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Abstract
Quantum computing is a rapidly evolving field, with almost every aspect open to 
change or improvement. This includes moving from using a single quantum process‑
ing unit to interconnecting multiple quantum processing units (or several of them), 
establishing a new paradigm called distributed quantum computing and increasing 
the overall computing capability. Some research is already underway in this area to 
prepare the ground for an eventual architecture with these characteristics. This is the 
case of InQuIR (Nishio and Wakizaka in  arXiv:2302.00267 2023)  and NetQASM 
(Dahlberg et  al  in QST 7:035023 2022), two languages developed for distributed 
quantum computing. This paper presents the development of the InQASM compiler 
with the aim of translating code from the InQuIR language to NetQASM, establish‑
ing a compilation stack for the new distributed paradigm. An example of this compi‑
lation and a simulation of the compiled code are shown to showcase it.

Keywords NetQASM · InQuIR · Compiler · Distributed · Quantum · QPU · DQC

1 Introduction

Quantum computing and, more specifically, distributed quantum computing (distrib‑
uted quantum computing (DQC))  [1] brings many problems and difficulties to the 
software stack. From how to express circuits at a high level of abstraction to how to 
optimise circuits for a particular architecture or technology, it all remains an area of 
research with few agreed standards and practices.
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In the field of quantum computing, discussions often focus on algorithms and 
their potential advantages in terms of time efficiency, particularly in solving prob‑
lems that remain intractable to classical computation. One algorithm frequently 
cited in this context is Shor’s algorithm [2], famous for its impact on modern cryp‑
tography. However, building the necessary infrastructure to run these algorithms is 
a substantial undertaking. Questions of input and output of information, storage of 
results, monitoring of execution, and other logistical aspects are far from trivial. The 
straightforward solution to these questions lies in classical computing. However, 
implementing this solution is far from simple.

The apparent paradox of solving quantum software challenges through classi‑
cal computation is not a contradiction. Classical technologies such as memory and 
I/O communication dwarf their quantum counterparts because they do not have to 
comply with the constraints of the no‑cloning theorem and can hold information 
indefinitely, unlike quantum systems, which are prone to decoherence [3]. Although 
some quantum memory models exist, they are not yet ready to replace classical 
memory [4–6]. In addition, all quantum computers are controlled and monitored by 
classical computation. For example, it is common to see field‑programmable gate 
arrays (FPGAs) managing the sending of pulses to the qubits to execute a particular 
gate [7, 8]. It is, therefore, understandable that quantum computing software is pre‑
dominantly classical.

Thus, it is interesting to integrate quantum computers into the high‑performance 
computing (HPC) environment and use them to accelerate specific tasks, similar to 
accelerators such as FPGAs or graphics processing units (GPUs). Although they 
fundamentally differ from classical accelerators in that they introduce a new com‑
puting paradigm that complements the existing heterogeneous HPC landscape  [9, 
10].

Focusing on the compilation process for quantum systems, it is important to rec‑
ognise that quantum software, being inherently classical, requires the construction 
of a classical software stack [11].

While adapting the conventional classical software stack to quantum comput‑
ing presents significant challenges due to the lack of abstraction available in this 
domain, it still serves as the most viable option [11]. In this context, the quantum 
computing software stack can be viewed as comprising several layers, analogous to 
those found in classical computing systems [12, 13].

• The frontend [14]: This layer parses high‑level quantum programming languages 
such as Qiskit or Cirq [15, 16]. It performs syntax and semantic analysis to check 
for errors and generates a IR that simplifies the code structure for further pro‑
cessing.

• The IR: An abstract, platform‑independent code that bridges high‑level lan‑
guages and low‑level machine code. It allows for various optimisations and hard‑
ware‑independent analysis, facilitating portability and adaptability across differ‑
ent quantum hardware platforms.

• The backend [17]: This layer is the result of translating the IR into hardware‑
specific instructions or machine code. It includes optimisations tailored to the 
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architecture and constraints of the target quantum hardware to ensure efficient 
execution of the quantum program.

Additionally, simulators and emulators replicate the behaviour of quantum hard‑
ware and provide a virtual environment for testing, debugging, and validating 
quantum algorithms  [18]. They allow researchers and developers to experiment 
with quantum programs without the need for physical quantum processors, mak‑
ing them essential for early‑stage development and learning.

Transversal to the three mentioned layers is the compiler. The compiler is the 
piece of software responsible for translating the code of each stage to the follow‑
ing (frontend software to IR and IR to backend code) so that it can run in an emu‑
lator or an actual quantum computer.

Regarding quantum computing, some aspects of classical compilation are com‑
patible with quantum, while others are not. Thus, both the software stacks for 
quantum and classical computing have to deal with different types of hardware. 
The quantum hardware differs in the kind of technology—trapped ions, super‑
conductors, photons, etc.—and in the set of gates supported [19, 20]. This means 
a quantum circuit has to be translated into an equivalent one using the supported 
gates before execution in a particular device, just as in classical computing with 
different instruction set architectures. In this sense, having these two different 
levels of abstraction is advantageous because, as in the classical counterpart, the 
compiler designer only has to worry about translating the IR into the gate set sup‑
ported by the machine in question.

On the other hand, unlike classical models of computation, quantum comput‑
ing cannot provide a level of abstraction equivalent to the classical one. In the 
classical realm, layers of abstraction separate code written in a high‑level lan‑
guage from assembly language, allowing the programmer to not worry about bit‑
level operations. In contrast, there are not many abstractions in today’s quantum 
computing, and there is always a need to work at the qubit level. This means that 
it is difficult to raise the level of abstraction of IR above that of quantum assem‑
bly languages in any appreciable way, so it is difficult to distinguish between a 
quantum IR and a quantum assembly language. A discussion about these issues 
will be performed in later sections.

In classical computing, Moore’s law has enabled a consistent increase in CPU 
power simply by adding more transistors to the chip. This growth has driven sig‑
nificant performance improvements. However, as transistors become thinner, it 
is more challenging to limit power consumption and heat generation  [21]. As a 
result, instead of continuously increasing the transistor count on a single core, 
the industry has shifted towards multicore systems, where multiple processing 
units work in parallel to enhance performance without relying solely on transistor 
scaling.

Quantum computing is expected to see a similar phenomenon in the near 
future [22]. Due to problems such as crosstalk [23–25], single quantum chip archi‑
tectures are believed to be limited in the number of qubits, with multicore quantum 
chips being the solution, following a path that could be considered an analogue to 
the classical one.
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Assuming that this is the path quantum computing will follow, two main prob‑
lems arise. The first is how the work will be distributed, and the second is how the 
software will be designed to run it. Neither of these problems is trivial, but they are 
very different in nature. The first one is more related to the actual quantum com‑
putation, where you have to guess how to perform the computation in a distributed 
system without changing the result and, moreover, increasing the efficiency in terms 
of time and error. On the other hand, the second one is a purely classical problem 
because, as already mentioned, all quantum software is actually classical. This work 
will focus entirely on this second part, leaving the distribution of quantum work‑
loads as a topic for future investigation. For more information about the first part 
and, in general, about the DQC paradigm, an extensive review of state of the art was 
presented in [1].

This work focuses on developing part of the aforementioned compilation process. 
In particular, it will focus on the translation from a quantum IR to a backend. Spe‑
cifically, this work will perform the compilation of InQuIR code [26] to NetQASM 
code [27]. The project’s scope is to provide the first step towards having a complete 
distributed quantum software stack to run distributed applications in quantum com‑
puting similarly to its classical counterpart. It will not be part of the scope of this 
work to optimise the efficiency of the distributed quantum circuits.

The rest of the paper is organised as follows. Section 2 presents an analysis of 
related work and background on DQC. After establishing a baseline on state of the 
art, Sect. 3 describes the InQuIR and NetQASM works in detail in order to justify 
the decisions taken when building the InQASM compiler. After this, all the neces‑
sary elements for building the InQASM compiler are summoned, enabling Sect. 4 
to thoroughly describe the intricacies of the compilation and implementation of the 
software. Next, in Sect. 5, the code produced by the software is proven to work cor‑
rectly, along with a representative example of DQC. Finally, in Sect. 6, a discussion 
of various issues presented throughout the work is carried out, along with the con‑
clusions. All the code employed in this paper is open source.1

2  Background and related work

As mentioned previously, this work is dedicated to developing a software stack for 
DQC. The scheme outlined in the Introduction will be followed to perform a struc‑
tured analysis of the literature. This involves examining the works on the frontend, 
then on the IR, assessing the backend, and finally providing a brief analysis of emu‑
lators. This brief review will focus primarily on the core topics of this paper: the IR 
and backend layers. It should be noted that a comprehensive review of the state of 
the art can be found at [1].

1 It is available in the repository: https:// github. com/ jorge vazqu ezper ez/ InQASM.

https://github.com/jorgevazquezperez/InQASM


Inqasm: InQuIR compiler to NetQASM  Page 5 of 29   442 

2.1  Frontend

Regarding the frontend, not much software has been developed or even designed 
for the DQC paradigm. This is not surprising since this type of software has 
always been painfully difficult to model, even in classical distributed computing 
and especially in parallel computing. Initially, a great deal of effort was put into 
achieving automatic parallelisation—the so‑called holy grail of parallel comput‑
ing—but this has had only limited success.

Most attention in recent years has been given to compiler support for technolo‑
gies such as open multi‑processing (OpenMP) [28] or message passing interface 
(MPI) [29], among others. openMP is an API that enables cross‑platform shared 
memory multi‑processing in C, C++ and Fortran, facilitating the development of 
parallel applications. It provides a simple and flexible interface through compiler 
directives that parallelise sections of code, making it easier for developers to take 
advantage of multicore processors without extensive code changes. On the other 
hand, MPI is a standardised and portable message passing system designed to 
facilitate communication between processes in parallel computing environments. 
It enables the development of scalable parallel applications by providing a com‑
prehensive set of libraries for inter‑process communication across different com‑
puting platforms, including clusters and supercomputers. A contrast can now be 
carried out by comparing these two technologies with the quantum paradigm.

On the one hand, the concept of threads in classical computing—i.e. differ‑
ent tasks sharing a common memory—does not apply to the quantum analogue. 
This is mainly because memory in quantum computing cannot be understood in 
the same way as in classical computing due to decoherence. One could make a 
point about the relationship between threads and superposition, understanding the 
qubits as the shared memory that superposition uses to perform different paths of 
the same computation. But this seems like too much effort to mould a classical 
concept into the quantum world. And, with some confidence, it can be said that a 
quantum language model that mimics the openMP behaviour is unlikely.

On the other hand, the MPI proposal is much more compatible with quantum 
computing. This is mainly because, unlike the concept of a thread, the concept of 
a message—understood as a piece of information sent from one device (Alice) to 
another (Bob)—does exist in DQC as it has been shown in [1] with the teledata 
and telegate protocols. In fact, there have already been some approaches towards 
a quantum message passing interface (QMPI) [30, 31]. It should be emphasised 
that QMPI is at a very early stage, its implementation is only at a design stage.

This last fact about QMPI shows how premature the current landscape of fron‑
tend software for DQC is. And even more shocking than its prematurity is the fact 
that there is only one—the QMPI—software tool designed specifically for this 
area. But, to be fair, this problem extends to the whole field of quantum comput‑
ing, as it is challenging to find abstraction in this computational model. It just 
stands out in DQC due to its lower profile in the research sphere.
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2.2  Intermediate representation (IR)

Moving on to the next level of abstraction, IRs are the next step. Making a simi‑
lar exercise as before, and to better understand the concept, a comparison between 
quantum and classical IRs can help to clarify some of its peculiarities.

In classical computing, and more specifically in classical compiling, IRs are used 
as a kind of “common denominator”. Suppose there are n high‑level languages and 
m different machines, each with its own set of instructions. To be able to compile 
each language on each machine—i.e. translate the high‑level language into the set of 
instructions required—it would be necessary to program nm different compilers: one 
for each combination of language and machine. What a IR does is to define a gen‑
eral set of instructions into which any language can be compiled and, more impor‑
tantly, which can be translated into any specific set of instructions depending on the 
machine used. Thus, only one compiler is needed for each language to get translated 
into the IR, and analogously, the IR only needs one compiler to be transformed to 
each set of instructions. This means that the number of required compilers is n + m.

Focusing now on DQC, there has been a proposal for a quantum IR for distributed 
systems, which has already been mentioned: InQuIR [26]. This distributed quantum 
IR was born out of the lack of a suitable representation as a compilation target for 
this kind of system. Authors focused on creating a formal semantic that would allow 
them to properly express problems such as deadlocks, qubit exhaustion, barriers, 
and entanglement swapping. All concepts are closely related to the distribution of 
quantum states2. This work will be further analysed in the following sections, where 
the characteristics and key points will be pointed out, as well as some aspects that 
were found to be improved during the development of this work. To the best of our 
knowledge, this is the only IR specifically defined for distributed architectures in 
quantum computing (NetQASM [27], with its basic set of instructions, is said to 
work as a kind of IR, but this will be discussed later). Of course, many quantum IRs 
have been proposed for the monolithic.3 case, but it is beyond the scope of this paper 
to explain the differences between them.

Before discussing the backends, it is important to note a specific aspect of IRs for 
distributed systems. It has been emphasised in the definition of a IR that it must be 
platform‑independent. This is true, but in the distributed case, the IR actually needs 
to know some information about the system: how many processors are available. 
This is because if no information about this is given at the IR stage, there is no way 
of specifying communication directives. This, for simplicity and coherence, will not 
be considered a platform‑specific property but a parameter of the IR. In this sense, 
the platform‑specific characteristics will be the same as for the monolithic case, i.e. 
the gate set supported, the connectivity of the qubits in each QPU, etc.

2 All this concepts will not be formally defined in this manuscript; please refer to the InQuIR manuscript 
[26] for details.
3 In this text when the term “monolithic case” or “monolithic quantum computing” is used, it refers to 
quantum computations performed with only one quantum processing unit (QPU). In other words, it refers 
to the opposite of the DQC.



Inqasm: InQuIR compiler to NetQASM  Page 7 of 29   442 

2.3  Backend

Once the previous two layers have been shelled, the backend becomes the pro‑
tagonist. This is the last compilation stage, and the part is closest to the machine. 
In classical compilation, this is the moment when the instructions defined in the 
IR are translated into the set of instructions understood by the machine in order 
to execute them.

Again, quantum computation lacks a perfect match for this kind of concept, 
or perhaps there has been a tendency in the literature to call quantum assem‑
bly something that does not quite fit the definition of quantum assembly. The 
example par excellence is the Quantum Assembly Language (QASM) and all its 
variants: OpenQASM  [32], eQASM  [33], cQASM  [34], etc. As its name sug‑
gests, QASM is inherently defined as an assembly for quantum computing. And 
the problem with defining QASM as such lies in one of its characteristics: it is 
platform‑independent. This reduces its proximity to the machine and perverts its 
definition as an assembly language. In fact, if someone takes a quantum assem‑
bly and makes it platform‑independent, it becomes a quantum IR because what 
has been done is basically to raise a level of abstraction (exactly where the IRs 
is found).

This is precisely what happens with NetQASM  [27], which can be seen as 
another variant of QASM, but for distributed systems. To be fair, despite its 
name, NetQASM is not defined as an assembly language. In fact, it is defined as 
a low-level assembler-like language. But NetQASM solves this problem of plat‑
form independence by adding the concept of flavours. These are modifications 
of the instruction set to extract platform‑specific advantages. The basic flavour, 
the universal gate set, is called the vanilla flavour. They even say in this paper 
that: “the vanilla flavour can be seen as an IR and the translation to a specific 
flavour as a backend compilation step.”

The lack of standards and guidelines was mentioned previously as part of the 
motivation for this work. This is the perfect example. Most of the time, quantum 
compilation processes are called by names that refer to classical stages but do not 
quite match their nature. Quantum assembly languages are not the only example. 
For example, the term “transpile” is commonly used in classical computing to 
translate one language into another at the same level of abstraction. In quantum 
computing, however, it is commonly used to refer to the translation of a circuit 
into the gate set of a machine, plus optimisations. Ironically, this is exactly what 
the term “compile” is used for in classical compilation, as explained earlier in 
this section. In this sense, the work developed in this paper—i.e. the translation 
from InQuIR to NetQASM—can be considered as part of the compilation pro‑
cess or as transpilation, depending on whether NetQASM is considered to be at 
a lower level of abstraction than InQuIR or not. In the conclusions, there will be 
a discussion treating this topic, taking into account the different characteristics 
extracted through the work of the two languages.
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2.4  Emulators

In this era of quantum computing, the so‑called noisy intermediate‑scale quantum 
(NISQ) era, emulators of the behaviour of a quantum computer are of particular 
interest. Developing strong emulators will allow us to predict better how quantum 
computers will perform with a given algorithm. They allow the development of 
new algorithms and techniques while quantum computers are still in the process of 
becoming viable in a hardware sense.

For DQC, contrary to the monolithic case, there are not so many emulators, but 
the number is significant compared to the small amount of software that the compi‑
lation stack has. There is, of course, an explanation for this. Although the concept of 
DQC as an analogue to the multicore concept in classical computation is not widely 
used in practice, quantum networks are. This is why there are emulators for DQC: 
they were initially designed to simulate a quantum network, not a multicore archi‑
tecture. Fortunately, the multicore architecture can be treated as a quantum network 
with special properties, e.g. a small distance between nodes.

A first example of a quantum emulator for distributed computation is the dis‑
tributed quantum computing simulator (DQCS) [35], a recently developed tool for 
simulating the behaviour of distributed quantum systems. This emulator is built on 
top of Qiskit [16] for illustrative purposes rather than efficient simulation. A similar 
example is the QuNetSim emulator [36], a Python software framework that attempts 
to provide an easy‑to‑use platform for testing quantum network protocols. This goal 
was shared with another emulator called SimulaQron [37]. The SQUANCH emula‑
tor [38] is a Python software framework like QuNetSim and has the special feature 
of modelling noisy quantum channels.

On the other hand, [39] propose a framework design that exploits computational 
and networking aspects by introducing the concept of an execution manager: a 
scheduler for networked computers. NetQuil [40] is another example that integrates 
with the Quil language used by Rigetti’s quantum processors, providing a seamless 
way to simulate quantum networks and distributed algorithms using a common pro‑
gramming language. A more interesting example for the purposes of this work is 
Interlin‑q [41], a simulation platform designed from the outset with the idea of mul‑
ticore quantum computers in mind rather than simulating quantum networks such as 
the quantum internet.

There are also several discrete event quantum emulators: QuISP [42], qkdX [43], 
SeQUeNCe  [44] or NetSquid  [45]. Discrete event simulation, a well‑established 
method for simulating classical network systems, is a modelling paradigm that 
advances time by moving through a sequence of events, which is applied to quantum 
networks in the above emulators. The specific differences between these programs 
are explained in [45] and will not be described in this work.

Among all these emulators, NetSquid has been selected for this work mainly 
because it accepts NetQASM instructions as a valid set. This also happens in Simu‑
laQron, but NetSquid was ultimately preferred due to its deeper design and scope. 
This simulator is designed for quantum networks and, therefore, does not have a mul‑
ticore structure‑centred scope like Interlin‑q. However, as mentioned above, multi‑
core architectures can be treated as quantum networks with specific characteristics.
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3  InQuIR and NetQASM

This section starts with a description of InQuIR. The aspects and intricacies of 
both the manuscript and the actual code will be highlighted, pointing out what had 
to be changed to make the compiler work. Secondly, the same effort is made with 
NetQASM. Although NetQASM is deeper than InQuIR in content (because they 
developed a whole framework along with the assembly‑like language), only the 
aspects that affect this work will be explored, along with a general explanation of the 
software and the work.

3.1  InQuIR

Delving into the paper proposing InQuIR [26], the authors explain that their primary 
motivation was the lack of IR for distributed quantum systems. In fact, they noticed 
the effort of some works in trying to map the qubits in an optimal way to the differ‑
ent distributed architectures. Still, they called themselves “compilers” only by doing 
the optimisation stage of the compilation process, which is just an operation on the 
backend, not the whole compiler.

So, with this motivation in mind, they claimed the following contributions:

• Definition of formal semantics.
• Examples of use.
• Resource estimation software tool.
• Roadmap for the introduction of static analysis.

Formal semantics in programming languages is the precise mathematical study of 
what programs mean. It provides clear, unambiguous definitions of how programs 
behave and run. This helps in designing languages, verifying the correctness of 
programs, building reliable compilers, and improving our understanding of pro‑
gramming concepts. Different approaches, such as operational, denotational and 
axiomatic semantics, provide different ways of describing and reasoning about the 
meaning of programs. In this case, InQuIR chooses operational semantics to be able 
to explain how the system changes during the execution of the program. In fact, they 
defined the runtime state R as

where � is the density matrix of the state (they do not specify, but it can be inferred 
that it is of the whole system), Q is the set of data qubits, E is the set of communica‑
tion qubits, P is the system currently being evaluated, and H is the heap for classical 
communication. With this definition, the operational semantics can be described by 
analysing how a runtime state R changes into another R′.

Speaking of examples to use, this is probably the most innovative feature pre‑
sented in the InQuIR work. Almost all the work around quantum distribution focuses 
on optimising the mapping of the qubits and minimising classical communication 

R = [�,Q,E,P,H],
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between nodes. But none of them focuses on the problem that can cause a deadlock.4 
With the tools used to construct the operational semantics, they present four impor‑
tant examples: entanglement swapping, barriers, qubit exhaustion and deadlocks. As 
of this work, these four examples will not be employed, but they are a significant 
aspect of InQuIR.

About the resource estimation software tool, they introduce several metrics: 
E‑count and E‑depth, C‑count and C‑depth, estimated time and number of remaining 
operations by processors at each time. With E‑count and E‑depth, they analyse the 
number of generated entanglement pairs and the depth of the critical path, respec‑
tively, considering only the dependencies of the entanglement generation. C‑count 
and C‑depth, on the other hand, focus on classical communication. They used theo‑
retical values to calculate the time cost of each operation, so the present estimate 
serves only as an indication of performance. Still, it could be improved by adapt‑
ing the time cost of each operation to that performed by a real machine. However, 
this should be done when compiling InQuIR for the specific machine and not before 
because, as clearly stated in this manuscript, the IRs must be platform‑independent.

Finally, the roadmap for introducing static analysis is just a brief explanation of 
how static analysis could help improve the verification of quantum programs. Static 
analysis of a quantum program involves examining its structure and properties with‑
out running it to detect problems and verify correctness. This is an increasingly 
common practice in monolithic quantum computing, where it is increasingly seen as 
an alternative to classical debugging. This is because it is impossible to read quan‑
tum states without affecting the actual state, so the only way to verify that the pro‑
gram is correct is to check certain aspects of the circuit before execution.

3.1.1  Benefits and drawbacks

It is now necessary to carry out a corresponding analysis to understand the choices 
made in the implementation of our compiler. Starting with the strengths of this 
work, it is worth noting the establishment of a syntax and operational semantics. 
Doing this to theoretically explain and support the creation of a language—in fact of 
an IR—is a good practice to reduce inconsistencies and errors. The introduction of 
a resource usage estimator is also worth mentioning. From a compiler point of view, 
this could be used to improve the IR code, a common practice in classical compila‑
tion when dealing with IRs.

Regarding the drawbacks, it is necessary to talk about the InQuIR software avail‑
able in the repository.5 Along with the language, InQuIR developers have included a 
toy compiler that, given a QASM code and the connectivity of the QPU, transforms 
the QASM code into InQuIR code. This toy compiler chooses to do automatic dis‑
tribution of the quantum workload, which is probably not the best idea considering 
the problems of autoparallelisation studied in classical computing. But since it is a 

4 A deadlock in programming is a situation where two or more processes or threads are stuck waiting for 
each other to release resources, causing them all to stop indefinitely.
5 The repository is located in https:// github. com/ team‑ InQuIR/ InQuIR.

https://github.com/team-InQuIR/InQuIR
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toy compiler and not a real compiler, it is understandable that it does not look for the 
most efficient compilation.

The real problem is that this compiler does not follow the defined syntax. The 
grammar defined in [26] does not match the grammar implemented by the actual 
compiler, resulting in a completely different language. The actual grammar imple‑
mented by the compiler is shown in Fig. 1. There is little interest in comparing the 
actual grammar with the theoretical one. However, it is interesting to analyse the 
problems of the actual grammar, some of them being the following.

• Qubits and classical data are intertwined under the same variable, called value.
• There is no differentiation between the communication and data qubits.
• The system definition only allows two system concatenated.
• The format employed does not follow any specific formal syntax definition for‑

mat.

To solve these inconveniences, we have developed a modified version of InQuIR 
in order to use with our compiler. The inconveniences pointed out were modi‑
fied with a appropriated justification. It is important to mention that the language 
allowed by this new syntax will be exactly the same as the one defined by the actual 
grammar. This is just a formal precision which, although irrelevant from a practical 
point of view, will make the InQuIR grammar much clearer and, thus, the under‑
standing of this work.

3.2  NetQASM

Next the NetQASM [27] language will be explained. However, it is first necessary to 
understand how quantum networks are viewed and their execution model. After that, 
a schematic explanation of the NetQASM language will be presented. In this case, 
the syntax will not be revealed since it is the target of the compilation and not the 
source, which means there is no need to read instructions (only to generate correct 

Fig. 1  Actual syntax of the InQuIR grammar
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ones from the InQuIR code). Finally, some brief remarks about NetQASM will be 
made to clarify and reinforce some ideas.

The first thing that needs to be explained about NetQASM, even before its lan‑
guage, is the abstract model of the hardware and software architecture. It can be 
seen in Fig.  2. This model is composed of two main parts, the application layer 
and the quantum network processing unit (QNPU), both classically connected by a 
shared memory and the sending and receiving of NetQASM code or, as the authors 
call it, NetQASM subroutine. This represents a node in a quantum network, and for 
this work, it will be considered a QPU.

It has already been said that NetQASM is constructed and considered for quan‑
tum networks. Perhaps taking into account the context of this work, i.e. a quantum 
multicore structure, having an application layer on top of the QNPU might be a bit 
cumbersome. However, as this is at an early stage and the ultimate goal is to cre‑
ate a link between two software—NetQASM and InQuIR—this is left as a future 
improvement. Also, the intricacies of the QNPU are left to the reader; for this 
endeavour, it is sufficient to understand that the NetQASM subroutines are sent to 
the QNPU to be executed and that the application layer has access to a memory 
shared with the QNPU. This is illustrated in Sect. 5 with the example employed.

Now, it is necessary to describe the NetQASM language. First, although it can be 
(and in this work has been) classified as a variant of the QASM language, it is quite 
different in form and intention. Apart from the obvious fact that, unlike QASM, 
NetQASM is designed for quantum networks, it is also striking that NetQASM is 
almost more like a classical assembly language than like QASM. This is mainly due 
to the virtualisation of the qubits. This is done by an artefact called unit module. A 
unit module defines the topology of the available qubits by specifying which qubits 
are connected, i.e. on which qubit pairs a two‑qubit gate can be executed. It also 
contains additional information about each qubit. These unit modules contain vir‑
tual qubit IDs—similar to classical computers with registers—and, unnoticed by the 
application layer, the QNPU maintains a mapping of these virtual qubit IDs to the 
physical qubits. In Fig.  3a, this virtualisation can be seen, for example, in line 4. 
This line, set Q0 0, does not set the qubit number zero to the state �0⟩ . What it 
does is to assign the ID 0 to the variable Q0 and then, when operations are applied 

Fig. 2  Abstract model considered in the NetQASM work [27]



Inqasm: InQuIR compiler to NetQASM  Page 13 of 29   442 

to this qubit, the QNPU will determine—with its mapping—which physical qubit 
will be the target of such operations. This common practice in classical assembly 
language finds its equivalent here, in the DQC field, in NetQASM.

Furthermore, something not even mentioned in [27] but present in the developed 
code is the distinction between protosubroutines and subroutines. These represent 
the human‑readable and binary versions of the NetQASM language, respectively. A 
difference between these two representations is that the protosubroutines have jump 
variables and constant values, and, on the contrary, the subroutines translate these 
values to registers. These can be observed in Fig. 3, where all the constant values 
employed out of a set directive are substituted for a register (for instance, R0 in 
Fig. 3b).

Finally, the Python software development kit (SDK) developed by the authors to 
create NetQASM programs with a higher level of abstraction has to be mentioned. 
This may seem contradictory to what was exposed in Sect. 2, when the lack of fron‑
tend languages was mentioned. But it is not. The abstraction this Python SDK pro‑
vides is not at a quantum level. It is an abstraction at the classical level because there 
is still the need to work with gates and, therefore, bit operations—been the bits, in 
this case, qubits. Nevertheless, this SDK is of interest because it will be used to 
insert the compiled subroutines into the NetSquid simulator and test their correct‑
ness. Or, in other words, this Python SDK will represent the application layer, being 
the one communicating with the simulated QNPUs.

3.2.1  Benefits and drawbacks

In terms of benefits, first of all, virtualising the qubits and abstracting the applica‑
tion layer and the QNPU is a very powerful way of designing the model. It frees 
the compilation process from dealing with the quantum resources of the QNPU and 
removes tasks from the quantum part of the node to speed up the processes, per‑
fectly separating the quantum and classical workloads. As far as the software infra‑
structure is concerned, the amount of tools and options is quite impressive. The easy 
integration with the NetSquid simulator gives this work a step up in quality, as it is 
possible to test real use cases to verify the functioning of the theoretical design.

Fig. 3  NetQASM language example in different versions
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As for the drawbacks of this work, theoretically, there are not too many. The pro‑
posed scheme is an interesting way of modelling the problem of generating low‑
level instructions for a QNPU. From a language point of view, there are no theoreti‑
cal flaws or, as happened with InQuIR, any mismatch between what is theoretically 
exposed and what was actually implemented. The main drawback found in this 
work is the compilation part, where many unnecessary instructions were generated 
when working with the Python SDK and not corrected when transforming the pro‑
tosubroutine to the subroutine. This will be pictured in Sect. 5 when executing the 
compiler.

4  The InQASM compiler

As has already been mentioned, the focus of this endeavour was to develop a tool 
capable of translating InQuIR files into NetQASM files. There are two main reasons 
for doing this translation. The most important one is to create a link between these 
two languages, which allows making a seamless connection between them and, in 
the process, extracting useful information about quantum IRs for DQC. Secondly, 
this connection opens up the possibility of testing the InQuIR code in an emulator 
since, as already mentioned, NetSquid accepts NetQASM as a valid instruction set.

Is in this section where the aforementioned objective of this work is carried to 
fruition. In this section, a detailed description of the InQuIR to NetQASM com‑
piler will be provided. This starts by explaining the syntax implemented for InQuIR, 
which defines the grammar, using the extended Backus‑Naur form (EBNF) [46]. 
After this, an explanation about how the translation was performed, i.e. how each 
instruction was transformed into a NetQASM instruction, will be conducted. Finally, 
a brief explanation of how the resulting code was tested is given. As an implementa‑
tion note, the languages used in this endeavour are C++, Python and Java, although 
Java is used indirectly, as it will be shown.

4.1  Grammar definition

As noted in Sect. 3.1.1, the biggest drawback of InQuIR was the inconsistencies in 
the grammar. In addition, although it was not mentioned, the form used to express 
the syntax—usually referred to as a meta‑syntax—is not as powerful and rigorous 
as, for example, the EBNF. In fact, explaining the grammar in this way will allow 
a seamless implementation of the grammar using ANother Tool for Language Rec‑
ognition (ANTLR)  [47]. Of course, as the name suggests, many language recogni‑
tion tools exist. ANTLR was chosen because of its excellent integration with C++, 
which is the core language of the compiler, but other tools could have been used.

In Fig. 4, the implemented grammar is displayed. Some remarks have to be made 
to justify some decisions made.

• Use of EBNF. As already noted, instead of using a self‑created style to express 
the grammar, EBNF was used. This narrows the gap between the theoretical 
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explanation of the grammar and the implementation, making the work easier 
and, even more important, making the understanding of the code much better.

• Branch ‘value’ to ‘clbit’ and ‘qubit’. Something particularly problematic about 
the InQuIR grammar is the fact that the nonterminal element ‘value’ included 
both classical bits and qubits. This does not make sense, as this grammar would 
permit classical operations to be executed over qubits and vice‑versa. Separating 
classical information and quantum information in the grammar facilitates the fol‑
lowing processing and, even better, improves the readability of the grammar.

• Change the ‘system’ definition. In the original definition, a single InQuIR file 
could just accept two systems concatenated, while common sense indicates that 
it could be convenient to have an arbitrary number of systems concatenated to 
create a queue of systems.

• Definition of ‘process’ simplified. In the original grammar, the nonterminal vari‑
able ‘process’ agglutinates all the instructions when, looking at an InQuIR file, 
the ‘process’ looks like it has to be the whole circuit of a single QPU. This way, 

Fig. 4  Implemented syntax of InQuIR using EBNF. Note that the digits and letters specification is not 
done to simplify the figure
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each line can be treated as a nonterminal of two types: quantum instruction and 
function.

• Differentiation of data and communication qubits. Although it has no implica‑
tions in terms of physical implementation—a qubit is a qubit—, it is a nice prac‑
tice to, given the fact that they can be differentiated in the syntax, separate the 
concept of communication qubit and data qubit. The earlier their functionalities 
are separated, the easier will be to treat them later.

• Consideration of conditional gates. Finally, the InQuIR grammar did not con‑
sider a pivotal case in its language: conditional gates. The conditional gates are 
exactly the same as the usual gates, but its application on the qubits is determined 
by a classical value. They are also referred to in the literature as intermediate 
measurements because, commonly, the classical value conditioning the applica‑
tion of the gate results from a measurement mid‑execution. It must be said that in 
the actual grammar—the one exposed in Fig. 1 and that is implemented in their 
compiler—this case is considered, but it is important to remark that in the gram‑
mar here implemented, it is also considered

As already mentioned, this new grammar is implemented using ANTLR. The 
process involves generating a tree for each file containing InQuIR code, with 
the compiler walking through it, successively converting each sentence into a 
NetQASM instruction. One advantage of using ANTLR is that it automatically gen‑
erates the necessary methods to create and walk the tree from the files, so the devel‑
oper can concentrate on the actual task: transforming each piece of InQuIR code 
into NetQASM’s.

4.2  Transforming InQuIR into NetQASM

Now, it is time to actually transform the code. Many details and peculiarities have 
been noted, but if any has been missed, it will be pointed out here. The code that 
InQuIR is transformed into is the protosubroutine code, i.e. the human‑readable 
version of the NetQASM. This is important to mention because one of the possi‑
ble improvements that this work could have is the direct translation of InQuIR into 
binary subroutines.

First, Table 1 shows the equivalence of the instructions. There is a lot to say 
about the contents of this table. At first sight, it highlights the fact that every 
InQuIR instruction is equivalent to one or more NetQASM instructions, except in 
a few cases where they lead to no instructions at all. The latter case is, however, 
quite logical: these instructions correspond to operations that NetQASM identi‑
fies as the application layer’s responsibility. Going back to Fig.  2, the applica‑
tion layer was responsible for classical communication with the application layer 
of another node. This way of handling classical communication is probably one 
of the most, if not the most, detrimental aspects of NetQASM when used in the 
context of multicore architectures. Having to rely on SDK to perform classical 
communication drastically reduces efficiency due to the need to add extra lay‑
ers of software that just send and receive information. Again, as will be pointed 
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out in the discussion below, this is a good indicator that the level of abstraction 
achieved by InQuIR is higher than that of NetQASM. In fact, InQuIR guarantees 
a much wider range of architecture types.

Moreover, this table also allows us to see the qubit virtualisation of the 
NetQASM model. It is common sense that the registers starting with “Q” are 
actually qubits on the back. But looking at the actual lines, it would be impossible 
to affirm that this is code for quantum computation without any knowledge of the 
context of this assembler code.

Another notable case is that of conditional gates. The table shows that this type 
of instruction causes the subroutine to be split into two parts. This is due to how 
the NetQASM model was conceived. Only the application layer can communicate 
with other nodes, which means that the NetQASM subroutines cannot have clas‑
sical communication with other nodes. Therefore, at the application layer, when 
a conditional gate is encountered, two subroutines have to be compiled: the one 
with the gate applied and the one without the gate. This way, when the classical 
bit is received or measured inside the own QNPU, the correct subroutine is sent, 
and the other one is discarded. This will be illustrated in Sect. 5 with the exam‑
ple examined. This is quite inefficient for the multicore architecture this work is 

Table 1  Equivalence between 
InQuIR and NetQASM 
instructions

InQuIR instructions NetQASM instructions

world = open[0,1,2,...] NONE
q0 = init() set Q0 0

qalloc Q0
init Q0

_cq0 = genEnt[1](l0) array 10 @0
array 1 @1
store 0 @1[0]
array 20 @2
store 0 @2[0]
store 1 @2[1]
create_epr(1,0) 1 2 0
wait_all @0[0:10]

(_cq0, _cq1) = entSwap(0, 1) Equivalent to genEnt
U q0 _cq0 U Q0 Q1
U[_m1] q0 Division in two subroutines
send[1](world, l1:_m0) NONE
recv(world, l1_2:_m1) NONE
RCXC[1](world, l0, q0, _cq0) Example in Chapter 5
RCXT[0](world, l1, q1, _cq1) Example in Chapter 5
c0 = measure q0 array 1 @3

meas Q0
qfree Q0
store M0 @3[0]
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designed for due to the same reasons explained before when talking about the 
instructions that were translated to nothing.

Furthermore, the RCXC and RCXT cases will be analysed in the next section 
since the example treated is a remote CX gate. It will be shown what circuit these 
gates produce when converted to NetQASM. It should be noted that although they 
are included in the grammar, the actual RCXC and RCXT instructions are not writ‑
ten in the example. Instead, the entire circuits equivalent to these gates are expressed 
as an illustrative way of applying the entire table of equivalences rather than just 
using these instructions.

Finally, the entanglement swap, i.e. the ‘entSwap’ operation, is treated as equiva‑
lent to a ‘genEnt’, i.e. a normal entanglement generation. This is the opposite case 
of conditional gates, in the sense that the application layer does not know how the 
quantum connections are (it only knows the number of nodes) and, therefore, the 
QNPUs automatically performs the necessary entanglement swaps without the user 
above noticing. This is a feature that InQuIR should probably adopt to add a bit 
more abstraction. Again, this will be considered in the discussion of Sect. 6.

As a final remark, one question that may arise is whether the compiled NetQASM 
code inherits certain properties from the original InQuIR code. Specifically, if an 
InQuIR program guarantees, for example, freedom from deadlocks or qubit exhaus‑
tion, does the compiled NetQASM code maintain these guarantees? Inheritance is a 
deep question in this field of compilation and often depends on the specific scenario. 
In this case, deadlocks may or may not occur in a compiled NetQASM program 
because they fall under the responsibility of the application layer, which NetQASM 
does not manage. On the other hand, qubit exhaustion is tied to the quantum aspects 
of the program, which are indeed encoded by NetQASM subroutines. Therefore, 
qubit exhaustion guarantees are preserved. As this example illustrates, quantum 
characteristics are likely to be inherited when using the InQASM compiler, whereas 
classical aspects are not, due to NetQASM subroutines’ inability to handle classical 
functionalities.

4.3  Testing the resulting code

So, as the code transformation has been performed, it is time to test it to see if the 
translated code has actually been translated correctly. This exercise checks two 
aspects: first, the correctness of the translated code, and second, the quality of the 
translation compared to the NetQASM code generator. The NetQASM code genera‑
tor to be used is the one implemented by the previously mentioned Python SDK. It 
has to be said that the compiler efficiency will not be tested in terms of time perfor‑
mance. This is a first stage compiler with no optimisations added to it. This means 
that the operations performed are tokenisation, parsing and walking the abstract syn‑
tax tree (AST) in order to generate the NetQASM code. This is a very efficient pro‑
cess and, even more important, it mainly depends on the ANTLR implementation.

Basically, the code will be tested using two Python programs: one generating 
the NetQASM code from the Python directives and the other taking the NetQASM 
generated from the InQuIR code as input. Both will execute the subroutines in the 
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NetSquid simulator using the SquidASM library to compare the results and see if 
they match.

Examples following these steps will be shown in Sect. 5, allowing for a final and 
thorough analysis that will set up all for a final discussion about this work, InQuIR 
and NetQASM, their most significant problems and virtues.

5  Results

In this chapter, the distributed CX will be the operation used, as already noted in 
Table 1. This operation is chosen mainly because it is the baseline for DQC. The 
ability to correctly execute a distributed CX allows the execution of any other 
controlled gate between different QPUs simply by changing the X for the gate of 
interest.

The circuit in question is shown in Fig. 5. This figure shows why this operation, 
the distributed CX, is the baseline for DQC. This circuit is a well‑known case in the 
DQC literature, usually called telegate, composed of two parts, the cat‑entangler and 
the cat‑disentangler. The communication qubit of QPU1 is set to the same state as 
��⟩ by the effect of the first block, the cat‑entangler, and then the effect of the gate 
is kicked back to the QPU0 by the effect of the second, the cat‑disentangler. This 
allows this qubit to act as the control qubit for the local controlled operations in 
 QPU1. There are other methods, such as the teledata, also known as teleport. The 
reader is referred to Barral et al. [1] for more details.

To carry out a thorough analysis, the InQuIR code for implementing this gate is 
first shown. Then, the NetQASM generated from this code is shown. For compari‑
son purposes, as explained in Sect. 4.3, the code generated by the Python SDK is 
depicted. Both codes are compared to show differences and possible improvements. 
Finally, both codes are simulated and the outputs after the simulation will be com‑
pared to show that the generated code behaves as is should.

It is important to note that only one example has been compared with the Python 
SKD code, which is clearly insufficient to fully prove the compiler’s functionality. 

Fig. 5  Distributed CX
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The purpose of this example is not to demonstrate flawless performance but rather to 
illustrate how the compiler operates and how its results compare to those produced 
by the NetQASM Python SDK. The Python SDK is designed for writing programs 
using Python directives, rather than injecting external NetQASM subroutines, which 
further complicates the construction of more direct comparisons. However, to bet‑
ter illustrate the compiler’s functionality, additional and more complex examples are 
available in the repository for readers to explore. It should be noted that these exam‑
ples cannot currently be tested using the NetQASM Python SDK, as the SDK does 
not support the injection of externally generated subroutines, making it impossible 
to execute them in certain cases. Consequently, these examples are not included in 
this document. Moreover, in order to reproduce the results here presented, the ver‑
sions of the software employed are specified in Appendix C.

5.1  InQuIR code

For this example, the InQuIR code could be hand‑written. Instead, the InQuIR soft‑
ware introduced in Sect. 3.1.1 was used. The input to generate the InQuIR code was 
a simple QASM code with a CX and an architecture of two QPUs. This code and 
the corresponding InQuIR code can be seen side by side in Fig. 6. Obviously, the 
number of instructions introduced in the InQuIR code is significant due to the need 
to establish the distributed connection.

5.2  NetQASM code of the translation

Following the equivalences in Table 1, the NetQASM code is now generated by the 
compiler. In Fig. 7, you can see the resulting code for QPU0 and in Fig. 8 the same 
for QPU1 . First, the effect of conditional gates, as explained in Sect.  4.2, can be 
seen at first glance by the fact that there is more than one subroutine for each QPU. 
One might think that this could lead to an exponential increase in the number of 
NetQASM files for each InQuIR file, but there are at most 2n + 1 files in each QPU, 

Fig. 6  QASM code and its respective InQuIR’s generated one
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where n is the number of conditional gates applied. Otherwise, the result obtained is 
just the consequence of applying the equivalence table to each row.

5.3  NetQASM code of the python SDK

Now, in Figs. 9 and 10, you can see the code produced by the Python SDK for 
each QPU. The code shown in these chunks is quite similar to that produced by 
this work’s compiler, but there are some significant differences. First of all, in 
QPU0 in Fig.  9a, the instruction set Q0 1 is repeated almost continuously, 
which is obviously something completely inefficient. This can also be seen in 
Fig. 10b, c with the instruction set Q0 0. But probably the most outstanding 
result is the one observed in Fig.  10a, where all the highlighted code is com‑
pletely unnecessary. The reasons why the Python SDK generated this piece of 
code are unknown, but after trying the subroutines with and without this piece 
of code, the results were equivalent. This means that this code’s generation is 
unnecessary and could—and should—be eliminated in a first simple round of 
optimisations. This shows a pretty big mistake compared to the previous instruc‑
tion repetition because not only are classical operations repeated, but quantum 
ones are as well. Every quantum operation introduces errors into the qubits, so it 
is always helpful to minimise the use of unnecessary ones. These two inaccura‑
cies show a problem of the NetQASM software: the lack of optimisation when 
generating the code of the subroutine. This represents a possible improvement in 
future works.

5.4  Comparison of results

Finally, after all the subroutines are obtained, the code is executed in the NetS‑
quid simulator. Instead of executing and comparing the measurements (which 
would require a serious statistical analysis), NetSquid allows obtaining the den‑
sity matrix of the joint state of the control qubit in QPU0 and the target qubit in 
QPU1 (thanks to the SquidASM library). This allows for a robust comparison of 
the results, because instead of having to mathematically ensure that both distri‑
butions are equal, a direct comparison between density matrix gives us the exact 
answer.

In order to compare the result between both circuits, several states have to be 
tested. In order to do so, two rotation operations—one in the X axis and one in 
the Y axis—for the control and the target qubits are added to both the compiled 
and the generated by the Python SDK subroutines. This makes us able to gen‑
erate arbitrary states for the control and the target qubits, obtaining an actual 
exam on whether the compilation files are obtaining the same state as the Python 
SDK files. Twenty different angles were selected, equally spaced along the unity 
circle—i.e. the multiples of �

10
 until reaching 2� . In all the cases, the results were 

exactly the same excepting approximations.
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This allows us to conclude that the translation of InQuIR code to NetQASM 
subroutines is being correctly performed for this example, creating a compila‑
tion pipeline between these two pieces of software.

6  Conclusion

This section starts by discussing all the different aspects of the InQuIR and 
NetQASM languages, along with the key aspects of the simple compiler developed 
in this work. After this, a summary of the work and ideas will be made to extract 
some solid conclusions. Finally, a discussion of future work will conclude this 
manuscript.

6.1  Discussion

This work has portrayed a translation from the InQuIR language to the NetQASM 
language. This has been referred to as a compiler, i.e. as a tool that translates code 
to another language that represents an inferior level of abstraction. The first point 
to discuss is whether this characterisation is accurate. The correct answer is that 
it depends on the context. While InQuIR is explicitly defined as an IR for inter‑
connected quantum computers, NetQASM has not been clearly established as an 
assembly for quantum interconnects. As already mentioned in Sect. 2.3, NetQASM 
is defined as a low-level assembler, which does not precisely stress the assembly 
nature of NetQASM. In fact, when the concept of "flavours" was introduced, it was 
mentioned that with the vanilla flavour, i.e. the basic one, NetQASM behaves simi‑
larly to a IR. Because of this, considering the software developed in this work a tran‑
spiler instead of a compiler would be completely correct.

Focusing on the various aspects of the languages, several points can be high‑
lighted. Starting with InQuIR, some aspects where found problematic along the 
development. First of all, the fact that InQuIR needs to know about the connectiv‑
ity of the underlying architecture is quite a low‑level characteristic to an IR. Even 
though it is not critical, it forces InQuIR to implement the entanglement swap 
operations, which is something related to qubit routing in DQC architectures. An 
IR should just indicate that two processes have to share an entanglement pair and, 
when generating the code for a specific machine with its specific architecture, the 
entanglement swap operations should be performed to allow this sharing. This could 
be compared to the classical case when an expression like a = b + c is performed. 
The user at IR level has nothing to do with the transportation of the different regis‑
ters involved with the arithmetic logic unit (ALU). Also, the grammar in this work 
is poorly defined due to the lack of a standardised definition using a meta‑syntax 
language. This has been corrected in this work by using EBNF, as already shown in 
Fig. 4.
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Now, talking about NetQASM, the fact that, as explained since the beginning, 
this language is thought for quantum networks brings unnecessary layers to the lan‑
guage and the model regarding the scope of multicore architectures adopted in this 
work. This can be perfectly observed in, for instance, the need to send and receive 
the subroutines between the QNPU and the application layer. This could be per‑
formed exclusively by a small classical unit inside the QNPU to fit in the multicore 
model. Moreover, this is related to how intermediate measurements and, therefore, 
conditional gates are treated. In fact, this is a strong point to argue that NetQASM 

Fig. 7  NetQASM translated for QPU0

Fig. 8  NetQASM translated for QPU1
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cannot be an IR because it should treat conditional gates as an implemented opera‑
tion and leave to the lower stages of the code the way of implementing that type 
of operation. The way employed of getting the classical bit to the application layer 
and then sending the correct subroutine seems like too much specification for an IR. 
Even more if one thinks about the fact that, in the future, an architecture focused on 
a distributed model could be created with conditional gate as an operation supported 
as native. Something that has to be pointed out as a positive feature of NetQASM 
is the fact that it does not implement entanglement swaps, leaving that responsibil‑
ity to the QNPU, just as it was suggested to the InQuIR language in the previous 
paragraph.

Now, looking at the software infrastructure surrounding both languages, InQuIR 
and NetQASM, a couple of notes have to be made. In the case of InQuIR, it has 
a simplified compiler associated, as already noted. Using this compiler provides a 
useful way to observe how the connectivity is employed, as mentioned before, but 
it is intended only as a support tool rather than a fully developed software solution. 
Regarding the NetQASM software, the code generation does not perform the most 
basic optimisation techniques as it is to check if an instruction is duplicated. This 
provokes that, as shown in the codes of Appendix B with the highlighted lines, sev‑
eral code lines end up being duplicated. Even more, it even generates a ton of unnec‑
essary instructions, as depicted in Fig. 10a with, again, the highlighted lines.

Fig. 9  NetQASM code for the QPU0
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6.2  Summary

So, to sum up, a correct translation has been portrayed from InQuIR to NetQASM 
code. This has shown different aspects of both languages and, even more, of both 
works. InQuIR and NetQASM have shown different benefits and flaws for the dis‑
tributed compilation stack, which will be taken into account in future works in order 
to build a strong backbone for DQC.

In fact, a possible conclusion that can be extracted is the fact that a refined IR for 
distributed architectures is still to be constructed. This is a surprising conclusion if 
one considers that this work was born with the intent of linking an assembly and an 
IR for DQC. But, again, as it has been shown in this work, the boundaries among 
stack levels are diffuse and can reveal themselves as almost nonexistent sometimes, 
as has happened with InQuIR and NetQASM.

6.3  Future work

As future work, it has already been hinted that an IR is to be defined for DQC. 
Moreover, with this new IR this compiler could be modified to directly trans‑
late to NetQASM’s different flavours (that represent the actual low level of the 
NetQASM software compound) or directly to the different simulators exposed in 
Sect. 2.4. Moreover, a lot of techniques could be introduced to generate higher‑
quality code. For example, static checks about qubit exhaustion and deadlocks 
can be implemented for the IR, as presented for the InQuIR. Another example 
is the implementation of optimisations for each backend in order to increase the 
performance or even optimisations to the IR that will reduce communications or 
other desired metrics (T‑count, depth, size, etc.).

NetQASM code of the translation

In this section, the NetQASM code generated from the compilation—referred in 
the title as translation—is displayed. Figures  7 and   8 show the code obtained 
from the compiled code of Figs. 6b, c.

NetQASM code of the python SDK

In this section, on the contrary, the NetQASM code displayed is the one automati‑
cally generated by the Python SDK. In Figs. 9 and  10 is shown the code obtained 
from compiled the code of Fig. 6b, c, the same piece of InQuIR code as before.

Software version

The software used in this manuscript is the INQASM v0.1.0 release, available on 
the project’s GitHub repository. All package versions required by the software are 
listed in the release notes for reproducibility.
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