. As is expected, an important
degradation in the performance is observed when data are allocated on a remote cell with
respect to local memory accesses. In particular, an average decrease of 20.7% is obtained,
ranging from 3% in the best case (matrix garon2) to 32% (matrix exdata 1). Results

34 Chapter 2. Evaluating the FinisTerrae Architecture

1.0

2.0

3.0

G
F
LO

P
S
/s

2 Th, cyclic 2 Th, block 4 Th, cyclic 4 Th, block

0.0

1.0

2.0

3.0

G
F
LO

P
S
/s

2 Th, cyclic 2 Th, block 4 Th, cyclic 4 Th, block

(a)

2.0

4.0

6.0

8.0

10.0

12.0

G
F
LO

P
S
/s

8 Th, cyclic 8 Th, block 16 Th, cyclic 16 Th, block

0.0

2.0

4.0

6.0

8.0

10.0

12.0

G
F
LO

P
S
/s

8 Th, cyclic 8 Th, block 16 Th, cyclic 16 Th, block

(b)

Figure 2.11: SpMV performance using different loop distributions: 2 and 4 threads (a), 8 and 16 threads (b).

point out that the worst behaviour is achieved for the biggest-sized matrices. When using
an interleaved policy, this degradation is in average about 10%. Note that dependig on the
data distribution for a particular matrix, the interleaved policy offers a performance close to
local accesses (matrix e40r0100) or to remote accesses (matrices nmos3 and rajat15).
The overall behaviour analysed in this example is also observed when a different number of
threads is considered.

We can conclude that data allocation has a great influence in the performance of SpMV on
FINISTERRAE. When threads are mapped to cores in the same cell, it is advisable to allocate
the data in the memory module of the same cell. However, if cores in both cells must be used,
the allocation of the data in the interleaving memory makes sense since accessing the remote
memory is very costly.

2.6. Performance Evaluation of Sparse Codes 35

Figure 2.12: Influence of the data allocation on a rx7640 node.

2.6.4 Experiment #3: Processor affinity

In this section different aspects related to the influence of thread allocation in the SpMV
performance are studied. First, we have focused on evaluating the influence of mapping
threads to the same processor (also called socket). Figure 2.13(a) shows the performance
achieved using two threads for several mapping configurations: same socket (for example,
cores 8 and 9), different socket and same bus (cores 8 and 10) and different socket and bus
(cores 8 and 12). Note that data are allocated in the same cell where threads are mapped. Re-
sults point out that the influence of mapping the two threads to the same or to different sockets
that share the bus is almost unnoticeable. In particular, the average performance difference
is only about 0.2%. However, some improvements (up to 5%) are observed when mapping
threads to cores that do not share the bus. This is particularly true in the case of big sized
matrices (for example, matrices mixtank new and tsyl201). Therefore, the contention
of the memory bus has an impact on the SpMV performance.

In order to confirm the behaviour observed previously, the SpMV performance has been
tested using four threads mapped to two sockets sharing the bus (cores 8,9,10,11), two sockets
in different buses (cores 8,9,12,13) and four sockets (cores 8,10,12,14). Performance results

36 Chapter 2. Evaluating the FinisTerrae Architecture

0.8

1.0

1.2

1.4

1.6

G
F
LO

P
S
/
s

Same socket

Different socket, same bus

Different socket and bus

0.2

0.4

0.6

G
F
LO

P
S
/
s

(a)

1.4

1.8

2.2

2.6

3.0

G
F
LO

P
S
/s

Two sockets, same bus (8,9,10,11)

Two sockets, diff. bus (8,9,12,13)

Four sockets (8,10,12,14)

0.2

0.6

1.0

1.4G
F
LO

P
S
/s

(b)

Figure 2.13: Influence of the thread allocation on a rx7640 node: using two (a) and four threads (b).

2.7. Performance model of FINISTERRAE 37

obtained using these configurations are shown in Figure 2.13(b). Several conclusions can be
drawn.

First, the same trend is observed with respect to the results using two threads (Figure
2.13(a)). That is, better performance is achieved when threads are mapped to sockets that do
not share the bus (configuration 8,9,12,13). In this case, average improvement is in the range
of 8% (higher than 30% for some matrices as nd3k, pct20stif and tsyl201). Therefore,
the influence of the bus becomes more significant as the number of threads increases. Note
that the average improvement is about 2% when using two threads that do not share a bus (see
configuration “different socket and bus” in Figure 2.13(a))

Second, the impact of the bus for small matrices is minimal in such a way that the three
considered mappings obtain similar results (for example, matrices nmos3 and rajat15).
And finally, there are no significant differences among using four sockets (8,10,12,14) and
two sockets in different bus (8,9,12,13). This occurs because both cases there are two threads
mapped to cores that share the bus.

As shown above, data and thread allocation have a great impact on the performance of
SpMV. Next, we will evaluate the behaviour of the operating system scheduler. With this
purpose we have made a comparison among the performance achieved without NUMA con-
siderations (naı̈ve OS scheduler) and taking into account the particularities of the architecture
(explicit data and thread allocation). The results are displayed in Figure 2.14, where only re-
sults for the best mapping configurations are shown (labeled as “NUMA optimization”). Best
configurations using two and four threads were analysed before. For eight threads, we have
mapped all the threads to different cores of the same cell. Results show that the OS sched-
uler does not take into account the NUMA particularities of the rx7640 node when mapping
threads. This way, our NUMA optimisations achieve a better performance in most of the
cases. For example, improvements up to 40% are observed when using two threads (matrices
msc10848 and tsyl201). Note that NUMA optimisation effects are more visible in the
case of big matrices (for example, matrices mixtank new, nd3k or tsyl201). In sum-
mary, the average performance improvement when NUMA issues are considered is 15.6%,
14.1% and 4.7% for two, four and eight threads respectively.

2.7 Performance model of FINISTERRAE

Previous sections showed that improving the performance and scalability of multicore
architectures can be extremely non-intuitive, regardless of our working with either dense or

38 Chapter 2. Evaluating the FinisTerrae Architecture

0.4

0.6

0.8

1.0

1.2

1.4

1.6

G
F
LO

P
S
/
s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

a
v
4

1
0

9
2

e
4

0
r0

1
0

0

e
x
d

a
ta

_
1

g
a

ro
n

2

g
y
ro

_
k

m
ix

ta
n

k
_

…

m
sc

1
0

8
4

8

n
d

3
k

n
m

o
s3

p
ct

2
0

st
if

p
sm

ig
r_

1

ra
ja

t1
5

sm
e

3
D

a

sy
n

1
2

0
0

0
a

ts
y
l2

0
1

G
F
LO

P
S
/
s

2 Th, scheduler
2 Th, NUMA optimization

(a)

1.0

1.5

2.0

2.5

3.0

G
F
LO

P
S
/
s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

a
v
4

1
0

9
2

e
4

0
r0

1
0

0

e
x
d

a
ta

_
1

g
a

ro
n

2

g
y
ro

_
k

m
ix

ta
n

k
_

…

m
sc

1
0

8
4

8

n
d

3
k

n
m

o
s3

p
ct

2
0

st
if

p
sm

ig
r_

1

ra
ja

t1
5

sm
e

3
D

a

sy
n

1
2

0
0

0
a

ts
y
l2

0
1

G
F
LO

P
S
/
s

4 Th, scheduler
4 Th, NUMA optimization

(b)

2.0

3.0

4.0

5.0

6.0

7.0

G
F
LO

P
S
/s

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

a
v
4

1
0

9
2

e
4

0
r0

1
0

0

e
x
d

a
ta

_
1

g
a

ro
n

2

g
y
ro

_
k

m
ix

ta
n

k
_

…

m
sc

1
0

8
4

8

n
d

3
k

n
m

o
s3

p
ct

2
0

st
if

p
sm

ig
r_

1

ra
ja

t1
5

sm
e

3
D

a

sy
n

1
2

0
0

0
a

ts
y

l2
0

1

G
F
LO

P
S
/s

8 Th, scheduler
8 Th, NUMA optimization

(c)

Figure 2.14: Effect of NUMA optimisations on a rx7640 node.

2.7. Performance model of FINISTERRAE 39

sparse codes. Although there exist some stochastic analytical models and statistical perfor-
mance models which can accurately predict performance, they rarely provide insight into how
to improve the performance of programs, compilers and computers. Besides, they are usually
difficult to use by nonexperts. Instead of using any of them, we approached this problem by
developing a Roofline Model for FINISTERRAE.

The Roofline Model [60] provides realistic expectations of performance and productivity.
Introduced by Williams and Patterson at Lawrence Berkeley National Laboratory, it does not
try to predict program performance accurately. Instead, it integrates in-core performance, me-
mory bandwidth, and locality into a single readily understandable performance figure, show-
ing inherent hardware limitations for a given computational kernel and showing potential
benefit and priority of optimisations. In addition, the model can also be used for guide tuning,
as long as information in run-time about the current performance of a given kernel can be
obtained. In this regard, hardware counters can assist in this task. Indeed, Williams holds that
“there seems to be a synergistic relationship between performance counters and the Roofline

Model.”.
Following sections will introduce the Roofline Model, the process of development for

FINISTERRAE and the main results achieved.

2.7.1 Roofline Model Construction

The Roofline Model relies on three metrics: Computation measured as floating point per-
formance (GFlops/s), Communication measured as DRAM bandwidth (GB/s) and maximisa-
tion of Locality to minimise communication. The metric that relates performance to band-
width is defined as Operational Intensity. It is measured in Flops/Byte and means “FP ope-
rations performed per byte of DRAM traffic transferred”. That is, traffic is measured between
the caches and memory, not between the processor and the caches. This measure predicts the
DRAM bandwidth needed by a kernel on a particular computer.

Figure 2.15 shows the roofs of our model for FINISTERRAE. The plot is on log-log scale.
The Y-axis shows the attainable double performance in GFlops/s 2. The X-axis displays the
Operational Intensity. The horizontal line shows the peak floating-point performance of the
computer, and its computation values can be derived either from the processor’s manual or
from performance benchmarks. The maximum attainable bandwidth is a line of unit slope

2Diverse sources use either the term Flops or Flops/s to denote the same magnitude, namely “number of floating
point operations per second”. In this dissertation we will use the nomenclature Flops/s

40 Chapter 2. Evaluating the FinisTerrae Architecture

1/8

1/4

1/2

 1

 2

 4

 8

 16

 32

 64

 128

 256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
n

ab
le

 G
F

L
o

p
s/

s

Operational Intensity (Flops/Byte)

peak DP node

pea
k m

em
ory

 ban
dwid

th

1/8

1/4

1/2

 1

 2

 4

 8

 16

 32

 64

 128

 256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
n

ab
le

 G
F

L
o

p
s/

s

Operational Intensity (Flops/Byte)

peak DP node

pea
k m

em
ory

 ban
dwid

th

Figure 2.15: Roofs of FINISTERRAE Roofline Model.

(GFlops/s
Flops/Byte = GBytes/s) and can be derived also from the architecture’s manual or from a

benchmark. Both lines intersect at the point of peak computational performance and peak
memory bandwidth.

Both the peak floating-point performance and maximum bandwidth of FINISTERRAE

were obtained from the manufacturer’s documentation [57]. Note that the former (102.4
GFlops/s) comes from the product of a Montvale cores’s peak performance times the number
of cores in a FINISTERRAE node, whereas the latter (34.4 GBytes/s) comes from the maxi-
mum bandwidth of a memory bus times the number of buses in a node (see Figure 2.1). The
attainable performance of a given kernel is upper bounded by both the peak flop rate, and the
product of bandwidth and the flop:byte ratio.

GFlops/s = min

{
Peak GFlops/s

Peak Memory BW ∗actual f lop : byte ratio

These roofs cannot be ever reached, since they are physical limits given by the architec-
ture. Note that these roofs are created once per multicore computer and can be reused for any
kernel.

2.7. Performance model of FINISTERRAE 41

1/8

1/4

1/2

 1

 2

 4

 8

 16

 32

 64

 128

 256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
n

ab
le

 G
F

L
o

p
s/

s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

pea
k m

em
ory

 ban
dwid

th

100%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

50%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

1/8

1/4

1/2

 1

 2

 4

 8

 16

 32

 64

 128

 256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
n

ab
le

 G
F

L
o

p
s/

s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

pea
k m

em
ory

 ban
dwid

th

100%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

50%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

1/8

1/4

1/2

 1

 2

 4

 8

 16

 32

 64

 128

 256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
n

ab
le

 G
F

L
o

p
s/

s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

pea
k m

em
ory

 ban
dwid

th

100%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

50%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

1/8

1/4

1/2

 1

 2

 4

 8

 16

 32

 64

 128

 256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
n

ab
le

 G
F

L
o

p
s/

s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

pea
k m

em
ory

 ban
dwid

th

100%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

50%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

1/8

1/4

1/2

 1

 2

 4

 8

 16

 32

 64

 128

 256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
n

ab
le

 G
F

L
o

p
s/

s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

pea
k m

em
ory

 ban
dwid

th

100%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

50%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

1/8

1/4

1/2

 1

 2

 4

 8

 16

 32

 64

 128

 256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
n

ab
le

 G
F

L
o

p
s/

s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

pea
k m

em
ory

 ban
dwid

th

100%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

50%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

1/8

1/4

1/2

 1

 2

 4

 8

 16

 32

 64

 128

 256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
n

ab
le

 G
F

L
o

p
s/

s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

pea
k m

em
ory

 ban
dwid

th

100%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

50%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

1/8

1/4

1/2

 1

 2

 4

 8

 16

 32

 64

 128

 256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
n

ab
le

 G
F

L
o

p
s/

s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

pea
k m

em
ory

 ban
dwid

th

100%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

50%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

Figure 2.16: Ceilings added to the FINISTERRAE Roofline Model.

The next step consists in adding ceilings to the model. Ceilings are performance barriers
which limit the maximum attainable performance. They suggest which optimisations to per-
form and the potential benefit to achieve. Note that we cannot break through one ceiling
without first performing the corresponding optimisation. Figure 2.16 depicts computational
(horizontal) and bandwidth (slanted) ceilings. These ceilings are not fixed, and can be chosen
depending on the performance limits we are interested in. Should a single processor be under
study, some metrics of interest could be the Mul/Add imbalance, lack of Instruction-Level
parallelism, or any other which can limit the performance of a processor. Our study is focused
on a FINISTERRAE node comprising several processors. Therefore, computational ceilings in
the figure show performance limits depending on the number of cores involved. These values
are derived from the architecture’s manual [57]. Bandwidth ceilings are related to memory
imbalance and were collected by a tuned version of the LMbench benchmark [61]. Each cei-
ling denotes the maximum sustained bandwidth attainable when all the traffic is concentrated
in a single cell (ie, must be handled by a single memory controller) or when it is distributed
between both cells. Ceilings, as well as roofs, are measured only once per multicore computer
and can be reused for any kernel which runs in that machine.

42 Chapter 2. Evaluating the FinisTerrae Architecture

1/8

1/4

1/2

 1

 2

 4

 8

 16

 32

 64

 128

 256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
n

ab
le

 G
F

L
o

p
s/

s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

pea
k m

em
ory

 ban
dwid

th

100%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

50%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

co
m

p
u

ls
o

ry
 t

ra
ff

ic

1/8

1/4

1/2

 1

 2

 4

 8

 16

 32

 64

 128

 256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
n

ab
le

 G
F

L
o

p
s/

s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

pea
k m

em
ory

 ban
dwid

th

100%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

50%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

co
m

p
u

ls
o

ry
 t

ra
ff

ic

1/8

1/4

1/2

 1

 2

 4

 8

 16

 32

 64

 128

 256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
n

ab
le

 G
F

L
o

p
s/

s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

pea
k m

em
ory

 ban
dwid

th

100%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

50%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

co
m

p
u

ls
o

ry
 t

ra
ff

ic

1/8

1/4

1/2

 1

 2

 4

 8

 16

 32

 64

 128

 256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
n

ab
le

 G
F

L
o

p
s/

s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

pea
k m

em
ory

 ban
dwid

th

100%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

50%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

co
m

p
u

ls
o

ry
 t

ra
ff

ic

1/8

1/4

1/2

 1

 2

 4

 8

 16

 32

 64

 128

 256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
n

ab
le

 G
F

L
o

p
s/

s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

pea
k m

em
ory

 ban
dwid

th

100%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

50%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

co
m

p
u

ls
o

ry
 t

ra
ff

ic

1/8

1/4

1/2

 1

 2

 4

 8

 16

 32

 64

 128

 256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
n

ab
le

 G
F

L
o

p
s/

s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

pea
k m

em
ory

 ban
dwid

th

100%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

50%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

co
m

p
u

ls
o

ry
 t

ra
ff

ic

1/8

1/4

1/2

 1

 2

 4

 8

 16

 32

 64

 128

 256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
n

ab
le

 G
F

L
o

p
s/

s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

pea
k m

em
ory

 ban
dwid

th

100%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

50%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

co
m

p
u

ls
o

ry
 t

ra
ff

ic

1/8

1/4

1/2

 1

 2

 4

 8

 16

 32

 64

 128

 256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
n

ab
le

 G
F

L
o

p
s/

s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

pea
k m

em
ory

 ban
dwid

th

100%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

50%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

co
m

p
u

ls
o

ry
 t

ra
ff

ic

1/8

1/4

1/2

 1

 2

 4

 8

 16

 32

 64

 128

 256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
n

ab
le

 G
F

L
o

p
s/

s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

pea
k m

em
ory

 ban
dwid

th

100%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

50%
 of t

ra
ffi

c o
n one m

em
ory

 co
ntro

lle
r (

lm
ben

ch
)

co
m

p
u

ls
o

ry
 t

ra
ff

ic

Figure 2.17: Locality walls for the SpMV-FINISTERRAE combination.

The last step to create the Roofline Model involves the computational kernel under study.
The attainable performance for a kernel is related to its operational intensity. Indeed, mo-
ving to the right of the Roofline Model (towards higher values in the x-axis) means a higher
number of FP operations per byte transferred from memory to cache and, therefore, a better
performance. There is a limit in the maximum operational intensity of a kernel, given by the
lower limit to communication: the compulsory traffic. This limit is called locality wall and
is unique for a kernel-architecture combination. It must also be taken into account that the
actual operational intensity may be lower due to cache misses. A kernel can be cpu-bound or
memory-bound depending on whether its maximum operational intensity is on the right of the
ridge point or on the left, respectively.

Figure 2.17 shows the locality wall for the SpMV. This limit was obtained by reducing
the size of the matrix A and the arrays x and y until they fit into cache, narrowing down the
accesses to memory to the compulsory traffic to fetch the data once into cache. As seen in
the figure, the SpMV is a memory-bound kernel, with a maximum operational intensity rather
low due to its scarce reuse of the data in the cache memory.

2.7. Performance model of FINISTERRAE 43

Next sections present the results of the parallel SpMV on the FINISTERRAE Roofline
Model.

2.7.2 Experiment setup

Once sketched the roofs and ceilings of the Roofline Model for FINISTERRAE, the next
step consisted in measuring the performance of a program to depict it according to the mag-
nitudes of this model. Our objective was to see graphically the influence of thread and data
allocation studied in Sections 2.5 and 2.6 in a way that could cast some light about which
improvements might be made.

To keep on going with our study of irregular codes, we used the same parallel SpMV using
block distribution of previous sections. To place a performance point in the Roofline Model, a
pair of coordinates ([Operational Intensity, Attainable Performance]) are needed. In order to
get them, PAPI [62] was used to instrument the code and access native events of the Montvale
processor, measuring the following magnitudes:

Computation (GFlops/s): The number of FLOPS of the kernel is given as the sum of the
values per thread returned by the event FP OPS RETIRED. The elapsed time is given
by the function PAPI get real usec(). The Computation will be calculated as the
sum of all FLOPS divided by the time of the slowest thread.

Operational Intensity (Flops/byte): The traffic transferred between main memory and cache
memory is measured in Montvale as the sum of all bus memory transactions, stated as
the number of full cache line transactions (event BUS MEMORY EQ 128BYTE SELF)
added to the number of less than full cache line transactions (event BUS MEMORY LT

128BYTE SELF) [2]. The number of bytes transferred per thread is then calculated
according to the following formula:

Bytes trans f erred = BUS MEMORY EQ 128BY T E SELF×128

+BUS MEMORY LT 128BY T E SELF×64

The whole number of bytes transferred by the kernel will be the sum of the number of
bytes per thread. The value of the Operational Intensity is calculated as the quotient
between the sum of FLOPS from all threads and the sum of bytes transferred by all
threads.

44 Chapter 2. Evaluating the FinisTerrae Architecture

Matrix 2th 4th 8th 16th

pct20sti f 0.939 0.882 0.801 0.703
exdata 1 0.005 0.002 0.002 0.002

Table 2.4: Imbalance of matrices pct20stif and exdata 1.

The matrix test set from Table 2.3 was represented using the roofline model. The follow-
ing sections will analyse the results for two of those matrices, pct20stif and exdata 1,
chosen as being paradigmatic of a good and a badly-balanced matrix, respectively. Quan-
titative data about imbalance are shown in Table 2.4. It shows the imbalance as a result of
dividing each matrix in blocks for 2, 4, 8 and 16 threads. This value is given as the quotient of
the block with the lowest NNZ value and the one with the highest NNZ value. The closer the
value to 1, the better the balance. It seems clear, therefore, how pct20stif is much better
balanced than exdata 1.

2.7.3 Experiment #1: Näıve parallelisation

In this configuration, the parallel SpMV was executed for 1, 2, 4, 8 and 16 threads. The
Linux scheduler was allowed to map threads to cores at its will. Data were allocated by the
default system first-touch policy. Figure 2.18 shows the performance of the parallel SpMV
for matrices pct20stif (a) and exdata 1 (b). Each circle refers to the whole perfor-
mance of each n-thread case. Note that pct20stif shows a much more regular pattern than
exdata, which concentrates most of its nonzero values into a small region. Some interesting
information can be inferred from both Roofline Models:

– Figure 2.18(a) shows performance points that grow both in computation and operational
intensity as the number of processors increases. Indeed, given the big size of the ma-
trix, the 1-thread case will show a high number of conflict misses, which decreases the
ratio flops:byte (i.e. the operational intensity) with respect to the maximum value (the
compulsory misses wall). Consequently, the number of GFlops/s is not as high as it
could be if the conflict misses were lower. As the number of threads increases, the ma-
trix (and the arrays x and y) is shared out among the processors. Therefore, the number
of conflict misses decreases, the points in the graph shift towards the compulsory wall,
and the computation value increases.

2.7. Performance model of FINISTERRAE 45

(a)

(b)

Figure 2.18: Roofline Model of SpMV for matrices pct20stif (a) and exdata (b).

46 Chapter 2. Evaluating the FinisTerrae Architecture

– Note that, whereas the number of processors duplicates in each case, the points in the
graph are not equidistant. There is a bigger gap between 2 and 4 processors, and
between 8 and 16, than the remaining cases. Quantifying it, the ratio of attainable
GFlops/s between 2 and 1-thread cases is ∼ 1.35. So it is with the ratio between the
8 and the 4-thread cases. However, the ratio between the 4 and the 2-thread cases is
∼ 1.9, and between 16 and 8 threads is ∼ 2,7. Two causes can be found here. Firstly,
the number of conflict misses does not decrease linearly as the number of processors
increases. Thus, the shift increment of each point towards the compulsory wall is not
constant. Secondly and more important, we do know that the SpMV uses its master
thread to allocate all data before starting the computation. Therefore, the system’s first
touch policy will place all data uniquely in the master’s memory. When using 2 threads,
they are bound to have been attached to cores in different cells. One of them will need to
fetch data remotely and this explains the little difference in performance between 1 and
2 threads. However, for the 4-thread case, the scheduler seems to have mapped, most
of the threads to cores in the same cell and, therefore, the performance is much higher.
Again, for a 8-thread case, those are spread out between both cells, and the difference
in performance to the 4-thread case is not noticeable. For 16 threads all cores are used,
although 8 of them will fetch data from a remote cell. Therefore, performance will be
higher than for 8 threads, but not as high as the architecture allows (the 16-thread point
is far from the peak memory bandwidth).

– Whilst pct20stif is a matrix with a common pattern with diagonal shape, exdata 1

presents a very particular one, where most of its data are concentrated in a small region.
Hence, this pattern is prone to cause load balance problems. The representation of its
performance in the Roofline Model, as shown in Figure 2.18(b), substantially differs
from the one of pct20stif. The performance achieved is virtually identical for 1-
thread and 2-thread cases. Indeed, OpenMP divides evenly the number of rows among
the available threads. Splitting this matrix in two halves gives ∼ 99.6% of the load to
one thread (in the 2-thread case). Therefore, a glance to the figure attracts our attention
to an important load imbalance problem.

– The 4-thread point for exdata 1 is placed below the points for 1 and 2 threads and
slightly to the right of them. This means that, whereas this case yields a worse per-
formance, its operational intensity is better. Therefore, the load is badly balanced but
the bus bandwidth is less saturated than previous cases. So we can conclude that the

2.7. Performance model of FINISTERRAE 47

Figure 2.19: Experiment #2 setup.

scheduler spread out two threads to each cell, but keeping most of the load in the same
cell.

– 8 and 16 threads provide a finer distribution of the matrix among the threads in both
cells, so the performance increases in both GFlops/s and operational intensity.

2.7.4 Experiment #2: Exploiting thread allocation

This experiment executes the SpMV for 1, 2, 4, 8 and 16 threads. Threads were mapped to
cores explicitly using the sched setaffinity() method and data were allocated man-
ually to memory modules using the Linux numactl command. Whereas in the previous
section all threads were mapped to cores by the Linux scheduler and data were allocated in
Cell 0 due to the system’s first-touch policy, in this experiment we made sure that threads 1
to 8 were mapped to cores in Cell 0, as well as their data (see Figure 2.19). Specifically, the
allocation sequence was “8-12-10-14-9-13-11-15-0-4-2-6-1-5-3-7”, which means that, for 1
thread, it was mapped to Core 8. For a 2-thread case, one thread was mapped to Core 8
and the other one to Core 12, and so on. Note that all threads are placed as far as possible
from the remaining ones in order to spread the threads out among the available buses. For
16 threads, data were allocated in the interleaving zone, and threads mapped according to the
sequence given above. These distributions try to take advantage of the knowledge acquired
and presented in Sections 2.5 and 2.6.

48 Chapter 2. Evaluating the FinisTerrae Architecture

Figure 2.20 shows the outcomes for matrices pct20stif and exdata 1. Note the dis-
tribution of points for cases 1p to 8p in Figure 2.20(a). Unlike the previous section, in this
case all the performance values are vertically equidistant from each other. We know from Ta-
ble 2.4 that pct20stif is a well-balanced matrix. Therefore, the only remaining cause for
imbalance would be the thread allocation. However, in this case threads have been mapped
manually to cores in the same cell where data are, taking care of keeping them always balan-
ced between both buses in the cell. That justifies the well-distributed points in the Roofline
Model.

16 threads is a particular case. We noticed an increase in performance as steady as in
previous cases. However, the Operational Intensity is almost alike. In this case, a decrease
in performance was expected because data were allocated in the interleaving memory, which
presents a latency higher than local data. A rough calculation will show the explanation for
this fact: data fit into cache for both 8 and 16-thread cases. Taking into account that matrix A

comprises 3 arrays of the size given between brackets: da(NZ), index(NZ) and ptr(N + 1),
then the memory needed to allocate A together with arrays x(N) and y(N) is:

2269501 NZ×16 bytes/double×2 = 69.26 MBytes

(52000+1)×16 bytes/double = 0.79 MBytes

52000 N×16 bytes/double×2 = 1.59 MBytes

Total = 71.64 MBytes

This size, divided by either 8 or 16 processors, yields a value below the 9 MBytes size
of the L3. Therefore, although the higher latency will influence the performance, only the
compulsory cache misses together with a limited amount of conflict misses (which prevents
the performance points to reach the compulsory wall) will occur. That is the reason why the
operational intensity is similar in both cases.

Figure 2.20(b) shows the Roofline Model for matrix exdata 1. As expected, the only
difference in performance with Figure 2.18(b) is the 4-thread case. The manual thread alloca-
tion in Cell 0 balances better the data among the buses in the cell. However, the imbalance due
to the irregular nature of the matrix still exists, and that is why the performance is practically
the same for 1, 2 or 4 threads.

This experiment upholds our conclusions from previous sections which stated that codes
with a high level of cache replacement and data size larger than the L3 cache should better
have their threads shared out among the available buses and their data placed in the same cell.

2.7. Performance model of FINISTERRAE 49

1/8

1/4

1/2

1

2

4

8

16

32

64

128

256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
na

bl
e

G
F

L
op

s/
s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

peak
 m

em
ory ban

dwidth

100% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

50% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

co
m

pu
ls

or
y

fl
op

:b
yt

e

1/8

1/4

1/2

1

2

4

8

16

32

64

128

256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
na

bl
e

G
F

L
op

s/
s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

peak
 m

em
ory ban

dwidth

100% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

50% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

co
m

pu
ls

or
y

fl
op

:b
yt

e

1/8

1/4

1/2

1

2

4

8

16

32

64

128

256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
na

bl
e

G
F

L
op

s/
s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

peak
 m

em
ory ban

dwidth

100% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

50% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

co
m

pu
ls

or
y

fl
op

:b
yt

e

1/8

1/4

1/2

1

2

4

8

16

32

64

128

256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
na

bl
e

G
F

L
op

s/
s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

peak
 m

em
ory ban

dwidth

100% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

50% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

co
m

pu
ls

or
y

fl
op

:b
yt

e

1/8

1/4

1/2

1

2

4

8

16

32

64

128

256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
na

bl
e

G
F

L
op

s/
s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

peak
 m

em
ory ban

dwidth

100% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

50% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

co
m

pu
ls

or
y

fl
op

:b
yt

e

1/8

1/4

1/2

1

2

4

8

16

32

64

128

256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
na

bl
e

G
F

L
op

s/
s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

peak
 m

em
ory ban

dwidth

100% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

50% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

co
m

pu
ls

or
y

fl
op

:b
yt

e

1/8

1/4

1/2

1

2

4

8

16

32

64

128

256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
na

bl
e

G
F

L
op

s/
s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

peak
 m

em
ory ban

dwidth

100% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

50% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

co
m

pu
ls

or
y

fl
op

:b
yt

e

1/8

1/4

1/2

1

2

4

8

16

32

64

128

256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
na

bl
e

G
F

L
op

s/
s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

peak
 m

em
ory ban

dwidth

100% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

50% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

co
m

pu
ls

or
y

fl
op

:b
yt

e

1/8

1/4

1/2

1

2

4

8

16

32

64

128

256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
na

bl
e

G
F

L
op

s/
s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

peak
 m

em
ory ban

dwidth

100% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

50% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

co
m

pu
ls

or
y

fl
op

:b
yt

e

1p

2p

4p

8p

16p

(a)

1/8

1/4

1/2

1

2

4

8

16

32

64

128

256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
na

bl
e

G
F

L
op

s/
s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

peak
 m

em
ory ban

dwidth

100% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

50% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

co
m

pu
ls

or
y

fl
op

:b
yt

e

1/8

1/4

1/2

1

2

4

8

16

32

64

128

256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
na

bl
e

G
F

L
op

s/
s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

peak
 m

em
ory ban

dwidth

100% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

50% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

co
m

pu
ls

or
y

fl
op

:b
yt

e

1/8

1/4

1/2

1

2

4

8

16

32

64

128

256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
na

bl
e

G
F

L
op

s/
s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

peak
 m

em
ory ban

dwidth

100% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

50% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

co
m

pu
ls

or
y

fl
op

:b
yt

e

1/8

1/4

1/2

1

2

4

8

16

32

64

128

256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
na

bl
e

G
F

L
op

s/
s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

peak
 m

em
ory ban

dwidth

100% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

50% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

co
m

pu
ls

or
y

fl
op

:b
yt

e

1/8

1/4

1/2

1

2

4

8

16

32

64

128

256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
na

bl
e

G
F

L
op

s/
s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

peak
 m

em
ory ban

dwidth

100% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

50% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

co
m

pu
ls

or
y

fl
op

:b
yt

e

1/8

1/4

1/2

1

2

4

8

16

32

64

128

256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
na

bl
e

G
F

L
op

s/
s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

peak
 m

em
ory ban

dwidth

100% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

50% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

co
m

pu
ls

or
y

fl
op

:b
yt

e

1/8

1/4

1/2

1

2

4

8

16

32

64

128

256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
na

bl
e

G
F

L
op

s/
s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

peak
 m

em
ory ban

dwidth

100% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

50% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

co
m

pu
ls

or
y

fl
op

:b
yt

e

1/8

1/4

1/2

1

2

4

8

16

32

64

128

256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
na

bl
e

G
F

L
op

s/
s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

peak
 m

em
ory ban

dwidth

100% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

50% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

co
m

pu
ls

or
y

fl
op

:b
yt

e

1/8

1/4

1/2

1

2

4

8

16

32

64

128

256

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

A
tt

ai
na

bl
e

G
F

L
op

s/
s

Operational Intensity (Flops/Byte)

peak DP node

1/16 of cores utilised

1/8 of cores utilised

1/4 of cores utilised

1/2 of cores utilised (cell)

peak
 m

em
ory ban

dwidth

100% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

50% of tr
aff

ic
on one m

em
ory co

ntro
lle

r (l
mben

ch
)

co
m

pu
ls

or
y

fl
op

:b
yt

e

1p2p4p

8p

16p

(b)

Figure 2.20: Exploiting thread distribution of SpMV (experiment #2) for matrices pct20stif (a) and
exdata (b).

50 Chapter 2. Evaluating the FinisTerrae Architecture

Besides, this confirms the usefulness of the Roofline Model to give information at a glance
about the performance of an irregular code related to load balance issues.

2.8 Conclusions

This chapter has presented the architecture of the FINISTERRAE supercomputer and eva-
luated its performance with both dense and sparse codes. Results show that, especially for
applications that use the bus intensively, the effect of sharing a bus between two or more
cores degrades noticeably the performance and should be avoided by spreading the threads
out among cores in different buses when possible. A noteworthy fact is that every core in the
same processor behaves as an independent processor, so we can consider two processors in a
bus as four independent cores.

Regarding the cache coherency, the effects in the performance are noticeable when dealing
with small sizes of data which fit into cache memory. The more the memory requirements
increase, the less significant the effect is. Therefore, for small data sizes, it will be advisable to
map the threads to cores in the same bus, so that data can be kept coherent without accessing
the directory. Conversely, for larger data sizes, the negative effect of sharing a bus will be
more important and it will mask the effect of cache coherency. Indeed, this will be the typical
scenario found, where a computational problem using sparse codes handles data size much
larger than the cache size.

It seems clear that the ideal situation would be the one where data of each thread are inde-
pendent from each other, so threads can be allocated far from each other without taking care
of coherency issues. It is in this case where sparse reordering techniques, working together
with sampled data, may be beneficial. Our research involving these techniques is presented in
Chapter 4.

Another problem relates to the memory affinity and the effect of the NUMA factor (i.e.
remote to local memory latency ratio). It has been shown that the local and remote memory
access latencies yield important differences between them. Therefore, in cases where the
threads must be spread in two cells the best policy would be to analyse and split the data in
both memory zones, maximising the locality or, when this is not possible, allocating the data
in the interleaving zone. An automatic way of attempting to carry this process out is performed
by the operating system. It provides a first-touch policy which allocates data pages in the local
memory of the thread which first accesses any data. This is useful in those cases where each
thread in a parallel program accesses its own data exclusively. However, many OpenMP

2.8. Conclusions 51

programs have all their data previously accessed by a master thread, before spawning several
threads. In that case, all data will be allocated in the local memory of the master thread,
regardless of the cell where other threads are allocated, with the subsequent performance
decrease. This is one of the scenarios where a page migration policy will prove to be specially
useful, as it will be discussed in Chapter 5.

Finally, this chapter showed the development of a Roofline Model for FINISTERRAE,
which provided us with an insightful way to confirm at a glance our previous observations
regarding thread and data allocation, as well as to suggest in which way improvements must
be addressed.

3

Accessing Hardware Counters on Itanium2
Montvale. The Perfmon interface

3.1 Introduction

Up to this point in this dissertation, hardware counters have only been indirectly accessed
using high-level libraries such as PAPI [62] or command-line tools like pfmon [63]. A deep
study of the possibilities offered by the hardware counters on FINISTERRAE, our Intel Itanium
test architecture, requires the adoption of a lower-level interface which enables us to access
all their features (goal G2-HWCSTUDY). To do so, a study of the available Linux monitoring
interfaces has been carried out.

There are two levels of monitoring commonly used nowadays:

– Program-level monitoring collects information such as basic block call counts. The
information is collected by instrumenting the program. This is achieved at compile
time or dynamically by tools like PIN [64] or Paradyn [65], for instance.

– Hardware level monitoring collects information at the micro-architectural level such
as the number of caches misses. It requires hardware support in the processor. This
is typically implemented by the Performance Monitoring Unit (PMU) which exports a
set of programmable counters. Monitored programs do not need to be recompiled or
modified to collect the performance information.

This dissertation relies on hardware-level monitoring. As well as the functionalities of
each PMU model can vary greatly, monitoring tools have very different needs depending on
what they measure. For instance, some tools collect simple counts while others collect pro-
files. Some tools operate on a per-thread basis while others measure on a system-wide basis,

54 Chapter 3. Accessing Hardware Counters on Itanium2 Montvale. The Perfmon interface

i.e., across all threads and possibly across multiple processors. Therefore, there are a wide
variety of monitoring tools. Some details of the most relevant Linux monitoring interfaces are
listed next:

– OProfile [66]: It is a system-wide profiler, capable of profiling all running code at low
overhead. It consists of a kernel driver and a daemon for collecting sample data, and
several post-profiling tools for turning data into information. It is supported on all major
platforms.

– Perfmon [67]: It is a generic, flexible kernel interface to access performance counters
of all major processors (Itanium, X86, MIPS, Cray, Sun SPARC, etc.). This interface
makes it possible to count and sample on a per-thread and system-wide basis. Un-
like other interfaces, it can access all the model-specific advanced features of recent
PMU models such as Itanium2 Branch Trace Buffer (BTB) and Event Address Regis-
ters (EARs).

– Perfctr [68]: It is provided as a separate kernel patch. It supports per-thread and
system-wide monitoring for most major processor architectures, except for Itanium.

– VTUNE [69]: Performance analyzer that uses its own kernel interface which is imple-
mented by an open-source device driver. The interface supports system-wide monito-
ring only and is very specific to the needs of the tool.

– HPCPI [70]: It is a low-overhead statistic sampling profiler. It can display data at
multiple levels of granularity: binary file, procedure and code line.

– HP Caliper [71]: This is a professional tool which works with all major Linux distri-
butions for Itanium processors. It collects counts or profiles on a per-thread or per-CPU
basis. It exploits all the advanced Itanium PMU features, such as the BTB and EARs.
The profiles are correlated to source and assembly code.

– PAPI [62]: Already used in Chapter 2, it is a high level API that provides a platform
(OS and processor) independent programming interface. It achieves OS-independence
by providing a layer of abstraction over the interface provided by kernel extensions that
provide access to counters. Its processor independence is given by a set of high level
events available on specific processors.

3.1. Introduction 55

– Perf counters [72]: Performance Counters for Linux (PCL) is a kernel-based subsys-
tem that provides a framework for collecting and analysing performance data. It has
been included in the mainline Linux kernel since version 2.6.31, precluding other more
mature solutions from being included instead [73]. It lacks support for the Itanium
architecture.

From those options, the one which has been used through the rest of this dissertation is
Perfmon, based on the following criteria:

– Perfmon was initially implemented for the Itanium architecture by one of the Ita-
nium Linux kernel designers and subsequently extended to support all the x86 family
processors. Therefore this tool can be considered to be reliable for this architecture.

– Despite other interfaces which monitor on a system-wide basis uniquely, Perfmon
makes it possible to count and sample also on a per-thread basis. This is a key feature,
since this dissertation considers parallel irregular codes with a thread-level granularity.

– Perfmon provides a low-level API which gives control about the whole monitoring
process, particularly the Event Address Registers (EARs).

– Its kernel-level support minimises the sampling overhead [74].

– It is distributed under an open-source license, which enables us to inspect and modify
the code when required.

– It provides a command-line tool, pfmon, useful to perform preliminary monitoring
tests.

– There is an active community of users and developers who contribute code to solve
bugs and support numerous processors.

– Other high-level tools (such as PAPI, used also in this dissertation) use Perfmon.

Additionally, a library called libpfm is supplied together with Perfmon. libpfm

is a helper library that permits applications to program a PMU. Since PMUs from different
processors differ, libpfm provides an abstraction layer to homogenise its use. The library
provides a simple translation service whereby a user specifies an event to measure and the
library helps to figure out the parameters and PMU registers needed to program the PMU.

56 Chapter 3. Accessing Hardware Counters on Itanium2 Montvale. The Perfmon interface

To do the actual PMU programming (that is, to write and read the PMC and PMD registers,
introduced in Section 2.3.2) Perfmon must be invoked.

The version of the library and the interface used in this dissertation are libpfm 3.9 and
Perfmon 3, respectively. A patched 2.6.29.6 vanilla Linux kernel was used.

A Perfmon session describes the typical sequence of actions necessary to collect mea-
surements, which can be summarised as follows:

1. Create a Perfmon context

2. Program the PMU

3. Start monitoring

4. Run the code to measure

5. Stop monitoring

6. Read results

7. Destroy the Perfmon context

The interface can be used in two modes: to count the exact number of events occured (e.g.
number of cache misses) or to sample events (e.g. memory addresses of events which caused
L1 misses sampled at a given rate). In addition, codes can be self-monitoring (the monitored
code itself includes the monitoring sequence of actions) or non self-monitoring (the program
which monitors is different from the monitored one). These modes are explained in more
detail in Section 3.2.

This chapter is organised as follows. Section 3.2 introduces, from a programming pers-
pective, how to access hardware counters using Perfmon. To evaluate its performance and
reliability in our test platform, Section 3.3 performs a set of tests to evaluate Perfmon with
sparse and dense codes on FINISTERRAE. The conclusions of this study are drawn in Sec-
tion 3.4.

3.2 Perfmon programming

There exists a staggering number of available events to capture depending on the processor
model. While most of them can be both counted and sampled, there are a few which were

3.2. Perfmon programming 57

conceived to be exclusively sampled. This is the case of EAR events. EARs, introduced in
Chapter 2, are designed to create a statistical profile of a given event. The majority of the
work performed in this dissertation has been carried out using statistical profiling. Hence, this
section focuses on describing the EAR sampling process using Perfmon.

The process followed to profile a program is described in the statechart shown in Fi-
gure 3.1: before the program to be monitored runs on a processor, a profiler has configured
the processor PMU to sample occurrences of a given event. Then, the program starts running
and, eventually, it will generate enough instances of an event to make the related PMU hard-
ware counters overflow. At that moment, an interruption is raised, an interrupt handler collects
the data and reprograms the PMU to keep on sampling the same event or a different one, and
the collected information is sent to the profiler. In case that the profiler and the monitored
program are the same one, it is a self-monitoring program. Note that the sampling process is
the same regardless of using EARs or any other type of event; only the kind of information
collected changes.

Sampling with Perfmon can be undertaken either using a sampling buffer or not. When
no sampling buffer is used, every time a counter overflows the data collected at kernel level
must be made available at user level so that the Profiler can read them. This process involves
some overhead related to the interruption handle. The addition of a buffer enables Perfmon
to accumulate the outcome of several overflows before copying it at user level, reducing there-
fore the overhead. Hence, the use of a sampling buffer is recommended.

During the sampling process, the PMU state includes the values of the PMC and PMD
registers, as well as other related registers. The PMU state, along with the associated software
state, is called a Perfmon context. This is the mechanism whereby the programmer can
access the collected information.

The basic procedure to configure a Perfmon-based code to sample a multithreaded ap-
plication using a buffer is as follows:

1. A Perfmon context is allocated.

2. Some basic parameters are configured: sampling period, event to monitor, PMCs and
PMDs to use, monitor in kernel and/or user level.

3. A sampling buffer is allocated and attached to the context.

4. An interrupt handler is set up to manage the interruptions raised when the buffer is full.

58 Chapter 3. Accessing Hardware Counters on Itanium2 Montvale. The Perfmon interface

Figure 3.1: Sampling process flowchart

5. The Perfmon context is actually created by using the pfm create context com-
mand.

6. The context is attached to the pid/tid of the process/thread to be monitored by using the
pfm load context command.

7. Monitoring is started and, eventually, stopped, by using the pfm start and pfm stop

commands, respectively.

There are two points from the previous enumeration to highlight: the way a context is at-
tached to a thread, and how the sampling buffer is accessed. The effects of pfm load con-

text are shown in Figure 3.2. The thread to which the context is attached is called mo-

nitored thread. The thread which sets up Perfmon and monitors the monitored thread is
called monitoring or controlling thread. A thread can monitor itself (monitoring thread =

monitored thread) and therefore, it is called self-monitoring thread. The context is accessed
by the monitoring thread through a file descriptor (fd) in the file table.

Regarding the sampling process, when a PMU is monitoring a thread and the counter
which counts the number of captured EAR events overflows (it will do it sooner or later
depending on the sampling period and the number of events generated by the code), the data
from PMDs 32, 33 and 361 are stored as an entry in the kernel sampling buffer. This goes on

1On Itanium2 Montvale.

3.2. Perfmon programming 59

(a) Before loading the context (b) After loading the context

Figure 3.2: Effect of attaching a context to a monitored thread.

(a) Before buffer is full (b) Buffer gets full

Figure 3.3: The sampling buffer is mapped to user level when it gets full.

60 Chapter 3. Accessing Hardware Counters on Itanium2 Montvale. The Perfmon interface

until the buffer is full –when all the collected entries reach a whole size as large as the buffer
size–. Then, a notification is sent and the sampling buffer is mapped into user level, which
makes possible for the controlling thread to read all the values stored in the buffer using
the notification signal handler. This behaviour is depicted before a buffer interrupt occurs
(Figure 3.3(a)) and after it (Figure 3.3(b)).

Algorithm 1 shows a C-based algorithm of a self-monitoring, OpenMP SpMV code using
Perfmon and libpfm to capture EAR events on a Montvale processor. This code or any
variation of it will be used through the rest of this dissertation.

The code shows in the first place a process smpl buffer and an overflow hand-

ler methods. The former reads the sampled values of the EVENT NAME event from the
sampling buffer when it gets available to user level. The latter invokes the former when an
interruption is delivered after the buffer overflows. Then, when process smpl buffer

returns, the overflow handler informs Perfmon that the notification processing is finished,
and restarts the monitoring process2. Once inside the main method, some initial tasks are
performed (lines 20 to 22): libpfm is initialised, the overflow handler is configured to in-
voke the overflow handler method and a search to locate the event to monitor is carried
out. Next, all the subsequent actions are performed for all the threads of the parallel region
created by “pragma omp parallel”. libpfm is used to find out which PMC and PMD
registers must be programmed depending on the event and the processor (line 29). The next
step consists in creating a new Perfmon context for each thread (line 32) by invoking the
perfmonctl() function, key piece of the Perfmon interface. As shown in Figure 3.2,
contexts are accessed through a common file descriptor for each thread (fd[tid]). After
configuring the sampling buffer, sampling period and other information such as the event to
monitor in the related PMCs and PMDs (lines 38 to 42), each context is attached to the moni-
toring task through Perfmon (line 45). Finally, monitoring is started and stopped using the
libpfm functions pfm self start and pfm self stop (lines 51 and 60, respectively).

3.3 Evaluation of Perfmon on FINISTERRAE

In this section two cases of study are included to assess the use of Perfmon on the
FINISTERRAE architecture. The first one is the sparse matrix-vector product. The second one
is a dense regular loop. The overhead imposed by the use of Perfmon is also characterised.

2After a buffer overflow, monitoring is disabled and must be manually restarted.

3.3. Evaluation of Perfmon on FINISTERRAE 61

Algorithm 1: self-monitoring SpMV algorithm using Perfmon.
1: #include < per f mon/per f mon.h >
2: #include < per f mon/per f mon de f ault smpl.h >
3: #include < per f mon/p f mlib montecito.h >
4: #de f ine EV ENT NAME ”data ear cache lat4”
5:
6: overflow handler(){
7: process smpl bu f f er()
8: per f monctl(PFM RESTART, tid)
9: }

10:
11: process smpl buffer(){
12: count← samples in smplBu f f er[tid]
13: while (count−−) do
14: [addr, latency]← getSample(count)
15: print addr, latency
16: end while
17: }
18:
19: main(){
20: initialize p f m library()
21: install over f lowHandler()
22: p f m f ind f ull event(EV ENT NAME)
23:
24: #pragma omp parallel
25: {
26: tid← omp get num thread()
27:
28: /* let the library figure out the values for the PMCS */
29: p f m dispatch events()
30:
31: /* create the context for self monitoring */
32: ctx[tid]← per f monctl(PFM CREAT E CONT EXT)
33:
34: /* extract file descriptor for our context */
35: f d[tid]← ctx[tid]. f d
36:
37: /* configure sampling */
38: smplBu f f er[tid]← ctx[tid].smplBu f f er
39: pd[tid]← sampling period
40: pc[tid]← sampling con f ig f lags
41: per f monctl(f d[tid],PFM WRIT E PMCS, pc)
42: per f monctl(f d[tid],PFM WRIT E PMDS, pd)
43:
44: /* attach context to our task */
45: per f monctl(PFM LOAD CONT EXT, f d[tid])
46:
47: /* setup asynchronous notification on the file descriptor */
48: f cntl(f d[tid],F SET FL)
49:
50: /* start monitoring */
51: p f m sel f start(f d[tid])
52: #pragma omp f or
53: for (i = 0; i < N; i++) do
54: Y [i]← 0.0
55: for (j = A.ptr[i]; j < A.ptr[i+1]; j++) do
56: Y [i]← Y [i]+A.value[j]∗X [A.index[j]]
57: end for
58: end for
59: /* stop monitoring */
60: p f m sel f stop(f d[tid])
61: }
62: end main

62 Chapter 3. Accessing Hardware Counters on Itanium2 Montvale. The Perfmon interface

3.3.1 Sparse Matrix-Vector product as a case of study

Perfmonwas used to validate the use of EAR sampling for a version of the sparse matrix-
vector product. The code used is the one shown above in Algorithm 1. The sparse matrix A

is stored in CRS format [58]. The three components of A are ptr, index and value, which
store the index of the first entry in each row, the column index and the value of the entry,
respectively. X is the vector to be multiplied by A, and Y is the vector that stores the final
result of the operation. Note that the indirection is in vector X , and it is irregularly accessed
according to index. The main objective of this experiment has been to study the behaviour
of the accesses to X . To do that, only accesses to vector X were considered by applying data
triggering at specific addresses, functionality which is provided by Perfmon.

Note that, although not showed in Algorithm 1, the matrix is read by the main thread
before executing the SpMV, being subsequently touched by each thread. Therefore, data are
very likely to be found in the cache memory of each core. In this regard, the expected average
access latency to data will be in the range of 5 to 14 cycles, which corresponds to accesses to
L2 or L3 cache memory [2].

The chosen EAR event to capture was DATA EAR CACHE LAT4, which makes Perfmon
capture L1 cache misses with latencies higher than 4 cycles. As the L1 is an integer-only
cache in the Montvale family, the highest level in the cache hierarchy where all accesses to
float or double values are stored is the L2 cache. These accesses are always considered
as L1 misses by the Montvale’s PMU. Therefore, all those accesses are susceptible of being
sampled. Note that the sampling period was set to 10, which means that one out of each
ten L1 cache misses will be sampled. This period is low enough to capture a set of samples
representative of the original signal3 [75].

To perform this experiment, a set of 24 matrices was selected from the matrix test set
presented in Table 1.1. Their patterns are shown in Figure 3.4. Tests were performed in a
stand-alone node of the FINISTERRAE. Cases from 2 to 16 threads were considered. Table
3.1 shows the characteristics of the matrix set and the percentage of entries that were actually
sampled by the EARs. The sampled percentage is the ratio between the number of detected
accesses and all the possible accesses.

Results show that the average percentage of sampled entries for this code is always under
20% and approximately constant. In this regard, it can be concluded that the amount of

3An in-depth study of the sampling representativeness is performed in Chapter 5.

3.3. Evaluation of Perfmon on FINISTERRAE 63

Matrix Size Entries
Sampled entries (%)

2th 4th 8th 16th

a bcsstk20 485 x 485 1810 15 15 15 16
b bcsstk05 153 x 153 1288 20 20 19 19
c b f w398b 398 x 398 2910 10 11 10 10
d bcsstk04 132 x 132 1890 18 18 17 18
e lnsp131 131 x 131 536 16 15 15 15
f mhd416a 416 x 416 8562 19 19 19 19
g west0381 381 x 381 2157 18 18 18 18
h mbea f lw 496 x 496 49920 12 14 14 12
i mhd4800b 4800 x 4800 27520 15 15 15 15
j bcsstk28 4410 x 4410 111717 19 19 19 19
k bcsstk23 3134 x 3134 24156 17 17 18 18
l bcsstk24 3562 x 3562 81736 18 18 18 18
m lnsp3937 3937 x 3937 25407 16 16 16 16
n sherman2 1080 x 1080 23094 15 15 16 15
o west2021 2021 x 2021 7353 18 18 19 18
p psmigr 1 3140 x 3140 543162 12 12 12 12
q bcsstk25 15439 x 15439 133840 18 18 18 18
r e40r0000 17281 x 17281 553956 9 9 9 9
s bcsstk18 11948 x 11948 80519 17 17 17 17
t bcsstk17 10974 x 10974 219812 19 19 19 19
u f idapm29 13668 x 13668 186294 18 18 18 18
v f idap019 12005 x 12005 259863 19 19 19 19
w a f 23560 23560 x 23560 484256 17 17 17 17
x memplus 17758 x 17758 126150 18 18 18 20

Table 3.1: List of the matrix test set and percentage of sampled entries by Perfmon for 2, 4, 8 and 16 threads.

sampled data is not influenced by the pattern, type, size or number of non-zero entries of the
input matrix. Nor is it by the number of threads.

3.3.2 Accesses to a dense vector as a case of study

A different kernel was used to characterise the use of Perfmon with regular codes. The
code is shown in Algorithm 2.

In this case, vectors X and Y are accessed in a regular way. Loop j is used to artificially
increase the computation time in each iteration of loop i in a controlled way (by tuning values
of M). Variables res, al pha and beta are local to each thread, whereas X and Y are global.
Accesses to Vector X are sampled by Perfmon. These vectors are read by the main thread

64 Chapter 3. Accessing Hardware Counters on Itanium2 Montvale. The Perfmon interface

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x)

Figure 3.4: Set of matrices used to study the SpMV: a) bcsstk20, b) bcsstk05, c) bfw398b, d) bcsstk04,
e) lnsp 131, f) mhd416a, g) west0381, h) mbeaflw, i) mhd4800b, j) bcsstk28, k)
bcsstk23, l) bcsstk24, m) lnsp3937, n) sherman2, o) west2021, p) psmigr1, q)
bcsstk25, r) e40r0000, s) bcsstk18, t) bcsstk17, u) fidapm29, v) fidap019, w)
af23560 and x) memplus.

3.3. Evaluation of Perfmon on FINISTERRAE 65

Algorithm 2: Dense algorithm to test Perfmon.
1: #pragma omp parallel
2: {
3: #pragma omp f or
4: for (i = 0; i < N; i++) do
5: Y [i]← al pha×X [i]
6: for (j = 0; j < M; j++) do
7: res← res×beta
8: end for
9: end for

10: }

before executing the kernel, being subsequently touched by each thread. Therefore, data are
very likely to be found in the cache memories of each core. Note that, because of the regularity
of the code, some mechanisms like prefetching and cache line reuse will exercise an important
influence on the performance.

This code was run considering different values of N, M, number of threads and different
types of data for vectors X and Y (integers, floats and doubles). Figure 3.5 shows the results
for integers and floats. Results for doubles are similar to those shown for floats.

Some observations can be made from these results. Figure 3.5(a) shows that the number
of entries that are detected by the EARs is about 11%. Note that this result is consistent
with the ones shown in the previous section using an irregular kernel. They also seem to
be independent of the number of threads and to slightly decrease as the size of the vector
increases.

Figure 3.5(b) shows that the amount of work executed in the loop increases with the num-
ber of entries detected by the EARs. Figure 3.5(c) shows the same behaviour as Figure 3.5(b)
but for a vector of integers instead of floats. In this case, the influence of M is more important.
Note that the percentage of sampled entries is much lower mainly because many integers can
be in the L1 cache, therefore not being captured by the EARs. Finally, Figure 3.5(d) shows
the effect of the sampling period used by Perfmon. Note that as this period doubles, the
number of sampled entries is approximately reduced by half, as expected. This behaviour is
broadly independent of the vector size.

3.3.3 Evaluation of Perfmon and libpfm overhead

A series of tests was performed to quantify the overhead introduced by the inclusion of
the Perfmon and libpfm calls and how much can affect the performance of a monitored
program. This section explains the methodology followed and presents the results obtained.

66 Chapter 3. Accessing Hardware Counters on Itanium2 Montvale. The Perfmon interface

(a) (b)

(c) (d)

Figure 3.5: Ratio between the number of sampled entries of vector X and its size. (a): for different values of N and
number of threads; X is a vector of floats. (b): for different values of N and M; X is a vector of floats.
(c): for different values of N and M; X is a vector of integers. (d): for different values of N and the
sampling period; X is a vector of floats.

3.3. Evaluation of Perfmon on FINISTERRAE 67

The self-monitored, parallel SpMV of Algorithm 1 was used as a benchmark. A typical
session with Perfmon and libpfm was considered, analysing their most usual calls. The
routines studied are:

– pfm set options

– pfm get pmu type

– pfm find full event

– pfm dispatch events

– pfm create context

– pfm write pmcs

– pfm write pmds

– pfm load context

– pfm self start

– pfm restart

– pfm self stop

– pfm initialize

The execution time of each call was measured. For each matrix of Figure 3.4 those rou-
tines were invoked, executing the code 100 times per matrix.

Figure 3.6 shows the percentage of time consumed by each function normalised to the
average execution time of the whole matrix test set. Note the following facts:

– The most time-consuming functions are always pfm find full event, pfm dis-

patch events and pfm create context. The first one is a general-purpose
search routine which, given an event name, returns an event descriptor. Pfm dis-

patch events sets up the values to program the PMC registers. Finally, pfm crea-

te context creates the context for self-monitoring. These are functions that are in-
voked just once during the execution of the whole program.

– In theory, the functions susceptible of introducing more overhead are pfm self-

start and pfm self stop –since they could be invoked several times in a code–
and pfm self restart, which will be invoked after every buffer overflow. The
number of buffer overflows occurred during a program execution depends on the sam-
pling period and the number of sampled events, so its overhead is not straightforward to
estimate. A rough estimation, based on an average number of 700 overflows measured
in our observations, gives an pfm self restart overhead of 0.1%.

– All the remaining overheads are under 0.01% for the whole matrix set considered.

68 Chapter 3. Accessing Hardware Counters on Itanium2 Montvale. The Perfmon interface

1 2 3 4 5 6 7 8 9 10 11 12

Perfmon function

O
ve

rh
e

a
d

 (
%

)

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

pfm_set_options

pfm_get_pmu_type

pfm_find_full_event

pfm_dispatch_events

pfm_create_context

pfm_write_pmcs

pfm_write_pmds

pfm_load_context

pfm_self_start

pfm_restart

pfm_self_stop

pfm_initialize

Overhead of Perfmon and libpfm functions

Figure 3.6: Percentage of time consumed by the Perfmon and libpfm functions on a SpMV program.

To summarise, both libpfm and Perfmon are suitable to be used in our measurements,
since the introduced overhead is affordable and can be amortised with the improvement ob-
tained in the developed techniques.

3.4 Conclusions

This chapter has addressed a study of the set of features provided by the hardware counters
in the Itanium2 platform (goal G2-HWCSTUDY). Firstly, the choice of tools used in this
dissertation to access the Itanium2 PMU (the Perfmon interface and its higher-level library
libpfm) has been justified. Next, the internals of Perfmon and the procedure to program

3.4. Conclusions 69

hardware counters has been explained. An example code has been then developed, in order to
serve as a future reference for this dissertation.

In this chapter, Perfmon has been evaluated on our test infrastructure, the FINISTERRAE

supercomputer. Both dense and sparse codes have been used. Results show that the percentage
of sampled information is independent of the monitored load. Finally, additional experiments
have proved the overhead of the interface to be negligible.

The next chapter will rely on this study to seek methods of improving the locality of
irregular codes using hardware counters (G3-REORDTECHIMPRV).

4

Locality Improvement on Irregular Codes

4.1 Introduction

Numerous methods have been proposed in the literature to optimise the locality of irregu-
lar codes in parallel architectures. A particular case is the family of techniques that modify
the allocation of data structures in memory. These techniques typically comprise an initial
stage in which the input data must be analysed and reordered to achieve enough locality. The
computational cost of this stage is dependent on the input data size and not until several itera-
tions of a computational kernel does its execution compensate the time spent in the reordering
stage. This type of heuristics is particularly useful in applications based on iterative methods.

In this line, an optimisation technique was developed in our research group and presented
in a previous dissertation [76]. This technique reorders the data structures of the irregular
code considered (sparse matrices) using heuristic techniques guided by a locality model that
is general enough so that it can be used in numerous codes of sparse matrix algebra. It is based
on the following premise: the access locality is characterised by a sparse matrix pattern, so

the closer the entries are to each other in the pattern, the higher the locality of the accesses

addressed by the matrix will be. Like all models from this family, the computational cost of
this technique is typically high as it considers all nonzeros of the sparse matrix in order to find
an appropriate permutation of rows and columns from the input matrix.

As introduced in Chapter 1, the sparse matrix-vector product (SpMV) is representative of
the paradigm of irregular codes with low data reuse caused by irregular and indirect memory
access patterns. Hence, this kernel is a good candidate to test the optimisation technique men-
tioned above to meet one of the goals proposed in this dissertation (G3-REORDTECHIMPRV):
to develop models that make use of the information provided by hardware counters to improve
the locality of irregular codes.

72 Chapter 4. Locality Improvement on Irregular Codes

This chapter studies the feasibility of increasing the locality of the SpMV when only a
subset of the memory accesses performed is available in the optimisation process, which is
equivalent to consider only a subset of the nonzero elements of the matrix. The ultimate
objective is to use incomplete information to reduce the cost of the reordering stage in the
locality method. Two approaches are proposed to obtain such a nonzero subset. On the one
hand, a common random sampling method. On the other hand, a novel method to characterise
matrices using the information provided by the hardware counters. Subsequent sections will
prove how the use of incomplete information can achieve a dramatic time reduction with-
out performance loss and, particularly, how hardware counters can provide such incomplete
information in a reliable and costless way.

The remainder of this chapter is structured as follows: for the sake of clarity, Section 4.2
introduces the locality optimisation technique previously developed in our research group.
Section 4.3 evaluates this technique in a SpMV with randomly sampled matrices. Section 4.4
introduces a novel sampling method using hardware counters and compares it with the original
locality optimisation technique. An evolution of this method using additional information
from the hardware counters is presented in Section 4.5. Finally, the chapter concludes with
some remarks and future work in Section 4.6.

4.2 Locality optimisation technique

The data reordering technique introduced in [12] has been used to study the locality op-
timisation of a matrix considering only a subset of the memory accesses performed by the
SpMV code. This technique reorganises the data guided by a locality model instead of restruc-
turing the code or changing the sparse matrix storage format. Unlike other existing locality
models that predict the data movement along the levels of the memory hierarchy, this model
is able to characterise, sacrificing accuracy, the trend of this movement in general terms. In
particular, locality is evaluated using a distance function that depends on the number of entry
matches (aelems). Considering accesses to the sparse matrix by rows, the number of entry
matches between any pair of rows is defined as the number of nonzero elements in the same
column of both rows. In this way, the distance between rows i and j is defined as:

d(i, j) = nelems(i)+nelems(j)−2∗aelems(i, j) (4.1)

where nelems(i) is the number of entries in row i. This function is a norm, and it is used
to measure the locality displayed by the accesses performed by the SpMV code on these two

4.2. Locality optimisation technique 73

rows when they are consecutively accessed. For a given sparse matrix accessed by rows, a
measure that is inversely proportional to the data locality for the whole sparse matrix can be
defined as follows:

D =
n−2

∑
i=0

d(i, i+1) (4.2)

where n is the number of rows/columns of the sparse matrix. These definitions can directly
be extended to columns. Note that these functions only provide results based on the locality
evaluated on pairs of consecutive rows (or columns) of the sparse matrix. Nevertheless, reuse
of data could be possible at any level of the memory hierarchy during the product of two or
more consecutive rows (or columns) of the matrix. For this reason, a generalisation of the
distance functions based on the concept of windows of locality can also be defined.

A window of locality is a set of w consecutive rows (or columns) of the matrix between
which there is a high probability of data reuse when executing the sparse matrix code. Based
on the distance function d(i, j), we can define the distance between windows of locality g and
h as:

dw(g,h) = n(g)+n(h)−2∗aelems(g,h) (4.3)

where n(g) = nelemsw(g)− aelemsw(g). The parameter aelems(g,h) is a direct extension of
the entry matches between windows g and h. nelemsw(g) is the number of elements of window
g, and aelemsw(g) generalises the concept of entry matches considering those that take place
on two or more rows within window g. Note that, by introducing n(g), the possible reuse
of data inside g is also considered. Figure 4.1 shows an example of the calculation of these
parameters when w = 2. Therefore, the indirect estimation of locality defined for a sparse
matrix in Equation 4.2 can now be calculated as a sum over the whole matrix:

Dw = ∑
g

dw(g,g+1), ∀ g | 0≤ g < dn/we (4.4)

Note that these distances (Equations 4.3 and 4.4) are equivalent to the distances measured
over pairs of consecutive rows/columns of the matrix when the window size is w = 1.

The reordering technique modifies the pattern of the sparse matrix according to the loca-
lity model described before. In order to increase the locality in the accesses performed by the
SpMV for a given matrix, a permutation of windows of locality that minimises its total dis-
tance Dw must be found (Equation 4.4). The problem of locality improvement is formulated

74 Chapter 4. Locality Improvement on Irregular Codes

g

h

g

h

nelemsw(g) = 5 nelemsw(h) = 8

aelemsw(g) = 1 aelemsw(h) = 0

aelems(g,h) = 4

Figure 4.1: Calculation example of nelemsw(g), aelemsw(g) and aelems(g,h).

as a classic NP-complete optimisation problem, and it is solved as a graph problem using its
analogy to the traveling salesman problem (TSP) [77].

The problem is described using a weighted graph where each node represents a window
of locality of the input sparse matrix. Each edge of the graph has an associated weight that
reflects the distance between pairs of windows of locality according to the description of
locality given previously. Nevertheless, it is unnecessary to work with a complete graph.
Given that sparse matrices have a very low density of nonzero elements, most of the weights
in the graph correspond to cases where aelems = 0. Those values, according to the distance
definitions, represent the worst locality cases. So, without losing relevant information about
locality, we can use an incomplete weighted graph where only values of aelems different from
zero are considered. As a consequence, the graph size is noticeably reduced.

Solving the reordering problem is equivalent to finding a path of minimum length that
goes through all the nodes of the graph. This path is represented as a permutation vector that
appropriately sorts the nodes of the graph, giving a reordered matrix. To find the best path, a
heuristic solution was chosen, given that the distance measures defined previously can be used
to validate the quality of a rearragement. After a comparative study of different techniques,
the Chained Lin–Kernighan heuristic proposed by Applegate et al. [78] was chosen. Note
that, for practical purposes, if there is an isolated node without edges in the distance graph,
the TSP heuristic will internally connect this node to the others through edges with a very
high distance.

In order to select the window size (w), two types of windows of locality are considered:
fixed and variable [12]. For windows of fixed size the number of nodes in the weighted
graph is dn/we. Therefore, for high values of w, the graph is noticeably reduced. It implies

4.2. Locality optimisation technique 75

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

(a)

(0,1) (1,2) (2,3) (3,4) (4,5) (5,6) (6,7)
0

1

2

3

4

5

6

7

Pairs of rows (x,y)

d

Ave
ra

ge

di
st
an

ce

(b)
Figure 4.2: Example of windows of locality with variable size: (a) sparse matrix example. (b) distance histogram.

an important decrease in the computational time needed for its calculation, together with a
reduction in the size of the problem to be managed by the reordering heuristic. Note that we
are not taking into account any locality property of the input sparse matrix in order to define
the windows. Therefore, windows of locality can comprise consecutive rows (or columns) of
the matrix which exhibit low locality according to our model.

There is a two-fold purpose in using windows of locality of variable size. On the one
hand, as in the fixed size case, windows are used to decrease the number of nodes in the
weighted graph. On the other hand, they avoid grouping consecutive rows (or columns) of
the matrix with low locality in the window creation process. Figure 4.2 shows an example
of the technique to create windows of variable size considering the rows of the matrix. First,
a histogram is created from the input matrix. It represents the distance between each pair of
consecutive rows. Therefore, there are n−1 values in the histogram. In order to decide if two
consecutive rows i and j will be included within the same window a simple criterion must be
fulfilled: d(i, j) < D/n. That is, the distance must be lower than the average distance of the
whole sparse matrix. According to this, in the example of Figure 4.2, four windows of locality
are defined: {0,1,2}, {3,4}, {5} and {6,7}. This way, the windows creation process is
guided by the locality model and, as a consequence, locality among rows within each window
is increased. This process can directly be extended to columns. Note that when the matrix

76 Chapter 4. Locality Improvement on Irregular Codes

Matrix # rows (n) # nonzeros (nnz) nnz/row

crystk03 24696 1751178 71
garon2 13535 390607 29
gyro k 17361 1021159 59
mixtank new 29957 1995041 67
msc10848 10848 1229778 113
nd3k 9000 3279690 364
nmos3 18588 386594 21
pct20sti f 52329 2698463 52
sme3Da 12504 874887 70
tsyl201 20685 2454957 119

Table 4.1: Matrix benchmark suite used in our sampling tests.

pattern is non-symmetric, the windows creation process must be applied considering rows and
columns independently.

In the studies performed in [12] it is concluded that windows of w= 1 and w= variable are
the best choices in terms of performance. For this reason, this dissertation focuses on them.
However, big fixed-sized windows can be a good solution due to the particularities of the
sparse matrices in some applications such as those related to the simulation of semiconductor
devices [79].

4.3 Locality optimisation using randomly sampled matrices

This section studies the behaviour of the reordering technique introduced above to esti-
mate the locality of a given matrix by using just a percentage of its nonzero elements. This
study intends to check whether reordering techniques can be used with incomplete informa-
tion and to state the amount of information required to obtain similar results to the original
reorderings. For that purpose, a subset of the general matrix set presented in Chapter 1, shown
in Table 4.1, was chosen. Then, a set of sampled matrices from the original ones was gene-
rated. In particular, the sampled matrices contain 1%, 2%, 5%, 10%, 15% or 20% of the
original nonzeros. These nonzeros are randomly selected using the C random() function,
which implies that each nonzero of the original matrix has equal chances of being sampled.
Twenty sampled matrices were generated for each matrix and percentage, which means a to-
tal amount of 1200 sampled matrices to test. Figure 4.3 shows an example of the nonzeros
pattern of some of the randomly sampled matrices generated from the nmos3 matrix.

4.3. Locality optimisation using randomly sampled matrices 77

(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Examples of nmos3 randomly sampled matrices. Matrices with 1% (a), 2% (b), 5% (c), 10% (d) and
20% (e) of the nonzeros with respect to the original matrix (f).

78 Chapter 4. Locality Improvement on Irregular Codes

The information provided by the sampled matrices has been used to generate a permuta-
tion vector that will be applied to the original matrix. This permutation vector is calculated by
the reordering technique using the sampled matrices with windows of both variable and fixed
(w = 1) size (see Section 4.2). In this way, the original matrix is reordered considering only
the information provided by a subset of its nonzeros.

In order to estimate the quality of these reorderings, a comparison with the original tech-
nique (that is, when the not-sampled matrix is used to calculate the permutation vector) has
been carried out. Figures 4.4 and 4.5 show the normalised SpMV performance (a value of 1
means the same result as the original technique) for the FINISTERRAE system. These figures
display the average, the maximum and the minimum performance for each sampled matrix set
and number of threads. Note that, due to the random sampling process, the twenty sampled
matrices of each subset can be very different. Given that these sampled matrices are used as
an input of the reordering technique, the output in each case may show a high variation, which
will cause fluctuations in the observed performance within each subset.

Focusing on the results using a fixed-size window reordering (w= 1), shown in Figure 4.4,
it is noticeable that reorderings using sampled and complete information show a similar be-
haviour. This happens even in those cases in which only 1% of the nonzeros are considered,
which means that the locality model used by the reordering technique is able to characterise
the accesses performed by the sparse matrix using only this information. There are also some
cases where the sampled nonzeros are not enough to compete with the original technique.
Take for instance the matrices gyro k and sme3Da with two threads, or mixtank new

with four threads. However, the difference with the reference is, at most, about 5%. Con-
versely, there are some cases where reorderings using sampled information outperform the
original ones. For example, reorderings of nd3k and pct20stif with eight threads.

The explanation for this behaviour can be found in some details of the locality model
and the reordering heuristic. The reordering technique uses the matrix as the input to create
the distance graph (see Section 4.2). Therefore, the sampled matrices generate graphs that
are different from the one produced by the original matrix. Since the sampled matrices have
fewer nonzeros than the original ones, the number of entry matches (aelems) will be smaller,
so the graph will be reduced, displaying a smaller number of edges. Therefore, given that
the graphs are different and the chosen strategy to minimise the total distance is heuristic,
the results will be different. Note that the TSP heuristic is constrained to a fixed number of
iterations searching for equilibrium between performance and overhead. Hence, there will be

4.3. Locality optimisation using randomly sampled matrices 79

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

N
o

rm
al

iz
ed

P

er
fo

rm
an

ce

nd3k

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%
N

o
rm

al
iz

ed

P
er

fo
rm

an
ce

nmos3

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

N
o

rm
al

iz
ed

P

er
fo

rm
an

ce
pct20stif

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

N
o

rm
al

iz
ed

P

er
fo

rm
an

ce

sme3Da

1.00

1.10

er
fo

rm
an

ce

tsyl201

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

N
o

rm
al

iz
ed

P

er
fo

rm
an

ce

crystk03

1 Th 2 Th 4 Th 8 Th

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

N
o

rm
al

iz
ed

P

er
fo

rm
an

ce

garon2

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

N
o

rm
al

iz
ed

P

er
fo

rm
an

ce

gyro_k

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

N
o

rm
al

iz
ed

P

er
fo

rm
an

ce

mixtank

1.00

1.10

m
al

iz
ed

o

rm
an

ce

msc10848

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

N
o

rm
al

iz
ed

P

er
fo

rm
an

ce

nd3k

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%
N

o
rm

al
iz

ed

P
er

fo
rm

an
ce

nmos3

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

N
o

rm
al

iz
ed

P

er
fo

rm
an

ce
pct20stif

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

N
o

rm
al

iz
ed

P

er
fo

rm
an

ce

sme3Da

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Sampled nonzeros

tsyl201

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

N
o

rm
al

iz
ed

P

er
fo

rm
an

ce

crystk03

1 Th 2 Th 4 Th 8 Th

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

N
o

rm
al

iz
ed

P

er
fo

rm
an

ce

garon2

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

N
o

rm
al

iz
ed

P

er
fo

rm
an

ce

gyro_k

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

N
o

rm
al

iz
ed

P

er
fo

rm
an

ce

mixtank

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

N
o

rm
al

iz
ed

P

er
fo

rm
an

ce

Sampled nonzeros

msc10848

Figure 4.4: Normalised SpMV performance obtained by the reorderings generated using the locality optimisation
technique (w = 1) and the information provided by the randomly sampled matrices on the Itanium2
platform.

cases where the reordering heuristic, using a “sampled graph”, will produce a better solution
than the original one, because the problem considered is smaller.

Another observation is that performance results change depending on the considered num-
ber of threads. Note that the reordered matrices are generated without taking into account
the number of threads used to perform the SpMV. However, the sparse matrix is distributed
among the available threads to compute the SpMV in such a way that different computations
are assigned to each thread. This distribution depends on the number of threads, and diffe-

80 Chapter 4. Locality Improvement on Irregular Codes

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

T
ít

u
lo

nd3k

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%
T

ít
u

lo

nmos3

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

T
ít

u
lo

pct20stif

0.90

1.00

1.10

1.20

1% 2% 5% 10% 15% 20%

T
ít

u
lo

sme3Da

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

T
ít

u
lo

Sampled nonzeros

tsyl201

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

N
o

rm
al

iz
ed

P

er
fo

rm
an

ce

crystk03

1 Th 2 Th 4 Th 8 Th

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

N
o

rm
al

iz
ed

P

er
fo

rm
an

ce

garon2

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

N
o

rm
al

iz
ed

P

er
fo

rm
an

ce

gyro_k

0.90

1.00

1.10

1.20

1% 2% 5% 10% 15% 20%

N
o

rm
al

iz
ed

P

er
fo

rm
an

ce

mixtank

0.90

1.00

1.10

1% 2% 5% 10% 15% 20%

N
o

rm
al

iz
ed

P

er
fo

rm
an

ce

Sampled nonzeros

msc10848

Figure 4.5: Normalised SpMV performance obtained by the reorderings generated using the locality optimisation
technique (w = variable) and the information provided by the randomly sampled matrices on the
Itanium2 platform.

rent memory accesses are required by each thread to perform the computations. Therefore,
depending on the accesses performed by each thread, the locality optimisation technique will
produce different results. Note that the performance of the parallel SpMV is determined by
the slowest thread. The load balance can also influence the results for different number of
threads.

Some of the previous observations for w= 1 coincide with the behaviour of the reorderings
using windows of variable size (Figure 4.5). Note that considering only 1% of nonzeros is

4.4. Locality optimisation using hardware counters 81

again enough to generate reorderings that show similar performance compared to the origi-
nal ones. However, the results show a variability higher than the results in Figure 4.4. For
example, considering few sampled nonzeros, noticeable improvements are achieved by the
mixtank new reorderings using four and eight threads, while there is some degradation with
two threads. An irregular performance is also obtained by the reorderings of matrices nd3k,
msc10848 and sme3Da. Additionally to this, there are some cases in which reorderings
based on sampled information always outperform those obtained by the original technique.
This is the case of matrices gyro k and sme3Da. We find the cause of this performance
variability in the variable-size windows creation process of the locality optimisation tech-
nique [12]. Note that the criterion used to decide whether two consecutive rows/columns fall
into the same window depends on the locality estimation performed by the model. Therefore,
different windows of locality (both in number and composition) are considered to calculate the
permutation vector for each sampled matrix, which causes more variations in the performance
results than using windows of fixed size.

To summarise, this study demonstrates that it is feasible to perform a data reordering to
optimise the locality of the SpMV considering only a subset of the nonzeros of the sparse ma-
trix. Tested using windows of fixed and variable sizes, it proves that a few number of nonzeros
(typically 1-2%) is enough to obtain a similar performance with respect to the original reor-
derings. It must be noticed, however, that important variations in the performance within each
subset were observed when using randomly sampled matrices with the reordering technique.
These fluctuations led, in some cases, to a variation higher than 15% between the maximum
and the minimum performance.

4.4 Locality optimisation using hardware counters

The second method developed to obtain a subset of nonzeros from a sparse matrix, in
order to reduce the processing time of the reordering technique, involves the use of the hard-
ware counters provided by the Itanium2 processor. This section introduces and evaluates a
novel technique to characterise a matrix using events captured by the Event Address Registers
(EARs). We have named this technique DAST (Dual Array Sampling Technique). Before
introducing it, a couple of facts must be revisited:

– Perfmon performs an event-based sampling (EBS). That is, every time a given event
occurs, the counter counting the number of captured EAR events increments its value

82 Chapter 4. Locality Improvement on Irregular Codes

until it overflows. When this happens, a sample with information about the event that
triggered the overflow is collected and stored in a buffer. The information collected
comprises, among others, the latency and the address of the memory access sampled.
Once the buffer gets full, an interruption is raised and the content of the buffer is avail-
able at user level. Note that Perfmon makes possible to monitor a particular memory
address range of the data accessed by the monitored program. For more detailed infor-
mation about the sampling process, see Section 3.2.

– Section 2.3.1 explained that floating-point operations on Itanium2 systems bypass the
L1 cache in such a way that every access to a floating-point value always generates a L1
cache miss. An access to any data stored in a L2 cache has, at least, a 5-cycle latency
for integers and 6 cycles for floating-point data. Therefore, setting the PMU to capture
“cache misses with latencies higher than 4 cycles” (event DATA EAR CACHE LAT4)
guarantees that all accesses to the arrays X and Y in the SpMV are susceptible of being
sampled.

A priori, by just getting the address of an access to the array X in the SpMV, the position
of the accessed nonzero element in the matrix cannot be determined. The reason is that the
counters only provide the latency and address of the X element that misses the cache. That
is, only information about the column of the corresponding nonzero element of the matrix is
given. Therefore, the identification of the row is not possible by using only this information.

DAST overcomes this limitation and obtains the row and the column of an access in the
following manner: Perfmon is configured to monitor accesses to arrays X and Y in the
SpMV. Therefore, some of the sampled events will be caused by accesses to X and some
of them by accesses to Y . Note that accesses to Y are driven by the loop i in the code of
Algorithm 1. After a monitoring period, defined as the time between two consecutive buffer
overflows –which comprises several hardware counter overflows, related to the configured
sampling period–, EARs will provide a list of sampled accessed elements from X and Y .
For example, let us consider seven sampled events so that the result of the captured accesses
are: Y [0], X [23], Y [1], Y [2], X [12], X [19] and Y [2]. Accesses to X give information about
the exact column of the corresponding nonzero element of the matrix, while accesses to Y

give information about the rows where the nonzero element might be placed. Note that this
method does not provide simultaneously the row and column of an entry of the sparse matrix.
However, the nonzero elements of the sparse matrix can be characterised according to the
following properties:

4.4. Locality optimisation using hardware counters 83

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Columns

R
o
w
s

Nonzeros

Sampled nonzeros

Figure 4.6: Example of sampled matrix using the hardware counters.

– Samples fetched from the buffer are known to have been captured in chronological
order.

– Each sampled access to Y [i] indicates that any nonzero element that belongs to the row
i of the matrix is being multiplied by one element of vector X .

– Each sampled access to X [j] indicates that a nonzero element of the matrix belonging
to the j column has been accessed.

– We can state that the matrix has nonzero elements in the columns provided by the
indices of the sampled X elements collected between two samples Y [i] and Y [i′], i′ ≥ i.
These nonzero elements are located in the rows within the interval [i, i′]. From now on,
these intervals are denoted as uncertainty intervals. In the example above, there is an
entry in column 23 in row 0, row 1 or both, since there is an access to X [23] between
two accesses to Y [0] and Y [1].

84 Chapter 4. Locality Improvement on Irregular Codes

– As a particular case of the property above, if i = i′ then the row is determined in an
univocal way. Sampled nonzeros for which the row can be univocally determined will
be called univocal sampled entries. In the example above, columns 12 and 19 and row
2 will give us the univocal pairs i, j = [2,12] and i, j = [2,19]. This is because accesses
to X [12] and X [19] occur between two accesses to Y [2].

As a way of illustration, DAST is used with the previous seven example events. It is clear
that there are three nonzeros of the matrix in the positions ([0,1],23), (2,12) and (2,19).
The row in the first entry cannot be exactly stated, so an uncertainty interval of possible rows
([0,1]) is given. The other two cases are univocally sampled entries. An example of the pattern
characterisation using this methodology with a real sparse matrix is shown in Figure 4.6 (in
green circles the pattern of the matrix, and in red squares the sampled nonzeros). Note that
the uncertainty intervals are shown as a sequence of nonzeros along the same column in the
sampled matrix.

Therefore, by just keeping the univocal pairs row-column, we can build a sampled version
of the original matrix. From now on, we refer to the matrix obtained in this way as the sampled

matrix.

4.4.1 Behavioural study of DAST

DAST returns a matrix created from a univocal subset of the sampled values. This section
studies the nature of this sampling. The incomplete information due to the sampling process
could result in a malfunction of the algorithm to improve locality, situation that is considered
an error. The possible error introduced with respect to the data pattern used and its effect
to allow our test algorithms to work properly is analysed here. This study is carried out in
a controlled environment in order to state which parameters of the data pattern affect the
difference between the original cases and the sampled ones.

4.4.1.1 Methodology

To identify the influence of different characteristics of the matrix pattern in a parame-
terised and controlled way, a banded matrix generator was implemented. This matrix genera-
tor has the following features:

4.4. Locality optimisation using hardware counters 85

– It generates a banded matrix by giving random values with a normal distribution. The
GSL (GNU Scientific Library) [80] was used to obtain a set of normally-distributed
random values in the band.

– The modifiable parameters are the NNZ (number of nonzero entries), the number of
rows and columns, the centre and sigma (σ) of the gaussian distribution, the bandwidth
and the scale factor keeping the density in the band. This last parameter scales the
width of the band, keeping the amount of nonzero elements defined in the “bandwidth”
parameter.

– Matrices are generated in CSR (compressed sparse row) format.

280 matrices were generated with the following characteristics:

– N (number of rows and cols): 20000

– Bandwidth: 2000

– Band scale factor: 2

– µ (centre of the gaussian): 50

– Sigma (σ) : 14 uniformly-distributed values between 0.1 and 3.

– NNZ: 20 uniformly-distributed values between 200000 and 3848462.

Each matrix name has this nomenclature:

bandedMatrix N Bandwidth ScaleFactor sigmaˆ2*100 mu NNZ.rcs

Note that standard deviation is referred as the one derived from the average number of
entries per row, and not as the σ (sigma) value of the gaussian bell. A higher σ implies a
more spread gaussian and, therefore, a more uniform amount of nonzero values spread out
along the band. Hence, an increasing value of σ in a matrix implies a decreasing standard
deviation.

This test intends to find out whether there is a relation between the irregularity of the
sparse matrix (expressed as the standard deviation) and the characteristics of the sampled
data. To understand this relation, the generated matrix set was firstly sampled using DAST
and, then, the relationship between the sampling rate and the characteristics of each matrix
was analysed.

86 Chapter 4. Locality Improvement on Irregular Codes

4.4.1.2 Outcomes and discussion

Figure 4.7 shows three examples for σ = 0.1 (a), σ = 0.8 (b) and σ = 3 (c). The NNZ

values for each case are 200000 (leftmost), 1131420 (centre) and 3848462 (right). On each
graph, the red histogram represents the number of nonzero elements per row of the original
matrix. The blue cloud of dots shows the sampled percentage per row (one dot per row).

Figure 4.7(a) shows a very narrow gaussian bell (σ = 0.1). As the number of entries per
row increases, the sampled ratio (in blue) converges to a more uniform 10% band (that is,
more rows achieve a 10% sampling percentage) with some blurred zones in the edges of the
curve. The same behaviour can be observed for a wider bell of σ = 0.8 (Figure 4.7(b)). In this
case, the sampled ratio also converges to a 10% band, but it starts with a more sparse sampling
and has most data sampled only on the centre of the bell, where the density is higher. On the
contrary, Figure 4.7(a) always had the whole band sampled for all cases because there were
enough nonzero values per row. In the third case (Figure 4.7(c)), the density is more uniform
along the band, so the number of nonzero values per row is therefore lower. In this case,
only the rightmost figure shows a uniform 10% sampled ratio, when there are enough nonzero
values to sample.

It is worth mentioning that some cases, like the rightmost one in Figure 4.7(b), show some
“sparse cloud of samples” on the edges of the gaussian bell. In those zones, the number of
entries per row drops drastically. As a consequence, any single sample obtained in those zones
gets a higher relative importance than the samples situated on the centre of the bell.

Therefore, DAST samples a matrix accurately when the number of nonzeros per row is
uniform along the whole band and high enough to generate the necessary L1 misses so that
enough samples are captured by the hardware counters. For other cases, the zones of the
matrix that do not achieve this threshold are not so accurately sampled.

By and large, results show that the sampling is adequate except for those cases where the
matrix presents several regions with a steep difference of density among them or when there is
a low density per row. In these situations, DAST stresses the differences among those regions.

We found the ultimate cause for this behaviour in the way DAST works: when sampling a
matrix row, only a small percentage of the samples is kept (the univocal samples). Take as an
example the SpMV: if the considered row has not enough nonzero elements, the probability
of sampling entries univocally –that is, one or more elements of X between two values of
the same Y –, decreases as the density of the row does. Therefore, those matrices with a low
number of entries per row will get less samples than the rest of them.

4.4. Locality optimisation using hardware counters 87

(a) σ = 0.1

(b) σ = 0.8

(c) σ = 3

Figure 4.7: Entries per row (red) and sampled percentage (blue) of nine generated matrices.

88 Chapter 4. Locality Improvement on Irregular Codes

Matrix # sampled nonzeros(snnz) # snnz/n #rows without sampled
(% w.r.t. nnz) nonzeros(% w.r.t. n)

crystk03 128394 (7.3%) 5.2 754 (3.0%)
garon2 17250 (4.4%) 1.3 5859 (43.3%)
gyro k 70405 (6.9%) 4.1 2342 (13.5%)
mixtank new 143226 (7.2%) 4.8 4630 (15.5%)
msc10848 101347 (8.2%) 9.3 85 (0.8%)
nd3k 309116 (9.4%) 34.3 0 (0 %)
nmos3 11249 (2.9%) 0.6 11111 (59.8%)
pct20sti f 176469 (6.5%) 3.4 6927 (13.2%)
sme3Da 63984 (7.3%) 5.1 758 (6.1%)
tsyl201 204825 (8.3%) 9.9 29 (0.1%)

Table 4.2: Characteristics of the sampled matrices generated by the hardware counters.

(a) (b)

Figure 4.8: sme3Da original (a) and sampled matrix generated by the hardware counters (b).

4.4.2 Results and evaluation using DAST

Table 4.2 shows the number of elements sampled after running a SpMV using DAST on
the sparse matrices from the testbed of Table 4.1. Only the univocal sampled nonzeros are
considered. The number (snnz) and the percentage of univocal sampled entries with respect to
the number of nonzero elements of the original sparse matrix are displayed. This percentage
ranges from 2.9% (matrix nmos3) to 9.4% (matrix nd3k). The number of univocal sampled
nonzeros per row is also shown in the table. Figure 4.8 illustrates an example of matrix

4.4. Locality optimisation using hardware counters 89

0,70

0,80

0,90

1,00

1,10

Tí
tu

lo

2 Threads

0,70

0,80

0,90

1,00

1,10

N
or

m
al
iz
ed

 P
er

fo
rm

an
ce

w=1
w variable 1 Thread

0,70

0,80

0,90

1,00

1,10

Tí
tu

lo

8 Threads
0,70

0,80

0,90

1,00

1,10

1,20

N
or

m
al
iz
ed

 P
er

fo
rm

an
ce

4 Threads

0,70

0,80

0,90

1,00

1,10

Tí
tu

lo

2 Threads

0,70

0,80

0,90

1,00

1,10

N
or

m
al
iz
ed

 P
er

fo
rm

an
ce

w=1
w variable 1 Thread

0,70

0,80

0,90

1,00

1,10

Tí
tu

lo

8 Threads
0,70

0,80

0,90

1,00

1,10

1,20

N
or

m
al
iz
ed

 P
er

fo
rm

an
ce

4 Threads

Figure 4.9: Normalised SpMV performance obtained by the reorderings generated using the locality optimisation
technique and the information provided by the hardware-counter sampled matrices for windows of size
w = 1 and variable size.

sampled using the hardware counters. In particular, the sampled matrix contains 7.3% of the
nonzero elements of the original sme3Da matrix.

We have observed that using this sampling method, in some cases, there are rows without
sampled nonzeros. Table 4.2 shows its number and percentage with respect to n for each
sampled matrix. We demonstrated that these percentages remain constant regardless of the
SpMV iteration in which the sampling is performed. However, the values obtained show a
strong dependence with the matrix pattern. The lower the number of nonzeros per row in
the original matrix (see nnz/n in Table 4.1), the higher the number of rows without sampled
entries. For example, matrix nmos3 has almost 60% of its rows without sampled entries,
whereas for nd3k every row has, at least, one sampled element.

Figure 4.9 shows a comparison between the performance of the SpMV obtained by the
original locality optimisation technique and the performance obtained using the information
provided by the hardware counters. As in Section 4.3, the information provided by the sam-
pled matrices has been used to generate a permutation vector which is applied to the original

90 Chapter 4. Locality Improvement on Irregular Codes

matrix. In this way, the original matrix is reordered considering only the information provided
by a subset of its nonzeros.

The SpMV performance of the sampled information is normalised to the performance of
the original technique. Reorderings using windows of fixed size with w = 1 and variable size
are analysed. In most of the cases, reorderings guided by the information provided by the
sampled matrices achieve a very similar performance to those obtained by the original tech-
nique. A few exceptions can be noticed. For example, considering windows of fixed size, the
original pct20stif reordering outperforms the sampled one when using four threads. The
differences in the performance for these cases are, at most, about 3%. On the contrary, there
are some sampling-based reorderings that achieve better performance compared to the origi-
nal ones. This is the case of the matrix nd3k using eight threads, showing an improvement
of 8%. A similar behaviour is observed considering windows of variable size. Note that the
magnitude of the performance variations for some matrices is slightly higher in comparison
with the fixed-sized case. For example, an improvement of about 15% is achieved by the
mixtank new sampling-based reordering using four threads.

It is noticeable that, unlike the use of random sampling (Section 4.3), the performance
obtained with this technique shows smaller fluctuations (always lower than 2%). This is due
to the kind of EBS method used by Perfmon. In EBS, a sampling period is expressed as
a number of occurrences of an event. According to [67], using a fixed sampling period may
easily lead to biased results. This is the reason why Perfmon can use a randomisation of the
sampling periods. After each buffer overflow, Perfmon randomises the moment in which
monitoring is resumed. In this way, sampling based on hardware counters performs a uniform
EBS but does not use a fixed sampling period.

According to the previous results, it can be concluded that the sampled information pro-
vided by the hardware counters is enough for the locality optimisation technique to generate
quality reorderings. This upholds the observations from Section 4.3.

4.4.3 Comparison with the original non-reordered matrices

Up to this point, the SpMV performance of matrices reordered from the sampled informa-
tion provided by DAST has only been compared with the reorderings generated by the original
technique. This section compares it to the performance of the SpMV using the original ma-
trices (without reordering), in order to check whether sampling-based reorderings obtain a
better SpMV performance. Results of this study are shown in Table 4.3.

4.4. Locality optimisation using hardware counters 91

Matrix 1 T hread 2 T hreads

Orig. w=1 w=var. Orig. w=1 w=var.

crystk03 0.36 0.38 0.37 0.47 0.50 0.49
garon2 0.53 0.52 0.53 1.18 1.21 1.21
gyro k 0.33 0.34 0.34 0.70 0.79 0.76
mixtank new 0.33 0.35 0.35 0.52 0.48 0.48
msc10848 0.33 0.35 0.35 0.43 0.59 0.60
nd3k 0.33 0.35 0.34 0.50 0.47 0.46
nmos3 0.48 0.49 0.50 1.08 1.10 1.09
pct20sti f 0.35 0.37 0.37 0.47 0.47 0.48
sme3Da 0.35 0.37 0.37 0.86 0.91 0.83
tsyl201 0.31 0.32 0.32 0.43 0.44 0.44

Average 0.37 0.38 0.38 0.66 0.70 0.68

Matrix 4 T hreads 8 T hreads

Orig. w=1 w=var. Orig. w=1 w=var.

crystk03 1.64 1.64 1.70 5.22 5.32 5.31
garon2 2.28 2.38 2.39 3.73 4.66 4.66
gyro k 2.40 2.47 2.57 5.12 5.31 5.36
mixtank new 1.03 1.38 1.42 2.29 4.79 4.16
msc10848 2.00 2.54 2.44 5.00 6.08 5.68
nd3k 0.77 0.89 0.93 2.42 3.22 2.71
nmos3 2.15 2.18 2.18 4.16 4.26 4.27
pct20sti f 0.92 0.99 0.99 3.73 3.76 3.74
sme3Da 2.61 2.68 2.67 4.79 5.64 5.25
tsyl201 1.05 1.06 1.05 4.51 4.54 4.51

Average 1.68 1.82 1.83 4.09 4.76 4.57

Table 4.3: SpMV performance comparison between the original matrices and the reorderings obtained by the
locality optimisation technique (in GFLOPS). Reorderings were performed using the information
provided by the hardware counters.

At first sight, the results point out that matrices obtained after applying the data reor-
dering technique outperform the original ones. There are only a few cases (using one and two
threads) that do not benefit from this reordering. SpMV performance improves up to 53%,
which is the case of matrix mixtank new running with eight threads. Note that, in this
example, the permutation vector can use only 7.2% of the nonzeros of the matrix (see Table
4.2). Note also that, as the number of threads increases, the performance improvement caused
by the locality optimisation gets more important. For example, considering windows of fixed

92 Chapter 4. Locality Improvement on Irregular Codes

size (w = 1), the performance increases on average from 2.6% in the sequential case to 14.1%
with eight threads. Finally, a slightly better behaviour is observed for reorderings that use
windows of fixed size instead of windows of variable size. This observation agrees with the
conclusions in [12].

4.4.4 Overhead improvement

One of the main drawbacks of the data reordering techniques is the reordering cost. It
can only be amortised when the sparse operation is repeatedly performed as, for instance, in
iterative methods, which usually require hundreds or even thousands of sparse matrix-vector
multiplications [79]. As shown next, a consequence of using sampled information to calculate
the permutation vector is an important reduction in the overhead introduced by the reordering
technique.

The reordering technique used in this study has two stages: the graph calculation and the
generation of the permutation vector using the TSP heuristic. In both cases the reduction
in the number of nodes of the graph decreases noticeably their overhead. If the reduction
is performed in the number of edges, the overhead also decreases, but to a lesser degree.
Using sampled matrices, the number of edges are reduced and the edge weights are changed
in the graph. Note that there will be an edge between two nodes when there is, at least, one

50%

60%

70%

80%

90%

100%

e
rh

e
a

d
 R

e
d

u
c

ti
o

n

30%

40%

50%

60%

70%

80%

90%

100%

O
v

e
rh

e
a

d
 R

e
d

u
c

ti
o

n

HC sampling w=var.

HC sampling w=1

w=var.

Figure 4.10: Overhead reduction of the locality optimisation technique using as a reference the time required to
perform the reordering using windows of fixed size w = 1 and the original (non-sampled) matrices.

4.5. Locality optimisation using latency information 93

entry match (see Section 4.2). Given that sampled matrices have fewer nonzeros than the
original ones, edges between nodes with few entry matches in the original graph are bound to
disappear in the graph generated using the sampled matrices. Note that these edge weights,
according to the distance function, represent the worst cases regarding locality. Therefore,
sampling reduces the cost of building the distance graph and its size. We must highlight that
this distance graph is used as input of the TSP heuristic (Chained Lin-Kernighan algorithm).
This heuristic is limited to a fixed number of iterations in such a way that most of the time
is devoted to the graph calculation. TSP heuristic time dominates the overhead only when
considering small matrices.

The analysis of the overhead is displayed in Figure 4.10. The plot shows the reduction in
the reordering cost using as reference the time required by the technique when using windows
of fixed size w = 1 and the original non-sampled matrices.

When using windows of variable size and non-sampled matrices, the locality optimisation
technique reduces on average 62% the reference overhead. But this reduction is even more
noticeable when sampled matrices are considered. In this case, the overhead reduction reaches
93% and 98% on average, depending on whether fixed or variable size windows are used,
respectively.

In a more precise way, the overhead expressed in terms of the number of SpMV operations
and considering sampled matrices is on average 620 with w = 1, and 261 with w = variable.
Note that the reference here is the computational time required to perform the SpMV operation
on the original matrices.

According to these results, we conclude that similar performance improvements are achie-
ved considering only sampled information with respect to the original locality optimisation
technique with an important reduction in the computational time required to perform the re-
ordering.

4.5 Locality optimisation using latency information

Additionally to the addresses that cause a particular event, EARs provide the latency of
every sampled access to memory. It should be remembered that, using our sampling method,
when a sampled nonzero of the matrix is multiplied by the corresponding element of the vector
X , the access latency of this element becomes available. This latency information can be used
to improve the behaviour of the data reordering technique. With this objective in mind, several
new criteria to create the windows of locality are introduced in this section.

94 Chapter 4. Locality Improvement on Irregular Codes

In [12], windows of variable size are built according to the locality model. That is, consi-
dering only the distances among the rows/columns of the original sparse matrix. Now, a new
approach that uses the maximum sampled latency per row instead is introduced. We assume
that if there are accesses with high latency to the vector X , there is a low data reuse of these
elements accessed by the nonzeros of a particular row and the ones accessed by the previous
rows. Taking this into account, the windows creation process can be divided into two stages:

1. A histogram is created from the input matrix, that is, the sampled one. This histogram
only contains the maximum latency per row. Therefore, there are n− 1 latency values
in the histogram. Note that all the information provided by the hardware counters is
obtained in the second iteration of the SpMV, to avoid high latencies caused by the
compulsory misses.

2. The decision of whether two consecutive rows i and j will be included within the same
window or not is ruled by the following condition:

maximum sampled latency(j)≤ threshold (4.5)

Otherwise, a new window is created. The behaviour of two different thresholds has been
evaluated: average and 7-cycle latency. The average latency depends on the sampled
accesses and it is calculated as:

∑
snnz
i=0 latency(βi)

snnz
(4.6)

where βi is a sampled access. Note that latencies higher than 7 cycles correspond, at
least, with accesses to the L3 cache on the Itanium2 processor.

Once the windows are defined, the locality optimization technique generates a permutation
vector that will be subsequently applied to the original matrix. Note that this permutation
vector is calculated by our reordering technique using only the information provided by the
sampled matrices and the windows obtained considering the latency information.

On the other hand, we have detected that some rows of the matrices have no nonzero values
sampled by the hardware counters (see Table 4.2). Therefore, there is no latency information
for some rows of the sampled matrices. This situation implies a problem in the windows
creation process: how can we handle rows without sampled entries?. Several tests have been
performed to figure this out:

4.5. Locality optimisation using latency information 95

Figure 4.11: Figures display, for a particular row size interval (X axis), the percentage of these rows with latency=0
(without sampled nonzeros) in the latency histogram (Y axis). Interval a corresponds to rows of the
matrix with [5a,5(a+1)) nonzeros.

– Firstly, an analysis of the latency histograms was performed. Those matrices that did
not get any sampled access at any of their rows were checked to find out their number
of nonzero elements per row. A summary of the results is shown in Figure 4.11. The
figures display, for a particular row size interval (X axis), the percentage of these rows
with latency zero in the histogram (Y axis). In particular, interval a corresponds to row
sizes in the interval [5a,5(a+1)). For example, interval number 5 corresponds to rows
of [25,30) nonzero elements. Interval number 21 shows the percentage for rows with
more than 150 nonzero elements. Results show the same trend for all the considered
cases. That is, the greater the number of nonzero elements per row, the smaller the
percentage of rows with no sampled accesses.

– Secondly, a comparison between the latency histograms of several SpMV iterations was
performed. For those rows with no sampled accesses in the 2nd iteration, the latencies
in subsequent iterations were checked. Table 4.4 shows, as an example, the comparison

96 Chapter 4. Locality Improvement on Irregular Codes

0.95

1.00

1.05

1.10

1.15

1.20

1.25
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce
Lat. 7 cyc. Lat. 7 cyc. (zeros) Avg. Latency

0.95

1.00

1.05

1.10

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Lat. 7 cyc. Lat. 7 cyc. (zeros) Avg. Latency

0.95

1.00

1.05

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Lat. 7 cyc. Lat. 7 cyc. (zeros) Avg. Latency

2 Threads 4 Threads

0.95

1.00

1.05

1.10

1.15

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Lat. 7 cyc. Lat. 7 cyc. (zeros) Avg. Latency

8 Threads 16 Threads

Figure 4.12: Normalised performance of the matrices reordered using latency information with respect to the
original reordering technique.

among iterations 2, 4 and 6. This table shows the maximum latencies in iterations 4 and
6 of those rows with no sampled entries in the second iteration. Rows are grouped by
its latency (L2 cache, L3 cache and memory accesses respectively). Note that most of
the rows with no sampled entries in iteration 2 have low latencies in iterations 4 and 6
(typically, lower than 15 cycles). Just in a few cases (matrices gyro k, mixtank new

and pct20stif) there are some rows with high latencies.

According to these analysis we conclude that rows with no sampled entries in the latency
histogram (i.e., latency=0) are bound to present small size and low latency. Therefore, a good
approximation will be to include those rows with no sampled entries together with its previous
row in the same window of locality.

The next step consisted in evaluating the SpMV performance of the matrices reordered
using the latency information. Two thresholds were used: average latency and 7-cycle latency.
In both cases, a new window is created for each row with no sampled accesses. Additionally

4.5. Locality optimisation using latency information 97

Matrix Iter.
Latency interval (cycles)

[5,7] (7,21] > 21
L2 cache L3 cache Memory

crystk03
4th 662 11 0
6th 652 17 2

garon2
4th 2583 78 0
6th 2466 73 0

gyro k
4th 1557 9 3
6th 1510 11 3

mixtank new
4th 2577 121 3
6th 2607 172 4

msc10848
4th 72 2 0
6th 77 5 0

nd3k
4th 0 0 0
6th 0 0 0

nmos3
4th 3974 154 0
6th 4059 167 0

pct20sti f
4th 4452 36 16
6th 4570 34 18

sme3Da
4th 556 88 0
6th 581 56 0

tsyl201
4th 27 0 0
6th 29 0 0

Table 4.4: Comparison between the latency histograms of SpMV iterations 2, 4 and 6.

98 Chapter 4. Locality Improvement on Irregular Codes

to this, a case was included for the 7-cycle threshold (labelled as “Lat.7 cyc (zeros)” in the
figures) where rows with no sampled entries are included in the previous window, according
to the conclusion above.

Figure 4.12 shows the SpMV performance obtained by the latency-based reorderings us-
ing different number of threads. These measurements are normalized with respect to the
performance obtained by the original technique when considering windows of variable size.
According to the results several conclusions can be made. Firstly, the new approach clearly
outperforms the original technique. Only in a few cases the latency-based reorderings degrade
the performance of the original ones. These degradations are always lower than 1%. On the
contrary, speedups up to 1.18× were reached (matrix mixtank with 16 threads). Secondly,
the impact on the SpMV performance caused by the locality improvement is more noticeable
with a higher number of running threads. This is caused by the weight of the cache and me-
mory accesses in the total execution time of the parallel SpMV kernel, which increases as the
number of threads grows. In this way, for example, the highest improvements with respect
to the original reorderings were observed with 16 threads. And finally, as we expected, a
slightly better behaviour is observed when the zeros approach is not applied. Recall that with
the zeros approach those rows with no sampled entries are included together with its previous
row in the same window of locality. We assume that rows with no sampled nonzeros in the
latency histogram are likely to present small number of nonzeros and low latency. However,
in a few cases, the differences in the SpMV performance is important. This is the case of
matrices gyro k and pct20stif, whose sampled matrices have 13.5% and 13.2% of their
rows without sampled entries respectively (see Table 4.2). Here windows of locality are too
big in the sense that they consist of consecutive rows that exhibit low locality among them.

Therefore, according to these results, we conclude that using the latency information in
the windows creation process improves noticeably the behaviour of the reordering technique
in comparison with the original version.

Another important issue was studied: the overhead introduced by the reordering tech-
nique. This overhead is related to the number of nodes in the distance graph (i.e., the number
of windows of locality) that is used as the input for the reordering technique. Table 4.5 shows
the number of windows of locality for each matrix when different criteria are considered. Note
the important reductions obtained when the latency information is used, especially when rows
without sampled entries are not considered as new windows. As Figure 4.13 shows, this po-
licy has a direct influence in the computational time required to perform the reordering. The
reordering time is normalised with respect to reorderings performed using the METIS library

4.5. Locality optimisation using latency information 99

Matrix N
Original Lat. Avg. Lat. 7 cycles

Technique 7 cycles Latency (zeros)

crystk03 24696 12598 1598 1508 760
garon2 13535 5266 6158 6158 301
gyro k 17361 7144 2837 2837 497
mixtank new 29957 11523 7211 7211 2583
msc10848 10848 4463 793 793 708
nd3k 9000 4765 1122 838 1122
nmos3 18588 6221 11380 11380 271
pct20sti f 52329 22868 7856 7856 929
sme3Da 12504 4429 2988 2988 2230
tsyl201 20685 9324 1308 852 1279

Table 4.5: Number of windows of locality using different criteria in the windows creation process.

1
2
3
4
5
6
7
8
9

No
rm

al
iz

ed
 R

eo
rd

er
in

g
Ti

m
e

0
1
2
3
4
5
6
7
8
9

No
rm

al
iz

ed
 R

eo
rd

er
in

g
Ti

m
e

Figure 4.13: Average overhead of the reordering technique: comparison with METIS library.

[81], which is considered a standard. The first two bars correspond to the original reordering
technique using windows of w = 1 and variable size respectively. The others represent the re-
ordering technique using latency information and different thresholds. Important reductions
are observed in comparison with the original technique. It is especially noticeable the last
case, reducing on average a 60% the time required by METIS. The figure summarises the
results for all the matrices in our testbed.

Nonetheless, every architecture has its own peculiarities and, although this new approach
using latencies outperforms the original reordering technique, the latter has not been yet tested
to prove that actually improves the performance of the original SpMV. Figure 4.14 shows the

100 Chapter 4. Locality Improvement on Irregular Codes

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce
Lat. 7 cyc. Lat. 7 cyc. (zeros) Avg. Latency

0.95

1.00

1.05

1.10

1.15

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Lat. 7 cyc. Lat. 7 cyc. (zeros) Avg. Latency

0.95

1.00

1.05

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Lat. 7 cyc. Lat. 7 cyc. (zeros) Avg. Latency

2 Threads 4 Threads

0.95

1.00

1.05

1.10

1.15

1.20

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Lat. 7 cyc. Lat. 7 cyc. (zeros) Avg. Latency

8 Threads 16 Threads

Figure 4.14: Normalised performance of the matrices reordered using latency information with respect to the
original matrices.

normalised performance obtained by the latency-based reorderings with respect to the original
matrices (non-reordered). A first approach to the results points out that matrices obtained
after applying the data reordering technique outperform the original ones. There are only a
few cases that do not take profit from this reordering (for example, matrix crystk03). It
is worth mentioning that speedups higher than 1.2× were reached. On the other hand, as the
number of threads increases, improvements caused by the locality optimization become more
important. For example, considering a 7-cycles threshold, the SpMV performance increases
on average from 2% in the 2 threads case to 7.3% using 16 threads.

To summarise, the reordering method applied together with the latency information pro-
vided by the hardware counters presents a good behaviour. Additionally, an important reduc-
tion in the computational time required by the reordering technique has been achieved.

4.6. Conclusions 101

4.6 Conclusions

Some of the methods used more often to optimise the locality of irregular codes in parallel
architectures are run-time techniques that modify the allocation of data structures in memory.
One of the major drawbacks of these techniques is the preprocessing cost of the reordering
stage, which must be low enough to be efficient when used on real problems. This chapter
has considered three approaches and contributed two of them to reduce this cost based on
incomplete access-related input information.

The first approach has demonstrated that a randomly sampled matrix with about a 1-2%
of the nonzeros can be used to perform the reordering of data with a maximum 5% loss of
accuracy in the final results. The drawbacks observed are the fluctuations in performance due
to the nature of the sampled information and the dependency of the performance with the
number of threads. In the second approach a technique, called DAST, has been introduced to
obtain a sampled matrix using the memory addresses of the samples given by the hardware
counters on Itanium2 Montvale. The fluctuations in this case are noticeably lower, and our
tests show that a percentage of samples from 2.9% to 9.4% are enough to obtain a difference,
at worst, of 3% with respect to the original performance. In some cases, even an improvement
in the performance is obtained. The main benefit shown by our results is a time reduction that
ranges between 93% and 98% in the reordering stage. The third approach combines DAST
and the memory access latency information provided by the hardware counters. Using this
information, windows of locality are defined to assist the reordering stage. Performance im-
provements up to 20% are obtained using this technique. This approach shows an encouraging
60% time reduction compared with the standard METIS library.

Thus, this confirms that the hardware counters are an adequate vehicle to obtain sam-
pled information at a low cost as well as contribute to increase the performance of locality
techniques for irregular codes by reducing dramatically their computational time (goal G3-
REORDTECHIMPRV).

5

Page Migration

5.1 Introduction

On a NUMA environment, the adequate placement of data is essential to improve the per-
formance of a code. A multithreaded application may vary its number of threads or have them
migrated to different cores during its lifecycle, which will change its page affinity require-
ments (i.e., the cell to which a page is bound).

Thread migration and preemption are common events in non-dedicated environments. The
available resources often must be shared among several jobs from different users or processes
from the system itself, such as demons. In those situations in which a processor must run
several threads in the same processor, the scheduler of the operating system may intervene
preempting some threads or migrating them to free processors, in an attempt to distribute
the available resources among jobs. In addition, depending on the type of parallel program,
the computation of a preempted thread can be taken up by another thread. An undesirable
consequence of these data movements in a NUMA system is that a thread may be placed far
(in terms of access cost) from its dataset.

Not until recently did Linux gain NUMA awareness. Its first-touch page migration policy
can sometimes be beneficial when the scheduler migrates a thread to a remote cell. In this
case, if its dataset has not previously been touched by any other thread from a different cell,
the recently migrated thread will have it allocated in its own cell. Unfortunately, this is not
a common situation in many OpenMP programs, in which a master thread usually touches
the whole data prior to involving the rest of threads in the parallel computation. When this
happens, the migrated thread will need to access its dataset from a remote cell, with the
resulting increase in the latency.

104 Chapter 5. Page Migration

Even in those cases in which the first-touch policy allocates each thread and its dataset
close to each other, any page can happen to be accessed by several threads scheduled in
different cells. This is particularly true for irregular codes. In these situations, a dynamic
migration policy can mitigate the problem of efficiently accessing data, as we demonstrate in
this chapter.

The thread and memory allocation study developed in the FINISTERRAE supercomputer,
described in Chapter 2, found a non-deterministic behaviour in the kernel’s thread scheduler.
Indeed, when running a multithreaded program in a rx7640 node (see Figure 2.2), some of the
threads stay in the same cell and the rest are migrated to the other one, although this situation
can vary at any moment during the program execution due to the appearance of other jobs in
the system. By and large, the scheduler strives to allocate every thread as far as possible from
each other. This is actually a fair policy, as long as each dataset is kept with its thread.

Additionally, Chapter 2 concluded describing an example scenario in which a static, first-
touch allocation policy can be detrimental to the performance of a parallel program. This
highlighted the importance of having each dataset placed as close as possible to its thread,
even when this thread is migrated. Concerning this issue, one of the contributions of this
dissertation, covered in this chapter, is the development of optimisation strategies for page
migration. This task has been accomplished through the definition of a dynamic page migra-
tion scheme based on a run-time sampling of the memory references made by a monitored
application. This scheme consists of three stages:

1. Development of a software infrastructure based on the information provided by the
hardware counters to characterise, in terms of page accesses, the locality and affinity of
a monitored application (goal G4-PAGEMIGINFR).

2. Setup of page migration policies for FINISTERRAE based on the development of new
algorithms, using the information provided by our software infrastructure (goal G5-
PAGEMIGALG).

3. Evaluation of effective page migration implementations.

The first stage is presented in Section 5.2. A key advantage in this development has been
the availability of the information provided by EARs –such as the access latencies and exact
memory addresses where events occur– in order to obtain an accurate-enough model of the
memory map of a monitored application. This information sets a new pace for developing

5.2. Development of a page migration infrastructure 105

different migration strategies in the second stage of our scheme, developed in Section 5.4.
This section also evaluates the performance of each page migration algorithm proposed.

5.2 Development of a page migration infrastructure

5.2.1 Problem statement

When thinking about the prerequisites to develop a tool that provides information about
page affinity and locality of a multithreaded application, as well as to take decisions to im-
prove its performance, the Stéphane Eranian’s command tool pfmon [82] was a reference.
However, there were some drawbacks which refrained us from adopting it:

– It is solely a monitoring tool, not being able to take any decision in runtime.

– Even though it can give a histogram of cache misses as well as the accessed addresses
and latencies, extracting page information from pfmon’s output would imply a post-
process of a file’s content, without having a chance to modify the behaviour of the
monitored application based on that information.

– No migration algorithm can be attached to it.

– Collocation of the pfmon process cannot easily be controlled.

– It is a large and complex application, which may tamper with the performance of the
monitored application.

Despite its drawbacks, pfmon cast some light on the requisites that our page migration
infrastructure must meet:

– Attach to a multithreaded application given as a parameter. Most of the page migration
techniques found in the literature require that the monitored program is linked to a given
library or have its code modified somehow. The aim of our proposal is that it requires
no modification of the monitored program whatsoever.

– Run in user-level, so that any user without privileges can execute it.

– Return information, at least, about the accessed pages, cache lines, latencies and CPU
attached, so that there is enough information available to try different migration strate-
gies.

106 Chapter 5. Page Migration

Figure 5.1: Time intervals in a profiling process.

– Detect and crawl over the dynamically spawned threads of the monitored application.

– Listen to every thread and show information about each of them separately.

– Monitor during the whole life cycle of a thread, or during some periods only.

– Provide flexibility to associate different migration strategies.

– Perform page migrations timely. That is, shortly after the need to migrate is detected.

So the combo libpfm/Perfmon [67] was chosen to write a program that complies with
these features.

Our software infrastructure for page migration must meet two requirements: provide pro-
filing capabilities, to inspect the data accesses in memory performed by a program in runtime,
and effectively modify the allocation of such data so that the whole program locality improves.
Therefore, the infrastructure must comprise two parts: a monitoring stage and an evaluation

stage. Prior to developing the infrastructure, some timing constraints must be discussed.
Consider the time scenario depicted in Figure 5.1. A program is profiled by a monitoring

thread. This thread uses Perfmon to inspect the program in a non self-monitoring way using
a sampling buffer, procedure that was explained in Section 3.2. Each monitoring/evaluation

cycle lasts for a time ti, i = 1,2, ...n. During the monitoring period of every cycle (tp), the
profiled program runs normally until a buffer overflow occurs at a time tp j, j = 1,2, ...m. For
each overflow, an interruption is raised and the profiled process is stopped, with the resulting
overhead (tov j). The interruption is then handled and the buffer is read and processed by the
monitoring thread (hndlint j). Then, monitoring is resumed and the whole process is repeated
until the buffer overflows again at time tp(j+1). This process lasts until the monitoring period

expires. In that moment, the evaluation stage begins. All the collected data is processed and

5.2. Development of a page migration infrastructure 107

a migration algorithm is applied (tprocessing). Next, a number of pages are migrated if needed
(tmigration). Hence, each monitoring/evaluation cycle ti verifies:

ti = ∑
j

tp j +∑
j

tov j + tprocessing i + tmigration i (5.1)

Note that equation 5.1 does not include the period hndlint j, which is computed by the mo-
nitoring thread and will be masked by the monitored program execution. Only the interruption
overheads and the migration time are susceptible of slowing down the monitored program.

Despite the implicit overheads related to interruption handling, processing and migrating
time, and cache and TLB flushes, an adequate page allocation on each cycle i is expected to
amortize these costs by the locality improvement achieved. Therefore, if the original duration
of a program is T , and its execution time using a dynamic page migration is

T ′ = ∑
i

ti (5.2)

then the migration infrastructure will meet its goal if

T ′ < T (5.3)

This condition has been considered in the rest of this chapter when the delays and over-
heads introduced by the migration infrastructure are estimated. The remainder of this section
describes the page migration software infrastructure developed. In particular, the system ar-
chitecture is presented in Section 5.2.2 and its functional design is explained in Section 5.2.3.

5.2.2 Architectural design

A controlling thread using Perfmon can simultaneously monitor several threads. To do
so, it waits on multiple contexts1 at the same time, as shown in Figure 5.2. A context can only
be attached to one thread at a time. Therefore, there must be as many contexts as there are
monitored threads.

Our page migration infrastructure takes into account this feature and comprises the modu-
les depicted in Figure 5.3:

– A monitoring thread is allocated in a monitoring core, used exclusively to manage the
sampling process, information retrieval and page migration decisions. This thread waits
on as many contexts as monitored threads there are at a given time in a dynamic way.

1Perfmon contexts were explained in Chapter 3.

108 Chapter 5. Page Migration

Figure 5.2: Waiting on multiple contexts.

– A multithreaded application where each application thread runs on a different core in
our target architecture. A Perfmon context is created and associated to each thread. It
permits retrieving the information provided by the PMU of each core.

– A sampling buffer2 is attached to each context, so that samples obtained by each core’s
PMU are stored in it.

– The sampling data obtained from each sampling buffer are processed by the monitoring
thread to update a sample page map. This map consists of sampled page addresses
accessed per monitored thread as well as the sum of latencies of each single sampled
access to a given page. Each entry in the table owns, in turn, another table with addi-
tional information such as the precise address of the sampled cache lines accessed per
page, its latencies and other side information like timestamps.

2Sampling with Perfmon was explained in Chapter 3.

5.2. Development of a page migration infrastructure 109

Figure 5.3: Sampling section from our page migration infrastructure.

5.2.3 Functional design

The algorithm of the monitoring stage, executed by the monitoring thread, is presented
in the pseudocode of Algorithm 3. It comprises a main function (lines 1 to 16) and an inter-
ruption handler (lines 18 to 34). The task of the main function is to configure the monitoring
process and launch the monitored process. The task of the interrupt handler consists of at-
tending the interruptions raised by the threads of the monitored process. Both parts of the
algorithm are explained next.

A flow diagram of the main function is shown in Figure 5.4. It comprises the following
steps:

– The program receives the name of the application to monitor.

110 Chapter 5. Page Migration

Algorithm 3: Run-time sampling infrastructure pseudocode
1: main()
2: {
3: install over f lowHandler()
4: initialize p f m library()
5: create child(monitored program)
6: for (; ;) do
7: while (tid = new thread detected()) do
8: ctx = create p f m context(tid)
9: addContext2list(ctx)

10: per f monctl(PFM LOAD CONT EXT, tid)
11: ptrace(tid)
12: task start(tid)
13: activeT hreads++
14: end while
15: end for
16: }
17:
18: over f lowHandler(tid)
19: {
20: msg = read(tid)
21: switch(msg.type){
22: case PFM MSG OV FL : /∗ sampling bu f f er is f ull ∗/
23: process smpl bu f f er(ctx)
24: restart p f m()
25: break
26: case PFM MSG END : /∗monitored task terminated ∗/
27: activeT hreads−−
28: process smpl bu f f er(ctx)/∗ check le f tover samples∗/
29: break
30: }
31: if ((activeT hreads == 0) OR (monitoringPeriodExpired == T RUE)) then
32: createPagelist(contextList)
33: end if
34: }

– An asynchronous notification is installed using a standard fcntl file control mechanism.
When a SIGIO interrupt arrives, the overflowHandler function is executed.

– The libpfm library is initialised.

– Next, a child process is created. Its first action is to execute a ptrace(PTRACE

TRACEME) system call. This invocation provides a means whereby the parent pro-
cess can observe and control the execution of the child. This action is followed by an
exec() system call to start running the application to monitor.

– The code enters then in a loop in which it is notified every time a new thread is created
by the child process. At the moment this happens, the thread will have previously been
stopped by the ptrace(PTRACE TRACEME) system call.

5.2. Development of a page migration infrastructure 111

– A new Perfmon context is created and attached to the tid of the new thread. The
context creation implies that a sampling buffer will be allocated and associated to that
context. The buffer is configured to send a notification, via the associated file descriptor,
every time it is full. In our experiments, the event to sample is “DATA EAR CACHE

LAT4”, which corresponds to all cache misses with latency higher that 4 cycles.

– Finally, a ptrace(PTRACE ATTACH) system call begins tracing the new thread be-
fore it is resumed to start running normally.

All this process allows detecting dynamically any new threads created or defunct during
the monitored application’s life cycle.

As previously explained in Section 5.2.2, the sampling buffer of each context is confi-
gured to send a notification every time it overflows. An interruption is raised and, then, the
overflowHandler function handles it, following the steps depicted in the flow diagram
of Figure 5.5:

– First, the tid of the thread that raises the interruption is obtained and the Perfmon
context associated to it is accessed.

– Perfmon stores buffer notifications as messages in a queue. A standard read library
call is used to read the message. If the message indicates that the buffer got full and
overflowed (PFM MSG OVFL), the buffer is processed (subprocess A) and the context
is restarted to get ready to keep on storing samples. If the message indicates that the
thread has finished, then the leftover samples which could be still stored in the sampling
buffer (not enough to make it overflow) are read, and that thread is stopped being traced
by our monitoring process.

– When either the monitoring period expires or the monitored program finishes, a page

map is created/updated with fresh information from the just read sampling buffer (sub-
process B). Obviously, there is no point in creating a page map once the program has
finished, but it is useful for debugging purposes and can be disabled in a production
environment.

Flow diagram A in Figure 5.5 shows how the sampling buffer is processed each time a
notification arrives to the monitoring tool:

112 Chapter 5. Page Migration

Figure 5.4: Flow diagram from the main function of the monitoring tool.

– Each Perfmon context has a pointer to its associated sampling buffer’s header address.
The number of stored samples in the buffer is obtained from the buffer header, so that
the samples can be iterated.

5.2. Development of a page migration infrastructure 113

Figure 5.5: Flow diagram from the interruption handler of the monitoring tool.

114 Chapter 5. Page Migration

– For each sample, the memory address, as well as its associated latency, are retrieved.

– Taking into account L2 and L3 cache sizes (note that L1 is ignored for real types) the
cache line is identified from each address.

– Cache lines are stored in a dynamic linked list associated to the context. Note that,
therefore, there will exist one linked list per monitored thread to keep control of each
thread accesses. If that line was already accessed it will exist in the list, so the new
latency is just appended to that line. Otherwise, the new line and its latency are added
to the list.

– This loop continues until all the samples in the buffer have been read.

– When sampling is restarted via PFM RESTART, the sampling buffer is marked as empty.

Flow diagram B in Figure 5.5 shows how the page map list is created, once all cache lines
have been accessed:

– The list of existing contexts is iterated. For each context, each cache line accessed is
read.

– The page address to which each cache line belongs is identified and appended to the list
(which is actually a binary search tree) associated to that context.

– If the page already exists in the list, the cache line is added to that page. Otherwise, a
new page will be created.

– This process is repeated for all cache lines accessed per context and for each context.

The creation of the page map is the last step of the monitoring stage. Next, the evaluation

stage begins. In this stage, the collected data is processed by a given migration algorithm
and, then, the memory pages chosen by the algorithm are actually migrated. The migration
algorithms developed are presented and discussed in Sections 5.5 and 5.6. Previously, a set
of operating tests carried out to evaluate the performance of our page migration infrastructure
are presented in the next section.

5.3. Operating tests 115

5.3 Operating tests

5.3.1 Access to page information

Our page migration infrastructure was tested with the OpenMP version of the parallel NAS
benchmark suite v3.3 [83]. As an example, the BT.B (block tridiagonal, class B) benchmark,
whose description can be found in [84] is presented here. It was executed on a FINISTERRAE

rx7640 [57] node using four threads while being managed by our page migration infrastruc-
ture. This test was performed to check that the infrastructure works properly and provides
useful information for the page migration problem.

Figure 5.6: Number of different cache lines accessed per page and per thread. Only one access per cache line is
shown.

116 Chapter 5. Page Migration

Figure 5.7: Total number of cache lines accessed per page and per thread. The sum of all accesses per cache line
are shown. Y-axis in log scale.

Figures 5.6 to 5.9 show different outcomes for each thread. On each figure there is one
graph per thread, identified by its tid number. On each graph the x-axis represents the whole
range of sorted accessed pages. We observed that icc always creates an additional thread that,
to our knowledge, performs no relevant operations for the computational task.

Figure 5.6 shows the number of different cache lines accessed per page by each thread.
It helps to determine which pages had a larger range of addresses accessed. To know which
pages had a higher number of total references, Figure 5.7 shows the whole number of refe-
rences to a given page (note that Figures 5.7 and 5.8 are in logarithmic scale). It is noticeable
that, due to the structure of the tridiagonal problem, there are several chunks of pages that are
accessed mostly by a single thread and very little by the rest. This information about latencies

5.3. Operating tests 117

Figure 5.8: Sum of latencies of all references to a given page. Y-axis in log scale.

Figure 5.9: Number of threads accessing a given page.

118 Chapter 5. Page Migration

can be correlated to the affinity set of each thread, thus allowing us to determine whether a
page is local or remote to a cpu.

Figure 5.8 reflects the accumulated latency of all accesses to each page by each thread,
which can be useful to take migration decisions. Finally, Figure 5.9 shows the number of
threads that accessed a given page. This permits us to know which conflicts exist among
which threads.

The results obtained show the usefulness of our development. It is possible, even at first
sight, to observe the number of threads accessing a given page, the locality of data, the regions
where any conflicts can occur and the distribution of pages among the threads.

5.3.2 Migration test

In order to test the behaviour of the evaluation stage of our page migration infrastruc-
ture and assess to what extent a good page migration policy can improve the performance,
a proof of concept was developed. For that purpose, a small OpenMP benchmark, shown in
Algorithm 4, was written. It comprises two steps. In the first step (lines 6 to 13), a master
thread allocates a large array of doubles and then accesses it, to ensure that the data is locally
allocated by the first-touch policy. In the second step (lines 15 to 22), each thread accesses an
independent chunk of the array randomly, in order to force a noticeable number of different
accessed pages. This benchmark was run in one of the FINISTERRAE rx7460 nodes using
two threads. Note that an access is called local when it comes from a processor in the same
cell as the involved memory module, and remote when it comes from another processor in a
different cell.

The FINISTERRAE’s thread scheduler behaves in a way that, although both threads had
initially been allocated in the same cell, one of them was always migrated to the other cell.
Since the data had previously been allocated in the master’s cell memory by the first touch
policy, the migrated thread was forced to access its dataset remotely. This is verified in Figure
5.10. It shows the latency of each access made by every thread on each cell. For instance,
when a thread allocated in Cell 0 accesses data remotely, this cell (Figure 5.10(b)) will show a
high latency value. In our benchmark, data are initially allocated by the master thread in Cell 1
(Figure 5.10(a)). All accesses from that node are, therefore, local, so the access latencies fall
in the range of 300-350 cycles. Next, the benchmark migrates one of the threads to Cell 0
and, as shown in Figure 5.10(b), all accesses from there are remote so the latencies are in the
range of 500-600 cycles.

5.3. Operating tests 119

Algorithm 4: Parallel benchmark to test local and remote accesses
1: do loop()
2: {
3: #pragma omp parallel
4: {
5: thread← omp get thread num()
6: /∗1st step∗/
7: #omp master
8: {
9: pageArray← allocate array()

10: for (i = 0; i < length(pageArray); i++) do
11: pageArray[i]← pageArray[random()%length(pageArray)]
12: end for
13: }
14: #pragma omp barrier
15: /∗2nd step∗/
16: chunkSize← length(pageArrayChunk)
17: for (4 times) do
18: for (i = 0; i < chunkSize; i++) do
19: pageArray[i]← pageArray[thread ∗ chunkSize+ random()%chunkSize]
20: end for
21: #omp barrier
22: end for
23: }// end parallel region
24: }

This test was repeated using our page migration infrastructure. Figure 5.11(a) shows
again local accesses from the threads allocated in Cell 1. However, in this case the pages that
initially were accessed remotely are now migrated to the cell of the accessing thread (Cell 0,
Figure 5.11(b)) so, from then on, accesses are local, with the consequent time reduction.

Table 5.1 shows the average execution time of each loop and the total execution time
including initialisation times and overheads (hence, it is higher than the sum of the slowest
thread of each loop). Note that the first loop is dedicated only to allocate data. Therefore,
the time measured using our infrastructure is slightly higher than the no-migration case due
to a small monitoring overhead. However, from the second loop on, the time of the thread in
Cell 1 –which is migrated to Cell 0 – drastically drops thanks to the page migration. The
whole speedup achieved is 16.7%. All these experiments were performed using an array of
30000 pages (∼458MB) to make sure data do not fit in cache memory.

5.3.3 Migration performance study

Page migration is performed using the move pages() system call [85]. Whereas this
call permits page migration in user-space, it suffers from a limited performance. Indeed, each
invocation to move pages() has a large initialisation overhead and, among other side ef-

120 Chapter 5. Page Migration

0 5000 10000 15000 20000 25000

0
2
0
0

4
0
0

6
0
0

8
0
0

Access

L
a
te

n
c
y
 (

c
y
c
le

s
)

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

(a) cell 1

0 5000 10000 15000 20000 25000

0
2
0
0

4
0
0

6
0
0

8
0
0

Access

L
a
te

n
c
y
 (

c
y
c
le

s
)

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

(b) cell 0

Figure 5.10: Access latency from threads on each cell. No migration.

0 10000 20000 30000 40000 50000

0
2
0
0

4
0
0

6
0
0

8
0
0

Access

L
a
te

n
c
y
 (

c
y
c
le

s
)

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

(a) cell 1

0 10000 20000 30000 40000 50000

0
2
0
0

4
0
0

6
0
0

8
0
0

Access

L
a
te

n
c
y
 (

c
y
c
le

s
)

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

(b) cell 0

Figure 5.11: Access latency from threads on each cell. Migration.

5.3. Operating tests 121

Mode
Time(sec.)

Total Speedup (%)
Step 1 Step 2

T hread 0 T hread 0 T hread 1

No migr. 13.3 26.2 41.1 54.4
Migr. 13.4 26.1 33.2 46.6 16.7

Table 5.1: Average execution time (sec.) of a data-intensive benchmark, with and without page migration.

fects, flushes the TLB. Although move pages() was fixed in kernel 2.6.29 to have a linear
complexity [47], its overhead to migrate large buffers might constrain the final performance of
a page migration policy. In our infrastructure, the evaluation stage is run every time the moni-
toring stage ends. In this stage, a migration policy is applied to evaluate which of the sampled
pages must be migrated. Then, they are actually migrated calling move pages(). The
larger the buffer of pages to migrate is, the higher the potential migration overhead. Hence,
the overhead of move pages() has been quantified to estimate whether page migration in
user space is affordable in FINISTERRAE using our page migration infrastructure.

5.3.3.1 Experiment setup

To estimate the performance of the move pages() call, the following issues were taken
into account:

– The study was carried out on a rx7640 node, shown in Figure 2.1, running a 2.6.29.6
Linux kernel. Both cells are symmetrical and connected through a crossbar. Conside-
ring that there are no other processes interferring, it seems reasonable to formulate as
a hypothesis that the time to migrate a page from Cell 0 to Cell 1 must be the same as
from Cell 1 to Cell 0.

– By default, page size on FINISTERRAE is set up to 16 KBytes. The performance of
move pages() is related to the number of pages to migrate. Therefore, the experi-
ment must evaluate the performance related to the number of 16 KB pages.

– Our page migration infrastructure orchestrates the monitoring and migration process
from a core different from the ones in which the monitored program runs. The basic
migration policy implemented for this test states that, when the number of remote ac-
cesses to a page p gets higher than the number of local accesses, p will be migrated

122 Chapter 5. Page Migration

from the local cell to the remote one. The experiment must evaluate whether there is
any difference in performance ordering the migration from either a local or a remote
cell.

The following section shows the migration performance of a code in C that allocates P
pages in a buffer, places a thread in a given core and calls move pages() from that thread.
The throughput related to the time to complete the buffer migration from one node to another
is measured.

5.3.3.2 Migration throughput

Figure 5.12 shows the throughput of move pages() for different number P of pages
and migration strategies. The legend “Data in cell X. Thread in cell Y. Migration from X to

Z” means that the data to migrate is initially allocated in cell X and the thread that invokes
move pages() is in cell Y . The pages to migrate are in cell X and are moved to cell Z.

The figure clearly shows two different trends in the four experiments. In two out of the four
cases, in which the thread that invokes move pages() is in the same cell as the data initially
are, the throughput is identical to each other and higher than the opposite cases. This effect
is specially noticeable for 32 pages (maximum use of the L1 DTLB). In all experiments, the
peak throughput is achieved for 128 pages, which is the number of entries of the L2 DTLB.
From then on, the performance falls until a buffer size of 2048 pages is reached, staying
approximately steady from that value on.

In preliminary tests performed using our page migration infrastructure the number of
pages to migrate has been checked to be practically always higher than 1024 pages per mo-
nitoring period (otherwise, to avoid unnecesary overheads, page migration could even be dis-
abled). These values coincide with the steady region in Figure 5.12. The throughput in that
region is in the range of 1150 MB/s for the best cases and 1115 MB/s for the worst ones. The
difference is just about 3%. Furthermore, taking into account that in the tests the number of
pages migrated on each monitoring period was in the range between 1024 and 16384 pages,
the migration time can be assumed to fall, approximately, in the range between 14 and 229
milliseconds at most. It is not straightforward to state whether such an overhead is affordable
or not, since it will depend on the number of page migration actions that occur during the
execution of the monitored program and how much these and the remaining overheads are
compensated with the improvement achieved by those migrations. Results in sections 5.5 and
5.6 show examples in which these situations take place.

5.3. Operating tests 123

1
0

0
3

0
0

5
0

0
7

0
0

9
0

0
1

1
0

0
1

4
0

0
1

7
0

0
2

0
0

0
2

3
0

0

1 2 4 8 16 32 64 256 1024 4096 16384 65536

Data in cell 0. Thread in cell 0. Migration from 0 to 1

Data in cell 1. Thread in cell 0. Migration from 1 to 0

Data in cell 1. Thread in cell 1. Migration from 1 to 0

Data in cell 0. Thread in cell 1. Migration from 0 to 1

Number of 16−kB pages

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Figure 5.12: Migration throughput (MB/s) between Cells 0 and 1.

5.3.3.3 Reliability of sampling

Our page migration framework comprises a sampling stage susceptible of introducing
some overhead. In theory, the lower the sampling period, the higher the number of samples
recorded. In practice this is not always true, since hardware counters have inherent physical
limits. Indeed, a sampling period too low may result in many samples missed, since there is
a certain waiting period between overflows before the monitoring process can be restarted.
Conversely, a too high sampling period will not sample enough pages to obtain a set that
is representative enough of the monitored workload. Hence, a range of sampling periods in
which the sampled values are reliable and representative must be found.

124 Chapter 5. Page Migration

0
5

1
0

1
5

2
0

2
5

3
0

Sampling periodSampling period

0
0
.0

5
0
.1

5
0
.2

5
0
.3

5
0
.4

5

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 500 5000

A
ve

ra
g
e
 S

a
m

p
lin

g
 E

rr
o
r

(D
)

A
ve

ra
g
e
 %

 o
f
s
a
m

p
le

d
 a

c
c
e
s
s
e
s

(a) 2 threads

0
1
0

2
0

3
0

4
0

5
0

Sampling periodSampling period

0
.0

3
0
.0

9
0
.1

5
0
.2

1
0
.2

7

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 500 5000

A
ve

ra
g
e
 S

a
m

p
lin

g
 E

rr
o
r

(D
)

A
ve

ra
g
e
 %

 o
f
s
a
m

p
le

d
 a

c
c
e
s
s
e
s

(b) 4 threads

Figure 5.13: Average distance for 2 and 4 threads

5.3. Operating tests 125

0
1
0

2
0

3
0

4
0

5
0

Sampling periodSampling period

0
0
.1

2
0
.3

6
0
.6

0
.8

4
1
.0

8

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 500 5000

A
ve

ra
g
e
 S

a
m

p
lin

g
 E

rr
o
r

(D
)

A
ve

ra
g
e
 %

 o
f
s
a
m

p
le

d
 a

c
c
e
s
s
e
s

(a) 8 threads

0
1
0

2
0

3
0

4
0

Sampling periodSampling period

0
.1

1
0
.3

3
0
.5

5
0
.7

7
0
.9

9

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 500 5000

A
ve

ra
g
e
 S

a
m

p
lin

g
 E

rr
o
r

(D
)

A
ve

ra
g
e
 %

 o
f
s
a
m

p
le

d
 a

c
c
e
s
s
e
s

(b) 16 threads

Figure 5.14: Average distance for 8 and 16 threads

126 Chapter 5. Page Migration

A number of experiments were conducted to compare how representative our sampling
method is of all memory accesses. A distance metric D, similar to the one described in
[35], was used. If we consider the ratio of accesses from a processor to the total number of
accesses, D measures the difference, or error, between ratios of accesses for a given program
in the following procedure:

– An OpenMP program which randomly accesses positions of an array is used. Variable
Cp counts the number of accesses by processor p. Another variable, Ca, counts all
accesses by all processors.

– The OpenMP program is monitored by our page migration infrastructure, using EARs
to sample the accesses of each processor to array Sp, and the accesses of all processors
(Sa).

– The ratios of actual and sampled accesses by each processor are given by Rall =
Cp
Ca

and

Rsample =
Sp
Sa

, respectively.

– D indicates how much a set of accesses deviate from another set and is defined as
D =

|Rsample−Rall |
Rall

. Therefore, the closer the distance to 0 is, the more representative the
set of sampled values is to the set of all accesses.

The experiment was performed for 2, 4, 8 and 16 threads on a rx7640 node. Results are
shown in Figures 5.13 and 5.14. They combine the average distance of every processor (in red)
with the percentage of sampled accesses (in blue) for every case. All figures show a similar
pattern in which a low sampling period (1 to 5, approximately) obtains a high number of
samples, but at the cost of a noticeable distance error. From a sampling period of 5, the values
of D decrease dramatically and stay steady until it increases again for values higher than 1000,
due to the fact that the number of samples is low enough to not characterise accurately the
monitored program. The choice of an appropriate sampling period must attend at a low value
of D and, simultaneously, a sufficient number of samples. In view of the figures, regarding
D, an appropriate choice for any number of threads may be any sampling period between
5 and 1000. However, the choice regarding the percentage of sampled values is far from
being trivial. Indeed, at first sight, a sensible range of sampling periods could be any between
6 and 10. These periods are enough to obtain between 5% and 10% of sampled values.
However, this experiment evaluates a constant monitoring stage. The overhead associated to
the evaluation stage, in which the sampled data are processed, is not considered.

5.4. Affinity decisions 127

Empirically, a period of 1000 has been verified to be enough to acquire a representative
number of samples, so that was the sampling period used in the experiments presented in the
remaining sections. The monitoring period chosen has been 1 second, which also proved to
obtain the best ratio overhead-number of useful samples.

5.4 Affinity decisions

Section 5.3.2 showed an example in which the decision to migrate a page is driven by the
number of local and remote accesses to that page. Despite being a straightforward technique,
this page migration policy has proved to be effective to approach this problem. Indeed, several
authors have used it successfully in the past. For example, in [35] it was used as a user-level
strategy to migrate pages in a cc-NUMA UltraSPARC III, taking advantage of the hardware
counters provided by that architecture. Another example is [47], in which a next-touch policy
was implemented for the Linux kernel in i386 architecture. This development presents the
drawback of having not been yet introduced in the mainstream kernel, so the kernel needs to
be patched and recompiled to provide it with that feature.

To our knowledge, nobody has hitherto developed an efficient user-level migration policy
for the Itanium architecture. Subsequent sections introduce the algorithms developed, relying
on the framework presented in this chapter, to take advantage of some of the new features
provided by the PMU of the Itanium2 Montvale. The algorithms must be adaptable to diffe-
rent scenarios which comprise different latency-level memory hierarchies. FINISTERRAE is
composed of Superdome nodes (Figure 5.15) and rx7640 nodes (Figure 2.1). As shown in
the figures, while a rx7640 presents only two levels of memory latency per cell (local and re-
mote), a Superdome node has a more complex structure composed of four groups of four cells
each. Therefore, each cell will see three latency levels: local, remote inside the same group,
and remote when accessing another group. Considering these structures, two general-purpose
algorithms are proposed next. Then, they are particularised and evaluated on a rx7460 node.

5.5 Access-based migration algorithm for N-cell nodes

Figure 5.16 shows a tree diagram of the FINISTERRAE’s Superdome node (Figure 5.15).
In this case, there are four groups of four cells each. Every group is interconnected to each
other at the same distance, understood as the same latency access value.

128 Chapter 5. Page Migration

Cell
0

Cell
3

Cell
2

Cell
1

Crossbar Crossbar

I/O
Sys

I/O
Sys

I/O
Sys

I/O
Sys

Crossbar

Cell
4

Cell
7

Cell
6

Cell
5

I/O
Sys

I/O
Sys

I/O
Sys

I/O
Sys

Cell
8

Cell
11

Cell
10

Cell
9

Crossbar Crossbar

I/O
Sys

I/O
Sys

I/O
Sys

I/O
Sys

Crossbar

Cell
12

Cell
15

Cell
14

Cell
13

I/O
Sys

I/O
Sys

I/O
Sys

I/O
Sys

CrossbarCrossbarCrossbarCrossbarCrossbarCrossbar

Figure 5.15: HP Superdome node

Figure 5.16: Superdome Node Graph

The access-based migration algorithm takes into account uniquely the number of times a
page is accessed from each cell during a program run. Note that only incomplete information
from the sampled information, provided by the page migration framework, is used. Assuming
that our framework is able to sample a representative number of accesses from each page, our
migration algorithm for a c-cells, g-groups node can be formally stated as follows:

5.6. Latency-based migration algorithm for N-cell nodes 129

– Let us suppose that our system is composed of a set of |G| groups G= {G1,G2, . . .G|G|}.
A group G j is composed of |G j| cells G j = {C j1,C j2, . . .}, with 1 ≤ j ≤ |G|. In Fi-
gure 5.16, |G|= 4 and |G j|= 4,∀ j.

– Let P = {p1, p2 . . . pp} be the set of pages accessed by a program during its execution.
Let us suppose that, during a monitoring period of our framework, the page pi resides
in the local memory of cell Cks ∈ Gk.

– Let a jm
i ≥ 0 be the total number of sampled accesses to pi from the threads running in

cell C jm ∈ G j, being 1≤ j ≤ |G| and 1≤ m≤ |G j|. The total number of accesses to pi

from all the cells in group G j is then

α
j

i =
|G j |

∑
m=0

a jm
i (5.4)

– Let h and d be the indexes such as

α
h
i = max

1≤ j≤|G|
α

j
i

ahd
i = max

1≤m≤|Gh|
ahm

i (5.5)

– Then, the page pi is migrated to the cell Chd ∈ Gh. Notice that if h = k and d = s, pi

is not migrated (because pi is in the memory of Cks), and that if h = k but d 6= s an
intra-group migration is carried out.

In other words, our framework evaluates the number of accesses to each page from each
cell. After a monitoring period, each page is migrated to the cell which most accessed it under
the assumption that, if a page has been accessed most from a cell during a monitoring period,
it will keep on doing it in further periods.

5.6 Latency-based migration algorithm for N-cell nodes

5.6.1 Motivation

As it was stated in [35], a high bus traffic can compromise the performance of a program.
Indeed, in our tests we observed that, in those cases in which the scheduler mapped many

130 Chapter 5. Page Migration

threads to cores that share a bus, the execution time was higher than in those with a better
distribution.

We posed the hypothesis of a situation in which the workload in a cell is so high that it
is worth accessing pages remotely rather than migrating the pages to the local cell. In other
words, if there are too many threads performing local accesses, the access latency might get
higher than the access latency to a remote cell. In these cases, even in a situation in which the
access-based migration algorithm of Section 5.5 would take the decision of migrating a page,
a latency-based algorithm might prevent that page from being actually migrated.

The first step to confirm our hypothesis was to check that simultaneous accesses to me-
mory increase the access latency. To do that, an OpenMP program that allocates an array
and creates a given number of threads, each of which accesses a different part of the array,
was written. After allocating a buffer of 763 MB (48828 pages), running the program on a
rx7640 node with 1 thread yielded an average access latency of 318.3 cycles. For 4 threads,
the latency was 350.4 cycles, approximately a 10% higher.

Next, the following scenario was configured:

– The OpenMP program was started on a rx7640 node while being managed by our page
migration infrastructure.

– The OpenMP program allocated an array in Cell 0.

– 6 threads started accessing their own part of the array in order to generate an important
traffic in the cell buses.

– At a given moment, one of the threads is manually migrated to Cell 1. After a monito-
ring period, our migration infrastructure moves the dataset of that thread to Cell 1.

– Finally, the thread is manually migrated back to Cell 0. Its dataset is subsequently
moved back to Cell 0 by our migration infrastructure.

The average execution time was 235.1 seconds. The experiment was repeated but, in this
case, after migrating the thread back to Cell 0, its dataset was kept in Cell 1. The average
execution time then was 228.8 seconds.

This example illustrates the fact that a high access latency due to a heavily loaded bus, to-
gether with the unavoidable migration overhead, can decrease the performance of a program.

5.6. Latency-based migration algorithm for N-cell nodes 131

Subsequent sections introduce formally an algorithm that evaluates the current state of
each cell and estimates the latency of a page before it is migrated, in order to decide whether
it should be migrated or not.

5.6.2 Algorithm

Consider the nomenclature defined in Section 5.5. Let us consider again that the page pi

resides in the local memory of cell Cks ∈Gk. Let thm
i be the arithmetic mean of the access time

(latencies) to pi from a cell Chm ∈ Gh. For all the cells in Gh, the mean of the access time to
pi is:

t̄h
i =

|Gh|

∑
m=0

thm
i ·ahm

i

|Gh|

∑
m=0

ahm
i

=

|Gh|

∑
m=0

thm
i ·ahm

i

αh
i

(5.6)

Let Pl ⊂ P be the set of pages that resides in the memory of any cell of group Gl . The
average latency of the accesses from any cell in Gh to any page stored in Gl is

τ
h
l =

∑
j|p j∈Pl

t̄h
j ·αh

j

∑
j|p j∈Pl

α
h
j

,1≤ l ≤ |G|,1≤ h≤ |G| (5.7)

Let us consider ∀l,1≤ l ≤ |G|
Tl = max

1≤h≤|G|
τ

h
l (5.8)

Tl is the maximum latency (in average) to access the pages in group Gl . Let q be the index
such as:

Tq = min
1≤l≤|G|

Tl (5.9)

So, Gq is the group with the minimum latency (in average) to access its pages. Our algorithm
considers that if

Tq < min
1≤h≤|G|

t̄h
i (5.10)

then the page pi should be migrated to group Gq.

Now, two different situations have to be considered:

132 Chapter 5. Page Migration

(a) q = k, so a intra-group migration could be necessary. In this case, a similar procedure is
carried out. Let Pkm ⊂ Pk be the set of pages that resides in the memory of Ckm ∈Gk. The
average of the access time from a cell Ckn to the pages in Pkm is,

σ
kn
km =

∑
j|p j∈Pkm

tkn
j ·akn

j

∑
j|p j∈Pkm

akn
j

(5.11)

And let Γkm be, ∀m,1≤ m≤ |Gk|

Γkm = max
1≤n≤|Gk|

an
i ·σ kn

km (5.12)

Now, two alternatives are considered to take the decision of migrating or not:

i) Let d be the index such as:

Γkd = min
1≤m≤|Gk|

Γkm (5.13)

Then, if d 6= s the page pi is migrated from Cks to Ckd .

ii) Let d be the index such as:

Γkd = min
1≤m≤|Gk|

m 6=s

Γkm (5.14)

Now, only if

Γkd < max
1≤h≤|Gk|

ah
i · tkh

i (5.15)

the page pi is migrated to the cell Ckd .

(b) q 6= k. In this case, the page pi is migrated to the cell Cqd being d the index obtained by
the following equation, in a similar way to which it is done in Equation 5.13:

Γqd = min
1≤m≤|Gq|

Γqm (5.16)

Then, the page pi is migrated from Cks to Cqd .

5.7. Evaluation in a dedicated environment 133

Note that there are no particularities why any page can take longer to be accessed than
another one, with the exception of not being indexed in the TLB. Therefore, the only reason
whereby a page shows a higher latency is that the workload –and, hence, the average access
latency– had increased in its cell at the moment of being sampled. Assuming that such an
increase will last for, at least, the next monitoring period, then it will be worth migrating the
page to other cell in which the latency is lower.

To summarise, this algorithm performs an inter-group migration according to load-balan-
cing criteria, moving a page to the group where it has been estimated that the access latency
will be the lowest. Then, the process is repeated again to select a cell inside the chosen desti-
nation group. We find two cases now: if that group is the same in which the page currently is,
the cell with the lowest estimated latency access is chosen by comparing the actual measured
access latency to that page with the estimated latencies in the rest of cells. However, if the
chosen destination group is different from the one that has the page to migrate, then there will
not be any previous measurements of actual access latencies to that page inside the cells of
that group. In that case, only estimated latencies will be used to decide the cell where to place
the page.

5.7 Evaluation in a dedicated environment

5.7.1 Experiment setup

A series of tests was conducted on a rx7640 node. The algorithms of Sections 5.5 and 5.6
were therefore particularised for g = 1 groups and |G j| = 2 cells. Note that the total number
of sampled accesses to a page pi from a given cell, defined as a jm

i in the previous equations,
are provided by the EAR hardware counters.

Eight out of the nine OpenMP NAS parallel benchmarks [84] v3.3 were used. Namely,
BT, CG, FT, IS, LU, MG, SP and UA. EP was not evaluated given that it does not have
significant sharing of data.

The NAS benchmarks come in four flavours, A to D, being A the smallest problem size
and D the largest. The chosen size was C, since that suite can be executed in our system in
a reasonable time to take enough samples to have statistically representative results. At the
same time, with this size they run for long enough to give room to improvement using the
developed dynamic page migration strategies.

134 Chapter 5. Page Migration

The goal of the experiment was to compare the execution time of each benchmark with
and without the page migration algorithms. The experiment was setup as follows:

– Each benchmark was initially run 30 times on a rx7640 node with 4, 8, 12 and 15 threads
without any specific constraints, allowing therefore the kernel scheduler to allocate and
migrate the threads on any core. The average of their execution wallclock time was
calculated.

– Afterwards, each benchmark was run 30 times with 4, 8, 12 and 15 threads using our
migration infrastructure and each of the page migration algorithms developed. The
monitoring thread was collocated on a separate 16th core.

A clarification is required about the latency-based algorithm (Section 5.6). There is no
way to study inter-group migrations given that there is only one two-cell node available with
just two latency levels. Regarding intra-group migrations, two approaches have been consi-
dered: Firstly, the one explained in the algorithm, in which the actual measured latencies to
the page candidate to be migrated are compared with the estimated average latencies if the
page is migrated. Secondly, only comparisons between estimated average latencies. In this
way, both approaches can be compared to study the influence of using the actual latencies to
a given page instead of the average load measured in the cell.

Note that the benchmarks are executed on a dedicated environment in which a thread
is expected to be collocated in a free core. That means that few or no thread migrations or
preemptions are expected. Since the benchmarks are already optimised to be parallel-efficient,
the first-touch policy of the system should be sufficient to execute efficiently the benchmarks.
Therefore, only little improvement is expected using a dynamic migration policy.

5.7.2 Experimental results and discussion

Table 5.2 shows the wallclock execution time of each benchmark for the original, first-
touch allocated case and each of the page migration techniques developed. The speedups of
each technique are also provided. In the table, Nacc refers to the access-based algorithm,
Latreal to the latency-based algorithm using actual latencies of accessing a page, and Latavg to
the second approach, using just average estimated latencies.

The results show that the dynamic migration techniques proposed obtain some improve-
ment in a few cases but also slightly slow down the execution of some of them.

5.7. Evaluation in a dedicated environment 135

Benchmark
Time(sec.) Speedup (%)

1st touch Nacc Latreal Latavg Nacc Latreal Latavg

bt.C
4 threads 551.3 536.8 534.2 534.7 2.7 3.2 3.1
8 threads 282.8 295.1 296.2 292.7 -4.2 -4.5 -3.4

12 threads 207.5 211.6 212.9 210.3 -1.9 -2.5 -1.3
15 threads 177.4 176.1 173.8 177.1 0.7 2.1 0.2

cg.C
4 threads 83.4 93.2 99.3 94.6 -10.5 -16.0 -11.8
8 threads 64.1 83.3 79.9 79.3 -23.0 -19.7 -19.1

12 threads 52.4 65.9 65.1 64.2 -20.5 -19.5 -18.4
15 threads 43.5 57.1 57.1 59.7 -23.8 -23.8 -27.1

f t.C
4 threads 88.2 94.0 89.8 92.8 -6.1 -1.7 -5.0
8 threads 48.8 56.8 56.8 54.9 -14.0 -14.2 -11.1

12 threads 37.8 37.8 38.4 40.3 -0.2 -1.6 -6.2
15 threads 33.1 32.8 32.8 34.5 1.1 1.0 -3.8

is.C
4 threads 553.8 560.4 559.8 558.5 -1.2 -1.1 -0.8
8 threads 288.2 288.1 291.7 290.3 0.0 -1.2 -0.7

12 threads 194.4 196.5 199.6 203.0 -1.1 -2.6 -4.2
15 threads 162.8 162.8 160.8 160.1 0.0 1.2 1.7

lu.C
4 threads 451.2 443.6 407.1 430.0 1.7 10.8 4.9
8 threads 204.9 214.0 208.0 211.0 -4.3 -1.5 -2.9

12 threads 152.6 156.5 155.9 154.6 -2.5 -2.1 -1.3
15 threads 149.7 132.7 141.2 135.8 12.8 6.0 10.2

mg.C
4 threads 41.3 36.8 39.3 39.0 12.1 5.2 6.0
8 threads 30.8 30.4 30.8 32.1 1.1 -0.3 -4.2

12 threads 24.8 24.2 24.1 24.3 2.3 3.0 2.2
15 threads 20.7 21.4 20.5 21.0 -3.3 0.8 -1.3

sp.C
4 threads 623.9 624.7 637.8 616.4 -0.1 -2.2 1.2
8 threads 384.3 399.9 396.1 382.1 -3.9 -3.0 0.6

12 threads 285.6 283.8 287.3 282.4 0.6 -0.6 1.1
15 threads 244.6 238.3 241.5 238.2 2.7 1.3 2.7

ua.C
4 threads 1608.7 1609.0 1602.0 1603.7 0.0 0.4 0.3
8 threads 910.7 923.6 924.4 921.5 -1.4 -1.5 -1.2

12 threads 651.8 655.4 656.2 656.1 -0.6 -0.7 -0.7
15 threads 552.2 558.0 551.3 548.7 -1.0 0.2 0.7

Table 5.2: Performance of the OpenMP NAS suite using the default first-touch policy and the page migration
strategies proposed in a dedicated environment.

136 Chapter 5. Page Migration

BT, SP, LU and UA are simulated CFD applications that reproduce much of the data
movement and computation found in full Computational Fluid Dynamics (CFD) codes. Most
of the improvements are found in these benchmarks for 15 threads, in which the amount of
data transferred is bound to be important and where the chances of having threads not being
optimally collocated by the scheduler are high. In these cases, the access-based algorithm
will push pages close to the threads that access them most, and the latency-based algorithm
will move data to the least loaded cell.

The remaining benchmarks (CG, FT, IS and MG) are kernels that mimic the computational
core of four numerical methods used by CFD applications. Little or no improvement is found
here. A twofold trend was noticed in our observations. We observed that the scheduler does
not follow a fixed policy to map threads to cores. For example, for 4 and 8 threads, some
executions of the same benchmark had their threads equally collocated in cores of both cells
and some had them collocated in the same cell. Hence, only those executions whose threads
were spread out in both cells could benefit of our page migration strategies to improve the
performance and overcome the implicit overhead of the monitoring stage.

CG and FT are benchmarks in which the performance slow down is particularly no-
ticeable. The former calculates a conjugate gradient, showing little movement of data and
an important number of L1/L2 cache misses, due to the irregularity of its operation with
sparse matrices [84]. Likewise, FT is a computational-bound kernel that calculates a Fourier
Transform using the FFT-based spectral method, with little data movement. In view of the
results, in those cases with such high data locality the use of a migration policy is detrimental
to the performance.

5.8 Evaluation in a multiprogrammed environment

5.8.1 Experiment setup

The results presented in the previous sections assumed that the target machine is exclu-
sively available to the program tested. However, this is not a realistic scenario. Many applica-
tions that run in a supercomputer share the hardware resources with other programs. Threads
may be preempted or migrated at any moment by the OS scheduler for load balancing pur-
poses. Hence, the chances that a thread is migrated far from its dataset are higher than in
a dedicated scenario. Additionally, the presence of numerous programs accessing memory

5.8. Evaluation in a multiprogrammed environment 137

simultaneously will cause a higher bus load. In this situations, our page migration strategies
are expected to achieve a better performance.

In this experiment, a parallel program called NomadicNoise has been used to simulate, in
a controlled way, another program in a multiprogrammed environment and the tests of Section
5.7 have been repeated. NomadicNoise allocates an array locally and accesses it for a given
period. After the period expires, the array is freed and the program migrates its threads to
the opposite cell, resuming the process. For our tests, NomadicNoise was executed using 7
threads, a 10 GB array and a 15-second period. The interference of this program will force
some threads of the NAS benchmarks to lose their affinity, being moved to other cells by the
OS scheduler when there are free cores (4 and 8 threads), or preempted when not (12 and
15 threads). As in previous tests, there is no binding of threads to processors or any other
intervention that alters the behaviour of the scheduler except for the monitoring thread, which
is mapped to a core different from the set of cores used by the NAS benchmarks.

Note that the latency algorithm was developed based on the premise that accessing a page
remotely located can be worthy when a high load in the local cell is observed. The scenario
proposed, in which several programs share the hardware resources, is likely to increase the
average latency time in a cell, expecting therefore to benefit from the latency algorithm.

5.8.2 Experimental results and discussion

Table 5.3 shows the wallclock execution time and the speedup of each benchmark for
the original case and each of the page migration techniques in the above multiprogrammed
environment.

The results of Table 5.3 show a general performance improvement in a multiprogrammed
environment over the native first-touch policy.

The simulated CFD applications (BT, LU, SP and UA), which have large data movement,
were the most benefited by the migration policies. As in the dedicated environment, FT and
CG were slightly slowed down. However, the performance decrease was noticeably lower
than in the previous case.

The results also confirm a better behaviour when the OS scheduler can migrate threads
to free cores in the presence of the interfering program rather than those cases in which the
threads are preempted. Indeed, the most benefited benchmarks get a higher improvement for
4 and 8 threads than for 12 and 15. For example, LU shows about 30% improvement for 4
threads, whereas there is no improvement for 15 threads.

138 Chapter 5. Page Migration

Benchmark
Time(sec.) Speedup (%)

1st touch Nacc Latreal Latavg Nacc Latreal Latavg

bt.C
4 threads 632.0 619.7 617.0 619.2 2.0 2.4 2.1
8 threads 358.8 338.3 338.8 338.6 6.0 5.9 5.9

12 threads 348.2 345.5 344.2 344.3 0.8 1.2 1.1
15 threads 356.4 352.1 351.8 352.6 1.2 1.3 1.1

cg.C
4 threads 112.7 114.7 120.2 125.0 -1.8 -6.2 -9.9
8 threads 86.0 87.0 91.3 89.8 -1.2 -5.8 -4.2

12 threads 105.0 110.4 112.5 115.6 -4.9 -6.7 -9.2
15 threads 154.6 154.1 152.9 155.5 0.3 1.1 -0.6

f t.C
4 threads 98.4 103.5 104.7 102.7 -4.9 -6.0 -4.2
8 threads 58.4 61.0 59.7 59.8 -4.2 -2.2 -2.3

12 threads 53.6 55.4 59.3 58.0 -3.3 -9.6 -7.5
15 threads 56.0 56.7 58.8 56.1 -1.3 -4.8 -0.2

is.C
4 threads 606.4 596.3 602.6 595.8 1.7 0.6 1.8
8 threads 319.8 325.5 315.2 327.4 -1.8 1.5 -2.3

12 threads 315.8 312.3 312.7 316.7 1.1 1.0 -0.3
15 threads 326.5 327.3 326.7 321.1 -0.3 -0.1 1.7

lu.C
4 threads 550.8 432.3 423.6 432.0 27.4 30.0 27.5
8 threads 260.4 248.8 241.1 246.9 4.7 5.4 5.5

12 threads 478.7 459.1 459.3 459.0 4.3 4.2 4.3
15 threads 1366.4 1447.0 1476.0 1461.2 -5.6 -7.4 -6.5

mg.C
4 threads 52.2 51.1 54.8 51.4 2.1 -4.8 1.5
8 threads 37.9 37.1 36.8 36.6 2.3 3.1 3.5

12 threads 41.6 38.7 38.1 36.9 7.6 9.2 12.8
15 threads 44.6 41.5 40.6 40.3 7.4 9.7 10.7

sp.C
4 threads 865.6 779.3 783.1 783.7 11.1 10.5 10.4
8 threads 516.8 470.5 463.7 467.6 9.8 11.4 10.5

12 threads 524.5 486.3 483.2 487.3 7.8 8.5 7.6
15 threads 557.7 523.4 525.2 524.5 6.6 6.2 6.3

ua.C
4 threads 1856.6 1799.7 1799.8 1799.6 3.2 3.2 3.2
8 threads 1068.9 1036.1 1041.7 1042.4 3.2 2.6 2.5

12 threads 1236.1 1208.3 1203.7 1206.3 2.3 2.7 2.5
15 threads 1406.5 1392.2 1394.0 1393.3 1.0 0.9 0.9

Table 5.3: Performance of the OpenMP NAS suite using the default first-touch policy and the page migration
strategies proposed in a multiprogrammed environment.

5.8. Evaluation in a multiprogrammed environment 139

Figure 5.17: Number of accesses and latencies for BT. No page migrations.

140 Chapter 5. Page Migration

Figure 5.18: Number of accesses and latencies for BT. Access-based page migration.

5.8. Evaluation in a multiprogrammed environment 141

Figure 5.19: Number of accesses and latencies for BT. Latency-based (Latreal) page migration.

142 Chapter 5. Page Migration

Figure 5.20: Number of accesses and latencies for BT. Latency-based (Latavg) page migration.

5.8. Evaluation in a multiprogrammed environment 143

To understand better how our migration strategies behave, further analysis were carried
out. The execution of BT is analysed in more detail next. Figure 5.17 shows the profile
of a BT execution while is being interfered by NomadicNoise. Page migration is disabled.
The figure comprises four histograms that represent certain magnitudes (y axis) measured for
each monitoring period (x axis). The grey dashed lines that cross all the histograms delimit
the periods of NomadicNoise. After each period, it stops running in a cell and moves to the
other one, forcing the OS scheduler to migrate the threads of BT to the opposite cell. This
situation is reflected in the first two histograms. From up to down, the first one shows, from
all accesses issued, the fraction of local (in blue) and remote (in red) memory accesses to
Cell 0. The high number of local accesses to Cell 0 during the first period of NomadicNoise

implies that BT has allocated its data locally3. Subsequent periods show an alternation in the
type of dominating accesses, either local or remote. That is, the fraction of local accesses to
Cell 0 are higher when NomadicNoise is in Cell 1, since it pushes the threads of BT to Cell 0
–where all their datasets are allocated–. Conversely, the remote accesses are higher when the
interfering program is in Cell 0, since BT will access its datasets remotely.

The second histogram shows the fraction of accesses to Cell 1. The fraction of references
issued is significantly lower (20% at most), since practically all the dataset of BT is allocated
in Cell 0. These accesses are related to temporal calculations of the benchmark.

The third histogram displays the latency per access of the local accesses to Cell 1 (in blue)
and remote accesses to Cell 0 (in red). By showing these values of local and remote cells
together it is straightforward to compare how high the load is in each cell. For example, the
green circle surrounds a zone where the local latency grows getting close to the remote latency.
That situation occurs when the local cell is highly loaded, and accessing a page locally gets
almost as costly as doing it remotely. Finally, the last histogram shows the latencies per access
to Cell 0 and the remote ones to Cell 1.

Figure 5.18 depicts an execution of BT with page migration enabled using the access-
based algorithm. The fifth histogram (bottom) shows the fraction of pages migrated from Cell
0 to 1 (in blue) and from Cell 1 to 0 (in red). In this algorithm, the decision to migrate a
page is access-driven. Therefore, when the number of remote accesses increases in a cell, the
page is migrated to the cell which most issued such data. For example, in the NomadicNoise

period 2, BT has part or all of its threads migrated to Cell 0. Therefore, the number of remote
accesses to Cell 1 increases up to a 45%, as shown in the second histogram (red bars). The

3BT allocates data statically using global arrays.

144 Chapter 5. Page Migration

algorithm begins to migrate the accessed pages to Cell 1 until the number of remote accesses
reduces to a minimum compared to the number of local accesses in Cell 0 (period 3 in the
second histogram). The first two histograms show at a glance how an important number of
remote memory accesses are eliminated when the algorithm performs the page migration.

Figure 5.19 shows an execution of BT using the latency-based (Latreal approach) algo-
rithm. Now the migration decision is driven by the average latency of accessing a page,
compared to the average access latency in each cell, for each monitoring period. A white hor-
izontal line in the latency/access histograms shows the approximate average remote-to-local
latency ratio. When the local access latency in a cell increases over that value, getting close
to the remote latency to the opposite cell, chances are that issuing a local page in that period
yields a high latency value. The algorithm may state that, considering that such load situation
keeps for at least another monitoring period, having the page migrated remotely will reduce
its access cost. Conversely, when the local access latency in a cell decreases over the aver-
age, the difference between accessing locally and remotely a page increases. If the page is
allocated in another cell, then it will be worth pulling it locally.

The blue and red arrows in the figure illustrate two of these cases and how the migration
algorithm takes a proper decision. The blue arrow shows a case in which the local latency in
Cell 0 is increasing. This is correlated in the bottom histogram by an increase in the number of
pages migrated whose accesses have taken too long and, therefore, are migrated from Cell 0 to
Cell 1. The red arrow shows a situation in which the average local latency in Cell 1 increases,
so the number of pages candidate to migrate from Cell 1 to 0 also rises.

An important fact reflected in these figures is that, once the average latency on each cell
increases or decreases, it maintains this behaviour for several monitoring periods. Therefore,
the migration is justified, since the cost of migrating a page is rapidly amortized.

Finally, BT executed with the latency-based algorithm (Latavg approach) is shown in Fi-
gure 5.20. There are no significant differences with the previous approach.

By and large, the proposed techniques eliminate most of the remote accesses and increases
the number of pages locally accessed. Table 5.4 shows the reduction in non-local memory
accesses of the three experiments. Although the latency-based strategy (Latreal) migrated a
higher percentage of pages than the rest (28.7% vs 21.7% and 22.9%), the ratio of remote-to-
local accesses is the highest (32.8%). This was due to an excessive ping-pong effect, in which
some pages were often migrated from one cell to the opposite one in near or consecutive
monitoring periods.

5.9. Conclusions 145

Pages Access locality (%)

Sampled Moved (%)
Cell 0 Cell 1

Σremote
Σlocal

Local Remote Local Remote
No migr. 511092 0.0 16.7 2.1 41.1 40.2 73.2
Nacc 506613 21.7 30.0 9.5 48.8 12.1 27.4
Latreal 477308 28.7 27.9 12.2 47.3 12.5 32.8
Latavg 511649 22.9 34.7 12.7 42.4 10.2 29.7

Table 5.4: Locality statistics of BT for each page migration strategy.

5.9 Conclusions

This chapter has introduced a profile-driven, page migration mechanism for Linux and the
Itanium architecture. This mechanism relies on the Event Address Registers (EARs) available
in the Itanium2 processors to obtain a sampled profile of the exact data addresses issued by
a program. As a software contribution, a user-level monitoring and migrating tool has been
developed. This tool attaches and samples the monitored program without need to modify
whatsoever such a program. Moreover, it is flexible to support different monitoring and mi-
grating strategies. After describing its architecture, a series of tests has been carried out to
evaluate its performance and reliability, exploring the benefits and drawbacks of this approach.

Two page migration strategies for N-cell NUMA nodes have been proposed. A first
access-based migration algorithm takes into consideration just the number of accesses sam-
pled during a monitoring period in order to migrate a page to the cell that accessed it most.
A second latency-based algorithm uses mainly the latency of the accesses, provided by the
EARs, to state the load on each cell in runtime and migrate a page to the cell where its access
cost is lower.

The effectiveness of these strategies has been evaluated using the OpenMP parallel NAS
benchmarks on a two-cell rx7640 node. Two scenarios have been considered: first, a dedicated
one, in which the main reason for non-local memory accesses is the first-touch policy in
the operating system, should it had initially placed pages poorly in a cell. Depending on
the parallelisation efficiency of each benchmark and the number of threads used, different
results have been obtained. Data misplacing by the first-touch is more likely to happen for
a high number of threads and, hence, there is more room for improvement. Best results
were achieved for those benchmarks with large data movement, with a maximum execution
speedup of 12.8%, although the general improvement was scarce and irregular.

146 Chapter 5. Page Migration

The second scenario portrays a more realistic multiprogrammed environment in which
another parallel program springs up periodically on each cell, forcing thread preemptions and
migrations in the monitored program and, therefore, an important number of non-local me-
mory accesses. In this case, the proposed migration techniques have been able to migrate
pages according to their access pattern more efficiently than in the previous scenario, achie-
ving a maximum speedup of 30%, in a more regular improvement trend.

Comparing the results obtained by each algorithm, the access-based algorithm seems to
slightly overcome the rest. Although the differences among them are scarce, the competitive
criterion of moving a page to the cell where it is requested more often comes up as the most
effective in the rx7640 two-cell node. However, the latency-based approach is yet to prove its
usefulness in NUMA nodes that comprise several-level latency modules, such as the Super-
dome node of FINISTERRAE. In this type of nodes this algorithm can act as a filter in order
to avoid unnecessary page migrations or, conversely, foster others to lower-latency cells. Fur-
thermore, despite the wide range of applications and kernels covered by the NAS benchmarks,
the available space of data-intensive programs is still to be exhaustively explored.

6

Conclusions and Future Work

Centred on a NUMA, Intel Itanium-based platform and its Precise Event-Based Sampling

(PEBS) mechanism, this dissertation has presented novel techniques to improve the data lo-
cality and the performance of computational codes and applications in runtime. Specifically,
two fields have been studied: reordering techniques for irregular codes and techniques for
dynamic page placement. This chapter summarises the main contributions of the entire work
accomplished throughout this thesis, presents the conclusions and proposes future lines of
research.

The work developed can be summarised in the following points:

– The architecture of the FINISTERRAE supercomputer has been evaluated. In such
a complex system in which each node comprises several cores interconnected by several
levels of cache coherency in a NUMA distribution, a number of factors may affect the
performance. We have found out that, in terms of cache coherency and performance,
each core in every dual-core Itanium2 socket behaves as an independent processor. For
data sizes larger than the cache size, the proper thread-to-core mapping is the one that
keeps threads as far as possible from each other. This implies collocating threads in
different cells when their datasets can be allocated locally, or in the same cell but in
different buses when not. In this regard, the Roofline Model has been developed for
FINISTERRAE and the Sparse Matrix-Vector product (SpMV) has been used as a case
of study. This model has proved its usefulness to detect constraints in the performance
of a kernel and to suggest possible optimisations upon thread and data allocations.

– The access to the Itanium2 Montvale hardware counters has been studied. After
evaluating several tools to handle the processor’s PMU, Perfmon was selected as the

148 Chapter 6. Conclusions and Future Work

most suitable interface for our requirements. Specifically designed in the beginning
for the Itanium2 platform, it offers several features which have been essential in the
development of this thesis, such as kernel-level sampling buffers and complete access to
the information provided by EARs, the Itanium2 implementation of the PEBS registers.
Both dense and sparse codes have been evaluated. The SpMV has been used as a
case of study to test the behaviour of the sampling process. An average percentage
of samples in the range of 10%-20% entries have proved to be sufficient for being
representative of the sampled data.

– Regarding locality improvement on irregular codes, this work has centred in on using
latency information provided by the EARs to improve the behaviour of data reordering
techniques. One of their major problems is the reordering cost. A particular technique
aimed to improve the locality of sparse codes has been ported to FINISTERRAE

and adapted to be used with sampled information from the hardware counters
in order to minimise the above drawback. This technique reorganises the data guided
by a distance-based locality model. A study has been carried out to state the amount
of information required to obtain similar results to the original technique but using
sampled information. In this study, matrices consist of a subset of the nonzeros from
the original ones. The nonzeros were randomly selected. The results showed that 1%-
2% of sampled values is enough for Itanium2.

– A novel method has been contributed to obtain the exact positions in a sampled
matrix using hardware counters. The same study was repeated using this method,
finding similar performance to the original reordering technique. Speedups with respect
to the original matrices without reordering rose up to 2.1x, achieving a better behaviour
as the number of threads increases. The average improvement was about 2.6% for the
sequential case and 14.1% using 8 threads.

– Another reordering development contributed in this thesis has consisted in using
the latency information provided by the EARs to improve the behaviour of the
data reordering technique. Sets of consecutive rows were considered. Whereas the
original technique takes into account only distances among the rows of the original
sparse matrix, a new developed criterion uses the maximum sampled latency per row.
According to this criterion, two consecutive rows x and x+ 1 are included within the
same set if the following condition is met: Latency(x+1) < threshold. Two different

149

thresholds have been studied: average and 7-cycle latency. Once the windows are de-
fined, the original locality optimisation technique is applied obtaining the reordering
matrix. We have demonstrated that rows with no sampled entries in the latency his-
togram are likely to present small size and low latency. Therefore, if a row with no
sampled entries is included together with its previous row within the same set, this pro-
cedure is expected to be a good approximation. Results are very encouraging, obtaining
noticeable improvements for several matrices, which proves that reordering guided by
latencies can overcome the original technique in terms of performance. The advantages
of this method comprise a low overhead and low variability in the sampling results.

– The adequate placement of data is essential to improve the performance of a program.
One of the objectives of this work was the study of hardware counter-based optimisation
techniques for page migration. The last contribution of this thesis has been the deve-
lopment of a user-level, page migration software infrastructure based on hardware
counters. It supports two migration strategies that rely on the accurate information
provided by the EARs. The first one is a competitive algorithm based exclusively on the
number of accesses to a page from any cell. The second one refines the former using
information about the access latency. The infrastructure performs a statistical profiling
and migrates pages when needed according to the migration algorithm in use. Formally
formulated for a N− cell system, the algorithms have been tested on a FINISTERRAE

rx7640 node (N = 2). The experimental results show that a sampled, EAR-based pro-
file is enough to obtain a representative portrayal of data accesses on each cell. Our
tests depicted two scenarios: a first one, in which a set of benchmarks is evaluated on a
dedicated environment, and a second one in which a multiprogrammed environment is
considered. The latter uses an interfering program to increase the need for data reallo-
cation, since the OS scheduler migrates threads to remote cells in the presence of other
programs.

The results show a noticeable reduction of remote accesses and execution time, achie-
ving speedups of up to 13% for the dedicated environment and 30% for the multi-
programmed one. Despite that peak improvement in the former, we verified that it is
usually hard to beat the results of the system’s first-touch allocation policy in a dedi-
cated environment when considering efficient parallel codes. The improvements were
scarce and irregular, and only those benchmarks with an important data movement got
benefited from our migration algorithms. In the multiprogrammed scenario, however,

150 Chapter 6. Conclusions and Future Work

the improvement overwhelmed the overhead introduced by the migration infrastructure
and the speedup was higher and more regular.

So far, the results achieved show a promising outlook, since some improvements have been
obtained even in scenarios in which there were little room for them. After this work, several
lines of research remain open and, as we continue the research presented in this dissertation,
our efforts will focus on the following points:

– Applicability of our locality improvement strategies to other architectures: PEBS
is a feature that has recently been included in most of the Intel Core-based processors.
A similar solution exists in the AMD platform, called Instruction-based sampling (IBS)
[86]. We intend to test our strategies in other NUMA architectures based on those pro-
cessors. So far, we have carried out some research in an Intel Nehalem platform with
satisfactory results. In the same line, we intend to study the PEBS capabilities of the
new Performance Counters for Linux (PCL), the de facto standard monitoring frame-
work embedded in the most recent Linux kernel versions. In these versions, libpfm
has abandoned the use of Perfmon as the interface with the PMU and assists PCL ins-
tead to provide PEBS capabilities. This point can also be applied to the page migration
techniques presented in this dissertation.

– Study of the possibilities that the Roofline Model offers to assist data locality de-
cisions in runtime: The synergistic relationship between hardware counters and the
Roofline Model suggests that a real-time, dynamic Roofline Model could be able to
inspect and make suggestions about thread and data allocations to improve the perfor-
mance of a running application.

– Improvement of the page migration infrastructure and new scenarios: The user-
level approach of the page migration infrastructure provides the user with an ease-of-
use, transparent application. However, this advantage may also become a weakness:
its overhead is likely to be higher than a kernel-level application. Some of the im-
provements of the latency algorithm would have been better had it not been for some
overhead introduced by the algorithms or ping-pong effects on the pages to migrate.
These facts are worthy of study, since there is room for improvement and more efficient
algorithms might achieve a higher performance.

On the other hand, although our migration algorithms have been developed for a N-cell

NUMA system, they have only been tested on a two-cell node. We strongly believe

151

that the potential of the latency-based algorithms presented will reside in their ability
to reduce the execution time in a several-level latency systems, such as the Superdome
node. Once overcome the bureaucratic and technical barriers to configure properly
such a node, we intend to carry out a study in this system to evaluate and refine our
algorithms.

Additionally, as a further research, the page migration infrastructure could be provided
with the capability to inspect the performance and ratio of pages migrated and disable
itself or modify the sampling period when the monitored program seems to behave
properly, in order to avoid unnecessary overheads. Moreover, this capability could be
bound to new migration algorithms. Among them, the proposed dynamic Roofline
Model, which would suggest the improvements to perform in runtime.

A last line of work to take into consideration is the inclusion of page replication tech-
niques, together with techniques to combine thread and page migrations in order to
keep each thread close to their dataset. In this regard, some research is currently being
undertaken in our group.

At the outset of this dissertation, five goals were proposed. The work presented here meets
those goals. The hardware counters have proved to be an effective vehicle for enhancing the
locality of several applications in runtime, and the results obtained are encouraging to continue
the research in the proposed lines.

Resumen

Siguiendo el reglamento de los estudios de tercer ciclo de la Universidad de Santiago

de Compostela, aprobado en la Junta de Gobierno el dı́a 7 de abril de 2000 (DOG de 6

de marzo de 2001) y modificado por la Junta de Gobierno del 14 de noviembre de 2000, el

Consejo de Gobierno del 22 de noviembre de 2003, del 18 de julio de 2005 (artı́culos 30 a

45), del 11 de noviembre de 2008 y del 14 de mayo de 2009; y, concretamente, cumpliendo

las especificaciones indicadas en el capı́tulo 4, artı́culo 30, apartado 3 de dicho reglamento,

se muestra a continuación un resumen en castellano de la tesis.

En los últimos años hemos estado asistiendo a una evolución en los recursos computa-
cionales para uso cientı́fico y de ingenierı́a. La Ley de Moore se ha mantenido a costa de
integrar varios núcleos por procesador y buscar nuevas configuraciones en supercomputación.
La lı́nea que tradicionalmente ha marcado la diferencia entre multicomputadores, entendidos
como nodos monoprocesador con memoria privada conectados en red, y multiprocesadores, o
equipos con varios procesadores compartiendo memoria, es cada vez más difusa. Los nuevos
supercomputadores se organizan en una disposición de constelación, en la cual cada nodo
de un conjunto conectado por una red de alta velocidad es, a su vez, un multiprocesador de
memoria compartida en el cual podemos encontrar varios procesadores multinúcleo.

Centrándonos en el caso de los sistemas multiprocesador, NUMA (Non Uniform Memory

Access) es la disposición de memoria compartida más común hoy en dı́a. La ventaja de pro-
porcionar a todos los procesadores una visión uniforme del espacio de memoria tiene como in-
conveniente el mayor coste de acceso a aquellas direcciones alojadas en memorias fı́sicamente
remotas, no locales. En este contexto, la interacción de los sistemas de coherencia y consis-
tencia caché, la jerarquı́a de memoria, y la influencia de buses y procesadores es compleja y
está lejos de resultar intuitiva. Modelar el comportamiento de un código paralelo que corra en

154 Resumen

este tipo de arquitecturas pasa por realizar un profiling1 de la aplicación. Esta técnica permite
averiguar dónde se encuentran los cuellos de botella de un programa. Es decir, cómo y dónde
emplea la mayor parte de su tiempo de ejecución. De este modo, la información recabada
permitirá tomar decisiones, por ejemplo, para la mejora de la localidad y el balanceo de datos
de un programa, con el objetivo de reducir su tiempo de ejecución.

Un tipo de códigos computacionales en los que la localidad de datos es particularmente
importante es el de los códigos irregulares. Un código irregular, en contraposición a uno
regular, es aquel que presenta indirecciones en sus accesos a memoria de forma que impide
averiguar, en tiempo de compilación, el conjunto de posiciones accedidas. Estos códigos
presentan baja localidad y escaso reuso de la jerarquı́a de memoria. Un ejemplo tı́pico de
código irregular, abordado en esta tesis y presente en numerosas aplicaciones cientı́ficas y
resolutores de sistemas de ecuaciones de métodos iterativos, es el producto matriz dispersa
– vector (SpMV). Debido a la importancia de este kernel, es posible encontrar en la literatura
diversas técnicas para la mejora de su localidad [4, 5, 6]. La creciente diferencia entre las
velocidades de acceso a la memoria y de procesamiento hacen que la reordenación adecuada
del patrón de accesos a datos de este tipo de kernels cobre cada vez mayor relevancia a la hora
de mejorar su rendimiento en tiempo de ejecución.

Por otra parte, en la actualidad, los contadores de monitorización de rendimiento, también
denominados contadores hardware, constituyen una importante herramienta de monitoriza-
ción incluida en la PMU (unidad de monitorización de rendimiento) [3] de la mayorı́a de
los microprocesadores modernos. Con una sobrecarga prácticamente imperceptible, permiten
inspeccionar de forma no intrusiva un proceso en ejecución. En los últimos años han aparecido
contadores de mayor precisión que permiten realizar tareas de PEBS (muestreado de precisión
basado en eventos) [10], los cuales proporcionan, por ejemplo, las direcciones exactas del
puntero de instrucción y de los datos accedidos en memoria para los que ha ocurrido un
determinado evento.

En esta tesis se va un paso más allá de la utilización clásica de los contadores hardware
como herramienta de monitorización, y se proponen nuevas técnicas para usarlos activamente
en la toma de decisiones, de forma que conlleven una mejora de la localidad –y, por ende, del
rendimiento– de diferentes tipos de aplicaciones. La plataforma en la que se enmarca este
trabajo es el supercomputador FINISTERRAE, ubicado en el Centro de Supercomputación
de Galicia (CESGA) [50]. Cada uno de sus nodos contiene 8 microprocesadores dual-core

1Se ha mantenido el término original en inglés por estar ampliamente aceptado y no existir un equivalente en
castellano.

Resumen 155

Itanium2 Montvale. Las PMU de cada uno de los núcleos de los Itanium2 Montvale integran
un tipo particular de contadores hardware, los EAR (Event Address Register), que permiten
realizar un PEBS y proporcionan información de las muestras obtenidas como, por ejemplo,
la dirección accedida en memoria cuando se produce un evento determinado (ej: un fallo de la
caché de segundo nivel), la latencia de dicho acceso, o la posición del puntero de instrucción.

En esta tesis se aborda el problema de mejora de la localidad en dos vertientes. Por un
lado, se ha considerado el problema de la mejora de rendimiento de códigos irregulares, ası́
como la reducción del coste asociado a técnicas de reordenación para éstos, en tiempo de eje-
cución. Por otro, se han desarrollado técnicas de migración dinámica de páginas para mejorar
la localidad de códigos paralelos en tiempo de ejecución. En ambos casos, la información
proporcionada por los contadores hardware y, en particular, los EARs, ha sido esencial para
poder tomar decisiones de forma activa en tiempo de ejecución. Para la consecución de este
trabajo se definieron los siguientes objetivos especı́ficos:

– Evaluación de la arquitectura: En primer lugar es necesario obtener un conocimiento
detallado de los nodos que componen el supercomputador FINISTERRAE, entendiendo
cómo se comportan determinados programas en una arquitectura tan compleja.

– Estudio de los contadores hardware: A continuación, se debe profundizar el sistema de
monitorización y muestreo de la PMU de los Itanium2 Montvale. Ello incluye familia-
rizarse con las librerı́as y herramientas disponibles para tal fin.

– Mejora de técnicas de localidad: Aprovechando las caracterı́sticas de muestreo ofre-
cidas por los contadores hardware, se estudiará cómo reducir el coste de determinadas
técnicas de mejora de la localidad para códigos irregulares.

– Infraestructura de migración dinámica de páginas: Con el fin de proponer estrategias
de migración dinámica de páginas, es necesario previamente llevar a cabo el desarrollo
de una infraestructura software capaz de monitorizar, muestrear y modificar la ejecución
de un programa.

– Definición de estrategias de migración de páginas: Una vez que se disponga de la
infraestructura de migración de páginas, se podrán proponer diferentes estrategias de
migración basadas en la información proporcionada por los contadores hardware.

Los siguientes apartados detallan los objetivos y los resultados obtenidos.

156 Resumen

Evaluación de la arquitectura del FINISTERRAE

FINISTERRAE es uno de los supercomputadores de memoria compartida más grandes de
Europa. Está compuesto por 142 nodos de computación HP-Integrity rx7640. Cada uno de
estos nodos comprende dos celdas con 4 microprocesadores dual-core Itanium2 Montvale,
conectados por parejas a un bus y a una memoria propia a través de un controlador de celda
(ver Figura 2.2 en Página 15). La coherencia caché entre núcleos conectados a un mismo bus
se mantiene mediante un protocolo de snooping, mientras que las coherencias entre buses y
entre celdas son mantenidas por un directorio ubicado en memoria. La memoria total de cada
nodo, en disposición NUMA, es de 128 GB (dos módulos de 64 GB). FINISTERRAE cuenta
también con un nodo adicional formado por 128 núcleos y 1 TB de memoria.

Los Intel Itanium2 serie 9100 (Montvale) son procesadores RISC de doble núcleo. Cada
uno de los núcleos disponen de jerarquı́a propia de caché en tres niveles desde la L1 a la
L3. Los Itanium2 son procesadores que implementan un conjunto de instrucciones EPIC
(Explicitly Parallel Instruction Computing), en la cual la responsabilidad de reordenar las
instrucciones en el pipeline para maximizar la ejecución en paralelo recae en el compilador,
al contrario que en los sistemas tradicionales en los que era el propio procesador quien debı́a
asumir esa tarea en tiempo de ejecución.

Centrándonos en la unidad de monitorización, o PMU, de cada núcleo, podemos encontrar
un nuevo tipo de contadores hardware denominados Event Address Registers (EAR). En esta
tesis se ha utilizado la información proporcionada por los DEAR, o EAR de datos. Estos
contadores son usados únicamente en modo de muestreo (en contraposición a los contadores
tradicionales que, por contaje, dan un valor del número de eventos ocurridos) para obtener
un conjunto de muestras de un programa que está ejecutándose en uno de los núcleos del
procesador. Los EAR se pueden utilizar para realizar un muestreo basado en eventos (EBS).
Es decir, cuando ocurre un número preprogramado de eventos, se captura una muestra. El tipo
de eventos que pueden ser capturados son: fallos caché L1, cargas de datos de punto flotante,
fallos de la TLB de primer nivel, y fallos de ALAT. La peculiaridad de estos contadores es
que, a diferencia de los tradicionales, cada muestra capturada contiene información precisa
sobre la instrucción ejecutada, dirección virtual del dato accedido, latencia y timestamp de
dicho acceso.

Existen varios factores que pueden afectar al rendimiento de un programa paralelo eje-
cutado en el FINISTERRAE por tratarse de un sistema NUMA. Entre otros, la asignación de
threads a núcleos que hace el planificador del sistema operativo, los mecanismos de coheren-

Resumen 157

cia y consistencia caché, y la afinidad de los datos en memoria a los núcleos. El compor-
tamiento de un nodo rx7640 de FINISTERRAE fue evaluado para códigos densos y dispersos.
Se encontró que cada núcleo del nodo se comporta como si fuera un microprocesador inde-
pendiente, en lo cual influye la jerarquı́a propia de caché de que dispone cada núcleo. Por otra
parte, se constató la importancia de la ubicación de threads a núcleos. Nuestros experimentos
mostraron que cada controlador de celda introduce cierto retardo, lo cual harı́a recomendable
situar los threads de una aplicación en núcleos conectados al mismo bus. Sin embargo, la so-
brecarga de compartir el bus supera fácilmente el retardo mencionado, por lo que se encontró
que, cuando el tamaño de los datos a manejar por cada thread supera el tamaño de la caché
L3, es más adecuado situar los threads en núcleos de buses diferentes y, si es posible y existe
localidad de datos en memoria, en celdas diferentes. Esta situación fue corroborada por las
decisiones del planificador de Linux que, aun sin presentar un comportamiento determinista,
tiende a ubicar los threads en núcleos de distintas celdas.

Por otro lado, es frecuente que un programa paralelo comience con un thread maestro
ubicando datos en la memoria de una celda y, a continuación, cree el resto de threads, que
serán dispersados por todo el nodo. Linux cuenta con un sistema de ubicación de datos first-

touch, por el cual ubica los datos permanentemente en la memoria del thread que primero
accede a ellos. En estos casos, parte de los threads accederán remotamente a los datos. Sin
disponer de mecanismos de migración de páginas, y mientras el número de threads lo permita,
resulta adecuado mantener la ubicación de los threads en núcleos de la misma celda.

Adicionalmente al trabajo anterior, se implementó un modelo de rendimiento denomi-
nado modelo Roofline para el FINISTERRAE [60]. Existen varios modelos estadı́sticos que
permiten predecir de forma precisa el rendimiento de un programa en un sistema. Sin em-
bargo, normalmente son difı́ciles de utilizar por usuarios no expertos y raramente propor-
cionan información que permita mejorar el rendimiento del programa. El modelo Roofline
proporciona, de manera gráfica, predicciones realistas del rendimiento y de la productividad
de un sistema, informando de los cuellos de botella y sugiriendo posibles modificaciones para
mejorar el rendimiento de la aplicación. Integra en una única gráfica el rendimiento de cada
núcleo, el ancho de banda del sistema y la localidad de datos para un programa determinado.
En esta tesis se implementó el modelo Roofline para un nodo rx7640 del FINISTERRAE y
se testeó con el producto matriz dispersa-vector. Los resultados muestran cómo este código
está limitado por el ancho de banda, no por la capacidad computacional del sistema, y sugiere
qué modificaciones podrı́an realizarse para mejorar su rendimiento en cuanto a reubicación

158 Resumen

de threads en núcleos y reordenación de datos, proporcionando además información acerca
del máximo rendimiento que se puede esperar.

Estudio de los contadores hardware

Para poder acceder a la información proporcionada por los EAR en los Itanium2 Montvale
es necesario utilizar algún tipo de interfaz software que proporcione una capa de abstracción
y facilite su programación. Tras realizar una evaluación de las opciones disponibles, se optó
por usar la interfaz Perfmon. Perfmon se instala como un parche en el kernel de Linux.
Su librerı́a asociada libpfm, permite al programador acceder a todas las caracterı́sticas de
la PMU de cada núcleo del Itanium2 Montvale. Un programa puede ser automonitorizado, si
contiene el código que le permite obtener información sobre su propia ejecución, o ser moni-
torizado por otro programa. Perfmon se ha utilizado habitualmente en modo de muestreo.
Para ello, utiliza un buffer de almacenamiento de datos a nivel de kernel que, cuando se llena,
genera una interrupción y se mapea a espacio de usuario para poder ser leı́do por el progra-
mador. De este modo, se reduce la sobrecarga asociada a las interrupciones. Perfmon fue
evaluado en el FINISTERRAE con un producto matriz dispersa-vector paralelo y con un ker-
nel denso, utilizando un conjunto de matrices de prueba como entrada. El evento capturado
fue DATA EAR CACHE LAT4, que muestrea aquellos fallos caché de L1 cuya latencia de
resolución tarde más de 4 ciclos. Como en nuestros códigos trabajamos con valores en punto
flotante, y la caché L1 es de enteros, todos los accesos a valores de punto flotante se con-
sideran fallos de L1 y son susceptibles de ser capturados por Perfmon, dependiendo del
perı́odo de muestreo empleado. Los resultados muestran que ni el patrón de acceso ni el
número de threads influyen en el porcentaje de valores muestreados. Por otro lado, se estimó
la sobrecarga introducida en un código automonitorizado por Perfmon, concluyendo que,
en promedio, la sobrecarga es de un 0.01%, perfectamente asumible para nuestro trabajo.

Mejora de técnicas de localidad

Una vez evaluado el entorno de trabajo y las herramientas de monitorización, se pasó
a estudiar cómo utilizar los contadores hardware en técnicas de mejora de la localidad de
códigos irregulares en sistemas paralelos. Un caso particular de estas técnicas son aquellas
que modifican la ubicación de las estructuras de datos en memoria. Por lo general, el coste de
estas técnicas depende del tamaño de los datos de entrada y no es hasta que se han ejecutado

Resumen 159

varias iteraciones del programa que se compensa el coste inicial de la etapa de reordenación
de los datos. Para nuestro estudio se ha utilizado una técnica de reordenación previamente
desarrollada en nuestro grupo de investigación. Esta técnica utiliza métodos heurı́sticos para
reordenar las estructuras de datos de un código irregular, por ejemplo, de una matriz dispersa.
Como ejemplo de código irregular se utilizó el producto matriz-vector, por tratarse de un
código paradigmático de los irregulares que presenta bajo reuso de datos causado por el patrón
de accesos con indirecciones.

En primer lugar, se estudió la capacidad de la técnica de reordenación de estimar la loca-
lidad de una matriz dada a partir de un conjunto incompleto de datos (es decir, muestreando
aleatoriamente de forma manual la matriz de entrada), con el objeto de determinar la cantidad
de información requerida para obtener resultados similares a la técnica original. Se realizaron
estudios con 1%, 2%, 5%, 10%, 15% y 20% de la cantidad de elementos no nulos de las ma-
trices originales de un conjunto de prueba. Esta información se utilizó para generar un vector
de permutaciones para reordenar las filas en cada matriz. Se comprobó que valores de un
1% del total de elementos de la matriz eran suficientes para conseguir una reordenación que
obtenı́a resultados similares (con una diferencia máxima del 5%) a los de la técnica original,
con la ventaja de una importante reducción en la sobrecarga del proceso de generación del
vector de permutaciones.

El mismo proceso se repitió utilizando información parcial obtenida de un muestreo con
los EAR de los Itanium2 Montvale. Dado que, con la configuración utilizada, los conta-
dores obtienen únicamente la dirección de una posición de memoria accedida en el SpMV,
no es posible, a priori, obtener la posición de la matriz que estaba siendo accedida cuando
se produjo ese evento. Por ello, se desarrolló una técnica que hemos denominado DAST
(Dual Array Sampling Technique), la cual permite obtener con precisión la fila y columna
del elemento de la matriz muestreado. Tras generar los vectores de permutación con esta
información muestreada para el conjunto de matrices de prueba, la técnica de reordenación
obtuvo resultados similares a la técnica original pero, de nuevo, con una sobrecarga menor
debido al uso de información muestreada. En general, con las técnicas utilizadas se consigue
una reducción en el tiempo necesario para reordenar de entre el 93 y el 98% con respecto a
la técnica original. Por otro lado, se han observado menores fluctuaciones en los resultados
utilizando muestras procedentes de los contadores hardware frente a los valores muestreados
aleatoriamente de forma manual.

En la misma lı́nea, se desarrolló otro método para mejorar el rendimiento de la técnica
de reordenación. Utilizando DAST, y aprovechando la información de la latencia de cada

160 Resumen

acceso proporcionada por los contadores hardware, se modificó la heurı́stica de decisión para
reordenar la matriz original. En lugar de utilizar la distancia entre filas y/o columnas para
decidir cómo agruparlas para reordenar la matriz, se usaron los valores máximos de latencia a
cada fila. Se asume que, en el SpMV, si aparecen accesos al vector X con latencia alta, quiere
decir que hay poco reuso de esos elementos accedidos por los elementos no nulos de una fila y
de las filas precedentes de la matriz. Por tanto, varias filas con latencias de acceso por debajo
de determinado umbral se asignan conjuntamente para conseguir la reordenación de la matriz
más eficientemente. Con esta técnica, se consiguieron mejoras en el rendimiento del SpMV
de hasta un 30%.

Técnicas de migración de páginas

Otro de los campos abordados en esta tesis para la mejora de la localidad ha sido el de la
migración dinámica de páginas. La información de latencia asociada a las muestras obtenidas
por los EAR permite obtener una idea precisa del coste y número de accesos realizados a una
página de memoria durante la ejecución de un programa.

En primer lugar, se desarrolló una infraestructura software de monitorización y migración
de páginas a nivel de usuario para aplicaciones paralelas. Su funcionamiento es el siguiente:
un programa monitor recibe como parámetro el programa a monitorizar. Tras lanzarlo, detecta
la creación de cada hilo y, mediante Perfmon, asigna un contexto a cada uno. Los contextos
son estructuras lógicas de Perfmon que almacenan el estado de la PMU y otros eventos
relacionados del sistema. Cada contexto es asociado a la PMU del núcleo en el que está
ubicado cada thread del programa monitorizado. Si éste es migrado a otro núcleo durante
su ejecución, el contexto lo sigue. El programa monitor configura las PMUs de cada núcleo
para que muestreen un evento determinado proporcionado por los EARs. En este caso, el
evento seleccionado es DATA EAR CACHE LAT4 que, como se explicó previamente, captura
aquellos fallos caché de L1 cuya latencia de resolución tarde más de 4 ciclos. Perfmon crea
y asocia un buffer a nivel de kernel a cada uno de los contextos, que almacenan los datos
muestreados (ver Figura 5.2 en página 108). Una vez configuradas las PMUs, el programa a
monitorizar es iniciado. Durante su ejecución, cada vez que se produce un desbordamiento del
contador hardware asociado a un EAR, el evento que lo provocó y su información relacionada
son almacenados como una entrada en el buffer. Cuando uno de los buffers se llena, envı́a una
notificación al programa monitor, el cual lee y procesa la información recogida (ver Figura 3.3
en página 59). Este proceso continúa durante un perı́odo de monitorización, al final del cual el

Resumen 161

programa monitor utiliza la información recabada para, basándose en las decisiones tomadas
por una estrategia de migración dada, mover determinadas páginas de una memoria a otra
mediante la función move pages() del sistema operativo. Una vez realizada la migración,
el perı́odo de monitorización se inicia de nuevo. Nótese que una de las ventajas de esta
infraestructura es que no requiere tener que modificar en absoluto las fuentes o los binarios
de la aplicación monitorizada.

Las estrategias de migración propuestas se basan en modelos teóricos que desarrollamos
para sistemas jerárquicos con varios niveles de latencia de acceso a memoria, como el nodo
Superdome del FINISTERRAE. Estos modelos han sido particularizados y probados en los no-
dos rx7640, de dos celdas, utilizando los benchmarks NAS paralelos en OpenMP. El primer
modelo de migración es un algoritmo competitivo, en el que la celda a la que se migra una
página determinada es aquella cuyos procesadores acceden más veces en un perı́odo de mon-
itorización dado. Esta migración se justifica asumiendo que el número de accesos desde cada
celda se mantendrá constante, al menos, en el siguiente perı́odo de monitorización. El se-
gundo modelo de migración se basa principalmente en las latencias de acceso en lugar de
en el número de accesos, considerando la carga en tiempo real de cada celda y moviendo
las páginas a aquella cuya latencia media estimada se prevé menor. Para ello, es necesario
determinar dicha previsión. Estas estrategias han sido probadas en un entorno dedicado con
4, 8, 12 y 15 threads, en el que la única aplicación ejecutándose era uno de los benchmarks.
En este tipo de entornos es difı́cil batir a la polı́tica first-touch del planificador del sistema
operativo sobre códigos ya eficientes de por sı́ como los NAS, ya que una vez que cada thread
es asignado a un núcleo y se ubican sus datos en la memoria local, generalmente se producen
pocas migraciones de threads que fuercen accesos remotos a memoria. Aún ası́, en aquellos
benchmarks con movimiento importante de datos, se consiguieron ciertas mejoras. En un se-
gundo experimento, se probaron las estrategias de migración en un entorno multiprogramado,
lo que supone una situación más realista en la que varios programas deben compartir los re-
cursos hardware disponibles. En dicho experimento, otro programa paralelo se ejecutaba a
intervalos en una u otra celda mientras se ejecutaba el monitorizado, forzando migraciones en
los threads del benchmark monitorizado que fueron compensadas con el mecanismo de mi-
gración de páginas. En este caso, las mejoras fueron más importantes, consiguiendo valores
de speedup en algunos casos de hasta el 30%.

References

[1] N. Sánchez, “HP Integrity rx7640 and rx8640 server. Technical presentation,” Hewlett-

Packard, 2006.

[2] Hewlett Packard, Dual-Core Update to the Intel Itanium 2 Processor Reference Manual,
2006. Technical paper.

[3] D. Mosberger and S. Eranian, IA-64 Linux Kernel: Design and Implementation. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 2001.

[4] L. Rauchwerger, N. M. Amato, and D. A. Padua, “Run-time methods for parallelizing
partially parallel loops,” in Proceedings of the 9th ACM International Conference on

Supercomputing, LNCS, pp. 137–146, ACM press, 1995.

[5] R. Eigenmann, J. Hoeflinger, and D. Padua, “On the automatic parallelization of the
perfect benchmarks,” IEEE Trans. Parallel Distrib. Syst., vol. 9, no. 1, pp. 5–23, 1998.

[6] E. Gutiérrez, O. Plata, and E. L. Zapata, “A compiler method for the parallel execution
of irregular reductions in scalable shared memory multiprocessors,” in Proc. of the Int.

Conf. on Supercomputing, LNCS, pp. 78–87, ACM SIGARCH, Springer-Verlag, May
2000.

[7] E. Gutiérrez, O. G. Plata, and E. L. Zapata, “An analytical model of locality-based para-
llel irregular reductions,” Parallel Computing, vol. 34, no. 3, pp. 133–157, 2008.

[8] E. Herruzo, G. Bandera, O. G. Plata, and E. L. Zapata, “Reducing cache misses by loop
reordering,” in Proceedings of the International Conference ParCo, pp. 541–548, 2005.

164 References

[9] R. Das, M. Uysal, J. Saltz, and S. Y. Hwang, “Communication optimizations for irregular
scientific computations on distributed memory architectures,” Parallel and Distributed

Computing, vol. 22, no. 3, pp. 462–478, 1994.

[10] Precise Event-Based Sampling (PEBS). http://perfmon2.sourceforge.net/pfmon intel
core.html#pebs.

[11] E. Cuthill and J. McKee, Several strategies for reducing the bandwidth of matrices. Rose
and Willoughby, 1972.

[12] J. C. Pichel, D. E. Singh, and J. Carretero, “Reordering algorithms for increasing lo-
cality on multicore processors,” in Proc. of the IEEE Int. Conf. on High Performance

Computing and Communications, pp. 123–130, 2008.

[13] P. R. Amestoy, T. A. Davis, and I. S. Duff, “An approximate minimum degree ordering
algorithm,” SIAM Journal on Matrix Analysis and Applications, vol. 17, no. 4, pp. 886–
905, 1996.

[14] L. Oliker, X. Li, P. Husbands, and R. Biswas, “Effects of ordering strategies and pro-
gramming paradigms on sparse matrix computations,” SIAM Review, vol. 44, no. 3,
pp. 373–393, 2002.

[15] A. L. G. A. Coutinho, M. A. D. Martins, R. M. Sydenstricker, and R. N. Elias, “Perfor-
mance comparison of data-reordering algorithms for sparse matrix–vector multiplica-
tion in edge-based unstructured grid computations,” International Journal for Numerical

Methods in Engineering, vol. 66, no. 3, pp. 431–460, 2006.

[16] B. B. Fraguela, R. Doallo, and E. L. Zapata, “Memory hierarchy performance prediction
for blocked sparse algorithms,” Parallel Processing Letters, vol. 9, pp. 347–360, Sept.
1999.

[17] J. J. Navarro, E. Garcı́a, J. L. Larriba-Pey, and T. Juan, “Block algorithms for sparse
matrix computations on high performance workstations.,” in Proc. IEEE Int’l. Conf. on

Supercomputing (ICS’96), pp. 301–309, 1996.

[18] M. M. Strout, L. Carter, J. Ferrante, and B. Kreaseck, “Sparse tiling for stationary ite-
rative methods,” Int. J. High Perform. Comput. Appl., vol. 18, pp. 95–113, February
2004.

References 165

[19] E. J. Im, K. A. Yelick, and R. Vuduc, “SPARSITY: Framework for optimizing sparse
matrix-vector multiply,” International Journal of High Performance Computing Appli-

cations, vol. 18, pp. 135–158, February 2004.

[20] A. Buttari, V. Eijkhout, J. Langou, and S. Filippone, “Performance optimization and
modeling of blocked sparse kernels,” Int. J. High Perform. Comput. Appl., vol. 21,
pp. 467–484, November 2007.

[21] R. Vuduc and H.-J. Moon, “Fast sparse matrix-vector multiplication by exploiting varia-
ble block structure,” in High Performance Computing and Communications (L. Yang,
O. Rana, B. Di Martino, and J. Dongarra, eds.), vol. 3726 of Lecture Notes in Computer

Science, pp. 807–816, Springer Berlin / Heidelberg, 2005.

[22] V. Karakasis, G. Goumas, and N. Koziris, “A comparative study of blocking storage
methods for sparse matrices on multicore architectures,” in Computational Science and

Engineering, 2009. CSE ’09. International Conference on, vol. 1, pp. 247–256, August
2009.

[23] M. Belgin, G. Back, and C. J. Ribbens, “Pattern-based sparse matrix representation for
memory-efficient smvm kernels.,” in ICS’09, pp. 100–109, 2009.

[24] S. Toledo, “Improving memory–system performance of sparse matrix–vector multipli-
cation,” in Proc. of the 8th SIAM Conf. on parallel processing for scientific computing,
March 1997.

[25] A. Pinar and M. T. Heath, “Improving performance of sparse matrix-vector multiplica-
tion,” in Proceedings of the 1999 ACM/IEEE conference on Supercomputing (CDROM),
Supercomputing ’99, (New York, NY, USA), ACM, 1999.

[26] E. J. Im and K. Yelick, “Optimizing sparse matrix vector multiplication on SMPs,” in
Proc. of the 10th SIAM Conf. on parallel processing for scientific computing, March
1999.

[27] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F. Rivera, “Performance optimization
of irregular codes based on the combination of reordering and blocking techniques,”
Parallel Computing, vol. 31, no. 8–9, pp. 858–876, 2005.

166 References

[28] K. Kourtis, G. I. Goumas, and N. Koziris, “Optimizing sparse matrix-vector multiplica-
tion using index and value compression.,” in Conf. Computing Frontiers’08, pp. 87–96,
2008.

[29] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel, “Optimization of
sparse matrix-vector multiply on emerging multicore platforms,” in Proc. of Supercom-

puting (SC), 2007.

[30] S. Eranian, “What can performance counters do for memory subsystem analysis?,” in
Proceedings of the 2008 ACM SIGPLAN workshop on Memory systems performance

and correctness: held in conjunction with the Thirteenth International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS

’08), MSPC ’08, (New York, NY, USA), pp. 26–30, ACM, 2008.

[31] J. Marathe, F. Mueller, and B. R. de Supinski, “Analysis of cache-coherence bottlenecks
with hybrid hardware/software techniques,” ACM Trans. Archit. Code Optim., vol. 3,
pp. 390–423, December 2006.

[32] B. R. Buck and J. K. Hollingsworth, “Data centric cache measurement on the Intel Ita-
nium 2 Processor,” SC Conference, vol. 0, p. 58, 2004.

[33] Y. Choi, A. Knies, G. Vedaraman, and J. Williamson, “Design and experience: Using
the Intel Itanium2 processor performance monitoring unit to implement feedback opti-
mizations,” in Proc. of EPIC2 Workshop, 2002.

[34] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P. O’Boyle, and O. Temam, “Rapidly
selecting good compiler optimizations using performance counters,” in Proceedings of

the International Symposium on Code Generation and Optimization, CGO ’07, (Wash-
ington, DC, USA), pp. 185–197, IEEE Computer Society, 2007.

[35] M. M. Tikir and J. K. Hollingsworth, “Hardware monitors for dynamic page migra-
tion,” Journal of Parallel and Distributed Computing, vol. 68, pp. 1186–1200, Septem-
ber 2008.

[36] J. Antony, P. P. Janes, and A. P. Rendell, “Exploring thread and memory placement on
numa architectures: Solaris and linux, ultrasparc/fireplane and opteron/hypertransport.,”
in HiPC’06, pp. 338–352, 2006.

References 167

[37] M. M. Tikir and J. K. Hollingsworth, “Using hardware counters to automatically im-
prove memory performance,” in Proceedings of the 2004 ACM/IEEE conference on

Supercomputing, SC ’04, (Washington, DC, USA), pp. 46–, IEEE Computer Society,
2004.

[38] J. Marathe and F. Mueller, “Hardware profile-guided automatic page placement for cc-
NUMA systems,” in Proceedings of the eleventh ACM SIGPLAN symposium on Princi-

ples and practice of parallel programming, PPoPP ’06, (New York, NY, USA), pp. 90–
99, ACM, 2006.

[39] V. Thakkar, “Dynamic Page Migration on ccNUMA Platforms Guided by Hardware
Tracing,” Master’s thesis, Graduate Faculty of North Carolina State University, 2008.

[40] J. M. Bull and C. Johnson, “Data distribution, migration and replication on a ccNUMA
architecture,” in Proceedings of the Fourth European Workshop on OpenMP, 2002.

[41] J. Tao, M. Schulz, and W. Karl, “Improving data locality using dynamic page migration
based on memory access histograms,” in Proceedings of the International Conference on

Computational Science-Part II, ICCS ’02, (London, UK, UK), pp. 933–942, Springer-
Verlag, 2002.

[42] D. S. Nikolopoulos, T. S. Papatheodorou, C. D. Polychronopoulos, J. Labarta, and
E. Ayguadé, “A case for user-level dynamic page migration,” in Proceedings of the 14th

international conference on Supercomputing, ICS ’00, (New York, NY, USA), pp. 119–
130, ACM, 2000.

[43] D. S. Nikolopoulos, T. S. Papatheodorou, C. D. Polychronopoulos, J. Labarta, and
E. Ayguadé, “User-level dynamic page migration for multiprogrammed shared-memory
multiprocessors,” in Proceedings of the Proceedings of the 2000 International Confe-

rence on Parallel Processing, ICPP ’00, (Washington, DC, USA), pp. 95–, IEEE Com-
puter Society, 2000.

[44] D. S. Nikolopoulos, C. D. Polychronopoulos, T. S. Papatheodorou, J. Labarta, and
E. Ayguadé, “Scheduler-activated dynamic page migration for multiprogrammed DSM
multiprocessors,” Journal of Parallel and Distributed Computing, vol. 62, no. 6,
pp. 1069–1103, 2002.

168 References

[45] K. M. Wilson and B. B. Aglietti, “Dynamic page placement to improve locality in CC-
NUMA multiprocessors for TPC-C,” in Proceedings of the 2001 ACM/IEEE conference

on Supercomputing (CDROM), Supercomputing ’01, (New York, NY, USA), pp. 98–
107, ACM, 2001.

[46] B. Goglin and N. Furmento, “Enabling high-performance memory migration for mul-
tithreaded applications on linux,” in Proceedings of the 2009 IEEE International Sym-

posium on Parallel&Distributed Processing, (Washington, DC, USA), pp. 1–9, IEEE
Computer Society, 2009.

[47] B. Goglin and N. Furmento, “Memory Migration on Next-Touch,” in Linux Symposium,
(Montreal, Canada), 2009.

[48] The Harwell-Boeing Sparse Matrix Collection. http://math.nist.gov/MatrixMarket/col-
lections/hb.html.

[49] T. A. Davis, “The university of florida sparse matrix collection,” NA Digest, 92 (1994),

NA Digest, 96 (1996), and NA Digest, 97 (1997).

[50] Galicia Supercomputing Centre. http://www.cesga.es.

[51] J. Hennessy and D. Patterson, Computer Architecture - A Quantitative Approach. Mor-
gan Kaufmann, 2003.

[52] Hewlett Packard technical white paper, Inside the Intel Itanium 2 processor, 2002.

[53] M. Burrell, “Writing Efficient Itanium 2 Assembly Code.” https://wizardlike.ca/
files/itanium.pdf, 2010.

[54] L. Marek, “Parallel processing and software performance,” Master’s thesis, Dept. of
Software Engineering, Faculty of Mathematics and Physics, Charles University in
Prague, 2008.

[55] The numactl command. http://linux.die.net/man/8/numactl.

[56] IA-32 Intel Architecture Software Developers Manual. http://www.intel.com/
content/www/us/en/processors/architectures-software-developer-manuals.html.

[57] HP Integrity rx7640 Server Quick Specs. http://h18000.www1.hp.com/products/quick-
specs/12470 div/12470 div.pdf.

References 169

[58] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition. Philadelpha, PA:
SIAM, 2003.

[59] A. Kleen, “An numa api for linux,” SUSE Labs, 2004.

[60] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful visual performance
model for multicore architectures,” Communications of the ACM, vol. 52, pp. 65–76,
April 2009.

[61] L. McVoy and C. Staelin, “LMbench: portable tools for performance analysis,” in
Proceedings of the 1996 annual conference on USENIX Annual Technical Conference,
(Berkeley, CA, USA), pp. 23–23, USENIX Association, 1996.

[62] Performance Application Programming Interface (PAPI). http://icl.cs.utk.edu/papi/.

[63] Pfmon performance monitoring tool. http://perfmon2.sourceforge.net/pfmon users-
guide.html.

[64] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi,
and K. Hazelwood, “PIN: building customized program analysis tools with dynamic in-
strumentation,” in Proceedings of the 2005 ACM SIGPLAN conference on Programming

language design and implementation, PLDI ’05, (New York, NY, USA), pp. 190–200,
ACM, 2005.

[65] Paradyn Project. ParseAPI: An application program interface for binary parsing.
http://paradyn.org/html/parse0.9-features.html.

[66] J. Levon et al., “OProfile.” http://oprofile.sourceforge.net/.

[67] S. Eranian, The perfmon2 Interface Specification. Technical Report HPL-2004-200R1.
HP Labs, February 2005.

[68] M. Pettersson, “The Perfctr interface.” http://user.it.uu.se/mikpe/linux/perfctr.

[69] J. Reinders, VTune Performance Analyzer Essentials. Intel Press, 2005.

[70] Hewlett Packard, HPCPI and Xtools Version 0.6.6 User’s Guide, 2008.

[71] R. Hundt, “Hp caliper: A framework for performance analysis tools,” IEEE Concur-

rency, vol. 8, pp. 64–71, 2000.

170 References

[72] Performance Counters for Linux. https://lkml.org/lkml/2008/12/4/401.

[73] Perfcounters added to the mainline. http://lwn.net/Articles/339361.

[74] S. Eranian, “Perfmon2: a flexible performance monitoring interface for linux,” in Ottawa

Linux Symposium (OLS), 2006.

[75] S. Eranian, D. Mosberger, J. Callister, and S. Fernando, “Performance profiling for fun
and profit,” in Gelato Federation Meeting, 24 May 2005.

[76] J. C. Pichel, Técnicas de optimización de la localidad para códigos irregulares sobre

arquitecturas multiprocesador y multithreading. Phd thesis, September 2006.

[77] G. Gutin, A. Punnen, A. Barvinok, E. K. Gimadi, and A. I. Serdyukov, “The traveling
salesman problem and its variations,” 2002.

[78] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, “Finding Tours in the TSP,” in Insti-

tute for Discrete Mathematics, Universitat Bonn, 1999.

[79] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, A. J. Garcı́a-Loureiro, and F. F. Rivera,
“Increasing the locality of iterative methods and its application to the simulation of
semiconductor devices,” International Journal of High Performance Computing Appli-

cations, vol. 24, no. 2, pp. 136–153, 2010.

[80] M. Galassi et al, GNU Scientific Library Reference Manual (3rd Ed.). 2009.

[81] G. Karypis and V. Kumar, METIS: A software package for partitioning unstructured

graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices.
Univ. of Minnesota, Dept. of Computer Science/Army HPC Research Center, 1997.

[82] Perfmon2 monitoring interface and Pfmon monitoring tool. http://perfmon2.source-
forge.net.

[83] NAS Parallel Benchmarks. http://www.nas.nasa.gov/Resources/Software/npb.html.

[84] H. Jin, H. Jin, M. Frumkin, M. Frumkin, J. Yan, and J. Yan, “The OpenMP Implemen-
tation of NAS Parallel Benchmarks and its Performance,” tech. rep., 1999.

[85] move pages manual. http://linux.die.net/man/2/move pages.

References 171

[86] P. J. Drongowski, “Instruction-Based Sampling: A New Performance Analysis Tech-
nique for AMD Family 10h Processors (technical paper),” Advanced Micro Devices,

Inc., 2007.

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGEMENTS
	ABSTRACT
	CHAPTER
	Introduction
	The problem in a nutshell
	Thesis statement
	Related Work
	Experimental setup
	How this dissertation is structured

	Evaluating the FinisTerrae Architecture
	Introduction
	FinisTerrae architecture
	Intel Itanium2
	Performance Evaluation on FinisTerrae
	Performance Evaluation of Dense Codes
	Performance Evaluation of Sparse Codes
	Performance model of FinisTerrae
	Conclusions

	Accessing Hardware Counters on Itanium2 Montvale. The Perfmon interface
	Introduction
	Perfmon programming
	Evaluation of Perfmon on FinisTerrae
	Conclusions

	Locality Improvement on Irregular Codes
	Introduction
	Locality optimisation technique
	Locality optimisation using randomly sampled matrices
	Locality optimisation using hardware counters
	Locality optimisation using latency information
	Conclusions

	Page Migration
	Introduction
	Development of a page migration infrastructure
	Operating tests
	Affinity decisions
	Access-based migration algorithm for N-cell nodes
	Latency-based migration algorithm for N-cell nodes
	Evaluation in a dedicated environment
	Evaluation in a multiprogrammed environment
	Conclusions

	Conclusions and Future Work
	Resumen
	References

