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Abstract
This paper proposes a parallel algorithm exploiting heterogeneous computing 
and edge computing for anomaly detection (AD) in remotely sensed multispectral 
images. These images present high spatial resolution and are captured onboard 
unmanned aerial vehicles. AD is applied to identify patterns within an image that 
do not conform to the expected behavior. In this paper, the anomalies correspond to 
human-made constructions that trigger alarms related to the integrity of fluvial eco-
systems. An algorithm based on extracting spatial information by using extinction 
profiles (EPs) and detecting anomalies by using the Reed–Xiaoli (RX) technique is 
proposed. The parallel algorithm presented in this paper is designed to be executed 
on multi-node heterogeneous computing platforms that include nodes with multi-
core central processing units (CPUs) and graphics processing units (GPUs) and on 
a mobile embedded system consisting of a multi-core CPU and a GPU. The experi-
ments are carried out on nodes of the FinisTerrae III supercomputer and, with the 
objective of analyzing its efficiency under different energy consumption scenarios, 
on a Jetson AGX Orin.
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1  Introduction

Anomaly detection (AD) plays a critical role in numerous fields, including remote 
sensing, surveillance, and environmental monitoring [1–3]. In the context of mul-
tispectral image analysis, AD techniques hold significant potential for identifying 
and characterizing irregularities or deviations from the norm in the images, pro-
viding valuable insights into complex natural systems [4].

The processing of multispectral or hyperspectral images always demands a 
considerable amount of computational resources due to the high dimensionality 
and complexity of the data and the need for real-time processing for many appli-
cations. This is especially true in the case of AD tasks over very high-resolution 
images, as AD algorithms require processing the whole spatial and the spectral 
information available in the images [4–6]. Different computational paradigms, 
ranging from high-performance computing (HPC) platforms such as clusters, 
grids, or clouds, to specialized accelerators such as graphics processing units 
(GPUs), field-programmable gate arrays (FPGAs), or even quantum computing 
solutions, have been exploited in this context. The choice of the most appropri-
ate computing platform depends on the problem at hand and on the context in 
which it must be addressed [7]. For instance, in certain scenarios, data may be 
efficiently offloaded to supercomputers, while in others, it may be more practi-
cal to tackle the problem in situ using edge computing solutions or, simply, the 
commodity hardware available, for instance, a personal computer with a hardware 
accelerator such as a GPU.

Supercomputers play a dominant role in parallel computing applied to remote 
sensing [8]. A supercomputer is a mixture of shared and distributed memory sys-
tems that, in many cases, include heterogeneous nodes. Each node could consist 
of central processing units (CPUs), GPUs, FPGAs, or any other accelerator. Many 
models and portable libraries have emerged as possible standards for supercom-
puter programming, being OpenMP [9] and MPI [10] the most widely used. In 
fact, MPI is the facto current standard for parallel programming.

Accelerators have also played a dominant role in parallel computing and, espe-
cially, in image processing including multidimensional images from the remote 
sensing field [7]. GPUs, renowned for their ability to perform thousands of com-
putations in parallel, excel in tasks involving repetitive mathematical operations. 
Their highly parallel nature based on multi-threaded, many-core processors and 
their very high memory bandwidth make them particularly well-suited for pro-
cessing large-scale datasets and computationally intensive tasks. The develop-
ment of NVIDIA’s Compute Unified Device Architecture (CUDA) [11] has sim-
plified the programming model for GPUs. Many libraries have been developed to 
provide the most common operations implemented in CUDA. OpenCL is also a 
relevant standard for parallel programming across CPUs, GPUs, and other pro-
cessors [12].

Presently, GPU-based computers integrate the attributes of general-purpose 
computing, a high degree of parallelism, and high memory bandwidth, at a rela-
tively lower cost compared to other alternatives. This makes them an attractive 
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option compared to a massively parallel system made up of only CPUs [13]. The 
heterogeneous computing approach that combines the strengths of both CPUs and 
GPUs can lead to even greater performance gains. By distributing the computa-
tional load between CPUs and GPUs based on their respective strengths, a more 
balanced and efficient workflow can be achieved, thereby maximizing overall pro-
cessing speed and resource utilization. This kind of architectures has been previ-
ously used to tackle other tasks in multispectral images, such as registration [14] 
or domain adaptation [15], among others.

Recently, the use of edge computing architectures has arisen as a promising hard-
ware alternative for remote sensing applications [7]. Edge computing is effective in 
reducing the delay between the acquisition and the processing of data [16]. Most 
edge computing devices are heterogeneous computing platforms such as, for exam-
ple, the NVIDIA Jetson [17] used in this paper. These devices can help to make it 
possible to perform onboard remote sensing computation. Edge computing archi-
tectures are also very effective in reducing power consumption, which, nowadays, is 
a relevant requirement from both the sustainability and the economic perspectives. 
This can be especially important in real-time monitoring scenarios when the time 
needed to transfer the raw data to HPC centers is not an acceptable option [18].

Addressing the challenge of reducing the AD computation times, this paper pre-
sents an efficient heterogeneous parallel implementation to perform AD in high-
resolution multispectral images. The objective is the detection of anomalies corre-
sponding to human constructions within natural fluvial ecosystems. The resulting 
algorithm is executed on both a supercomputer and an edge computing device. 
Our methodology allows to automatically identify and characterize anomalies cor-
responding to human-made constructions by combining the use of extinction pro-
files (EPs) for extracting spatial information from the images with the well-known 
Reed–Xiaoli (RX) AD algorithm. The proposed algorithm can contribute to the 
development of effective conservation and management strategies for fluvial ecosys-
tems, promoting sustainable development while safeguarding the ecological integ-
rity of the ecosystem.

The remainder of this paper is structured as follows: Sect.  2 reviews the back-
ground related to efficient parallel implementations of AD for multispectral and 
hyperspectral images. In Sect. 3, the AD algorithm proposed in this work is intro-
duced, with a particular emphasis on the parallel features of the algorithm. Section 4 
describes the experimental setup and presents the results obtained on a real-world 
dataset of multispectral images. Finally, in Sect.  5, the concluding remarks are 
presented.

2 � Related work

Processing multispectral images of fluvial ecosystems presents several challenges 
due to the inherent complexity and variability of natural landscapes [19]. The 
similarity between the spectral signatures of the various materials in the scene, such 
as geological features and human-made structures, coupled with the prevalence of 
vegetation in the landscapes under study, pose difficulties in distinguishing human 
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constructions, which seamlessly blend into the surrounding environment [20]. 
Additionally, multispectral images are vulnerable to atmospheric conditions, sensor 
noise, and fluctuating illumination, adding complexity to the accurate identification 
of anomalies in these dynamic environments [21].

Various approaches have been proposed to tackle the challenging problem of AD 
in multispectral images [19]. These methods can be broadly categorized into unsu-
pervised, supervised, and semi-supervised techniques. Unsupervised methods, such 
as statistical modeling and clustering algorithms, do not require labeled training 
data and can automatically identify anomalies based on deviations from the normal 
data distribution [1, 22, 23]. Supervised methods, on the other hand, rely on labeled 
training data to learn the characteristics of normal and anomalous samples, enabling 
them to classify new instances accordingly [2, 24–26]. Semi-supervised methods 
aim to strike a balance between the two by utilizing a limited amount of labeled data 
and a larger pool of unlabeled data during the training process.

One notable algorithm that has garnered attention in AD is the RX algorithm 
[27]. The RX algorithm is an unsupervised technique based on the concept of the 
Mahalanobis distance. It characterizes anomalies by measuring the spectral devia-
tions from the local mean of the surrounding pixels. The effectiveness of the RX 
algorithm lies in its ability to handle high-dimensional data and identify sub-
tle anomalies, making it a promising candidate for detecting human constructions 
within fluvial ecosystems in multispectral images. Several variations of the RX 
algorithm have been applied to improve the detection accuracy of the traditional 
algorithm [28–31].

In the context of AD in multispectral images within fluvial ecosystems, incor-
porating spatial information alongside spectral data becomes a crucial aspect of 
achieving accurate and reliable results, as it has been shown by [32] for AD in hyper-
spectral images. This has also been explored in the previous classification-oriented 
works [23, 33–35]. Spectral information alone may not provide sufficient context to 
differentiate between natural variations and genuine anomalies in the complex and 
heterogeneous landscapes of fluvial ecosystems. By considering the spatial relation-
ships among neighboring pixels, valuable contextual cues can be extracted, enhanc-
ing the discrimination of anomalies from the background. In this work, we incorpo-
rate the spatial information together with the spectral one by introducing the filtering 
technique called EP [36], which is an alternative to the widely recognized attribute 
profile (AP) [37, 38]. EP is based on the concept of extinction filters (EFs) which are 
extrema-oriented connected filters that, unlike the AP, preserve the original height 
of the extrema kept in the image. The parameter tuning is also easier for EPs than for 
APs due to the fact that they are independent of the kind of attribute being used and 
only based on the number of extrema to be kept at each level of the EP [36].

Several works have explored the use of parallelization techniques to efficiently 
tackle the real-time AD problem. [39] presents a GPU implementation of the RX 
algorithm for AD using CUDA. It remarks the relevance of processing sub-images 
of the image independently in different hardware to exploit the parallelism minimiz-
ing the communications, as they are a common bottleneck in multi-GPU implemen-
tations. The paper also analyzes the power consumption of the algorithms, which is 
especially relevant for real Earth observation missions using onboard computation.
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The projection of AD to a widely used edge computing device, an NVIDIA 
Jetson GPU, is explored in [40] over a hyperspectral urban image acquired by the 
AVIRIS sensor, concluding that there is a promising solution for hyperspectral 
image processing in low-power consumption scenarios. In turn, [41] proposes the 
use of FPGAs to perform recursive RX-based AD in hyperspectral images from both 
urban and natural scenes, also acquired by the AVIRIS sensor. They show how dif-
ferent variants of the traditional RX algorithm can be projected efficiently to FPGA 
architectures, along with GPU and cloud computing alternatives, concluding that the 
main limiting factor in FPGAs and GPUs is memory capacity. This limiting factor 
can be avoided by scaling the number of nodes used. Another FPGA AD algorithm 
focused on minimizing power consumption is presented in [42], demonstrating that 
hyperspectral images with thousands of pixels and hundreds of spectral bands can 
be processed with a power budget of only 1.3 W. Embedded devices such as FPGAs 
can also be used to perform AD through the use of deep learning techniques. For 
instance, a deep convolutional neural network is used in [43] for natural anomaly 
detection in multispectral images. Another possibility to make the algorithms more 
adequate for edge computing devices is to align the data processing with the data 
acquisition process. For this purpose, a line-by-line AD technique is presented in 
[44], which aims to process hyperspectral data in a manner consistent with its col-
lection by push-broom scanners.

When assessing a task such as AD is also important to take into account that 
different architectures may be better suited for each specific processing step. This 
aspect is explored in [45], where a combination of CPU and GPU is employed to 
achieve a time-efficient AD technique. The proposed technique is based on the use 
of multivariate normal mixture models applied to a simulated search and rescue sce-
nario in a real hyperspectral image captured by a HySpex visual and near-infrared 
(VNIR) hyperspectral camera.

3 � Heterogeneous parallel EP‑based AD scheme

In this section, the proposed parallel algorithm for detecting anomalies in high-res-
olution multispectral images of fluvial ecosystems is presented. A hybrid algorithm 
using MPI, OpenMP, and CUDA is used to exploit the different levels of parallelism 
offered by a heterogeneous architecture that, as it will be explained later, includes 
nodes with a multi-core CPU and a GPU.

The outline of the algorithm is shown in Fig. 1. It consists of three main stages: 
First, the spatial information is extracted from the input image by computing an 
EP over each band of the image separately. The five bands available in the images 
under study are represented in the figure. As a result, an extended EP is produced 
by accumulating the results of the individual EPs constructed for each band of the 
image. Then, a second stage consists of applying the RX anomaly detector over the 
resulting extended EP. This stage is more efficiently calculated over only one node 
of the computer platform. A two-dimensional gray-scale intensity image is obtained 
as a result. Finally, the processing requires calculating and applying a threshold to 
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produce the output AD map. This is the objective of the third stage, which applies 
Otsu’s algorithm, producing a binary map of anomalies as output.

More details of the implementation presented in Fig. 1 are offered in Algorithm 1, 
where all the computational steps for each stage of the algorithm and the platforms 
where are computed are annotated on the right side.

More in detail, the first stage of the algorithm presented in Fig. 1 and detailed 
in lines 1–18 of Algorithm 1, can be considered as a spatial processing where the 
structures of interest of the image are highlighted through the computation of the 
EPs. As the anomalies that need to be detected correspond to a set of uniform pix-
els more than isolated pixels, this spatial processing stage helps in identifying these 
structures at different levels. This is a very common process followed when changes 
or anomalies need to be detected in multi- or hyperspectral images. In this case, the 
method for extracting spatial information is the use of EPs. The processing of the EP 
for each image band is independent, making it a good candidate to be computed in 
parallel. After the tasks corresponding to the processing of each band are distributed 
through the use of MPI, a hybrid CPU-GPU approach is used to tackle this opera-
tion. As each EP calculation consists of some steps where the individual operations 
are performed over each pixel of the image, it is a perfect fit to be computed in GPU 
using CUDA. Other steps that are performed over the node-array representation of 
the image tree [36] offer fewer opportunities for parallelization to be more efficiently 
computed by the CPU. This is the case for the stages devoted to obtain the parents 
of each node by means of the union-find algorithm and the computation of the node 
array (steps 4–5 in pseudocode in Algorithm 1).

The calculation of the EP of a one-band gray-scale image consists of the applica-
tion of several opening and closing operations at different granularity levels over the 

Fig. 1   Parallel RX+EP AD algorithm for heterogeneous computing
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original images [36]. So, inside each node, different levels of the EP need to be com-
puted. To perform this operation in the most efficient way, the node-array represen-
tation of the image is computed first (lines 2–5 in the pseudocode). This representa-
tion can be seen as a max-tree [36] computation where the parent of each node is 
obtained in a union-find process and stored in a structure together with the attribute 
of interest for each node, that is, the area in this case. Once this information is gath-
ered, it is possible to compute the extinction values of each node as proposed by [36] 
(line 6). The steps corresponding to the application of the extinction filter for each 
number of extrema selected (lines 7–9 and 16–18 in Algorithm 1) can be computed 
in parallel through the use of OpenMP once the extinction values of the image have 
been computed in the previous step, as they are independent computations for each 
level of the EP. Figure 2 illustrates the EP for one band of a multispectral image. 
The original band is in the middle, and the different components of the profile, cor-
responding to the result of applying a three-level EP, are represented on both sides.

It is worth noting that, for the computation of the closing profiles (lines 10–18), 
the same code is used but carried out over the negated input image. This is a usual 
approximation to this task that has been used, for instance, in [38]. The EPs for 
the different bands of the input multispectral image are concurrently computed in 
different nodes of the computing platform, through the use of MPI, thus reducing 
the computation time. The opening and closing profiles individually computed for 
each band of the image are stored in memory composing an extended EP. This EP 
will be the input of the second stage of the algorithm.

The second stage of the algorithm consists of the application of the anomaly 
detector, the RX algorithm, over the extended EP. As the second stage of the 
algorithm (lines 19–22) presents a low computational load, it is efficiently com-
puted in only one node, so the extended EP is computed by gathering the individ-
ual EPs, as shown in Fig. 1. This part of the algorithm is individually performed 

Fig. 2   EP computation for one band of a multispectral image (first row) and zoom over a small region 
(second row)
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over each pixel and, therefore, totally computed in GPU to achieve low execution 
times. We can identify in the algorithm the steps for the parallel calculation of 
the RX anomaly detector [27] to obtain a one-band gray-scale image where the 
higher the intensity of a pixel, the higher the probability of it being an anomaly. 
It is based on the calculus of the Mahalanobis distance between each pixel of the 
stacked EP and the average pixel value of the same stacked EP. All the steps are 
calculated in GPU using CUDA.

The third and final stage of the algorithm performs the application of a thresh-
old technique to obtain a binary AD map (lines 23–26 in the algorithm) identify-
ing each pixel as anomaly or non-anomaly. This is tackled through Otsu’s thresh-
old algorithm as it is an automatic threshold technique that has proven to produce 
the best discrimination with a low computational cost [46, 47]. This algorithm 
calculates the threshold based on the histogram of the gray levels of the image. 
This stage of the algorithm is also executed on GPU as both the histogram calcu-
lation step and the final binary decision over each pixel of the image can benefit 
from the highly parallelizable GPU architecture thus achieving lower execution 
times.

Algorithm 1   Parallel RX+EP AD algorithm.
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3.1 � Comparison with other parallel AD implementations

The algorithm proposed in this paper aims to exploit the capabilities of the avail-
able hardware on a heterogeneous computing platform at different levels. This has 
been the methodology used by other parallel AD implementations in the literature, 
such as [45], where a dual Quad-Core Intel Xeon CPU and a NVidia GeForce 8800 
Ultra GPU are used to reduce the execution times of an AD method for hyperspec-
tral images based on the use of multivariate normal mixture models. Similarly in 
[41], the authors conclude that embedded, GPU, and cloud architectures should be 
combined to achieve efficient processing of remote sensing data.

In particular, in our paper, the first stage of the algorithm, as we described in 
Algorithm 1, exploits a multi-node implementation for extracting parallelism. The 
reason is that the EP calculation computed by this stage of the algorithm can be 
individually processed for each band. The implementation combines the use of 
MPI, OpenMP, and CUDA to efficiently distribute the computational load of this 
stage among the available nodes of a supercomputing device. The same approach is 
applied, for instance, by [41], which introduces a multi-node cloud implementation 
of an AD algorithm based on the use of RX.

The second stage, the RX detector, is performed entirely in a single GPU by 
using CUDA in our algorithm. Given that the amount of data to be processed is 
small in this stage, it would be difficult to compensate for the communication times 
needed to use a distributed architecture. This task has been tackled similarly in other 
parallel AD implementations such as [39, 41]. The same remarks apply to the Otsu’s 
thresholding needed to obtain the final AD map.

Finally, when prioritizing the minimization of power consumption, the use of 
embedded devices has been established in the literature as the optimal alternative 
[40, 42]. Different parallel AD algorithms in the literature, for instance, [41] or [43], 
have been projected to FPGAs. In our paper, an NVIDIA Jetson platform [17] is 
used. This platform presents, in comparison with a FPGA, the advantage that the 
implementation required is more similar to that of general-purpose architectures.

4 � Experimental results

This section is devoted to summarize the experiments carried out for the validation 
of the algorithm presented in this work for the AD of human-made constructions in 
fluvial ecosystems. First, the dataset and experimental setup selected for the experi-
mentation will be presented in Sects. 4.1 and 4.2. Then, the achieved accuracy and 
performance results will be analyzed in Sect. 4.3.

4.1 � Dataset

The experiments were conducted utilizing data captured by the MicaSense RedEdge 
multispectral sensor, onboard a specialized unmanned aerial vehicle (UAV). This 
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advanced sensor is capable of capturing imagery across five distinct spectral bands: 
blue (475 nm), green (560 nm), red (668 nm), red-edge (717 nm), and near-infrared 
(NIR) (840 nm). The aerial images of fluvial ecosystems were taken during the sum-
mer months of 2018 in the region of Galicia, Spain, at an altitude of 120 m, offering 
a very high spatial resolution of 8.2 cm per pixel [20].

Figure 3 shows an RGB color composition and the reference data of anomalies 
available for the dataset used for the experiments. These images depict watershed 
ecosystems located in densely vegetated regions. Within this context, structures such 
as buildings, dams, and roads are categorized as anomalies necessitating detection 
to trigger alarms. These alarms, in turn, will be managed by individuals responsible 
for overseeing the ecosystem. It is important to note that anomalies within the 
reference data of each image represent a small fraction of the total pixel count, 
which aligns with typical scenarios. Furthermore, it is of paramount importance 
to emphasize that detecting all anomalies in the reference data is crucial for this 
application. Additionally, it is crucial to highlight that detecting all the anomalies in 
the reference data is imperative for this application as missing alarms could provoke 
damage in the ecosystem.

Table 1 summarizes the main characteristics of the two considered 5-band multi-
spectral images. As can be seen, each of the images presents around 4% of anoma-
lies over the total number of pixels. The size of the images corresponds to the case 
where the pixel information is stored in a 4-byte format.

4.2 � Experimental setup

In this section, we describe the hardware and software configurations utilized for 
conducting the experiments in this paper. Two different hardware setups have been 

Fig. 3   Oitavén river dataset consisting of two multispectral images (z1 and z2). Anomalies in white color
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used in order to compare different approximations to solve this problem: different 
nodes of a distributed memory supercomputer and a Jetson NVIDIA computing 
platform.

First, a multi-node supercomputer called FinisTerrae III with multiple 
GPUs per node, the FinisTerrae III supercomputer, is used to maximize the 
exploitation of parallelism at different levels. FinisTerrae III is located at the 
Galician Supercomputing Center (CESGA) [48] and consists of 354 nodes that 
are interconnected as shown in Fig. 4. As shown in Table 2, each node includes 
two Intel Xeon Ice Lake 8352Y processors with 32 cores each and 256 GB of 
memory. For the experiments, five nodes were used, as each node computes the 

Table 1   Dataset description consisting of two multispectral images

Name Oitavén river z1 Oitavén river z2

Width 3807 2081
Height 2141 957
Number of spectral bands 5 5
Number of anomalies (pixels) 321,710 83,130
Number of non-anomalies (pixels) 7,829,077 1,908,387
Percentage of anomalies (%) 3.95 4.17
Percentage of non-anomalies (%) 96.05 95.83
Size (MB) 155.5 38

Fig. 4   FinisTerrae III distributed memory system

Table 2   Hardware setup of the different computing platforms used for the experiments

Platform FinisTerrae III node Jetson AGX Orin

CPU 2x Intel Xeon Platinum 8352Y Arm Cortex-A78AE
Number of cores 32+32 12
Frequency 2.8 GHz 2.2 GHz
RAM size 256 GB 64 GB
Cache size 80 MiB L2 + 96 MiB L3 3 MB L2 + 6 MB L3
GPU NVIDIA A100 NVIDIA Ampere-based
DRAM size 40 GB 64 GB (shared with CPU)



	 J. López‑Fandiño et al.

1 3

EP over one band of the 5-band multispectral images captured by the MicaSense 
RedEdge multispectral sensor. In each one of these nodes, CUDA codes run on 
one of the NVIDIA A100 GPUs available in the node. This GPU model is based 
on the NVIDIA Ampere architecture, and it is equipped with 108 multiprocessors 
and 64 cores per multiprocessor, resulting in 6912 cores. The CUDA capability 
version is 8.0, and each card has 40 GB of DRAM memory, as shown in Table 2.

The previously described computing platform is too expensive to be availa-
ble in the usual remote sensing environments where decisions need to be taken 
for many applications with short response times and far from supercomputing 
centers. A more affordable computing platform that has been considered is an 
NVIDIA Jetson AGX Orin platform, also described in Table  2. This platform 
was selected as a representative of edge computing devices, aiming for in-place 
real-time computation of the proposed algorithm. This platform also allows us to 
analyze the effect that different energy power availability has on the computation 
times of the scheme, as remote sensing applications usually require computation 
in energy-limited platforms.

The NVIDIA Jetson AGX Orin Developer Kit [17] used to evaluate the per-
formance of the proposed algorithm over a mobile embedded system provides a 
12-core Arm Cortex-A78AE v8.2 64-bit CPU together with a 2048-core NVIDIA 
Ampere architecture GPU. It also includes 64 GB of RAM. Besides, as shown in 
Table  3, the kit allows us to configure the hardware to operate within different 
power budgets ranging from 15 to 60 Watts, allowing us to simulate real edge 
computing scenarios. The varying energy consumption is achieved by disabling 
some hardware components, such as reducing the number of online CPU cores or 
disabling the GPU Texture Processor Cluster, and also by limiting the frequency 
of both the CPU and the GPU cores [49].

The FinisTerrae III codes have been compiled using the g++ 10.1.0 version 
with OpenMP 4.0 support under Linux. Regarding the GPU implementation, 
the CUDA codes have been compiled using the nvcc version 12.2 of the toolkit. 
Version 4.1.4 of the OpenMPI library was used for the multi-node experiments. 
The Jetson codes have been compiled using the g++ 9.4.0 version with OpenMP 
4.0 support under Linux and nvcc version 11.4 of the CUDA toolkit. The Thrust 
library was used to accelerate sorting operations.

Table 3   Jetson AGX Orin power mode budgets

Power budget 15 W 30 W 50 W MAXN (60 W)

Online CPU number 4 8 12 12
CPU max frequency (MHz) 1113.6 1728 1497.6 2201.6
GPU max frequency (MHz) 408 612 816 1301
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4.3 � Results

4.3.1 � Accuracy assessment

In this section, the results, in terms of AD accuracy, are presented. For this 
purpose, two main metrics are considered: the area under the curve (AUC) and 
the percentage of anomalies detected (i.e., the true-positive rate). The number 
of true-positive (TP), true-negative (TN), false-positive (FP), and false-nega-
tive (FN) pixels are shown for completeness purposes, together with the preci-
sion–recall AUC (PR-AUC). The AUC can be considered as a standard in the 
literature to analyze the quality of AD algorithms [50–52]. The percentage of 
anomalies detected will show how the proposed method improves the ability to 
detect anomalies as compared to a traditional RX-based algorithm. We emphasize 
this metric because, as mentioned earlier, the primary objective of this study is 
to detect as many anomalies as possible, even if it leads to a higher false-positive 
rate. It is worth noting that the PR-AUC archives higher values when low false 
positive and negative rates are obtained, whereas the main purpose of this work 
is to increment the number of anomalies detected. Tests were performed to check 
that the parallel versions of the algorithm present the same accuracy values as the 
sequential one.

Table  4 shows the accuracy values obtained for the considered dataset with 
different EP configurations, whereas Fig.  6 shows the corresponding AD maps 
obtained for both images. The EP parameters, indicated between parenthesis in 
the table, have been chosen empirically for each image. Each value indicates the 
number of extrema to be kept for each level of the EP calculated for each band of 
the image. As can be seen in the table, varying the EP configuration parameters 
allows for improving the anomaly detection up to 23% and 27% for the z1 and 
z2, respectively, with respect to the case without the application of EP (first row 
in the table for each image). This also results in an improvement of the AUC for 

Table 4   Accuracy of the parallel AD algorithm for z1 and z2 multispectral image. Results for different 
configurations of the EP stage. The best results for each column and image are highlighted in bold

PR- Detected
AUC​ AUC​ anomalies (%) TP TN FP FN

z1 image
RX 0.818 0.636 65.46 210,605 7,255,470 138,711 111,105
RX+EP(8,4,2,1) 0.865 0.545 83.06 267,220 7,035,707 793,370 54,490
RX+EP(64,8,4,1) 0.876 0.566 83.90 269,934 7,154,346 674,731 51,776
RX+EP(64,8,4,2) 0.888 0.570 88.32 284,139 6,990,535 838,542 37,571
z2 image
RX 0.722  0.597 46.35 78,104 1,786,809 35,857 90,407
RX+EP(64,32,16,8) 0.696 0.418 51.52 86,808 1,600,064 222,942 81,703
RX+EP(8,4,2,1) 0.694 0.415 56.72 95,586 1,497,095 325,911 72,925
RX+EP(32,16,2,1) 0.788 0.529 73.00 123,009 1,543,023 279,983 45,502
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both considered images even though the number of FP is bigger when the EPs are 
introduced. Nevertheless, this increase is much smaller than the TP one, being 
about 5% for both z1 and z2 images.

Figure  5 shows the ROC curves of the accuracies obtained for the proposed 
method for different configurations of the EP stage of the algorithm that produces 
the extended EP of the image. It can be seen that a proper parameterization of the 
EP is relevant to achieve the best results. Nevertheless, in general, almost every 
parameterization improves the accuracies obtained without the application of EPs. 
It is also worth noting that, as expected, increasing the ability to detect the highest 
number of anomalies possible (high values of TP), which is our main objective for 
the aim of the ecosystem supervision studied in this work, also involves an increase 
in FP.

The AD maps obtained for both images are shown in Fig. 6. In the images, TP is 
colored in green, FP is colored in blue, FN is colored in red, and TN remains black 
as background. As it can be seen, the areas colored in red, highly decrease when 
the use of EPs is included together with the RX, meaning that the capability of the 
algorithm to detect real anomalies is greater in these cases. It also can be seen that 
the blue areas that appear do not have regular shapes and have the appearance of 
irregular structures. This will make it easier for these areas to be disregarded later by 
the application of some automatic post-processing technique.

4.3.2 � Performance results

The execution times achieved for the different hardware setups introduced in 4.2 
are summarized in this section. All data shown here correspond to the average 
values of 10 independent runs over the EP configurations which achieve the highest 
accuracy values, i.e., RX+EP(64,8,4,2) for the z1 image and RX+EP(32,16,2,1) for 
the z2 image. Table  5 shows the time needed to perform the computation for z1 
and z2 images in the FinisTerrae III setup, using one and five nodes (one per band 
of the image), respectively. An alternative implementation where all the processing 

Fig. 5   ROC curves for z1 and z2 images with the parallel RX+EP algorithm for AD and for different EP 
configurations
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is performed in the CPU is included as a baseline. The speedup of the different 
versions with respect to the CPU baseline is also included. As it can be seen, the 
most expensive computation steps are Get parents and Node array, which have to 
sequentially walk through the image to obtain the max-tree representation that will 
then be used to obtain the extinction values. These steps are even more costly, in 
relative terms, in the CPU-GPU version, as they cannot be accelerated with the 
GPU. On the other hand, the Negate image and RX: Mahalanobis steps are the ones 
that can benefit the most from the use of GPUs, achieving speedups up to 469× and 
169× , respectively.

Therefore, given the few parallelization opportunities available inside the EP 
computation for each band of the image, it becomes crucial to exploit the parallel-
ism that can be achieved with the use of a multi-node hardware platform such as the 
FinisTerrae III. As it is shown in Table 5, the EP computation stage of the z1 image 
can be accelerated from 8.3 s to just 1.4 s when all the bands are computed in par-
allel in different nodes. Similarly, the EP computation stage of the z2 image takes 
2.1 s in the single-node CPU version and only 0.36 s in the multi-node CPU-GPU 
one. This allows the total speedup of the RX+EP AD algorithm, as compared with 
the CPU version, to increase from 6.9× in the single-node configuration to 23× in 
the multi-node configuration for the z1 image and from 4.3× to 8.1× , in the same 
configurations, for the z2 image.

In order to illustrate the performance of the algorithm for different image 
sizes, experiments have been carried out. The multi-node CPU-GPU version of 
the RX+EP algorithm, executed on the FinisTerrae III supercomputer, was used 
for these experiments. Figure  7 shows the time needed to execute the algorithm 
for three different sizes: the original z1 image, an image with the same number of 
spectral bands but 2 × bigger in the spatial dimension, and an image 4 × bigger in the 

Fig. 6   AD maps for z1 and z2 images with the parallel RX+EP algorithm
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spatial dimension. The time is shown separately for the EP stage and for the RX and 
Otsu stages. As can be seen, the time needed for the execution of the algorithm for 
these images scales nearly linearly with the image size. Nevertheless, in the 4 × size 
image, it starts to be noticeable that the spatial part of the processing, the EP, loses 
some performance as it needs 4.2× the time needed for the original image. On the 
other hand, the RX detector achieves better performance (it only needs 3.69× the 
time needed for the original image). This can be explained because the spectral part 
is more suitable for pixel-level GPU parallelism and the bigger the number of pixels 
to process, the bigger the opportunities for exploiting the high number of processing 
cores available in the GPU.

Regarding the edge computing Jetson platform introduced in Sect.  4.2, experi-
ments have been carried out with three different power budgets (15 W, 30 W, and 
MAXN (60 W)). The findings previously commented in the FinisTerrae III platform 
remain valid for this platform: The Get parents and Node array steps of the EP com-
putation are still the most time-consuming steps, and the speedups achieved when 
the available GPU is exploited also remain similar. Nevertheless, as was expected, 
the more limiting the power budget selected, the higher the execution times achieved 
for the same computations.

The most parallelizable steps are those that benefit the most from the higher 
power budgets, as they can exploit both, the larger number of cores available and the 
increased frequency of the CPU and GPU. In this way, the RX: mean and the RX: 
Mahalanobis steps are the ones with a higher increase in speedup when the CPU 
version is compared with the CPU-GPU one. The speedup increasing on these steps 
ranges from 4 × to 10× for the 15 W power budget up to 9.7× to 17.7× for the 60 W 
power budget.

As it is shown in Table 6, the reduction in the available power and the disabling 
of some hardware components, resulting in fewer parallel computing opportunities 
for the algorithm, greatly increase the time needed for the computation up to 7.1× . 
This makes it clear that the power requirements must be carefully chosen in an 

Fig. 7   Execution time scaling when the size of the z1 image is increased. The times are expressed in 
multiples of the execution time over the times for the original z1 image. Times include CPU processing, 
network communication costs, and GPU computations
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edge computing environment to achieve the right balance between autonomy and 
performance.

5 � Conclusions

This paper introduces a computationally efficient parallel algorithm for AD. The 
algorithm is specifically designed to run on heterogeneous computing platforms, 
comprising nodes with multi-core CPUs and GPUs. AD is accomplished through a 
combination of an extended extinction profile for spatial information extraction and 
a detector known as the RX algorithm.

The resulting parallel hybrid MPI+OpenMP+CUDA algorithm outperforms a 
traditional RX approach, detecting up to 27% more anomalies in the images pre-
sented in this paper. Experiments were conducted using the FinisTerrae III multi-
node supercomputer, analyzing high-resolution multispectral images of fluvial eco-
systems. Speedups of up to 23 × were achieved.

Furthermore, the same algorithm was executed on a mobile embedded system, 
specifically a NVIDIA Jetson. This aimed to assess the feasibility of running the 
algorithm under various power consumption limitations. Experiments have shown 
an increase of up to 7.1 × in execution time when the power consumption is limited 
to 15 W, compared to the situation with a limit of 60 W.

A challenge for the future would be addressing workload imbalances when pro-
cessing images, such as hyperspectral ones, with a higher number of spectral bands. 
In such cases, it may not be practical to allocate as many nodes as there are bands in 
the image. Additionally, adapting the implementation to work with series of images 
covering more extensive spatial areas would allow the application of the algorithm 
to a wide variety of remote sensing applications.

Table 6   Summary of execution times, in seconds, and speedups, with respect to the 15 W version, for 
different versions of the algorithm on the Jetson AGX Orin. Times include CPU and GPU processing

Version z1 image z2 image

CPU CPU-GPU CPU CPU-GPU

15 W EP 140.2101 105.9384 6.4297 5.0576
RX+Otsu 87.7020 29.9635 21.7822 7.9783
Total 227.9121 135.9019 28.2119 13.0360

30 W EP 23.8902 20.9899 5.7982 5.7447
RX+Otsu 60.4277 16.6504 14.9905 3.7830
Total 84.3178 37.6403 20.7887 9.5278

60 W EP 14.4470 13.1580 3.5670 3.6841
RX+Otsu 45.1647 6.0055 11.1657 1.2641
Total 59.6117 19.1635 14.7327 4.9481
Speedup 30 W 2.7× 3.6× 1.4× 1.4×
Speedup 60 W 3.8× 7.1× 1.9× 2.6×
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