
Vol.:(0123456789)

The Journal of Supercomputing (2025) 81:442
https://doi.org/10.1007/s11227-025-06955-y

Inqasm: InQuIR compiler to NetQASM

Jorge Vázquez‑Pérez1 · F. Javier Cardama1 · César Piñeiro3 · Juan C. Pichel1,3 ·
Tomás F. Pena1,3 · Andrés Gómez2

Accepted: 14 January 2025
© The Author(s) 2025

Abstract
Quantum computing is a rapidly evolving field, with almost every aspect open to
change or improvement. This includes moving from using a single quantum process‑
ing unit to interconnecting multiple quantum processing units (or several of them),
establishing a new paradigm called distributed quantum computing and increasing
the overall computing capability. Some research is already underway in this area to
prepare the ground for an eventual architecture with these characteristics. This is the
case of InQuIR (Nishio and Wakizaka in arXiv:2302.00267 2023) and NetQASM
(Dahlberg et al in QST 7:035023 2022), two languages developed for distributed
quantum computing. This paper presents the development of the InQASM compiler
with the aim of translating code from the InQuIR language to NetQASM, establish‑
ing a compilation stack for the new distributed paradigm. An example of this compi‑
lation and a simulation of the compiled code are shown to showcase it.

Keywords NetQASM · InQuIR · Compiler · Distributed · Quantum · QPU · DQC

1 Introduction

Quantum computing and, more specifically, distributed quantum computing (distrib‑
uted quantum computing (DQC)) [1] brings many problems and difficulties to the
software stack. From how to express circuits at a high level of abstraction to how to
optimise circuits for a particular architecture or technology, it all remains an area of
research with few agreed standards and practices.

 * Jorge Vázquez‑Pérez
 jorgevazquez.perez@usc.es

1 Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de
Santiago de Compostela, Santiago de Compostela, Spain

2 Galicia Supercomputing Center (CESGA), Santiago de Compostela, Spain
3 Departamento de Electrónica e Computación, Universidade de Santiago de Compostela,

Santiago de Compostela, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-025-06955-y&domain=pdf

 J. Vázquez-Pérez et al. 442 Page 2 of 29

In the field of quantum computing, discussions often focus on algorithms and
their potential advantages in terms of time efficiency, particularly in solving prob‑
lems that remain intractable to classical computation. One algorithm frequently
cited in this context is Shor’s algorithm [2], famous for its impact on modern cryp‑
tography. However, building the necessary infrastructure to run these algorithms is
a substantial undertaking. Questions of input and output of information, storage of
results, monitoring of execution, and other logistical aspects are far from trivial. The
straightforward solution to these questions lies in classical computing. However,
implementing this solution is far from simple.

The apparent paradox of solving quantum software challenges through classi‑
cal computation is not a contradiction. Classical technologies such as memory and
I/O communication dwarf their quantum counterparts because they do not have to
comply with the constraints of the no‑cloning theorem and can hold information
indefinitely, unlike quantum systems, which are prone to decoherence [3]. Although
some quantum memory models exist, they are not yet ready to replace classical
memory [4–6]. In addition, all quantum computers are controlled and monitored by
classical computation. For example, it is common to see field‑programmable gate
arrays (FPGAs) managing the sending of pulses to the qubits to execute a particular
gate [7, 8]. It is, therefore, understandable that quantum computing software is pre‑
dominantly classical.

Thus, it is interesting to integrate quantum computers into the high‑performance
computing (HPC) environment and use them to accelerate specific tasks, similar to
accelerators such as FPGAs or graphics processing units (GPUs). Although they
fundamentally differ from classical accelerators in that they introduce a new com‑
puting paradigm that complements the existing heterogeneous HPC landscape [9,
10].

Focusing on the compilation process for quantum systems, it is important to rec‑
ognise that quantum software, being inherently classical, requires the construction
of a classical software stack [11].

While adapting the conventional classical software stack to quantum comput‑
ing presents significant challenges due to the lack of abstraction available in this
domain, it still serves as the most viable option [11]. In this context, the quantum
computing software stack can be viewed as comprising several layers, analogous to
those found in classical computing systems [12, 13].

• The frontend [14]: This layer parses high‑level quantum programming languages
such as Qiskit or Cirq [15, 16]. It performs syntax and semantic analysis to check
for errors and generates a IR that simplifies the code structure for further pro‑
cessing.

• The IR: An abstract, platform‑independent code that bridges high‑level lan‑
guages and low‑level machine code. It allows for various optimisations and hard‑
ware‑independent analysis, facilitating portability and adaptability across differ‑
ent quantum hardware platforms.

• The backend [17]: This layer is the result of translating the IR into hardware‑
specific instructions or machine code. It includes optimisations tailored to the

Inqasm: InQuIR compiler to NetQASM Page 3 of 29 442

architecture and constraints of the target quantum hardware to ensure efficient
execution of the quantum program.

Additionally, simulators and emulators replicate the behaviour of quantum hard‑
ware and provide a virtual environment for testing, debugging, and validating
quantum algorithms [18]. They allow researchers and developers to experiment
with quantum programs without the need for physical quantum processors, mak‑
ing them essential for early‑stage development and learning.

Transversal to the three mentioned layers is the compiler. The compiler is the
piece of software responsible for translating the code of each stage to the follow‑
ing (frontend software to IR and IR to backend code) so that it can run in an emu‑
lator or an actual quantum computer.

Regarding quantum computing, some aspects of classical compilation are com‑
patible with quantum, while others are not. Thus, both the software stacks for
quantum and classical computing have to deal with different types of hardware.
The quantum hardware differs in the kind of technology—trapped ions, super‑
conductors, photons, etc.—and in the set of gates supported [19, 20]. This means
a quantum circuit has to be translated into an equivalent one using the supported
gates before execution in a particular device, just as in classical computing with
different instruction set architectures. In this sense, having these two different
levels of abstraction is advantageous because, as in the classical counterpart, the
compiler designer only has to worry about translating the IR into the gate set sup‑
ported by the machine in question.

On the other hand, unlike classical models of computation, quantum comput‑
ing cannot provide a level of abstraction equivalent to the classical one. In the
classical realm, layers of abstraction separate code written in a high‑level lan‑
guage from assembly language, allowing the programmer to not worry about bit‑
level operations. In contrast, there are not many abstractions in today’s quantum
computing, and there is always a need to work at the qubit level. This means that
it is difficult to raise the level of abstraction of IR above that of quantum assem‑
bly languages in any appreciable way, so it is difficult to distinguish between a
quantum IR and a quantum assembly language. A discussion about these issues
will be performed in later sections.

In classical computing, Moore’s law has enabled a consistent increase in CPU
power simply by adding more transistors to the chip. This growth has driven sig‑
nificant performance improvements. However, as transistors become thinner, it
is more challenging to limit power consumption and heat generation [21]. As a
result, instead of continuously increasing the transistor count on a single core,
the industry has shifted towards multicore systems, where multiple processing
units work in parallel to enhance performance without relying solely on transistor
scaling.

Quantum computing is expected to see a similar phenomenon in the near
future [22]. Due to problems such as crosstalk [23–25], single quantum chip archi‑
tectures are believed to be limited in the number of qubits, with multicore quantum
chips being the solution, following a path that could be considered an analogue to
the classical one.

 J. Vázquez-Pérez et al. 442 Page 4 of 29

Assuming that this is the path quantum computing will follow, two main prob‑
lems arise. The first is how the work will be distributed, and the second is how the
software will be designed to run it. Neither of these problems is trivial, but they are
very different in nature. The first one is more related to the actual quantum com‑
putation, where you have to guess how to perform the computation in a distributed
system without changing the result and, moreover, increasing the efficiency in terms
of time and error. On the other hand, the second one is a purely classical problem
because, as already mentioned, all quantum software is actually classical. This work
will focus entirely on this second part, leaving the distribution of quantum work‑
loads as a topic for future investigation. For more information about the first part
and, in general, about the DQC paradigm, an extensive review of state of the art was
presented in [1].

This work focuses on developing part of the aforementioned compilation process.
In particular, it will focus on the translation from a quantum IR to a backend. Spe‑
cifically, this work will perform the compilation of InQuIR code [26] to NetQASM
code [27]. The project’s scope is to provide the first step towards having a complete
distributed quantum software stack to run distributed applications in quantum com‑
puting similarly to its classical counterpart. It will not be part of the scope of this
work to optimise the efficiency of the distributed quantum circuits.

The rest of the paper is organised as follows. Section 2 presents an analysis of
related work and background on DQC. After establishing a baseline on state of the
art, Sect. 3 describes the InQuIR and NetQASM works in detail in order to justify
the decisions taken when building the InQASM compiler. After this, all the neces‑
sary elements for building the InQASM compiler are summoned, enabling Sect. 4
to thoroughly describe the intricacies of the compilation and implementation of the
software. Next, in Sect. 5, the code produced by the software is proven to work cor‑
rectly, along with a representative example of DQC. Finally, in Sect. 6, a discussion
of various issues presented throughout the work is carried out, along with the con‑
clusions. All the code employed in this paper is open source.1

2 Background and related work

As mentioned previously, this work is dedicated to developing a software stack for
DQC. The scheme outlined in the Introduction will be followed to perform a struc‑
tured analysis of the literature. This involves examining the works on the frontend,
then on the IR, assessing the backend, and finally providing a brief analysis of emu‑
lators. This brief review will focus primarily on the core topics of this paper: the IR
and backend layers. It should be noted that a comprehensive review of the state of
the art can be found at [1].

1 It is available in the repository: https:// github. com/ jorge vazqu ezper ez/ InQASM.

https://github.com/jorgevazquezperez/InQASM

Inqasm: InQuIR compiler to NetQASM Page 5 of 29 442

2.1 Frontend

Regarding the frontend, not much software has been developed or even designed
for the DQC paradigm. This is not surprising since this type of software has
always been painfully difficult to model, even in classical distributed computing
and especially in parallel computing. Initially, a great deal of effort was put into
achieving automatic parallelisation—the so‑called holy grail of parallel comput‑
ing—but this has had only limited success.

Most attention in recent years has been given to compiler support for technolo‑
gies such as open multi‑processing (OpenMP) [28] or message passing interface
(MPI) [29], among others. openMP is an API that enables cross‑platform shared
memory multi‑processing in C, C++ and Fortran, facilitating the development of
parallel applications. It provides a simple and flexible interface through compiler
directives that parallelise sections of code, making it easier for developers to take
advantage of multicore processors without extensive code changes. On the other
hand, MPI is a standardised and portable message passing system designed to
facilitate communication between processes in parallel computing environments.
It enables the development of scalable parallel applications by providing a com‑
prehensive set of libraries for inter‑process communication across different com‑
puting platforms, including clusters and supercomputers. A contrast can now be
carried out by comparing these two technologies with the quantum paradigm.

On the one hand, the concept of threads in classical computing—i.e. differ‑
ent tasks sharing a common memory—does not apply to the quantum analogue.
This is mainly because memory in quantum computing cannot be understood in
the same way as in classical computing due to decoherence. One could make a
point about the relationship between threads and superposition, understanding the
qubits as the shared memory that superposition uses to perform different paths of
the same computation. But this seems like too much effort to mould a classical
concept into the quantum world. And, with some confidence, it can be said that a
quantum language model that mimics the openMP behaviour is unlikely.

On the other hand, the MPI proposal is much more compatible with quantum
computing. This is mainly because, unlike the concept of a thread, the concept of
a message—understood as a piece of information sent from one device (Alice) to
another (Bob)—does exist in DQC as it has been shown in [1] with the teledata
and telegate protocols. In fact, there have already been some approaches towards
a quantum message passing interface (QMPI) [30, 31]. It should be emphasised
that QMPI is at a very early stage, its implementation is only at a design stage.

This last fact about QMPI shows how premature the current landscape of fron‑
tend software for DQC is. And even more shocking than its prematurity is the fact
that there is only one—the QMPI—software tool designed specifically for this
area. But, to be fair, this problem extends to the whole field of quantum comput‑
ing, as it is challenging to find abstraction in this computational model. It just
stands out in DQC due to its lower profile in the research sphere.

 J. Vázquez-Pérez et al. 442 Page 6 of 29

2.2 Intermediate representation (IR)

Moving on to the next level of abstraction, IRs are the next step. Making a simi‑
lar exercise as before, and to better understand the concept, a comparison between
quantum and classical IRs can help to clarify some of its peculiarities.

In classical computing, and more specifically in classical compiling, IRs are used
as a kind of “common denominator”. Suppose there are n high‑level languages and
m different machines, each with its own set of instructions. To be able to compile
each language on each machine—i.e. translate the high‑level language into the set of
instructions required—it would be necessary to program nm different compilers: one
for each combination of language and machine. What a IR does is to define a gen‑
eral set of instructions into which any language can be compiled and, more impor‑
tantly, which can be translated into any specific set of instructions depending on the
machine used. Thus, only one compiler is needed for each language to get translated
into the IR, and analogously, the IR only needs one compiler to be transformed to
each set of instructions. This means that the number of required compilers is n + m.

Focusing now on DQC, there has been a proposal for a quantum IR for distributed
systems, which has already been mentioned: InQuIR [26]. This distributed quantum
IR was born out of the lack of a suitable representation as a compilation target for
this kind of system. Authors focused on creating a formal semantic that would allow
them to properly express problems such as deadlocks, qubit exhaustion, barriers,
and entanglement swapping. All concepts are closely related to the distribution of
quantum states2. This work will be further analysed in the following sections, where
the characteristics and key points will be pointed out, as well as some aspects that
were found to be improved during the development of this work. To the best of our
knowledge, this is the only IR specifically defined for distributed architectures in
quantum computing (NetQASM [27], with its basic set of instructions, is said to
work as a kind of IR, but this will be discussed later). Of course, many quantum IRs
have been proposed for the monolithic.3 case, but it is beyond the scope of this paper
to explain the differences between them.

Before discussing the backends, it is important to note a specific aspect of IRs for
distributed systems. It has been emphasised in the definition of a IR that it must be
platform‑independent. This is true, but in the distributed case, the IR actually needs
to know some information about the system: how many processors are available.
This is because if no information about this is given at the IR stage, there is no way
of specifying communication directives. This, for simplicity and coherence, will not
be considered a platform‑specific property but a parameter of the IR. In this sense,
the platform‑specific characteristics will be the same as for the monolithic case, i.e.
the gate set supported, the connectivity of the qubits in each QPU, etc.

2 All this concepts will not be formally defined in this manuscript; please refer to the InQuIR manuscript
[26] for details.
3 In this text when the term “monolithic case” or “monolithic quantum computing” is used, it refers to
quantum computations performed with only one quantum processing unit (QPU). In other words, it refers
to the opposite of the DQC.

Inqasm: InQuIR compiler to NetQASM Page 7 of 29 442

2.3 Backend

Once the previous two layers have been shelled, the backend becomes the pro‑
tagonist. This is the last compilation stage, and the part is closest to the machine.
In classical compilation, this is the moment when the instructions defined in the
IR are translated into the set of instructions understood by the machine in order
to execute them.

Again, quantum computation lacks a perfect match for this kind of concept,
or perhaps there has been a tendency in the literature to call quantum assem‑
bly something that does not quite fit the definition of quantum assembly. The
example par excellence is the Quantum Assembly Language (QASM) and all its
variants: OpenQASM [32], eQASM [33], cQASM [34], etc. As its name sug‑
gests, QASM is inherently defined as an assembly for quantum computing. And
the problem with defining QASM as such lies in one of its characteristics: it is
platform‑independent. This reduces its proximity to the machine and perverts its
definition as an assembly language. In fact, if someone takes a quantum assem‑
bly and makes it platform‑independent, it becomes a quantum IR because what
has been done is basically to raise a level of abstraction (exactly where the IRs
is found).

This is precisely what happens with NetQASM [27], which can be seen as
another variant of QASM, but for distributed systems. To be fair, despite its
name, NetQASM is not defined as an assembly language. In fact, it is defined as
a low-level assembler-like language. But NetQASM solves this problem of plat‑
form independence by adding the concept of flavours. These are modifications
of the instruction set to extract platform‑specific advantages. The basic flavour,
the universal gate set, is called the vanilla flavour. They even say in this paper
that: “the vanilla flavour can be seen as an IR and the translation to a specific
flavour as a backend compilation step.”

The lack of standards and guidelines was mentioned previously as part of the
motivation for this work. This is the perfect example. Most of the time, quantum
compilation processes are called by names that refer to classical stages but do not
quite match their nature. Quantum assembly languages are not the only example.
For example, the term “transpile” is commonly used in classical computing to
translate one language into another at the same level of abstraction. In quantum
computing, however, it is commonly used to refer to the translation of a circuit
into the gate set of a machine, plus optimisations. Ironically, this is exactly what
the term “compile” is used for in classical compilation, as explained earlier in
this section. In this sense, the work developed in this paper—i.e. the translation
from InQuIR to NetQASM—can be considered as part of the compilation pro‑
cess or as transpilation, depending on whether NetQASM is considered to be at
a lower level of abstraction than InQuIR or not. In the conclusions, there will be
a discussion treating this topic, taking into account the different characteristics
extracted through the work of the two languages.

 J. Vázquez-Pérez et al. 442 Page 8 of 29

2.4 Emulators

In this era of quantum computing, the so‑called noisy intermediate‑scale quantum
(NISQ) era, emulators of the behaviour of a quantum computer are of particular
interest. Developing strong emulators will allow us to predict better how quantum
computers will perform with a given algorithm. They allow the development of
new algorithms and techniques while quantum computers are still in the process of
becoming viable in a hardware sense.

For DQC, contrary to the monolithic case, there are not so many emulators, but
the number is significant compared to the small amount of software that the compi‑
lation stack has. There is, of course, an explanation for this. Although the concept of
DQC as an analogue to the multicore concept in classical computation is not widely
used in practice, quantum networks are. This is why there are emulators for DQC:
they were initially designed to simulate a quantum network, not a multicore archi‑
tecture. Fortunately, the multicore architecture can be treated as a quantum network
with special properties, e.g. a small distance between nodes.

A first example of a quantum emulator for distributed computation is the dis‑
tributed quantum computing simulator (DQCS) [35], a recently developed tool for
simulating the behaviour of distributed quantum systems. This emulator is built on
top of Qiskit [16] for illustrative purposes rather than efficient simulation. A similar
example is the QuNetSim emulator [36], a Python software framework that attempts
to provide an easy‑to‑use platform for testing quantum network protocols. This goal
was shared with another emulator called SimulaQron [37]. The SQUANCH emula‑
tor [38] is a Python software framework like QuNetSim and has the special feature
of modelling noisy quantum channels.

On the other hand, [39] propose a framework design that exploits computational
and networking aspects by introducing the concept of an execution manager: a
scheduler for networked computers. NetQuil [40] is another example that integrates
with the Quil language used by Rigetti’s quantum processors, providing a seamless
way to simulate quantum networks and distributed algorithms using a common pro‑
gramming language. A more interesting example for the purposes of this work is
Interlin‑q [41], a simulation platform designed from the outset with the idea of mul‑
ticore quantum computers in mind rather than simulating quantum networks such as
the quantum internet.

There are also several discrete event quantum emulators: QuISP [42], qkdX [43],
SeQUeNCe [44] or NetSquid [45]. Discrete event simulation, a well‑established
method for simulating classical network systems, is a modelling paradigm that
advances time by moving through a sequence of events, which is applied to quantum
networks in the above emulators. The specific differences between these programs
are explained in [45] and will not be described in this work.

Among all these emulators, NetSquid has been selected for this work mainly
because it accepts NetQASM instructions as a valid set. This also happens in Simu‑
laQron, but NetSquid was ultimately preferred due to its deeper design and scope.
This simulator is designed for quantum networks and, therefore, does not have a mul‑
ticore structure‑centred scope like Interlin‑q. However, as mentioned above, multi‑
core architectures can be treated as quantum networks with specific characteristics.

Inqasm: InQuIR compiler to NetQASM Page 9 of 29 442

3 InQuIR and NetQASM

This section starts with a description of InQuIR. The aspects and intricacies of
both the manuscript and the actual code will be highlighted, pointing out what had
to be changed to make the compiler work. Secondly, the same effort is made with
NetQASM. Although NetQASM is deeper than InQuIR in content (because they
developed a whole framework along with the assembly‑like language), only the
aspects that affect this work will be explored, along with a general explanation of the
software and the work.

3.1 InQuIR

Delving into the paper proposing InQuIR [26], the authors explain that their primary
motivation was the lack of IR for distributed quantum systems. In fact, they noticed
the effort of some works in trying to map the qubits in an optimal way to the differ‑
ent distributed architectures. Still, they called themselves “compilers” only by doing
the optimisation stage of the compilation process, which is just an operation on the
backend, not the whole compiler.

So, with this motivation in mind, they claimed the following contributions:

• Definition of formal semantics.
• Examples of use.
• Resource estimation software tool.
• Roadmap for the introduction of static analysis.

Formal semantics in programming languages is the precise mathematical study of
what programs mean. It provides clear, unambiguous definitions of how programs
behave and run. This helps in designing languages, verifying the correctness of
programs, building reliable compilers, and improving our understanding of pro‑
gramming concepts. Different approaches, such as operational, denotational and
axiomatic semantics, provide different ways of describing and reasoning about the
meaning of programs. In this case, InQuIR chooses operational semantics to be able
to explain how the system changes during the execution of the program. In fact, they
defined the runtime state R as

where � is the density matrix of the state (they do not specify, but it can be inferred
that it is of the whole system), Q is the set of data qubits, E is the set of communica‑
tion qubits, P is the system currently being evaluated, and H is the heap for classical
communication. With this definition, the operational semantics can be described by
analysing how a runtime state R changes into another R′.

Speaking of examples to use, this is probably the most innovative feature pre‑
sented in the InQuIR work. Almost all the work around quantum distribution focuses
on optimising the mapping of the qubits and minimising classical communication

R = [�,Q,E,P,H],

 J. Vázquez-Pérez et al. 442 Page 10 of 29

between nodes. But none of them focuses on the problem that can cause a deadlock.4
With the tools used to construct the operational semantics, they present four impor‑
tant examples: entanglement swapping, barriers, qubit exhaustion and deadlocks. As
of this work, these four examples will not be employed, but they are a significant
aspect of InQuIR.

About the resource estimation software tool, they introduce several metrics:
E‑count and E‑depth, C‑count and C‑depth, estimated time and number of remaining
operations by processors at each time. With E‑count and E‑depth, they analyse the
number of generated entanglement pairs and the depth of the critical path, respec‑
tively, considering only the dependencies of the entanglement generation. C‑count
and C‑depth, on the other hand, focus on classical communication. They used theo‑
retical values to calculate the time cost of each operation, so the present estimate
serves only as an indication of performance. Still, it could be improved by adapt‑
ing the time cost of each operation to that performed by a real machine. However,
this should be done when compiling InQuIR for the specific machine and not before
because, as clearly stated in this manuscript, the IRs must be platform‑independent.

Finally, the roadmap for introducing static analysis is just a brief explanation of
how static analysis could help improve the verification of quantum programs. Static
analysis of a quantum program involves examining its structure and properties with‑
out running it to detect problems and verify correctness. This is an increasingly
common practice in monolithic quantum computing, where it is increasingly seen as
an alternative to classical debugging. This is because it is impossible to read quan‑
tum states without affecting the actual state, so the only way to verify that the pro‑
gram is correct is to check certain aspects of the circuit before execution.

3.1.1 Benefits and drawbacks

It is now necessary to carry out a corresponding analysis to understand the choices
made in the implementation of our compiler. Starting with the strengths of this
work, it is worth noting the establishment of a syntax and operational semantics.
Doing this to theoretically explain and support the creation of a language—in fact of
an IR—is a good practice to reduce inconsistencies and errors. The introduction of
a resource usage estimator is also worth mentioning. From a compiler point of view,
this could be used to improve the IR code, a common practice in classical compila‑
tion when dealing with IRs.

Regarding the drawbacks, it is necessary to talk about the InQuIR software avail‑
able in the repository.5 Along with the language, InQuIR developers have included a
toy compiler that, given a QASM code and the connectivity of the QPU, transforms
the QASM code into InQuIR code. This toy compiler chooses to do automatic dis‑
tribution of the quantum workload, which is probably not the best idea considering
the problems of autoparallelisation studied in classical computing. But since it is a

4 A deadlock in programming is a situation where two or more processes or threads are stuck waiting for
each other to release resources, causing them all to stop indefinitely.
5 The repository is located in https:// github. com/ team‑ InQuIR/ InQuIR.

https://github.com/team-InQuIR/InQuIR

Inqasm: InQuIR compiler to NetQASM Page 11 of 29 442

toy compiler and not a real compiler, it is understandable that it does not look for the
most efficient compilation.

The real problem is that this compiler does not follow the defined syntax. The
grammar defined in [26] does not match the grammar implemented by the actual
compiler, resulting in a completely different language. The actual grammar imple‑
mented by the compiler is shown in Fig. 1. There is little interest in comparing the
actual grammar with the theoretical one. However, it is interesting to analyse the
problems of the actual grammar, some of them being the following.

• Qubits and classical data are intertwined under the same variable, called value.
• There is no differentiation between the communication and data qubits.
• The system definition only allows two system concatenated.
• The format employed does not follow any specific formal syntax definition for‑

mat.

To solve these inconveniences, we have developed a modified version of InQuIR
in order to use with our compiler. The inconveniences pointed out were modi‑
fied with a appropriated justification. It is important to mention that the language
allowed by this new syntax will be exactly the same as the one defined by the actual
grammar. This is just a formal precision which, although irrelevant from a practical
point of view, will make the InQuIR grammar much clearer and, thus, the under‑
standing of this work.

3.2 NetQASM

Next the NetQASM [27] language will be explained. However, it is first necessary to
understand how quantum networks are viewed and their execution model. After that,
a schematic explanation of the NetQASM language will be presented. In this case,
the syntax will not be revealed since it is the target of the compilation and not the
source, which means there is no need to read instructions (only to generate correct

Fig. 1 Actual syntax of the InQuIR grammar

 J. Vázquez-Pérez et al. 442 Page 12 of 29

ones from the InQuIR code). Finally, some brief remarks about NetQASM will be
made to clarify and reinforce some ideas.

The first thing that needs to be explained about NetQASM, even before its lan‑
guage, is the abstract model of the hardware and software architecture. It can be
seen in Fig. 2. This model is composed of two main parts, the application layer
and the quantum network processing unit (QNPU), both classically connected by a
shared memory and the sending and receiving of NetQASM code or, as the authors
call it, NetQASM subroutine. This represents a node in a quantum network, and for
this work, it will be considered a QPU.

It has already been said that NetQASM is constructed and considered for quan‑
tum networks. Perhaps taking into account the context of this work, i.e. a quantum
multicore structure, having an application layer on top of the QNPU might be a bit
cumbersome. However, as this is at an early stage and the ultimate goal is to cre‑
ate a link between two software—NetQASM and InQuIR—this is left as a future
improvement. Also, the intricacies of the QNPU are left to the reader; for this
endeavour, it is sufficient to understand that the NetQASM subroutines are sent to
the QNPU to be executed and that the application layer has access to a memory
shared with the QNPU. This is illustrated in Sect. 5 with the example employed.

Now, it is necessary to describe the NetQASM language. First, although it can be
(and in this work has been) classified as a variant of the QASM language, it is quite
different in form and intention. Apart from the obvious fact that, unlike QASM,
NetQASM is designed for quantum networks, it is also striking that NetQASM is
almost more like a classical assembly language than like QASM. This is mainly due
to the virtualisation of the qubits. This is done by an artefact called unit module. A
unit module defines the topology of the available qubits by specifying which qubits
are connected, i.e. on which qubit pairs a two‑qubit gate can be executed. It also
contains additional information about each qubit. These unit modules contain vir‑
tual qubit IDs—similar to classical computers with registers—and, unnoticed by the
application layer, the QNPU maintains a mapping of these virtual qubit IDs to the
physical qubits. In Fig. 3a, this virtualisation can be seen, for example, in line 4.
This line, set Q0 0, does not set the qubit number zero to the state �0⟩ . What it
does is to assign the ID 0 to the variable Q0 and then, when operations are applied

Fig. 2 Abstract model considered in the NetQASM work [27]

Inqasm: InQuIR compiler to NetQASM Page 13 of 29 442

to this qubit, the QNPU will determine—with its mapping—which physical qubit
will be the target of such operations. This common practice in classical assembly
language finds its equivalent here, in the DQC field, in NetQASM.

Furthermore, something not even mentioned in [27] but present in the developed
code is the distinction between protosubroutines and subroutines. These represent
the human‑readable and binary versions of the NetQASM language, respectively. A
difference between these two representations is that the protosubroutines have jump
variables and constant values, and, on the contrary, the subroutines translate these
values to registers. These can be observed in Fig. 3, where all the constant values
employed out of a set directive are substituted for a register (for instance, R0 in
Fig. 3b).

Finally, the Python software development kit (SDK) developed by the authors to
create NetQASM programs with a higher level of abstraction has to be mentioned.
This may seem contradictory to what was exposed in Sect. 2, when the lack of fron‑
tend languages was mentioned. But it is not. The abstraction this Python SDK pro‑
vides is not at a quantum level. It is an abstraction at the classical level because there
is still the need to work with gates and, therefore, bit operations—been the bits, in
this case, qubits. Nevertheless, this SDK is of interest because it will be used to
insert the compiled subroutines into the NetSquid simulator and test their correct‑
ness. Or, in other words, this Python SDK will represent the application layer, being
the one communicating with the simulated QNPUs.

3.2.1 Benefits and drawbacks

In terms of benefits, first of all, virtualising the qubits and abstracting the applica‑
tion layer and the QNPU is a very powerful way of designing the model. It frees
the compilation process from dealing with the quantum resources of the QNPU and
removes tasks from the quantum part of the node to speed up the processes, per‑
fectly separating the quantum and classical workloads. As far as the software infra‑
structure is concerned, the amount of tools and options is quite impressive. The easy
integration with the NetSquid simulator gives this work a step up in quality, as it is
possible to test real use cases to verify the functioning of the theoretical design.

Fig. 3 NetQASM language example in different versions

 J. Vázquez-Pérez et al. 442 Page 14 of 29

As for the drawbacks of this work, theoretically, there are not too many. The pro‑
posed scheme is an interesting way of modelling the problem of generating low‑
level instructions for a QNPU. From a language point of view, there are no theoreti‑
cal flaws or, as happened with InQuIR, any mismatch between what is theoretically
exposed and what was actually implemented. The main drawback found in this
work is the compilation part, where many unnecessary instructions were generated
when working with the Python SDK and not corrected when transforming the pro‑
tosubroutine to the subroutine. This will be pictured in Sect. 5 when executing the
compiler.

4 The InQASM compiler

As has already been mentioned, the focus of this endeavour was to develop a tool
capable of translating InQuIR files into NetQASM files. There are two main reasons
for doing this translation. The most important one is to create a link between these
two languages, which allows making a seamless connection between them and, in
the process, extracting useful information about quantum IRs for DQC. Secondly,
this connection opens up the possibility of testing the InQuIR code in an emulator
since, as already mentioned, NetSquid accepts NetQASM as a valid instruction set.

Is in this section where the aforementioned objective of this work is carried to
fruition. In this section, a detailed description of the InQuIR to NetQASM com‑
piler will be provided. This starts by explaining the syntax implemented for InQuIR,
which defines the grammar, using the extended Backus‑Naur form (EBNF) [46].
After this, an explanation about how the translation was performed, i.e. how each
instruction was transformed into a NetQASM instruction, will be conducted. Finally,
a brief explanation of how the resulting code was tested is given. As an implementa‑
tion note, the languages used in this endeavour are C++, Python and Java, although
Java is used indirectly, as it will be shown.

4.1 Grammar definition

As noted in Sect. 3.1.1, the biggest drawback of InQuIR was the inconsistencies in
the grammar. In addition, although it was not mentioned, the form used to express
the syntax—usually referred to as a meta‑syntax—is not as powerful and rigorous
as, for example, the EBNF. In fact, explaining the grammar in this way will allow
a seamless implementation of the grammar using ANother Tool for Language Rec‑
ognition (ANTLR) [47]. Of course, as the name suggests, many language recogni‑
tion tools exist. ANTLR was chosen because of its excellent integration with C++,
which is the core language of the compiler, but other tools could have been used.

In Fig. 4, the implemented grammar is displayed. Some remarks have to be made
to justify some decisions made.

• Use of EBNF. As already noted, instead of using a self‑created style to express
the grammar, EBNF was used. This narrows the gap between the theoretical

Inqasm: InQuIR compiler to NetQASM Page 15 of 29 442

explanation of the grammar and the implementation, making the work easier
and, even more important, making the understanding of the code much better.

• Branch ‘value’ to ‘clbit’ and ‘qubit’. Something particularly problematic about
the InQuIR grammar is the fact that the nonterminal element ‘value’ included
both classical bits and qubits. This does not make sense, as this grammar would
permit classical operations to be executed over qubits and vice‑versa. Separating
classical information and quantum information in the grammar facilitates the fol‑
lowing processing and, even better, improves the readability of the grammar.

• Change the ‘system’ definition. In the original definition, a single InQuIR file
could just accept two systems concatenated, while common sense indicates that
it could be convenient to have an arbitrary number of systems concatenated to
create a queue of systems.

• Definition of ‘process’ simplified. In the original grammar, the nonterminal vari‑
able ‘process’ agglutinates all the instructions when, looking at an InQuIR file,
the ‘process’ looks like it has to be the whole circuit of a single QPU. This way,

Fig. 4 Implemented syntax of InQuIR using EBNF. Note that the digits and letters specification is not
done to simplify the figure

 J. Vázquez-Pérez et al. 442 Page 16 of 29

each line can be treated as a nonterminal of two types: quantum instruction and
function.

• Differentiation of data and communication qubits. Although it has no implica‑
tions in terms of physical implementation—a qubit is a qubit—, it is a nice prac‑
tice to, given the fact that they can be differentiated in the syntax, separate the
concept of communication qubit and data qubit. The earlier their functionalities
are separated, the easier will be to treat them later.

• Consideration of conditional gates. Finally, the InQuIR grammar did not con‑
sider a pivotal case in its language: conditional gates. The conditional gates are
exactly the same as the usual gates, but its application on the qubits is determined
by a classical value. They are also referred to in the literature as intermediate
measurements because, commonly, the classical value conditioning the applica‑
tion of the gate results from a measurement mid‑execution. It must be said that in
the actual grammar—the one exposed in Fig. 1 and that is implemented in their
compiler—this case is considered, but it is important to remark that in the gram‑
mar here implemented, it is also considered

As already mentioned, this new grammar is implemented using ANTLR. The
process involves generating a tree for each file containing InQuIR code, with
the compiler walking through it, successively converting each sentence into a
NetQASM instruction. One advantage of using ANTLR is that it automatically gen‑
erates the necessary methods to create and walk the tree from the files, so the devel‑
oper can concentrate on the actual task: transforming each piece of InQuIR code
into NetQASM’s.

4.2 Transforming InQuIR into NetQASM

Now, it is time to actually transform the code. Many details and peculiarities have
been noted, but if any has been missed, it will be pointed out here. The code that
InQuIR is transformed into is the protosubroutine code, i.e. the human‑readable
version of the NetQASM. This is important to mention because one of the possi‑
ble improvements that this work could have is the direct translation of InQuIR into
binary subroutines.

First, Table 1 shows the equivalence of the instructions. There is a lot to say
about the contents of this table. At first sight, it highlights the fact that every
InQuIR instruction is equivalent to one or more NetQASM instructions, except in
a few cases where they lead to no instructions at all. The latter case is, however,
quite logical: these instructions correspond to operations that NetQASM identi‑
fies as the application layer’s responsibility. Going back to Fig. 2, the applica‑
tion layer was responsible for classical communication with the application layer
of another node. This way of handling classical communication is probably one
of the most, if not the most, detrimental aspects of NetQASM when used in the
context of multicore architectures. Having to rely on SDK to perform classical
communication drastically reduces efficiency due to the need to add extra lay‑
ers of software that just send and receive information. Again, as will be pointed

Inqasm: InQuIR compiler to NetQASM Page 17 of 29 442

out in the discussion below, this is a good indicator that the level of abstraction
achieved by InQuIR is higher than that of NetQASM. In fact, InQuIR guarantees
a much wider range of architecture types.

Moreover, this table also allows us to see the qubit virtualisation of the
NetQASM model. It is common sense that the registers starting with “Q” are
actually qubits on the back. But looking at the actual lines, it would be impossible
to affirm that this is code for quantum computation without any knowledge of the
context of this assembler code.

Another notable case is that of conditional gates. The table shows that this type
of instruction causes the subroutine to be split into two parts. This is due to how
the NetQASM model was conceived. Only the application layer can communicate
with other nodes, which means that the NetQASM subroutines cannot have clas‑
sical communication with other nodes. Therefore, at the application layer, when
a conditional gate is encountered, two subroutines have to be compiled: the one
with the gate applied and the one without the gate. This way, when the classical
bit is received or measured inside the own QNPU, the correct subroutine is sent,
and the other one is discarded. This will be illustrated in Sect. 5 with the exam‑
ple examined. This is quite inefficient for the multicore architecture this work is

Table 1 Equivalence between
InQuIR and NetQASM
instructions

InQuIR instructions NetQASM instructions

world = open[0,1,2,...] NONE
q0 = init() set Q0 0

qalloc Q0
init Q0

_cq0 = genEnt[1](l0) array 10 @0
array 1 @1
store 0 @1[0]
array 20 @2
store 0 @2[0]
store 1 @2[1]
create_epr(1,0) 1 2 0
wait_all @0[0:10]

(_cq0, _cq1) = entSwap(0, 1) Equivalent to genEnt
U q0 _cq0 U Q0 Q1
U[_m1] q0 Division in two subroutines
send[1](world, l1:_m0) NONE
recv(world, l1_2:_m1) NONE
RCXC[1](world, l0, q0, _cq0) Example in Chapter 5
RCXT[0](world, l1, q1, _cq1) Example in Chapter 5
c0 = measure q0 array 1 @3

meas Q0
qfree Q0
store M0 @3[0]

 J. Vázquez-Pérez et al. 442 Page 18 of 29

designed for due to the same reasons explained before when talking about the
instructions that were translated to nothing.

Furthermore, the RCXC and RCXT cases will be analysed in the next section
since the example treated is a remote CX gate. It will be shown what circuit these
gates produce when converted to NetQASM. It should be noted that although they
are included in the grammar, the actual RCXC and RCXT instructions are not writ‑
ten in the example. Instead, the entire circuits equivalent to these gates are expressed
as an illustrative way of applying the entire table of equivalences rather than just
using these instructions.

Finally, the entanglement swap, i.e. the ‘entSwap’ operation, is treated as equiva‑
lent to a ‘genEnt’, i.e. a normal entanglement generation. This is the opposite case
of conditional gates, in the sense that the application layer does not know how the
quantum connections are (it only knows the number of nodes) and, therefore, the
QNPUs automatically performs the necessary entanglement swaps without the user
above noticing. This is a feature that InQuIR should probably adopt to add a bit
more abstraction. Again, this will be considered in the discussion of Sect. 6.

As a final remark, one question that may arise is whether the compiled NetQASM
code inherits certain properties from the original InQuIR code. Specifically, if an
InQuIR program guarantees, for example, freedom from deadlocks or qubit exhaus‑
tion, does the compiled NetQASM code maintain these guarantees? Inheritance is a
deep question in this field of compilation and often depends on the specific scenario.
In this case, deadlocks may or may not occur in a compiled NetQASM program
because they fall under the responsibility of the application layer, which NetQASM
does not manage. On the other hand, qubit exhaustion is tied to the quantum aspects
of the program, which are indeed encoded by NetQASM subroutines. Therefore,
qubit exhaustion guarantees are preserved. As this example illustrates, quantum
characteristics are likely to be inherited when using the InQASM compiler, whereas
classical aspects are not, due to NetQASM subroutines’ inability to handle classical
functionalities.

4.3 Testing the resulting code

So, as the code transformation has been performed, it is time to test it to see if the
translated code has actually been translated correctly. This exercise checks two
aspects: first, the correctness of the translated code, and second, the quality of the
translation compared to the NetQASM code generator. The NetQASM code genera‑
tor to be used is the one implemented by the previously mentioned Python SDK. It
has to be said that the compiler efficiency will not be tested in terms of time perfor‑
mance. This is a first stage compiler with no optimisations added to it. This means
that the operations performed are tokenisation, parsing and walking the abstract syn‑
tax tree (AST) in order to generate the NetQASM code. This is a very efficient pro‑
cess and, even more important, it mainly depends on the ANTLR implementation.

Basically, the code will be tested using two Python programs: one generating
the NetQASM code from the Python directives and the other taking the NetQASM
generated from the InQuIR code as input. Both will execute the subroutines in the

Inqasm: InQuIR compiler to NetQASM Page 19 of 29 442

NetSquid simulator using the SquidASM library to compare the results and see if
they match.

Examples following these steps will be shown in Sect. 5, allowing for a final and
thorough analysis that will set up all for a final discussion about this work, InQuIR
and NetQASM, their most significant problems and virtues.

5 Results

In this chapter, the distributed CX will be the operation used, as already noted in
Table 1. This operation is chosen mainly because it is the baseline for DQC. The
ability to correctly execute a distributed CX allows the execution of any other
controlled gate between different QPUs simply by changing the X for the gate of
interest.

The circuit in question is shown in Fig. 5. This figure shows why this operation,
the distributed CX, is the baseline for DQC. This circuit is a well‑known case in the
DQC literature, usually called telegate, composed of two parts, the cat‑entangler and
the cat‑disentangler. The communication qubit of QPU1 is set to the same state as
��⟩ by the effect of the first block, the cat‑entangler, and then the effect of the gate
is kicked back to the QPU0 by the effect of the second, the cat‑disentangler. This
allows this qubit to act as the control qubit for the local controlled operations in
 QPU1. There are other methods, such as the teledata, also known as teleport. The
reader is referred to Barral et al. [1] for more details.

To carry out a thorough analysis, the InQuIR code for implementing this gate is
first shown. Then, the NetQASM generated from this code is shown. For compari‑
son purposes, as explained in Sect. 4.3, the code generated by the Python SDK is
depicted. Both codes are compared to show differences and possible improvements.
Finally, both codes are simulated and the outputs after the simulation will be com‑
pared to show that the generated code behaves as is should.

It is important to note that only one example has been compared with the Python
SKD code, which is clearly insufficient to fully prove the compiler’s functionality.

Fig. 5 Distributed CX

 J. Vázquez-Pérez et al. 442 Page 20 of 29

The purpose of this example is not to demonstrate flawless performance but rather to
illustrate how the compiler operates and how its results compare to those produced
by the NetQASM Python SDK. The Python SDK is designed for writing programs
using Python directives, rather than injecting external NetQASM subroutines, which
further complicates the construction of more direct comparisons. However, to bet‑
ter illustrate the compiler’s functionality, additional and more complex examples are
available in the repository for readers to explore. It should be noted that these exam‑
ples cannot currently be tested using the NetQASM Python SDK, as the SDK does
not support the injection of externally generated subroutines, making it impossible
to execute them in certain cases. Consequently, these examples are not included in
this document. Moreover, in order to reproduce the results here presented, the ver‑
sions of the software employed are specified in Appendix C.

5.1 InQuIR code

For this example, the InQuIR code could be hand‑written. Instead, the InQuIR soft‑
ware introduced in Sect. 3.1.1 was used. The input to generate the InQuIR code was
a simple QASM code with a CX and an architecture of two QPUs. This code and
the corresponding InQuIR code can be seen side by side in Fig. 6. Obviously, the
number of instructions introduced in the InQuIR code is significant due to the need
to establish the distributed connection.

5.2 NetQASM code of the translation

Following the equivalences in Table 1, the NetQASM code is now generated by the
compiler. In Fig. 7, you can see the resulting code for QPU0 and in Fig. 8 the same
for QPU1 . First, the effect of conditional gates, as explained in Sect. 4.2, can be
seen at first glance by the fact that there is more than one subroutine for each QPU.
One might think that this could lead to an exponential increase in the number of
NetQASM files for each InQuIR file, but there are at most 2n + 1 files in each QPU,

Fig. 6 QASM code and its respective InQuIR’s generated one

Inqasm: InQuIR compiler to NetQASM Page 21 of 29 442

where n is the number of conditional gates applied. Otherwise, the result obtained is
just the consequence of applying the equivalence table to each row.

5.3 NetQASM code of the python SDK

Now, in Figs. 9 and 10, you can see the code produced by the Python SDK for
each QPU. The code shown in these chunks is quite similar to that produced by
this work’s compiler, but there are some significant differences. First of all, in
QPU0 in Fig. 9a, the instruction set Q0 1 is repeated almost continuously,
which is obviously something completely inefficient. This can also be seen in
Fig. 10b, c with the instruction set Q0 0. But probably the most outstanding
result is the one observed in Fig. 10a, where all the highlighted code is com‑
pletely unnecessary. The reasons why the Python SDK generated this piece of
code are unknown, but after trying the subroutines with and without this piece
of code, the results were equivalent. This means that this code’s generation is
unnecessary and could—and should—be eliminated in a first simple round of
optimisations. This shows a pretty big mistake compared to the previous instruc‑
tion repetition because not only are classical operations repeated, but quantum
ones are as well. Every quantum operation introduces errors into the qubits, so it
is always helpful to minimise the use of unnecessary ones. These two inaccura‑
cies show a problem of the NetQASM software: the lack of optimisation when
generating the code of the subroutine. This represents a possible improvement in
future works.

5.4 Comparison of results

Finally, after all the subroutines are obtained, the code is executed in the NetS‑
quid simulator. Instead of executing and comparing the measurements (which
would require a serious statistical analysis), NetSquid allows obtaining the den‑
sity matrix of the joint state of the control qubit in QPU0 and the target qubit in
QPU1 (thanks to the SquidASM library). This allows for a robust comparison of
the results, because instead of having to mathematically ensure that both distri‑
butions are equal, a direct comparison between density matrix gives us the exact
answer.

In order to compare the result between both circuits, several states have to be
tested. In order to do so, two rotation operations—one in the X axis and one in
the Y axis—for the control and the target qubits are added to both the compiled
and the generated by the Python SDK subroutines. This makes us able to gen‑
erate arbitrary states for the control and the target qubits, obtaining an actual
exam on whether the compilation files are obtaining the same state as the Python
SDK files. Twenty different angles were selected, equally spaced along the unity
circle—i.e. the multiples of �

10
 until reaching 2� . In all the cases, the results were

exactly the same excepting approximations.

 J. Vázquez-Pérez et al. 442 Page 22 of 29

This allows us to conclude that the translation of InQuIR code to NetQASM
subroutines is being correctly performed for this example, creating a compila‑
tion pipeline between these two pieces of software.

6 Conclusion

This section starts by discussing all the different aspects of the InQuIR and
NetQASM languages, along with the key aspects of the simple compiler developed
in this work. After this, a summary of the work and ideas will be made to extract
some solid conclusions. Finally, a discussion of future work will conclude this
manuscript.

6.1 Discussion

This work has portrayed a translation from the InQuIR language to the NetQASM
language. This has been referred to as a compiler, i.e. as a tool that translates code
to another language that represents an inferior level of abstraction. The first point
to discuss is whether this characterisation is accurate. The correct answer is that
it depends on the context. While InQuIR is explicitly defined as an IR for inter‑
connected quantum computers, NetQASM has not been clearly established as an
assembly for quantum interconnects. As already mentioned in Sect. 2.3, NetQASM
is defined as a low-level assembler, which does not precisely stress the assembly
nature of NetQASM. In fact, when the concept of "flavours" was introduced, it was
mentioned that with the vanilla flavour, i.e. the basic one, NetQASM behaves simi‑
larly to a IR. Because of this, considering the software developed in this work a tran‑
spiler instead of a compiler would be completely correct.

Focusing on the various aspects of the languages, several points can be high‑
lighted. Starting with InQuIR, some aspects where found problematic along the
development. First of all, the fact that InQuIR needs to know about the connectiv‑
ity of the underlying architecture is quite a low‑level characteristic to an IR. Even
though it is not critical, it forces InQuIR to implement the entanglement swap
operations, which is something related to qubit routing in DQC architectures. An
IR should just indicate that two processes have to share an entanglement pair and,
when generating the code for a specific machine with its specific architecture, the
entanglement swap operations should be performed to allow this sharing. This could
be compared to the classical case when an expression like a = b + c is performed.
The user at IR level has nothing to do with the transportation of the different regis‑
ters involved with the arithmetic logic unit (ALU). Also, the grammar in this work
is poorly defined due to the lack of a standardised definition using a meta‑syntax
language. This has been corrected in this work by using EBNF, as already shown in
Fig. 4.

Inqasm: InQuIR compiler to NetQASM Page 23 of 29 442

Now, talking about NetQASM, the fact that, as explained since the beginning,
this language is thought for quantum networks brings unnecessary layers to the lan‑
guage and the model regarding the scope of multicore architectures adopted in this
work. This can be perfectly observed in, for instance, the need to send and receive
the subroutines between the QNPU and the application layer. This could be per‑
formed exclusively by a small classical unit inside the QNPU to fit in the multicore
model. Moreover, this is related to how intermediate measurements and, therefore,
conditional gates are treated. In fact, this is a strong point to argue that NetQASM

Fig. 7 NetQASM translated for QPU0

Fig. 8 NetQASM translated for QPU1

 J. Vázquez-Pérez et al. 442 Page 24 of 29

cannot be an IR because it should treat conditional gates as an implemented opera‑
tion and leave to the lower stages of the code the way of implementing that type
of operation. The way employed of getting the classical bit to the application layer
and then sending the correct subroutine seems like too much specification for an IR.
Even more if one thinks about the fact that, in the future, an architecture focused on
a distributed model could be created with conditional gate as an operation supported
as native. Something that has to be pointed out as a positive feature of NetQASM
is the fact that it does not implement entanglement swaps, leaving that responsibil‑
ity to the QNPU, just as it was suggested to the InQuIR language in the previous
paragraph.

Now, looking at the software infrastructure surrounding both languages, InQuIR
and NetQASM, a couple of notes have to be made. In the case of InQuIR, it has
a simplified compiler associated, as already noted. Using this compiler provides a
useful way to observe how the connectivity is employed, as mentioned before, but
it is intended only as a support tool rather than a fully developed software solution.
Regarding the NetQASM software, the code generation does not perform the most
basic optimisation techniques as it is to check if an instruction is duplicated. This
provokes that, as shown in the codes of Appendix B with the highlighted lines, sev‑
eral code lines end up being duplicated. Even more, it even generates a ton of unnec‑
essary instructions, as depicted in Fig. 10a with, again, the highlighted lines.

Fig. 9 NetQASM code for the QPU0

Inqasm: InQuIR compiler to NetQASM Page 25 of 29 442

6.2 Summary

So, to sum up, a correct translation has been portrayed from InQuIR to NetQASM
code. This has shown different aspects of both languages and, even more, of both
works. InQuIR and NetQASM have shown different benefits and flaws for the dis‑
tributed compilation stack, which will be taken into account in future works in order
to build a strong backbone for DQC.

In fact, a possible conclusion that can be extracted is the fact that a refined IR for
distributed architectures is still to be constructed. This is a surprising conclusion if
one considers that this work was born with the intent of linking an assembly and an
IR for DQC. But, again, as it has been shown in this work, the boundaries among
stack levels are diffuse and can reveal themselves as almost nonexistent sometimes,
as has happened with InQuIR and NetQASM.

6.3 Future work

As future work, it has already been hinted that an IR is to be defined for DQC.
Moreover, with this new IR this compiler could be modified to directly trans‑
late to NetQASM’s different flavours (that represent the actual low level of the
NetQASM software compound) or directly to the different simulators exposed in
Sect. 2.4. Moreover, a lot of techniques could be introduced to generate higher‑
quality code. For example, static checks about qubit exhaustion and deadlocks
can be implemented for the IR, as presented for the InQuIR. Another example
is the implementation of optimisations for each backend in order to increase the
performance or even optimisations to the IR that will reduce communications or
other desired metrics (T‑count, depth, size, etc.).

NetQASM code of the translation

In this section, the NetQASM code generated from the compilation—referred in
the title as translation—is displayed. Figures 7 and 8 show the code obtained
from the compiled code of Figs. 6b, c.

NetQASM code of the python SDK

In this section, on the contrary, the NetQASM code displayed is the one automati‑
cally generated by the Python SDK. In Figs. 9 and 10 is shown the code obtained
from compiled the code of Fig. 6b, c, the same piece of InQuIR code as before.

Software version

The software used in this manuscript is the INQASM v0.1.0 release, available on
the project’s GitHub repository. All package versions required by the software are
listed in the release notes for reproducibility.

 J. Vázquez-Pérez et al. 442 Page 26 of 29

Author contributions Jorge Vázquez‑Pérez wrote de main de manuscript text. All authors reviewed the
manuscript.

Funding Open Access funding provided thanks to the CRUE‑CSIC agreement with Springer Nature.
This work was supported by MICINN through the European Union NextGenerationEU recovery plan
(PRTR‑C17.I1) and by the Galician Regional Government through the “Planes Complementarios de
I+D+I con las Comunidades Autónomas” in Quantum Communication. Simulations on this work were
performed using the Finisterrae III Supercomputer, funded by the project CESGA‑01 FINISTERRAE
III. This work was also supported by the Ministry of Economy and Competitiveness, Government of
Spain (Grants Number PID2019‑104834GB‑I00, PID2022‑141623NB‑I00 and PID2022‑137061OB‑
C22), Consellería de Cultura, Educación e Ordenación Universitaria (accreditations ED431C 2022/16
and ED431G‑2019/04), and the European Regional Development Fund (ERDF), which acknowledges the
CiTIUS‑Research Center in Intelligent Technologies of the University of Santiago de Compostela as a
Research Center of the Galician University System.

Data availability Specific data are available in the GitHub repository: https:// github. com/ jorge vazqu ezper
ez/ InQASM.

Fig. 10 NetQASM code for the QPU1

https://github.com/jorgevazquezperez/InQASM
https://github.com/jorgevazquezperez/InQASM

Inqasm: InQuIR compiler to NetQASM Page 27 of 29 442

Declarations

 Conflict of interest The authors have no Conflict of interest that may have affected the content of this
work.

 Ethical approval Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis‑
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Barral D, Cardama FJ, Dí az G, Faí lde D, Llovo IF, Juane MM, Vá¡zquez‑Pérez J, Villasuso J,
Piñeiro C, Costas N, Pichel JC, Pena TF, Gómez A (2024) Review of distributed quantum comput‑
ing. From single QPU to high performance quantum computing

 2. Shor PW (1997) Polynomial‑time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J Comput 26(5):1484–1509. https:// doi. org/ 10. 1137/ s0097 53979 52931 72

 3. Gyongyosi L, Imre S (2019) A survey on quantum computing technology. Comput Sci Rev 31:51–
71. https:// doi. org/ 10. 1016/j. cosrev. 2018. 11. 002

 4. Giovannetti V, Lloyd S, Maccone L (2008) Quantum random access memory. Phys Rev Lett
100:160501. https:// doi. org/ 10. 1103/ PhysR evLett. 100. 160501

 5. Jaques S, Rattew AG (2023) QRAM: a survey and critique . arXiv: 2305. 10310
 6. Phalak K, Chatterjee A, Ghosh S (2023) Quantum random access memory for dummies. Sensors

23(17):7462. https:// doi. org/ 10. 3390/ s2317 7462
 7. Ryan CA, Johnson BR, Risté D, Donovan B, Ohki TA (2017) Hardware for dynamic quantum com‑

puting. Rev Sci Instrum 88(10):104703. https:// doi. org/ 10. 1063/1. 50065 25
 8. Qin X, Zhang W, Wang L, Zhao Y, Tong Y, Rong X, Du J (2020) An fpga‑based hardware platform

for the control of spin‑based quantum systems. IEEE Trans Instrum Meas 69(4):1127–1139. https://
doi. org/ 10. 1109/ TIM. 2019. 29109 21

 9. Vázquez‑Pérez J, Piñeiro C, Pichel JC, Pena TF, Gómez A (2024) Qpu integration in opencl
for heterogeneous programming. J Supercomput 80(8):11682–11703. https:// doi. org/ 10. 1007/
s11227‑ 023‑ 05879‑9

 10. Saurabh N, Jha S, Luckow A (2023) A conceptual architecture for a quantum‑HPC middleware .
arXiv: 2308. 06608

 11. Serrano MA, Cruz‑Lemus JA, Perez‑Castillo R, Piattini M (2022) Quantum software components
and platforms: overview and quality assessment. ACM Comput Surv 55(8):1–31. https:// doi. org/ 10.
1145/ 35486 79

 12. Aho AV, Lam MS, Sethi R, Ullman JD (2006) Compilers: principles, techniques, and tools, 2nd
edn. Addison‑Wesley Longman Publishing Co. Inc, USA

 13. Svore KM, Aho AV, Cross AW, Chuang I, Markov IL (2006) A layered software architecture for
quantum computing design tools. Computer 39(1):74–83. https:// doi. org/ 10. 1109/ MC. 2006.4

 14. Heim B, Soeken M, Marshall S, Granade C, Roetteler M, Geller A, Troyer M, Svore K (2020)
Quantum programming languages. Nat Rev Phys 2(12):709–722. https:// doi. org/ 10. 1038/
s42254‑ 020‑ 00245‑7

 15. Developers C (2024) Cirq Zenodo. https:// doi. org/ 10. 5281/ zenodo. 11398 048
 16. Contributors Q (2023) Qiskit: an open‑source framework for quantum computing . https:// doi. org/

10. 5281/ zenodo. 25735 05

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/s0097539795293172
https://doi.org/10.1016/j.cosrev.2018.11.002
https://doi.org/10.1103/PhysRevLett.100.160501
http://arxiv.org/abs/2305.10310
https://doi.org/10.3390/s23177462
https://doi.org/10.1063/1.5006525
https://doi.org/10.1109/TIM.2019.2910921
https://doi.org/10.1109/TIM.2019.2910921
https://doi.org/10.1007/s11227-023-05879-9
https://doi.org/10.1007/s11227-023-05879-9
http://arxiv.org/abs/2308.06608
https://doi.org/10.1145/3548679
https://doi.org/10.1145/3548679
https://doi.org/10.1109/MC.2006.4
https://doi.org/10.1038/s42254-020-00245-7
https://doi.org/10.1038/s42254-020-00245-7
https://doi.org/10.5281/zenodo.11398048
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505

 J. Vázquez-Pérez et al. 442 Page 28 of 29

 17. Schmale T, Temesi B, Baishya A, Pulido‑Mateo N, Krinner L, Dubielzig T, Ospelkaus C, Weimer
H, Borcherding D (2022) Backend compiler phases for trapped‑ion quantum computers. In: 2022
IEEE International Conference on Quantum Software (QSW), pp. 32–37 . https:// doi. org/ 10. 1109/
QSW55 613. 2022. 00020

 18. Häner T, Steiger DS, Smelyanskiy M, Troyer M (2016) High performance emulation of quantum cir‑
cuits. In: Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. SC ’16. IEEE Press, Salt Lake City, Utah

 19. DiVincenzo DP (2000) The physical implementation of quantum computation. Fortschr Phys 48(9–
11):771–783. https:// doi. org/ 10. 1002/ 1521‑ 3978(200009) 48:9/ 11< 771:: AID‑ PROP7 71>3. 0. CO;2‑E

 20. Lu F (2021) Several ways to implement qubits in physics. J Phys: Conf Ser 1865(2):022007. https:// doi.
org/ 10. 1088/ 1742‑ 6596/ 1865/2/ 022007

 21. Chowdhary KR (2021) Software‑hardware evolution and birth of multicore processors. arXiv: 2112.
06436

 22. Jnane H, Undseth B, Cai Z, Benjamin SC, Koczor B (2022) Multicore quantum computing. Phys Rev
Appl 18(4):044064. https:// doi. org/ 10. 1103/ physr evapp lied. 18. 044064

 23. Rudinger K, Proctor T, Langharst D, Sarovar M, Young K, Blume‑Kohout R (2019) Probing context‑
dependent errors in quantum processors. Phys Rev X 9:021045. https:// doi. org/ 10. 1103/ PhysR evX.9.
021045

 24. Sheldon S, Magesan E, Chow JM, Gambetta JM (2016) Procedure for systematically tuning up cross‑
talk in the cross‑resonance gate. Phys Rev A 93:060302. https:// doi. org/ 10. 1103/ PhysR evA. 93. 060302

 25. Piltz C, Sriarunothai T, Varón AF, Wunderlich C (2014) A trapped‑ion‑based quantum byte with 10‑5
next‑neighbour cross‑talk. Nat Commun 5:1 5, 1–10 https:// doi. org/ 10. 1038/ ncomm s5679

 26. Nishio S, Wakizaka R (2023) Inquir: intermediate representation for interconnected quantum comput‑
ers. https:// doi. org/ 10. 48550/ arXiv. 2302. 00267

 27. Dahlberg A, Vecht BVD, Donne CD, Skrzypczyk M, Raa IT, Kozlowski W, Wehner S (2022) Netqasm‑
a low‑level instruction set architecture for hybrid quantum‑classical programs in a quantum internet.
Quantum Sci Technol 7:035023. https:// doi. org/ 10. 1088/ 2058‑ 9565/ AC753F

 28. Chandra R, Dagum L, Kohr D, Maydan D, McDonald J, Menon R (2001) Parallel programming in
openMP. Morgan Kaufmann Publishers Inc., San Francisco

 29. Message passing interface forum: MPI: a message‑passing interface standard version 4.1. (2023).
https:// www. mpi‑ forum. org/ docs/ mpi‑4. 1/ mpi41‑ report. pdf

 30. Häner T, Steiger DS, Hoefler T, Troyer M (2021) Distributed quantum computing with qmpi. In: Pro‑
ceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis. SC ’21. Association for Computing Machinery, New York, NY, USA . https:// doi. org/ 10.
1145/ 34588 17. 34761 72

 31. Shi Y, Nguyen T, Stein S, Stavenger T, Warner M, Roetteler M, Hoefler T, Li A (2023) A reference
implementation for a quantum message passing interface. In: Proceedings of the SC ’23 Workshops of
the International Conference on High Performance Computing, Network, Storage, and Analysis. SC‑W
’23, pp. 1420–1425. Association for Computing Machinery, New York, NY, USA . https:// doi. org/ 10.
1145/ 36240 62. 36242 12

 32. Cross AW, Bishop LS, Smolin JA, Gambetta JM (2017) Open quantum assembly language
 33. Fu X, Riesebos L, Rol MA, Straten J, Someren J, Khammassi N, Ashraf I, Vermeulen RFL, Newsum

V, Loh KKL, Sterke JC, Vlothuizen WJ, Schouten RN, Almudever CG, DiCarlo L, Bertels K (2019)
eQASM: an executable quantum instruction set architecture

 34. Khammassi N, Guerreschi GG, Ashraf I, Hogaboam JW, Almudever CG, Bertels K (2018) cQASM
v1.0: towards a common quantum assembly language

 35. Muralidharan S (2024) The simulation of distributed quantum algorithms. arXiv: 2402. 10745
 36. Diadamo S, Nötzel J, Zanger B, Beşe MM (2021) Qunetsim: a software framework for quantum net‑

works. IEEE Trans Quantum Eng 2:1–12. https:// doi. org/ 10. 1109/ TQE. 2021. 30923 95
 37. Dahlberg A, Wehner S (2018) Simulaqron‑ simulator for developing quantum internet software. Quan‑

tum Sci Technol 4:015001. https:// doi. org/ 10. 1088/ 2058‑ 9565/ AAD56E
 38. Bartlett B (2018) A distributed simulation framework for quantum networks and channels. arXiv: 1808.

07047
 39. Ferrari D, Amoretti M (2023) A design framework for the simulation of distributed quantum comput‑

ing. arXiv: 2306. 11539
 40. Radzihovsky M, Espinosa Z (2020) netquil: a quantum playground for distributed quantum computing

simulations. Bull Am Phys Soc 65

https://doi.org/10.1109/QSW55613.2022.00020
https://doi.org/10.1109/QSW55613.2022.00020
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1088/1742-6596/1865/2/022007
https://doi.org/10.1088/1742-6596/1865/2/022007
http://arxiv.org/abs/2112.06436
http://arxiv.org/abs/2112.06436
https://doi.org/10.1103/physrevapplied.18.044064
https://doi.org/10.1103/PhysRevX.9.021045
https://doi.org/10.1103/PhysRevX.9.021045
https://doi.org/10.1103/PhysRevA.93.060302
https://doi.org/10.1038/ncomms5679
https://doi.org/10.48550/arXiv.2302.00267
https://doi.org/10.1088/2058-9565/AC753F
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://doi.org/10.1145/3458817.3476172
https://doi.org/10.1145/3458817.3476172
https://doi.org/10.1145/3624062.3624212
https://doi.org/10.1145/3624062.3624212
http://arxiv.org/abs/2402.10745
https://doi.org/10.1109/TQE.2021.3092395
https://doi.org/10.1088/2058-9565/AAD56E
http://arxiv.org/abs/1808.07047
http://arxiv.org/abs/1808.07047
http://arxiv.org/abs/2306.11539

Inqasm: InQuIR compiler to NetQASM Page 29 of 29 442

 41. Parekh R, Ricciardi A, Darwish A, Diadamo S (2021) Quantum algorithms and simulation for parallel
and distributed quantum computing. Proceedings of QCS 2021: 2nd International Workshop on Quan‑
tum Computing Software, Held in Conjunction with SC 2021: The International Conference for High
Performance Computing, Networking, Storage and Analysis, 9–19 https:// doi. org/ 10. 1109/ QCS54 837.
2021. 00005

 42. Matsuo T (2019) Simulation of a dynamic, ruleset‑based quantum network. arXiv: 1908. 10758
 43. Mailloux LO, Morris JD, Grimaila MR, Hodson DD, Jacques DR, Colombi JM, McLaughlin CV,

Holes JA (2015) A modeling framework for studying quantum key distribution system implementation
nonidealities. IEEE Access 3:110–130. https:// doi. org/ 10. 1109/ ACCESS. 2015. 23991 01

 44. Wu X, Kolar A, Chung J, Jin D, Zhong T, Kettimuthu R, Suchara M (2020) Sequence: a customizable
discrete‑event simulator of quantum networks. Quantum Sci Technol 6:045027. https:// doi. org/ 10. 1088/
2058‑ 9565/ ac22f6

 45. Coopmans T, Knegjens R, Dahlberg A, Maier D, Nijsten L, Oliveira Filho J, Papendrecht M, Rabbie J,
Rozpędek F, Skrzypczyk M, Wubben L, Jong W, Podareanu D, Torres‑Knoop A, Elkouss D, Wehner S
(2021) Netsquid, a network simulator for quantum information using discrete events. Commun Phys 4:1
4, 1–15 https:// doi. org/ 10. 1038/ s42005‑ 021‑ 00647‑8

 46. Scowen RS (1993) Generic base standards. In: proceedings 1993 software engineering standards sym‑
posium, pp. 25–34 . https:// doi. org/ 10. 1109/ SESS. 1993. 263968

 47. Parr T (2013) The definitive ANTLR 4 reference, 2nd edn. Pragmatic Bookshelf, Raleigh

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1109/QCS54837.2021.00005
https://doi.org/10.1109/QCS54837.2021.00005
http://arxiv.org/abs/1908.10758
https://doi.org/10.1109/ACCESS.2015.2399101
https://doi.org/10.1088/2058-9565/ac22f6
https://doi.org/10.1088/2058-9565/ac22f6
https://doi.org/10.1038/s42005-021-00647-8
https://doi.org/10.1109/SESS.1993.263968

	Inqasm: InQuIR compiler to NetQASM
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Frontend
	2.2 Intermediate representation (IR)
	2.3 Backend
	2.4 Emulators

	3 InQuIR and NetQASM
	3.1 InQuIR
	3.1.1 Benefits and drawbacks

	3.2 NetQASM
	3.2.1 Benefits and drawbacks

	4 The InQASM compiler
	4.1 Grammar definition
	4.2 Transforming InQuIR into NetQASM
	4.3 Testing the resulting code

	5 Results
	5.1 InQuIR code
	5.2 NetQASM code of the translation
	5.3 NetQASM code of the python SDK
	5.4 Comparison of results

	6 Conclusion
	6.1 Discussion
	6.2 Summary
	6.3 Future work

	NetQASM code of the translation
	NetQASM code of the python SDK
	Software version
	References

