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Resumen

El sector agrícola constituye uno de los principales pilares de la economía en la India, rep-

resentando en torno al 47% del empleo (datos de 2013–2014) y el 11% del producto interior

bruto de este país, que dedica el 60% de su territorio a labores agrícolas y ganaderas. El fun-

cionamiento de este sector económico está condicionado por factores climáticos, así como por

las prácticas agrícolas y las características del suelo. De hecho, la sobre-explotación y el uso

excesivo, o incorrecto, de fertilizantes afecta a un porcentaje significativo del suelo agrícola

indio, dos tercios del cual se puede calificar como degradado. La medición de parámetros del

suelo tales como los índices de fertilidad de las diferentes localidades para distintos nutrientes,

tipo de suelo, acidez y niveles de nutrientes, entre otros, resulta fundamental de cara a plani-

ficar el uso de fertilizantes y la selección de cultivos, pero requiere un considerable esfuerzo

por parte de personal especializado en análisis químicos. Esta tesis evalúa la capacidad de los

métodos de aprendizaje automático (machine learning) para la predicción de estos parámetros

a partir de datos químicos del suelo publicados por los gobiernos de la India y del estado de

Maharashtra. Estos datos permiten la predicción de los siguientes 12 parámetros del suelo de

interés para la agricultura:

1-6. Índices locales de fertilidad para 6 nutrientes del suelo: carbono orgánico (OC), pen-

tóxido de fósforo (P2O5), óxido de potasio (K2O), hierro (Fe), manganeso (Mn) y cinc

(Zn). Para un nutriente y para cada terreno agrícola de la localidad (que se corresponde

con un patrón para las tareas de aprendizaje automático), se cuantifica el nivel del nu-

triente, que es un dato de tipo numérico, en bajo, medio o alto, usando para ello los

niveles definidos por el gobierno de la India. El índice local de fertilidad se calcula pro-

mediando de forma ponderada el número de terrenos de la localidad con niveles bajos,

medios y altos (Nl , Nm y Nh) con pesos 1, 2 y 3 respectivamente, mediante la fórmula

(Nl +2Nm +3Nh)/Nt , sendo Nt el número total de terrenos en la localidad. Este índice
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es único para cada localidad, de modo que todos los terrenos de una localidad tienen el

mismo índice de fertilidad.

7-9. Niveles de nutrientes del suelo: nitrógeno, fósforo y potasio (N, P y K), presentes

en forma de óxido nitroso (N2O), pentóxido de di-fósforo (P2O5) y óxido de potasio

(K2O) respectivamente. Estos niveles resultan necesarios para la recomendación de

fertilizantes y sus cantidades adecuadas.

10. Acidez del suelo o pH, definido como el logaritmo de la concentración de iones H+,

que para los datos disponibles adopta valores entre 6 y 9 aproximadamente. Valores

inferiores (resp. superiores) a 7 se consideran ácidos (resp. básicos o alcalinos).

11. Cultivo recomendado para el terreno bajo consideración. Los cultivos considerados en

los datos disponibles son bajra, algodón de regadío y secano, o soja.

12. Tipo de suelo, otro dato también categórico que en los datos disponibles puede adoptar

los valores: “ligero”, correspondiente a un suelo arenoso, con capacidad para absorber

agua y niveles bajos de los nutrientes; o “medio”, correspondiente a un suelo fértil, con

alto contenido de humus, adecuado para el cultivo.

En una primera aproximación (capítulo 2), hemos cuantificado los valores de estos paráme-

tros, la mayoría de los cuales son de carácter numérico, usando niveles estándar definidos por

el gobierno de la India, con el objetivo de transformar la predicción de sus valores en proble-

mas de clasificación. Los índices para K2O y Zn no se han podido tratar como problemas de

clasificación ya que, dados los rangos considerados para cada clase, los patrones disponibles

para ambos problemas pertenecen a una única clase. Para resolver estos problemas de clasi-

ficación hemos aplicado una colección de 20 técnicas, implementadas en C++, Matlab, R y

Weka, pertenecientes a las siguientes 7 familias:

1. Árboles de decisión: específicamente, se incluyen en esta familia los clasificadores

J48, random tree, recursive partitioning y el ensemble Decorate, integrado por clasifi-

cadores base del tipo J48.

2. Clasificadores basados en reglas, incluyendo el clasificador híbrido DTNB (decision

table-naïve Bayes) y RIPPER (repeated incremental pruning to produce error reduc-

tion).
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3. Ensembles de tipo bagging, con varios clasificadores base: árboles de decisión, clasi-

ficadores FDA (flexible discriminant analysis) y PART (pruned partial C4.5 decision

trees).

4. Ensembles de tipo adaboost, usando el algoritmo Adaboost.M1.

5. Clasificador K-nearest neighbors (KNN).

6. Redes neuronales, incluyendo extreme learning machine (ELM) y ELM con núcleo

gausiano, multi-layer perceptron (MLP), radial basis function (RBF) neural network, y

probabilistic neural network (PNN).

7. Support vector machine (SVM) con núcleo gausiano.

8. Random forest con árboles de decisión del tipo random tree, y rotation forest ensemble

con clasificadores base del tipo J48.

La metodología experimental emplea 4 grupos formados cada uno por tres conjuntos (de

entrenamiento, validación y test), con porcentajes del 50%, 25% y 25% de los patrones, res-

pectivamente. La medida de calidad empleada en los experimentos de clasificación es el

parámetro Kappa (κ) de Cohen, que evalúa el rendimiento descartando la probabilidad de

acierto por casualidad. Para cada clasificador, se realiza un entrenamiento por cada combi-

nación de valores de sus hiperparámetros sintonizables y para cada uno de los 4 conjuntos de

entrenamiento. El clasificador entrenado se valida sobre el conjunto de validación correspon-

diente. Para cada combinación de valores de los hiperparámetros sintonizables, se promedia

el κ sobre los 4 conjuntos de validación. La combinación de valores seleccionada es la que

alcanza el mayor κ promedio. El κ final obtenido por el clasificador es el promedio, sobre

los 4 conjuntos de test, del clasificador entrenado en los 4 conjuntos de entrenamiento con la

combinación seleccionada para los valores de sus hiperparámetros.

El clasificador random forest alcanza los mejores resultados para 6 de los 10 problemas de

clasificación (índices locales de fertilidad para OC y Fe, nutrientes N2O y K2O, pH y cultivo

recomendado). En los restantes problemas, random forest ha estado muy cerca de ser el mejor,

ya que en todos los casos supera el 90% del mejor κ alcanzado por algún otro clasificador.

En estos problemas, los mejores resultados son los de adaboost, en 2 problemas (índice local

de fertilidad y nivel de P2O5), SVM y Decorate (ambos en un problema). Se han constatado

importantes diferencias entre los resultados en la clasificación de los distintos parámetros, ya
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que κ supera el 60% para los índices locales de fertilidad (90% para OC y 85% para P2O5),

tipo de suelo (97%) y cultivo recomendado (88%); alcanza valores intermedios (69% y 65%)

para los índices de fertilidad de Fe y Mn; y es inferior al 35% para los nutrientes N2O, P2O5 y

K2O. Dado que las clases se corresponden a niveles de cuantificación de parámetros del suelo,

estos problemas constituyen ejemplos de clasificacion ordinal, en los que existe una relación

de orden entre las clases. Esto se manifiesta en las matrices de confusión de los mejores

clasificadores en cada problema, donde los errores cometidos por asignar patrones a clases

contiguas son más elevados que los correspondientes a clases no contiguas. También hemos

comprobado que, para algunos parámetros (índices locales de fertilidad para N2O, Mn y Fe),

algunos clasificadores entrenados con datos de una región de Maharashtra resultan válidos

para clasificar índices locales de fertilidad de otras regiones del mismo estado, es decir, que

existe una cierta compatibilidad entre regiones. Específicamente, entrenando y testeando con

datos de las regiones de North-Maharashtra y Paschim-Maharashtra respectivamente, bag-

ging alcanza buenos resultados para índices de fertilidad de P2O5 y Mn, y lo mismo ocurre

intercambiando las regiones de entrenamiento y test. El árbol de decisión J48 y SVM al-

canzan también buenos resultados entrenando y testeando con cualquiera de las dos regiones

anteriores. Asimismo, random forest funciona bien entrenando y testeando con Marathwada

y Paschim-Maharashtra respectivamente. También existen compatibilidades bi-direccionales

parciales entre Marathwada y Paschim-Maharashtra para la clasificación de pH, usando los

clasificadores rotation forest y KNN, y con el índice de fertilidad de Fe usando árboles de

decisión del tipo recursive partitioning.

La predicción directa de valores numéricos para los parámetros del suelo, más allá de la

clasificación de sus valores cuantificados, se ha realizado (capítulo 3) empleando una colec-

ción de 76 técnicas de regresión, implementadas en su mayoría en R, con 2 técnicas en Matlab,

una en Python y otra en C++, y pertenecientes a las siguientes 20 familias (para cada familia

se indican sus regresores):

1. Regresión lineal: incluye los regresores linear model (lm) y robust linear model (rlm).

2. Generalized linear models (GLM): incluye el modelo clásico (glm), penalized GLM

(penalized), elastic-net regularized GLM (glmnet) y GLM with stepwise feature selec-

tion using Akaike Information Criterion (glmStepAIC).

3. Least squares: incluye non-negative least squares (nnls) y radial basis function kernel

regularized least squares regression (krlsRadial).
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4. Partial least squares (PLS): incluye sparse partial least squares (spls); PLS usando el

método SIMPLS (simpls); PLS usando el algoritmo kernel (kernelpls); ensemble de

regresores base del tipo spls (enpls.fs) y partial least squares GLM (plsRglm).

5. Regresión mediante least absolute shrinkage and selection operator (lasso) y relaxed

lasso (relaxo).

6. Regresión ridge, usando el algoritmo LARS-EN (ridge), regresión spike and slab (spi-

keslab) y ridge regression with forward, backward and sparse input selection (foba).

7. Redes neuronales: perceptrón multicapa con weight decay usando una o varias capas

ocultas (mlpWeightDecay y mlpWeightDecayML respectivamente); ensemble de per-

ceptrones multicapa con diferentes inicializaciones (avNNet); redes de base radial (rbf);

generalized regression neural network (grnn); extreme learning machine (elm) y elm

con núcleo gausiano (elm-kernel); perceptrón multicapa con PCA (pcaNNet); super-

vised bi-direccional Kohonen network (bdk).

8. Redes neuronales convolucionales (deep learning), usando la implementación en Python

proporcionada por la librería Keras (dlkeras) y la versión en R proporcionada por el pa-

quete deepnet (dnn).

9. Máquinas de vectores de soporte: support vector regression con núcleo gausiano en

C++ usando LibSVM (svr) y en R usando el paquete kernlab (svmRadial); y relevance

vector machine con núcleo gausiano (rvmRadial).

10. Árboles de regresión: recursive partitioning (rpart), simple interpretable tree-based

ensemble with sparse results for high-dimensional regression (nodeHarvest); model tree

(M5); conditional inference tree (ctree2); partitioning using deletion, sustitution and

addition (partDSA); y model tree with evolutionary algorithms (evtree).

11. Bagging ensembles variando el regresor base: conditional inference regression trees

(bag); multi-variate adaptive regression splines (bagEarth) y árboles CART (treebag).

12. Boosting ensembles y gradient boosted machines: incluye boosting con regresores base

del tipo GLM (randomGLM); gradient boosted machine con regresores base lineales

(BstLm), splines interpolantes (bstSm), árboles de decisión (bstTree), GLM (glmboost)

y conditional inference regression trees (blackboost); generalized boosting regression
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model (gbm); y extreme gradient boosting con regresores lineales (xgbLinear) y árboles

de regresión (xgbTree).

13. Random forests: incluye el modelo original (rf); random forest con selección de car-

acterísticas (Boruta); regularized random forest (RRF); random forest de conditional

inference trees (cforest); quantile regression forest (qrf); y extremely randomized re-

gression trees (extraTrees).

14. Modelos basados en prototipos: regresión de k vecinos más cercanos (kknn) y modelo

M5 basado en reglas con correcciones basadas en vecinos más cercanos (cubist).

15. Regresión bayesiana: GLM bayesiano (bayesglm); Bayesian regularized neural net-

work (brnn); y Bayesian additive regression tree (bartMachine).

16. Principal component Analysis (PCA): regresión mediante componentes principales (pcr);

regresión mediante componentes independientes (icr); y PCA supervisado (superpc).

17. Generalized additive models (gam) y boosted generalized additive model (gamboost).

18. Procesos gausianos: con núcleos lineal (gaussprLinear), gausiano (gaussprRadial) y

polinómico (gaussprPoly).

19. Regresión cuantil: regresión cuantil con penalización lasso (rqlasso); non-convex pe-

nalized quantile regression (rqnc); y quantile regression neural network (qrnn).

20. Otros métodos: least angle regression (lars); multi-variate adaptive regression splines

(earth); projection pursuit regression (ppr); y substractive clustering and and fuzzy C-

means rules (sbc).

Esta colección de regresores ha sido evaluada inicialmente sobre una colección de 66

problemas de regresión seleccionados del UCI machine learning repository. El número de

entradas y de patrones de estos problemas varían en los rangos 7-439 y 60-2000 respectiva-

mente. En los problemas con más de 2000 patrones sólo se consideran los 2000 primeros

patrones, en un intento de evitar conjuntos de datos grandes, dada la extrema lentitud de mu-

chos regresores. Por otra parte, todas las entradas constantes o colineales han sido suprimidas

para evitar los errores de ejecución experimentados por algunos regresores en tales casos. La

ejecución de todos los regresores sobre todos los conjuntos de datos representa un total de

5016 experimentos. De ellos, tan sólo 46 generaron errores debido a un consumo excesivo
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de memoria RAM (más de 128 GB) o de tiempo (más de 150 horas, correspondientes a 6.25

días), lo cual representa un 0.92% del total de experimentos. Las medidas de calidad em-

pleadas son el error cuadrático medio (root mean squared error, denotado como RMSE) y

el coeficiente de correlación de Pearson, que ofrece una medida absoluta de la calidad en la

predicción y, al encontrarse en el mismo rango (-1,+1) para todos los problemas, admite el

promediado sobre los mismos, lo cual no ocurre con el RMSE.

Los mejores resultados son obtenidos por la red neuronal extreme learning machine con

núcleo gausiano (elm-kernel), que en el 86.4% de los problemas considerados supera el 90%

de la correlación máxima obtenida por algún regresor de la colección. Un tipo de random for-

est, llamado extremely randomized regression trees (extraTrees), y support vector regression

(svr) superan dicho 90% en el 84.8% de los problemas, mientras regularized random forest

(RRF) se sitúa en el 81.8%. La mejor correlación promedio sobre todos los conjuntos de datos

es relativamente baja (0.79), lo cual denota la complejidad de los datos a predecir, ya que se

considera que una predicción aceptable requiere una correlación superior a 0.9. Sin embargo,

en 40 de 66 problemas (que representa el 60.6% de los problemas considerados) la mejor

correlación obtenida por algún regresor supera 0.9, y sólo en 17 problemas (que representa el

25.7% del total) la correlación es inferior a 0.7, lo cual significa que para una buena parte de

los problemas algún regresor obtuvo buenos resultados.

Desde el punto de vista de las familias de regresores, las 10 primeras posiciones cor-

responden a redes neuronales, SVM, modelos basados en prototipos (cuyo regresor cubist,

basado en reglas del tipo M5 con correcciones basadas en vecinos más cercanos, figura en

la 3a posición), random forests, ensembles del tipo boosting y generalized linear regression,

cuyo regresor penalized figura en la posición 9 y es el que obtiene la mejor correlación en más

problemas (16), seguido por SVM (en 11 ocasiones), extraTrees (9 veces), cubist (6 veces),

avNNet (5 veces) y quantile regression forest (4 veces). Otras familias de regresores cuyo

mejor regresor figura entre las posiciones 10 y 20 son los ensembles de tipo bagging (posi-

ción 12), modelos bayesianos (posición 13), árboles de regresión (15), deep learning (18),

procesos gausianos (19) y least squares (20). Los regresores pertenecientes a las restantes

familias alcanzan posiciones posteriores a 20.

En cuanto a los tiempos de ejecución, los experimentos revelan que las técnicas más rá-

pidas ofrecen poca precisión, ya que ningún regresor está simultáneamente en las primeras

posiciones de los rankings de Friedman de correlaciones y de tiempos. No obstante, algunas

de las técnicas más precisas son relativamente rápidas, a pesar de no figurar entre las más
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rápidas de la colección. Es el caso de extraTrees, cubist, random forest y generalized boosted

regression model (gbm), situadas en las 10 primeras posiciones en el ranking de correlación y

en posiciones medias del ranking de tiempos (25, 48, 51 y 37 respectivamente).

Esta colección de regresores se ha empleado para predecir los valores numéricos de los

parámetros del suelo descritos anteriormente. En este caso, al tratarse de métodos de re-

gresión, se han suprimido el cultivo recomendado y tipo de suelo, ya que al poseer salidas

discretas son intrínsecamente problemas de clasificación. Sin embargo, entre los problemas

de regresión se han incluido los índices locales de fertilidad para K2O y Zn, que no se consid-

eraron en el capítulo 2 porque los datos disponibles sólo pertenecen a uno de los niveles de

cuantificación (clases) definidos por el gobierno de la India. La metodología experimental y

medidas de calidad son las mismas que en el capítulo 3.

A diferencia de los experimentos con los datos de la UCI, en los datos de suelo el regresor

extraTrees, que ya obtenía buenos resultados de correlación y velocidad, alcanza los mejores

resultados en 7 de 10 problemas, y en los restantes funciona casi tan bien como el mejor re-

gresor, superando el 90% de la correlación máxima. De hecho, el ranking de Friedman de

los regresores sobre todos los problemas sitúa a extraTrees en primera posición con un valor

de 2.3, lo cual significa que en promedio este regresor figura entre las posiciones 2 y 3 de la

colección de 76 regresores. Sin embargo, en términos absolutos la mejor correlación prome-

dio sobre todos los problemas, obtenida por extraTrees, es relativamente reducida (0.68), lo

cual refleja la complejidad del problema de predicción abordado. Los 5 mejores regresores

en términos de correlación pertenecen a la familia random forest: extraTrees, regularized ran-

dom forest, random forest, quantile regression forest y Boruta. La svr y dos regresores de la

familia gradient boosted machines, generalized boosted regression model (gbm) y gradient

boosting with regression trees (bstTree) ocupan las siguientes posiciones. Los resultados son

peores para elm-kernel, que se sitúa en las posiciones 10 y 14 en términos de RMSE y cor-

relación respectivamente, aunque su correlación media (0.62) no es muy inferior a la obtenida

por extraTrees. Considerando conjuntamente la correlación y la velocidad de los regresores,

extraTrees proporciona el mejor compromiso entre ambos factores, ya que alcanza el mínimo

ranking de Friedman de correlaciones, y el segundo menor ranking de Friedman de tiempos

entre los 20 regresores más precisos.

En un análisis individualizado para cada uno de los 10 problemas de regresión, se aprecia

una cierta correspondencia con los resultados de las técnicas de clasificación (capítulo 2). En

la clasificación de índices locales de fertilidad de OC y Fe, donde los mejores κ alcanzan
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90.65% y 69.35% respectivamente, las mejores correlaciones obtenidas en la regresión son

superiores a 0.8. También en el índice local de Zn la correlación supera 0.8, pero este índice

no se considera en la clasificación, por pertenecer todos los patrones disponibles a la misma

clase. En los índices de fertilidad de P2O5 y Mn, y en el pH, donde κ alcanza 85.54%, 64.8%

y 47.32% respectivamente, las correlaciones son intermedias (0.776, 0.758 y 0.694 respecti-

vamente). El índice local de K2O también es intermedio (0.631), pero este índice tampoco se

considera en la clasificación, por la misma razón que el índice de Zn. Y, finalmente, para los

nutrientes N2O, P2O5 y K2O, donde en la clasificación κ alcanza valores de 33.6%, 35.08% y

31.85% respectivamente, en la regresión se alcanzan las correlaciones más bajas (0.519, 0.487

y 0.517, respectivamente). Estos resultados confirman la dificultad de los problemas analiza-

dos, ya que las mejores correlaciones no alcanzan 0.9, y con los tres nutrientes N2O, P2O5 y

K2O no superan 0.6. Se puede decir que la predicción es aceptable sólo en los índices locales

de fertilidad de OC, Fe y Zn, donde la correlación supera 0.8. En el resto de los problemas, la

incertidumbre en la predicción es más elevada. Sin embargo, si no resulta imprescindible una

aproximación precisa de los parámetros del suelo, las técnicas empleadas proporcionan una

predicción aproximada para los valores numéricos mediante técnicas de regresión, y para los

valores cuantificados mediante técnicas de clasificación.
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CHAPTER 1

INTRODUCTION

India is second largest country in the farm production and seventh largest in agricultural ex-

port [30]. Agriculture is the pillar of the Indian economy, offering 47% employment of total

population in 2013-14 and having significant contribution in global food basket. India is the

fastest growing exporter of agricultural products over a decade to more than 100 countries,

mainly in the Middle East, Southeast Asia, countries of the South Asian Association for Re-

gional Cooperation (SAARC), the European Union and the United States [128]. According

to data of year 2011, India devotes 60.5% of its land1 to agriculture, distributed among arable

land (52.8%), land for permanent crops (4.2%) and pastures (3.5%). Share of agriculture and

related activities was 11.3% of the Gross State Domestic product (GSDP) in 2013-14. The

11th five-year economic plan acknowledges the need of proper soil management in agricul-

ture. Excessive and miscalculated use of fertilizer focused on increase production has led to

soil degradation, and today nearly 66.67% of India’s agricultural land can be categorized as

either degraded or sick [89]. In India, each state and union territory is responsible for the

set-up of the soil testing facilities and maintaining the state soil database. Some states, for

e.g. Gujarat initiated the “Soil Health Cards Programme” in 2006 to recommend fertilizers,

crop rotations and to record the data on a national network which can be used to survey dif-

ferent soil types2. The farmers are assisted by several non-governmental organization and

community groups, who are responsible for soil sample testing [89]. In year 2013-14, the

cultivation areas of major crops were 15 and 57 millions of hector in Kharif and Rabi seasons,

respectively [24]. However, agriculture in India is conditioned by the poor fertility of the soil,

1https://www.cia.gov/library/publications/the-world-factbook/geos/in.html
2http://indiagovernance.gov.in/news.php?id=204
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which depends on the levels of its nutrients. The physical, chemical and biological properties

of the soil are useful to evaluate its fertility, to design a cultivation plan and to predict the

crop productivity. The information technologies, and specifically Machine Learning (ML),

offer new possibilities in the field of agriculture and may help in data evaluation for decision

making. Maharashtra ranks second largest state in terms of population and geographical area

in India and it is located at 15o 38” to 22o 01” North and 72o 39” to 80o 44” East where, total

64.14% of the people are employed in agriculture and allied activities. Agricultural calendar

of Maharashtra is governed by monsoon, being the 60% of the farming rain-fed. This state is

divided in 9 agro climatic zones, composed by 39% of shallow soils and 42.4% of degraded

land. Maharashtra has 5 main regions; Vidarbha, Konkan, Marathwada, Paschim Maharash-

tra, and North Maharashtra, although only the three latter will be considered in the current

study. Marathwada, is one of the most prominent agricultural regions in India, located at 19o

52’ 59.88” North and 75o 19’ 59.88” East.

Figure 1.1: Geographical representation of 6 regions of Maharashtra (India). Marathwada, Paschim Maharashtra
and North Maharashtra are study areas, highlighted by red borders.

The soil of Marathwada is made of basalt rock with scarlet, blackish and yellowish colors

and semi-dry plateau, good in iron level, moisture retentive, and poor in nitrogen as well as

organic matter, including variable climatic condition. However, temperature is mostly humid

throughout the year, maximum and minimum temperature oscillates from 27◦C to 40◦C and

14◦C to 27◦C. The classification of soil according to its physical and chemical properties is
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useful to maintain and enhance its productivity, to avoid soil degradation problems and to

overcome environmental damage. The major challenge is to increase crop yield for solving

global food security problem. However, soil quality and crop yield are negatively affected

by changing trends of temperature and rainfall, insufficient water and light, agriculture prac-

tices and absence of nutrients. It is important to develop an effective nutrient management by

means of an adequate soil analysis and a proper application of fertilizers. Hence the relevance

of a research effort to classify soil parameters such as the fertility indices for several nutrients:

organic carbon (OC), phosphorus pentoxide (P2O5), manganese (Mn) and iron (Fe), among

others; soil pH, soil type, preferred crop and levels of nutrients as the nitrous oxide (N2O),

phosphorus pentoxide (P2O5) and potassium oxide (K2O), which are relevant for fertilizer rec-

ommendation. The interest of predicting the levels of these magnitudes with ML techniques

is to avoid the need to chemically measure these magnitudes, thus reducing the cost of the

analysis and saving time of specialized technicians. The current study tries to enhance the

accuracy of soil problem interpretation for Indian agriculture, although similar studies would

benefit other nations around the globe.

1.1 Soil fertility index

In India, land-man ratio is quickly decreasing, so there is a need increase agricultural pro-

duction without harm to environment and sustainability. The per capita land in India has

decreased from 0.48 to 0.41 ha./person since year 1951 to year 2001, and the prediction is

to decrease even more, until 0.10 ha/person by the year 2025. Besides, urbanization and in-

dustrialization led to destruction of forest, and to a reduction in the cultivation land and in

its quality. As a result, agricultural production is being affected unfavorably. This situation

appeals for planning of soil fertility by supplying essential nutrients to the crop in sufficient

amount and at right time for its best growth. Therefore, fertilizers are a great significance

input for targeting high crop production. Moreover, imbalances in soil quality leads to crop

health and lower/higher crop yield [87]. The Indian soil has generally low or medium levels

of soil nutrients and organic matters. Consequently, an efficient soil nutrient management is a

major concern for maintaining soil fertility and it mainly depends on optimum fertilizer rates

as per nutrient demand of crop. The crop needs optimum quantity of various nutrients for its

vegetative growth and ultimate yielding. Declining status of soil fertility and mismanagement

of soil nutrients may be factors for food crises for the world’s population [44]. Generally,
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Indian soil fertility data are summarized for block and district level. These data are useful for

decision making of application of suitable amount fertilizers, policy of fertilizer distribution

and consumption in the view of changes in fertility levels. One of the objectives of the work

developed in the current PhD. Thesis is to predict village-wise soil fertility indices, which can

be used in preparing a village-wise soil fertility index map. This map would allow to compare

levels of soil fertility among villages, and to make fertilizer recommendations.

1.2 Fertilizer nutrients

Maharashtra is one of the major fertilizer-consuming states in India with annually around

1.8 to 2.0 million tonnes in terms of N2O, P2O5 and K2O soil nutrients3. Distorted levels

of these nutrients might increase fertilizer demand and this can adversely affect soil fertility.

The usage of these fertilizers in Maharashtra has rapidly increased from 56.85, 29.74, 16.14
4 to 65.93, 32.13, 17.64 5 (kg/ha) since 2012-13 to 2013-14. The soil N is crucial nutrient

fertilizer for food production moreover, responsible parameters for it’s availability in soil

are its type, texture, soil pH, climate, etc. Generally, soils contain 0.02 to 0.44 % total N

however, climate of study area is tropical so that soils are poor in OC, and consequently

low in N. The phosphorus (P) plays a key role in substances are used as building blocks

for genes and chromosomes, in plant root growth and biochemical processes that involve

energy transfer. Generally, the P content in agricultural crop ranges from 0.1 to 0.5%. The

status of P in Indian soils range between 134.6 to 310.4 kg/ha. There is significant relation

between OC and P due to creation of sustainable soil environment with soil organic matter

[121]. However, deficiency of P leads to: breakdown of plant cell membranes, which reduces

energy transfer; lowering of root ratio; poor seed/fruit setting; decreased disease resistance,

and reduced tillering in cereals.

1.3 Soil reaction

The soil reaction is another name for the pH which measures the acidity or alkalinity in the

soil. The soil pH influences the solubility of nutrients, affecting the activity of microorgan-

isms responsible for breaking down organic matter and most chemical transformations in the

3http://www.moef.nic.in/soer/state/SoE%20report%20of%20Maharashtra.pdf
4http://fert.nic.in/sites/default/files/Indian%20Fertilizer%20SCENARIO-2014.pdf
5http://fert.nic.in/sites/default/files/Indian%20Fertilizer%20SCENARIO-2014_0.pdf
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soil, affects how plants grow, and modifies the availability of several plant nutrients. The pH

change over time is influenced by factors including chemical composition of the soil, weather-

ing and current agricultural practices, and it also fluctuates through the year. When soil acidity

changes, the solubility of metal ions also changes, and the plant growth is really affected by

the varying concentration of these metals in solution rather than by the acidity itself. The

desirable pH range for optimum plant growth varies among crops. While some crops grow

best between 6.0 and 7.0, others grow well under slightly acidic conditions. Soil properties

that influence the need for and response to lime vary by region. Soils become acidic when

basic elements such as calcium, magnesium, sodium and potassium held by soil colloids are

replaced by hydrogen ions. Soils formed under conditions of high annual rainfall are more

acidic than soils formed under more arid conditions. In India, most Southeastern soils are

inherently more acidic than soils of the Midwest and far West. Soils formed under low rain-

fall conditions tend to be basic with soil pH readings around 7.0. Intensive farming over a

number of years with nitrogen (N) fertilizers or manures can result in soil acidification. In

the wheat-growing regions of Kansas and Oklahoma (USA), for example, which have soil pH

of 5.0 and below, aluminum toxicity in wheat and good response to liming have been docu-

mented in recent years. A knowledge of the soil and the crop is important in managing soil

pH for the best crop performance. The pH levels generally find in soil are listed in the figure

2.1 of the subsection 2.3. Significance of soil pH classification is to increase the soil quality

and crop production.

1.4 Cropping cycle

In Maharashtra, uncertain climatic situations, namely rainfall, affects on agricultural produc-

tivity that tends to certain type of farming only. This state is highly dependent on monsoon

cycle for large crop yields. The major crop produced by Maharashtra is cotton and soy-

beans. Moreover, farmers generally use a single cropping due to drought conditions, climate

change, soil fertility status and unawareness about soil nutrient status. However, crop rotation

is an effective technique to control of weeds, pests, diseases, and more economical utilization

of soil fertility. An accurate crop classification allows to predict the optimal crop based on

available soil nutrients, whereas significance of optimal cropping system is to avoid environ-

mental damage, consequently it improves soil quality, reduces the build-up of pests, spreads
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the workload on family labour, mitigates the risk of weather changes, becomes less reliant on

agricultural chemicals, and increases the net profit [104].

1.5 Soil texture

The soil can be classified in a set of classes accordingly to its behavior, potential uses and

productivity. The early system of soil classification was quite simple and practical; for in-

stance: economic classification is the grouping of soils based on their productivity; physical

classification is based on soil texture (loamy, sandy, and clayey soils). The chemical classifi-

cation categorizes the soil in acidic, alkaline, calcareous, gypsiferrous soils, etc. Geological

classification is based on the nature of underlying parent rock or material e.g basalt, lime

stone, sandstone, etc. Physiofraphic classification is based on the characteristics of landscape

e.g levee, basin terrace, mountain, vally, upland and lowland soil, etc. since these system

were based on a single character, their utility was limited. Hence, the requirement of more

comprehensive system was felt. In the current study, classification of soil type is based on soil

physical and chemical properties to understand relationship among several soil parameters.

Specifically, we classify the soil type according to its texture as light and medium soil, as we

will describe in subsection 2.13.

1.6 Related work

Several studies [83] have applied ML techniques to solve soil problems in agriculture, namely

to predict soil fertility, defined as the soil ability to supply the required nutrient levels and wa-

ter for high quality crop yield. The soil fertility was predicted using artificial neural networks

(ANNs) with Levenberg-Marquadt based back-propagation [119], and also using partial least

squares regression [88] using as input data the soil bulk density, electrical conductivity (EC),

available water capacity, soil OC, pewamo silty clay loam, glynwood silt loam, kibbie fine

sandy loam, crosby silt loam and crosby celina silt loams soil.

The crop yield has been predicted using the BeeHive and improved k-means clustering

techniques [86]. The One-R rule classifier, the J48 decision tree, K-nearest neighbors (KNN)

and A priori classifiers have been used to predict wheat yield [114] using as inputs phenotypic

plant traits (thousand grain weight, plant height, peduncle length, harvest index, spikelets

number, grain number, grain weight and spike fertility). The wheat yield has also been quan-

tified [94] as low, medium and high with supervised Kohonen and counter-propagation neural
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networks, and with XY-fusion models using multi-layer soil data: pH, moisture content, total

nitrogen, total carbon, magnesium, calcium, cation exchange capacity, available phosphorus

and satellite imagery crop growth characteristics. Decisions about insecticide application (ei-

ther spray or non-spray) for leafroller pest monitoring on kiwifruit are recommended [50]

using decision tree (DT), naive Bayes classifier, random forest (RF), adaboost, support vec-

tor machine (SVM) and logistic regression (LR). The generalized regression neural network

(GRNN) was used to forecast plant diseases [19] for leaf wetness prediction. The results

of GRNN and multiple linear regression were compared based on their prediction accuracy

and computation time. The RF provides the best accuracy for mapping the soil class spa-

tial distribution in three semi-arid study areas with different sets of environmental covariates

[10], compared to clustering algorithms, discriminant analysis, multinomial logistic regres-

sion (MLR), ANN, DT and SVM. The soil has also been classified in 11 orders and 18 great

groups from satellite images at 100 m. spatial resolution, using classification and regres-

sion trees (CART), bagging with CART base classifiers, RF, KNN, nearest shrunken centroid,

ANN, MLR, logistic model trees and SVM [49].

The RF outperformed several regression models, in terms of RMSE, for prediction of

N2O emission on the basis of local information [97]. Further studies [98] presented statistical

random-effects model for predicting N2O emissions which response to applied nitrogen fertil-

izer. The data set contains 985 patterns from 203 publications and every publication accounted

number of N2O emission calibrations for various N fertilizer treatments. The prediction error

reduced when the study used location-specific N2O emission instead of average predictions.

The work [108] discussed the state-of-art ensemble techniques such as conventional, decom-

position, negative correlation learning, multi-objective optimization, fuzzy, multiple kernel

and deep learning based ensemble methods.

1.7 Outline of the work

Our work deals with several problems analysed in some of the previous papers, such as clas-

sification of soil type (although with a different set of classes) and fertility indices (which in

our study are specific for OC, P2O5, Fe and Mn). However, there are some differences with

previous studies. In the first place, our work analyses more soil problems than the previous

works, including the prediction of ten soil parameters: village-wise fertility indices of OC,

P2O5, Mn and Fe; soil nutrients N2O, P2O5 and K2O, which allows to develop a fertilizer
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recommendation; soil pH and type; and suitable crop. Classification of these soil parameters

allows to save time of specialized technicians developing expensive chemical analysis. We

also evaluate the validity of the ML methods trained with data from one region of India to

model data from other regions. On the other hand, the available data for the current study do

not allow to predict crop yield, insecticide application nor plant diseases, as in the paper [50].

Our data are exclusively chemical measurements (see sections 2.1-2.3), excluding data such

as satellite images and phenotypic plant traits, as opposed to some other previous research

works. Finally, we use a wider and more diverse collection of ML techniques than previous

papers, both for classification, selected due to its good performance in the experimental com-

parison [28], and for regression, trying a large collection of regressors in the current study.

The work has been developed in three stages:

1. Classification for soil data. The numeric values (e.g. pH, OC fertility, etc.) are

quantified in several levels (e.g. low, medium, high), defined by the Indian Government,

and classification methods are used to predict that level (see chapter 2) for the ten soil

problems listed above. Since initially our experience with regression techniques was

not very wide, we applied first classification methods, where our experience was higher,

and evaluated the performance in order to assess the real utility of using ML techniques

to predict the (quantified) soil parameters.

2. Regression for generic data. Previously to apply regression techniques to soil data,

we developed an experimental comparison of many regressors to a large collection of

generic datasets selected from the University of California at Irving (UCI) machine

learning repository (see chapter 3). This work provided us the knowledge of new re-

gression methods and the experience to apply them, as well as an idea of the most

competitive techniques.

3. Regression for soil data. We applied the regressors used in stage 2 to the soil datasets,

developing a direct prediction of their numeric values (see chapter 4). The accuracy of

the prediction was evaluated for the ten soil problems listed above, as an alternative to

the prediction of the quantified values (classification) developed in stage 1.

Finally, the chapter 5 compiles the conclusions of the current PhD. Thesis and the future

work.



CHAPTER 2

APPLICATION OF CLASSIFICATION

METHODS TO AGRICULTURAL SOIL DATA

In the current research we use data collected from the region of Marathwada by the State

Government of Maharashtra (India) during year 2011 to 2015. Details about calibration of

each input magnitude are publicly available (in Marathi language). The inputs that we use

are the following soil parameters: N2O, measured by the soil testing laboratories using alka-

line permanganate [60, 125]; OC, using carbon spectrophotometric [6]; pH, using pH meter

method [109]; EC, using EC meter method [109]; K2O, using flame photometric [29, 57];

and P2O5, using the Olsen’s method [90]. Micro nutrients as Fe, copper (Cu), zinc (Zn), Mn

and boron (B), which are useful to evaluate imbalances in soil nutrients, are measured using

atomic absorption spectroscopy [68]. The pH is expressed as the decimal logarithm of the

Hydrogen concentration. The values of N2O, K2O and P2O5 are expressed in kilograms per

hector (kg/ha), while Fe, Cu, Zn, Mn, B and SO4 are expressed as parts per million (PPM).

The EC is expressed in milli-siemens per centimeter (mS/cm), while OC and CaCO3 are ex-

pressed as mass percentages (denoted as %). The following sections describe the ten soil

parameters which we want to predict, in this first approach using a classification scheme.

2.1 Village-wise OC, P2O5, Mn and Fe fertility indices

There are proofs of the interconnection among organic matter, ecosystem sustainability and

soil fertility [27], which is important for crop yield. This fertility mainly depends on OC,
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Major nutrients Micro nutrients
OC (%) P2O5 (kg/ha) Mn (PPM) Fe (PPM) Index

Low < 0.5 10 1 2.5 1.67
Medium 0.5-0.75 10-24.6 1-2 2.5-4.5 1.67-2.33
High > 0.75 24.6 2 4.5 2.33

Table 2.1: Intervals defined by the Indian Government [23] for the major and micro nutrients respectively [84, 63],
and rate of nutrient index [105].

N2O, P2O5 and K2O, considered soil major nutrients because they appear in large quantities,

and also on micro nutrients Fe, Mn, Zn and Cu, which appear in smaller quantities. However,

our work is restricted to fertility levels of OC, P2O5, Fe and Mn, due to data availability. The

OC is very important for the soil health, biological activity and crop productivity [107], and

adequate fertilizers help to keep its level [130]. The P2O5 is used by plants for cell signaling,

phosphorylation and bioenergetics, while Fe and Mn help chlorophyll to absorb light energy

for photosynthesis. The agriculture planning of the Indian Government requires to determine

the village-wise fertility indices NI for the previous nutrients, using the thresholds listed in

Table 2.1 to quantify their levels as low, medium and high. For each village and nutrient,

Nl , Nm and Nh are the number of patterns (i.e., cultivation lands) with low, medium and high

levels, respectively. The village-wise fertility index NI for a nutrient is calculated as NI =

(Nl + 2Nm + 3Nh)/Nt , being Nt is the total number of patterns analysed for a village. The

value of NI (which is the same for all the patterns in the village) is then quantified into low,

medium and high levels, according to the threshold values listed in the rightmost column of

Table 2.1. The classification of the village-wise fertility index uses the inputs listed in the first

four lines of Table 2.2. The labels OC-F, P2O5-F, Mn-F and Fe-F mean village-wise fertility

index of OC, P2O5, Mn and Fe, respectively, whose values are completely different to the

inputs OC, P2O5, Mn and Fe. Our data (see Table 2.2) only include patterns with OC-F and

Fe-F (resp. Mn-F) in levels low and medium (resp. medium and high). We could not develop

classification of K2O nor Zn village-wise fertility indices because the available patterns for

each problem only belong to one class.

2.2 Soil nutrients N2O, P2O5 and K2O

The direct measurement of soil N2O is difficult, but it is largely present in the OC form (97-

99%), so that it can be determined indirectly from the OC, e.g. using linear regression [106].
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Classes and #patterns per class
Problem Inputs #Patterns Low Medium High

OC-F EC, OC, N2O, 372 203 169 —
P2O5-F P2O5, K2O,SO4, 372 104 240 28
Mn-F Cu,Fe, Mn, 367 — 183 184
Fe-F Zn, B 372 276 96 —
N2O EC, OC, P2O5, 372 124 124 124

K2O, SO4, Cu,
Fe, Mn, Zn, B

P2O5 EC, OC, N2O, 372 124 124 124
K2O, SO4, Cu,
Fe, Mn, Zn, B

K2O EC, OC, N2O, 372 124 124 124
P2O5, SO4,Cu,
Fe, Mn, Zn, B

pH P2O5, K2O, EC, SA N SAL MAL
OC, CaCO3, Cu, 1137 22 432 544 139

Mn, Zn, Fe
Crop P2O5, K2O, Bajra(R) Cotton(I) Cotton(R) Soybean(R)

pH, EC, OC 2878 185 324 712 1657
Soil P2O5, K2O, Light Medium Heavy

pH, EC, OC 1692 482 1210 —

Table 2.2: Inputs, number of total patterns (#Patterns) and patterns per class for each classification problem. The
labels SA, N, SAL and MAL mean slightly acid, neutral, slightly alkaline and moderately alkaline,
respectively. The compounds SO4 and CaCO3 are sulfate and calcium carbonate respectively. The
symbol — means that patterns of that class are not available.

High N2O levels, as in tropical agro-ecosystems, have negative effects on water, air, ecosys-

tem and human health, limiting the crop growth [42] and ecosystem productivity, which also

depends on temperature, precipitations and atmospheric CO2. The deficiencies of the Indian

soils with respect to N2O lead to a strong application of suitable fertilizers. The P2O5 is also

very important for the soil fertility, as we explained in the previous subsection. The K2O is

involved in crop physiological functions, being strongly deficient in the Indian soils [85], and

the corresponding fertilizer (muriate of potash) is a non-renewable resource which can not be

synthesized from other chemicals, so it can not be managed in large amounts. The classifi-

cation of N2O, P2O5 and K2O is very useful because N, P and K are the most responsible

nutrients for fertilizer recommendation. However, as we mentioned in the previous subsec-

tion, using the national limits defined by the Indian Government (Table 2.1) the available

data for N2O and K2O only include patterns of one class. Therefore, we defined the limits

in order to have equally populated low, medium and high classes. These classifications use

the 10 inputs listed in the lines labeled N2O, P2O5 and K2O of Table 2.2, and their results
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are used to recommend the suitable amounts of fertilizers in the following way. Let C(X)

be the predicted class for nutrient X , defined as C(X)= 1, 2 or 3 for classes low, medium

and high, respectively, being the nutrient X=N2O, X=P2O5 or X=K2O. Let also R(Y ) be the

amount, in kg/ha, of fertilizer Y , being Y =uria, Y =super phosphate or Y =muriate of potash

the recommended fertilizers to correct the level of nutrients N2O, P2O5 or K2O, respectively.

The Mahatma-Phule Agricultural University [71] recommends an amount R(X ,Y ) of fertil-

izer Y to correct the level of nutrient X calculated using C(X) and a pre-defined reference

amount F(Y ) of fertilizer Y , according to an expression proposed by the technicians of the

State Government of Maharashtra (see footnote 1):

R(X ,Y ) =
6−C(X)

4
F(Y ) (2.1)

Therefore, R(1,Y ) = 5F(Y )/4, R(2,Y ) = F(Y ) and R(3,Y ) = 3F(Y )/4 for C(X)=1, 2 and

3, respectively, so the recommended amount is 125%, 100% or 75% of F(Y ) when the level

of nutrient X is low, medium and high, respectively. This expression allows to calculate the

recommended amount of fertilizer Y using the predicted class C(X) for nutrient X , given the

reference amount F(Y ).

2.3 Soil pH

The pH is the scale of soil acidity or alkalinity, which affects the crop yield and all the soil

parameters, because soil acidity is one of its major degradation problems. Specifically, the

region of Marathwada has slightly alkaline soil (high pH), which leads to nutrient deficiency,

low OC and high CaCO3 levels, limits the crop growth and reduces the crop yield. The pH

classification uses the inputs listed in the line labeled “pH” of Table 2.2. Although usually

nine pH levels are considered (Figure 2.1), but for our purposes it is enough to discriminate

between the four middle classes: slightly acidic (labeled SA), neutral (N), slightly alkaline

(SAL) and moderately alkaline (MAL). The classification of pH into levels is useful to de-

cide suitable crops and pesticides, and to evaluate microbial activity, nutrient levels and soil

corrosion.

2.4 Crop selection

The growth of a given crop needs a balanced supply of important nutrients, whose levels de-

fine the best crop for a given soil. The cropping cycle determines the way in which the soil
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Figure 2.1: Degree of acidity and alkalinity of soil [16], with nine classes (up) and with the four classes considered
in this paper (down).

parameters are enhanced: a good cycle is important for optimum yield and improvement of

soil quality, erosion and moisture, organic matter and carbon storage [59]. There are several

studies about crop classification [127], crop yield forecasting [81], mapping for crop rotation

[93] and land cover classification on remotely sensed data using time-series analysis tech-

niques [113]. The RF, linear discriminant analysis (LDA) and SVM were used to classify

crops (walnut, table grape, almond and European plum) on four feature sets [96]. The SVM

was also used for plant discrimination using satellite land images [45]. Our data includes four

crops, which require neutral pH (in the range 6.5-7.5): bajra(R), cotton(I), cotton(R) and soy-

bean(R), where R and I mean rainfed and irrigated, respectively. The Figure 2.3 (left panel)

shows a geographical plot of the crop data, which are distributed across a wide area including

the Aurangabad, Jalna, Bid, Osmanabad and Latur districts of the Marathwada region, inside

of the state of Maharashtra. In the current paper, crop classification predicts which crop is

suitable for the next stage of the cropping cycle using the inputs listed in the line labeled

“Crop” of Table 2.2.

2.5 Soil type

The soil classification according to its type allows to select the best soil for a particular crop.

Soil has been classified [126] using LR, ANN, SVM, KNN, RF and DT in 5 types: 1) coarse

loamy, mixed, mesic, lithic xerorthents; 2) fine, mixed, mesic, typic talcixerepts; 3) fine loamy,

carbonatic, mesic, typic calcixerepts; 4) fine loamy, mixed, mesic, typic haploxerepts; and 5)
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Figure 2.2: Soil map of Maharashtra [118]. The geographical study areas are highlighted with outlines: red
(Marathwada), blue (North Maharashtra) and pink (Paschim Maharashtra).

fine, mixed, mesic, typic haploxerepts. The study used 217 patterns collected from Kurdis-

tan Province, North-West Iran, achieving accuracy and Cohen kappa [131] of 71% and 69%

using DT and ANN, respectively. Figure 2.2 shows1 the different types of soil in the state

of Maharashtra (label 6 locates the soil type of Marathwada). In our study, three soil classes

are considered according to its texture. Light soil has large proportion of sand, low parame-

ter levels and ability to hold water. Sandy, peaty and chalky soils are subtypes of light soil.

Medium (loam) soil contains silt, clay and humus (decayed matter) and it is suitable for sev-

eral crops, being the predominant type in Marathwada. Heavy soil contains more moisture

1http://eusoils.jrc.ec.europa.eu/esdb_archive/EuDASM/Asia/images/maps/download/ in3010_3so.jpg (visited
March, 29, 2017).
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Figure 2.3: Maps with the geographical location of crop (left panel) and soil type (right panel) data over several
districts in the Marathwada region (red outline in the map of Figure 2.2). Each point locates a different
village, from where several patterns are recorded.

and sticky lump, due to the high proportion of silt (slightly larger particles of rock) or clay

(small particles of rock). The classification of soil type uses the inputs listed in the last line of

Table 2.2, although the available data only contains patterns of classes light and medium. A

geographical plot of the soil type data is shown in the Figure 2.3 (right panel). Locations are

widely distributed among the Jalna and Bid districts of the Marathwada region.

2.6 Classification methods

In order to develop the classification for the ten problems described in the previous section,

we used 20 classifiers selected among the ones which provided the best performance in the

comprehensive comparison [28]. These classifiers are implemented in the Java programming

language using the Weka data mining software [47], in the R statistical computing language

[103], in the C++ programming language and in the Matlab platform [72]. Henceforth, the

suffix of the classifier name shows the implementation used: _w, _r, _c and _m mean Weka,

R, C++ and Matlab, respectively. The classifiers, grouped by families, are described in the fol-

lowing enumeration alongside with their tunable metaparameters (the symbol # means ‘num-

ber of’, e.g. #inputs ‘number of inputs’).
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I. Decision trees

1. j48_w is the Java implementation of the C4.5 decision tree [100] provided by the Weka

data mining software. This binary decision tree is composed of internal and leaf nodes,

where each one does a binary splitting of a given input. Each lead node gives as output a

class label. The C4.5 method selects the input with the highest normalized information

gain (also called Kullback-Leibler divergence, which is a measure of the non-symmetric

difference between two class probability distributions) to be splitted for a new node of

the tree. The method then proceeds by recurrence on the two subsets in which the node

splits the training set, and the new nodes (internal or leafs) are added as children of the

current node. When all the training patterns in the subset belong to the same class, a leaf

node (whose output is that class) is created. When no input provides information gain,

or when a training pattern of an unseen class appears, an upper level node is created for

that class. For a test pattern, the decision tree starts from the root node and travels down

the tree, according to the splittings in each nodes and the input values, until it reaches a

leaf node, giving the class associated to this node as output. The only hyperparameter

of the J48 tree is the pruning confidence threshold C with values 10, 20 and 30.

2. rt_w is the random tree provided by Weka. Each node of the tree splits ⌊log2(#inputs)+

1⌋ randomly chosen inputs at each node of the tree, without any pruning.

3. rpt_r is the recursive partitioning method [9] provided by the rpart R package. This

method creates a decision tree by binary splitting the inputs and partitioning the training

patterns in subsets in a recursive way.

4. dj48_w is the decorate ensemble of J48 tree base classifiers with high diversity [76],

provided by Weka. Decorate is an acronym for diverse ensemble creation by opposi-

tional relabeling of artificial training examples. This method iteratively generates an en-

semble by adding trained base classifiers (in our case, J48 trees). The first one is trained

on the original training set, but the following ones use a fraction of patterns which are

artificially generated. These labels are chosen to be maximally different from the actual

ensemble output, in order to increase its diversity. Any new base classifier which re-

duces the ensemble accuracy is rejected. The iterative classifier addition continues until

a specified ensemble size is reached. In our case, this size is a hyperparameter tuned

with values 10, 15 and 30.
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II. Rule-based classifiers

5. dtnb_w is the hybrid decision table-naive Bayes classifier provided by Weka [46]. A

decision table (DT) is a lookup table which associates observed frequencies of se-

lected inputs (which are expectedly highly discriminative) to class probability esti-

mates. These inputs are selected using forward search using as objective the maximiza-

tion of cross-validation performance. The DTNB uses two disjoint subsets of inputs:

one for DT and other for naive Bayes (NB). At each search iteration, DTNB decides

whether split the input in one or the other subset. The decision is oriented to maximize

the area-under-curve of DTNB in a cross-validation. Initially, all the inputs are modeled

by DT, but during search the selected inputs are modeled using NB, and the remaining

ones by DT. The output class for a test pattern is the one with the highest weighted

sum of DT and NB probabilities for that class and pattern (the last one divided by the

prior class probability). The hyperparameter is the type of cross-validation, tuned with

4 values: leave-one-out, 4-fold, 5-fold and 10-fold.

6. jrp_w: repeated incremental pruning to produce error reduction (RIPPER), provided

by Weka [21]. The RIPPER classifier starts from an empty rule set, and it iteratively:

1) creates a new rule by adding conditions to it until the rule is 100% accurate; 2)

tries all the values of the inputs and selects the condition with the highest information

gain; and 3) prunes the rule set using a specific metric. Once the rule is created, all the

training patterns covered by the rule, both positives and negatives, are discarded. These

three steps are repeated until the description length of the rule set reaches a maximum

size, until the whole training set has been discarded, or until the error rate overcomes

50%. Finally, an optimized rule set is created in the following way: for each rule, two

variants are generated: one from an empty rule using steps 1-2 above, and the other by

adding antecedents to the rule. Then, one of the three rules (the original one and the

two variants), the one with the smallest description length, is selected to be included in

the optimized rule set. Besides, rules that increase the description length of the rule set

are removed. The hyperparameters are the number of folds for reduced error pruning

(4 values from 3 to 10) and the number of optimization runs (2,3 and 4).

III. Bagging ensembles

7. bg_r is the bagging ensemble [7] of decision tree base classifiers, provided by the ipred

(bagging ensemble) and rpart (base classifiers) packages. Bagging is an acronym for
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bootstrap aggregating, a method to build an ensemble of base learners (classifiers or

regressors) based on training several base classifiers (in our case, rpart decision trees)

on different random bootstrap samples of the training set. The sampling is with re-

placement, which means that training patterns can be repeated. A new test pattern is

classified using a voting scheme over all the base classifiers. The bagging method, pro-

posed initially for decision tree classifiers, aims to reduce the variance of the ensemble

in order to avoid overfitting (i.e., a good learning of the training set which does not

mean good learning of unseen test patterns) and to improve the stability of the single

classifiers.

8. bgf_r is a bagging ensemble of flexible discriminant analysis (FDA) base classifiers

which uses the bagFDA and fda functions provided by the caret and mda packages, re-

spectively [48]. The FDA classifier is a generalization of LDA for non-linear regression

using optimal class scorings. In our case, we use the multi-variate adaptive resonance

splines (MARS), provided by the earth package, as basis functions for FDA. The hy-

perparameters are the polynomial degree (1 and 2) of the polynomial splines and the

maximum number of terms to keep in the pruned model (10 values from 2 to 11).

9. bgp_w is a bagging ensemble of pruned partial C4.5 decision trees (PART) provided

by Weka [32]. The PART trees combine C4.5 and RIPPER (see jrp_w classifier above)

trees. Both create a starting set of rules, which are refined by dropping rules (C4.5)

or adjust them (RIPPER) by dropping the tail of a rule based on empirical error on a

separate training set until a stop criterion (minimum description length heuristic) is met.

Both are two-step methods which do global optimization. On the contrary, the PART

creates a rule, removes the training patterns covered by the rule, and continues creating

new rules recursively until the whole training set is processed. A partial tree is a tree

with branches to undefined subtrees. The training process integrates the tree creation

and pruning to find a stable (which can not be simplified) subtree. Initially, a split is

selected and the training set is divided in two subsets. Both subsets are expanded, first

the one with the smallest average entropy, which probably result in a smaller subtree and

a more general rule. The process continues recursively until a subset is expanded into a

leaf. When an internal node in the tree has only leafs, the method searches whether the

node can be replaced by a leaf. The only hyperparameter is the bag size P, given as the

percentage of the training set, tuned with values 25%, 50%, 75% and 100%.
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IV. Boosting ensembles

10. ab_r is an Adaboost.M1 [33] ensemble of classification trees implemented by the boost-

ing function in the adabag package [2]. Adaboost is an acronym of adaptive boosting,

a training method for classifier ensembles where each base classifier (in our case, clas-

sification trees) is biased to learn better those training patterns which have been mis-

classified by the previous classifiers of the ensemble. This is done by weighting each

training pattern with the error on that sample. At each iteration, the weight of the base

classifier with the smallest weighted error (sum of weights of the misclassified training

patterns) is updated using that error. The weights decay are normalized again in each

iteration. The test output is decided by a weighted voting among the base classifiers.

V. Nearest neighbors

11. knn_r is the K-nearest neighbor [110] classifier, implemented by the knn function of

the class R package. The output class for a test pattern is decided by voting over its K

nearest training patterns. The number K of neighbors is the only hyperparameter, tuned

with 13 values from 1 to 37.

VI. Neural networks

12. elm_m is the extreme learning machine (ELM). The ELM is a single hidden layer

feed-forward network which assigns random values to the input weights, calculates the

hidden neuron outputs H using the activation function and calculates the output weight

matrix B as the product of the Moore-Penrose pseudo-inverse of the H matrix multiplied

by the desired output [53]. The test output is the product of H (dependent on the test

pattern) times B. This network does not require iterative training, it does not fall in

local minima, it avoids tunable hyperparameters as learning rate or momentum, and its

training is much simpler than classical neural networks and support vector machines.

We used the publicly available Matlab code2, and the tunable hyperparameters are the

transfer function (six functions: sinus, signum, hard limit, triangular basis, radial basis

and sigmoid) and the number of neurons in the hidden layer (20 values between 3 and

200).

13. gelm_m is the ELM with Gaussian kernel tuning the regularization hyperparameter C

with 20 values in the set {2i}14
−5 and the kernel spread with 25 values in the set {2i}8

−16.
2http://extreme-learning-machines.org (visited March, 29, 2017).
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14. mlp_m is the classical multi-layer perceptron neural network implemented by the train

function in the Matlab Neural Network Toolbox. The network has only one hidden

layer, whose number of neurons is a hyperparameter tuned with 11 values from 3 to 30.

15. rbf_m is the radial basis function (RBF) neural network [95], implemented by the

newrb Matlab function. The RBF is a two-layer network whose hidden layer is com-

posed by radial basis neurons, usually with Gaussian activation, which are iteratively

added during training. Starting from an empty layer, the training set is classified and the

pattern with the highest root mean square error is selected as weight vector for a new

hidden neuron, being the center of the neuron Gaussian activation. Then, the output

weights between the hidden and output layers are calculated to minimize the error. The

process is repeated, adding new hidden neurons until the error falls below a goal, or

the maximum number of hidden neurons (which by default is the number of training

patterns) is reached. The only hyperparameter is the spread of the Gaussian activations

for the hidden neurons, tuned with 29 values from 0.1 to 70.

16. pnn_m is the probabilistic neural network [123], implemented by the newpnn Matlab

function. This network has only one hidden layer whose neurons are radial basis func-

tions centered in the training patterns. The weights of the output layer are the class

labels for the training patterns. The only hyperparameter is the Gaussian spread, tuned

with 10 values between 0.01 and 10.

VII. Support vector machines

17. svm_c is the support vector classifier [15] with Gaussian kernel implemented by the

LIBSVM library3 in C++, tuning the regularization hyperparameter C with 20 values in

the set {2i}14
−5, and the Gaussian spread with 25 values in the set {2i}8

−16.

VIII. Random forests

18. rf_r is the random forest ensemble [8] of random tree base classifiers implemented

by the randomForest package in R. Each random tree is trained using feature bagging,

which randomly selects an input subset with
√

#inputs items at each candidate split.

If some input is very useful to predict the output (i.e., the input is very related to the

3http://www.csie.ntu.edu.tw/∼cjlin/libsvm (visited March, 29, 2017).
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output), that input will be selected in many base trees, and they might be highly corre-

lated, which is undesirable to achieve a diverse ensemble of trees. In order to avoid this,

and to correct the overfitting of individual trees, they are trained in different bootstrap

samples of the training set, and voting is used to give a class output for a test pattern.

The base classifiers should not be strongly correlated among them, so that voting is

expected to reduce its variance without increasing its bias.

19. rf_w is an alternative implementation of random forest provided by Weka. We tune the

number of trees in the forest with values 100, 250, 500 and 750.

20. rtf_w is the rotation forest ensemble [112] of J48 base classifiers, implemented in

Weka. The rotation forest simultaneously promotes classifier accuracy and ensemble

diversity. The input set is randomly split into a number of subsets. For each input sub-

set, PCA is applied on a bootstrap sample of the training set. Thus, each input subset

represents a different rotation of the original input space. Each J48 base tree is trained

on the whole collection of training patterns with all the principal components in order

to promote accuracy. On the other hand, each classifier uses a different input subset of

the principal components, in order to promote diversity. For a test pattern, each base

tree gives a probability to assign that pattern to each class, so the ensemble assigns the

test pattern to the class with the highest total probability summed over all the trees. The

hyperparameters are the percentage of patterns to be removed in the bootstrap sample

(5 values from 10% to 75%) and the number of iterations (5 values from 10 to 50).

2.7 Experimental setup

In order to apply the classifiers described in subsection 2.6 to the datasets described in sub-

sections 2.1-2.3, we used as quality measure to evaluate the classification performance the

Cohen kappa [131], henceforth denoted by κ and measured in %. The Cohen κ evaluates

the classification accuracy discarding the probability of classifier success by chance, being

defined as:

κ = 100
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where C is the number of classes and ni j is the number of patterns of class i assigned by the

classifier to class j, for i, j = 1, . . . ,C. Besides κ , we also use two additional class-specific

performance measures: sensitivity (SE) and positive predictivity (PP) of each class i, defined

as SEi = 100nii/∑C
j=1 ni j (percentage of patterns of class i assigned by the classifier to class i)

and PPi = 100nii/∑C
j=1 n ji (percentage of patterns assigned by the classifier to class i which

really belong to class i). For each classification problem, we developed a 4-fold validation

creating four groups of data sets, each composed by a training, a validation and a test set

which do not intersect among them. The patterns of each class are randomly shuffled and

50% of them are used for training, 25% for validation and 25% for testing, thus guaranteeing

that the same percentages of the pattern set are devoted to training, validation and test sets.

For each class, the three sets are rotated among folds: e.g. with M patterns, the first fold uses

patterns from 1st to M/2-th for training, patterns from M/2+ 1 to 3M/4 for validation, and

patterns from 3M/4+1 to M for testing; the second fold uses patterns from M/4+1 to 3M/4

for training, from 3M/4+ 1 to M for validation and from 1 to M/4 for testing; and so on.

Therefore, the percentages of patterns for training, validation and test are respected also for

each single class, so that 50%, 25% and 25% of the patterns of each class are devoted for

training, validation and test, respectively. Each classifier is trained on the four training sets

using each combination of values of its metaparameters and then it is tested on the validation

sets. For each combination of metaparameter values, the average κ over the four validation

sets is calculated, and the combination of metaparameter values with the best κ is selected for

testing. At this point, each classifier is trained on each training set with the selected metapa-

rameter values, and then it classifies each test set. The final test performance is measured by

the average κ over the four test sets. Note that any pattern of the test set is not included in the

training nor in the validation sets of the same group, so the test results can not be optimistically

biased by overfitting.

2.8 Global discussion of the results

Table 2.2 in subsection 2.1 lists the information (number of patterns and inputs) of each clas-

sification problem, and the population of each class. Given that the region of Marathwada

has soil with low OC-F and Fe-F levels, the “low” class is the most populated for both prob-

lems. This soil exhibits medium P2O5 level predominantly and it is slightly alkaline, so the

SAL class is the most populated. Besides, most of the soil is of type medium, and the major
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crops are soybean(R) and cotton(R), which rely on rainfall because Marathwada comes under

drought area since four years. The data are preprocessed in order to have zero mean and one

standard deviation for each input.

Classifier OC-F P2O5-F Mn-F Fe-F N2O P2O5 K2O pH Crop Soil

ab_r 88.50 85.54 59.33 67.45 25.40 35.08 25.81 44.71 85.27 96.65
bg_r 73.84 74.95 52.72 53.58 28.63 27.42 28.63 26.76 82.02 93.47
bgf_r 85.18 78.77 54.95 64.21 26.61 29.03 29.44 40.06 77.79 95.47
bgp_w 82.42 74.97 54.95 64.09 24.60 24.60 20.97 42.13 86.37 95.49
dj48_w 83.03 80.45 49.44 57.18 31.85 28.63 24.60 42.49 85.15 95.37
dtnb_w 81.33 66.78 47.79 44.69 22.18 22.58 5.24 35.93 85.85 97.82

elm_m 75.45 68.99 48.41 49.90 23.39 25.81 12.10 34.61 82.25 91.76
gelm_m 82.41 77.23 57.14 57.85 30.65 30.24 20.16 42.91 85.17 96.20
j48_w 69.25 70.76 37.92 54.42 20.16 21.37 14.92 40.78 82.34 94.76
jrp_w 71.28 70.34 45.02 52.00 19.35 22.18 12.90 40.44 83.12 94.94
knn_r 74.14 72.56 52.77 54.09 25.81 24.19 15.73 41.55 84.32 94.46
mlp_m 56.95 30.25 38.77 41.46 24.60 17.74 12.10 13.73 47.62 86.18
pnn_m 77.43 73.33 55.56 52.82 23.79 22.98 18.15 40.38 84.52 94.90
rbf_m 48.82 40.04 34.40 43.32 2.82 14.92 2.82 13.30 82.99 92.03
rf_r 87.35 83.01 58.78 69.35 33.06 33.06 31.85 47.32 88.13 96.37
rf_w 90.65 79.58 64.27 65.17 30.24 32.26 26.61 46.85 87.64 96.80
rpt_r 67.05 63.81 46.65 36.23 21.37 22.58 21.37 38.92 80.01 92.89
rt_r 69.15 68.93 51.14 36.03 15.32 21.37 19.35 33.49 78.75 93.39
rtf_w 87.39 75.83 57.70 59.01 28.23 30.65 27.42 46.77 86.34 96.80
svm_c 80.2 82.3 64.8 60.1 29.0 30.2 18.5 43.0 86.1 95.8

Table 2.3: Values of κ (in %) achieved by each classifier for each classification problem. The best κ for each
problem is in bold.

Friedman rank test Wilcoxon signed rank test
Pos. Clasif. Rank Pos. Clasif. Rank Pos. Clasif p-value Pos. Clasif p-value

1 rf_r 2.200 11 knn_r 11.400 1 — — 11 dtnb_w 0.384494
2 rf_w 2.950 12 pnn_m 11.400 2 ab_r 0.969839 12 jrp_w 0.384494
3 ab_r 3.900 13 dtnb_w 12.650 3 rf_w 0.850051 13 elm_m 0.344523
4 rtf_w 4.650 14 jrp_w 14.300 4 rtf_w 0.623046 14 j48_w 0.307308
5 svm_c 5.900 15 j48_w 14.350 5 svm_c 0.520366 15 elm_m 0.34055
6 gelm_m 6.600 16 elm_m 14.650 6 dj48_w 0.495968 16 rt_w 0.272856
7 dj48_w 7.400 17 rpt_r 15.650 7 bgf_r 0.472509 17 bg_r 0.272675
8 bgf_r 8.050 18 rt_w 16.250 8 bgp_w 0.472342 18 rpt_r 0.240968
9 bgp_w 9.600 19 mlp_m 18.200 9 knn_r 0.427181 19 rbf_m 0.10385
10 bg_r 11.300 20 rbf_m 18.600 10 pnn_m 0.427181 20 mlp_m 0.03114

Table 2.4: Columns 1-6: classifier ranking and position according to the Friedman rank test. Columns 7-12:
classifiers ordered by decreasing p-value of a Wilcoxon signed rank test comparing the best ranked
classifier (rf_r) to the remaining ones (the significant tests are in bold). The label — means that rf_r can
not be compared to itself
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Table 2.3 reports the κ achieved by each classifier for the 10 classification problems:

OC-F, P2O5-F, Mn-F and Fe-F (village-wise soil fertility indices of nutrients OC, P2O5, Mn

and Fe); nutrients N2O, P2O5 and K2O; soil pH; suitable crop and soil type. Globally, rf_r

and rf_w achieve the best κ for 5 and 1 problems, respectively, being very near to the best

ones for the other 4 problems. The ab_r is the best in two problems (P2O5-F and P2O5), while

svm_c and dtnb_w are the best for one problem each (OC-F, Mn-F and soil, respectively). The

columns 1-6 of Table 2.4 reports the classifiers ordered by their Friedman rank test (decreasing

with the classifier performance): the rf_r (random forest in R) is the best with a rank of 2.2,

which means that in average it is nearly the second best classifier for all the problems. The

RF provided by Weka (rf_w) is the second one, so its metaparameter tuning does not improve

the good results of the R version. Adaboost in R (ab_r) and rotation forest of J48 trees in

Weka (rtf_w) also achieve good ranks, although far from rf_r (1.7 and 2.4 points higher),

and svm_c gets the 5th position (3.7 points higher), followed by gelm_m (Gaussian kernel

extreme learning machine in Matlab, 6th position), which works much better than elm_m

(16th position). The bagging classifiers bgf_r, bgp_w and bg_r work similarly (positions 8, 9

and 10, respectively), and similarly to knn_r (K-nearest neighbor classifier in R) and pnn_m

(probabilistic neural network in Matlab). Considering columns 7-12, the Wilcoxon signed

rank tests between rf_r and the other classifiers show that p > 0.05 (i.e., the differences are

not statistically significant) except with respect to mlp_m, which gets the worst results. The

lack of statistical significance might be due to the low number of measurements (just ten

classification problems) for each classifier.

Figure 2.4 shows the κ intervals (minimum, mean and maximum) achieved by the dif-

ferent classifiers for each problem, with large differences in the κ values and in the interval

width. The soil type classification problem has the highest maximum κ (upper limit of the

interval) and the narrowest interval (i.e., all the classifiers work very well), while OC-F, P2O5-

F and crop have high maximum κ with wider intervals. The N2O, P2O5, K2O and pH have

lower κ values.

The intervals for each classifier over all the problems are reported by Figure 2.5 but, since

the κ values are very different among problems, each interval represents the percentages of the

maximums κ in the different problems achieved by the classifier. For example, the maximum

κ in the OC-F problem is 90.65% achieved by rf_w, so rf_w has 100% of the maximum κ ,

while ab_r has 100 · 88.5/90.65=97.62% of the maximum κ . In Figure 2.5, the rf_r has the

highest and narrowest interval, being above 90% of the maximum κ for all the problems.
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Figure 2.4: Intervals of κ (in %) of the different classifiers for each problem (the filled square shows the mean κ).
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Figure 2.5: Intervals of percentages of the maximum κ for each problem, for all the problems and for each
classifier.

Some other classifiers as ab_r, svm_c or dtnb_w have intervals whose maximum achieves

100%, but their means and minimums are much lower than rf_r (e.g. dtnb_r achieves about

15% of the maximum κ for some problem). Although almost all the classifiers achieve more
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than 90% of the maximum κ for some data set (excepting mlp_m), all the classifiers exhibit

minimum percentages below 80% excepting rf_r, rf_w, rtf_w and bgf_r.

Major nutrients Micro-nutrients
OC-F (rf_w) P2O5-F (ab_r) Mn-F (svm_c) Fe-F (rf_r)

Fertility L M L M H M H L M

L 52.9 1.4 22.8 3 0.3 — — 66.2 2.8
M 3.3 42.4 1.3 58.5 0.3 36.5 8.5 7.5 16.5

H — — 0.3 1.5 5.3 7.5 38.5 — —
κ (%) 90.65 85.54 64.8 69.35
SE(%) 97.5 92.9 87.5 97.5 75 81.1 83.7 96 68.8
PP(%) 94.2 96.9 93.8 92.9 91.3 83 81.9 89.8 85.7

Table 2.5: Confusion matrices (in %) of the best classifiers (showed in the matrix header between brackets) for the
classification of soil fertility indices. The symbol “—” means that the class is not available. Labels L, M
and H mean low, medium and high respectively.

2.9 Classification of village-wise OC, P2O5, Mn and Fe fertility in-

dices

The confusion matrices (in %) of the best classifiers, along with κ , SE and PP are reported

by Table 2.5 for the soil fertility indices problems OC-F, P2O5-F, Mn-F and Fe-F. The rf_w

achieves the best κ for OC-F (90.65%, Table 2.3), followed by ab_r (88.5%), rtf_w (87.39%)

and rf_r (87.35%). The confusion matrix of rf_w shows low values outside the diagonal,

being the percentage of M patterns assigned to class L (3.3%) twice the percentage of L

patterns assigned to class M (1.4%). The classes L and M exhibit high SE and PP. For P2O5-

F, the best classifier is ab_r (κ=85.54%), followed at certain distance by rf_r (83.01%) and

svm_c (82.3%). In this case, the errors in the confusion matrix of ab_r are for adjacent classes,

e.g., between L and M, or between M and H, but the error percentages between non-adjacent

classes are low (0.3%). The ab_r tends to classify L patterns as M (3%), and in less degree H

patterns as M (1.5%) and M patterns as L (1.3%). The best detected class is M, with SE and

PP above 93%, while SE of class L (87.5%) and, specially, of class H (75%) are much lower.

The results are worse for the classification of Mn-F and Fe-F problems. For Mn-F, the svm_c

is the best classifier (κ=64.8%), followed by rf_w (64.27%), and the following classifiers are

under 60% (ab_r achieves 59.33%). The confusion matrix of svm_c shows diagonal values

(above 36%) much higher than outside the diagonal (7-8%), with slightly higher percentage

of M patterns classified as H than the opposite. The results for Fe-F are slightly better: rf_r
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achieves κ=69.35%, followed by ab_r (67.45%) and rf_w (65.17%). The confusion matrix of

rf_r shows a high number of M patterns classified as L (7.5%), while class M, which is much

less populated, exhibits a low SE (68.8%).

N2O (rf_r) P2O5 (ab_r) K2O (rf_r)
L M H L M H L M H

L 21.77 8.33 3.23 22.04 6.99 4.30 19.35 9.41 4.57
M 11.02 13.17 9.14 9.41 14.78 9.14 8.87 14.25 10.22
H 6.45 6.45 20.43 4.57 8.87 19.89 4.57 7.80 20.97

κ(%) 33.06 35.08 31.83
Acc(%) 55.37 56.71 54.56
SE(%) 65.3 39.5 61.3 66.1 44.4 59.7 58.1 42.7 62.9
PP(%) 55.5 47.1 62.3 61.2 48.2 59.7 59.0 45.3 58.6

Table 2.6: Confusion matrices (in %) of the best classifiers for N2O, P2O5 and K2O. Labels L, M and H mean low,
medium and high, respectively. The values in the matrix diagonal are in bold.

2.10 Classification of soil nutrients N2O, P2O5 and K2O

Table 2.6 reports the best confusion matrices for the classification of N2O and K2O, achieved

by rf_r (with κ=33.06% and 31.83%, respectively), and for the classification of P2O5, achieved

by ab_r (for which κ=38.08%), results which are worse than the corresponding to the classi-

fication of the village-wise soil fertility indices. Of course, the values of the accuracies are

higher (about 55% for the three problems). For the three nutrients the class M has the lowest

SE and PP (between 39-48%), while classes L and H exhibit SE and PP values about 60%.

Since the classes represent quantization levels, they can be considered as ordinal classification

problems, with an ordering relation among the classes. This explains that classes L and H are

better recognized, while the middle class M wins external or loses internal patterns from/to

L and H. Besides, the three matrices exhibit the highest non-diagonal values in positions ad-

jacent to the diagonal, because the classification errors are more probable between adjacent

classes representing contiguous levels of quantization.

2.11 Classification of soil pH

The rf_r achieves the best performance for this problem, with κ=47.32% (Table 2.3) and the

confusion matrix of Table 2.7, for which the accuracy is 69.63%. Again, the only high val-

ues outside the diagonal correspond to adjacent classes: SA and N, with values 0.64% and
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0.75% where the diagonal value is 0.37%; N and SAL, being more probable to classify N pat-

terns as SAL (10.45%) than the opposite (6.66%); SAL and MAL, with more MAL patterns

(7.78%) classified as SAL than MAL patterns correctly classified (2.67%). The remaining

non-diagonal values are below 1%. The SE and PP are only acceptable (above 68%) for the

most populated classes N and SAL, while the less populated classes SA and MAL exhibit

worse results (SE about 20-30%).

pH SA N SAL MAL SE(%) PP(%)

SA 0.37 0.64 0.27 0 29.2 26.9
N 0.75 26.92 10.45 0.27 70.1 74.6
SAL 0.21 6.66 39.66 1.44 82.7 68.2
MAL 0.05 1.87 7.78 2.67 21.6 61.0

Table 2.7: Confusion matrix (in %) of the best classifier (rf_r, with κ= 47.32% and accuracy= 69.63%) for soil pH
classification. Labels SA, N, SAL and MAL mean slightly acidic, neutral, slightly alkaline and
moderately alkaline respectively.

2.12 Classification of crop

The rf_r achieves the best κ (88.13%, with accuracy above 90%) also for crop classification

(Table 2.3), followed by rf_w (87.64%), bgp_w (86.37%) and rtf_w (86.34%). The ab_r and

svm_c, which achieved good results in the previous problems, also work well. The confusion

matrix of the rf_r for this problem (Table 2.8) has almost all the values outside the diagonal

under 1%. Only the percentage (3.34%) of bajra(R) patterns classified as cotton(R) is higher

than the corresponding diagonal term (2.89%), which reduces the SE of class bajra(R) to

45.1%. The reason is that the usual crop rotation in Marathwada is between both classes,

so their patterns are very similar. Besides, cotton(R) is more important and populated than

bajra(R), whose patterns tend to be classified as cotton(R). All the remaining classes have SE

above 90% and PP above 80%.

2.13 Classification of soil type

The best soil type classifier is dtnb_w (hybrid classifier of decision table and naive Bayes),

with κ=97.82%, followed by the group of methods which were the best in the previous clas-

sification problems: rf_w and rtf_w (96.80%), ab_r (96.65%), rf_r (96.37%) and svm_c
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Crop Bajra(R) Cotton(I) Cotton(R) Soybean(R) SE(%) PP(%)

Bajra(R) 2.89 0.04 3.34 0.14 45.1 79.8
Cotton(I) 0 10.14 0.35 0.76 90.1 95.7
Cotton(R) 0.74 0.07 23.14 0.81 93.5 85.3
Soybean(R) 0 0.34 0.32 56.90 97.1 97.1

Table 2.8: Confusion matrix (in %) of rf_r for crop classification (κ=88.13%, accuracy=93.09%). Labels R and I
mean rainfed and irrigated respectively.

(95.8%). The confusion matrix of the two best classifiers (Table 2.9) shows similarly low

non-diagonal values for classes L and M, with SE and PP values above 97%.

dtnb_w rf_w
Soil L M SE(%) PP(%) L M SE(%) PP(%)

L 27.96 0.47 98.33 99.42 27.73 0.71 97.50 97.17
M 0.41 71.15 98.54 99.34 0.59 70.97 97.91 99.01

Table 2.9: The confusion matrix (in %) of the two best classifiers (dtnb_w and rf_w, κ= 97.82% and 96.80%
respectively) for soil type classification. Labels L and M mean light and medium respectively.

2.14 Comparison among regions

As well as the data from the region of Marathwada, we also have data available from regions

Paschim-Maharashtra and North-Maharashtra, in the same state of Maharashtra. An inter-

esting issue is how valid are the classifiers, trained using data from one region, to test data

from different regions. In other words, what is the representativity and generalization abil-

ity of the trained classifiers with respect to regions? We developed experiments training and

tuning the metaparameters of the classifiers with patterns from one region, and then testing

the trained and tuned classifier with data from different regions. Specifically, we have data

from Marathwada, North Maharashtra and Paschim Maharashtra (henceforth labeled as M,

NM and PM, respectively) highlighted in Figure 2.2, for village-wise OC-F, P2O5-F, Mn-F,

Fe-F and pH problems. The corresponding experiments for N2O, P2O5 and K2O, crop and

soil type classification could not be developed due to the lack of data for regions NM and PM.

Table 2.10 reports the best classifier for each classification problem and combination of

training and test regions, and the κ that it achieves (e.g. M-PM in the leftmost column means

training and test using data from Marathwada and Paschim-Maharashtra, respectively). No
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OC-F P2O5-F Mn-F Fe-F pH
Regions Best κ Best κ Best κ Best κ Best κ
M-NM rpt_r 17.21 bgp_r 15 bg_r 65.98 rpt_r 66.78 rtf_w 23.97
M-PM elm_m 9.66 rf_r 100 bg_r 66.62 rpt_r 70.52 rtf_w 66.22
NM-M rtf_w 32.60 rf_r 34.10 rt_w 45.70 svm_c 42.50 — —

NM-PM pnn_m 14.99 bg_r 100 bg_r 100 j48_w 100 — —
PM-M rt_w 12.73 bgf_r 34.57 bgf_r 45.15 elm_m 44.33 knn_r 69.61

PM-NM pnn_m 11.13 bg_r 100 bg_r 100 svm_c 100 rf_r 48.23

Table 2.10: Values of κ (in %) achieved by the best classifier training and testing with patterns of different regions
(first column, see text for region labels). The symbol ‘—’ means that data are not available.

classifier achieves good results for OC-F, no matter the combination of regions used for train-

ing and testing, and the best result is κ=32.6% with rtf_w. The results for P2O5-F are very

good (κ=100%) for NM-PM and PM-NM (both with bg_r) and for M-PM (with rf_r), but

much worse (between 15% and 35%) for the remaining combinations. This is surprising, be-

cause M-PM works well, but PM-M works much worse, suggesting that data from region M

are somehow representative for data from PM, but the opposite is not true. For Mn-F and Fe-F

problems, both NM-PM and PM-NM work well (100% with bg_r for Mn-F, and with j48_w

and svm_c for Fe-F), so the data seem to be valid between NM and PM. The performance

of cases M-NM and M-PM are about 66-71%, so the data from M are somehow valid for the

other two regions, but the inverse combinations (NM-M and PM-M) are about 42-46%, so

NM and PM data are not so valid for region M. As a conclusion: 1) the data for OC-F classifi-

cation are not valid among regions; 2) the data for P2O5-F, Mn-F and Fe-F classifications are

valid only between North Maharashtra and Paschim Maharashtra, and from Maharashtra to

Paschim-Maharashtra; 3) the data for P2O5-F classification are compatible from Marathwada

to Paschim Maharashtra, but not the inverse; and 4) the data for Mn-F and Fe-F classifications

are slightly compatible (about 66-70%) from Marathwada to the other regions, but not the

inverse.



CHAPTER 3

APPLICATION OF REGRESSION METHODS

TO GENERAL DATASETS

Previously to apply regression methods on the different datasets of the soil problem, we devel-

oped an experimental comparative of the most popular regression methods in order to know

which are the best methods for non-specific datasets. For this work we used the benchmark

datasets of the University of California at Irving (UCI) machine learning repository. The

current chapter presents and discusses this comparison.

3.1 Regression methods

We have applied a wide collection of 76 regressors which belong to several families. The ma-

jority of them (68 regressors) are selected from the caret model list1 and implemented in R.

Instead of using the interface provided by caret (train function), we run the regressors directly

using the corresponding R packages (see the detailed list below), in order to have control on

the execution of each single model, and to avoid the execution of some regressors not included

in the caret list. In fact, we also included other four popular methods implemented in other

platforms: deep learning neural network, using the module dlkeras in Python (named dlkeras);

support vector regression, using the LibSVM library in C++ (named svr); generalized regres-

sion neural network and extreme learning machine with Gaussian kernels in Matlab (named

grnn and elm-kernel respectively). Some regression models on the caret list gave errors (list

1http://topepo.github.io/caret/train-models-by-tag.html (visited March, 29, 2017).
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them). The model operation is optimized by tuning the set of hyperparameters specified in

the caret regressor list. The hyperparameter values used are specified by the caret package

(getModelInfo function), and they are different for each dataset. For each regressor, we use

the list of tunable hyperparameters specified by the caret package in the previous link, and a

number of values used for tuning them. These values are listed in the regressor description

below. Note that for some regressors (e.g. gaussprRadial) and datasets, the caret function

getModelInfo(...) returns a value list with less items than the number specified in values.txt,

and even sometimes just one value is used, so although the caret website specifies that hy-

perparameter as tunable, in the practice it uses only one value, so it is not tuned at all. The

regressors in other languages use pre-specified values equal for all datasets. The 76 regressors

are described in the following list, grouped by families.

I. Linear regression

1. lm is the linear model provided by the stats package [14]. Collinear inputs exhibit

undefined regression coefficients (as returned by lm), so they are discarded for lm and

many other regressors in the list.

2. rlm implements robust linear model (MASS package), fitted using iteratively re-weighted

least squares with maximum likelihood type estimation, which is robust to outliers in

the output although not in inputs [54]. The only hyperparameter is the psi functions:

Huber, which provides a convex optimization problem; Hampel and Tukey bisquare,

both with local minima.

II. Generalized linear regression

3. glm is the generalized linear model provided by the stats package [25], which combines

a probability distribution (e.g. Gaussian, binomial, Poisson, etc.), a linear predictor

and the link function corresponding to the distribution (which may be non-Gaussian),

which relates the output mean and the inputs. They are used to model positive values,

categorical or ordinal data.

4. penalized is the penalized linear regression (penalized package), which fits generalized

linear models with a combination of L1 and L2 penalties. The L1 penalty, also called

least absolute shrinkage and selection operator (lasso), penalizes the sum of absolute

values of the coefficients, thus reducing the coefficients of inputs which are not relevant
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similarly to input selection. The L2 penalty (also called ridge) penalizes the sum of

squared coefficients, reducing the consequences of input collinearity. The regression is

regularized by weighting both penalties [41], whose weights (given by hyperparameters

lambda1 and lambda2, with 5 and 4 values respectively) are tuned.

5. glmnet is the lasso and elastic-net regularized GLM provided by the glm package [120].

The glmnet model uses penalized maximum likelihood to fit a GLM for the lasso and

elastic-net non-convex penalties. The mixing percentage alpha is tuned with 5 values,

including alpha=1 (resp. alpha<1), which corresponds to lasso penalty, and alpha<1 for

elastic-net penalty (alpha=0 corresponds to ridge regression penalty). The glmnet func-

tion already tries a number of values (100 by default) for the regularization parameter

lambda, so it was not tuned despite of being included among the glm hyperparameters

in the caret list.

6. glmStepAIC is the generalized linear model with stepwise feature selection [111] using

the Akaike information criterion (stepAIC function in the MASS package).

III. Least squares

7. nnls is the non-negative least squares regression (nnls package), it solves for x the

optimization problem minx |Ax−b| subject to x ≤ 0 using the Lawson-Hanson NNLS

method [67].

8. krlsRadial is the radial basis function kernel regularized least squares regression (KRLS

package), which uses Gaussian radial basis functions to learn the best fitting function

minimizing the squared loss of a Tikhonov regularization problem. The krls method

learns a closed form function so interpretable as ordinary regression models. The only

hyperparameter is the kernel spread (10 values). The krls determines the trade-off be-

tween model fit and complexity (lambda parameter) by minimizing the sum of squared

leave-one-out errors, so the caret getModelInfo function does not provide values for it,

despite being listed as a tunable parameter.

IV. Partial least squares

9. spls is the sparse partial least squares regression (spls package), which introduces sparse

linear combinations of the inputs in the dimensionality reduction of PLS in order to
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avoid lack of consistency of PLS with high dimensional patterns [20]. The hyperpa-

rameters are the number of latent components (K) and the threshold eta (3 and 7 values,

respectively).

10. simpls fits a PLS regression model with the simpls method (plsr function in the pls

package, with method=simpls). The PLS method projects the inputs and the output to

a new space and searches the direction in the input space which explains the maximum

output variance, being particularly useful when there are more inputs than patterns and

inputs are collinear. The simpls method [115] directly calculates the PLS factors as

linear combinations of the inputs maximizing a covariance criterion with orthogonality

and normalization constraints. The only hyperparameter is the number of components

used by the simpls model (10 values).

11. kernelpls is the PLS regression with method=kernelpls [116] in the same function and

package, using the same hyperparameter setting.

12. enpls.fs is an ensemble of sparse partial least squares regressors provided by the enpls

package [134]. The number of components (1 value) is specified by the caret function

getModelInfo for each dataset, but the threshold argument, specified as a hyperparam-

eter by the caret list, is missing in the enpls.fit function.

13. plsRglm is the partial least squares generalized linear model (plsRglm package) with

modele=pls-glm-family [4]. The hyperparameters are the number of extracted compo-

nents and (4 values) and the input significance level (alpha.pvals.expli, 5 values).

V. Least absolute shrinkage and selection operator (lasso)

14. lasso does lasso regression, using the enet function in the elasticnet package similarly

to ridge, but using the lambda parameter equal to zero to obtain the lasso solution.

15. relaxo develops relaxed lasso (relaxo package), which generalizes the lasso shrinkage

method for linear regression [73]. This method overcomes the trade-off between speed

and convergence, specially for sparse high-dimensional patterns, in the L2-loss func-

tion of the regular lasso, providing sparser solutions with better prediction error. The

relaxation and penalty hyperparameters phi and lambda are tuned using 7 and 3 values

respectively.
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VI. Ridge (or Tikhonov) regression

16. ridge (elasticnet package), which uses the LARS-EN algorithm to compute the elastic

net [136] regression model. Elasticnet provides a model for regularization and input se-

lection, grouping together the inputs which are strongly correlated, being more useful

when the number of inputs is higher than the number of patterns, as opposed to lasso

models (see below). The only hyperparameter is the quadratic penalty (or regulariza-

tion) parameter (10 non-zero values).

17. spikeslab implements the spike and slab regression [56] uses the spikeslab package to

compute weighted generalized ridge regression estimators using Bayesian spike and lab

models. This model combines filtering for dimensionality reduction, model averaging

using Bayesian model averaging, and variable selection using the gnet estimator.

18. foba develops ridge regression with forward, backward and sparse input selection [135]

(foba package). We use the adaptive forward-backward greedy version of foba (default

value ’foba’ for the ’type’ argument of the foba function), which does a backward step

when the ridge penalized risk increases in less than the parameter nu (0.5 by default)

multiplied by the ridge penalized risk reduction in the previous forward step. The hy-

perparameters are regularization for ridge regression and the number of selected inputs

(sparsity) for the prediction (10 and 2 values, respectively).

VII. Neural networks

19. mlpWeightDecay is the multi-layer perceptron with one hidden layer and weight decay

(mlp function in the RSNNS package, with learnFunc=BackpropWeightDecay). The

size of the hidden layers and weight decay are tunable hyperparameters (5 values each

one).

20. mlpWeightDecayML is the same network with three hidden layers, tuning their sizes

(3 values each one) and the weight decay (5 values).

21. avNNet is the model averaged neural network provided by the caret package. A com-

mittee of 5 neural networks [110] of the same size is trained using different random

seeds, being averaged to give an output. The hyperparameters are the network size and

the weight decay (7 and 3 values, respectively).
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22. rbf is the radial basis function network (RSNNS package) which does a linear com-

bination of basis functions centered around a prototype [1]. The information is locally

codified (opposed to globally in the MLP), the training should be faster and the network

is more interpretable, although the output might be undefined if a test pattern does not

activate any prototype. The only hyperparameter is the size of the hidden layer (10

values).

23. grnn is the generalized regression neural network [124] implemented by the Matlab

neural network toolbox. The GRNN is a special type of RBF network: after a clustering

of the training set, the nodes of the hidden layer store the cluster centers (the Matlab

implementation uses so many clusters as training patterns). The output for a test pattern

is a weighted sum of the Gaussian functions centered in the cluster centers, scaled by

the cluster populations. During training, whenever a pattern is assigned to that cluster

the weight of the Gaussian function corresponding to that cluster is updated using the

desired output. The Gaussian spread is a hyperparameter (14 values): large (resp. small)

values lead to smooth (resp. close) approximations.

24. elm is the extreme learning machine, which has been already introduced in the section

2.6. For the regression problem we use the elmNN package [53]. The only hyperparam-

eters are the number of hidden neurons (20 values) and the activation function (sinus,

radial basis, linear and hyperbolic tangent).

25. elm-kernel is the ELM neural network but with Gaussian kernel [53] using the publicly

available Matlab code2. The hyperparameters are regularization C and kernel spread

with values 2−5..214 and 2−16..28 (20 and 25 values, respectively).

26. pcaNNet is a multi-layer perceptron neural network with one hidden layer trained on

the PCA-mapped training patterns, using the caret and nnet packages. The principal

components which account for more than 95% of the data variance are used for train-

ing. With a test pattern, it is mapped to the principal component space and the trained

pcaNNet model gives an output. Tunable hyperparameters are the size of the hidden

layer and the weight decay of the network (7 and 3 values, respectively).

27. bdk is the supervised bi-directional Kohonen network, using the kohonen package [75].

The bdk combines Kohonen maps and counterpropagation networks, using two maps,

2http://www.extreme-learning-machines.org (visited March, 29, 2017).
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for inputs and output respectively. In each iteration, the direct (resp. inverse) pass

updates only the weights of the input (resp. output) map, using a weighted similarity

measurement (Euclidean distance for regression) which involves both maps, leading to

a bi-directional updating. The test output is the weight of the winner node of the output

map. The hyperparameters are the sizes of both maps (3 values each one) and the initial

weight given to the input map in the distance calculation for the output map, and vice

versa (2 values).

VIII. Deep learning neural networks

28. dlkeras is the deep learning neural network using the Keras module [18] in Python, with

three hidden layers tuned with 50 and 75 neurons for each layer (27 combinations). The

deep learning methods [51, 69] are very popular, specially for image classification, and

we included them in this comparison for regression tasks.

29. dnn implements a deep belief network in R using the DeepNet package using only one

hidden layer and tuning the number of neurons with values from 5 to 60 with step 2. We

tried with several hidden layers but the results are worse. The weights are initialized

using stacked autoencoder (SAE), which gave better results than deep belief network

(DBN).

IX. Support vector machines

30. svr is the support vector machine for regression, with Gaussian kernel using the Lib-

SVM library [15] with the C++ interface. We tuned the regularization hyparameter C

and the kernel spread γ with values 2−5..214 and 2−16..28.

31. svmRadial is another implementation of SVR with Gaussian kernel (ksvm function in

the kernlab package) for regression (type=eps-svr), using SMO to solve the quadratic

SVM problem and tuning the same parameters as svr (5 and 4 values respectively).

32. rvmRadial is the relevance vector machine [129] with Gaussian kernel (same pack-

age). The RVM has the same functional form as the SVM, but using a Bayesian learn-

ing framework which reduces the number of basis functions, compared to the SVM,

while keeping an accurate prediction. It also avoids tunable (e.g. regularization) hyper-

parameters of the SVM, but uses a method similar to Expectation-Maximization which
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may fall in local minima, unlike SMO in the SVM. The Gaussian spread is fixed by the

getModelInfo caret function.

X. Regression trees

33. rpart is the recursive partitioning and regression tree [9] using the rpart package. Only

the complexity parameter is tuned (10 values).

34. nodeHarvest is a simple interpretable tree-based ensemble for high-dimensional re-

gression (nodeHarvest package) with sparse results [74]. A starting tree of few thou-

sand nodes is randomly generated. For a test pattern assigned to a node, the output is

the mean of its training outputs; when the test pattern is assigned to several nodes, the

output is the weighted average of their means. The selection of the nodes and node

weights requires to solve a quadratic programming problem with linear inequality con-

straints. Only few nodes with non-zero weights are selected, so the solution is sparse.

The hyperparameters are the maximal interaction depth (10 values) and mode: mean

(weighted group means) or outbag (zero values in the smoothing matrix diagonal).

35. M5 is the model tree [102] using the RWeka package, tuning the flags pruned and

smoothed (yes/no), and rules/trees of the Weka M5 implementation.

36. ctree2 is the conditional inference tree (party package), which estimates the output

using inference after a recursive partitioning the input space [52]. It tests the null hy-

potheses of statistical independence between any input and the output, and stop if it can

not be rejected. Otherwise, it selects the input most related to the output, measured by

the p-value of the partial test of independence between the output and that input. Then,

it does a binary splitting of the selected input. Then, it recursively repeats the two pre-

vious steps. The hyperparameters are the threshold for 1− p in order to do a split (4

values) and the maximum tree depth (5 values).

37. partDSA develops partitioning using deletion, substitution, and addition [82], imple-

mented by the partDSA package. This method recursively partitions the space consid-

ering that multiple inputs jointly influence the output, predicting a piecewise constant

estimation though a parsimonious model of and/or conjunctions. The only hyperpa-

rameter is the maximum number of terminal partitions (cut.off.grow) is tuned with 10

values, and the parameter vfold=1.
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38. evtree is a tree model from genetic algorithms [43] uses evolutionary algorithms to

learn globally optimal regression trees. It chooses splits for the recursive partitioning

in the forward stepwise search in order to optimize a global cost function. The only

hyperparameter is the complexity parameter alpha of the cost function, with 10 values

between 1 (default) and 3, which weights negatively large tree sizes.

XI. Bagging ensembles

39. bag is the bagging ensemble of conditional inference regression trees [7] provided by

the caret package. The output for a test pattern is the average of the outputs over all the

base regression trees.

40. bagEarth is the bagged MARS (bagEarth package), a bagging ensemble of MARS (see

below) base regressors, provided by the earth package, which learns an Earth model for

each bootstrap sample (25 samples are used by default). The hyperparameter is the

maximum number of terms in the pruned regression model (10 values).

41. treebag is a bagged CART (function ipredbagg in the ipred package), with 25 bootstrap

replications (default) and base tree regressors in the rpart package.

XII. Boosting ensembles and gradient boosting machines

42. randomGLM is a boosting ensemble of generalized linear models [122] provided by

the randomGLM package. This model uses several bootstrap samples (100 by default)

of the training set, randomly selecting inputs and interaction terms among them depend-

ing on the maximum interaction order (hyperparameter tuned with 3 values). For each

sample, inputs are ranked by its correlation with the output, and a predefined number of

them are selected to create, using forward selection to create a multivariate GLM. For

a test pattern, the predicted value is the average of the GLM outputs.

43. BstLm is the gradient boosting machine with linear regressors as base learners, pro-

vided by the bst package. Gradient boosting optimizes arbitrary differentiable loss

functions defining the fitting criteria [35]. Boosting combines weak base regressors

into a strong ensemble by iteratively adding base regressors, and in each iteration the

new regressor is learned to fit the error (residual) of the previous ensemble. Since the

error can be viewed as the negative gradient of the squared error loss function, we see

that gradient boosting is a gradient descent method. The BstLm uses the bst function
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with linear base regressors and Gaussian family, since squared error loss is used. The

only hyperparameter is the number of boosting iterations (10 values).

44. bstSm is the gradient boosting with smoothing splines (learner=smoothing spline) as

base regressors, tuning the number of boosting iterations (10 values). It is provided by

the bst package.

45. bstTree is the gradient boosting with regression trees as base learners, provided by

the bst package. The hyperparameters are the number of boosting iterations (4 values)

and maximum depth of nodes in the final tree (parameter of rpart.control, in the rpart

package, 5 values).

46. glmboost is the gradient boosting ensemble with GLMs as base learners (glmboost

function in the mboost package), tuning the number of boosting iterations (10 values).

47. gbm is the generalized boosting regression model, called stochastic gradient boosting

in the caret list (gbm package). The hyperparameters are the maximum depth of input

interactions and number of trees for prediction (5 values each one). We use a Gaussian

distribution and shrinkage equal to 0.1.

48. blackboost is the gradient boosting (blackboost function in the mboost package) with

conditional inference regression trees as base learners and arbitrary loss functions [11],

being more flexible than gbm. The only hyperparameter is the maximum tree depth (5

values).

49. xgbTree is the extreme gradient boosting [35] using the xgb.train function in the xg-

boost package with booster=gbtree and linear regression as objective function. The

hyperparameters are the tree maximum depth, maximum number of boosting iterations

(3 values each one) and learning rate (2 values).

50. xgbLinear is the extreme gradient boosting with booster=gblinear, also provided by the

xgboost package. Here the hyperparameters are the L2 (square loss) regularization term

on weights (lambda, 3 values) and bias (alpha, 2 values), and the number of iterations

(3 values).
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XIII. Random forests

51. rf, random forest (RF) ensemble of random regression trees provided by the random-

Forest package [8], but in this case random regression trees are used and the outputs of

the base regressors are averaged, opposed to chapter 2. The only hyperparameter is the

number of randomly selected inputs (mtry, 10 values).

52. Boruta uses RF with additional feature selection (Boruta package). An input is re-

moved when a statistical test proves that it is less relevant than a shadow random input,

created by shuffling the original ones [65]. Conversely, inputs that are significantly bet-

ter than shadowed ones are confirmed. The iterative search stops when only confirmed

inputs are retained, or after a maximum number of iterations (100 by default), case in

which non-confirmed inputs remain unless the iterations or the test p-value (0.01 by de-

fault) are increased. In our case, if the number of inputs is less than 2, the RF works on

the whole input set. The only hyperparameter is the mtry value of RF, with 10 values.

53. RRF is the regularized RF (honomymous package) uses regularization for input selec-

tion in RF, penalizing the selection of a new input for splitting when its Gini information

gain is similar to the inputs included in the previous splits. The hyperparameters are the

RF mtry parameter (2 values) and the regularization coefficient (coefReg, 2 values).

54. cforest is a RF ensemble of conditional inference trees [8], each one fitting one boot-

strap sample, using the party package. Each ctree fits one bootstrap sample. The only

hyperparameter (mtry, 2 values fixed by the caret getModelInfo function) of the condi-

tional trees.

55. qrf is the quantile regression forest (quantregForest package) is a tree-based ensemble

which generalizes RF in order to estimate conditional quantile functions. It grows sev-

eral RFs, storing all the training patterns associated to each node in each tree; for each

test pattern, its weight for each training pattern is calculated averaging its weight for

all the training patterns and trees; using these weights, the distribution function of each

output value, and the conditional quantiles, are estimated. The only hyperparameter is

the RF mtry (2 values). The quantile prediction threshold (what) is set to 0.5.

56. extraTrees is the ensemble of extremely randomized regression trees [39] using the

extraTrees package. It randomizes the input and cut-point of each split (or node in
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the tree), using a parameter which tunes the randomization strength. It uses the full

training set instead of a bootstrap replica. It is expected that explicit randomization of

input and cut-point splittings combined with ensemble averaging should reduce strongly

the variance than other methods. Three parameters are the number of inputs randomly

selected at each node (mtry, tuned with 2 values), number of trees (500 by default) and

the minimum sample size to split a node (numRandomCuts, tuned with 10 values).

XIV. Prototype models

57. kknn performs weighted k-nearest neighbors regression [61] using the kknn package,

weighting the neighbors decreasingly to their similarities (calculated using the dis-

tances) to the test pattern. The only hyperparameter is the number k of neighbors (10

values). The default kernel (optimal) and distance (Minkowski) are used.

58. cubist learns a M5 rule-based model with corrections based on nearest neighbors in

the training set [101]. I is provided by the Cubist package. A tree structure is created

and translated to a collection of rules, which are pruned and combined, and each rule

gives a regression model, which applies on the patterns which accomplish that rule.

Cubist adds boosting with more than one training committees (hyperparameter tuned

with 3 values). The number of neighbors (other hyperparameter also with 3 values) is

used to correct the rule-based prediction. Hyperparameters are the number of training

committees and the number of neighbors for prediction (3 values each one).

XV. Bayesian models

59. bayesglm is the Bayesian GLM (arm package): uses Expectation Maximization to

update the betas in GLM at each iteration representing the prior information with an

augmented regression [38]. The coefficients are calculated using a Student-t prior dis-

tribution.

60. brnn is the Bayesian regularized neural network (brnn package) is a network with one

hidden layer trained using Gauss-Newton optimization minimizing a combination of

squared error and a regularization term which uses the squared network weights [31].

The Bayesian regularization [70] determines the weights of the two terms based on

inference techniques, which requires to iteratively compute the Hessian matrix (or its

Gauss-Newton approximation) of the performance w.r.t. the weights and biases until a
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goal is met or a maximum number of iterations is reached. The weights are not normal-

ized, and the number of hidden neurons is a hyperparameter tuned with 15 values.

61. bartMachine is the Bayesian additive regression tree (bartMachine package). This

model [62] consists of a sum of decision trees and a regularization process developed

on the parameters of the tree set. We used the default number of trees (50, the unique

value used by the caret tuning), and the hyperparameters are k (prior boundary, 3 values)

and alpha (base value in tree prior to decide if a node is terminal or not).

XVI. Principal component analysis

62. pcr develops principal component regression, and it is provided by the pls package. The

pcr models the output using classical linear regression with coefficients estimated with

PCA, i.e., using the principal components as inputs in three stages [78]: perform PCA

and select a subset of the principal components; use ordinary least squares to model

the output vector using linear regression on the selected components; calculate the final

pcr estimator transforming the modeled output vector to the original space using the

eigenvectors corresponding to the selected components, and estimate the regression

coefficients for the original outputs. The number of components is tuned with 10 values

or, in some low-dimensional datasets, the number determined by the getModelInfo caret

function.

63. icr is the independent component regression (caret package), i.e., a linear regression

model fitted using independent component analysis (ICA), instead of PCA, provided

by the fastICA package, instead of the original inputs [55]. In short, the input data are

considered a linear combination of a number of independent and non-Gaussian compo-

nents (sources), so the training set matrix is written as the product of the source matrix

and a linear mixed matrix (coefficients of the linear combination). The ICA estimates

a “separating” matrix, which multiplied by the original data provides the sources. This

matrix must maximize the non-gaussianity of the sources, measured by the neg-entropy.

The only hyperparameter is the number of independent components (10 values, always

below the number of inputs).

64. superpc develops supervised PCA: it uses supervised principal component analysis

retaining only a subset of the components which are correlated to the output. The
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number of principal components (1-3) and the threshold for retaining the input scores

(2 values). It is provided by the superpc package.

XVII. Generalized additive models

65. gam is the generalized additive model [133] using splines with the mgcv package. The

GAM is a GLM whose linear predictor is a sum of smooth functions (penalized regres-

sion splines) of the covariates. The estimation of the spline parameters uses by default

the generalized cross validation criterion. The hyperparameter is the select parameter

with values true and false: in the former case, an extra penalty term is added to each

function penalizing its wiggliness (waving).

66. gamboost is the boosted generalized additive model [12] using the mboost package.

This method is a gradient boosting ensemble which minimizes (computing its negative

gradient) a weighted sum of the loss function evaluated at the training patterns. The base

regressors are component-wise models (P-splines with a B-spline base, by default). The

only hyperparameter is the number of initial boosting iterations (mstop), with 10 values.

XVIII. Gaussian processes

67. gaussprLinear implements Gaussian process regression with linear (vanilladot) kernel

using the kernlab package (function gausspr).

68. gaussprRadial uses the same function with Gaussian (rbfdot) kernel, with spread au-

tomatically calculated (option kpar=1).

69. gaussprPoly is the same method with polynomial (polydot) kernel, tuning the kernel

hyperparameters degree and scale (3 values each one).

XIX. Quantile regression

70. rqlasso develops quantile regression with LASSO penalty, using the rq.lasso.fit in the

rqPen package. The quantile regression models optimize the so-called quantile regres-

sion error, which uses the tilted absolute value instead the square as RMSE. This tilted

function applies asymmetric weights to positive/negative errors, computing conditional

quantiles of the predictive distribution. The qrlasso method fits a quantile regression

model with the LASSO penalty [80], tuning the lambda hyperparameter (10 values).
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71. rqnc performs non-convex penalized quantile regression, with the rq.nc.fit function

in the previous package. This regressor performs penalized quantile regression using

local linear approximation [137] to maximize the penalized likelihood for non-convex

penalties. The two hyperparameters are lambdas (10 values) and 2 penalty types: MCP

(minimax concave penalty) and SCAD (smoothly clipped absolute deviation).

72. qrnn is the quantile regression neural network [13], with the qrnn package. A QRNN

is a neural network where the transfer function is a ramp, being the error function the

quantile regression error. The hyperparameters are number of hidden neurons and the

penalty for weight decay regularization (7 and 3 values respectively).

XX. Other methods

73. lars is the least angle regression [26] using the Lars package. Lars is a model selection

method which is less greedy than the typical forward selection methods. It starts with

zero coefficients for all the inputs and finds the input i most correlated with the output,

increasing step-by-step its coefficient until another input j has high correlation with the

current residual (error, or difference between desired and real output). Lars increases

the coefficients of inputs i and j in the equiangular direction between inputs i and j

until some other input k is so correlated with the residual as input j. Then, it proceeds

in the equiangular direction among i, j and k, which is the “least angle direction”, and

so on until all the coefficients are non-zero (i.e., all the inputs are in the model). The

lasso and fraction options are specified for training and prediction respectively, and the

fraction hyperparameter is tuned with 10 values. The number of terms is tuned with 10

values.

74. earth is the multivariate adaptive regression spline (MARS) using the earth package

[34]. It uses a expansion of product spline functions to model non-linear data and inter-

actions among inputs. The spline number and parameters are automatically determined

from the data using recursive partitioning, and distinguishing between additive contri-

butions of each input and interactions among them. The functions are added iteratively

to reduce maximally the residual, until its change is too small or a number of iterations

is reached. The maximum number of terms in the model is tuned with 15 values.

75. ppr performs the projection pursuit regression [36], in the stats package. The ppr mod-

els the output as a sum of averaging functions (mean, median, etc.) of linear combina-
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tions of the inputs. The coefficients are iteratively calculated to minimize a projection

pursuit (fitting criterion, given by the fraction of unexplained variance which is ex-

plained by each function) until it falls below a predefined threshold.

76. sbc is subtractive clustering and fuzzy c-means rules [17], using the frbs package. This

method uses SBC to get the cluster center of a fuzzy rule-based system for classifica-

tion or regression. Initially, each training pattern is weighted by a potential function

which decreases with its distances to the remaining centers. The center with the high-

est potential is selected as a cluster center, and the potential of the remaining centers

are updated. The only hyperparameter is the neighborhood radius, tuned with 7 values

usually between 0 and 1. The selection of new cluster center and potential updating is

repeated until the potentials of the remaining patterns are below a pre-specified fraction

of the potential of the first cluster center. Once all the centers are selected, they are

optimized using fuzzy C-means.

3.2 Experimental setup

We run the 76 previous regressors on a collection composed by 66 regression datasets se-

lected from the UCI Machine Learning Repository [3]. For the current study, we selected 44

out of the 63 datasets labeled as “Regression” by the UCI repository 3, plus other two datasets

(Breast cancer Wisconsin original and prognostic, included in the “Classification” UCI list),

which are listed in Table 3.1. For space reasons, the table only lists the first two words of

the original name of each dataset. The remaining 26 datasets were discarded due to diverse

reasons. The “Amazon Access Samples” dataset does not explain what is the output. The

“Educational Process Mining (EPM): A Learning Analytics Data Set” has time-series data

with a very complex format. The “Challenger USA Space Shuttle O-Ring” has too few pat-

terns (23) and inputs (3). The data are missing in the “Improved Spiral Test Using Digitized

Graphics Tablet for Monitoring Parkinson’s Disease” dataset. The “NoisyOffice” dataset is

difficult to read because it is composed by printed text images. We were unable to decide the

output for the “Tennis Major Tournament Match Statistics” dataset. For large datasets, only

the first 2000 patterns are used. The reason is that many regressors are not able to train and

test with large datasets, and they give memory errors or simply they do not ever finish.

3http://archive.ics.uci.edu/ml (visited March, 29, 2017).
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Although we selected 46 UCI datasets, some of them generated several datasets, one for

each data column which can be used as output for regression. This is the reason why some

original datasets in column 1 give several datasets in column 2 (e.g., the Air quality dataset

gives five datasets). Therefore, we achieved a list of 66 datasets. All the constant, repeated and

collinear inputs, whose NA coefficients in a linear regression model using the lm(...) function

in the R stats package, are removed from the dataset. For example, the “Blog feedback”

dataset reduced its inputs from 280 to 13. On the contrary, those inputs with discrete values,

they are replaced by dummy (also called indicator) inputs. For each discrete input with n

values, it is replaced by n− 1 dummy inputs with values zero or one: the first value of the

original discrete input is codified as zero values for the n−1 dummy inputs; the second value

is codified as 1 in the first dummy variable and zero in the remaining ones; the third value is

codified as 1 in the second dummy input, and so on. Therefore, those datasets with discrete

inputs increase the number of inputs, e.g. dataset “Student perf. mat.” increases its inputs

from 32 to 77. In the Table 3.1 those #inputs column where appear two numbers (i.e. 8/23),

the first one is the original #inputs, and the second one is the number of inputs used effectively

by the regressors, after removing constant, repeated and collinear inputs, and after replacing

discrete inputs by their corresponding dummy variables.

Ten random partitions are generated for each dataset, using the 50% for training, 25%

for validation (in hyperparameter tuning) and 25% for test. Each regressor is trained on the

ten training partitions for each combination of its hyperparameter values, and tested on its

corresponding validation partition [64]. The performance measure that we use is the root

mean square error (RMSE), defined as:

RMSE =

√

1
N

N

∑
i=1

(yi −di)2 (3.1)

where N is the number of test patterns, being yi and di the regressor and the desired (right)

outputs respectively. For each combination, the average RMSE over the ten partitions is

calculated, and the one with the lowest RMSE is selected for testing. Finally, the regressor

is trained, using this selected combination of its hyperparameter values, on the ten training

partitions, and tested on the ten test partitions. The average RMSE over the ten test sets is

used as the final quality measure. Some regressors which are specially sensitive to collinear

inputs are trained, for each partition, using only those inputs which are not collinear. Although

collinear inputs have been removed from the dataset in the initial preprocessing, sometimes it

happens that for certain partition the training patterns have several collinear inputs, which are
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Original Datasets #Patterns #Inputs Original Datasets #Patterns #Inputs

Air quality

CO

1230 8

GPS trajectories 163 10
NMHC Greenhouse gas 2000 326

NO2 Housing 452 13
NOx Individual household 2000 6/5
O3 Insurance company 2000 85/439

Auto_MPG 398 8/23 Istanbul stock 536 8

Automobile 205 26/66 KEGG reaction 2000 27/25

Bike sharing
day 731 13/30 KEGG relation 2000 22/17
hour 2000 14/42 Online news 2000 59/55

Blog feedback 2000 280/13 Online video video-trans. 2000 20/8

Breast Wisc. wbc 699 9/81 Parkinson speech 1040 26

B. W. diagnosis wdbc 569 30
Parkinsons tel.

motor
2000 16

B. W. prognostic wpbc 198 33/32 total

Buzz social buzz-twitter 2000 77 Physicochem. prop. 2000 9

Com. & crime com-crime 1994 122 Relative CT slices 2000 385/355

C. & C. unnorm. 2000 124/126 Servo 167 4/15

Computer hardware com-hd 209 7 Skillcraft master 2000 18

Concrete compressive cond-compress 1030 8 SML2010 2000 21/18

Concrete slump
slump

103
9

Student perf.
mat 395 32/77

comp
7

por 649 32/56
flow Tamilnadu electr. elec.hour. 2000 4/3

Condition based
compress

2000 16/13
Twin gas sensor 2000 8

turbine
UJIIndoorLoc

floor
1999 528/373

Energy efficiency
cool

768 8/7
lat

heat long

Fertility 100 9/16

UJIIndoorLoc-Mag

curve-lat

2000
9

Forestfires 517 12/39 curve-long
Gas sensor drift gas-drift 2000 129 line-lat

10Gas sensor flow gas-flow 58 438/57 line-long

Geogr. origin

geo-lat

1059
116/72

wiki4HE 913 52/240
geo-long

Wine quality
red 1599 11

geo-music-lat
68

white 2000 11
geo-music-long Yacht hydro. 308 6

Table 3.1: Collection of 66 datasets from the UCI repository: original name in the UCI repository; datasets created
from the original one; number of patterns and inputs, before and after preprocessing.

not collinear considering the whole dataset. That is the reason why these inputs are discarded

for these regressors, which otherwise give errors. This happens for regressors earth, evtree,

foba, glm, icr, krlsRadial, lasso, lm, nnls, nodeHarvest, plsRglm, qrnn, ridge, SBC and spls.

Obviously, discarding collinear inputs by partitions only happens for certain datasets. All the

inputs and the output are pre-processed to have zero mean and standard deviation one. Some

regressors gave errors for some datasets. In these cases, the programs are configured to give

the mean of the desired outputs, which is zero. Most regressors have one, two, three or four
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tunable hyperparameters. As well as the RMSE, another performance measure that we also

use is the correlation coefficient, defined as:

Correlation =

{

N

∑
i=1

(yi − ȳ)

}{

N

∑
i=1

(di − d̄)

}

σ(y)σ(d)
(3.2)

ȳ =
1
N

N

∑
i=1

yi, d̄ =
1
N

N

∑
i=1

di (3.3)

σ(y) =

√

√

√

√

1
N

(

n

∑
i=1

(yi − ȳ)2

)

, σ(d) =

√

√

√

√

1
N

(

n

∑
i=1

(di − d̄)2

)

(3.4)

where ȳ and σ(y) are the mean and standard deviation of y1, . . . ,yN , respectively, and the same

for d1, . . . ,dN .

Regressor #Datasets Datasets

nodeHarvest 27 bike-day, UJ-lat, twin-gas-sensor, buzz-twitter, air-quality-NMHC, video-transcode, com-
crime-unnorm, geo-lat, wine-red, air-quality-O3, skill-craft, KEGG-relation, blog-feedback,
gas-drift, SML2010, UJ-MagLine-lat, wine-white, air-quality-NO2, com-crime, UJ-
MagLine-long, air-quality-NOx, bike-hour, physico-protein, KEGG-reaction, park-total-
UPDRS, park-motor-UPDRS and UJ-long

qrnn 6 greenhouse-net, CT-slices, UJ-long , UJ-floor , UJ-lat, insurance-coil

brnn 5 wiki4HE, insurance-coil, UJ-long , UJ-floor , UJ-lat

randomGLM 3 gas-drift, insurance-coil and com-crime-unnorm

rqlasso 3 wiki4HE , wbc , insurance-coil

rqnc 2 wiki4HE, insurance-coil

Table 3.2: List of regressors (and datasets) whose execution did not finish within 150 h. or required more than 128
GB RAM.

3.3 Results and discussion

We run a collection of 76 regressors over 66 datasets, developing a total of 5016 experiments.

These experiments were developed on the CiTIUS cluster, using Intel Xeon E5-2650L mi-

croprocessors with 64 GB RAM. As commented above, those regressors which gave errors

for some partitions or combinations of the tunable hyperparameters are evaluated as if they

give the mean output, which is zero because the desired output is preprocessed to have zero

mean. Additionally, some regressors did not finish for certain datasets (see Table 3.2), either

due to a huge memory consumption (more than 128 GB) or computation time (an upper limit
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Figure 3.1: Friedman rank of RMSE (upper panel) and correlation (lower panel) for the 20 best regressors.

of 150 hours or 6.25 days was set). These combinations of regressor-dataset which did not

finish are 46 of 5016, which represents 0.92% of the total experiments. The nodeHarvest had

a specially bad behavior, because it did not finished for 27 datasets, which represents 40.9%

of the datasets, and randomGLM overcame the memory limit for 3 datasets. The remaining

regressors did not finish within the 150 hours deadline.

In order to develop a comparison of the different regressors over the collection of datasets,

we used the Friedman rank [37] of the RMSE for the whole regressor collection. This rank



3.3. Results and discussion 51

RMSE rank Correlation rank

Order Regressor Rank Regressor Rank Avg. correl. p-value

1 elm-kernel 11.4 elm-kernel 10.5 0.79198 –
2 svr 11.8 svr 11.7 0.79432 1
3 extraTrees 13.4 cubist 12.1 0.78843 1
4 rf 13.4 extraTrees 13.7 0.79071 1
5 RRF 14.3 rf 14.6 0.78632 1
6 bstTree 15.3 RRF 15.0 0.78611 1
7 cubist 15.5 bstTree 15.6 0.77836 1
8 gbm 17.8 gbm 17.4 0.77304 1
9 penalized 19.0 penalized 18.6 0.77478 0.99999

10 bagEarth 20.6 avNNet 20.4 0.76830 0.99001

11 avNNet 22.1 qrf 20.7 0.77053 0.98697
12 M5 22.6 bagEarth 21.9 0.75025 0.83450
13 brnn 22.7 brnn 23.7 0.70599 0.56961
14 qrf 23.7 xgbTree 25.1 0.75767 0.20598
15 earth 25.2 earth 26.4 0.74607 0.05424
16 xgbTree 25.3 M5 26.7 0.75375 0.08772
17 cforest 25.4 cforest 27.8 0.73645 0.02051

18 gaussprPoly 27.4 dlkeras 28.4 0.72999 0.01010
19 krlsRadial 27.9 gaussprPoly 29.5 0.69821 0.00290
20 blackboost 29.1 krlsRadial 29.9 0.65848 0.00129

21 treebag 30.5 ppr 30.4 0.72542 0.00084
22 bag 32.6 treebag 31.1 0.74875 0.00035
23 grnn 32.7 blackboost 31.7 0.68776 0.00011
24 kknn 33.1 rvmRadial 32.2 0.72535 0.00008
25 lars 33.3 kknn 33.3 0.73088 0.00001
26 foba 33.5 svmRadial 33.4 0.73238 0.00001
27 ppr 33.8 foba 33.8 0.68832 0.00001
28 spikeslab 33.9 grnn 33.9 0.72847 0
29 dlkeras 34.1 lars 34.2 0.71300 0
30 rvmRadial 34.2 gaussprRadial 34.7 0.72400 0

31 glmboost 35.2 simpls 36.1 0.70851 0
32 gaussprRadial 35.5 bag 36.3 0.69490 0
33 svmRadial 36.3 glmboost 36.8 0.67369 0
34 simpls 36.8 spikeslab 36.9 0.67195 0
35 kernelpls 38.2 ridge 37.4 0.66220 0
36 BstLm 38.7 kernelpls 37.7 0.70214 0
37 spls 39.6 lasso 39.1 0.70074 0
38 icr 39.7 plsRglm 39.2 0.67618 0

Table 3.3: Friedman rank of the RMSE (left) and of the correlation (right), average correlation and p-value of the
Posthoc Friedman Nemenyi test comparing the best regressor to the remaining ones. Continued in Table
3.4.

evaluates the position in which each regressor is, in average over all the datasets, when the

measure is sorted by decreasing performance (in our case, by increasing RMSE). This rank

is calculated as follows: let ri j = 0, for i = 1, . . . ,n and j = 1, . . . ,m, being n and m the
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RMSE rank Correlation rank

Order Regressor Rank Regressor Rank Avg. correl.

39 plsRglm 39.7 bayesglm 39.4 0.67650
40 ctree2 40.3 rqlasso 39.6 0.68176

41 evtree 41.2 glm 39.8 0.66703
42 SBC 41.2 spls 39.9 0.68100
43 rqlasso 41.6 BstLm 40.1 0.67797
44 rpart 41.6 SBC 40.8 0.66650
45 lasso 41.7 gaussprLinear 40.8 0.66061
46 ridge 42.0 lm 40.8 0.66703
47 glmStepAIC 42.7 glmStepAIC 41.1 0.66918
48 bayesglm 43.0 icr 41.6 0.67397
49 glm 43.2 rlm 41.8 0.66732
50 randomGLM 43.3 rqnc 42.0 0.68974

51 relaxo 43.4 rpart 42.2 0.70422
52 lm 44.2 gam 42.5 0.65881
53 gaussprLinear 44.3 evtree 42.5 0.67557
54 nodeHarvest 44.3 randomGLM 42.8 0.51610
55 rqnc 44.4 ctree2 43.6 0.68371
56 elm 44.7 relaxo 45.3 0.53902
57 rlm 44.8 nodeHarvest 46.5 0.39834
58 gamboost 45.1 elm 47.9 0.66668
59 gam 45.3 gamboost 48.2 0.34728
60 rbf 48.1 xgbLinear 48.9 0.54951

61 bstSm 48.3 pcaNNet 49.1 0.63487
62 xgbLinear 49.3 qrnn 50.1 0.34677
63 nnls 50.6 nnls 50.4 0.59542
64 qrnn 51.0 mlpWeightDecay 50.6 0.64055
65 enpls.fs 53.1 bstSm 51.3 0.26817
66 partDSA 56.3 rbf 51.9 0.55881
67 pcaNNet 57.6 enpls.fs 55.1 0.44590
68 mlpWeightDecay 57.8 partDSA 58.6 0.55021
69 pcr 59.0 bdk 61.1 0.48553
70 mlpWeightDecayML 61.2 superpc 61.5 0.39352

71 Boruta 61.4 pcr 64.0 0.39539
72 dnn 61.6 mlpWeightDecayML 64.0 0.46150
73 superpc 62.1 dnn 65.9 0.36021
74 bdk 62.5 Boruta 67.7 0.01491
75 bartMachine 72.2 bartMachine 73.8 -0.03007
76 glmnet 75.8 glmnet 74.7 -0.04054

Table 3.4: Continuation of Table 3.3.

number of regressors and datasets, respectively. For each dataset j, the RMSE values of

all the regressors are sorted increasingly. For each regressor i let be ri j = k, where k is the

position of the regressor i for dataset j. The Friedman rank of regressor i is the average of

ri j for j = 1, . . . ,m, i.e., the average position of regressor i over all sorting of RMSE for the
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different datasets. For example, a rank of 5 means that the regressor is, in average over all the

datasets, the 5th best regressor.

The Figure 3.1 plots the Friedman rank for the RMSE and correlation (in this case, the

correlation must be sorted decreasingly) for the best 20 regressors. The extreme learning

machine (elm-kernel) achieves the best rank, followed by the support vector regression (svr)

with LibSVM and Gaussian kernel, extraTrees (a forest of extremely randomized regression

trees) and the random forest (rf). Both the RMSE and correlation ranks are very similar,

specially in the first positions. The Tables 3.3 and 3.4 report the complete Friedman ranks

for RMSE and correlation for the 76 regressors. The column “Avg. correl.” reports the

average correlation of each regressor over all the datasets. We do not report the average RMSE

of each regressor over all the datasets because this measure has different ranges for each

dataset, depending on the data complexity, so we can not average them directly. However, the

correlation coefficient ranges between -1 and +1 for any dataset, so it can be averaged.

RMSE Correlation

Regressor #times best Regressor #times best Regressor #times best Regressor #times best

penalized 17 SBC 2 penalized 16 SBC 2
svr 10 brnn 2 svr 11 brnn 2

extraTrees 9 qrnn 2 extraTrees 9 bstTree 2
cubist 6 elm-kernel 1 cubist 6 qrnn 2

avNNet 4 grnn 1 avNNet 5 elm-kernel 1
gbm 4 rf 1 qrf 4
qrf 4 bstTree 1 glm 3

bagEarth 2 gbm 3

Table 3.5: List of the regressors which achieve the best RMSE (left part) or correlation (right part) for some dataset.

Following the suggestions in [22], we also developed a post-hoc Friedman-Nemenyi test,

using the PMCMR package [99] provided by the R language, in order to evaluate the statistical

significance of the differences in the correlation coefficients of the different regressors. The

last column of Table 3.3 reports the p-values of the comparisons between the best regressor

(elm-kernel) and the remaining ones. The p-values of the 9 best regressors are almost 1, and

it decreases very fast in such a way that for cforest (position 17) the p-value is already under

0.05 (the threshold value). Therefore, the differences between elm-kernel and regressors under

position 17 are statistically significant.

Given the meaning of the Friedman rank, it is also interesting to see, for each regressor,

how many datasets it achieves the best result. The Table 3.5 lists the regressors which achieve
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Figure 3.2: Average RMSE (upper panel) and correlation (lower panel) over all the datasets for the 20 best
regressors.

the lowest RMSE (left columns) and the highest correlation (right columns) for some dataset.

Although both lists are not exactly equal, three regressors overcome on both lists: penalized,

with 16-17 hits, svr (10-11 hits) and extraTrees (9 hits). In fact, the three regressors represent

36 of 66 datasets. Other regressors which are the best for some datasets are cubist (a M5 rule-

based regressor with corrections based on nearest neighbors in the training set, which belongs

to the family of prototype models), avNNet, gbm and qrf. The elm-kernel, which is globally
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the best one, is only the best for one dataset. This is not surprising, because a regressor may

be the best for several datasets and however work poorly in other cases, so a global evaluation

is required. In fact, a regressor may be very near to the best result for several datasets and

never be the best.

The Figure 3.2 plots, for the 20 best regressors according to the Friedman rank, the aver-

age RMSE and correlation over all the datasets. Note that averaging RMSE is not statistically

acceptable, because the RMSE takes values in ranges which are different for each dataset.

However, this does not happen with correlation, so averaging correlation (right panel) is sta-

tistically correct. Therefore, we only include the average RMSE plot for illustrative purposes,

while the most relevant one is the right plot with the average correlation. Anyway, both plots

show results similar to the Friedman rank, with the difference that svr is slightly better than

elm-kernel. The absolute values of the correlation are also relevant in order to see how well,

in average, behave the best regressors. We see that the highest average correlation is not so

high (0.8), so the datasets are not so easy to predict.

The Figure 3.3 plots the best correlation achieved by some regressor, which in general

is different, for each dataset sorted decreasingly (38 regressors in each panel). For 41 of 66

datasets, the correlations achieved by some regressor are above 0.9, which is a very good

result. Among the 25 remaining datasets, 8 have correlations between 0.7 and 0.9, which are

moderate, but for the last 17 datasets no regressor was able to learn correctly the data, with

correlation values under 0.7 up to 0.2.

In order to see how well the best regressor (elm-kernel) behaves, it is interesting to com-

pare, for each dataset, the best regressor (according to RMSE or correlation) and the result

(RMSE or correlation) achieved by elm-kernel (see Figure 3.4). With respect to RMSE (upper

panel), the elm-kernel follows the best value, excepting two datasets whose best RMSE is near

zero (gas-flow-mod, where qrf achieves RMSE=0 while elm-kernel achieves RMSE=0.54,

and greenhouse-net, where penalized achieves RMSE=0.02 while elm-kernel achieves RMSE=

0.75) and another one for what the difference is about 0.2. The third dataset where elm-kernel

is clearly below the best is wpbc, where penalized and elm-kernel achieve RMSE=0.69 and

RMSE= 0.98, respectively. Remember that penalized is in the 9th position of the Table 3.3

with a Friedman rank of 18.6, which means that in average over all the datasets, penalized is

the 18th best regressor. Considering correlation (lower panel of Figure 3.4), the differences

between elm-kernel and the best result seem to be reduced with respect to RMSE: for the 37

datasets in the left, the correlation of elm-kernel is above 0.9, and the differences for the 29
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Figure 3.3: Best correlation achieved by some regressor for each dataset.
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Figure 3.4: Upper panel: best RMSE, in blue, and RMSE achieved by elm-kernel (in red) for each dataset, sorted
by increasing elm-kernel RMSE. Lower panel: the analogous plot for correlations, sorted by decreasing
values.

remaining datasets are not very high, excepting the three datasets that we mentioned for the

RMSE. However, for dataset gas-flow-mod, the correlation of elm-kernel is 0.8, which is not

too low. For dataset greenhouse-net the difference in RMSE also reflects in correlation (0.91

and 0.47 for penalized and elm-kernel, respectively). The correlation values of elm-kernel are
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low on the right end of the plot, but the best correlations are also bad (e.g. 0.67 and 0.24 for

penalized and elm-kernel), so the behavior of elm-kernel is expectable.
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Figure 3.5: Percentage of the best correlation achieved by the elm-kernel, for each dataset, sorted by decreasing
values.

The Figure 3.5 plots the percentage of the best correlation achieved by the elm-kernel, for

all the datasets. For most datasets, the elm-kernel achieves a correlation which is above 90%

of the best correlation achieved by any regressor. Specifically, for 57 of 66 datasets, which

represents 86.4% of the datasets, elm-kernel is above or about 90% of the best correlation,

only for 9 datasets it is below 90%, and it never decreases under 30%.

The Table 3.6 reports, for each one of the 20 regressor families, the best regressor of that

family, its position in the Friedman rank for correlations (see Tables 3.3 and 3.4), its Fried-

man rank and its average correlation. The families are sorted by the position of their best

regressor in the Friedman rank. The neural networks and support vector machines achieve

the two best results, but there are many other families with good results, as prototype models,

whose best regressor cubist (M5 rule-based model with corrections based on nearest neigh-

bors) achieves the 3rd position in the Friedman rank, random forests (4th position), boosting

(gradient boosting with regression trees, 7th position) and generalized linear regression (pe-

nalized linear regression, 9th position).

The Figure 3.6 shows a slightly different family sorting, by decreasing average correlation.

The plot shows a group of families, composed by the four bests (svr, elm-kernel, extraTrees
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Order Family Best regressor Position Friedman rank Avg. correl.

1 Neural networks elm-kernel 1 11.1 0.79198
2 Support vector machines svr 2 11.7 0.79432
3 Prototype models cubist 3 12.1 0.78843
4 Random forests extraTrees 4 13.6 0.79071
5 Boosting ensembles bstTree 7 15.4 0.77836
6 Generalized linear regression Penalized 9 18.8 0.77478
7 Bagging ensembles bagEarth 12 22.0 0.75025
8 Bayesian models brnn 13 23.7 0.70599
9 Regression trees M5 15 26.4 0.75375

10 Deep learning dlkeras 18 28.4 0.72999
11 Gaussian processes gaussprPoly 19 29.5 0.69821
12 Least squares krlsRadial 20 30.0 0.65848
13 Ridge foba 28 34.0 0.68832
14 Partial least squares simpls 31 36.1 0.70851
15 Lasso lasso 39 39.1 0.700074
16 Quantile regression rqlasso 40 39.6 0.68176
17 Other methods SBC 44 40.8 0.66650
18 Linear regression lm 45 41.0 0.66703
19 Principal component analysis icr 48 41.7 0.67397
20 Generalized additive models gam 53 42.4 0.65881

Table 3.6: Regressor families sorted by the Friedman rank of its best regressor according to the correlation
coefficient (its average value is reported in the last column).

and cubist) with average correlations above 0.78. A second group composed by bstTree and

penalized are about 0.78, and a third group composed by M5 (family regression trees) and

bagEarth (family bagging) are about 0.75. After these regressors, the average correlations

decrease very fast: dlkeras (family deep learning) is about 0.73, and the following four fam-

ilies are already about 0.70: simpls (partial least squares), brnn (Bayesian models), lasso

and gaussprPoly (Gaussian processes). The last seven regressors are clearly under 0.7: foba,

rqlasso, icr, lm, SBC, gam and krlsRadial, which belong to families ridge, quantile regression,

principal component analysis, linear regression, other methods, generalized additive models

and least squares, respectively.

The Table 3.7 reports the positions in the Friedman rank of the regressors within families,

excluding the best regressor of each family. We would highlight some issues. 1) For neural

networks, the good results of avNNet (ensemble of multi-layer perceptrons) and grnn (gener-

alized regression neural networks), and the bad results of the elm (extreme learning machine,

much worse than elm-kernel) and rbf (radial basis functions). The case of elm suggests that it

is competitive mainly with Gaussian kernel. 2) With support vector machines, the rvmRadial

(relevance vector machine with Gaussian kernel) works even slightly better than svmRadial.
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Figure 3.6: Average correlation (sorted decreasingly) of the best regressors of each family.

Since the svmRadial in the kernlab package seems to use the same LibSVM implementation

as svr, perhaps the cause of the difference between them is the reduced collection of hyperpa-

rameter values for svmRadial, which are generated by the getModelInfo function of the caret

package. 3) All the random forest regressors work well (within the first 17 positions), except

Boruta, which suggests that the feature selection is not working properly. 4) Among boost-

ing regressors, the gbm (position 8, just one below bstTree) and xgbTree are competitive. 5)

The R implementation of the deep learning (dnn) is not competitive to the Keras module in

Python.

The discussion about elapsed time spent by each regressor leads us to develop a Friedman

rank of these times over all the datasets. We can not simply average the times of each regressor

over all the datasets due to the large difference between the times spent for different datasets,

whose number of patterns and inputs are very different. The measurements include training

and test times for test stage, divided by the number (10) of test trials. We do not include the

time spent for hyperparameter tuning, because it is obviously conditioned by the number of

tunable parameters and the number of values tried for each hyperparameter. The Table 3.8

reports the Friedman rank for the times over all the datasets. The first conclusion is that,

unfortunately, the fastest regressors are also worst ones: dnn, Boruta, pcr, glm and others.
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Family Regressor Pos. Regressor Pos. Regressor Pos. Regressor Pos.

Neural networks avNNet 10 grnn 27 elm 58 pcaNNet 61
mlpwd 64 rbf 66 bdk 69 mlpwdML 72

Support vector machines rvmRadial 24 svmRadial 26

Prototype models kknn 25

Random forests rf 5 RRF 6 qrf 11 cforest 17
Boruta 74

Boosting ensembles gbm 8 xgbTree 14 blackboost 23 glmboost 33
BstLm 43 randomGLM 54 xgbLinear 60 bstSm 65

Generalized linear regression glm 42 glmStepAIC 46 glmnet 76

Bagging ensembles treebag 22 bag 32

Bayesian models bayesglm 37 bartMachine 75

Regression trees rpart 51 evtree 52 ctree2 55 nodeHarvest 57
partDSA 68

Deep learning dnn 72

Gaussian processes gaussprRadial 30 gaussprLinear 47

Least squares kernelpls 35 plsRglm 38 spls 41 enpls.fs 67

Ridge spikeslab 34 ridge 36

Partial least squares nnls 63

Lasso relaxo 56

Quantile regression rqnc 49 qrnn 62

Other methods lars 29 earth 16 ppr 21

Linear regression lm 45 rlm 50

Principal component analysis superpc 70 pcr 71

Generalized additive models gamboost 59

Table 3.7: Positions of the regressors, grouped by families, in the Friedman rank (data extracted from Tables
3.3-3.4), in the same order as Figure 3.6. The acronym mlpwd means mlpWeightDecay.

Conversely, the two slowest regressors are the best ones: elm-kernel and svr. For illustrative

purposes, the average times spent by elm-kernel and svr are 1772 seconds and 5705 seconds

respectively, while the fastest regressor (dnn) spent only 3.21 seconds. Actually, the elm-

kernel is about 5 times faster than svr. Among the 20 regressors with the highest correlations,

the M5 exhibits the best time rank, being in the position 16 of the correlation rank (average

time 4.13 seconds) and in the position 6 of the time rank. Besides, regressor earth is in the

positions 15 and 17 of the correlation and time ranks, respectively (average time 6.0 seconds).

They are the only regressors which are among the 20 first of both ranks.

Since there is no clear trade-off between correlation and time, we can discuss the times

of the 20 best regressors according to correlation. The Figure 3.7 plots the time rank against

the correlation rank for these regressors. The two best regressors elm-kernel and svr are very

high on the left, which means low correlation rank (good performance) and high time rank

(low speed). Perhaps the best trade-off between correlation and time might be provided by
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Pos. Regressor Rank Pos. Regressor Rank

1 dnn 2.55 39 gaussprLinear 36.09
2 Boruta 5.53 40 rqnc 38.82
3 pcr 7.89 41 icr 39.14
4 glm 12.11 42 avNNet 40.29
5 ridge 12.52 43 plsRglm 40.48
6 M5 14.02 44 treebag 42.30
7 glmnet 16.98 45 penalized 43.24
8 superpc 17.00 46 gamboost 44.79
9 kknn 19.55 47 glmStepAIC 45.17
10 rvmRadial 20.70 48 cubist 45.64
11 foba 20.91 49 brnn 46.79
12 gam 21.29 50 partDSA 47.12
13 kernelpls 21.91 51 rf 48.32
14 rpart 23.20 52 bag 49.00
15 rqlasso 23.73 53 qrnn 49.79
16 lm 23.74 54 bagEarth 50.17
17 earth 24.00 55 BstLm 51.11
18 lars 24.05 56 enpls.fs 51.17
19 elm 24.55 57 xgbLinear 52.61
20 simpls 24.92 58 randomGLM 52.91
21 spls 25.55 59 spikeslab 53.08
22 glmboost 26.09 60 mlpWeightDecay 53.20
23 ctree2 26.11 61 rbf 53.27
24 nnls 26.33 62 bartMachine 54.52
25 extraTrees 26.89 63 RRF 54.68
26 gaussprPoly 28.00 64 mlpWeightDecayML 54.74
27 rlm 28.23 65 qrf 56.00
28 bdk 28.80 66 krlsRadial 57.35
29 relaxo 30.32 67 evtree 57.64
30 ppr 30.58 68 bstTree 57.79
31 svmRadial 31.35 69 cforest 58.62
32 gaussprRadial 31.62 70 xgbTree 65.73
33 lasso 31.95 71 SBC 67.73
34 bayesglm 34.05 72 nodeHarvest 67.83
35 bstSm 35.38 73 grnn 69.58
36 pcaNNet 35.47 74 elm-kernel 72.97
37 gbm 35.56 75 dlkeras 73.52
38 blackboost 35.71 76 svr 73.74

Table 3.8: Friedman rank of the elapsed time spent by the regressors over all the datasets.

extraTrees, whose positions are 5 and 25 in the correlation and time ranks respectively. In

fact, extraTrees spent an average time of 7.17 seg., while the fastest regressor (dnn) spends

3.21 s. The cubist regressor provides an even better correlation rank (about 12), but at the

cost of a much higher time rank (about 35) compared to extraTrees. There is a group of three

regressors (rf, RRF and bstTree) with similar correlation rank (about 15) and medium-high
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Figure 3.7: Friedman rank of the time (vertical axis) against the Friedman rank of the correlation for the 20 best
regressors in Table 3.3.

time rank (about 50-60). Another group, composed by gbm, penalized, avNNet, qrf, bagEarth

and brnn) is in the middle of both ranks (correlation about 17-24, time about 35-60). Finally,

there are other two groups: the first one, composed by M5, earth and gaussprPoly, has low

time and correlation (lower right corner); the second group, composed by xgbTree, cforest,

krlsRadial and dlkeras, is placed in the upper right corner, with high time and low correlation.

Considering globally the results of the current comparative, the best results are provided

by the neural networks and support vector machines, specifically the extreme learning ma-

chine (position 1) and the support vector regression (position 2), both with Gaussian kernels.

Cubist and extraTrees also achieve average correlations above 0.78, and can be considered

also as very competitive. The extraTrees provides the best trade-off between correlation and

elapsed time, being the third fastest regressor among the 20 more accurate ones. Other regres-

sor achieve average correlations about 0.77, such as bstTree, a gradient boosting ensemble of

regression trees and penalized linear regression, or about 0.75, such as the bagging ensemble

of multivariate adaptive regression splines (MARS) and the regression tree model (M5). None

ot the two implementations of deep learning neural networks achieves good results, but the

Keras module of Python provides an acceptable performance (about 0.72). Finally, other re-
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gressors as the Bayesian regularized neural network (brnn), Gaussian processes, least squares

and partial least squares, ridge and lasso regression, quantile methods, linear regression, prin-

cipal component analysis and generalized additive models achieve correlations between 0.70

and 0.65, and can be considered not so competitive.



CHAPTER 4

APPLICATION OF REGRESSION METHODS

TO AGRICULTURAL SOIL DATA

After the comparison of regression methods over the UCI machine learning repository datasets

developed in chapter 3, in the current chapter we will apply them to the prediction of soil pa-

rameters described in chapter 2. An automatic prediction of soil parameters should be accurate

enough to be used instead of a direct measurement of these parameters. Most of the literature

about prediction of soil parameters uses the concept of pedotransfer function (PTF): a func-

tion or algorithm which uses soil measurements to predict or estimate certain soil parameters

whose measurement is time-consuming or expensive [5]. The PTF can be formulated using

data mining, exploration and machine learning regression methods. Examples of PTF were

developed by [40] and [66] for prediction of soil total nitrogen using global soil data and water

retention of soil, respectively. The latter paper demonstrated that SVM outperformed ANN

for this task. Multiple-linear regression and ANN were used [77] to predict soil hydraulic pa-

rameters such as: field capacity, permanent wilting point, available water capacity, saturated

hydraulic conductivity and soil water content. The inputs were basic soil properties such as

sand, silt, clay, bulk density and number of pores of various diameters. The multiple-linear re-

gression method outperformed ANN, although the difference was not statistically significant.

The performance of PTF is limited by the accuracy of the prediction methods, and by spatial

and temporal variations of soil parameters. Several studies [58] focused on PTFs for the deter-

mination of water retention, and the saturated and unsaturated hydraulic conductivity in order

to solve the groundwater problem, properties which are expensive and difficult to measure.
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Extended nonlinear regression, MLR and ANN were used [79] to estimate water-retention

PTFs on Australian soil datasets. The ROSETTA software1 is a user friendly tool [117] to

access five PTFs to estimate hydraulic properties. Likewise, the soil inference systems (SIN-

FERS) allows to select the PTFs with the minimum variance using knowledge rules [92].

Consequently, research about PTFs is being demanded because they are used in all branches

of soil science for describing any mathematical relationships among soil properties, and they

allow to estimate missing soil parameters [91]. After reviewing the literature about PTFs, our

objective is to use regression techniques as PTFs that predict village-wise soil fertility indices

for OC, K2O, P2O5, Fe, Mn, and Zn, as well as soil pH and nutrients N2O, P2O5 and K2O,

using data from the Indian region of Marathwada. Prediction of soil and crop type can not be

included into this regression framework because the outputs are discrete, so they can only be

treated as classification problems.

K2O (kg/ha) Zn (PPM)

Low < 0.6 108
Medium 0.6-1.2 108-280
High > 1.2 280

Table 4.1: Intervals defined by the Indian Government [23] for the calculation of village-wise soil fertility indices
of K2O and Zn nutrients [84, 63].

4.1 Regression problems

Good farm practice targets to maintain the several soil parameters that are responsible to opti-

mize the yields of crops in Eco-friendly ways. There is need of sustainable land management

practices for maintaining yield potential of agricultural crops. The soils of Marathwada are

intensively cultivated for crop production by introducing novel practices. However, applica-

tion of heavy doses of chemicals fertilizers deteriorates the soil health. A major factor for

soil productivity is fertility, which primarily deals with ability of soil to supply nutrients to

plants. Fertility of agricultural soil is depleting due to intensive cultivation practices and in-

adequate use of chemical fertilizers. To solve soil problems, there is a need of knowledge

about soil physical and chemical status. The village-wise soil fertility indices for OC, K2O,

P2O5, Fe, Mn and Zn are not only helpful to choose correct fertilizer doses, but also to know

about inherent excess and deficiency in them. The predicted values can be used to balance soil

1https://www.ars.usda.gov/pacific-west-area/riverside-ca/us-salinity-laboratory/docs/rosetta-model
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nutrients up to critical level in soil. Inspired by the previous concept, we apply the collection

of 76 regression techniques described in chapter 3, using the experimental setup described in

section 3.2, to predict village-wise soil fertility indices of major (OC, P2O5, K2O) and micro

(Fe, Mn, Zn) nutrients, denoted as OC-F, K2O-F, P2O5-F, Fe-F, Mn-F and Zn-F, which were

already considered in chapter 2 for classification. We also include two additional village-wise

soil fertility indices (for K2O and Zn), which are missing in chapter 2 because the available

patterns belong just to one of the classes. For the eight previous regression problems, there

are 372 patterns with 11 inputs: EC, OC, N2O, P2O5, K2O, SO4, Cu, Fe, Mn, Zn and Boron.

In order to calculate the K2O and Zn village-wise soil fertility indices (see chapter 2), we used

the formula defined in [105] and the limits listed in Table 4.1. Our study does not consider soil

N2O and Cu village-wise soil fertility indices because the available data only include patterns

of one soil nutrient level.

Fertilizer a Crop b Nutrient

3.31
Bajra(R)

0.38
Uria 3.38 4.11 N2O

1.65 0.068
13.1

Cotton(R), (I)
0.75

Super-phosphate 6.83 2.84 P2O5
8.57 0.18
6.86

Soybean(R)
0.68

Murate of potash 6.17 4.46 K2O
3.96 0.13

Table 4.2: Values of parameters a and b for the prediction of different soil nutrients and crops.

In order to maintain the soil quality and to get an optimal crop yield, it is necessary to

apply a suitable type and amount of fertilizer which avoid excess of deficiency of soil nutri-

ents N2O, P2O5 and K2O. The prediction of the levels of these nutrients is therefore useful

to calculate the right fertilizer dose, without the need of direct measurements in soil testing

laboratory. This prediction will be also useful for developing field applications which rec-

ommend amounts of specific fertilizers based on the predicted nutrients levels and the target

crop. Our available data contain the levels of the three nutrients for years 2011 to 2015. In our

study, we use the formula developed by the Mahatma Phule Agriculture University (India)

to recommend the amount of nutrient fertilizer adequate for a particular crop. The amount

A of fertilizer to apply is calculated as A = aE − bP, being E the expected crop production

(an input data) and P the predicted nutrient level. The values A and P are measured in kg/ha,

while E is measured in quintal/ha. Depending on the nutrient and crop, the parameters a and



68 Chapter 4. Application of regression methods to agricultural soil data

b take different values (see Table 4.2) and the fertilizer is different. The values of a and b in

Table 4.2 are set for black soil, being different for other soil types. For nutrients N2O, P2O5

and K2O, the corresponding fertilizer is different: uria (which contains 46% of N2O), super

phosphate (46% of P2O5) and muriate of potash (60-62% of K2O), respectively.

The following subsections discuss the results achieved by the collection of regressors for

the village-wise soil fertility indices, for the soil nutrients and for soil pH. The last section

discusses globally the results.

4.2 Prediction of OC, P2O5, K2O, Fe, Mn and Zn village-wise fertil-

ity indices

The Table 4.3 reports the RMSE for the OC village-wise soil fertility index, sorted by in-

creasing values. The extremely randomized regression trees (extraTrees) achieves the lowest

RMSE (0.564), although regularized random forests (RRF), standard random forest (rf), ran-

dom forest with feature selection (Boruta), gradient boosting of regressor trees (bstTree) and

gradient boosted machine (gbm) also achieve values about 0.57. The remaining regressors are

about 0.6, including elm-kernel and svr, which are the two best regressors in chapter 3. On

the opposite side of the table, the worst regressor is icr, with RMSE=1.17. These values can

be considered high, because the output is normalized to have zero mean and standard devia-

tion one, so the RMSE should be low (e.g. under 0.5). The Figure 4.1 (upper panel) shows

the correlations achieved by the 20 best regressors for soil OC-F problem. The four best re-

gressors are the same as in Table 4.3, with changes in their positions: Boruta, RRF, rf and

extraTrees achieved high correlation above 0.83 for the soil OC-F problem, while bstTree and

gbm are about 0.82. However cforest, elm-kernel and kknn and 6 more regressors achieved

correlations below 0.77. The lower panel of Figure 4.1 presents the scatter plot of the best

regressor, Boruta, with RMSE=0.573 and correlation 0.8355.

The results for P2O5 village-wise soil fertility index are reported by the Table 4.4. Again,

the extraTrees achieves the best RMSE alongside with RRF, gbm, quantile random forest (qrf),

Boruta, svr and rf (about 0.63). The elm-kernel works even worse (0.683), and penalized,

which also achieves good results in chapter 3, is about 0.75. The gaussprPoly is the worst

regressor, with RMSE = 8.41, alongside with ridge, gam, glm, lasso and lm, with RMSE

about 1.93, which also correspond to poor performances. The regressors from glmnet to

gaussprPoly got the lowest performances with RMSE values above 1.
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Regressor RMSE Regressor RMSE Regressor RMSE Regressor RMSE

extraTrees 0.564 treebag 0.641 lars 0.709 earth 0.772
RRF 0.57 bstSm 0.645 rqlasso 0.71 gam 0.772
rf 0.571 brnn 0.65 glmStepAIC 0.711 glm 0.772
Boruta 0.573 grnn 0.666 rqnc 0.718 lasso 0.772
bstTree 0.573 penalized 0.667 spls 0.722 enpls.fs 0.772
gbm 0.578 blackboost 0.671 foba 0.728 lm 0.772
bartMachine 0.584 rbf 0.677 dlkeras 0.729 randomGLM 0.776
qrf 0.592 ppr 0.677 xgbLinear 0.732 evtree 0.795
cubist 0.599 xgbTree 0.684 elm 0.735 superpc 0.811
nodeHarvest 0.601 simpls 0.689 plsRglm 0.748 mlpWeightDecay 0.836
svr 0.606 kernelpls 0.689 rlm 0.75 BstLm 0.838
krlsRadial 0.62 avNNet 0.689 gaussprPoly 0.759 nnls 0.845
svmRadial 0.623 SBC 0.689 bdk 0.759 pcaNNet 0.848
gamboost 0.626 relaxo 0.691 ridge 0.765 mlpWeightDecayML 0.975
elm-kernel 0.629 bagEarth 0.697 M5 0.766 dnn 1
cforest 0.632 qrnn 0.699 ctree2 0.769 pcr 1
rvmRadial 0.632 bag 0.7 bayesglm 0.769 glmnet 1.01
gaussprRadial 0.633 glmboost 0.702 gaussprLinear 0.771 partDSA 1.01
kknn 0.633 spikeslab 0.706 rpart 0.772 icr 1.17

Table 4.3: RMSE for the prediction of OC village-wise soil fertility index.

Regressor RMSE. Regressor RMSE. Regressor RMSE. Regressor RMSE.

extraTrees 0.631 gaussprRadial 0.7 randomGLM 0.814 dnn 1.01
RRF 0.634 brnn 0.704 nnls 0.814 glmboost 1.01
gbm 0.634 nodeHarvest 0.707 rqlasso 0.825 partDSA 1.01
qrf 0.635 blackboost 0.723 rqnc 0.837 dlkeras 1.08
Boruta 0.635 M5 0.741 foba 0.859 enpls.fs 1.21
svr 0.636 bag 0.744 gamboost 0.864 earth 1.27
rf 0.637 SBC 0.745 evtree 0.865 bstSm 1.33
cubist 0.643 xgbTree 0.746 BstLm 0.88 spikeslab 1.58
bstTree 0.647 rbf 0.751 bdk 0.893 rlm 1.61
bartMachine 0.654 penalized 0.752 bagEarth 0.899 xgbLinear 1.7
svmRadial 0.659 ppr 0.756 mlpWeightDecay 0.899 glmStepAIC 1.73
krlsRadial 0.672 elm 0.779 pcaNNet 0.904 ridge 1.76
elm-kernel 0.683 relaxo 0.782 icr 0.929 bayesglm 1.86
cforest 0.683 spls 0.786 superpc 0.939 gaussprLinear 1.91
rvmRadial 0.684 simpls 0.786 mlpWeightDecayML 0.952 gam 1.93
avNNet 0.686 kernelpls 0.786 pcr 0.958 glm 1.93
kknn 0.687 qrnn 0.797 lars 0.964 lasso 1.93
grnn 0.691 rpart 0.806 plsRglm 0.99 lm 1.93
treebag 0.691 ctree2 0.81 glmnet 1 gaussprPoly 8.41

Table 4.4: RMSE for the prediction of P2O5 village-wise soil fertility index.

The Table 4.5 reports the RMSE for the prediction of K2O village-wise soil fertility index.

The best RMSE (0.768 using extraTrees) in this table is higher than the two previous indices,

so this dataset is more difficult. Boruta achieves RMSE (0.78), while RRF, rf and qrf are about
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Figure 4.1: Twenty best correlation values (upper panel) and scatter plot of Boruta (lower panel) for the prediction
of the OC village-wise soil fertility index in the state of Marathwada.

0.79. There is also a group of regressors with RMSE about 0.80, composed by elm-kernel,

bstTree (gradient boosting of regression trees), svr, gaussprRadial (Gaussian processes with

radial kernel) and nodeHarvest (simple interpretable tree ensemble for high-dimensional re-

gression), which in the soil problems does not exhibit problems related to very slow execution.

The remaining regressors are about 0.81 until the worst value (1.58), achieved by rlm (robust

linear regression).
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Regressor RMSE. Regressor RMSE. Regressor RMSE. Regressor RMSE.

extraTrees 0.768 cubist 0.851 evtree 0.941 spls 1.13
Boruta 0.78 avNNet 0.86 blackboost 0.945 rqnc 1.18
RRF 0.793 grnn 0.861 ppr 0.946 spikeslab 1.19
rf 0.795 earth 0.861 ctree2 0.966 plsRglm 1.21
qrf 0.795 bstSm 0.863 dnn 0.986 gamboost 1.27
elm-kernel 0.8 xgbTree 0.887 mlpWeightDecayML 0.986 foba 1.29
bstTree 0.805 SBC 0.888 glmnet 0.988 enpls.fs 1.31
svr 0.806 rbf 0.891 partDSA 0.989 randomGLM 1.34
gaussprRadial 0.806 mlpWeightDecay 0.894 nnls 0.991 xgbLinear 1.39
nodeHarvest 0.807 pcaNNet 0.897 pcr 0.991 M5 1.41
bartMachine 0.815 brnn 0.901 icr 1.01 ridge 1.41
krlsRadial 0.82 qrnn 0.903 dlkeras 1.02 glmStepAIC 1.41
treebag 0.826 simpls 0.903 gaussprPoly 1.04 bayesglm 1.47
gbm 0.826 kernelpls 0.903 superpc 1.05 gaussprLinear 1.5
svmRadial 0.834 bag 0.913 lars 1.06 gam 1.51
cforest 0.835 relaxo 0.917 rqlasso 1.06 glm 1.51
rvmRadial 0.839 elm 0.921 BstLm 1.06 lasso 1.51
kknn 0.844 rpart 0.926 bdk 1.07 lm 1.51
penalized 0.849 bagEarth 0.941 glmboost 1.12 rlm 1.58

Table 4.5: RMSE for the prediction of K2O village-wise soil fertility index.

With respect to the prediction of Fe village-wise soil fertility index (see Table 4.6), ex-

traTrees achieves the lowest RMSE (0.606), followed by a group of three random forests (rf,

RRF and Boruta) about 0.61. The gradient boosting ensembles bstTree and gbm are about

0.63, and cubist (M5 rule model with nearest neighbors) is about 0.65. The remaining regres-

sors are already above 0.67. The Figure 4.2 (upper panel) shows the 20 highest correlations

for this problem, exhibiting almost the same order as in Table 4.6. The best correlation (0.816

using extraTrees; the lower panel of Figure 4.2 plots its scatter plot for this dataset) corre-

sponds with a certain accuracy in prediction. The rf, RRF and Boruta achieve correlations

above 0.80, while bstTree, gbm and quantile regression forest (qrf) are about 0.79.

The extraTrees also achieves the best RMSE (0.657) for the prediction of Mn village-

wise soil fertility index (see Table 4.7). The following six regressors (bstTree, RRF, gbm, rf,

svr and Boruta, which are the same as in the previous indices) are about 0.68. The cubist,

svmRadial and qrf are about 0.69, and the remaining regressors are above 0.7 until bstSm,

with RMSE of 1.78. The deep learning neural network (dlkeras) achieves RMSE about 0.755

and is placed in the 22nd position.
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Regressor RMSE. Regressor RMSE. Regressor RMSE. Regressor RMSE.

extraTrees 0.606 grnn 0.714 bdk 0.854 BstLm 1.06
rf 0.614 xgbTree 0.725 relaxo 0.873 dlkeras 1.08
RRF 0.616 earth 0.745 nnls 0.879 spls 1.11
Boruta 0.618 avNNet 0.749 foba 0.891 plsRglm 1.13
bstTree 0.632 bag 0.76 simpls 0.892 M5 1.14
gbm 0.632 SBC 0.77 kernelpls 0.892 glmboost 1.18
qrf 0.636 gamboost 0.771 pcaNNet 0.904 enpls.fs 1.33
cubist 0.651 brnn 0.78 superpc 0.907 spikeslab 1.4
bartMachine 0.67 rbf 0.784 rqlasso 0.907 rlm 1.74
svr 0.672 blackboost 0.786 rqnc 0.918 xgbLinear 1.88
nodeHarvest 0.672 bstSm 0.786 icr 0.92 randomGLM 2.01
krlsRadial 0.672 ppr 0.8 mlpWeightDecay 0.925 bayesglm 2.05
svmRadial 0.683 qrnn 0.803 pcr 0.939 ridge 2.09
elm-kernel 0.685 ctree2 0.814 lars 0.967 gaussprLinear 2.13
treebag 0.692 rpart 0.829 mlpWeightDecayML 0.995 gam 2.14
cforest 0.696 bagEarth 0.831 gaussprPoly 1.01 glm 2.14
rvmRadial 0.699 evtree 0.839 dnn 1.02 lasso 2.14
gaussprRadial 0.703 penalized 0.84 glmnet 1.03 lm 2.14
kknn 0.711 elm 0.847 partDSA 1.03 glmStepAIC 2.22

Table 4.6: RMSE for the prediction of Fe village-wise soil fertility index.

Regressor RMSE. Regressor RMSE. Regressor RMSE. Regressor RMSE.

extraTrees 0.657 treebag 0.737 mlpWeightDecay 0.847 bdk 0.958
bstTree 0.677 avNNet 0.745 nnls 0.851 randomGLM 0.97
RRF 0.679 dlkeras 0.755 elm 0.854 dnn 0.997
gbm 0.679 earth 0.757 ctree2 0.855 glmnet 1
rf 0.681 xgbTree 0.759 glmboost 0.855 partDSA 1
svr 0.683 bagEarth 0.774 rpart 0.868 xgbLinear 1.11
Boruta 0.683 bag 0.782 rqnc 0.88 foba 1.11
cubist 0.687 rbf 0.783 evtree 0.885 rlm 1.14
svmRadial 0.692 brnn 0.79 rqlasso 0.891 ridge 1.17
qrf 0.692 M5 0.791 BstLm 0.903 bayesglm 1.22
krlsRadial 0.7 SBC 0.796 lars 0.912 gaussprLinear 1.25
rvmRadial 0.701 penalized 0.803 superpc 0.912 gam 1.26
bartMachine 0.706 blackboost 0.822 gaussprPoly 0.912 glm 1.26
gaussprRadial 0.712 qrnn 0.826 plsRglm 0.944 lasso 1.26
elm-kernel 0.713 relaxo 0.828 spls 0.945 lm 1.26
nodeHarvest 0.715 ppr 0.829 enpls.fs 0.947 glmStepAIC 1.27
cforest 0.718 simpls 0.835 mlpWeightDecayML 0.954 icr 1.32
kknn 0.719 kernelpls 0.835 spikeslab 0.955 gamboost 1.52
grnn 0.734 pcaNNet 0.842 pcr 0.957 bstSm 1.78

Table 4.7: RMSE for the prediction of Mn village-wise soil fertility index.

The best RMSE decreases to 0.582, achieved again by extraTrees, for the prediction of the

Zn village-wise soil fertility index (see Table 4.8), which corresponds to a certain level in the

prediction accuracy. However, in this case the regressors in the first positions are different:
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Figure 4.2: Twenty best correlations (upper panel) and scatter plot of extraTrees (lower panel), which achieves the
best results for the prediction of Fe village-wise soil fertility index.

the Boruta, random forests rf, and RRF (about 0.66) are replaced by cubist and the avNNet

ensemble of multi-layer perceptrons, while gbm, svr and bstTree achieve RMSE above 0.64,

much higher than extraTrees.
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Regressor RMSE. Regressor RMSE. Regressor RMSE. Regressor RMSE.

extraTrees 0.582 treebag 0.776 bdk 0.965 elm 2.09
cubist 0.628 cforest 0.786 bagEarth 0.99 spikeslab 2.46
avNNet 0.638 nodeHarvest 0.79 mlpWeightDecayML 0.997 foba 2.51
gbm 0.64 evtree 0.795 gaussprPoly 1 xgbLinear 2.55
svr 0.645 brnn 0.813 icr 1.02 earth 2.66
bstTree 0.654 blackboost 0.814 glmnet 1.03 spls 2.71
svmRadial 0.657 xgbTree 0.826 dnn 1.03 glmStepAIC 2.76
bartMachine 0.657 rvmRadial 0.842 pcr 1.03 bayesglm 2.77
krlsRadial 0.663 bag 0.846 partDSA 1.04 plsRglm 2.82
qrf 0.664 rpart 0.856 rqlasso 1.05 ridge 2.83
Boruta 0.664 penalized 0.86 M5 1.1 gaussprLinear 2.87
rf 0.666 qrnn 0.861 superpc 1.16 gam 2.89
RRF 0.668 mlpWeightDecay 0.862 lars 1.22 glm 2.89
elm-kernel 0.685 pcaNNet 0.877 dlkeras 1.23 lasso 2.89
kknn 0.715 relaxo 0.896 rqnc 1.32 lm 2.89
grnn 0.724 ctree2 0.899 BstLm 1.33 enpls.fs 3.02
ppr 0.753 rbf 0.924 nnls 1.49 gamboost 3.05
SBC 0.758 simpls 0.935 rlm 1.64 bstSm 3.17
gaussprRadial 0.772 kernelpls 0.935 glmboost 1.82 randomGLM 6.44

Table 4.8: RMSE for the prediction of Zn village-wise soil fertility index.

4.3 Prediction of soil nutrients N2O, P2O5 and K2O

Penalized linear regression, rf and elm-kernel are the optimal regressors for the prediction of

soil nutrients N2O, P2O5 and K2O, respectively. However, the RMSE values achieved by all

regressors are worse (0.863, 0.807 and 0.818) than for village-wise soil fertility indices. The

Table 4.9 reports the RMSE values (between 0.863 and 5.32) from penalized to bstSm for the

prediction of soil N2O nutrient. The random forest of conditional inference trees (cforest) and

svr achieve RMSE values about 0.87, while extraTrees, elm-kernel, RRF, rf and treebag are

about 0.88, and the following regressors after quantile random forest (qrf) are above 0.89. The

Figure 4.3 (upper panel) plots the low correlations (under 0.5192, achieved by penalized) of

the 20 best regressors for the prediction of soil N2O, and the scatter plot of penalized (lower

panel).

The Table 4.10 shows that random forest (rf) achieves the best RMSE (0.807) for the

prediction of soil P2O5 level, followed by RRF and extraTrees (about 0.81). These RMSE

values are the highest among the three soil nutrients N2O, P2O5 and K2O, and the worse

regressor (bagEarth) recorded the highest RMSE (6.76) over all the soil regression problems.
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Regressor RMSE. Regressor RMSE. Regressor RMSE. Regressor RMSE.

penalized 0.863 nnls 0.892 earth 0.916 rpart 0.974
cforest 0.874 svmRadial 0.894 spikeslab 0.917 xgbLinear 0.984
svr 0.877 avNNet 0.894 foba 0.918 evtree 0.987
extraTrees 0.878 rqlasso 0.895 ppr 0.92 mlpWeightDecayML 0.987
RRF 0.88 bag 0.897 bagEarth 0.92 SBC 0.989
rf 0.88 Boruta 0.898 blackboost 0.932 ridge 1
bartMachine 0.881 bstTree 0.898 xgbTree 0.935 glmnet 1.01
treebag 0.884 glmboost 0.899 M5 0.936 dnn 1.01
elm-kernel 0.886 BstLm 0.899 bayesglm 0.942 partDSA 1.01
brnn 0.888 cubist 0.9 gam 0.945 randomGLM 1.02
qrnn 0.889 spls 0.902 glm 0.945 bdk 1.09
superpc 0.889 lars 0.902 lasso 0.945 gaussprPoly 1.11
qrf 0.889 krlsRadial 0.903 lm 0.945 plsRglm 1.11
rbf 0.89 rqnc 0.906 gaussprLinear 0.946 dlkeras 1.19
nodeHarvest 0.89 glmStepAIC 0.906 pcaNNet 0.95 rlm 1.25
relaxo 0.89 gaussprRadial 0.912 grnn 0.952 enpls.fs 1.54
simpls 0.891 kknn 0.912 mlpWeightDecay 0.952 icr 1.86
kernelpls 0.891 rvmRadial 0.912 ctree2 0.959 gamboost 4.41
gbm 0.892 elm 0.914 pcr 0.97 bstSm 5.32

Table 4.9: RMSE values for the prediction of N2O nutrient level.

Regressor RMSE. Regressor RMSE. Regressor RMSE. Regressor RMSE.

rf 0.807 bag 0.862 rpart 0.922 nnls 3.24
RRF 0.808 rvmRadial 0.862 dnn 0.922 spls 3.3
extraTrees 0.81 grnn 0.865 mlpWeightDecayML 0.922 plsRglm 3.36
bstTree 0.815 brnn 0.871 qrnn 0.923 enpls.fs 4.1
treebag 0.82 Boruta 0.876 ctree2 0.927 glmboost 4.42
penalized 0.821 rbf 0.877 ppr 0.951 dlkeras 4.59
nodeHarvest 0.826 M5 0.881 SBC 0.974 foba 4.8
gbm 0.831 relaxo 0.883 rqlasso 0.993 spikeslab 4.96
bartMachine 0.832 blackboost 0.884 avNNet 1.03 bayesglm 5.26
cforest 0.835 pcr 0.89 gamboost 1.05 ridge 5.33
qrf 0.845 xgbTree 0.901 bstSm 1.07 randomGLM 5.37
simpls 0.854 superpc 0.906 rlm 1.18 gaussprLinear 5.38
kernelpls 0.854 pcaNNet 0.908 bdk 1.19 gam 5.41
svr 0.855 elm 0.911 icr 1.19 glm 5.41
gaussprRadial 0.857 evtree 0.912 gaussprPoly 1.2 lasso 5.41
kknn 0.859 cubist 0.914 lars 1.23 lm 5.41
elm-kernel 0.86 mlpWeightDecay 0.914 xgbLinear 2.06 glmStepAIC 5.44
svmRadial 0.862 glmnet 0.921 rqnc 2.22 earth 6.69
krlsRadial 0.862 partDSA 0.921 BstLm 2.73 bagEarth 6.76

Table 4.10: RMSE values for the prediction of P2O5 nutrient level.

In the prediction of soil K2O nutrient, the Table 4.11 shows that elm-kernel and gaussprRa-

dial achieve the best RMSE (0.818), with a high different with respect to extraTrees (0.827), rf
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Figure 4.3: Correlation (upper panel) and scatter plot of penalized (lower panel) for the prediction of N2O level in
the state of Marathwada.

and krlsRadial (0.829) and RRF (0.83). The highest RMSE (1.72) is achieved by independent

component regression (icr).

4.4 Prediction of soil pH

ExtraTrees achieves the best RMSE (0.711) for the prediction of soil pH (see Table 4.12),

followed with minor differences by cubist, RRF and rf (about 0.74), Boruta and qrf (about
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Regressor RMSE. Regressor RMSE. Regressor RMSE. Regressor RMSE.

elm-kernel 0.818 pcaNNet 0.876 foba 0.93 ppr 1.09
gaussprRadial 0.818 M5 0.878 rqnc 0.931 gamboost 1.12
svr 0.819 mlpWeightDecay 0.883 SBC 0.936 bdk 1.21
extraTrees 0.827 relaxo 0.884 blackboost 0.943 qrnn 1.24
rf 0.829 rpart 0.889 gaussprPoly 0.949 rlm 1.24
krlsRadial 0.829 bagEarth 0.899 pcr 0.949 enpls.fs 1.29
RRF 0.831 brnn 0.899 spikeslab 0.952 glmStepAIC 1.29
kknn 0.835 earth 0.901 ctree2 0.953 spls 1.3
treebag 0.837 simpls 0.904 glmnet 0.954 plsRglm 1.3
qrf 0.841 kernelpls 0.904 mlpWeightDecayML 0.954 xgbLinear 1.36
nodeHarvest 0.842 BstLm 0.904 partDSA 0.955 ridge 1.36
svmRadial 0.843 grnn 0.907 dnn 0.956 bayesglm 1.44
bartMachine 0.847 elm 0.907 evtree 0.962 gaussprLinear 1.47
Boruta 0.848 glmboost 0.908 cubist 0.968 gam 1.48
penalized 0.857 rbf 0.911 avNNet 0.97 glm 1.48
rvmRadial 0.859 nnls 0.913 lars 0.972 lasso 1.48
bstTree 0.865 bag 0.916 superpc 1 lm 1.48
cforest 0.867 xgbTree 0.918 dlkeras 1.02 bstSm 1.56
gbm 0.872 rqlasso 0.925 randomGLM 1.05 icr 1.72

Table 4.11: RMSE values for the prediction of K2O nutrient level.

Regressor RMSE Regressor RMSE Regressor RMSE Regressor RMSE

extraTrees 0.711 svmRadial 0.812 gamboost 0.894 superpc 1.03
cubist 0.746 M5 0.815 bstSm 0.903 bdk 1.06
RRF 0.747 rvmRadial 0.817 relaxo 0.904 BstLm 1.13
rf 0.748 evtree 0.823 simpls 0.908 glmboost 1.15
Boruta 0.749 earth 0.829 kernelpls 0.908 randomGLM 1.16
qrf 0.751 grnn 0.831 pcaNNet 0.913 enpls.fs 1.28
bartMachine 0.767 brnn 0.848 rqlasso 0.94 spikeslab 1.43
nodeHarvest 0.774 bag 0.85 spls 0.941 ridge 1.45
bstTree 0.776 bagEarth 0.859 rqnc 0.953 xgbLinear 1.55
gbm 0.78 SBC 0.861 mlpWeightDecay 0.953 rlm 1.55
xgbTree 0.782 rpart 0.862 lars 0.956 gaussprLinear 1.55
kknn 0.782 ppr 0.864 gaussprPoly 0.959 gam 1.56
treebag 0.783 rbf 0.868 pcr 0.976 glm 1.56
cforest 0.785 blackboost 0.871 mlpWeightDecayML 0.982 lasso 1.56
krlsRadial 0.797 qrnn 0.874 dnn 0.986 bayesglm 1.56
avNNet 0.798 elm 0.876 plsRglm 0.986 lm 1.56
gaussprRadial 0.801 ctree2 0.876 glmnet 0.99 nnls 1.57
elm-kernel 0.802 penalized 0.885 partDSA 0.99 glmStepAIC 1.59
svr 0.811 dlkeras 0.887 icr 0.991 foba 1.66

Table 4.12: RMSE values for the prediction of soil pH.

0.75). The remaining regressors are already above 0.77. The Figure 4.4 (upper panel) plots

the low correlation values achieved by the 20 best regressors, started by extraTrees (0.6945,

see its scatter plot on the right panel) and followed by a group about 0.65 (cubist, RRF, rf,
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Figure 4.4: Correlation of the twenty best regressors (upper panel) and scatter plot of extraTrees (lower panel),
which achieves the best correlation for the prediction of soil pH.

Boruta and qrf). The right panel of Figure 4.4 shows the scatter plot of extraTrees for the

prediction of soil pH.

4.5 Global discussion

Considering the results over all the soil datasets (see Tables 4.3-4.12), extraTrees achieved

the best RMSE for 7 of 10 soil problems (OC, P2O5, K2O, Fe, Mn and Zn village-wise soil
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fertility indices, and soil pH). Besides, penalized linear regression, random forest and elm-

kernel are the best regressors for soil N2O, P2O5 and K2O nutrients, respectively. Perhaps the

most relevant conclusion that we can draw from the results is that, besides being extraTrees

the best regressors for more than a half of the datasets, other four regressors of the random

forest family (rf, RRF, Boruta and qrf) are among the best five regressors for almost all the

soil datasets. Therefore, this family can be considered the best for these datasets, confirming

the good result of both random forests in the soil classification problems (see chapter 2).

The svr and two gradient boosting ensembles (bstTree and gbm) are also among the ten best

regressors for almost all the fertility indices, as well as for P2O5 and pH. The M5 rule with

nearest neighbors (cubist) is among the ten bests regressors for 6 datasets, being the second

best for Zn village-wise soil fertility index and prediction of pH.

OC-F P2O5-F K2O-F Fe-F Mn-F
Regressor Corr. Regressor Corr. Regressor Corr. Regressor Corr. Regressor Corr.

Boruta 0.835 extraTrees 0.776 extraTrees 0.631 extraTrees 0.816 extraTrees 0.758
RRF 0.834 RRF 0.775 Boruta 0.619 rf 0.812 RRF 0.741
rf 0.834 qrf 0.774 RRF 0.607 RRF 0.810 bstTree 0.739
extraTrees 0.832 gbm 0.774 rf 0.601 Boruta 0.807 rf 0.739
bstTree 0.821 Boruta 0.774 qrf 0.597 bstTree 0.789 Boruta 0.737
gbm 0.817 rf 0.772 elm-kernel 0.586 gbm 0.789 gbm 0.737
bartMachine 0.815 svr 0.772 bstTree 0.585 qrf 0.788 svr 0.734
nodeHarvest 0.815 cubist 0.770 gaussprRadial 0.581 cubist 0.775 cubist 0.730
qrf 0.811 bstTree 0.765 nodeHarvest 0.579 nodeHarvest 0.767 svmRadial 0.724
cubist 0.806 bartMachine 0.757 svr 0.578 bartMachine 0.762 qrf 0.723

Zn-F N2O P2O5 K2O pH
Regressor Corr. Regressor Corr. Regressor Corr. Regressor Corr. Regressor Corr.

extraTrees 0.841 penalized 0.519 qrf 0.487 gaussprRadial 0.517 extraTrees 0.694
cubist 0.794 cforest 0.502 rf 0.476 svr 0.516 cubist 0.657
avNNet 0.790 svr 0.495 RRF 0.473 elm-kernel 0.514 RRF 0.655
svr 0.784 extraTrees 0.493 extraTrees 0.470 krlsRadial 0.511 rf 0.655
gbm 0.783 rf 0.489 gbm 0.464 extraTrees 0.500 Boruta 0.653
qrf 0.779 RRF 0.488 bartMachine 0.460 rf 0.495 qrf 0.651
rf 0.778 bartMachine 0.488 bstTree 0.458 RRF 0.492 bartMachine 0.630
Boruta 0.775 qrnn 0.486 treebag 0.446 kknn 0.486 nodeHarvest 0.626
RRF 0.774 elm-kernel 0.485 penalized 0.444 qrf 0.483 bstTree 0.618
krlsRadial 0.772 treebag 0.481 nodeHarvest 0.434 treebag 0.477 gbm 0.614

Table 4.13: Ten bests correlations for the prediction of each soil dataset.

The Table 4.13 reports the ten best regressors according to correlation coefficient for the

ten soil datasets. ExtraTrees achieves the best correlations for six of ten datasets (P2O5-F,

K2O-F, Fe-F, Mn-F, Zn-F and pH), being the 4th or 5th in the remaining four datasets. The

best regressors for the remaining datasets are Boruta, penalized, qrf and gaussprRadial for
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RMSE rank Correlation rank
Pos. Regressor Rank Regressor Rank Avg. correl.

1 extraTrees 1.7 extraTrees 2.3 0.68132
2 RRF 4.2 RRF 4.0 0.66519
3 rf 4.7 rf 4.3 0.66520
4 qrf 7.5 qrf 7.0 0.65677
5 svr 8.5 Boruta 8.4 0.64915
6 bstTree 9.2 svr 8.5 0.64234
7 gbm 9.5 gbm 9.7 0.64419
8 bartMachine 9.5 bstTree 9.7 0.64580
9 Boruta 9.8 bartMachine 9.9 0.64228
10 elm-kernel 12.9 nodeHarvest 12.9 0.62539
11 nodeHarvest 13.0 svmRadial 13.3 0.62436
12 cforest 14.1 krlsRadial 13.5 0.62748
13 svmRadial 14.1 cubist 13.5 0.62658
14 treebag 14.3 elm-kernel 14.0 0.62206
15 krlsRadial 14.7 treebag 15.6 0.61491
16 gaussprRadial 16.6 cforest 15.8 0.60960
17 cubist 17.3 gaussprRadial 16.4 0.61405
18 kknn 17.9 kknn 18.4 0.60867
19 rvmRadial 19.3 avNNet 19.3 0.59096
20 penalized 23.1 rvmRadial 19.4 0.59719
21 brnn 24.0 penalized 25.3 0.54830
22 avNNet 24.9 brnn 25.6 0.55449
23 grnn 25.3 grnn 27.1 0.56332
24 xgbTree 27.5 xgbTree 29.0 0.54622
25 bag 28.1 rbf 29.6 0.51867
26 rbf 28.1 ppr 30.5 0.52761
27 relaxo 31.3 bag 31.2 0.52418
28 kernelpls 31.8 qrnn 32.3 0.50870
29 blackboost 32.2 SBC 32.5 0.51816
30 simpls 32.8 kernelpls 34.3 0.48163
31 SBC 33.2 relaxo 34.3 0.48478
32 qrnn 33.5 blackboost 34.4 0.49932
33 ppr 35.7 pcaNNet 34.4 0.52631
34 M5 37.2 dlkeras 34.9 0.49958
35 bagEarth 37.4 simpls 35.3 0.48163
36 earth 38.5 mlpWeightDecay 36.2 0.49583
37 elm 39.3 bagEarth 37.5 0.48584
38 rpart 39.8 rpart 37.9 0.50542

Table 4.14: Friedman rank of the RMSE (left) and of the correlation (right), and average correlation. Continued in
Table 4.15.

OC-F, N2O, P2O5 and K2O, respectively. The random forests achieve very good results: RRF

is the 2nd or 3rd best for 7 datasets; rf is the 4th regressor in 4 datasets; Boruta is among the 5

bests for 6 datasets; and qrf is among the 10 bests for 9 of 10 datasets. The boosting regressors

gbm and bstTree are among the 10 bests for 7 of 10 datasets; the svr, bartMachine and cubist
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RMSE rank Correlation rank
Order Regressor Rank Regressor Rank Avg. correl.

39 pcaNNet 41.4 M5 39.8 0.47795
40 rqlasso 42.3 earth 40.0 0.45912
41 evtree 42.4 elm 41.4 0.45311
42 mlpWeightDecay 42.6 ctree2 42.3 0.46354
43 ctree2 43.5 bdk 42.9 0.45099
44 rqnc 46.2 rqlasso 44.4 0.41581
45 lars 46.9 evtree 44.8 0.44705
46 superpc 47.2 rqnc 47.3 0.39901
47 nnls 47.6 spls 48.2 0.36216
48 gamboost 48.4 BstLm 49.1 0.35185
49 glmboost 48.6 gamboost 49.6 0.33209
50 BstLm 48.8 glmboost 50.3 0.33887
51 dlkeras 49.8 bstSm 50.4 0.31987
52 bstSm 50.3 lars 51.1 0.34588
53 spls 50.8 nnls 51.6 0.35760
54 pcr 51.4 superpc 51.9 0.32258
55 mlpWeightDecayML 52.1 spikeslab 54.2 0.29352
56 foba 53.3 foba 54.5 0.33074
57 bdk 53.3 plsRglm 55.2 0.31830
58 gaussprPoly 53.4 randomGLM 57.7 0.28005
59 dnn 54.4 glmStepAIC 58.2 0.25896
60 spikeslab 54.8 bayesglm 58.8 0.24860
61 plsRglm 58.4 ridge 59.0 0.25092
62 icr 59.3 gaussprPoly 59.4 0.26222
63 glmStepAIC 60.2 enpls.fs 59.5 0.27277
64 randomGLM 60.6 xgbLinear 59.7 0.22684
65 rlm 61.4 rlm 60.4 0.25463
66 xgbLinear 61.4 gaussprLinear 61.0 0.24405
67 enpls.fs 61.8 glm 61.2 0.24355
68 bayesglm 63.9 lm 62.2 0.24355
69 ridge 64.8 pcr 63.0 0.18370
70 gaussprLinear 65.6 lasso 63.2 0.24355
71 glm 66.4 icr 63.9 0.17313
72 lm 67.4 gam 64.2 0.24355
73 lasso 68.4 mlpWeightDecayML 65.0 0.18838
74 partDSA 69.0 dnn 71.9 0.06922
75 gam 69.4 glmnet 75.2 -0.03778
76 glmnet 76.0 partDSA 75.3 -0.04306

Table 4.15: Continuation of Table 4.14.

for 6 of them; and nodeHarvest (5 datasets). Considering the best correlation values, they only

overcome 0.8 for datasets OC-F, Fe-F and Zn-F, being between 0.6 and 0.8 in four datasets

(P2O5-F, K2O-F, Mn-F and pH), and below 0.6 for N2O, P2O5 and K2O nutrients. The low

correlations for these three nutrients confirms the higher difficulty of these datasets, where the

classification experiments (see chapter 2) already achieved Cohen κ lower than the village-
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wise fertility indices, crop, soil type and pH. For some datasets the difference between the

best correlation and the following values is relatively high: K2O-F, where extraTrees and

Boruta achieve 0.631 and 0.619, respectively (difference 0.012), Zn-F, with difference 0.097

between extraTrees (0.891) and cubist (0.794); N2O, difference 0.017 between penalized and

cforest; and pH, with difference 0.037 between extraTrees and cubist.

Pos. Regressor p-value Pos. Regressor p-value Pos. Regressor p-value

1 extraTrees — 27 qrnn 0.0451546 53 randomGLM 0.00131494
2 rf 0.73373 28 ppr 0.0376353 54 lars 0.000768539
3 RRF 0.62318 29 bag 0.0376353 55 glmStepAIC 0.000768539
4 qrf 0.57075 30 blackboost 0.031209 56 superpc 0.000768539
5 svr 0.52052 31 pcaNNet 0.031209 57 spikeslab 0.000768539
6 Boruta 0.47268 32 mlpWeightDecay 0.0257481 58 lm 0.00058284
7 gbm 0.42735 33 evtree 0.0257481 59 enpls.fs 0.00058284
8 cubist 0.38467 34 rpart 0.0211339 60 rlm 0.00058284
9 bstTree 0.38467 35 bagEarth 0.0211339 61 ridge 0.00058284
10 elm-kernel 0.34470 36 earth 0.0172575 62 lasso 0.00058284
11 krlsRadial 0.34470 37 rbf 0.0172575 63 gam 0.00058284
12 gaussprRadial 0.30749 38 ctree2 0.0172575 64 gaussprLinear 0.00058284
13 svmRadial 0.30749 39 M5 0.0140193 65 bayesglm 0.00058284
14 bartMachine 0.30749 40 bdk 0.0140193 66 gaussprPoly 0.00058284
15 cforest 0.27304 41 relaxo 0.0091085 67 plsRglm 0.00058284
16 kknn 0.24132 42 elm 0.0091085 68 BstLm 0.00058284
17 nodeHarvest 0.24132 43 rqnc 0.00728456 69 glm 0.00058284
18 rvmRadial 0.18588 44 gamboost 0.00728456 70 xgbLinear 0.00058284
19 treebag 0.18588 45 kernelpls 0.00579536 71 glmnet 0.000182672
20 avNNet 0.16197 46 simpls 0.00579536 72 dnn 0.000182672
21 grnn 0.12122 47 bstSm 0.00458639 73 pcr 0.000182672
22 SBC 0.07566 48 nnls 0.00458639 74 icr 0.000182672
23 brnn 0.07566 49 rqlasso 0.00458639 75 partDSA 0.000182672
24 xgbTree 0.05390 50 foba 0.00282727 76 mlpWeightDecayML 0.000182672
25 penalized 0.05390 51 spls 0.00170625
26 dlkeras 0.05390 52 glmboost 0.00170625

Table 4.16: List of the p-values achieved by the Wilcoxon signed rank test comparing the correlations of extraTrees
and the remaining 75 regressors over the 10 soil regression problems.

The Tables 4.14 and 4.15 report the Friedman ranks for the RMSE and correlation, and

the average correlation, for all the regressors over all the ten soil datasets. The extraTrees

regressor achieves the first position, with a rank of 1.7 and 2.3 for RMSE and correlation

respectively. This means that, in average over the ten datasets, extraTrees is between posi-

tions 1-2 for RMSE and 2-3 for correlation. However, the highest average correlation (0.681),

achieved by extraTrees, reflects that the prediction is not very accurate, because an accurate

prediction would require correlations about 0.9-0.95. Four regressors of the random forest

family (RRF, rf, qrf, and Boruta) are placed in the first positions, alongside with the svr and
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the two gradient boosting ensembles (bstTree and gbm). The elm-kernel is in position 10, with

average correlation about 0.625, which is far from the best results. Other regressors with good

results in some soil datasets (e.g. cubist) or in the UCI datasets (see chapter 3), e.g. penalized

and avNNet, are in positions 10-20 on this ranking. The last positions of the ranking (Table

4.15) are for lm (linear regression), bstSm (gradient boosting with smoothing splines), glm

(generalized linear models), icr (independent component regression), randomGLM (boosting

ensemble of GLM), glmStepAIC (GLM with stepwise feature selection and the Akaike infor-

mation criterion) and lasso (regression by least absolute shrinkage and selection operator).
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Figure 4.5: Friedman rank of the time (vertical axis) against the Friedman rank of the correlation (horizontal axis)
for the 20 best regressors over the ten soil data sets.

The Table 4.16 reports the p-values for a Wilcoxon signed rank test [132] comparing the

correlations achieved by extraTrees, which is the best regressor on the soil datasets according

both to RMSE and correlation, to the correlations of the remaining regressors, sorted by de-

creasing order. The value in bold corresponds to the regressor (qrnn, position 27 of 76) from

which the difference with respect to extraTrees is statistically significant for a 5%-confidence

level (i.e., p < 0.05). Since the difference extraTrees and the first regressors in the list is only

statistically significant after position 27 (qrnn) of 76 regressors, it is clear that differences are

not very high, in fact even the best regressors do not exhibit an excellent performance.
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We also measured the elapsed time for each regressor and dataset. Since a simple averag-

ing of times over datasets is not statistically acceptable, because times vary in different ranges

for each dataset, we created a Friedman rank of the elapsed times for each regressor over all

datasets. The Figure 4.5 plots the time against correlation (both in terms of Friedman rank)

for the 20 best regressors in the correlation rank of Table 4.14. The figure shows that the

best regressor (extraTrees) in terms of correlation, because it is placed on the left end of the

plot (correlation rank about 2), is also the second fastest one because it is placed on the lower

end (time rank 23), being only slower than kknn (time rank about 8), which however works

much worse (correlation rank about 18). Among the other best regressors in chapter 3, the

rf and RRF exhibit slightly lower correlation than extraTrees (they are on its right), but they

are much slower (time rank above 60). BstTree and gbm are slightly slower (upper time rank)

than extraTrees, but their correlation is much worse (correlation rank about 10). Finally, the

elm-kernel and svr are much more slower than extraTrees (time rank above 55) with much

lower correlation (ranks about 8 and 14, respectively).



CHAPTER 5

CONCLUSIONS

Agriculture is a major sector in the Indian economy, which is affected by changing trends

in temperature and rainfall, insufficient water, agriculture practices and nutrient deficiencies.

Adequate soil parameters and proper application of fertilizers may help to attenuate these

problems. The current research supports the Indian Government to make decisions about

improving soil quality and crop production. The soil quality depends on its type and pH,

village-wise fertility indices of OC, P2O5, Mn and Fe, and on the selected crop. Thus, an

automatic prediction of their values from measurements of N2O, P2O5, K2O, SO4 and EC,

among others, would reduce the cost of the chemical analysis and save time for specialized

technicians. The prediction of levels for the soil nutrients N2O, P2O5 and K2O would also be

very useful for the recommendation of suitable fertilizers. The work developed in this PhD.

Thesis is oriented to use machine learning techniques to automatically predict these values for

soils of the Indian state of Maharashtra. The results of this study might contribute to design

agriculture strategies of the Indian Government to manage the soil fertility degradation, crop

productivity and usage of fertilizers.

Despite of being examples of regression problems, our first approach was to quantity the

values of the magnitudes to be predicted into low, medium and high levels using thresholds de-

fined by the Indian Government, transforming them into classification problems. We applied

a wide and diverse collection of classifiers including decision trees, rule-based classifiers,

bagging and boosting ensembles, random forests, neural networks, support vector machines

and nearest neighbors classifiers. We achieved values of the Cohen κ about 97% and 90% for

for soil classification and village-wise OC fertility index, respectively, above 85% for P2O5
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fertility index and crop classification, and about 65% for the classification of Mn and Fe fer-

tility indices. The κ is much lower, about 47%, for pH classification, and about 35% for N2O,

P2O5 and K2O classification, with accuracies about 55%. The random forest is the first in a

Friedman rank test, being the best in 6 of 10 problems and overcoming 90% of the maximum

κ in all the problems, although the difference with almost all the remaining classifiers is not

statistically significant in a Wilcoxon signed rank test. Other classifiers with good results are

adaboost, rotation forest of J48 base classifiers, the LibSVM support vector machine and the

extreme learning machine, both with Gaussian kernels. The remaining methods work much

worse. We studied the model validity across three regions (Marathwada, North Maharashtra

and Paschim Maharashtra) of the Indian state of Maharashtra, training and testing each classi-

fier with data from different regions, finding compatibilities between North Maharashtra and

Paschim Maharashtra for village-wise P2O5, Mn and Fe fertility indices classification. The

data from Marathwada are compatible for P2O5 and only relatively compatible (κ about 66%)

with Paschim Maharashtra for Mn and Fe fertility indices and for pH.

After finding a relative ability to predict the quantified soil parameters using classification

techniques, we tried to solve the regression problem starting by the development of an experi-

mental comparison of regression techniques over a wide collection of general purpose datasets

from the UCI machine learning repository. We compared 76 regressors belonging to 20 re-

gressor families: linear regression, generalized linear regression, least squares, partial least

squares, lasso regression, ridge regression, neural networks, deep learning, support vector

machines, regression trees, bagging ensembles, boosting, random forests, prototype models,

Bayesian regression, principal component analysis, generalized additive models, Gaussian

processes, quantile regression and other methods. The dataset collection includes 66 regres-

sion datasets selected from UCI repository, and some of them provide several datasets, one

for each output. The extreme learning machine and support vector regression, both with

Gaussian kernels, and the extremely randomized forest (extraTrees) achieve the best results

(correlations above 0.79). Specifically, the best regressor (elm-kernel) overcomes 90% of

the best correlation for 86.4% of the data sets, while the svr achieves the best correlation

for 11 datasets. Some regressors which also are competitive, with correlations above 0.77,

are: nearest neighbors (cubist), other random forest (RF and regularized RF), gradient boost-

ing machines (bstTree and gbm) and penalized linear regression (which achieves the best

result for 17 datasets). Other families with intermediate results are the bagging ensemble

of MARS regressors (correlation 0.75), the Bayesian regularized neural network (0.70) and
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model regression tree (M5, 0.75). The deep learning network using Keras only achieves 0.72.

Considering time, the elm-kernel and svr are very slow (500 and 1700 times slower than the

fastest regressor), but the extremely randomized forest (extraTrees) provides the best trade-

off between performance (correlation above 0.79) and speed (just twice slower than the fastest

regressor).

In the third stage of the work we applied the collection of 76 regressors to ten soil prob-

lems, excluding soil and crop types, which are by nature classification problems, and adding

K2O and Zn village-wise fertility indices, not considered in the classification approach be-

cause the available data belong to just one class. The extremely randomized forest (extraTrees)

achieves the best correlation for six of ten datasets (P2O5, K2O, Fe, Mn and Zn village-wise

fertility indices and for pH), while random forest with feature selection (Boruta), penalized,

quantile random forest (qrf) and Gaussian process with radial kernel (gaussprRadial) are the

bests for OC village-wise fertility index, and for N2O, P2O5 and K2O nutrients, respectively.

The results of elm-kernel and svr are worse than in the comparison with generic data sets, be-

ing among the first 10 position for 2 and 6 datasets, respectively. Globally, extraTrees achieves

the best performance and the second highest speed over all the datasets, followed by random

forests and regularized random forest, with similar correlation but low speed, quantile random

forest, and by boosting ensembles– gradient boosting of regression trees (bstTree) and gener-

alized boosting regression machine (gbm), with similar time but lower correlation–. One of

the main conclusions is that the correlation takes low values: above 0.8 for OC, Fe and Zn

village-wise fertility indices; above 0.75 for P2O5 and Mn fertility indices; above 0.6 for K2O

index and pH; and about 0.5 for N2O, K2O and P2O5. Therefore, a prediction with some level

of accuracy (correlation above 0.8) is only available for OC, Fe and Zn village-wise fertility

indices, with high levels of uncertainty for the remaining problems. However, if an accurate

prediction is not strictly required, an approximated prediction of the quantified levels is avail-

able with certain accuracy, as shown in the chapter 2 where the Cohen κ overcomes 60% for

OC, P2O5, Mn and Fe fertility indices, as well as crop and soil type classification.

The future work includes to review in depth the data for the problems with a low cor-

relation by a soil expert in order to make them easier to predict by the available regression

methods. We also plan to create village-wise soil fertility maps for the OC, P2O5, Mn and Fe

nutrients using the classifiers which achieved the best κ , above 65%, for these problems.
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