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Abstract

Medical applications of Artificial Intelligence (AI) have consistently shown remarkable
performance in providing medical professionals and patients with support for complex
tasks. Nevertheless, the use of these applications in sensitive clinical domains where high-
stakes decisions are involved could be much more extensive if patients, medical profes-
sionals, and regulators were provided with mechanisms for trusting the results provided by
Al systems. A key issue for achieving this is endowing Al systems with key dimensions of
Trustworthy AI (TAI), such as fairness, transparency, robustness, or accountability, which
are not usually considered within this context in a generalized and systematic manner.
This paper reviews the recent advances in the TAI domain, including TAI standards and
guidelines. We propose several requirements to be addressed in the design, development,
and deployment of TAI systems and present a novel machine learning pipeline that con-
tains TAI requirements as embedded components. Moreover, as an example of how current
Al systems in medicine consider the TAI perspective, the study extensively reviews the
recent literature (2017-2021) on Al systems in a prevalent and high social-impact disease:
diagnosis and progression detection of Alzheimer’s Disease (AD). The most relevant Al
systems in the AD domain are compared and discussed (such as machine learning, deep
learning, ensembles, time series, and multimodal multitask) from the perspective of how
they address TAI in their design. Several open challenges are highlighted, which could be
claimed as one of the main reasons to justify the rare application of Al systems in real clin-
ical environments. The study provides a roadmap to measure the TAI status of an Al sys-
tems and highlights its limitations. In addition, it provides the main guidelines to overcome
these limitations and build medically trusted Al-based applications in the medical domain.
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1 Introduction
1.1 Artificial intelligence in medicine

Artificial Intelligence (AI) rapidly impacts everyday life (Ji et al. 2021). The healthcare
industry is not an exception, where Al applications are becoming pervasive due to the com-
plexity of health problems such as chronic disease management, treatment protocol crea-
tion, medication research, customized medicine, patient monitoring, and care (Vesnic-Alu-
jevic et al. 2020; Buruk et al. 2020). Since it is challenging for a physician to comprehend
such complicated health issues, Al can be utilized as a support tool that provides medical
professionals with valuable insights on available data and information which help them
to assess better illness diagnosis, detection, progression, or medication recommendations,
among others (Liu et al. 2020). In this regard, Clinical Decision Support Systems (CDSSs)
can assist medical professionals in reducing errors in decisions, improving the effective-
ness and quality of care, and optimizing the delivery of personalized medicine at the right
time, which is of crucial importance (Sappagh et al. 2021; Abuhmed et al. 2021). Qayyum
et al. (2021) reviewed prognosis, diagnosis, treatment, and clinical workflow applications
of Machine Learning (ML) in the medical domain, and El-Sappagh et al. implemented
an ontology-based CDSS for diabetes diagnosis (2018). However, dealing with Al in the
medical domain is not straightforward, it could carry potential pitfalls and inherent biases
which raise the possibility for harmful errors with high social, legal, and economic conse-
quences (Thiebes et al. 2021; Cutillo et al. 2020). Even if CDSSs were introduced in 1959
(Ledley and Lusted 1959), almost no actual practical application has been reported (Ji et al.
2021; Wang, et al. 2101). CDSSs are not ready for clinical use in real-time, indicating that
existing approaches are inadequate (Kovalchuk et al. 2020). There are many reasons and
barriers for this failure, including the lack of rigorous development, accurate evaluation of
the system’s effectiveness and usability, and the lack of reliability and accountability evalu-
ations of predictive Al systems (Jacobs et al. 2021). Besides, ML and Deep Learning (DL)
pipelines are stochastic and probabilistic in most of their steps. At the same time, uncer-
tainty turns up in every step of CDSSs, such as (1) patients fail to describe their conditions,
(2) physicians cannot interpret what they observe, (3) lab results contain some degree of
errors, and (4) medical data are not consistent. As a result, CDSSs did not gain the trust
of medical institutions to be used in real domains (Thiebes et al. 2021). Indeed, Hatherley
(2020) suggested that Al should not be used in the medical field because it would erode
the patient-physician trust relationship. Sanchez-Martinez et al. (2019) summarized the
challenges influencing the integration and implementation of CDSSs, and the most criti-
cal parameter of success for CDSS systems is the patients’ and physicians’ trust: Building
a CDSS based on trustworthy Al is expected to improve model acceptability in real-world
environments (Middleton et al. 2016). Toreini et al. (2020) reviewed technologies that sup-
port building reliable ML systems. The trustworthiness of the CDSSs is guaranteed in a
system that is based on robust, fair, explainable, scalable, auditable, secure, reliable, inter-
operable, safe, and responsible AI models (Wang et al. 2101; Markus et al. 2020; Dignum
2019). These properties must be considered across all stages of the model life cycle. ML
deployment in healthcare should involve interdisciplinary teams of physicians, knowledge
experts, and decision-makers (Wiens et al. 2019; Gillespie et al. 2020). Moreover, CDSS’s
patient-centric decisions should be based on the complete patient’s data, including demo-
graphics, images, lab results, genetics, and others collected from distributed Electronic
Health Records (EHRs) (He et al. 2019). For example, Jagannatha and Yu (Richards et al.
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2018) trained a bidirectional Recurrent Neural Network (RNN) for cancer disease predic-
tion and medication based on EHR data, and Choi et al. (2016) introduced Retain, a high-
accuracy model for predicting heart failure using EHR data. The seamless integration in
clinical workflow and the use of explainable and interpretable ML models greatly influence
the user acceptance for CDSSs. However, the methods used to develop Al technology in
healthcare are currently siloed. Models are built-in labs on a extremely narrow scale, iso-
lated from real-world settings, and without the context of larger EHR ecosystems. This
could result in systems that potentially do more harm than having a positive impact (Ji et al.
2021). Recently, Kovalchuk et al. (2020) proposed a three-stage trustworthy CDSS pipeline
which engages medical experts in system design, merges knowledge-based and data-driven
CDSSs, and supports continuous monitoring of performance and explainability.

1.2 Alzheimer’s disease medical problem

Recently, the United Nations General Assembly declared 2021-2030 the Decade of Healthy
Aging, which implies enabling the elders to remain active citizens from both physical and
cognitive viewpoints, ultimately “improving the lives of older people and their families
and communities.” Accordingly, one area of healthcare in which researchers expect a sub-
stantial role of Al-based CDSSs is AD diagnosis and progression detection. AD is a pro-
gressive neurodegenerative disorder that affects 10% of the population over 65 years old
(Tanveer et al. 2020). It is a multifactorial disease resulting from the complex interplay of
multiple pathological, environmental, and genetic factors which cause functional and struc-
tural changes in a patient’s brain (Chetelat 2018). According to the World Health Organi-
zation (WHO), 47 million people are living with dementia worldwide, which is expected
to reach 82 million in 2030 and 150 million by 2050. This means a person develops AD
every 3 s (Ahmed et al. 2019a). The number of AD patients is estimated to double in the
next 20 years (Alberdi et al. 2016). The death rate caused by AD has increased by 68%
between 2000 and 2010 (Association 2019), and in 2017, AD was ranked among the top 5
causes of death worldwide, with 2.44 million (4.5%) deaths (Khatami et al. 2020). In 2017,
the Alzheimer’s Association report asserted that the growing costs for managing AD are
estimated at about $259 billion (Forouzannezhad, et al. 2018). Although it is considered
one of the most common illnesses of later life, the treatments of AD are symptomatic, i.e.,
administered after advanced and irreversible stages of the disease process. In other words,
AD cannot be diagnosed until the disease has been clinically confirmed, and cognitive and
functional declines impair the patient’s ability to meet life’s demands. (Weiner et al. 2017).
This has enormous social and economic consequences. Only a few symptomatic treatments
are available, which are only effective for a short time and for a small number of patients
(Nordberg et al. 2010). AD is chronically and gradually developed in 3 phases (Khatami
et al. 2020). The first phase is the preclinical (pre-symptomatic) AD stage. In this stage,
changes in brain structure, blood, and Cerebrospinal Fluid (CSF) may start happening, but
the patient does not experience any symptoms. Nowadays, detecting this stage is challeng-
ing because it can start 20 years before any symptom is evidenced (Rathore et al. 2017).
Some studies linked the youth’s linguistic ability and late-life progression to AD (Riley
et al. 2005). The prodromal phase, i.e., Mild Cognitive Impairment (MCI), is the second
phase, where symptoms related to thinking ability may start to be noticeable, but they do
not affect a patient’s daily life. For unknown reasons, only 10-15% of MCI patients pro-
gress to AD (Alberdi et al. 2016). This group is called progressive MCI (pMCI), while
non-progressive MCI is called stable MCI (sMCI). Some studies divide this phase into
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early MCI and late MCI (Weiner et al. 2017) according to the severity levels of symp-
toms. Other studies distinguish MCI patients based on the memory impairment into amnes-
tic MCI (aMCI) and non-amnestic MCI (naMCI), where the first group is more likely to
develop AD (Varghese et al. 2013). It is worth noting that MCI has multiple pathologies,
and AD is just one of them. The third phase is AD, where memory, thinking, and behavio-
ral symptoms are evident and affect the patient’s daily life.

On the one hand, AD symptoms are always confused with the normal aging process,
and physicians are not consulted until too late, resulting in a late diagnosis. On the other
hand, AD clinical diagnosis and progression detection processes are complex tasks and
depend on heterogeneous types of pathological, physiological, behavioral, cognitive, and
psychological assessments. Difficult as it is to comprehend the etiology of AD, significant
efforts have been made to identify markers and biomarkers for AD pathological change,
including neuroimaging, CSF samples, and numerous amyloid data (Blennow and Zetter-
berg 2018). As AD is a multifactorial disease, the combination of different markers and
biomarkers is critical to building CDSSs, e.g., cerebrovascular amyloid protein and tau pro-
tein, nerve cell degeneration; cognitive evaluation to determine cognitive and functional
declines; drugs such as tacrine to measure symptoms, neuroimaging biomarkers (e.g.,
Magnetic Resonance Imaging [MRI] and Positron Emission Tomography [PET]), genetics
measurement to determine Down syndrome, comorbidities such as diabetes and hyperten-
sion, neuropsychological measures, symptoms, text data from interviews, and blood lab
tests. As a result, AD diagnosis and progression detection are based on multimodal data.
These data can collectively quantify brain morphology, function, connectivity, and pathol-
ogy changes, including amyloid plaques, hypometabolism, and neurological disorders
(atrophy). Most of these methods used for AD management (e.g., early diagnosis and pro-
gression detection) involve many factors; hence, they are complex, costly, time-consuming,
and require expert interventions. For example, MRI is increasingly used because it allows
the physician to analyze a patient’s brain by eye. Still, when changes become visible to an
eye, it usually is too late because the brain has evident signs of atrophy. Given the multi-
factorial nature of the disease, it is not a good idea to rely on a single category of markers
and biomarkers (e.g., MRI) to make a clinical diagnosis. Only a panel of markers and bio-
markers fusion may offer the appropriate sensitivity, specificity, and positive and negative
predictive values.

Reliable, early, automatic, continuous, and trustworthy AD detection and prediction are
highly important, especially in preclinical/predementia stages (Ahmed et al. 2019a; Var-
ghese et al. 2013). This is the most effective method for controlling AD’s progression,
which helps preventive and disease-modifying therapies be more effective in delaying
symptoms. In addition, the accurate progression detection of the disease assists physicians
in predicting the future status of patients, which improves the AD survival rate (Khedher
et al. 2015). Disease management improves the patient’s quality of life and avoids high
healthcare costs (Alberdi et al. 2016). Because AD is a chronic disease, multimodalities
are collected over time which results in time series data (Sappagh et al. 2021; El-Sappagh
2021; El-Sappagh et al. 2020). Time series data can be handled using RNN (Cui and Liu
2019), Convolutional Neural Network (CNN) (Khvostikov et al. 1809), stacked RNN-CNN
(Abuhmed et al. 2021; Dua et al. 2020), or a hybrid model (Abuhmed et al. 2021). CDSSs
have the potential to automatically, quickly, and accurately assist clinical experts in clas-
sifying and predicting AD using sophisticated, objective, and automatic classification and
regression techniques that can analyze and learn complex patterns from high-dimensional
data (Tanveer et al. 2020). Previous computer-aided methods targeted a single aspect of
the disease, but these methods achieved limited results because of the complex nature
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of AD. Integrative disease modeling based on heterogeneous modalities (i.e., built on a
wide range of markers and biomarkers) supports comprehensive analysis (Khatami et al.
2020). ML models can extract and highlight tiny and not noticeable changes in many fea-
tures that facilitate the accurate and early detection of the disease. Many classification
techniques have been used, including Support Vector Machine (SVM), Artificial Neural
Network (ANN), and DL (Ahmed et al. 2019a; Falahati et al. 2014). Regular ML mod-
els include separate steps for feature engineering, but DL incorporates the representation
learning phase in the learning process itself (Ebrahimighahnavieh et al. 2020). As a result,
DL is the best choice for big data analysis such as neuroimages (Zhang et al. 2017). Some
studies used ensemble techniques to improve the classification accuracy of AD (Ramirez
et al. 2018; Yao et al. 2018; Lebedeyv et al. 2014). In binary classification, the accuracy is
higher regarding Cognitively Normal (CN) vs. AD. It is harder to classify CN vs. MCI and
even harder for MCI vs. AD (Beheshti et al. 2017). Additionally, the classification of pMCI
vs. sMCI and aMCI vs. naMCI are also challenging tasks (Rémi Cuingnet et al. 2011).
The classification problem has also been formulated as a 3-class classification (e.g., CN
vs. MCI vs. AD) and a 4-class classification task (e.g., CN vs. sMCI vs. pMCI vs. AD).
Accurate prediction or diagnosis of AD requires monitor of multiple markers and biomark-
ers at the same time. This is called multitask modeling (Tabarestani et al. 2019) and has
been used in several medical domains (Ali et al. 2022; El-Rashidy et al. 2022; Juraev et al.
2022). Multitask modeling has been explored in AD diagnosis and progression detection
using single modality or multiple modalities, e.g., single-modal single-task classification
(Lu et al. 2017a) and regression (Ito et al. 2011) learning, single-modal multitask regres-
sion learning (Zhou et al. 2013), multimodal single-task classification (Liu et al. 2014) and
regression (Duchesne et al. 2009) learning, and multimodal multitask learning (Ding et al.
2018). AD progression has also been modeled using a multimodal multitask process based
on time series data (Abuhmed et al. 2021; El-Sappagh et al. 2020).

1.3 Trustworthy Al for AD

Despite the seminal studies on the technical aspects of applying ML and DL techniques to
build efficient and accurate CDSSs for AD, these models are rarely integrated into clini-
cal practice. Current research focuses mainly on creating and optimizing highly accurate
medical-assisted CDSSs based on ML algorithms and less representative datasets (Fang
et al. 2020). However, improving model accuracy alone is not always correlated with over-
all performance when deployed in the real world. Due to the lack of large-scale deploy-
ment, a considerable gap exists between the research and clinical practice of Al-based
CDSSs. For deploying Al systems in clinical environments, there are many issues beyond
accuracy, including social, technical, ethical, and organizational challenges that must be
carefully considered to design trustworthy CDSSs, e.g., low context awareness, patient pri-
vacy, and poor workflow integration (Jacobs et al. 2021). In addition, medical professionals
may resist accepting CDSSs because they are afraid of being replaced by artificial agents
(Pesapane et al. 2020). In addition, in other domains, such as criminal recidivism and job
applications, the employed data-driven systems have shown signs of social biases and
racial and ethnic discrimination (Varona et al. 2021; Wisniewski and Biecek 2021a). The
medical domain is highly sensitive because it involves human lives. As a result, AI’s ethi-
cal and social implications rise to the forefront of public, political, and research agendas.
Even if domain experts promised to improve diagnostic efficiency and accuracy, it is still
challenging for CDSSs to be deployed in real hospitals. The main reason for this problem
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is that CDSSs are not trustworthy for the following challenges (Neri et al. 2020; Wang,
et al. 2101; Gillespie et al. 2020; Pesapane et al. 2020; Expertengruppe and fiir Kiinstliche

;5 ): (1) Extensive computing resources are required for the model training; (2) vast and
high-quality datasets are required to be collected from EHRs for the training process, but
medical institutions operate independently and must maintain data privacy; (3) heterogene-
ous EHR data sources are not standardized and they are poorly integrated with CDSSs;
(4) used data are biased which creates a fairness challenge; (5) data and model provenance
should be assured; (6) models are not sufficiently validated and tested; (7) models are not
sufficiently accurate, stable, and robust; (7) most models act as complex black boxes and
their decisions are neither transparent nor interpretable nor explainable; (8) patients and
physicians do not collaborate in model’s building, training, validation, and testing (human-
in-the-loop challenge); (9) models are not seamlessly integrated in the clinical workflow;
(10) lack of personalized decisions based on whole patient’s medical history; (11) security
issues are not handled; and (12) responsibility and accountability of Al decisions need new
regulations.

Trustworthy AI (TAI) is a collection of sociotechnical requirements which must be han-
dled altogether throughout the life cycle of predictive model construction: data collection,
data preprocessing, feature engineering, model training and optimization, model testing,
model deployment, and model use and monitoring (Wang, et al. 2101; Gillespie et al. 2020;
Suryanarayanan, et al. 2020). This is known as the “chain of trust” (Toreini et al. 2020). To
be acceptable in a real environment, trustworthy Al-based CDSSs must be endowed with
accountability, responsibility, fairness, robustness, transparency, reproducibility, safety,
and privacy. Some studies address only part of the problem. For example, considering only
explainability (Rashed-Al-Mahfuz et al. 2021), security and privacy (Arachchige et al.
2020), explainability and security (Huang et al. 2020), robustness (Hossain et al. 2020), or
just reliability (Dur4n and Jongsma 2021) in the search for getting the user’s trust. To effec-
tively communicate how Al-based systems are perceived and utilized, as well as what con-
straints and challenges exist for their implementation, considerable work remains despite
current research in several domains to tackle these issues (Arnold et al. 2018). To get an in-
depth and empirical grasp of these aspects, substantial research is required to comprehend
how Al-based CDSSs should be used in clinical practice and their operational character-
istics. Our study helps to analyze the current state of Al-based CDSSs in the AD domain.

1.4 Study contributions

It is believed that TAI is the bedrock for acceptable, human-centered, and responsible Al
systems. Based on the ALTAI guidelines, TAI has seven requirements (human agency and
oversight; technical robustness and safety; privacy and data governance; transparency;
diversity, non-discrimination and fairness; societal and environmental well-being; account-
ability) (Expertengruppe and fiir Kiinstliche Intelligenz (HEG-KI), High-Level Expert
Group on Artificial Intelligence 2020). When people recognize that an Al-based CDSS
adheres to these requirements, it is likely to be trusted by users (Gillespie et al. 2020).
Trustworthiness will be checked in the model’s design, development, procurement, and
deployment phases by concentrating on the data, algorithms, and processes. To the best
of our knowledge, there are no studies in the literature that comprehensively reviewed
and discussed the TAI concepts, requirements, techniques, guidelines, and applications in
the AD domain. In addition, no studies proposed a framework to map the high-level TAI
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guidelines into practical steps in the ML pipeline. Most previous surveys either concen-
trate on Explainable Al (XAI) or discuss TAI in general without focusing on a specific
domain (Buruk et al. 2020; Markus et al. 2020; Huang et al. 2020). This study will review
the current literature on ML and DL models in the AD domain by focusing not only on
the performance of the proposed models, but also regarding the utilized datasets and their
properties, the utilized validation methods, data preprocessing steps, and so on. Moreover,
the study evaluates the level of trustworthiness achieved by each reviewed study based on
the ALTAI guidelines. To do so, the study discusses the AD research considering TAI prin-
ciples. Namely, this work concentrates on robustness, fairness, and transparency. The main
contributions are as follows:

1. The study provides an overview of the latest TAI guidelines, standards, and require-
ments.

2. The TAI requirements are mapped to a quantitative questionnaire that Al practitioners
and users could use to evaluate the trustworthiness of an Al system.

3. A comprehensive ML pipeline is proposed, which includes embedded components at
various stages to manage, check, or assess different TAI requirements.

4. Because AD is a critical medical problem and because the AD actual domain has not
benefited well from Al, the AD domain is considered as our case study to apply our
formulations of TAI requirements. A comprehensive survey of the latest AD research
studies from many search databases is provided. First, the study concentrates on the
studies that do not explicitly consider TAI in their design. Second, it concentrates on
the studies that explicitly consider TAI requirements in their implementation. The focus
is on the most critical requirements of robustness, fairness, and transparency.

5. A set of limitations that are believed to be the main reasons for the current limitation of
Al literature in the AD domain are explored and highlighted.

This review is organized as follows. Section 2 discusses the methods used to prepare
the study, and Sect. 3 discusses existing guidelines for trustworthy Al. Then, Sect. 4 goes
deeper and discusses the technical methods for implementing trustworthy requirements in
Al-based CDSSs. Section 5 discusses the application of TAI in the AD domain as a case
study. Section 6 discuss the effort to apply trustworthy Al in industry and other domains.
Finally, Sect. 7 concludes the study and proposes future research directions.

2 Methods
2.1 Search strategy

To identify relevant studies, candidate search terms are first set based on a preliminary
search. Based on the resulting terms, the following search text words and MeSH terms con-
taining generalized keywords were used to avoid potential bias in searching for the state-
of-the-art studies: [Alzheimer’s, AD, dementia, mild cognitive impairment, MCI], [time
series, multimodal, multitask, optimization, longitudinal], [conversion, detection, predic-
tion, diagnosis, progression], [Trustworthy, trustworthiness, user-centric, human-centric,
ethical, robustness, privacy, fairness, responsible, interpretable, explainable, trust, repro-
ducibility, reliable, XAl or accountability], [neuroimaging, neuropsychological, cognitive
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score, symptom, genetic, MRI, PET, EEG, fMRI], [transfer learning, CDSS, deep learning,
machine learning, ensemble, hybrid, decision support], [classification, prediction, detec-
tion, regression]. The controlled terms were combined using “AND” and “OR” for a better
searching strategy. Synonyms of the candidate terms are included using the “OR” operator
to maximize efficiency. First, a rigorous literature search is conducted through five lead-
ing electronic databases, including PubMed, ScienceDirect, SpringerLink, Nature, and
IEEE Xplore. Also, Web of Science and Scopus are queried to cross-check the findings.
These specific digital libraries were chosen since they offer the most important and recent
peer-reviewed full-text journals covering the field of ML in the healthcare field. In addi-
tion, to collect the most recent papers, all manuscripts uploaded to arXiv and medRxiv
are considered in the defined timeframe. Because of duplication, any published articles are
removed from the collected list from arXiv and medRxiv. The study concentrates only on
highly ranked journal papers, and chapter and conference papers are excluded. The terms
are searched in the title, abstract, and keywords of the papers. Second, each article’s titles,
keywords, and abstract were independently and manually scanned and interpreted. Third,
articles meeting our inclusion criteria are considered for the full-text review. For each can-
didate article, the full text is carefully read with the aim of keeping in the results only
the most relevant articles. Moreover, reference lists of the selected articles are manually
scanned to extract additional articles to get a complete overview of the field. The final list
of articles is included in the review process. These articles are reviewed according to the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines (Moheret al. 2009). PRISMA is the most popular methodology for conducting accu-
rate and comprehensive literature studies (Page et al. 2021).

2.2 Eligibility criteria

As a use case, the study focuses on reviewing state-of-the-art AD studies. The study con-
centrates on reviewing recent ML and DL studies in the AD domain and investigating the
implemented trustworthy guidelines in these studies. The inclusion and exclusion criteria
were set up through rigorous discussions and brainstorming among the authors. Inclusion
criteria are: (1) The focus of the collected studies develop, test, and discuss regular ML,
DL, trustworthiness, neuroimaging, multimodality, time series, multitasking, and any other
hybrid algorithms in the AD domain. (2) Only English language studies are considered. (3)
The studies are published from January 2017 to December 25, 2021. (4) The focus is on
peer-reviewed original journal papers only. (5) Only AD diagnosis and progression detec-
tion studies are included. Articles which do not meet these criteria are excluded from fur-
ther processing. For example, preliminary studies, editorials, opinion papers, book chap-
ters, conference papers, or reviews are out of the scope of this study. In addition, other
brain diseases such as Parkinson’s, Down syndrome, Schizophrenia, and Autism are not
considered in this study. Furthermore, articles that could not be accessed in full text are
excluded. In the end, the full texts of 110 papers were included in the full-text review.

2.3 Study selection

The initial query search in the electronic databases resulted in n=3088 records that satis-
fied the defined search criteria. Searching in reference lists results in n =30 additional pub-
lications. We have n=3038 candidate papers in terms of their title, keywords, and abstract
after removing 80 papers that are duplications and published in a language other than
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English. After scanning titles, keywords, and abstracts, n=2238 papers were excluded,
resulting in n=3800 eligible papers for full-text screening. The full-text screening retained
n=310 papers, of which, after quality review, n=110 papers were finally included for dis-
cussion and analysis in this study (see Fig. 1). As will be seen in detail in Sect. 5, 86 out
of 110 papers (78.18%) do not explicitly take care of trustworthy Al (see Sect. 5.1). More
precisely, 10 out of 86 papers are survey papers (see Table 2), 18 papers focus on classical
ML models (see Table 3), 17 papers are related to DL models (see Table 4), 13 papers are
related to ensemble models (see Table 5), 15 papers pay attention to time-series data (see
Table 6), and 23 papers deal with multimodal multitask problems (see Table 7). Accord-
ingly, only 21.82% of papers under consideration deal with trustworthy issues (see Table 8
in Sect. 5.2).

3 Trustworthy Al guidelines

There is no single definition of trustworthiness in Al. The study defines TAI as the property
for which an AI system adheres to the ethical principles of fairness, explicability, respect
for human autonomy, and harm prevention. Numerous high-level guidelines and standards
(i.e., more than 60) have been proposed to evaluate and monitor trustworthiness and ethics
in Al such as Al4People and Asilomar Al principles (Thiebes et al. 2021; Toreini, et al.
2020; Gillespie et al. 2020). Nevertheless, TAI is a dynamic and multidisciplinary field
of research. As noted in the European Union (EU) guidelines, some TAI principles may
contradict each other and be redundant. The main reason for TAI is to develop Al systems
in agreement with human values and needs. In 2018, the European Commission created a
High-Level Expert Group (HLEG) on Al This group defined TAI in terms of three desir-
able properties of Al systems (Hleg 2019): lawful, ethical, and robust. First, the HLEG
defined four ethical principles to achieve trustworthiness: (1) respect for human autonomys;
(2) prevention of harm; 3 fairness; and (4) explicability. Second, the HLEG outlined seven
critical requirements for the four principles: (1) human agency and oversight; (2) techni-
cal robustness and safety; (3) privacy and data governance; (4) transparency; (5) diver-
sity, non-discrimination, and fairness; (6) societal and environmental wellbeing; and (7)
accountability. It is worth noting that some of these requirements, like “Human agency
and oversight” and “Societal and environmental wellbeing” are the least relevant in the
scope of our study. Other requirements such as robustness, fairness, security, and privacy
have accurate measures to evaluate. Third, regarding assessment and validation of Al sys-
tems, the HLEG translated the seven high-level requirements into a trustworthy assessment
checklist (ALTAI) (Expertengruppe and fiir Kiinstliche Intelligenz (HEG-KI), High-Level
Expert Group on Artificial Intelligence 2020). ALTAI is the most applicable guideline
for measuring trustworthiness of Al-based systems (Jacovi et al. 2021). This paper fol-
lows ALTAI comprehensive guidelines for evaluating the status of TAI in AD literature
and finding out the main reasons for the current minor impact of CDSSs in real clinical
environments. This is the first study that discusses TAI in AD domain. To the best of our
knowledge, there is no deployed system in a real hospital for diagnosing and predicting the
progression of AD.

Each HLEG requirement is considered a contract that collectively creates the “broad
trust.” However, trust and trustworthiness are different terms. Trust has a lack of concep-
tual clarity on its meaning and dynamics. If party A believes that party B will act in A’s
best interest, and accept the vulnerabilities of B’s actions, then A trusts B. Jacovi et al.
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(2021) formalized the “contractual trust,” where the trust between stakeholders and CDSSs
ensures that some implicit or explicit contract will hold. Such a contract implies an obliga-
tion by Al developers to achieve the agreement. It could be said that the Al model is trust-
worthy to a contract if it can maintain this contract.

On the other hand, trustworthiness is a property of a syst em with some characteristics
that make it deserve users’ trust. However, users can trust the untrustworthy system, and a
trustworthy system does not necessarily get trust (Jacovi et al. 2021). Formally, if user H
believes that AI model M is trustworthy to contract C, and accept M’s vulnerabilities, then
H trusts M contractually to C. As a result, Al users always perceive model risks. This way,
the level of trustworthiness for CDSSs could be quantified.

3.1 Human agency and oversight

This requirement includes three components that describe the principle of respect for
human autonomy:

1) Fundamental rights: Al systems can positively or negatively affect human rights. A
fundamental rights impact assessment should be used before system development to
evaluate the level of the risk. We believe that this high-level requirement cannot be
applied to Al-based CDSSs.

2) Human agency: Al-based CDSSs are aimed at assisting physicians in making accurate,
personalized, and on-time decisions. Al-based CDSSs will never replace physicians (Durdn
and Jongsma 2021). In addition, it is early to decide whether patients can use Al-based
CDSSs away from physicians. As a result, both patients and physicians should be able to
make autonomous decisions with the support of Al systems. They must interact with the
system, challenge it if needed, and potentially edit and override the suggested decisions.
Overreliance on Al systems can influence and affect human behavior and knowledge, posing
a threat to personal autonomy. As a result, physicians and patients should have the right not
to be subject to an automated decision when this has legal effects on them.

3) Human oversight: this requirement ensures that Al-based CDSSs do not cause any
adverse effects or restrict human autonomy. Users need governance mechanisms, includ-
ing human-in-the-loop (HITL), Human-On-The-Loop (HOTL), and Human-In-Com-
mand (HIC) methods (On 2019; Budd et al. 2019). HITL is the ability of the user to
interfere in the decision cycle of the system, HOTL gives users the capability to take
part in the system design cycle, and with HIC, users can monitor the impact of CDSSs
and decide when and how to use them.

3.2 Technical robustness and safety

Robustness is the most critical requirement for the evaluation of Al-based CDSSs.
It measures the sensitivity of the system’s outcome to a change in the input. Robust-
ness also measures the model’s ability to work accurately under uncertain conditions.
This property is evaluated by exposing the model to adversarial inputs, and the sys-
tem should achieve an error rate close to training error. Mechanisms are required to
prevent possible risks, ensure reliable behavior as planned, and minimize unexpected
damages. Robustness needs to be guaranteed in case of potential change in the operating
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Fig.1 PRISMA (Huang et al. 2020) flowchart for the study

environment or the existence of agents that interact in an adversarial manner with Al-
based CDSSs. Nicolae et al. (2018) proposed a tool to create defense techniques for
ensuring the robustness of Al systems:

1y

2)

3)

4)

Resilience to attack and security: an Al system should be secure against vulnerabilities
and adversarial attacks. These attacks can affect data (data poisoning), the model (model
leakage), or the system infrastructure (i.e., hardware and software) (Toreini et al. 2020).
If attacked, the system could take wrong or at least different decisions, and data may
become corrupted by malicious intention. Sufficient mechanisms should be in place to
prevent adversarial attacks. Issues related to system availability, data storage and encryp-
tion, and access control are outside the scope of this study. The study concentrates on
the security issues related to the ML domain, like malicious attacks based on poisoning
training or online data, spoofing attacks, and inversion attacks (Toreini et al. 2020).
Fallback plan and general safety: This requirement determines the safeguards which
enable a fallback plan when an attack or error occurs. Perfect performance in a con-
trolled lab environment is not proof of safety (Qayyum et al. 2021). For example, the
system can stop working or switch to another CDSS like a rule-based system. The Al-
based CDSS solution should ensure that the system performs as planned and minimize
the risks associated with errors. In each phase of the life cycle of Al-based CDSSs, a
set of precautionary measures must be applied.

Accuracy: Al-based CDSSs must achieve high training and testing accuracies. Accuracy
is the model’s ability to predict outcomes by reducing false positives and false nega-
tives. Training pipeline, robust validation mechanism, sufficient and high-quality data,
ML model selection and optimization, optimized feature engineering, and handling of
biased and imbalanced data, among others, are defined to support, mitigate, and correct
unintended risks from inaccurate decisions. As errors cannot be prevented entirely, at
least they should be quantified and reported.

Reliability and reproducibility: With identical input parameters and operating condi-
tions, CDSSs should produce identical outcomes. A minor input modification should
not significantly change the system’s behavior. The system is reliable if it functions
correctly in a variety of inputs and settings. Reproducibility is attained when identical
results are obtained under identical settings.
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3.3 Privacy and data governance

Privacy is related to the principle of prevention of harm, where adequate data governance
for quality and integrity, data relevance, access protocols, and data processing should be
adopted. This requirement has three components:

1Y)

2)

3)

Privacy and data protection: Human-centric CDSS requires access to distributed
EHR data to make personalized decisions, which increases the challenge of protecting
patient’s privacy. Other data that need privacy protection include the ML model param-
eters and hyperparameters. If the Al-based CDSS integrates expert-defined knowledge
bases and rules for data preprocessing, data selection and data filtering should be pro-
tected. CDSSs should protect patients’ training data and identity, internal system logic,
and any intellectual property. Patient data to be protected include data used for building
the model, data collected by the physician when interacting with the system, and patient
decisions. If the Al system accesses the whole patient’s medical record, this allows the
Al system to infer not only the patient’s conditions but also other private data, such as
family conditions. Suitable measures should be implemented to ensure that the collected
data will not be used unlawfully. There is always a tradeoff between model transparency
and privacy (Schneeberger et al. 2020). He et al. (2020) discussed different types of
attacks on the Al system and measures that should be taken to prevent them.

Quality and integrity of data: The quality of CDSSs depends on the quality of the train-
ing data. The medical domain is well known for its low-quality data. Data are always
sparse and include missing values. Data regarding symptoms, medications, and comor-
bidities are always collected in the raw text without standardizations. All these issues
must be addressed before using the data in model training or testing. Data integrity
ensures that no malicious data are fed to the system.

Access to data: Data access controls determine who can access specific data and for
what purpose. The data to be handled by Al systems include input data (e.g., images,
numerical and categorical structured data, and text data), model data (e.g., features,
model parameters and hyperparameters, algorithms), and output data (e.g., predictions).

3.4 Transparency

This is a crucial requirement for TAI, which is closely linked to the principle of explicabil-
ity. It comprises three components:

1y

2)

Traceability: All data, processes, and algorithms should be documented. System deci-
sions should also be documented to track decisions and determine mistakes. As a result,
traceability supports auditability and explainability; and contributes to creating respon-
sible AL

Explainability: Users have the right to get an explanation for the Al decisions and
technical processes as stated by the “Right to an Explanation” in the GDPR (Schnee-
berger et al. 2020). Even if XAl enables models to be more predictable and transparent
(Alejandro Barredo Arrieta et al. 2020), there is no obligation or law for that right. In
addition, the GDPR does not clarify the level of correctness or details of the explana-
tion. Many open-source packages implement explainability features (Arya et al. 2020).
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Tradeoffs always exist between explainability and security, privacy, and performance.
The suitable explanation depends on factors in the system’s context, such as the available
time, the experience of the user, the available explanation mechanisms, or the security
and privacy issues regarding the data and model parameters. Explanations should be
dynamic based on the context and interactive using human—computer interaction tech-
niques. The Al system should provide different XAI mechanisms (e.g., visualization,
feature importance, rules, natural language explanations, etc.).

3) Communication: Patients should know when they are dealing with an Al system and be
able to select between Al and medical expert decisions. The limitations of the Al system
should be communicated to its users.

3.5 Diversity, non-discrimination, and fairness

All affected stakeholders should have equal access to the AI system. This means the
absence of biases. Diversity must be enabled in the entire Al system’s life cycle. This
requirement implements the principle of fairness, and it has three components as follows.

1) Avoidance of unfair bias: Datasets and algorithmic biases result in unfair discrimination
against certain people. The Al system can suffer from different kinds of biases (Varona
et al. 2021). Identifiable data biases should be removed from the data collection phase.
Furthermore, the system development process may suffer from bias. Al-based CDSSs
should not be affected by patient characteristics that are not related to the medical
problem, such as place of birth, ethnic or social origin, and abilities. Many open-source
packages provide the understanding and mitigating of biases (Bellamy et al. 2019).

2) Accessibility and universal design: CDSSs should not have a one-size-fits-all approach
and universal design methods that cover all possible users.

3) Stakeholder participation: CDSSs require the active involvement of all stakeholders
who may be directly or indirectly affected in all life cycle phases. Specific mechanisms
should be considered to collect and implement user feedback during system design and
deployment.

3.6 Societal and environmental wellbeing

The principle of fairness requires the Al system to prevent harm to the environment and
wellbeing. This requirement has three components: (1) sustainability and environmental
friendliness, (2) social impact, and (3) democracy. However, this requirement has no role in
designing an Al-based CDSS.

3.7 Accountability

“Who is responsible for the Al decision?” is a crucial question that affects model trust-
worthiness. This is called the responsibility gap (Dur4n and Jongsma 2021), where either
physicians or Al-based CDSSs may be responsible for the medical decision. Thus, CDSSs
must have the ability to justify automated decisions. This requirement is closely linked
to the principle of fairness and pays attention to the mechanisms through the model life

@ Springer



S. El-Sappagh et al.

cycle, ensuring the responsibility and accountability of Al decisions. Katell et al. (2020)
discussed different types of accountabilities and their relationships to different user types.
XAI can help the physician to interpret why (or why not) and how the Al system came to a
specific decision. There are two primary components for this requirement:

1) Auditability: Internal and external auditors can assess an Al system’s algorithms, data,
and design processes. The designer should take responsibility for proper testing and
auditing of the system. Providing mechanisms for auditing ensures that the model is
accountable for the decisions it produces.

2) Risk management: This is the ability to identify, assess, report, and minimize the poten-
tial negative impact of an Al system.

4 Technical methods for implementing TAl requirements in Al-based
CDSSs

This section formalizes the definition of TAI and its requirements according to HLEG
guidelines. For each requirement, we collect the existing evaluation measures and possible
dimensions to evaluate. In addition, we summarize the literature for medical and non-med-
ical studies which are associated with each requirement. The ALTAI checklist proposed
by HLEG is connected to the ML pipeline phases, including design, development, imple-
mentation, deployment, and use. TAI components (lawful, ethical, and robust) and require-
ments must be embedded into Al services and products to create human-centric systems.
TAI requires “a holistic and systemic approach, encompassing the trustworthy of all actors
and processes that are part of the system’s socio-technical context through its entire life
cycle” (On 2019). Lawful AI means that the Al system operates according to legal rules
which establish what cannot be done, what should be done, and what may be done. Nev-
ertheless, the HLEG guidelines do not concentrate on Al laws and regulations. Ethical Al
means that the Al system is aligned with ethical norms. Robust AI means that the system
should operate in a safe, secure, and reliable manner. Robustness has technical and social
perspectives in each context (On 2019). Note that issues like “respect for human dignity
and rights,” “freedom of the individual,” and “respect for democracy and justice” are out
of the scope of this study. The concentration is mainly on the trustworthy requirements to
deliver an Al-based CDSS for AD. A full discussion of the high-level ethical principles can
be found in (Expertengruppe and fiir Kiinstliche Intelligenz (HEG-KI), High-Level Expert
Group on Artificial Intelligence 2020; On 2019). To implement TAI in CDSSs, there are
functional and non-function methods. On the one hand, Toreini et al. (2020) organized
trustworthy functional requirements into two classes: (1) data-centric trustworthy, which
concentrates on data collection, data preprocessing, and feature engineering and (2) model-
centric trustworthy, which concentrates on model training and validation, model testing,
and model deployment. On the other hand, non-functional methods (e.g., regulation, stand-
ardization, certification, education and awareness, accountability by government, or inclu-
sion of stakeholders) are out of the scope of this study.

For each requirement, a list of questions has been suggested that will be used to evalu-
ate AD literature regarding trustworthy Al. The following sections will discuss the details
of the functional methods to achieve TAI. The study considers the proposed standardized
documents to define each HLEG requirement’s contract formally. These documents include
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data statements (Bender and Friedman 2018), datasheets for datasets (Gebru et al. 2021),
model cards (Mitchell et al. 2019), reproducibility checklists (School and of Computer Sci-
ence 2020), fairness checklists (Madaio et al. 2020), and factsheets (Arnold et al. 2018).

4.1 Trustworthy Al architecture

As shown in Fig. 2, a pipeline for checking the TAI requirements at every stage of the
model’s life cycle is proposed. Note that the emphasis in this figure is on ML models, as
this is now the most popular direction in AI._Applying TAI requirements at each phase of
the pipeline creates what is known as a chain of trust, since trust at one point will manifest
in subsequent phases. It is recommended to optimize the pipeline as a whole rather than
each step individually (Cearns et al. 2019). Recent research studies successfully combined
ML and metaheuristics optimization techniques such as swarm intelligence and proved to
be able to obtain outstanding results in different areas (Bacanin Ruxandra et al. 2021;
Malakar et al. 2020)). An Al system can be formulated as y = f,(X), where y is the target or
dependent feature, X is the list of inputs or independent features, f, is the Al system param-
eterized by 6. Inspired by Toreini et al. (2020), we consider data-centric, model-centric,
and user-centric trustworthy. The study measures the level of acceptance for the Al system
by healthcare users, including patients, physicians, and caregivers. This acceptance may
include the suitability of explanation, privacy, and accuracy. It may also regard to the ease
of use for the model interface and the level of interoperability between the CDSS and EHR.

4.1.1 Data-centric trustworthy

Data is a crucial part of any Al-based system. The efficiency of any system depends
mainly on the quality of data as much as on the algorithm’s capabilities (Ashmore et al.
2019). Creating high-quality datasets is the first step in any Al pipeline, which consumes
most of the time and effort of the project team (Ashmore et al. 2019). Data availability,
privacy, malicious training data, and data biases are examples of the challenges to cope
with (Thiebes et al. 2021). The following four steps are proposed to ensure data qual-
ity: (1) Data standardization, coding, and unification: Heterogeneous data are collected
from the distributed EHR system and need to be standardized using standard ontologies
like SNOMED CT, LOINC, NDFRT, and ICD 11 and unified using standard data models
like HL7 FHIR and openEHR. The challenge here is to solve the interoperability problem
between heterogeneous EHR systems. (2) Problem definition: The main reason CDSSs are
not applicable in the medical domain is that engineers do not understand the medical prob-
lem. This makes the resulting system either very shallow or extremely sophisticated, which
does not convince domain experts. To achieve this step, data scientists must work closely
with medical domain experts to understand the problem, determine the data requirements,
collect and interpret data via secure transmission media, meet fairness and robustness
requirements, and define the generalization performance requirements and metrics. Data
can be collected from multiple sources, including distributed EHR databases. The collected
data must satisfy four main properties: relevance, completeness, balance, and accuracy.
Ashmore et al. (2019) comprehensively surveyed these properties and how to measure
and enhance them. Collected data could be stored on a local server or the cloud. (3) Data
preparation and data augmentation: This step includes a range of data cleaning activities,
missing values imputation, outlier detection, data normalization, data fusion, time-series
data preparation, and data balancing. Different exploratory data analysis (EDA) techniques
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facilitate understanding data distributions and correlations to uncover biases and select the
best preprocessing methods. Data leakage makes the training dataset irrelevant because the
data will include information that will not be available to the system after deployment.
EDA techniques can identify sources of leakage. For example, a tight correlation between
a feature and a label may indicate a leakage (Ashmore et al. 2019). The most critical issue
is to apply data preparation steps on training datasets only to prevent data leakage. Impre-
cise labeling of the data leads to severe loss in the quality of the model. Data augmenta-
tion is required to appropriately label the data and add more samples to the collected data.
To assign labels, domain experts, clustering, and reinforcement learning can be utilized.
(4) Feature engineering and optimization: Feature selection (FS) and enrichment enhance
model performance and its interpretability. The use of genetic algorithms, recursive feature
elimination, or Bayesian optimizers has recently become popular. Many automated ML
tools (He et al. 2021) and techniques have been published to do the data preparation and
feature engineering steps easily, automatically, and correctly.

4.1.2 Model-centric trustworthy

Building and deploying a simple, robust, and fair Al system is challenging in sensitive
domains like medicine. Model availability, privacy, uncertainty, bias, and opacity are
examples of challenges of TAI (Thiebes et al. 2021). The following six steps are consid-
ered: (1) ML algorithm selection and optimization: This step involves validating multiple
algorithms like decision trees (DTs), SVMs, and logistic regression. In addition, static and
dynamic ensembles and DL neural networks with different architectures may achieve better
results. The selected algorithm needs to be validated and optimized using a hyperparam-
eter optimization technique like grid search, random search, Bayesian optimization, genetic
algorithms, or particle swarm optimization (Yang and Shami 2020; Yu and Zhu 2020).
Many AutoML tools exist to automate the ML pipeline and select the algorithm with the
best hyperparameters 6 that achieve the best validation performance with the best model
complexity. (2) Build explainability features: Interpretation of glass-box models regard-
ing feature importance, visualization, CBR, and natural language generation ((Alonso and
Bugar 2019; Mariotti et al. 2021)), which provide post-hoc explanations of black-box mod-
els. (3) ML model (offline) testing (i.e., model verification): ML model f, should general-
ize well to previously unseen data and reasonably handle edge cases. Based on domain
expert priorities, specific performance metrics need to be defined and measured. Testing
data should be collected from the same distribution as training data in addition to adver-
sarial samples for robustness testing. If the generalization performance requirements are
not reached, data preparation and model training steps should be repeated. (4) ML small
scale deployment: Because the ideal scenario testing should be done in a real-life setting,
and because of the safety, privacy, and accuracy constraints, the resulting Al system should
be first deployed and tested in a small-scale real environment, such as single department
in a hospital or small clinic where domain experts check that the Al system adheres to
medical regulations. Afterwards the system should be also tested with external data from
other hospitals. Real domain experts or external committees need to test the system’s
explainability, reliability, fairness, privacy, robustness, and auditability. The integration of
CDSSs in the EHR ecosystem needs to be verified too. (5) Al system full deployment: The
accepted model by medical experts is fully deployed in the real hospital and integrated as
a component in the EHR ecosystem. The interoperability between Al-based CDSSs should
be implemented, and the online learning setting should be defined. Data access controls
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must be defined to determine who (and when) can access to CDSSs. There is no standard
for transferring an Al system from the training to the production phases. The system can
be deployed as REST services, Flask-based system, mobile app, or cloud service. Online
query data should be (a) passed through the same preprocessing steps, (b) integrated with
other EHR data in a standard way. (6) Al system monitoring: Complex Al systems require
continuous monitoring and maintenance. The dynamic training using online learning may
cause the system to learn wrong patterns over time. This is called concept drift which is a
change observed in the joint distribution p(X,y), for X input and y output because of re-
tuning of 6 using newly arrived data. This phenomenon could have major adverse effect on
model performance even happen in a microscopic scale (Celik and Vanschoren 2021). In
addition, a model update is required to make sure it reflects the most recent trends in data
and medicine. Based on the practical considerations, the model can be scheduled for regu-
lar retraining. Domain experts should define what metrics to monitor the data and system
continuously and when and how to perform the updates. Notice that the software engineer-
ing dimension of the system deployment is out of scope of the study.

4.1.3 User-centric trustworthy
This is the last phase in the TAI pipeline. Users mainly include patients and physicians

who interact with the Al system. The homogeneity level of integration of Al-based CDSSs
in medical workflow affects the acceptance level of users. If the system works in isolation
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from EHR, this requires physicians to manually interact with the system, which takes a
long time for domain experts. Responsibility and accountability are crucial requirements
for CDSSs, where domain experts need to evaluate the traceability and auditability features
of the deployed system. The ease of use of CDSSs should also be evaluated (Budd et al.
2019). In addition, the context-aware personalized explainability features should be evalu-
ated by users in a real environment and over time. The level of generated details, the num-
ber of explainers, the complexity of explanations that depend on the level of experience of
receivers, and the availability of time for their investigation should be considered.

4.2 Robustness methods

The model accuracy has been the long-lasting standard for comparing models. Recently,
model robustness became a more crucial measure for model acceptance and evaluation.
Although Al has a prominent role in improving healthcare, there are still lingering doubts
regarding the robustness of these techniques in healthcare settings (Qayyum et al. 2021),
primarily because of security and privacy issues resulting from adversarial attacks. Achiev-
ing robustness for Al-based systems requires handling of three main challenges, includ-
ing (1) security and privacy, (2) accuracy, and (3) reliability and reproducibility (Xiong
et al. 2021). Most literature concentrated only on the accuracy of the model as a measure
of robustness ((Abuhmed et al. 2021; Liu et al. 2021a)), but there is always a trade-off
between performance and robustness (Su et al. 2018) which should not be disregarded.
This section briefly discusses these requirements.

4.2.1 Security and privacy

Al-based systems are vulnerable to different adversarial attacks at every pipeline phase
(Xiong et al. 2021). Undesirable effects include performance degradation, system misbe-
havior, and privacy breach. The robustness of an Al system is the ability to resist malicious
attacks and protect its integrity, availability, and confidentiality. Adversaries can attack an
Al-based CDSS in many ways (Arnold, et al. 2018) (Finlayson et al. 2019). For example,
(1) small perturbation in MRI images could cause the CDSS to misclassify patients to any
label that the attacker desire, (2) training data and models can be poisoned to reduce model
performance, and (3) sensitive information about model and training data can be extracted
by observing outputs for different inputs. Discovering that Al-based CDSSs are not secure
and private significantly hinders their practical deployment (Qayyum et al. 2021). Yuan
et al. (Xiaoyong Yuan et al. 2019) discussed different attack mechanisms on DL systems
at the training and validation stages. Su et al. (Jiawei Su and Vargas 2019) discussed a
DL vulnerability in an image classification task where a perturbation of just a single pixel
could dramatically modify the classifier performance and facilitate attacks. Pitropakis et al.
(Nikolaos Pitropakis et al. 2019) surveyed existing ML vulnerabilities and associated attack
methods. Huang et al. (Huang et al. 2020) comprehensively surveyed the safety, XAl, veri-
fication, testing, and adversarial attacks of DL models. Huang et al. surveyed the math-
ematical formulation of robustness. Let f be an ML model, C(f) is the correctness off,
and 6(f) be f with perturbations on any of its components such as data, model, or learning
framework. Robustness of f is the measurement of the difference between C(f) andC(56(f)).
There are two main categories of robustness: (1) local robustness that measure the robust-
ness for specific test input. Let x be a test input for ML modelf. Let X be an adversarial
input ofx. Model f is 6-local robust at input x if for anyXx,Vx : [lx = %|, < & — f(x) = f(%),
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for |||, represent the p distance; (2) global robustness measures the robustness for all
inputs. Model f is e-global robust for any x and X ifVx, % : [lx —X||, <6 — f(x) = f(R) <e.
Barreno et al. (Barreno et al. 2010) proposed a popular taxonomy for vulnerabilities and
attacks on ML-based systems, which has three dimensions:

ey
2

3)

Influence: either the attempt to control training data (causative or poisoning attack) or
new data is compromised (explorative or evasion).

Security violation: either the exploitation concentrates on the attack for increasing false
negative rate (integrity attack), overload of false positives (availability attack), or the
unveiling of sensitive information of training data or trained model (privacy violation
attack).

Specificity: either the attack is targeted to a particular instance (targeted attack) or a
wider class (indiscriminate attack).

4.2.1.1 Threat modeling For managing effectively and systematically possible vulnerabili-
ties to an Al system, a threat model should be adopted to identify potential system-specific
threats, suitable security objectives, relevant attack, and vulnerability vectors, and design
appropriate defense methods. Threat modeling in the ML domain focuses on the following
aspects.

ey

@3]

3

“
&)

Attack surface: this is the type of potential attack in every Al pipeline stage, including
poisoning attack during model training, testing, and retraining; model stealing; eva-
sion attack in prediction; gradient descent attack in learning; and polymorphic attack
in feature extraction.

Attacker goals: they may include (a) security violation where attackers could undermine
the system functionality (integrity and availability), e.g., significantly degrading the
model accuracy, or deducing sensitive information about the system (confidentiality
and privacy), e.g., obtaining model parameters or training data, (b) attack specificity
where attacker launches a targeted or indiscriminate attack against specific or any
system, and (c) error specificity where attacker either fool the system to misclassify
an input sample to a specific class or any class different from the legitimate class.
Attacker knowledge: attackers could have different access levels to sensitive information
about Al systems. This information includes training data, algorithms and architec-
ture, hyperparameters, objective function, and trained model parameters. The type of
attack (black box, gray box, and white box) depends on the level of access to sensitive
information. If the attackers know everything about the model, they can run white-box
attacks. Suppose attackers know some information like feature set and algorithm and its
architecture, but not the training data and parameters. In that case, they can run gray-
box attacks to collect surrogate datasets from similar sources and collect label outputs
from the model for these data. If attackers do not know anything about the model, they
can run black-box attacks. Based on the normal distance that evaluates the difference
between original and perturbed input, adversarial attacks can be classified as L, L,
L,, and L -attacks (Huang et al. 2020).

Attacker capability: the attacker’s ability to access and manipulate training data and
input examples or monitor the corresponding output of a trained model.

Attacking effect (causative or exploratory): causative effect occurs when an attacker can
manipulate training and input samples during training and online learning. This attack

@ Springer



S. El-Sappagh et al.

aims to corrupt the model under training to cause either integrity violation (which
makes the model produce adversary desired output) or availability violation because
of the corrupted model. The exploratory effect occurs when attackers can manipulate
input samples only during the prediction phase to cause the model to produce incorrect
outputs or violate privacy for deducing sensitive information about the model or data.

4.2.1.2 Security attacks Adversarial attacks exist in every stage of the AI pipeline
(Xiong et al. 2021). These attacks are based on manipulating and/or extracting input data,
training data, or models (Qayyum et al. 2021; McGraw et al. 2019). Adversarial sampling
(i.e., adversarial input perturbation) based attacks are the most widespread attacks in the
ML domain where the attacker intentionally perturbs a small portion of train/test/input
data to adjust the availability, integrity, and confidentiality of the system. Because the
ML model is based on relatively small training and test sets compared to the whole popu-
lation, the large space of the data distribution remains unexplored by the learned model
(Ben Braiek and Khomh 2020). This phenomenon becomes more critical for sophisti-
cated models like DL neural networks, which have complex decision boundaries. This
complexity creates vulnerabilities that adversaries can exploit.

Moreover, the decision boundaries of some linear models are extrapolated to many
regions of high-dimensional spaces that are untrained. The generalizability of the result-
ing models is negatively affected (McGraw et al. 2019), and the model does not account
for adversarial samples (Xiong et al. 2021). Adversarial ML techniques find the regions
where the model exhibits an erroneous behavior. Adversarial sampling is achieved in
three main ways: perturbation of valid samples, transferring adversarial samples across
different models, and generative adversarial networks (GANs) (Dasgupta and Collins
2019). Huang et al. (Huang et al. 2020) formally defined adversarial examples as fol-
lows. Given a trained DL model with its association function f : R® — R%, a human
decision oracle H : R* — R%, and input x € R" with argmaxf;(x) = argmax’;(x) that

J J
mean DL model works correctly on the original example, and adversarial example is
defined as:

3% : argmax’H;(X) = argmaxH;(x) A [|lx = X]|, < d A argmaxf;(X) # argmaxf;(x)
J J J J

wherep € N,p > 1.d € R, R* is the input vector, .||, is L,-norm distance, X is the
adversarial input, R*% is the output vector, f is the model with scalar or vector output,
andd > 0. For example, adding a small amount of adversarial perturbation caused the DL
model to incorrectly classify fMRI images from “malignant tumor” to “benign tumor”
(Finlayson et al. 2018). Papangelou et al. (Papangelou et al. 2018) introduced the concept
of adversarial patients, which are unintentional adversarial examples that could lead to sev-
eral ethical issues (e.g., patients with identical predictive features but different individual
treatment effects). Most adversarial attacks concentrate on computer vision models (Huang
et al. 2020). As asserted before, vulnerabilities exist in every phase of the Al pipeline. For a
comprehensive survey of these issues, the interested readers are kindly referred to Qayyum
et al. (2021). In brief, the sources of these vulnerabilities can be one of the following:

(1) Data collection vulnerabilities: the collected data from EHRs, neuroimages, and medi-

cal reports introduce vulnerabilities such as instrumental and environmental noises
(e.g., MRI image is highly sensitive to motion), unqualified personnel (e.g., build-
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ing and maintaining Al systems by a non-technical physician or depending on the
physician-data engineer relationship).

Data annotation vulnerabilities: labeling samples for supervised ML models is called
data annotation. Domain experts or automated unsupervised learning techniques are
always used to label data, introducing problems, including class imbalance, label leak-
age, and coarse-grained labels. The major causes of the labeling challenge are that the
medical ground truth is ambiguous and the perturbance of data by malicious users. Al
systems can be used to detect rare diseases and to detect hidden patterns in the medical
environment. However, data are usually limited, imbalanced, biased, and sparse. These
issues further complicate data labeling.

Model training vulnerabilities: incomplete or improper training, privacy breaches,
data poisoning, model poisoning, and stealing are popular issues in model training.
Improper training involves using improper parameters like learning rate, batch size, or
epochs in the learning process. A poisoning attack happens during the model training
and retraining phases, when the attacker injects some “poisoned” samples into train/test
sets to modify the statistical properties of the data. This attack affects the integrity and
availability of the model, where an attacker can launch error-generic or error-specific
poisoning attacks. Model retraining takes place in applications like intrusion detection,
spam detection, and facial recognition to reconsider new updates in the domain. At that
point, poisoned data can be fed to the operational system, and an attacker can launch
white or black-box attacks during the (re)training process based on the level of access
(Liu et al. 2018a). Label-flipping, gradient descent, backdoor, and Trojans attacks are
the main types of poisoning attacks that affect supervised learning algorithms (Liu
et al. 2018a; Biggio and Roli 2018; Gardiner and Nagaraja 2016).

Testing vulnerabilities: These issues are related to the interpretation of the results
of models, including misinterpretation, false positive, and false negative outcomes.
An evasion attack is an adversarial attack against the system in the prediction phase.
This attack evades the trained model by adversarial input examples (Biggio and Roli
2018). These examples can be generated using many algorithms. Adversarial sampling
techniques include the fast gradient sign method (Tramer et al. 2017), universal attack
approach (Moosavi-Dezfooli et al. 2017), DeepFool (Moosavi-Dezfooli et al. 2016),
among other algorithms (Xiong et al. 2021). Gradient-based attacks use a gradient
descent function to search for adversarial examples that can mislead the system. This
attack is widely used in attacking differentiable learning algorithms such as DL and
SVM with the differentiable kernel. For non-differentiable learning as a DT, an attacker
can use differentiable surrogate models.

Deployment vulnerabilities: the most critical issues in the deployment phase are distri-
bution shifts and incomplete data. Distribution shifts are expected because the distribu-
tion of data used in model building is very different from the data distribution in a real
environment. This causes significant degradation in model performance. In addition,
this difference can be exploited to generate adversarial examples. For incomplete data,
in real settings, the collected data for patient care usually contain missing observations
and variables. Handing this incompleteness is a challenge because data may not be
missing at random.

4.2.1.3 Defense mechanisms Defense techniques are dual to attack techniques by either
improving the robustness of the model to immune the adversarial cases or differentiating
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the adversarial cases from the correct ones. There are many countermeasures for different
attacks. Wang et al. (2019a), Qayyum et al. (2021), Xiong et al. (2021), Huang et al. (2020),
and Liu et al. (2018a) provided comprehensive surveys for these mechanisms, which are
categorized as follows:

(1) Modifying model: they concentrate on training a robust model against adversarial
attacks by using different methods like adversarial training, data compression, foveation-
based method, gradient masking, network verification, classifier robustifying, explain-
ability modeling, and defensive distillation methods (Qayyum et al. 2021; Ben Braiek
and Khomh 2020; Wang et al. 2019a). Another method adds an external defense layer in
front of the trained model. This layering process inputs data before they are used by the
trained models in the prediction phase. These techniques include input monitoring against
anomaly inputs that detect and filter adversarial inputs and input transformation maps input
samples far from the training data in feature space (McGraw et al. 2019; Biggio and Roli
2018). Another technique is the masking model technique, where the adversarial attack is
formulated as a learning plus masking problem (Nguyen et al. 2018), where the masking
step introduces noise in the logit output to defend against attacks.

(2) Modifying data: these techniques do not touch the model but modify the data or
features to prevent adversarial attacks. Related techniques include adversarial (re)training
(i.e., training the model again using augmented training data with adversarial examples.
This method fails to catch iterative adversarial perturbation generation methods as basic
iterative method (BIM) (Kurakin et al. 2018)), input reconstruction (i.e., cleaning adversar-
ial noises from input examples using techniques like denoising autoencoder which removes
harmful effects on the model (Gu and Rigazio 2015)), feature squeezing (i.e., squeezing
features that an adversary can use to construct adversarial examples (Xu et al. 2017)), fea-
ture masking (i.e., masking the most sensitive features by adding a masking layer before
the classification layer to set the corresponding weights to zero (Gao et al. 2017)), and data
sanitization and robust learning (i.e., attacker alters the statistical distribution of training
data or insert adversarial examples (Biggio and Roli 2018)).

(3) Adding auxiliary model(s): These methods integrate auxiliary models along with the
main model for detecting adversarial attacks. Standard techniques in this category include
adversarial detection (i.e., a binary classifier is added to distinguish between adversarial
and original examples (Lu et al. 2017b)), ensembles defenses (i.e., sequentially or in paral-
lel integration of multiple defensive strategies such as PixelDefend (Song et al. 2017)),
and using GAN models (i.e., using GAN to defend against adversarial attacks such as
Defense-GAN (Samangouei et al. 2018)). Wang et al. (Wang et al. 2018a) proposed model
mutation testing to detect adversarial examples at runtime. They used mutation operators
like Gaussian Fuzzing and Neuron Switch to randomly mutate the DL. model and compute
the label change ratio of genuine and adversarial data. Authors discovered a higher label
change ratio for adversarial examples under model mutation than for original examples.
As a result, they proposed using this change to decide whether an input is adversarial or
genuine at runtime.

Braiek and Khomh (Ben Braiek and Khomh 2020) provided a survey of the testing tech-
niques for ML models as software programs. They surveyed the possible errors in models
and the techniques to detect or mitigate these errors. The approaches for detecting poten-
tial errors in models are categorized into: (1) White-box testing approaches that consider
the internal implementation logic of the model. These techniques include pseudo-test ora-
cle as differential testing and metamorphic testing; adequacy evaluation testing as neuron
coverage, modified conditions/decision coverage, and surprise adequacy; and automated
input test generation as gradient-based optimization, GAN-based generation, constrained
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programming solver, and differentiable fuzzing. (2) Black-box testing approaches that do
not need access to the internal implementation details. These techniques include adver-
sarial and mutation testing. Zhang et al. (Zhang et al. 2019a) asserted that there must be
offline testing to detect bugs while modeling development and online testing for bug detec-
tion after the model deployment. The tested components include data, learning model, and
used framework (e.g., TensorFlow, scikit-learn, and Weka). For each component, Zhang
et al. identified possible bugs. For example, data bugs include data incompleteness, data
not representativeness, data imbalance, biased labels, data poisoning, and data skewness.

4.2.1.4 Privacy preserving Preserving the privacy of patients is paramount. A privacy
attack occurs when an adversary uses the model’s output to infer values of sensitive features
used as input to the model. It is worth noting that privacy in data storage is not considered,
either in local servers or in the cloud. Data anonymization can partially solve privacy, but
sensitive information can be inferred from anonymized data (Narayanan and Shmatikov
2008). This problem cannot be entirely eliminated because of the statistical nature of ML
models. Because a valid model is generalized on inputs that were not used for model train-
ing, the model can breach privacy for those cases not considered in the training stage. Pri-
vate information in the Al pipeline can be attacked using four main techniques (Al-Rubaie
and Chang 2019): reconstruction attack (i.e., reconstructing raw training data using knowl-
edge about feature vectors), model inversion attack (i.e., used responses for inputs sent to
the system in an attempt to create feature vectors similar to those used in model training),
membership inference attack (i.e., infer if an example was a member of the training set), and
model extraction (i.e., the adversary duplicates the functionality of the system by building
an equivalent model based on some obtained predictions from the input feature vectors).
These attacks have two main threats: unveiling confidential information and malicious use
of data (Qayyum et al. 2021). Equivalently, mechanisms have been proposed to prevent pri-
vacy breaches. Privacy can be protected by two main methodologies (Qayyum et al. 2021;
Liu et al. 2018a; Wang et al. 2019a; Al-Rubaie and Chang 2019): perturbation mechanisms
(e.g., differential privacy and dimensionality reduction methods) and cryptographic mecha-
nisms (e.g., fully homomorphic encryption, Garbled circuits, secret sharing, secure multi-
party computation, functional encryption, and crypto-oriented model architectures). Each
of these mechanisms applies different techniques. For example, differential privacy, which
adds perturbation or noise to the training data for protecting private information, has been
implemented using techniques like the private aggregation of teacher ensemble (PATE)
(Papernot et al. 2018), differentially private stochastic gradient descent (DP-SGD) algo-
rithm (Abadi, et al. 2016), moments accountant (Wang et al. 2019b) and others (Qayyum
et al. 2021).

4.2.2 Correctness

ML models have already achieved human-level performance in some applications in clini-
cal medicine (Qayyum et al. 2021). For example, computer-aided diagnosis systems are
fully automated without any human intervention.! ML models also benefitted from other
technologies like cloud/edge computing, mobile communication, and big data technology.
Using these technologies, Al systems can produce highly accurate and patient-centric pre-
dictions. However, the tangible effect of Al systems in hospitals has not been seen yet.

! https://tinyurl.com/FDA-Al-diabetic-eye
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The way of measuring the performance of literature studies implied that medical experts
were not trusting these results. In this section, we briefly consider the issues of perfor-
mance validation techniques. These techniques are mainly based on the size of the dataset,
the data division methodology (training/validation/testing), the validation technique used,
the number of sources used to collect data, the used model, and performance evaluation
metrics (Maleki et al. 2020). Testing error is used to estimate the model’s generalization
performance (internal validation), so the test set must be representative of the accurate
distribution of the data. In addition, this set must be separated and untouched from the very
beginning of the Al pipeline (before preprocessing step) to prevent data leakage and over-
optimistic results. The causes of data leakage have been summarized in Wen et al. (2020).
The simplest form of data leakage is making FS and/or missing values imputations on the
entire dataset before partitioning it into train/validation/test. Moreover, model testing using
external data from other sources provides a more accurate estimation of the generalization
performance (external or multisite validation).

In the case of supervised ML, given a training dataset D,,,;, = {X, Y}, an input vector x
of dimension d as x € X CR? and y is a scalar or label target as yEY CR or
y €Y C{cy ¢y, ¢} Let the exact relationship between X and Y be represented by the
unknown model f ie,Y=fX) +e. Let f estimates f that predicts Y= f(X) where Y is
the prediction of Y. The accuracy of ¥ depends on the reducible and irreducible errors. In
other words, E(Y — Y) = E[f(X) +e€ —f(X)] [f(X) f(X)] +var(e) = reducible
error + irreducible error, where var(e) is the variance of €. Independent from the selected
algorithm and optimized model, € is called irreducible error resulting from the inherent
noise in the data. On the other hand, reducible errors of ? can be reduced by optimizing the
ML pipeline. Overfitting and underfitting are defined based on the errors defined earlier,
and optimizing an ML model requires a trade-off between bias and variance by controlling
model complexity (Maleki et al. 2020). This is called the level of model relevance for the
data (Zhang et al. 2019a). The reducible error can be divided into bias error and variance
error, and the objective function of an ML model reflects these errors.

4.2.2.1 Model selection Robust validation of ML models supports their reproducibility,
reliability, and generalizability (Maleki et al. 2020). There are many validation techniques in
the literature (Raschka 2018). These techniques are usually combined with a model tuning
technique such as grid search, random search, Bayesian optimization, genetic optimization,
and practical swarm optimization (Yang and Shami 2020). All components of the ML life
cycle are closely bonded, and error propagation is a serious problem (Zhang et al. 2019a),
so optimizing the entire ML pipeline, including data preprocessing, feature engineering, and
hyperparameters tuning is the best choice. AutoML tools like TPOT? are implemented to
automate this process (He et al. 2021).

Holdout validation: 1t is the most common method for evaluating ML models, where
the input dataset is randomly (and may be in a stratified manner) divided into three inde-
pendent partitions with the same distribution, i.e., D,,;,, D and D,,;,,. Training
data D,,;, are used for model building, validation data D, .., are used for hyperparam-
eter tuning and testing data D, ,;,,, are used to measure the generalization performance. The
proportion of each set depends on the model, the size of the dataset, and data variability.
For example, a large portion (i.e., 70%) is assigned for training, 15% for validation, and
15% for testing (Maleki et al. 2020). To obtain a more robust estimate of performance that

validation>

2 http://automl.info/tpot/
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is less variant to how the data are split, the holdout method should be repeated k times with
different random seeds, and average performance (along with standard deviation) should
be reported, e.g., for accuracy metric, ACC,,, = izlleACCj, ACC; =1~ izglﬁ@i,yi),
where m is the size of the dataset, and L is the loss function. The repeated holdout is called
Monte Carlo cross validation (CV).

Cross-validation: Compared with the holdout method, CV provides a more accu-
rate estimation of generalization error when dealing with small datasets. CV is useful for
detecting overfitting, but it is not always clear how much overfitting is acceptable. CV
cannot detect overfitting if test data is not representative of possible unseen data (Zhang
et al. 2019a). Many versions of CV are available, including k-fold CV, repeated k-fold
CV, stratified k-fold CV, repeated stratified k-fold CV, leave-one-out CV (LOOCYV),
leave-p-out CV, leave-one-group-out CV (LOGOCV), and nested CV (NCV). The
basic idea of these validation schemes V s to estimate the out-of-sample error £ is first
to divide the whole dataset D = Dy and D,,;, where D, N D,,, = @. Secondly, Dy,
and k splits are used by V(DCV,k) to divide data into k non-overlapping data splits, i.e.,
V(Dey k) = {(Il’ Ilv) Inr = @} 11, — 1 folds are used to train the model, and one fold
is used for validation. The estimated validation error is the average out-of-sample loss over
all & splits.

L(Dey,V) Z i 2 L@y

(X VEL

Thirdly, the D,,,, is used to measure the generalization performance of the validated
model. The state-of-the-art method for model validation is the nested CV (the reader can
refer to Raschka (2018) for more details). In all CV techniques except NCV, when data are
divided into training and validation sets, experimenting with several models, and searching
for the best hyperparameters usually makes the resulting validation error overoptimistic if
used to estimate generalization error. The solution for this issue is that a test set should be
locked and not be used for model training and hyperparameter tuning. Taking a single test
set from a small input dataset estimates a generalization error with high variance and sensi-
tivity to the selected test set. This solution is implemented in NCV, which has an outer CV
loop and an inner CV loop. The outer loop uses different train, validation, and test splits.
The inner loop takes training and validation sets chosen by the outer loop (Maleki et al.
2020). The inner loop train and validate the model, and the out loop tests its generalization
error. In online learning, the model can gradually be overfitted by learning from new data
because D,,,, cannot guarantee to represent the new online data.
4.2.2.2 Statistical analysis Statistical analysis is crucial to understand the dataset before
starting the learning process to study the feature’s normality, skewness, kurtosis, correla-
tion, and statistical significance for model prediction. Moreover, the statistical analysis of
the performance of the learned model is critical to measure the stability and certainty of this
model. Measuring model stability can be achieved by repeating the holdout or CV process
with different random seeds. Results should be reported with a central tendency (e.g., mean)
and variation (e.g., variance). Another good practice is to compute the confidence interval
around a performance estimate to judge the model’s certainty or uncertainty (Raschka

2018). Under the normal approximation, the confidence interval can be calculated by
ACC +z4/ %ACC(I — ACC), where « is the error quantile (e.g., « = 0.05 for 95% confi-

dence) and z =1 — g Bootstrap method could be used to calculate the confidence interval
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if we do not assume a normal distribution of the results. For a dataset of size n, and b boot-

strap rounds, ACCpoor = %Z]‘.’=1 %Zl’;] (1= LFi¥i))s SEpoet = \/ ﬁ Zf.;l (ACCi - ACCbOO[)z,
and confidence interval of ACC, ., + ¢ X SE, ., for # comes from t-table, ACC,, is average
accuracy of b bootstraps, and SE,, is standard error of all accuracies ACC;. Confidence
intervals must be reported for every model.

4.2.2.3 Model and algorithm comparison Most studies compare models by using no statis-
tical test. These studies build models and measure their performance on a test set. Neverthe-
less, this method provides insufficient evidence about whether there exist true differences in
models’ performance. Gardner and Brooks (Gardner and Brooks 2017) discussed in detail
what are the valid and invalid methods for making model comparisons. To determine the
statistically significant differences of multiple models, a suitable statistical hypothesis test-
ing approach should be selected. This selection depends on the size of the training data-
set. The statistical test could be based on target predictions for independent test sets or
fitting and evaluating CV models. Suppose that there is a separate test set to compare the
performance of two classifiers. In that case, the difference of two estimated generalization
accuracies can be compared, where we select a confidence interval (e.g., 95%) and assume
a normal approximation. The simplest case is to use the z-score test. For example, if the
95% confidence intervals of the accuracies of the two models do not overlap, then reject
the null hypothesis that the performance of the two models is the same. For using the same
test set to compare two models, it is better to use a paired test (e.g., paired Student t-test) or,
more accurately, use the McNemar test. For a full discussion about these techniques, read-
ers are guided to Raschka (2018). For comparing more than two classifiers, we use multiple
hypotheses testing approaches. For doing that, we first do an omnibus test (e.g., ANOVA,
Cochran’s Q test, or F-test) under the null hypothesis that there is no difference between
classifiers. Then, if rejected, pairwise post-hoc tests are used to determine the different clas-
sifiers. However, post-hoc tests are regarded as fishing expeditions because there is no clear
hypothesis of which models should be compared. As a result, all possible pairs must be com-
pared, which leads to the multiple hypnosis problem, so a correction term (e.g., Bonferroni’s
correction) should be used to reduce the false positive rate in multiple comparison tests by
adjusting the significance threshold a.

Model comparison tests do not consider the variance of the training sets into account.
Algorithm comparison techniques are used for comparing sets of models where each set
has been fit to different training sets. Many techniques are available, including 5 x 2-Fold
CV, k-hold-out paired t-test, k-fold CV paired t-test, Dietterich’s 5X2cv paired ¢ test, and
Alpaydin’s combined 5x2cv F-test. These techniques are applied to results previously col-
lected from many runs of the model based on independent test sets with CV techniques.
The robustness of these techniques depends on the number of collected results and the nor-
mality and equivariance of such results. Thus, two main statistical hypothesis testing tech-
niques can be used, including parametric tests (e.g., Student’s ¢ test and ANOVA) and non-
parametric tests (Mann—Whitney U Test, Wilcoxon Signed-Rank Kruskal-Wallis H Test,
and Friedman Test). The mathematics behind these techniques can be found in Raschka
(2018), and a full description of model comparison techniques is given in Dietterich
(1998). All these techniques have been implemented in the Python package of MLxtend.’

3 http://rasbt.github.io/mIxtend/
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4.2.3 Reliability and reproducibility

Building a reliable and reproducible model depends on the attributes of the input dataset,
including size and variability, data balancing, and the availability of data and code.

4.2.3.1 Dataset size Because of the rarity of most phonotypes under study, limited
resources, patient privacy, limited data preparation and annotation expertise, and other legal
issues, collecting large datasets is not straightforward in the medical domain. As a result,
most researchers in the medical domain work with small datasets. Dividing small datasets
into training, validation, and testing reduces the model training and validation dataset. Fur-
thermore, it leads to an unreliable estimation of the generalization error and accordingly
hinders reproducibility. Patients in a small dataset tend to be more homogenous, not truly
representing the intended population. There are many solutions to this issue, including: (1)
using the LOOCV or LOGOCYV approaches for model validation, but LOOCV suffers from
high degrees of correlation between samples; (2) integrating public datasets with the local
datasets; (3) increasing number of samples using patch-based approaches to select several
patches from a single image; (4) using data augmentation for model training and valida-
tion, for example, using GANs. The geographic, demographic, and phenotypic diversity
increases as the sample size increases. As a result, validation performance decreases, and
generalizability increases.

4.2.3.2 Data variability In the medical domain, data are always collected using different
devices and under various circumstances. For example, MRI images may be collected in
the AD domain using different scanners with different resolutions, such as 1.5 T or 3 T,
and using a scanner from several vendors. Data collected from separate hospitals may vary
because of varying scanner settings, disease prevalence, and various protocols or standards.
In addition, collected data will have different noises. The distribution of training, valida-
tion, and testing sets should represent these variations. It is a good practice to use data from
some hospitals to train and optimize the model and use data from other hospitals to test the
generalization performance of the learned model. However, this implies interoperability
among information systems in different hospitals, which is not always true. The testing
performance estimates the generalization performance, and the amount of shared and trans-
ferred data is reduced, which improves data privacy. One challenge for this technique is the
data preparation because data may be encoded and stored using different techniques and
standards. This results in a model tested in a different context from the one it was trained in.

4.2.3.3 Reproducibility requirements Reproducibility means obtaining the same results
specified in a paper using the same data, code, and identical conditions. The repeatability of
the experimental process is a crucial requirement to verify the reliability and consistency of
research findings, especially in the medical domain (McDermott et al. 2021). More than 70%
of researchers failed to reproduce other researchers’ results, and over 50% of researchers failed
to reproduce their results (Pineau, et al. 2019). This is a major challenge because (1) it is diffi-
cult to access the same training data or data with similar distribution; (2) trained model, model
parameter and hyperparameters, model architecture, and code necessary to run the experiment
are usually not available; (3) performance metrics and results are not always clearly specified;
(4) statistical analysis of the results is sometimes done wrongly; (5) selective reporting and
over-claiming of results; (6) cohort description and data preprocessing specification are not
available; (7) random seed used to train model is absent; (8) analysis of model complexity
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(time, space, sample size) is not clear enough; and (9) statistics, splitting approaches, and
sample excluding policies of utilized datasets are not defined. The issue is more difficult when
working with DL models due to several factors: (1) random weights initialization, (2) dataset
shuffling, and (3) diversity of DL frameworks (e.g., changing between Theano and TensorFlow
backends in Keras). As a result, in 2019, the international conference on Neural Information
Processing Systems (NeurIPS), which is the premier international conference for ML research,
highlighted the need for ML reproducibility checklist as a part of paper submission process.

Tatman et al. (Tatman et al. 2018) categorized reproducibility as low reproducibility (sharing
of model characteristics), medium reproducibility (sharing code and data), and high reproduc-
ibility (sharing code, data, and complete computational environment). McDermott et al. (2021)
categorized reproducibility into technical reproducibility (i.e., the ability to replicate the results
in the paper using shared code and data), statistical reproducibility (i.e., the results are not sig-
nificantly different under random resample conditions, the variance around results is reported,
or internal validation), and conceptual reproducibility (i.e., how well the needed results can be
reproduced in conditions that match the abstract description of the purposed effect, testing the
system with data from multiple institutions, or external validation). Full reproducibility needs all
these three categories. Reproducibility is an integrated requirement for TAI because it increases
the transparency and quality of research process by sharing the code, data, results, and scientific
communications. However, reproducibility requirements in the medical domain contradict other
TAI requirements, such as security and privacy. Datasets may not be shared because of privacy
and sensitivity reasons; code may not be shared because it contains intellectual property; running
the code may need enormous computational resources (time and number of powerful machines).
The publicly available medical datasets such as MIMIC-III and ADNI are frequently used, lead-
ing to possible dataset-specific overfitting. Even worse, medical studies did not share code or
include a full description for reproducibility (McDermott et al. 2021). Nowadays, several ser-
vices are used to host data and code, including for-profit services (e.g., Kaggle kernels, Google
Collaboratory, Amazon SageMaker, IBM Watson Studio, and Microsoft Azure Notebooks) and
not-for-profit services (e.g., MyBinder and Codalab). However, there is a lack of a centralized
repository of trained models. Some well-known traditional file repositories include ModelZoo*
on GitHub and ModelHubA[>

4.2.4 Robustness quantification

Trained models should be evaluated by model performance metrics but also by their capa-
bility to resist adversarial attacks (McDaniel et al. 2016). Performance evaluation metrics for
classification and regression are well known, and their selection depends on the task and the
data balancing issue. Japkowicz (2006) provided a comparison between these metrics. How-
ever, there is a lack of standard assessment methodologies and metrics for measuring resil-
ience to adversarial attacks. Performance evaluation metrics like accuracy, precision, recall,
and F1-score can be used to assess security robustness by measuring the level of performance
degradation after the model suffers from various adversarial attacks (Xiong et al. 2021). This
is called the security evaluation curve (Biggio and Roli 2018). For example, Dunn et al. (2020)
used accuracy, precision, and false positive and true positive rates to measure the negative
impact of poisoning attacks on model integrity. Biggio et al. (2013) proposed a security evalu-
ation framework that could be applied to various classifiers. Katzir et al. (2018) proposed a
security robustness metric called model robustness score to measure the relative resilience of

4 https://github.com/BVLC/caffe/wiki/Model-Zoo
5 http://modelhub.ai/
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models. This method is based on two concepts of total attack budget and feature manipulation
cost to model an attacker’s abilities. Bastani et al. (2016) proposed three robustness evalua-
tion metrics: (1) pointwise robustness, which measures the minimum input change a classifier
fails to be robust; (2) adversarial frequency to measure how often the change in input changes
a classifier’s performance; and (3) adversarial severity that measures the distance between
an input and its nearest adversarial example. Some studies calculated the upper bound of the
robustness of models (Carlini and Wagner 2017) or the global robustness upper bound and
lower bound using test data (Ruan et al. 2019). Adversarial input generation is a widely used
method to test the robustness of models (Zhang et al. 2019a). For reproducibility evaluation,
there are three categories of metrics, including technical reproducibility metrics (i.e., code
available and public dataset), statistical reproducibility (i.e., variance reported), and conceptual
reproducibility (i.e., multiple datasets) (McDermott et al. 2021).

4.2.5 Robustness tools

There are tools for building robust models. TensorFlow Federated® supports distributed ML
for training global models without sharing the data. CrypTen’ s a PyTorch-based pack-
age to train ML models based on encrypted data. OpenMined® provides various libraries,
including PySyft® PyGrid,'® and SyferTex"'!, for building privacy-preserving ML. Deep-
Tes"'? is a tool for automatic testing of DL models for autonomous cars. This tool uses
the concept of neuron coverage to test CNN and RNN models. PySyft extends PyTorch,
TensorFlow, and Keras to provide differential privacy, federated learning, and encryption.
PyGrid extends PySyft to provide a peer-to-peer network for collectively building ML
models. SyferText provides preserved NLP tasks. Foolbox'? is a Python library for testing
ML models like DL neural networks against adversarial attacks. It can work with models in
PyTorch, TensorFlow, and JAX. Adversarial Robustness Toolbox'* is a Python library for
ML security. It is a set of tools to evaluate, defend, and verify ML models against adver-
sarial threats. AdvBox'> is a Python tool set for ML model security, including generating,
detecting, and protecting adversarial examples. CLEVER'® is a metric for measuring the
robustness of DL models. It is attack-agnostic, which can be computed efficiently for large
models like ResNet-50 and Inception-v3. Ditto!” is a Python package to build robust mod-
els against data and model poisoning attacks. DeepCheck (Gopinath et al. 2019) is a light-
weight symbolic-execution-based approach to performing symbolic analysis of DL models.
It transforms the model into a program by translating the activations into IF-ELSE branch
structures to create the program paths to be used to identify important pixels and crate

® https://www.tensorflow.org/federated

7 https://github.com/facebookresearch/CrypTen

8 https://www.openmined.org/

® https://github.com/OpenMined/PySyft

10 https://github.com/OpenMined/PyGrid

' https://github.com/OpenMined/SyferText

12 https://github.com/ARiSE-Lab/deepTest

13 https://github.com/bethgelab/foolbox

14 https://adversarial-robustness-toolbox.readthedocs.io/en/stable/
15 https://github.com/advboxes/AdvBox

16 https://github.com/IBM/CLEVER-Robustness-Score
17 https://github.com/litian96/ditto
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1-pixel and 2-pixel attacks. Adversarial Robustness Evaluation for Safety (ARES)'® is a
TensorFlow-based Python library for adversarial ML focusing on benchmarking adversar-
ial robustness on image classification. It implements 15 attacks and 16 defenses. DeepX-
plore'® automatically identifies erroneous behaviors in DL models, using differential test-
ing, without requiring manual labeling. Bugbug® 's a Python package that aims to detect
bugs in ML programs, ML model’s quality management, and defect prediction. TFX?! is
a TensorFlow-based Google-production-scale ML platform. It provides libraries to inte-
grate common components needed to define, launch, and monitor ML systems. Active-
Clean®® and Alphaclean® provide an optimized and iterative way for data preprocessing
and cleaning.

4.3 Fairness methods

Integrating ML with CDSSs and EHRs may introduce biases related to missing values,
patients not identified by the algorithm, insufficient sample size and underestimation
of the minority class, and misclassification (Gianfrancesco et al. 2018). A decision is
unfair if it treats individuals with similar decision-related features differently based on
personal characteristics that should not affect the final decision. There are many ways to
introduce bias to Al systems. For example, transferring the model from one population
to another with different distribution of features; intentionally or malicious introduction
of bias to skew the performance; the structure of algorithms and equipment used to col-
lect data may introduce bias too. There are many sources of bias, including historical,
representation, evaluation, measurement, aggregation, population, sampling, linking,
and deployment biases. Mehrabi et al. (Mehrabi et al. 2019) provided a comprehensive
survey for 23 data biases and six discrimination challenges. However, Al systems must
generate fair and non-discriminating outcomes. Many researchers, governments, and
policies like general data protection regulation (GDPR) called for social understanding
of ML (Caton and Haas 2020) because model unfairness negatively affects its robust-
ness and interpretability (Ignatiev et al. 2020). Fairness is domain-specific because
some features like gender might be considered a protected feature in trading but not in
medicine. Fairness-aware Al-based CDSSs must cope with different biases (e.g., in data,
algorithms, or output) based on domain expert knowledge. Most fairness techniques are
based on the notion of protected or sensitive features (SFs) (these terms are used inter-
changeably) and on (un)privileged groups (groups defined by one or more SFs that are
disproportionately (less) more likely to be positively classified). Generally, SFs include
ethnicity, gender, age, color, nationality, religion, or socio-economic group. Al systems
are not fair or unfair by nature, but they can become unfair for many reasons (Toreini
et al. 2020), as there is a tradeoff between model accuracy, explainability, and fairness.
For instance, the disclosure of SFs could negatively affect patients’ privacy (Fung et al.
2010). Chang and Shokri (Chang and Shokri 2020) observed that the more biased the
training data is, the higher the privacy cost to achieve fairness for unprivileged sub-
groups. Thus, fairness is manipulated as a set of constraints or performance metrics

18 https://github.com/thu-ml/ares

° https://github.com/peikexin9/deepxplore
20 https://github.com/mozilla/bugbug

21 https://www.tensorflow.org/tfx/guide

22 https://activeclean.github.io/

2 https://github.com/sjyk/alphaclean
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for the ML pipeline (Haas 2019). Cruz et al. (xxxx) jointly maximized accuracy and
fairness using a multi-objective Bayesian optimization technique. This method handled
fairness through the model’s hyperparameter optimization. Moustakidis et al. (2020)
optimized a DL model for knee osteoarthritis classification by combining performance
metrics (i.e., accuracy, precision, and recall) with fairness metrics (i.e., demographic
parity and balanced equalized odds). By adding fairness constraints to the objective
function of DL models, Cherepanova et al. (2021) observed that models can overfit to
fairness objectives. Technical approaches for ML fairness are applied before modeling
(pre-processing), while modeling (in-processing), or after modeling (post-processing).

4.3.1 Fairness measurement and mitigation metrics

Measuring the fairness of data and algorithms depends mainly on the type of task at hand,
i.e., supervised (e.g., classification or regression) and unsupervised (e.g., clustering) learn-
ing. The study concentrates on supervised learning tasks. To create a fair model, metrics
must be used to: (1) assess the fairness, (2) remove or mitigate the unfairness, and (3)
reduce the harm of bias if biases are still present (Bellamy et al. 2019; Mehrabi et al. 2019;
Caton and Haas 2020). Fairness is either individual (e.g., everyone is treated equally) or
group fairness (e.g., differentiate within or between groups). Narayanan (2018) provided
more than 21 definitions of fairness in ML. Still, there is a lack of consistency between
fairness definitions and metrics, and each metric measures different aspects of what could
be considered “fair” (Caton and Haas 2020). Formally speaking (Kuznetsov 2001), fairness
can be statistically defined, but there is no universal measure for fairness.. Because some
fairness metrics are incompatible or conflicting, there is no model able to satisfy all of the
following definitions of fairness simultaneously (Grgic-Hlaca et al. 2016). Let A be the set
of SFs that define the groups for which it is required to measure fairness for a caseU, X is
the set of rest features, Y is the ground truth label (e.g., Y € {0, 1} for binary classification),
and Y is the predicted label by the ML model f.

4.3.1.1 Similarity-based fairness (1) Fairness through unawareness: A model is fair if its
predictions are independent of the SFs, i.e., the model discards SFs (Mehrabi et al. 2019).
This definition is satisfied if no SFs are explicitly used in the decision-making, so the out-
come should be the same for individuals i and j who have the same attributes. This metric
may fail because some features in X could be correlated with features in A.

l

X:X,=X-Y=7Y,

(2) Fairness through awareness: It assumes that the algorithm is fair if it gives similar
predictions to similar individuals, where a distance metric defines similarity.

(3) Causal discrimination: A classifier produces the same classification for two
subjects with the exact same attributes X except the SFs A, ie., for {gi, gj} €A:
X; = X,) /\(gi * g,) =Y # Y]

4.3.1.2 Individual fairness This fairness is satisfied if similar cases have similar outcomes.
For a metric d and a values, if d(U;, U]-) < 6, the predictions forU,, U f should be similar.

Y(X.A) ~ Y(X,.A))
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Note that the level of fairness depends mainly on the definition of d, which defines how
similar two given individuals are in the context of a decision-making task.

4.3.1.3 Group fairness This set of metrics measures the model’s performance on the popula-
tion group level, where SFs define groups. Most of these metrics are based on the confusion
matrix. Let g; and g; denote two protected groups.

(1) Statistical/demographic parity metric (Corbett-Davies et al. 2017) considers the pre-
dicted positive rates, i.e., P(i\’ = 1), across different groups and it is achieved if the outcomes
are equal across groups and independently from the protected attribute A:

P(f/: 1|A:gi> :P(f/: 1|A:gj)

This definition satisfies the independence mathematical property between protected attrib-
utes and algorithm (i.e., Y1 A), but the metric concentrates on the outcomes only and ignores
error rates and disparities. Positive decisions should have the same rate for all groups; this
metric cannot handle the case where an individual is a member of multiple protected groups.
By forcing group fairness for one group, the fairness for other groups is violated. This could
still be unfair to individuals because the algorithm may eliminate qualified individuals to
attain attribute independence. This is known as the problem of inverse discrimination.

(2) Disparate impact metric (Feldman et al. 2015) considers the ratio between unprivileged
P(Z=1|A=g1).

P(Y=1]A=g,)

(3) Equalized opportunity metric (Hardt et al. 2016) is achieved if equal outcomes happen
across subgroups of true positives. It asserts that the True Positive Rate (TPR) should be equal
for all groups. It satisfies the mathematical criteria of separation (i.e., v1 A|Y). It ensures
that the same fraction of patients in each group will receive correct results but ignores any
disparity in the Negative Error Rate (NER).

and privileged groups

P(?:1|A=gi,Y=1)=P<?=1|A=gj,Y=1)

(4) Equalized odds metric (Berk et al. 2018) is achieved if equality of outcomes happens
across both groups and true labels. It asserts that False Positive Rate (FPR) and TPR should
be equal across groups. It satisfies the mathematical criteria of sufficiency (i.e., Y L Alf’).
It balances both positive and negative error rates across both groups (i.e., ensures that both
groups have equal sensitivity and specificity), but generally results in lower overall classifica-
tion accuracy.

P(T=ta=g.v=y)=P(T=1ja=g. v =y = (0.1)

(5) Overall accuracy equality metric (Berk et al. 2018) measures the relative accuracy rates
across different groups. If two groups have the same accuracy, they are considered equal.

P(?=0|A=gi,Y=o)+P(?=1|A=gl.,y=1)=P(?=0|A=gj,y=o)+P(?=1|A=gj,y=1)

(6) Conditional use accuracy equality metric looks at the positive and negative predictive
values for each subgroup.

@ Springer



Trustworthy artificial intelligence in Alzheimer’s disease:. ..

P(Y: 1A=g.¥= 1) —PY=1A=g.¥ = 1)&P<Y=0|A=gi,f/=0>
=P(Y=0lA=g,Y=0)

(7) Treatment equality metric considers the ratio of false-negative predictions to false-
positive predictions.

P(?=1|A=gi,y=0) P(f/=1|A=g_,.,Y=o)

P(?=0|A=gi,Y= 1) P(?=0|A=gj,y=1)

(8) Equalizing disincentives metric compares the difference of TPR and FPR across
groups:

P(l?:l|A=g,»,Y=l)—P()A/=1|A=g,~,Y=0)=P<)A’=1|A=gj,Y=1>
—P(V=1]a=g.v=0)

(9) Test fairness/calibration/matching conditional frequency metric (Chouldechova
2017): when two individuals from two different groups get the same predicted scores, they
should have the same probability of belongingto Y = 1.

ForA, €A, P(Y=1|A, =a,g) =P(Y = 1|4, = a,g))

(10) Well calibration (Kleinberg et al. 2016) is an extension of the previous metric
where the probability of being in a positive class has to equal a specific value s.

ForA, €A, P(Y=1|A, =a,g)=P(Y =14, =a,g) =s

Note that the study does not discuss other well-known statistical measures such as posi-
tive predictive value, false discovery rate, false omission rate, etc. Readers are guided to
Verma and Rubin (2018) for a full explanation of these metrics.

4.3.1.4 Causal fairness These metrics consider the outcome for every single individual
(Chiappa 2019). Given a causal fairness model, this fairness compares the probabilities of
possible outcomes for different interventions. For any X = x context, SF value A = a, and
possible value a’ of A:

P(?AH‘ =y X=xA= a> = P(?AH‘/ =y X=xA= a>

It is always hard for any classifier to maintain the same relations between subgroups,
so what is the acceptable amount of bias? A general rule must be defined to determine the
margins around perfect fairness. One rule is called the four-fifths rule (P. 1607-UGOES
Procedures 1978) “a selection rate for any race, sex, or ethnic group which is less than
four-fifths of the rate for the group with the highest rate will generally be regarded by
the Federal enforcement agencies as evidence of adverse impact.” Fairness implementa-
tion depends mainly on the level of accessibility to the data and model. If training data
exist, fairness checking is done to these data (preprocessing fairness). If discrimination is
noticed, fairness-aware data preprocessing steps are performed on the data. The model’s
fairness is considered if there is no training data access. Again, depending on the level of
access to the model, fairness can be implemented while training the model (in-processing
fairness) or on the model’s output (post-processing fairness).
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4.3.2 Fairness of data

This is called preprocessing or model-agnostic fairness which happens in the data prepara-
tion stage. Collected data can reflect the unfairness and social discrimination in the real
world. Data are biased if the sampling distribution is different from the population’s true
distribution. For example, the model is expected to be biased if it is trained using data
from one hospital, tested by data from another hospital, or trained using data from one
geographic region and tested by data from other regions. Using these data to train mod-
els can produce unfair models, and using these data to train explainers can produce unfair
explainers. Notice that the unfair dataset will not become fair by just removing the SFs
because correlations between protected features and other features could still create unfair-
ness which remains after removing SFs. Unfair data can be divided into class imbalanced
(i.e., labeling bias and under-representation of minority class) (Krawczyk 2016) and fea-
ture imbalanced (i.e., the distribution of protected attributes with different groups such as
race, gender, native language, income level, religion, and sexual orientation are biased)
(Mehrabi et al. 2019). It is well known in the literature that data are the primary source of
discrimination, e.g., sample bias, inappropriate use, data veracity and quality, data con-
text shift, and subjectivity filters (Caton and Haas 2020). For example, sample bias is a
data sampling method where not all SF groups are adequately represented. Sample bias has
two directions, i.e., over or under-representation. This yields models to consider the minor-
ity class as an outlier and optimizes its cost function to predict the majority class only.
To solve this problem, we may alter the sample distribution of SFs and minority classes
by resampling or collecting data where all SF groups are equally represented. A possible
approach is to use the stratified resampling technique. In addition, working with a domain
expert to fully understand the possible discrimination ways could help but not be suffi-
cient to prevent bias. On the other hand, involving domain experts in the data collection
step and performing the statistical demographic analysis can improve the process. In addi-
tion, data incompleteness affects the model fairness because there are different sources of
incompleteness, including missing values at random and not at random (Goel et al. 2020).
The critical issue of missing data is that the missing values may convey information, and
ignoring this dependence could result in biased models. Data preprocessing steps are cru-
cial to mitigate data biases. However, data preprocessing techniques are not aware of the
internal operation of models, so they are not tuned to optimize the model performance.
As a result, there is a trade-off between fairness and accuracy (Lou et al. 2013). The most
popular methods for mitigating the unfairness of data concentrate on binary classification
problems (Caton and Haas 2020). There are seven methods in the literature for preparing
data with fewer biases, including adversarial learning (Feng et al. 2019), causal methods
(Salimi et al. 2019), relabeling and perturbation (Cowgill and Tucker 2017), (re)sampling
(Adler et al. 2018), reweighting (Kamiran and Calders 2012), transformation (Calmon
et al. 2017), and variable blinding (Chouldechova and G’Sell 2017). Readers are referred to
Mehrabi et al. (2019) for more details about these methods.

4.3.3 Fairness of model

Models must be designed such that they take potential data bias into account. Inspired by
Hajian et al. (2016), algorithmic fairness has two main solutions: (1) in-processing solu-
tions that design models to be inherently fair, and (2) post-processing solutions that adapt
the model’s outcomes to be fair. The in-processing methods either modify the model to
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remove unfairness or add an independent agent that detects and prevents unfairness. Some
solutions added regularization terms to the objective function for the in-processing meth-
ods, which penalizes the correlation between SFs and the predicted labels, and the result-
ing model maximizes performance and fairness (Kamishima et al. 2012). Other solutions
add constraints to the model (Caton and Haas 2020). For example, Goh et al. (2016) used a
non-convex constraint to optimize a classifier under a fairness constraint based on disparate
impact. Calders et al. ( 2010) optimized naive Bayes models for every possible SF value
and thus balanced their outcomes. In adversarial learning, two models are trained at the
same time. The first one models the data distribution, and the second estimates the prob-
ability that a sample comes from the training data rather than the model (Goodfellow, et al.
2014). Post-processing approaches study the outputs of models and then transform them to
remove unfairness (Caton and Haas 2020). These methods require access to the SFs while
making decisions. Some studies combine in-processing and post-processing methods by
training different classifiers for different SF groups (Dwork et al. 2018). However, modify-
ing data and output may have legal and explainability implications. In addition, these meth-
ods do not have any access to the optimization functions of models. In contrast, in-pro-
cessing approaches can add regularization terms to the optimization functions to increase
fairness, but this needs the functions to be accessible, replaceable, and modifiable. The
most popular in-processing techniques for mitigating algorithmic biases are adversarial
learning (Beutel et al. 2019), bandits (Gillen et al. 2018), constraint optimization (Celis
et al. 2019; Cotter et al. 2019), regularization (Stefano et al. 2020), multitask modeling
(Benton et al. 2017), multitask adversarial learning (Beutel et al. 2017), and reweighting
(Krasanakis et al. 2018). For the post-processing bias mitigation methods, calibration (Liu
et al. 2017), constraint optimization (Kim et al. 2018), thresholding (Iosifidis et al. 2019),
and transformation (Chiappa 2019) are the most popular methods. Readers are guided to
Caton and Haas (2020) for more details about these methods.

4.3.4 Alfairness open-source libraries

Table 1 enumerates open-source tools for providing pre-, in-, and post-processing
approaches for classification and regression tasks by considering fairness assessment in the
model development pipeline. Most tools are implemented in Python. These tools are used
to detect and prevent bias either in data or in algorithms. However, their adoption in real-
world applications is uncommon mainly because they need to access SFs at inference time
or have high development and deployment costs (Cruz et al. xxxx). Other tools that could
support a better understanding of algorithmic decisions and possible biases are aimed for
supporting model transparency, explainability, and interpretability.

4.4 Explainability methods

The explainability of algorithmic decisions is a pressing TAI issue concerning patients,
physicians, engineers, and regulation agencies (Diprose et al. 2020). Indeed, model
transparency is considered one of the main barriers to implementing Al in healthcare
(Markus et al. 2020). For example, physicians need to build trust and confidence in Al
to make sensible decisions that affect human lives. Data scientists and engineers want to
know whether the algorithm is stable and captures the relevant features. XAl can detect
issues like dataset shift, the model’s wrong or incomplete objectives, and reliability
limitations. As a result, XAl requirements are starting to appear in legal regulations and
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ethical guidelines, e.g., article 22 of the EU general data protection regulation (GDPR
(Regulation (EU) 2016, European Union, General data protection regulation 2016)). Who
is accountable for wrong automated decisions? Can we explain why things went wrong?
If working well, can we say why and how much confidence we have for future decisions?
All these questions can be solved by using suitable and robust XAI techniques. Arrieta
et al. (2020) stated that “given an audience, an XAl is one that produces details or reasons
to make its functioning clear or easy to understand.” An audience of XAI determines
the level of (local or global) required explainability, the time limitation to understand an
explanation, and the user experience, which determines the required level of detail. Deci-
sion rules/trees and linear models are considered interpretable white-box models because
they can be easily interpreted if they are not very large (i.e., if the number of rules, the
size of trees, or the number of explanatory features are small enough to be processed by
humans). In addition, users can mathematically analyze their algorithmic mechanisms.

DL, ensemble, SVM, and other non-linear models are considered black box opaque
models because it is not easy to understand why they yield specific outputs for certain
inputs. These models hide their sophisticated internal logic; thus, users do not under-
stand their underline rationales. After adding XAl features, these black-box models can be
explained to humans. Some studies advised against explaining black models, such as Rudin
(2019). Thus, explainability is different from interpretability, but the study refers to both
by using the XAI abbreviation. As a result, XAl trustworthiness, and tractability are at the
heart of the successful deployment of Al-based applications (Toreini, et al. 2020).

Implementing a trustworthy XAl is a challenge (Diprose et al. 2020). As mentioned by
Molnar (2018), the explanation of ML models should take into account: accuracy, reli-
ability, fidelity, consistency, stability, scalability, causality, representativeness, certainty,
novelty, degree of importance, and comprehensibility. Markus et al. (2020) provided defi-
nitions for these terminologies. However, many questions need to be answered to achieve
these goals, including: What does it mean that a model is explainable? How can explain-
ability be quantified? Employing what metrics? When is the explanation considered com-
prehensible? How to define the audience of explanation? How much is the audience will-
ing to lose in prediction accuracy to gain how much explainability? What is the best XAl
format to the studied domain and/or audience? What time constraints are required for users
to understand explanations? How to match the complexity of explanations with user expe-
rience and background knowledge? These are complex questions to answer. For example,
Kononenko et al. (gtrumbelj and Kononenko 2010) proposed a qualitative method to meas-
ure explainability, but there is no quantitative evaluation framework to assess the XAl fea-
tures of a model yet (Miller 2019).

Moreover, different data formats have different degrees of explainability. Even tabular
data are the most popular format. Images, text, and time series are somehow understand-
able formats to humans. Data preprocessing steps, especially FS, significantly affect the
model explainability (Gonzalez Zelaya 2019). Crone et al. (2006) studied the effect of
the preprocessing steps like scaling, sampling, and encoding on the explainability. This
is called interpretable data for interpretable models (Guidotti et al. 2018). However, the
explainability of data collection and preprocessing steps is not fully explored compared to
the model explainability. XAl techniques have been implemented to provide explainability
in different formats to different black-box models regarding global and local explainability
(Arrieta et al. 2020). Global XAI provides explainability for the whole model on the whole
dataset. Local XAl regards a specific single instance. XAl techniques that are independent
of the model to explain are called model agnostic explainers, but XAl techniques designed
for specific models are called model-specific explainers. Readers are referred to (Arrieta
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et al. 2020; Guidotti et al. 2018) for comprehensive surveys of these techniques and their
application in different fields. Figure 3 illustrates our taxonomy of XAI techniques, which
are revisited in the following subsections.

4.4.1 Interpretable ML models

Interpretable ML models include linear models (e.g., linear regression, logistic regression,
general additive model, or (semantic) fuzzy model), discretization models (e.g., rule-based
model, DT, or Bayesian network), example-based models (e.g., k-nearest neighbor (KNN)
or case-based reasoning (CBR)).

A DT is a hierarchical tree structure composed of internal nodes for feature evalua-
tions and leaf nodes for a class label or regression value (Babapour Mofrad, et al. 2019).
Extracted rules from DTs have the conjunctive form (i.e., IFcondition,ANDcondition,AND
...ANDcondition, THENoutcome). Trees have graphical representation and rules have tex-
tual representation. DT has inadequate generalization capabilities that can be enhanced
using tree ensembles like Random Forest (RF) and XGBoost (Arrieta et al. 2020), but the
DT combination loses transparency features. Some techniques are available to extract rules
from RFs (Wang et al. 2020a). The general form of rule-based models can be formed by
conjunctions, disjunctions, and negations (Kuo and Fuh 2011) and can have the form of
m-of-n rules, which means that if m of the n conditions in the antecedent part of a rule
are satisfied, then the consequence of the rule is true (Guidotti et al. 2018). Weights and/
or orders can be added to the rule list to force specific priority in rules execution. Feature
importance can be extracted from DT based on the order of using features in the tree. Inter-
pretability of rules can be enhanced by extending rules with semantic knowledge (Skillen
et al. 2014), dealing with uncertainty with fuzzy logic (Gacto et al. 2011), or both (El-Sap-
pagh et al. 2018). Accordingly, explainable fuzzy systems are a powerful tool in the context
of XAI (Alonso et al. 2021). Note that deep DTs and systems with a long list of decision
rules are considered less interpretable models (Markus et al. 2020; Blanco-Justicia et al.
2020).

Linear models have easy-to-interpret mathematical models (i.e.,
Yy =wix; + wox, + ... w,x, +w,), being w; the degree of how much x; contributes to the
prediction of y. Logistic regression adds nonlinearity to return the probability of a class.
The feature weights and signs can be interpreted as feature importance for the global
model. It is possible to make decisions by plugging feature values and weights into the
model’s formula. Nevertheless, linear models with a large number of non-zero weights are
considered as not interpretable models (Guidotti et al. 2018). Instance-based methods like
CBR and KNN are popular methods in XAI, especially for the medical domain, where
similar cases represent an experience for physicians (Nasiri et al. 2019). The capabilities of
CBR can be enhanced by integrating it with fuzzy ontology and accurate semantic similar-
ity measures (El-Sappagh et al. 2015). Like CBR, KNN produces transparent models which
predict the class for a test sample by voting the classes of the k nearest neighbors. In regres-
sion tasks, KNN takes the average of the k neighbors. KNN is based on a selected similar-
ity function. However, KNN becomes less transparent if the number of features is large,
the number of neighbors is large, and the similarity function is complex for physicians
to understand ( Arrieta et al. 2020). The general additive model (GAM) is a linear model
where the dependent feature value is given by aggregating several unknown smooth func-
tions defined for the predictor variables, and GAM learns these smooth functions. It has
the general form of g(E[y]) = B, + Y. Ji(x;), where g is the link function. GAM facilitates
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understanding of the relationships of the variables in the data (Caruana et al. 2015). Bayes-
ian network has been used in many medical applications (McLachlan et al. 2020). It is
a probabilistic directed acyclic graph model where links are conditional dependencies
between a set of variables, e.g., the relationship between diseases and symptoms.

4.4.2 Post-hoc XAl techniques

Applying ML in sensitive domains such as healthcare needs accurate as well as explainable
models (Markus et al. 2020). Black-box models (e.g., DL models, ensembles, and SVM)
are usually more accurate than white-box interpretable models, but at the cost of a lack of
interpretability. The decision function of a neural network is formulated as
y= h(a(Wla(Wza<... Wyt ox,| + by .. ) + bz) + bl)), with multiple implicit
nonlinearity o s, and so the role of x; feature is not clear on model decisions. Black-box
models can be accompanied by post-hoc XAl features as (1) model agnostic methods that
provide local and global explanations for black-box models through other surrogated inter-
pretable models, and (2) model-specific methods that provide tailored XAI for specific
models (Arrieta et al. 2020). Even not knowing how the Al system works internally, post-
hoc XAI techniques mimic and appwroximate the behavior of black-box models. Different
post-hoc techniques have different scopes; some provide global explanations, and others
provide local explanations. As shown in Fig. 3, these techniques include visual, textual,
example-based, simplification-based, and feature-relevance explanations.

4.4.2.1 Model agnostictechniques This section provides examples of model agnostic tech-
niques.

(A) Feature relevance XAI: It explains the function of an opaque model by ranking the
importance of features that participate in predicting the outputs. These techniques
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include game theory-based, saliency-based, and sensitivity analysis methods. For
example, SHAP (SHapley Additive exPlanations) is a game theory-based method to
measure each prediction’s additive feature importance score (Sappagh et al. 2021).

(B) Visualization-based XAI: A survey of these techniques can be found in Cortez and
Embrechts (2013). Lamy et al. (Lamy et al. 2018) proposed a case visualization tech-
nique to explain a CDSS for breast cancer. Their visual interface displays quantitative
and qualitative similarities between the query and similar cases. Other visualization
techniques, such as partial dependency plots, are used to explain model decisions
(Markus et al. 2020).

(C) Simplification-based XAI: A new simplified, less complex model is constructed based
on the given opaque model. Local interpretable model-agnostic explanations (LIME)
and Anchor are the most well-known methods in this category (Markus et al. 2020).
LIME explains the opaque model by building local linear models around its predic-
tions. Rule extraction is another technique in this category. Su et al. (2016) proposed
an approach to extract rules in conjunctive normal or disjunctive normal forms to map
from a complex model to a human-interpretable model.

(D) Example-based XAl

(BE) : It extracts data samples related to the decision made by the opaque model. These
samples show the inner relationships learned by the model being analyzed. CBR is an
example of this category (El-Sappagh et al. 2015).

4.4.2.2 Model-specific techniques These XAI techniques are for conventional ML meth-
ods (e.g., ensembles, SVMs, etc.) and DL methods (CNN, RNN, etc.) (Arrieta et al. 2020),
as discussed below.

Post-hoc techniques for conventional ML Techniques like tree ensembles and SVMs
rely on sophisticated learning algorithms, requiring an additional layer of explanation. For
example, Deng et al. (2019) proposed a simplified tree ensemble learner. Feature relevance
techniques are used to explain the tree ensemble. Auret and Aldrich (2012) analyzed the
role of feature importance in understanding the underlying relationships of complex RF
models. Other ensembles like bagging, boosting, and stacking got the attention for extend-
ing their explainability features. Rajani et al. ( 2018) proposed stacking with auxiliary fea-
tures (SWAF) to provide XAl capabilities for a stacking ensemble based on feature rel-
evance techniques. Some post-hoc XAl techniques have been proposed for SVM models
(Arrieta et al. 2020). Some studies created rule-based models from SVM support vectors
(Barakat and Bradley 2007). Others provide users with SVM visualization tools (Ustiin
et al. 2007). Ustiin et al. (2007) proposed a visualization method to extract information
from the kernel matrix.

Post-hoc techniques for neural networks DL techniques-based taxonomy has been pro-
posed in Arrieta et al. (2020), and instance-based taxonomy has been proposed in Huang
et al. (2020). In this subsection, the study highlights the popular techniques for multilayer
perceptron (MLP), convolutional neural network (CNN), and recurrent neural network
(RNN).

(A) MLP: A few studies address the challenge of explaining MLP. Feature relevance tech-
niques have been explored to interpret MLP models. For example, Zilke et al. (2016)
proposed DeepRED for simplifying the model by extracting a list of representative
rules from the trained model. Shrikumar et al. (2016) proposed DeepLIFT to compute
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model importance levels. They compared the activation of a neuron to the reference
activation and put the importance level based on the difference. Some authors (Kin-
dermans, et al. 2017) studied the theoretical soundness of these XAl techniques and
discovered that explanations were not theoretically correct. Accordingly, they proposed
two more theoretically grounded methods: PatternNet and PatternAttribution.

(B) CNN: state-of-the-art models for computer vision-based tasks, such as image clas-
sification and object detection. XAl techniques for these models are based on visual
data. Explainability for images highlights the pixels or regions in the image that are
linked to the prediction. Class activation map (CAM) is a CNN XAI technique where
a convolution layer replaces the top fully connected layers to find the spatial distribu-
tion of critical regions for the predicted category (Zhang et al. 2021). Other techniques
extend the functionality of CAM, such as Gradient-based Localization-CAM, adver-
sarial complementary learning for weakly supervised object localization (Zhang et al.
2018), and guided attention inference networks (Li et al. 2019a). Zeiler et al. (2011)
map back the output in the input space to discover which part of the image was essen-
tial for generating the output. They used Deconvnet neural network to reconstruct the
maximum activations by using the feature map of a selected layer. This reconstruction
gives an idea about which parts are more important in the image. The authors visual-
ized the most robust activations using saliency maps. Bach et al. (2015) visualized the
predictions of every input image pixel in the form of a heatmap using the layer-wise
relevance propagation (LRP) algorithm. Xu et al. (2015) utilized textual explanations
related to visual contents in an image. They combined the CNN feature extractor with
the RNN attention model to learn textual descriptions of images. An alternative is
to mix multiple methods like visualization and feature relevance to provide a richer
explanation of the network (Olah et al. 2018).

(C) RNN: XAl techniques are used to interpret the sequential data (e.g., natural language
processing and time series analysis) used in RNN networks. Most studies used feature-
relevance techniques to understand what an RNN has learned. For example, Arras et al.
(2017) extended the LRP to work with LSTM by proposing a specific propagation rule
which works with multiplicative connections. Kwon et al. (2019) proposed RetainVis,
a visual analytics tool for interpretable and interactive RNNSs. This tool provides an
interpretation of time series data collected from EHR systems.

4.4.3 Hybrid models

Integrating background knowledge as logical statements or constraints with data-driven
models improves the robustness and explainability of models (Markus et al. 2020; Arrieta
et al. 2020). In addition, data fusion and formulation of conventional ML techniques can
extend the XAl features. For example, Papernot et al. (2018) proposed the deep k-nearest
neighbors, where the classical ML model is extended with its enhanced deep counterpart.
The neighbors are used to create human interpretable explanations. Moreover, building
twin models by combining black-box and white-box models (e.g., DL with CBR) improves
explainability while maintaining accuracy (Keane and Kenny 2019).

Many challenges must be handled to build trusted XAI features. Deep explainabil-
ity should integrate (1) fuzzy reasoning features to handle the vagueness of the medical
domain; (2) semantic reasoning features to support the understanding of semantic con-
cepts such as comorbidities and medications; (3) knowledge-based reasoning to increase
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physician confidence in the explanations of data-driven models; and (4) explainers which
use understandable and deep features of the input data based on user experience (Arri-
eta et al. 2020; Guidotti et al. 2018; Ribeiro et al. 2016). Medical image explainability is
challenging because images come in different formats with high dimensionalities, such as
3D. In addition, the ground truth images may not be correct. These images require spe-
cialized knowledge to be understood. As a result, it is not guaranteed that the ML model
can capture the proper features. Furthermore, semantic knowledge and data privacy are
critical issues when building XAI models. For example, Blanco-Justicia et al. (2020) used
shallow DTs trained on disjoint subsets of the training datasets as surrogate models. They
used a micro aggregation clustering technique to create subsets of training data to obtain
representative trees and ensured the privacy of subjects considered for training. The study
integrated ontologies to manage categorical features in a semantically consistent way. From
the social science perspective, Miller (2019) observed that people prefer contrastive XAl,
i.e., why the algorithm did not take a different decision, and XAl is social, i.e., it should
be part of a broader conversation between explainer and explainee. XAl models should be
able to provide on-demand and customizable explainability based on heterogeneous for-
mats. For example, in the medical domain, XAl features should include diverse data types
like neuroimages, speech, sequence, text, and tabular data. Joshi et al. (2021) surveyed the
explainability of multimodal data in DL literature. Analyzing time-series data is crucial for
chronic disease management, but interpreting ML models that learn time-series data is not
easy. There is a shortage in the literature for time-series XAl tools and techniques. Saluja
et al. (2021) used regular LIME and SHAP to explain ML models that learn time-series
data. Recently, Rojat et al. (2021) provided a comprehensive survey of XAl techniques and
their evaluation metrics for time series data.

4.4.4 XAltools

There exist many XAlI tools, including (1) Python tools like Interpret,”* ethic,” explain,?®
ML, explainable_ai_sdk,28 DeepExplain,29 DrWhy,30 alibi?' ELI5* Skater,® FAT
Forensics,>* ExplainExplore,35 and A7%360%; (2) R tools like ALEPIot,”’ forestmodel,38
iBreakDown,*® shapper,* fastshap,*' and EIX.** Maksymiuk et al. (2020) surveyed and

24
2.
2
27
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3 https://github.com/oracle/Skater

3 https://fat-forensics.org/

3 https://explaining.ml/
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compared the existing R packages for XAl. However, these techniques are not complete
enough to provide XAI features to deployed models in sensitive domains like medicine.
Model explainability is highly correlated with other TAI requirements. For example, biased
models always have biased explanations (Jain et al. 2020). Measuring the robustness and
reliability of generated explanations is a critical future direction. One example of measur-
ing the robustness of XAl methods is by using adversarial-based interpretation, where a
small perturbation in data could significantly impact the result (Liang et al. 2021). In addi-
tion, there is a shortage in the formal evaluation metrics for XAl features. Quality evalua-
tion metrics should support the comparison between different XAI techniques, but there is
no underground truth for the comparison. No standard evaluation methods could determine
when an Al system is explainable for specific users (Markus et al. 2020). Combining dif-
ferent XAl techniques regarding different data formats (e.g., neuroimages, text, time series,
and structured data) can increase explainers’ complexity, conflicts, and uncertainties. There
are no robust and globally accepted quantitative measures for fidelity, stability, certainty,
completeness, context, portability, interactiveness, personalization, actionability, accuracy,
parsimony, usability, and user understandability of model explanations. In addition, com-
bining different XAl techniques in a user interface is a required research direction. For a
comprehensive survey of qualitative evaluation measures, readers are referred to Mohseni
et al. (2018).

5 Trustworthy Al in the AD domain

Many surveys have studied different applications of Al in the AD domain. Due to space
restrictions, the study has collected surveys for AD diagnosis and progression detection
since 2017 (see Table 2). As it can be noticed, all studies concentrated mainly on neu-
roimaging data and neglected other types of cost-effective data like symptoms, lab tests,
comorbidities, and medications. All studies focused on the ML and DL issues like per-
formance, model architectures, hyperparameters optimization, and FS. These are critical
issues to consider, but they are not the primary source of user trust. Only some studies
have considered external datasets. In addition, cross-validation and data-splitting meth-
ods were not always carried out properly. Data preprocessing techniques have shortages
like not handling missing values in a medically sensible way. In addition, outlier detection
and handling of imbalanced data are mostly neglected. In summary, current studies do not
deal with trustworthy issues in detail. However, most studies mention trustworthy issues as
future directions, such as XAlI, reproducibility, external testing, handling missing values,
generalizability, small datasets, EHR integration, etc. This inspires us to work deeply on
this topic and evaluate the literature studies regarding TAI measures.

There is no survey in the literature which measures the level of trustworthiness of the
implemented model and the level of applicability of this model in a real environment. It is
worth noting that Wen et al. (2020) analyzed 30 studies before starting their implementa-
tion to highlight data leakage problems in DL models. They defined five sources of data
leakage and concluded that more than half of the studies suffered from at least one of these
problems. As noted in the literature, although there are so many studies for AD diagnosis
and progression detection using ML and DL techniques, there is no single CDSS to assist
physicians or patients in disease management. This indicates that there is a problem with
the level of maturity of these studies, and as a result, they failed to gain the needed level of
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community trust. Knowing the reasons for these limitations is critical to improving state of
the art by highlighting the real challenges that research should concentrate on in the future.
Our study focuses on this point and provides readers with a comprehensive study of AD lit-
erature by concentrating on the TAI metrics and guidelines. The study concentrates only on
supervised problems, mainly classification tasks. In the following sections, we survey the
AD literature that does not consider trustworthy, and then we pay attention to models that
implemented some TAI requirements such as XAI, robustness, reproducibility, or fairness.
Note that all selected models were built with the model validation and optimization steps
that are required by TAL

5.1 Studies that do not explicitly consider trustworthy Al

This section surveys AD studies that concentrate on model performance and reproducibil-
ity, which are sub-requirements of robustness, as discussed in Sect. 4.2. Regarding model
performance, the study compares the reported results with respect to data preparation
steps, validation techniques, statistical hypothesis testing techniques, and hyperparameter
optimization techniques. In addition, the study checks if it was done either bias analysis of
the dataset or ground truth was verified, or results were presented with confidence inter-
vals. We evaluate dataset and cohort sizes, the feature engineering steps, whether the study
evaluated its model using multiple datasets, whether the dataset and code were publicly
available, and whether the model’s sensitivity to slight changes in input data has been eval-
uated. In the reproducibility column, bold text indicates the handled metrics. Results are
formatted as (—/—/—/—/-) for (Accuracy/Precision/Recall/F-score/AUC).

5.1.1 Classical machine learning models

This subsection considers only the papers related to classical ML algorithms such as
SVMs, DTs, or logistic regression (LR). All studies in this section did not use time series
or multimodal data. Table 3 compares 18 chronically sorted studies from 2017 and 2021.
Column titles and acronyms are described in the caption of Table 3. From this table, we
figure out why Al does not have any real application in the AD domain. The most impor-
tant issues that could be considered as efforts in TAI are cross-validation and reproduc-
ibility. Most studies used ADNI datasets (ranging from 40 to 41,350 examples) (Lu et al.
2017a; Divya et al 2021; Poloni et al. 2021; Eke et al. 2021; Park et al. 2020; Richhariya
et al. 2020; Zhu et al. 2019). In addition, most studies relied on an FS step to select a small
number of features. However, they did not consult domain experts to evaluate the medi-
cal relevance of the collected features. In addition, ADNI collected both longitudinal and
cross-sectional data, but only (Sgrensen et al. 2017) mentioned the used category. Note that
longitudinal data measures the gradual progression of the disease and needs special manip-
ulation to produce medically relevant results. Most studies provided not sufficient dataset
description, thus making their results irreproducible. Moreover, most studies did not pro-
vide access to their used datasets or detailed descriptions of the used feature sets. Most
studies did not consider the physician’s opinion (Park, et al. 2020; Poloni et al. 2021; Eke
et al. 2021; Zhu et al. 2019; Li et al. 2019b; Gémez-Sancho et al. 2018). As can be noticed
in Table 3, most studies depended only on MRI data which usually achieved not satisfac-
tory results (Poloni et al. 2021; Wang et al. 2020b; Richhariya et al. 2020; Vaithinathan and
Parthiban 2019). MRI is handled by a standard pipeline which includes the following steps
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(Forouzannezhad, et al. 2018): (1) skull stripping to remove non-brain tissue; (2) standardi-
zation and segmentation to extract the grey matter, white matter, and cerebrospinal fluid
regions; (3) modulation to extract volume feature; (4) smoothing to remove noise; and (4)
registration with a template such as Automated Anatomical Labeling (AAL). In addition,
the image processing techniques applied to these images do not make sense from the medi-
cal point of view, and the resulting features may not be relevant to the physician from the
explainability point of view.

Some studies reported that they did a k-fold CV after dividing the datasets into training
and testing. However, they reported the CV results only, and very few papers reported the
testing results (i.e., internal validation) (Sgrensen et al. 2017; Wang et al. 2020b) (Car-
valho et al. 2020). The major problem is that datasets were separated after preprocessing
(Eke et al. 2021), which could result in a data leakage problem. Some studies, like (Park
et al. 2020), used stratified nested CV, and some studies repeated the CV to confirm their
results (Divya et al. 2021; Baskar et al. 2019)). Bucholc et al. (2019) implemented the
validation process by keeping 10% of the data untouched for the model validation from
the very beginning. The training data, i.e., 90% of data, were used in the preprocessing,
FS, SMOTE balancing, and hyperparameter optimization steps using the LOOCV tech-
nique. The resulting features were masked on the test set. Authors compared many FS tech-
niques using 10-times repeated 10-CV by combining data modalities, and they tuned ML
models for predicting AD. This study produced a classifier to determine the patient class
and a regressor to predict the disease severity by the clinical dementia rating (CDR) score.
However, the study did not repeat the 90:10 split many times and did not use a suitable
statistically significant test to compare the generated ML models. Some studies referred
to the concept of robustness (Lu et al. 2017a; Li et al. 2019b), but they did not handle any
of the TAI requirements for the robustness dimension. As far as we know, no study per-
formed external validation based on a different dataset from the one used in model build-
ing, even if external validation is a crucial step to report the model generalization per-
formance confidently (Birkenbihl et al. 2020). The grid search optimization technique is
commonly used for hyperparameter optimization (Park, et al. 2020; Bucholc et al. 2019).
In addition, the classification task is usually carried out as a binary classification task. Only
some authors (Zhu et al. 2019; Sgrensen et al. 2017) formulated the classification prob-
lem as a multiclass classification task, but as expected, they achieved lower performance
than the results reported by binary classification tasks. Most studies reported Accuracy and
AUC performance metrics, but authors did not consult domain experts to determine the rel-
evant metrics a priori. In addition, if data were biased or imbalanced, the usual metrics are
not representative enough. Regarding the reproducibility requirement, a few studies (Poloni
et al. 2021; Zhu et al. 2019; Gémez-Sancho et al. 2018) reported results along with con-
fidence intervals and/or statistical hypothesis testing (e.g., the McNemar’s test is applied
in Sgrensen et al. (2017), and the Student’s t-test is applied in Tong et al. (2017)). On the
contrary, it is common reporting the method for optimization and the optimized hyperpa-
rameters (Divya and R. Shantha Selva Kumari 2021; Park, et al. 2020; Zhu et al. 2019;
Carvalho et al. 2020; Tong et al. 2017). Moreover, no study performed any analysis to
evaluate the sensitivity of the proposed model to slight changes in the input data; no study
performed bias and imbalance analysis of the dataset, and no study verified the ground
truth of the used dataset.

It is worth noting that most studies were based on the ADNI dataset, which requires
authors to deal with many challenging TAI issues. Nevertheless, most of them are simply
ignored. For example, ADNI owners did not provide a clear evaluation from the medi-
cal point of view for the completeness and representativeness of the data. ADNI is also a
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multimodal time-series dataset. However, the number of time steps in the dataset is insuf-
ficient to perform accurate longitudinal analysis and track the disease’s progress. In addi-
tion, the dataset is very sparse, and many missing values are hard to fill in using existing
preprocessing techniques. In addition, ADNI did not provide any explanation about the
ground truth of the given labels. Physicians assign patient diagnosis and progression detec-
tion labels manually based on the patient’s MMSE measurement (Sgrensen et al. 2017). As
a result, given labels may not be accurate enough. Surprisingly, the ADNI dataset is biased
in race, ethnicity, language, and marriage status. For example, the Hisp/Latino ethnicity
represents more than 97% of the patients. The race of patients is distributed as 91.7% for
white, 4.9% for black, 2.0% for Asian, 0.18% for Indian/Alaskan, and 1.22% for more than
one race. As a result, recommendations reported in most studies may not be suitable for
underrepresented races since it has been reported that the brain shape is variant across eth-
nicities (Bin Bae et al. 2020). ADNI includes mainly married people (75.9%).

Furthermore, ADNI provided neither a detailed datasheet for describing how data were
collected, details about the data preparation steps, nor data privacy and security settings.
In addition, comparing results and conclusions drawn in different studies is not straightfor-
ward because they usually consider different criteria for selecting their cohorts regarding
the patient’s cognitive scores like MMSE and CDR, demographics like age, and symptoms
like depression. For example, Zhu et al. (2019) selected CN patients with CDR of 0 and
MMSE between 24 and 30, but El-Sappagh et al. ( 2020) selected CN patients with CDR
of 0.384 and MMSE between 27.84 and 30.12. No standardization and not considering
domain experts in the ML pipeline complicate the reproducibility and general acceptance
of results. Some studies merge datasets from multiple data sources (Wang et al. 2020b) (Li
et al. 2019b). Sgrensen et al. (2017) trained a linear discriminant analysis (LDA) algorithm
to detect AD patients based on MRI data from ADNI and AIBL datasets. Then they exter-
nally tested their model based on CADDementia testing data. Their results are significantly
better than other studies. The learning curve analysis asserted that no more data nor com-
plex algorithms could improve the performance. The most relevant features were cortical
thickness, volumetric, and hippocampus shape and texture. However, the combined ADNI
and AIBL data might not come from the same distribution because the used raw ADNI
data were 1.5T T1-weighted images and raw AIBL data were 3T T1-weighted images. In
addition, testing CADDementia data were 3T T1-weighted scans. Authors did not con-
sult domain experts to assure the possible effect of this difference and did not consider
the potential effect in model training. Note that these data can be used to evaluate model
reproducibility by training with one dataset and validate with the other, but in these studies
the data are combined and then used to train and validate models. In addition, compar-
ing ADNI, AIBL, and CADDementia datasets, approximately 50% of CADDementia CN
group are controls with subjective complaints, but they are only 20% in cse of ADNI and
AIBL. CN group in ADNI has no memory complaints but approximately 50% of CN in
AIBL had subjective memory complaints. ADNI and AIBL have only mild AD patients at
baseline, but CADDementia did not restrict the severity (Sgrensen et al. 2017).

5.1.2 Deep learning models

Even though conventional ML models usually have a feature engineering step, the extracted
features may not capture the full characteristics of brain atrophy (Cui and Liu 2019). On
the contrary, DL models can implicitly learn deep representations from unstructured data
like images and text. Table 4 provides a comparison between 17 studies where DL models
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were applied for AD diagnosis and progression detection. We consider again the same met-
rics that we considered in Table 3. These studies used neither ensemble models, multimo-
dality data, nor time-series data. They are mainly CNN models supported by neuroimag-
ing (especially sMRI and fMRI) (Wen et al. 2020; Chen and Xia 2021; Buvaneswari and
Gayathri 2021; Duc et al. 2020; Lian et al. 2020a, b; Abrol et al. 2020; Chitradevi and
Prabha 2020; Basheera and Satya Sai Ram 2020; Ju et al. 2017; Li et al. 2019c; Basaia,
et al. 2018). CNN models are recognized because of their ability to automatically learn
complex, deep, and spatial representations from images. Normally, CNNs require minimal
preprocessing because they can automatically extract low-to-high level features. As seen in
Table 4, all studies took different steps to prepare neuroimages but without systematically
assessing their impact (Basheera and Sai Ram 2019). This is most likely because datasets
are relatively small, and thus CNNs are hard to train. Buvaneswari and Gayathri (2021)
applied the CNN model (SegNet) for MRI segmentation to extract the brain’s morphologi-
cal change features and then another CNN model (ResNet-101) for classification. Because
the same data were used for feature extraction and classification, this model is expected
to be biased. Hedayati et al. (2020) used an ensemble of 11 CNN-based autoencoders to
extract features from the gray matter of 3D MRI images and then stacked the selected fea-
tures to be exploited by another 3D CNN model. Data are used with a tenfold CV, but
no additional validation is reported. Other studies (Chen and Xia 2021) used a DL model
(e.g., ResNet10) for representation learning and a conventional ML model (e.g., sparse
regression module) for AD prediction.

Most studies are based on the ADNI dataset because it is the largest dataset in the AD
domain (Jo et al. 2020). Compared to the conventional ML studies shown in Table 3, the
used datasets for DL models are more prominent in the number of cases. Nine studies
considered domain expert opinion in the ML pipeline (Duc et al. 2020; Lian et al. 2020a;
Jo et al. 2020). On the one hand, some studies depended on a single dataset which was
randomly divided into train, validation, and testing sets (Buvaneswari and Gayathri 2021;
Basheera and Satya Sai Ram 2020; Pan et al. 2021). As a result, they reported internal
validation only. The splitting process is repeated multiple times, and average results are
reported (Pan et al. 2021). On the other hand, some studies depended on one dataset but
performed CV (Li et al. 2019¢; Chen and Xia 2021; Duc et al. 2020). Some studies used
repeated stratified CV to remove any bias in the reported results (Jo et al. 2020; Abrol et al.
2020; Ju et al. 2017). These studies did not perform either internal or external validation,
and they reported only the CV results. In addition, other studies used more than one data-
set (Lian et al. 2020b; Li et al. 2019¢; Basaia, et al. 2018). Datasets can be combined and
then split randomly for model training and testing (Basaia, et al. 2018). In addition, each
dataset can be divided into train/test/validate and used to train and validate the model sepa-
rately (Yue et al. 2019). Some datasets are kept for model testing only (Lian et al. 2020a,
b; Li et al. 2019¢). However, different datasets usually rely on different criteria for subject
labeling and are likely to have different label distributions (e.g., OASIS, ADNI, and AIBL,
which are the most popular datasets in the AD domain (Wen et al. 2020)). As a result, the
case of building a model with one dataset and using another dataset to check the model
generalizability is unfair (e.g., Li et al. (2019c¢) checked model reproducibility by training a
DL model based on the ADNI-1 cohort and evaluated its prognostic performance based on
the ADNI-GO&?2 and AIBL cohorts. In addition, the impact of images generated by differ-
ent scanners, i.e., 1.5T and 3T scanners).

The most rigorous study in Table 4 is Wen et al. (2020), where authors used three data-
sets (ADNI, AIBL, and OASIS) to validate their models. They implemented many CNN
architectures to explore the role of different MRI features and preprocessing steps, i.e.,
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2D slice-level, 3D patch-level, ROI-based, and 3D subject-level features. To prevent pos-
sible data leakage, the ADNI data were split into training/validation/test sets at the very
beginning of the pipeline, and only the training/validation sets were used for model selec-
tion. The test set intended for internal validation remained unmodified until the very end
of model evaluation. Train/validation sets are used to train and validate the models with a
tenfold CV. The authors noted that the distributions of all considered datasets were not sig-
nificantly different. AIBL and OASIS datasets were used for external validation.

All studies except (Wen et al. 2020; Chitradevi and Prabha 2020) did not share the
datasets and code, but all studies described the used DL architecture and utilized hyper-
parameters such as the number of epochs, learning rate, etc. Half of the studies used rel-
atively large datasets compared to studies on conventional ML models in Table 3 (Wen
et al. 2020; Chen and Xia 2021; Lian et al. 2020b; Li et al. 2019¢c; Basaia, et al. 2018; Pan
et al. 2021; Yue et al. 2019). However, the rest of studies used small datasets which could
cause model overfitting (Buvaneswari and Gayathri 2021) (Duc et al. 2020; Lian et al.
2020a; Chitradevi and Prabha 2020; Basheera and Satya Sai Ram 2020; Ju et al. 2017;
Jo et al. 2020). Basheera et al. (2019) used a large dataset for model validation and used a
small but independent dataset to perform external validation. Most studies did not use any
statistical significance tests to measure and compare results (Wen et al. 2020; Chen and
Xia 2021; Buvaneswari and Gayathri 2021; Duc et al. 2020; Chitradevi and Prabha 2020;
Basheera and M. Satya Sai Ram 2020; Lian et al. 2020b; Ju et al. 2017) (Basaia et al.
2018; Basheera and Sai Ram 2019; Jo et al. 2020). As a result, some authors could argue
that their implemented models were better than other models in the literature, but this con-
clusion is misleading because it was not supported by significant statistical evidence. Some
studies applied statistical tests like the Student t-test (Lian et al. 2020a), ANOVA (Abrol
et al. 2020), and Wilcoxon rank-sum tests (Li et al. 2019c). However, the authors did not
justify why they selected these specific tests. Only five studies reported the confidence
intervals for their results which measure the model stability (Wen et al. 2020; Duc et al.
2020; Basheera and Satya Sai Ram 2020; Ju et al. 2017; Yue et al. 2019). No studies did
any sensitivity analysis of models against small changes in the input data. No studies statis-
tically did bias and imbalance analysis of the selected datasets. Finally, no studies, except
(Chitradevi and Prabha 2020), checked the correctness of the ground truth of the used data-
sets. In addition, Wen et al. (2020) mentioned that the classification performance of DL
models in different studies is not easy to compare because different studies consider dif-
ferent MRI sections, different MRI preprocessing steps, or different validation procedures.
They surveyed 30 research studies and concluded that more than 15 papers have suffered
from data leakage and reported biased results. In addition, the reported results were hardly
reproducible because their codes were not publicly accessible and because implementa-
tion details were missing. Moreover, many studies reported biased performance because of
insufficient or unclear validation or model selection procedures.

5.1.3 Ensemble models

As seen in previous sections, neither conventional nor DL models achieved stable and
medically relevant results for AD. Using an ensemble of multiple diverse classifiers (i.e.,
a multi-classifier system) with different validation settings can yield more stable and
robust models and, as a result, enhance classification performance (Lu et al. 2018a; Lei
et al. 2019). This is because different and complementary base classifiers can compensate
for the errors of a single classifier. Nevertheless, it depends on the level of diversity and

@ Springer
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independence of the base classifiers. In the AD domain, Armafianzas et al. (2017) con-
cluded that there was no remarkable statistical difference in performance between ensem-
ble and base classifiers. Still, ensemble models had better average behavior due to stability
gained by combining individual outputs. Ensembles can use different ML models (e.g.,
DTs, SVM, logistic regression, or even other ensembles as RF) as base learners. In addi-
tion, DL models can be used as base classifiers in bagging, boosting, and stacking ensem-
bles (Li et al. 2018). Ensemble models could mitigate challenging issues such as class
imbalance, data bias, model overfitting, concept drift, and the curse of dimensionality (Sagi
and Rokach 2018; Syed et al. 2020). In addition, ensembles can improve the robustness of
DL models against adversarial attacks (Pang et al. 2019). Moreover, dynamic ensemble
classifiers are used to extend the static selection (SS) of base classifiers to dynamic selec-
tion (DS), where the competence and selection of base classifiers are estimated on the fly
according to each new sample to be classified (Cruz et al. 2018). Dynamic ensemble selec-
tion (DES) differs from static ensemble selection (SES) in the base classifiers’ selection
phase, either static or dynamic.

Table 5 provides readers with a comparison between 13 ensemble models in the AD
domain. None of the studies considered domain experts. Some studies built ensembles
based on conventional ML models as base classifiers (Lei et al. 2019; Armafianzas et al.
2017; Syed et al. 2020; Muhammed Niyas and Thiyagarajan 2021; Pan et al. 2019; Dimi-
triadis and Liparas 2018; Nanni et al. 2018; Jin and Deng 2018). Other studies used DL
models as base classifiers (Lu et al. 2018a; An et al. 2019; Choi and Lee 2020; Wang et al.
2019c; Ahmed et al. 2019b). Diversity was implemented with different techniques: diverse
base models (Syed et al. 2020; Choi and Lee 2020; Ahmed et al. 2019b), diverse input data
(Muhammed Niyas and Thiyagarajan 2021; Dimitriadis and Liparas 2018; Jin and Deng
2018; An et al. 2019), and diverse base model and data (Wang et al. 2019¢). Muhammed
and Thiyagarajan (2021) is the only study that explored the role of DES in improving AD
detection. The authors used ADNI’s TADPOLE dataset of 1737 subjects and reported an
enhanced performance for the META-DES algorithm with RF and bagged DT as base clas-
sifiers. An et al. (An et al. 2019) proposed a multilayer deep ensemble model based on a
large sample of multimodal data. First, 100 diverse features were fused and normalized.
At the first layer (voting layer), two stacked autoencoders were used for feature learning
and created two feature spaces. Next, three different base classifiers groups used these two
feature spaces and the original feature space (using 35 classification algorithms) to gen-
erate different diagnoses. To improve diversity, the different base classifiers were trained
using different data resampling methods. Az the second layer (stacking layer), a deep belief
network (DBN) was used to combine base classifiers’ predictions in a weighted manner.
At the third layer (optimizing layer), the cost-sensitive method’s three feed-forward neu-
ral networks were parallelly built. The input to these networks is the DBN along with the
outputs of the 35 classifiers. Half of the data (50%) were used for FS and then combined
with another 30% of data to form the training set. The remaining 20% of the data were
kept untouched for testing. However, this division was done after the data normalization
process. The resulting model outperformed many other ensembles, but the authors did not
report precise results.

It is worth noting that only two studies (Dimitriadis and Liparas 2018) performed the
external validation process. Studies sometimes divided the dataset after the preprocessing
steps or did not leave a test set at all. Syed et al. (2020) used the recursive feature elimina-
tion (RFE) technique for FS, where the study assigned weights (i.e., 0.2 to majority class,
0.8 to minority class) to classes to handle the imbalanced dataset. However, the authors
depended on the whole dataset to perform the FS step. In addition, they firstly preprocessed
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the entire dataset and then divided it into training and testing sets. This is the wrong way
to implement the ML pipeline because it results in a data leakage problem. In addition, the
final model was based only on three features (i.e., Cystatin C, MMP10, and tau), which are
not medically relevant. The same data splitting procedure was followed by Muhammed and
Thiyagarajan (2021), where data are split into train/test after the preprocessing step. Nanni
et al. (2018) did not specify the exact time of splitting the dataset into train and test. Wang
et al. (2019c¢) did not determine if data preprocessing steps were done before or after the
tenfold CV.

Other studies applied good practices in the ML pipeline (An et al. 2019). Armafian-
zas et al. (2017) selected only elderly patients to avoid bias as a result of the age dif-
ference. Dimitriadis et al. (2018) divided the dataset from the beginning (i.e., before
preprocessing) as training and testing sets and kept the test set untouched for external
validation of the trained model. Note that the training and testing data are collected
randomly from the same population. Yao et al. (2018) used a real dataset of 160 samples
and a simulated dataset of 340 samples for testing, but a small dataset of 240 samples
trained the model. Ahmed et al. (2019b) trained the model using the ADNI dataset and
tested it using a separate dataset from Korea (GARD) with different distributions for
MRI data. ADNI participants were recruited at 57 sites in the United States and Canada
with ages between 55 and 90, whereas GARD participants’ ages range from 49 to 87. In
ADNI, the selection was from diverse races, ethnicities, and age groups. On the other
hand, GARD was collected from different races and ethnicities.

A few studies reported the specific hyperparameter optimization methodology
applied to optimize base classifiers (Muhammed Niyas and Thiyagarajan 2021; Jin and
Deng 2018; Choi and Lee 2020). No studies used multi-objective optimization tech-
niques for minimizing the number of base classifiers while maximizing performance.
In addition, no study used AutoML techniques to find optimally and simultaneously the
best type of base classifiers, base classifier hyperparameters, number of base classifiers,
type of meta-classifier, meta classifier hyperparameters, etc. Even if optimizing ensem-
ble models is a very complex task, all studies in Table 5 used naive methods for opti-
mization in comparison with those considered in other medical fields (e.g., Singh et al.,
(Singh and Singh 2020) used the multi-objective optimization NSGA-II technique for
optimizing a stacking ensemble model for diabetes prediction).

Many ensemble studies were based on a single modality such as MRI (Li et al.
2021; Lei et al. 2019; Choi and Lee 2020; Wang et al. 2019¢c; Ahmed et al. 2019b),
PET (Pan et al. 2019), and CSF (Syed et al. 2020). Other studies fused several modali-
ties: MRI+PET (Lu et al. 2018a); MRI, MMSE, age, CSF (Dimitriadis and Liparas
2018; Nanni et al. 2018; Jin and Deng 2018); MRI, PET, CSF, CS (age, sex, education)
(Muhammed Niyas and Thiyagarajan 2021); Medical history, Hachinski ischemic score,
cerebrovascular disease, neuropsychiatric inventory questionnaire, geriatric depression
scale, functional activities questionnaire (An et al. 2019). None of these studies dis-
cussed the data balancing and missing values problems. Most studies have ignored most
reproducibility metrics. For example, none of the studies statistically did bias and imbal-
ance analysis of the selected datasets. No studies checked the correctness of the ground
truth of the used datasets. Only two studies used a suitable statistical significance test to
measure and compare model performance (Armafanzas et al. 2017; Syed et al. 2020),
and only a few studies (Lu et al. 2018a; Lei et al. 2019; Armafianzas et al. 2017; Jin and
Deng 2018; Ahmed et al. 2019b) reported the confidence intervals of the results.

Finally, although the surveyed ensemble models have proven their superiority in
building computer-aided diagnosis models, important issues are disregarded and require
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further research: (1) considering the fusion of heterogeneous modalities including imag-
ing, neuropsychological and clinical data; (2) considering more seriously the hyperpa-
rameter optimization of base classifiers; (3) improving model accuracy and diversity
by considering either heterogeneous or optimized homogeneous models; (4) exploring
the role of dynamic selections, i.e., dynamic classifier selection (DCS) and dynamic
ensemble selection (DES), to improve ensemble interpretability and performance; (5)
focusing on the role of multimodal data fusion for building a comprehensive model; and
(6) exploring the role of AutoML algorithms to optimize the full pipeline from data pre-
processing up to the model selection and hyperparameter tuning.

5.1.4 Time-series data-based models

This section investigates the role of time-series data analysis in enhancing model perfor-
mance. As seen in previous sections, most current AD studies are based on cross-sectional
data and on classic supervised ML techniques like SVM and RF (Abuhmed et al. 2021).
All these studies were based on the baseline visit data to diagnose AD or to predict its pro-
gression after several years (see Tables 3 and 4). Nevertheless, AD progresses over time, so
its status at one time is not independent of the status in a previous or next time. Extracted
features in ML and DL models based on single visit data have many limitations (Cui and
Liu 2019). Because brain changes in AD patients happened gradually over time (Hong
et al. 2019), time-series data analysis techniques are more accurate and medically intuitive
for analyzing longitudinal data of chronic diseases like AD (see Table 6). Unfortunately,
most research has not considered AD data’s temporal/sequential nature except for a few
studies that utilized hidden Markov models (Williams et al. 2020). DL models can ana-
lyze multivariate longitudinal data to learn deep and more relevant representations of the
correlation among heterogeneous modalities and the correlation among temporal values.
These models are expected to discover unknown and more valuable patterns in the data,
which is critical to personalized medicine for AD (El-Sappagh et al. 2020; Li et al. 2020).
However, the most significant challenges influencing time-series data analysis in AD are
the number of time steps and the amount of missing data. For example, even though ADNI
is the largest dataset in the AD domain, it has very few time steps, regularly collected every
six months, including missing values. However, DL models such as CNN and RNN (e.g.,
GRU and LSTM) need datasets with a large number of time steps to learn deep features
(Abuhmed et al. 2021), where CNN can learn special features and RNN can extract lon-
gitudinal features. Ghazi et al. (2019) proposed a novel LSTM-based algorithm that han-
dles incomplete longitudinal data (up to 74% missing values). Cui et al. (2019) used CNN
to extract spatial features from MRI images in a sequence, with bidirectional GRU lay-
ers cascaded on the outputs of CNN at multiple time points for extracting the longitudinal
features. Then the spatial and longitudinal features are combined to make the prediction.
The authors reported an improved performance by adding more time steps, and the models
became more robust and stable. Jie et al. (2017) proposed a temporally constrained group
sparse linear regression model (e.g., LASSO), which counts for sparse data in longitudinal
AD time series. The authors proposed a cost function with two regularization parameters:
(1) group regularization term to put together weights of the same brain region across dif-
ferent time points; and (2) smoothness regularization to reflect the slight changes in data at
adjacent time points.

Regarding robustness requirements, as discussed in previous sections, many of the pro-
posed ML pipelines did not handle model validation correctly (Cui and Liu 2019; Dua
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et al. 2020; Hong et al. 2019; Li et al. 2020 Wang et al. 2019d, 2018b). Platero et al. (Plat-
ero et al. 2019) is the only study that mentioned model robustness and reliability. They
performed four experiments: (1) a quality control experiment to assess the robustness of
the model on a large set of images; (2) evaluating the reproducibility of the model using
a different dataset (MIRIAD); (3) statistical analysis of the atrophy rates of the clinical
groups; and (4) experimental verification of the role that longitudinal data of hippocampal
markers plays to increase the accuracy of the model. However, the study did not discuss
how to handle missing values. In addition, the MIRIAD testing dataset is small. On the
other hand, some studies concentrated on other important issues like validation. For exam-
ple, Er and Goularas (2021) used independent datasets for different phases of the modeling
process. They used three different sMRI datasets of 126 cases, 51 cases, and 117 cases for
voxel-based morphometric, training, and testing, respectively. However, these datasets are
small, and their deep hybrid model of autoencoder-CNN-SVM could overfit. Most studies
were based on ADNI, and this dataset has been collected either as longitudinal or cross-
sectional. Only a few studies refer explicitly to longitudinal data (Cui and Liu 2019; Dua
et al. 2020; Hong et al. 2019). Lorenzi et al. (2017) used separate datasets for training and
testing. They made all data preprocessing steps (e.g., normalization) on the training dataset
and testing data were prepared according to the biomarkers’ distribution of the training
set. However, once again these datasets were small and biased. As a result, their model
achieved low sensitivity in the classification task of stable CN (sCN) vs. converted CN
(cCN). Moreover, the selected cases should be considered as errors in the dataset because
medically there is no patient that convert from CN state to AD directly.

Time-series data analysis has been considered in AD literature with two main purposes:
(1) for processing longitudinal imaging data of a single visit that is sliced at different time
frames where an image like 4D fMRI captures spatial and time-varying information (Li
et al. 2020); and (2) for processing longitudinal data collected at different visits (Cui and
Liu 2019; Dua et al. 2020; Hong et al. 2019; Zhu et al. 2021; Lei 2020). The latter is the
most popular, especially using CNN models to extract spatial features from neuroimages
like MRI, which were collected at different time steps. Then the collected features are con-
catenated, and an RNN model learns the longitudinal features (Cui and Liu 2019; Li et al.
2020). Even if time-series data were short, the analysis of longitudinal changes can bring
new knowledge which adds critical value in predicting AD progression. For example, Er
and Goularas (2021) used the volumes of only two-time steps (baseline and month 12 vis-
its) from sMRI with a hybrid model of Autoencoder-CNN-SVM to detect AD progression.
The model achieved good results compared with other models based only on baseline data.
The same model was also used to detect the regions of interest that are statistically signifi-
cant for MCI-to-AD prediction. About half of the studies in Table 6 used DL models for
time-series data analysis as a way to pave the way toward predicting AD progression (Cui
and Liu 2019; Dua et al. 2020; Hong et al. 2019; Li et al. 2020; Wang et al. 2019d, 2018b;
Er and Goularas 2021; Lei 2020). The rest of studies applied conventional ML models
(Mehdipour Ghazi et al. 2019; Jie et al. 2017; Platero et al. 2019; Lorenzi et al. 2017; Zhu
et al. 202; Minhas et al. 2017; Huang, et al. 2016). Zhu et al. (2021) proposed the tempo-
rally structured SVM (TS-SVM) model to learn MRI time-series data for AD progression
detection. The method is based on extracting spatial-temporal features in a partial image
sequence. TS-SVM achieved an accuracy of 81.75% in early AD diagnosis using only two
follow-up MR scans. Er and Goularas (2021) used SVM based on deep features extracted
by an autoencoder-CNN.

Most studies modeled AD progression detection as classification tasks, especially
binary classification. Some studies formulated the detection process as a regression task
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(Jie et al. 2017; Lei 2020). In (Lei 2020), the authors collected six-time steps of MRI and
clinical scores for 805 patients. They predicted AD progression based on four clinical
scores, including ADAS-Cog, CDR-GLOB, CDR-SOB, and MMSE, based on MRI lon-
gitudinal data. The proposed SVR-based ensemble model used previous clinical scores at
MRI time points to predict clinical scores in the next visit. Jie et al. (2017) modeled AD
progression detection as a regression task to predict multiple time steps of MMSE and
ADAS-Cog clinical measures based on longitudinal MRI data. Most studies were based on
MRI images using different strategies for tracking the longitudinal changes between time
steps. Some studies tracked changes regarding the whole MRI images (Dua et al. 2020;
Minhas et al. 2017)), while others focused on volumes of specific regions of the brain, such
as the hippocampus (Platero et al. 2019) and gray matter (Jie et al. 2017), as well as other
tracked specific types of measures on all ROI such as volume (Er and Goularas 2021).

Regarding reproducibility issues, it is noticed that none of the studies shared either code
or datasets. In addition, only a few studies (Jie et al. 2017; Platero et al. 2019; Lorenzi et al.
2017; Mehdipour Ghazi, et al. 2019) did a statistical analysis of the collected results in
terms of a suitable hypothesis testing technique. Only a few studies (Li et al. 2020; Jie et al.
2017; Wang et al. 2018b; Er and Goularas 2021) gave the confidence intervals associated
with the reported results. None of the studies paid any attention to data balancing issues or
statistical bias and imbalanced data analysis of the selected datasets. Finally, none of the
studies checked the correctness of the ground truth in the used datasets.

5.1.5 Multimodal multitask models

The ability to measure dozens of patient features is a crucial step toward personalized med-
icine for AD (Fisher et al. 2018). Many heterogeneous (bio) markers have shown asso-
ciations with AD diagnosis and progression detection, including CSF A, 4,, CSF tau,
CS, FDG-PET, and MRI (Nie et al. 2017). However, AD symptomatology is multimodal
because there are correlations and complementary relationships among symptoms of differ-
ent domains, including physiological, behavioral, and psychological (Wang et al. 2019d).
Hence, different modalities are associated with AD information from different perspec-
tives, and their combination can potentially provide a more accurate assessment of disease
status and probability of progression (El-Sappagh et al. 2020; Nie et al. 2017). Of course,
every single modality has its limitations (Rathore et al. 2017; El-Sappagh et al. 2020). For
example, in the case of the sSMRI modality, damage to the hippocampus can be determined
in AD patients easier than in CN patients. However, this is not an easy task at the early
stages of the disease. The low contrast of the anatomical structure in SMRI and the pres-
ence of noise or outliers in MRI scans reducer the classification accuracy (Yamanakka-
navar et al. 2020). This marks the role of sMRI to be quite blurry in the early disease stages
(Alberdi et al. 2016). In addition, brain structural atrophy is not specific to AD only, but it
is also related to other diseases as well as normal aging. In addition, recent studies reported
that AD is associated with the gray and white matter atrophy. Moreover, changes in brain
regions connectivity measured by fMRI precede this structural atrophy (Bai et al. 2009).
However, fMRI’s identified disruption of functional connectivity cannot be associated with
a specific disease (Forouzannezhad, et al. 2018). Fortunately, some of these limitations can
be overcome by integrating the MRI modality with other (bio)markers (Lu et al. 2018a;
Muhammed Niyas and Thiyagarajan 2021; An et al. 2019). Some studies concluded that
sMRI and CSF provide independent biomarkers, and their combination improves AD dis-
crimination (Vemuri and Jr 2010). Most studies in the literature achieved poor performance
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for MCI vs. AD determination, probably because the MCI biomarkers are similar to AD.
Therefore, multimodal classification had better diagnostic power than single modalities
(Lazli and Boukadoum 1894). Accordingly, to be efficient, accurate, reliable, and medi-
cally intuitive, AD early diagnosis and progression detection should be supported by multi-
modal data. Considering all kinds of symptoms and detecting even the smallest changes in
the combination of them from the very beginning is the only way to differentiate them from
other diseases (Alberdi et al. 2016).

In this section, we discuss the role of multimodality in enhancing model performance.
There are two main types of multimodality (El-Sappagh et al. 2020; Ebrahimighahnavieh
et al. 2020; Jo et al. 2019): (1) multimodal neuroimaging, which combines different neu-
roimages to identify structural and molecular/functional biomarkers; and (2) global multi-
modality, where neuroimaging and non-neuroimaging biomarkers are integrated. There are
many methodologies for the fusion of multimodalities, including early fusion (feature con-
catenation), intermediate fusion, and late or decision fusion. If the collected multimodal
data are time series, then it is possible to detect the temporal dependency between different
time steps within a single feature and jointly between different features. Studies in the lit-
erature modeled AD diagnosis and progression detection with many paradigms, including
single modal-single task, single multimodal task, single modal-multitask, and multimodal
multitask (MM) (El-Sappagh et al. 2020). The MM is the most medically robust and intui-
tive method because different modalities are chronically fused and analyzed, and clinical
variables are predicted (Abuhmed et al. 2021). This results in an improvement in the phy-
sician’s level of trust. MM models deal with features from multiple sources, and multiple
tasks are jointly optimized. In the rest of this section, we briefly review the literature on
AD for multimodal and multitasked studies (see Table 7).

Most studies used multimodal data of MRI and PET. Nevertheless, each study achieved
a different degree of success in predicting AD progression or diagnosing the disease. In
practice, data from multiple modalities are partially available, and selecting relevant data
based on the knowledge of medical experts can improve the performance of the model,
as investigated by Ljubic et al. (2020). Other studies addressed the challenge of learning
from incomplete modalities (Liu et al. 2021b). The authors proposed an autoencoder-based
multiview framework to complete the missing data in the kernel space by considering the
association between multiple views and the structural information of the data. Shen et al.
(Shen et al. 2020) faced the lack of training data by using a sparse FS method that jointly
exploits predictor and auxiliary data. Some studies deal with multimodal time-series data
(El-Sappagh 2021; El-Sappagh et al. 2020; Tabarestani et al. 2019; Brand et al. 2020; Lee
et al. 2019; Wang et al. 2019¢), while others considered only baseline visit data (Fang et al.
2020; Liu et al. 2021b; Shen et al. 2020; Zhang et al. 2020; Forouzannezhad et al. 2019;
El-Gamal et al. 2020; Bi et al. 2020; Lei et al. 2020). Most studies were based on the ADNI
dataset, but only (Lee et al. 2019; Qiu et al. 2018) confirmed using cross-sectional data.
Almost all studies used MRI as one of the modalities in combination with other modalities.
The number of modalities varies from 1 modality (Liu et al. 2016), 2 modalities (Fang et al.
2020; Liu et al. 2021b; Liu et al. 2018b; Liu et al. 2018c; Wang et al. 2019e; El-Gamal
et al. 2020; Bi et al. 2020; Lei et al. 2020; Altaf et al. 2018; Lu et al. 2018b), 3 modalities
(Shen, et al. 2020; Forouzannezhad et al. 2019; Qiu et al. 2018; Peng et al. 2019; Zhang
et al. 2019b; El-Sappagh et al. 2022a), 4 modalities (El-Sappagh 2021; Tabarestani et al.
2019; Brand et al. 2020; Lee et al. 2019; Zhang et al. 2020; El-Sappagh et al. 2022b), 5
modalities (Nie et al. 2017), to 12 modalities (El-Sappagh et al. 2020). These modalities
were combined with early fusion, intermediate fusion, or late fusion. In addition, models
were trained and tunned with different validation techniques: CV (El-Sappagh 2021; Liu
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et al. 2021b; Shen et al. 2020; Brand et al. 2020; Lee et al. 2019; Wang et al. 2019e; Zhang
et al. 2020; Lei et al. 2020; Peng et al. 2019)), holdout (El-Sappagh et al. 2020; Fang, et al.
2020; Forouzannezhad, et al. 2019; Bi et al. 2020; Zhang et al. 2019b)) and using two
independent datasets for training and test (Liu et al. 2018c). These studies split the data
after performing preprocessing on the whole data. Forouzannezhad et al. (2019) performed
a train/test split, performed FS on the training set alone, and then applied the selected fea-
tures on the test set.

The multitask studies in the AD domain are mainly categorized into three groups. The
first group predicts multiple cognitive scores that are related to AD progression as a regres-
sion task (Tabarestani, et al. 2019; Wang et al. 2019¢; Liu et al. 2016). The second group
predicts multiple cognitive scores with a regression task but also one or more classification
tasks as CN vs. MCI vs. AD (El-Sappagh et al. 2020; Liu et al. 2018c). The third group uses
multitask learning in data preparation steps as FS (Lei et al. 2020). Building multitask mod-
els based on multimodal longitudinal data for predicting AD and related sensitive features
like cognitive scores is expected to improve the model performance because it deals with
features from many sources, and multiple tasks are related in chronological order (Nie et al.
2017). Zhang et al. (2019b) proposed an AD scoring system by combining MMSE, CDR,
MRI data processed with CNN (MRIcnn), and PET data processed with CNN (PETcnn
) : CDscore = A X avg(PETcnn + MRIcnn) + (1 — A) X avg(MMSEscore + CDRscore)
where 4 = (1 +y)/2 and y is the Pearson correlation coefficient between the predictions
of MRI and PET models. Some studies used time-series data to predict the future state of
the patient at a particular time point (El-Sappagh et al. 2020). Other studies predicted the
future status of the patient at multiple time points regarding the baseline data of multiple
modalities (Tabarestani, et al. 2019; Nie et al. 2017). However, there are no studies that
learn multimodal longitudinal data to predict multiple scores at multiple time points.

Regarding reproducibility issues: (1) none of the studies shared the datasets. The rea-
son could be the public availability of ADNI, which is the most popular dataset. However,
some studies shared the used patient IDs from the ADNI dataset (El-Sappagh et al. 2020).
(2) Only (Tabarestani, et al. 2019; Brand et al. 2020; Liu et al. 2018b) shared the code used
to run experiments. (2) The statistical significance of the results is studied by Zhang et al.
(2020) using Friedman ranking test and Holm post-hoc test, by El-Sappagh (2021) using
Friedman and post-hoc Nemenyi, by (El-Sappagh et al. 2020; Nie et al. 2017; Lee et al.
2019; Forouzannezhad, et al. 2019; Peng et al. 2019) using Student t-test, and by Wang
et al. 2019e using Mc-Nemar test. However, no study discussed the reason for selecting
these specific tests. (3) A small number of studies reported the confidence intervals which
describe the model stability (El-Sappagh 2021; Liu et al. 2021b; Zhang et al. 2020) (4)
Most studies were based on small datasets except (El-Sappagh et al. 2020; Tabarestani,
et al. 2019; Lee et al. 2019) (5) Many studies reported CV results only without any inter-
nal or external validation (Liu et al. 2021b). External validation results have been reported
only by ((Bi et al. 2020; Liu et al. 2018c; Peng et al. 2019)). (6) None of the studies verified
either the ground truth of the used dataset or the sensitivity of the model to small changes
in input data. Moreover, no study performed bias and imbalance data analysis.

5.2 Studies that explicitly considered Trustworthy Al
Although there are several studies on the diagnosis and progression detection models for

AD in the literature, there are no notable applications of these models in actual medical
settings. We claim this is mainly because only a few studies take care of TAI requirements
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in the pipeline, from data collection to model deployment and monitoring (see Table 8).
Bruun et al. (Bruun et al. 2019) implemented the PredictND CDSS tool for diagnosing
dementia diseases, including AD, based on 779 patients collected from four European
memory clinics. The system is implemented under the guidance of domain experts to cal-
culate a disease state index. Baseline data only of demographics, cognitive tests, cerebro-
spinal fluid biomarkers, and MRI are used. Disease state fingerprint is a tree-like visualiza-
tion tool used to show the contribution of each biomarker in the final decisions. This tool
achieved a statistically significant enhancement in the accuracy of AD diagnosis. Then,
a CDSS increased the physician’s confidence. Even though this is considered a complete
and practical system in AD literature, the study ignores most TAI requirements, especially
explainability, robustness, and fairness. As a result, no tools are used in other settings. In
addition, responsible deployment of Al systems must consider the previously discussed
TAI requirements. Unfortunately, in the AD domain, AI has no real application in clinical
settings. “Human agency and oversight” and “privacy and data governance” are challeng-
ing TAI requirements that remain underexplored and require further research. Regarding
“accountability”, it is believed that physicians who make final decisions (no matter if with
or without the support of Al) are responsible for all medical decisions. Regarding the rest
of the TAI requirements, we look for answers to the set of questions asked by the HLEG.
More precisely, due to space restrictions, the study selects the most critical questions from
the list given in the supplementary material, which is a comprehensive questionnaire for
measuring the degree of compliance with TAI requirements. The study proposes a ques-
tionnaire with 123 questions to assess the level of trustworthiness achieved by an Al-based
model. These questions are highlighted in bold in Table 8 (see Q1, Q2, etc.). The full
details about these questions can be found in the supplementary material. The rest of this
section concentrates on three complementary TAI requirements, i.e., transparency, robust-
ness, and fairness. It is worth noting that robustness is related to accuracy and validation.
That is the reason why all studies in Table 8 have some contribution to this TAI require-
ment. In summary, no single study considers all these three requirements. No single real
system in the AD domain deeply measures and monitors the TAI requirements.

5.2.1 Transparency

Transparency is mainly related to interpretable models (e.g., DT, LR, and BN), but it is
also required by explainable models (e.g., explainable CNN). Most of the existing DL
models for AD lack transparency, so it is difficult to explain why and how a model’s deci-
sion is reached (Zhang et al. 2021).

Regarding interpretable models, Xiao et al. (2021) optimized an interpretable logistic
regression model to detect AD progression. The model achieved good validation results
and calculated weights for different MRI regions, which could help domain experts under-
stand the logic behind the model. The essential region was the left hippocampus, with a
normalized weight of 0.3478. Ding et al. (2018) proposed a hybrid regression model based
on the BN technique to study the dynamic and longitudinal relationship among AD pre-
dictors over time. The BN model predicted the CDR value as an index for AD severity
by identifying and visualizing the time-varying relationships between combinations of sig-
nificant indicators such as MMSE, logical memory recall, MRI’s GM and cerebrospinal
volumes, PiB-PET’s active voxels, ApoE, and age. The entropy-based FS method was used
to select 8 out of 32 features (i.e., 2 demographics, 10 medical history data, 13 blood tests,
4 psychological, 4 MRI and PET). Post-hoc interpretable models have been used to endow
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black-box models with some level of transparency. Abuhmed et al. (2021) designed three
post-hoc model-agnostic explainers associated with an LSTM model for AD progression
detection. Post-hoc techniques dealt with feature importance, DTs, fuzzy rules, and classi-
cal rules. In addition, the study used SHAP feature importance and 22 explainers to inter-
pret the RF classifier decisions for AD prediction and progression detection (Sappagh et al.
2021).

Explaining black-box models mainly depends on the visualization of the MRI modal-
ity. For example, Qui et al. (2020) proposed a CNN-MLP hybrid model for AD diagnosis
based on baseline 1.5T T1-weighted MRI data integrated with the patient’s age, gender,
and MMSE. The model was built and validated using 417 cases from ADNI. It was also
validated with external data from AIBL (382), FHS (102), and NACC (565). Explainabil-
ity was supported by MRI visualization and an extracted probability map from the CNN
model (i.e., AD probability for every location of the MRI image). The authors excluded
cases with other dementias and patients with a history of traumatic brain injury, depres-
sion, stroke, and brain tumors to remove possible data biases. More importantly, 9 neurolo-
gists participated in the model validation. Oh et al. (Oh et al. 2019) proposed an end-to-end
DL model for AD progression detection based on MRI data. The model used volumetric
convolutional autoencoder-based unsupervised learning for visualization map extraction
for the CN vs. AD task. Then supervised fine-tuning was applied to the classifier of CN
vs. AD. Using transfer learning, the visualization map was also used to predict sSMCI vs.
PMCI. The authors used the class saliency visualization (CSV) technique to facilitate the
understanding of spatial influence in the decisions made by the DL model. CSV calculates
how much each input voxel contributes to the final activation of the target class. The study
concluded that the temporal and parietal lobes were identified as key MRI regions. Dyrba
et al. (2020) highlighted the significant role of hippocampus atrophy in detecting AD
based on the 3D CNN’s relevance maps. Lian et al. (2020a) proposed a deep CNN model
based on a hierarchical, fully convolutional network to detect AD progression and auto-
matically identify hierarchical discriminative locations of brain atrophy at both the patch-
level and region-level by using the class activation map technique. Jo et al. (2020) pro-
vided explainability based on Tau-PET images and a 3D-CNN with layer-wise relevance
propagation-based model. The model asserted the informative role of the hippocampus,
parahippocampal gyrus, thalamus, and fusiform gyrus. The same visualization technique
was used by Dyrba et al. (2020). All in all, DL models achieved good diagnostic perfor-
mance for detecting AD, but they are not yet applied in clinical routine (Dyrba et al. 2020),
mainly due to their lack of explainability. Such explainability usually relies only on neuro-
image visualization, which is not enough for physicians. Bass et al. (2021) asserted that the
saliency-based methods which analyze network gradients such as gradient-weighted class
activation mapping, perturbation methods, LRP, and guided backpropagation are not effi-
cient: (1) the visualization is noisy and has low resolution; (2) they detect similar features
in both healthy and disease groups, which makes it hard to interpret reported results; and
(3) using a post-hoc technique is insufficient as DL models focus on most discriminative
features to predict each class accurately. Bass et al. suggested that a plausible solution to
these limitations is the use of GAN models, which can translate images from one class as
AD to another class as MCI by means of capturing all relevant features of a population.
The interested reader is referred to Singh et al. (2020), who published a survey of XAI
methods based on images.

Because there is no real system in the AD domain applied in the medical environment,
the current literature provides shallow XAI techniques. Thus, it can be concluded that
transparency is not adequately addressed in the AD literature. Most questions related to
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this TAI requirement have not been answered. The continuous (re)assessment of the qual-
ity of the input data to the XAI module has not been discussed (Q79&Q80). Tracking back
which Al rules and data led to the decision has been handled only by interpretable models
(Ding et al. 2018; Xiao et al. 2021; Qiu et al. 2020; Fukunishi et al. 2020; Das et al. 2019).
Most longitudinal studies did not confirm the number of time steps with domain experts
and did not provide time series explainability except (Seo et al. 2019) (Q89). Seo et al.
(2019) tracked AD progression over time using SVM and MRI data. Longitudinal MRI
data (seven-time steps) are transformed into 2D space using the local linear embedding
(LLE) technique, and the resulting decision probabilities of SVM were used to color the
LLE map over time. The resulting visualization provided the progression path of the patient
over time. However, no study clearly determined the target stakeholders of the explainabil-
ity (Q90) or the context in which the explanations must be considered (Q99). The general-
izability (Q92) and combination of XAI with different formats (Q93&Q101) have not been
discussed. Our previous study (Varghese et al. 2013) provided XAI with three methodolo-
gies, but we did not solve the conflict between explainers. There is a tight relation between
transparency, fairness, and trustworthiness, where the first could be used to measure and
enhance the last two. No study had used XAl to investigate and enhance fairness (Q94) and
robustness (Q95). Some techniques like fuzzy logic, case-based reasoning, and ontology
can be integrated with the ML or DL models to enhance their performance and interpret-
ability, but as far as we know there is not any CDSS enhanced with semantic knowledge
and case-based reasoning yet (Q96). Only (Dyrba et al. 2020) provided users with interac-
tive explainability (Q97), and only (Sappagh et al. 2021) provided users with explainability
based on different data types (Q98). None of the studies under consideration measured the
level of understanding of the system (Q100). In addition, no study integrated knowledge-
based models (e.g., rule-based, case-based, or ontology-based models) with data-driven
models (Q103). Notice that building robust domain knowledge based on physicians’ expe-
rience or standard clinical practice guidelines and using this knowledge to build CDSSs is
very critical in the medical domain. These systems are transparent, and they are expected
to be trusted by domain experts. In this regard, we have already proposed a comprehensive
fuzzy ontology for AD which collects the disease knowledge required to build AD diagno-
sis and progression detection systems (Shoaip et al. 2020). This ontology can be populated
with AD diagnosis rules and used as the backend to build an interpretable CDSS. Unfor-
tunately, no study measured the complexity of the provided XAI features and the required
time for their computation and interpretation (Q88).

5.2.2 Robustness

Robustness is related to model accuracy, validation, and reproducibility. Accordingly, this
TAI requirement is considered in all studies in Table 8. Let us give further details on the
most outstanding studies. Wen et al. (2021) combined diffusion MRI and T1 weighted MRI
to predict AD progression based on a linear SVM classifier. The study performed an exten-
sive analysis to select the best combination of features from the voxel-wise and ROI-wise
using GM and WM from T1 weighted MRIs. The authors used stratified nested CV to vali-
date the model properly. The outer loop was used to measure model performance, and the
inner loop was used for hyperparameter optimization based on a balanced accuracy metric.
The study emphasized the criticality of incorporating FS and feature scaling steps in the
CV procedure to prevent optimistic performance and to prevent data leakage. As a result,
it was achieved from 5% up to a 40% relative increase in balanced accuracy. The study
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explored the impact of different FS techniques, feature scaling, data imbalance, smooth-
ing strength, and imaging modalities methods on the classifier performance. Although the
majority class had twice as many examples as the minority class in several experiments,
the study employed a downsampling strategy to balance the data rather than a fairness
analysis technique. Even if the study asserted that their results were reproducible, they did
not properly handle all the robustness requirements. The same authors have performed a
similar analysis based on T1 MRI and FDG-PET collected from ADNI, OASIS, and AIBL
datasets (Samper-Gonzalez et al. 2018). They confirmed the critical role of proper and
relevant preparation of ML pipeline to calculate correct results and to build reproducible
models. For example, Bron et al. (2021) divided the dataset from the beginning into train-
ing and testing sets. They performed all model and data preparations on the training data
only, while test data was kept untouched for the testing stage. Zhao et al. (Qiu et al. 2020)
built an SVM model for AD classification based on 715 MRI subjects collected from 6
different scanners from ADNI to improve model stability and result reproducibility. An
independent ADNI dataset of 1228 subjects was included to assess reproducibility fur-
ther. The authors concentrated on hippocampus features as suitable AD biomarkers. Then,
the correlation between the hippocampus and other critical neurological biomarkers (e.g.,
APOE, CSF Ap, CSF Tau) to detect MCI progression has been investigated. The study
confirmed that hippocampus radiomic yields robust biomarkers for both AD diagnosis
and progression detection. Adeli et al. (2019) suggested that model generalizability and
robustness are affected by sample outliers, and feature noise inherently exists in neuroim-
aging data. Authors proposed a semi-supervised classifier, i.e., robust feature sample lin-
ear discriminant analysis (RFS-LDA), to handle these two challenges based on the LDA
technique. Outliers are penalized by [, fitting function. Using labeled and unlabeled data
leads to better data denoising, and FS is done by |, norm. The proposed model was tested
on AD and Parkinson’s datasets. Kim et al. (2020) used slice selective learning to select
specific slices to improve computations and extract unbiased features. The selected two
slices helped build a model less sensitive to the PET imaging acquisition environment.
GAN was used for feature extraction, and an SVM model was tuned with two independent
datasets. Jiménez-Mesa et al. (2021) tested the significance level of the correlation between
the class label feature and other independent covariates to measure the level of accuracy of
data labeling. This step is very critical because labeling errors are a well-known problem
in medical datasets. This problem is especially important in AD datasets because patient
labeling is mainly based on CSs values (e.g., MMSE, CDR, or FAQ). Zhao et al. (2021)
proposed the 3D batch-based mi-GAN (multi-information GAN) DL model to predict the
individual’s whole brain 3D sMRI image at future time points (after 1 or 4 years) condi-
tioning on multi-information (i.e., age, sex, education level, and APOE e4) at baseline. The
model achieved a structural similarity index of 0.943 between the real images in the fourth
year and the generated ones. The predicted images were used by another DL model (3D
DenseNet) to predict the disease’s multi-class clinical stage. The hybrid model achieved
an enhanced accuracy of 6.04% compared to conditional GAN and cross-entropy loss. The
proposal included a module determining whether an MRI image is real or automatically
generated by GAN. This module can detect adversarial attacks. To improve the robustness
of the model, the training images were linearly registered, and the testing images were non-
linearly registered. Georges et al. (2020) focused on model reproducibility and robustness
to choose the best FS mechanism which boosts reproducibility capabilities. However, good
performance of a particular FS method does not necessarily imply that the experiment is
reproducible and that the selected features are the best for generalizability. This is because
the FS algorithm could select a different feature set after applying a small perturbation in
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the training data. Thus, we cannot trust the FS methods to generate an interpretable feature
set. This study proposed an FS-Select model to select the most trustworthy and reliable
features from a set of FS methods by exploring the relationships among FS methods. The
study built a multi-graph architecture using the reproducibility power of each feature, aver-
age accuracy, and feature stability for each FS method.

Despite the recent effort to deal with robustness, this TAI requirement is not yet fully
handled by all AD literature studies. None of the studies in Table 8 paid attention to either
security (Q5-Q13) or safety (Q14-Q19) requirements. Indeed, no security standards or
measures have been used to detect, evaluate, and prevent adversarial attacks. No study pro-
vided online learning (Q66—Q69), and so no study provided a mechanism to filter the fake
and engineered cases (Q9). The situations where the system is not reliable have not been
identified by any study, and measures to prevent the occurrence of these situations have not
been implemented (Q13). Some studies used multimodal data (Sappagh et al. 2021; Qiu
et al. 2020; Fukunishi et al. 2020; Das et al. 2019; Wen et al. 2021; Zhao et al. 2020), while
others used time-series data (Abuhmed et al. 2021; Ding et al. 2018; Seo et al. 2019; Zhao
et al. 2021). However, the sufficiency of the number of utilized time steps has not been
medically confirmed by a domain expert, and the effect of sparse time-series data is not
discussed (Q20). The level of accuracy required by domain experts has not been defined
before building the models (Q21). Many critical issues are ignored in the AD literature:
System monitoring (Q23), medical completeness of the used dataset (Q24), causality
between features and between features and dependent features (Q26), the accuracy of the
ground truth (Q27), and label biases (Q28), type of missingness (Q30), usage of AutoML
(Q47), and interoperability with EHR ecosystem (QS50). Importantly, no study measured
the stability of the models in terms of the sensitivity of the models to small changes in the
data and borderline cases (Q53). No study critically analyzed data biases and imbalance
(Q55). No study kept an audit trail (Q58) and specified a clear context for model reproduc-
ibility (Q57). All in all, most robustness measures have not been handled. This could be the
main reason for not trusting Al-based CDSSs and not deploying them in real clinical envi-
ronments. Compared to the medical literature, we find studies in other domains apart from
AD where authors improved the robustness of models against adversarial attacks either by
detecting adversarial examples or by adding mechanisms in the DL model to deal with fake
examples (Xu et al. 2021). Ma et al., (2021) discovered adversarial attacks with over 98%
detection AUC. Unfortunately, these types of issues are underexplored in the AD literature.

5.2.3 Fairness

Most studies neglected the fairness requirement, and thus they probably reported unfair
results because the populations used in these studies were demographically biased (Bin
Bae, et al. 2020). None of the studies in Table 8 has evaluated for potential optimistic
bias in the classifier performance. Mendelson et al. (2017) provided an empirical study to
evaluate potential biases in resampling-based experiments. The study concluded that selec-
tion bias accounts for more than half of the apparent performance improvements result-
ing from pipeline optimizations, mainly in the case of small datasets. The used dataset for
most studies is ADNI which is inherently biased, as discussed before. For example, most
ADNI subjects have high education levels, which affect brain structures, so the question of
“how models will perform for lower education levels?” is unreliable to answer. The same
problem is seen with other protected attributes like ethnicity, age, gender, etc. Please note
that domain experts must define the features that must be treated as sensitive attributes,
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and datasets and models must be prepared accordingly. For example, comorbidities such as
hypertension and diabetes, adverse events such as Diarrhea and Pneumonia, and medica-
tions like Aricept and Cognex may be deemed sensitive features and should be balanced
among different classes. For example, ADNI is biased regarding comorbidities, medica-
tions, and adverse events because a minority of the patients have values for these features.
The interested readers are invited to take a look at the MEDHIST.csv, RECBLLOG.csv,
RECCMEDS.csv, BACKMEDS.csv, and BLSCHECK.csv files to investigate the level of
bias in ADNI. It is extremely critical to report suitable performance metrics which account
for individual and group fairness. Most of the studies in the literature have not considered
these requirements, which means that the real generalizability of these models is unknown.
For example, Bae et al. (2020) built a CNN model of AD classification based on MRI scans
collected from AD patients, and age/gender-matched CN controls from two populations
that differ in ethnicity/education level. The study concentrated on improving the model’s
generalizability by doing extensive internal and external validations with two independent
datasets. It is worth noting that the used ADNI dataset has ethnicity distribution as follows:
Caucasians (83.59%), African Americans (4.87%), Hispanics (5.64%), Asians (2.05%), and
others (3.85%). The other dataset contained only the Koreans population. In addition, the
study used two MRI datasets collected by different scanners with different MRI protocols.
However, no fairness questions were answered in the study.

Gamberger et al. (Wen et al. 2021) proposed a clustering mechanism that identifies
homogeneous patient subpopulations regarding clinical and biological descriptors to meas-
ure the difference between males and females regarding AD in the ADNI dataset. The
authors asserted a clear difference between male and female AD patient groups. Therefore,
neglecting the gender-specific properties of AD data could result in the biased performance
of generated models. Liu and Caselli (2018) discovered a high correlation between APOE
e4 (a major genetic risk factor for AD) and age and gender. They discovered that APOE e4
is a more significant risk factor for young patients than for the old group. Accordingly, the
authors asserted that neglecting this relation results in biased classifiers.

Unfortunately, no study in the AD literature researched the potential discrimination
against a specific group of patients based on protected attributes (Q107-Q122). Indeed, no
fairness questions have been discussed in the studies in Table 8 except for Q111, which is
related to the source of bias (Sappagh et al. 2021; Abuhmed et al. 2021; Ding et al. 2018;
Fukunishi et al. 2020; Wen et al. 2021; Zhao et al. 2020), and Q108 which refers to the
mechanisms implemented to ensure fairness (Dyrba, et al. 2020).

6 Trustworthy Al in the industry and other domains

Many industrial sectors are rapidly applying Al to critical tasks, yet these industrial enti-
ties prefer the highest-performing AI models that are often complex and work as black
boxes. Firms use data and Al to create scalable solutions, but they are concerned about
ATD’s ethical, legal, and economic ramifications (Blackman 2020). Microsoft, Face-
book, Twitter, Google, and other giant technology companies are rapidly forming teams
to address the requirements of TAI arising from the ubiquitous gathering, analysis, and
use of vast amounts of data (Cheng et al. Sep. 2021), especially when that data is used
to train practical machine learning models (Blackman 2020). Although these companies
announce these efforts, we have no way to access details on such efforts because of their
confidentiality. Few recent Al-specialized startups aim to develop Al solutions that are
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transparent, accountable, responsible, fair, and ethical (Fiddler 2022). These startups con-
struct an explainable Al engine and propose several XAl-based solutions that account for
bias, fairness, and transparency in Al (Gade et al. 2019). A few key challenges that face the
industrial sector while applying TAI can be summarized as follows (Blackman 2020). (1)
The optimal approach for integrating the recently proposed TAI solutions into the existing
conventional systems. (2) The distinction between the TAI requirements that the customer
is interested in and those fundamental to the underlying business model. (3) Lake of a gen-
eral approach to applying TAI requirements on different ML models due to the diversity of
the models, data format, applications, etc. (4) The tradeoffs and contradictions among the
TAI requirements significantly affect the model performance and customer expectations.
Despite usually achieving a superior performance compared to domain experts, there is a
critical gap between developing and integrating Al systems in real environments. TAI is
a crucial challenge in safety—critical domains such as medicine, justice, and security, and
limitations in implementing TAI requirements in Al-based applications are the main reason
for that gap (Gonzalez-Gonzalo, et al. 2021; Li, et al. 2021). Without TAI, the use of Al
is expected to lead to significant harm, discrimination, and injustice (Crockett et al. 2021).
Gonzalez-Gonzalo et al. (2021) built a TAI system for the ophthalmic domain. The study
asserted that building successful TAI systems depends on stakeholders (e.g., Al develop-
ers, healthcare providers, domain experts, patients, regulatory agents, etc.) with different
roles and responsibilities. In addition, most current Al studies considered one TAI require-
ment and neglected others. Most studies in the Al literature concentrated on model perfor-
mance, which is insufficient to get user trust. Zicari et al. (2021a) assessed the application
of TAI and ML as supportive tools to recognize cardiac arrest in emergency calls. This tool
has been used in Copenhagen in, Denmark, since Fall 2020. Zicari et al. used Z-Inspection
(Zicari et al. 2021b), which is a holistic process to assess TAI in practice. Z-Inspection
is based on the TAI framework defined by the Al HLEG. The study determined specific
challenges and ethical trade-offs to be considered when considering Al in practice. It rec-
ommended that an independent committee of experts evaluate the implementation of TAI
requirements in the search for sociotechnical validation of Al systems before deployment.
Lekadir et al. (2021) proposed FUTURE-ALI It includes guidelines and best practices for
guiding future Al developments in medical imaging to improve models’ trust by consid-
ering fairness, universality, traceability, usability, robustness, and explainability. Ma et al.
(2022) have explored TAI in the dentistry domain.

Trustworthiness is also an urgent requirement in other domains such as business, edu-
cation, government, administration, home automation, etc. (Kaur et al. 2023). Although
a plethora of guidelines, principles, and toolkits have been published globally for TAI,
Crockett et al. (2021) discovered that limited grassroots-level implementations can be
found in the literature, especially among small- and medium-sized enterprises (SMEs).
Crockett et al. identified the key barriers that SMEs faced in their adoption of TAI, and
then implemented 77 published toolkits based on 33 evaluation criteria. The authors tried
to understand the Al ethics landscape from the SME perspective and concluded that there
is no one-size-fits-all tool to handle all TAI principles. Emaminejad and Akhavian ( 2022)
studied the applications of TAI in robotics, especially in the architecture, engineering,
and construction (AEC) industry. Authors discovered that although AEC researchers and
industry professionals studied and deployed Al and robotics, there is a lack of studies that
explore the key TAI dimensions in the AEC context. Besides explainability, robustness,
and other TAI requirements, the study discussed the “trust calibration” concept to elimi-
nate the overtrust and undertrust of humans in robotics. Loureiro et al. (2020) surveyed
the literature on applications of Al and robotics in the business context and identified TAI
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as a key challenge and development trend. De Bruyn et al. (2020) surveyed the pitfalls
and opportunities of Al in marketing. The authors predicted that Al would fall short of
its promises in many marketing domains if its technological pitfalls were not handled,
including badly defined objective functions, biased Al, explainable Al, and controllable
Al. Zhang and Zhou (1912) discussed fairness in the business domain and evaluated fair-
ness metrics in a credit card default payment example. Borg et al. (2021) provided a case
study for applying ALTAI principles in an advanced driver assistance system. The study
asserted that some TAI requirements, such as human agency, transparency, and societal
and environmental impact, were difficult to apply in the project. Hutiri and Ding (2022)
explored the concept of “trustworthy edge intelligence (TEI).” The authors determined
the requirements for TEI, provided a unified framework for TEI, and provided an applica-
tion scenario of voice-activated services. In the education domain, Vincent-Lancrin (2021)
explored the role of Al in improving educational processes and to prepare students with
new skill sets for increasingly automated economies and societies. Al can be used in per-
sonalized learning, supporting students with special needs, analyzing classroom dynamics
and student engagement, online and blended learning, and foreign language learning. The
authors highlighted the importance of some TAI requirements (e.g., fairness, privacy, and
security) to gain the trust of stakeholders, but they asserted that TAI implementation is
rare in Al-based education systems. Corbeil and Corbeil (2021) explored the benefits, chal-
lenges, and applications of Al in education and mentioned that the lack of user trust is the
main reason for its limited application. Holmes et al. (2021) surveyed the opinion of 60
researchers from Al in education to answer a questionnaire about ethics and the application
of Al in educational contexts. The study discovered that most researchers are not trained to
tackle ethical questions. Baker and Hawn ( 2021) provided a comprehensive survey of the
algorithmic bias in education and pointed out the potential causes of that bias. The study
discussed the literature on biases from race/ethnicity, gender, nationality, socioeconomic
status, disability, and military-connected status. Fenu et al. (2207) surveyed the fairness
challenges of Al systems in the education through anonymous surveys and interviews with
education experts. Marcus and Davis (2019) stated that the implementation of TAI depends
on the domain and the context in which the AI system is used. For example, the facial
recognition software that is used for auto-tagging people in social media pictures could
be less reliable. However, the same tool is unacceptable if the police want to use it to find
suspects in surveillance photos. The current state-of-the-art of TAI in all these domains
is insufficient to get users’ trust. Shneiderman (2020) proposed 15 recommendations in
team, organization, and industry levels. These recommendations are intended to enhance
the trustworthiness of Al systems. Writer et al. (2019) asserted that developing standards
and policies to govern Al systems’ development and deployment processes leads to faster
technology transfer, interoperability, security, and reliability.

7 Conclusion and future research directions

TAI is essential for critical medical problems such as Alzheimer’s disease to provide a
more applicable and trustworthy application to medical experts. This study reviewed in
depth TAI guidelines and requirements. We have evaluated the recent literature on AD
diagnosis and progression detection from the perspective of TAI. Keeping in mind the
inclusion/exclusion criteria, we have carefully revised more than 400 papers and provided
readers with a complete picture of the state of art in this field of research. We found a
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shortage in the revised AD literature regarding TAI requirements, which could demonstrate
why we did not see the real effect of Al in the AD domain or why these systems have
not been generally deployed in clinical practice. Since all TAI guidelines are general and
abstract, and cannot be applied directly in the ML application development process, we
proposed a detailed TAI-based machine learning pipeline which considered the majority of
TAI requirements in all steps of the ML pipeline, including data preparation, training, vali-
dation, and deployment. This proposed pipeline will help ML researchers and developers
embed TAI requirements into their proposed pipelines. Furthermore, we proposed a com-
prehensive questionnaire for TAI requirements that help researchers to assess, enhance, and
evaluate the Al application in hand for TAI requirements. The questionnaire also includes
a list of questions for every TAI requirement that could help to measure how well the TAI
requirement is applied in the given application.

7.1 Learned lessons

This work provides a unique contribution to the AI community as a whole, and it is espe-
cially relevant for research on the AD domain. There are many lessons that could be
learned from the current study.

1. To build real CDSSs, researchers should keep in mind all the TAI requirements col-
lected in the supplementary material. In a separate research study, we will implement a
TAI-based CDSS system that fulfills the TAI requirements for Alzheimer’s disease.

2. The inclusion of patients and domain expert in all steps of the Al pipeline is critical.
They must evaluate the model’s robustness, fairness, and explainability from the medical
perspective.

3. The standard ML pipeline should be extended to include TAI requirements. All existing
pipelines mostly concentrate on the model performance, which is not enough for life-
threatening applications of Al

4. Alresearch has no real effect in real medical environments because patients and medi-
cal experts do not trust Al-based decisions. Model stability, certainty, generalizability,
security, privacy, etc. must be considered in Al research to provide medically applicable
solutions.

5. Current TAI measures are represented as high-level and abstract guidelines. Only a few
software packages and studies have mapped these guidelines into measurable metrics.

6. Most studies in the literature mainly concentrated on a single TAI dimension, such as
model robustness or transparency, and totally neglected other dimensions.

7. TAI dimensions sometimes contradict each other. For example, increasing model trans-
parency could result in lower performance and lower security and privacy. A tradeoff
always exists among TAI measures.

8. Most research studies did not consider the external validation of the model using datasets
from other sources different from those used in model training and internal testing.

9. Many studies divided datasets into training and validation sets only after performing
the data preprocessing steps, and this action resulted in information leakage, which may
cause the model to provide optimistic and not real results.
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7.2 Challenges

We have shed light on the current limitations and possible directions for enhancements of
Al-based CDSSs for AD. The following is a list of open challenges and future research
directions in the medical domain within this context.

1. Collected data for AD management are time series in nature. Most of the healthcare
data is not prepared for ML, and all existing datasets have short sequences of data
that are not suitable for DL models, such as LSTM and CNN models. A significant
number of patients could be dropped out while the study is going on, which worsens
the incompleteness problem. In addition, the sample size becomes very small, and
it is hindered by the curse of dimensionality. GAN can be used to generate samples.
Because AD is a slow-progressing disease and studies are short due to funding, many
forms of data censoring could occur, including (1) the patient could remain in the CN
stage while the study and convert to MCI just after its finishing, and (2) the patient
could be in AD stage before the beginning of the study. Data censoring results in over-
or under- sampling of specific AD stages may result in biased models. Efforts should
be done to collect complete and uncensored data.

2. Model stability is a crucial requirement to be used in clinical environments. The repro-
ducibility of model results using different data could be used to measure the generaliz-
ability of models (Yamanakkanavar et al. 2020). However, due to different inclusion
and exclusion criteria or different demographic characteristics in clinical studies, sig-
nificant under-representation of some populations could occur. As a result, ML models
are usually created with non-representative cohorts of the general AD population,
so when revalidated with new data, they result in poor generalization performance
(Routier et al.). Reproducibility can be enhanced if the study (1) depends on standard
datasets, (2) applies standardized data management, especially for neuroimages, (3)
uses cross-validation to reduce overfitting, (4) tests models on completely different
cohorts, and (5) makes the code publicly available.

3. Although several large-scale datasets have been collected, such as ADNI and AIBL,
these studies are subject to bias because of the inclusion and exclusion criteria used
to select subjects. A potential solution to this issue is to rely on the EHR data, which
provides a more representative view of patient measurements—using the whole patient
profile with a powerful ML model results in an individualized and patient-tailored
decision. Very few studies have explored the role of EHR data in improving AD pre-
diction, progression detection, or monitoring.

4. TItis challenging to compare the model performance across different studies due to
variations in the implemented steps, such as sample selection, data preprocessing,
validation procedures, and reported evaluation metrics. Some studies may report a
biased performance because of insufficient or unclear validation and model selec-
tion procedures. For example, using the whole dataset in the feature selection, data
augmentation, or autoencoder steps results in data leakage (i.e., use of test data in
any part of the training process (Rathore et al. 2017)) and thus biased performance
because the same data could appear in several sets. The data should be divided into
training/validation/testing sets at the very beginning, and afterwards only the train/
validation sets should be used in data preparation and model selection. Especially for
DL models, the test sets should be left untouched until the very end of model testing.
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Whole pipeline optimization using manual or autoML techniques is better for building
unbiased models (He et al. 2021).

5. Data interoperability is the ability to map data from one study to another study. This
helps to build a model using a dataset from one study and validate this model with
data from another study. This way of doing is likely to improve the generalizability
of models and solve the problem of small sample sizes. However, studies are built
independently, and finding a mapping rule between different datasets is complex. This
process requires assessing the comparability of features and subjects in different data-
sets. First, feature mapping requires specifying the relationships between data elements
and standardizing the used vocabulary in both sources. For example, ADNI specified
the hippocampus volume biomarker as “Hippocampus”, but EPAD specified it as
“lhvr” (right hemisphere) and “lhv]l” (left hemisphere). Second, subjects in each study
should be comparable. For example, if the distribution of gender is not comparable
in the datasets, then cognitive impairment scores cannot be compared directly. Data
standardization and normalization is a suitable strategies for enhancing data integra-
tion. Also, a standardized set of markers and biomarkers could be collected from the
integrated sets. Interoperability plays a major role in integrating CDSSs with EHR
systems. Standard ontologies such as SNOMED CT and unified data formats such as
FHIR can help in facing this challenge.

6. The explainability of models is a crucial requirement for AD models to have a clinical
impact (Graham et al. 2019). In the AD domain, there are many markers and biomark-
ers to consider, and DL models can achieve higher accuracy. However, these models
are not causal and capture the non-linear correlation between features. Moreover, DL
models are considered black boxes, which do not explain their decisions. On the other
hand, simpler models like linear regression and DTs are more interpretable but less
accurate than DL models. XAl is a hot topic today, but further efforts are required to
explore how to apply XAl techniques to understand AD models. For example, com-
bining multiple models such as DTs, fuzzy rule-based systems, Bayesian networks,
case-based reasoning, and data visualization with the black-box deep learning models,
so-called hybrid models, could bridge the gap between explainability and accuracy.

7. Data fusion of related neuroimaging (e.g., SMRI, fMRI, PET), clinical, cognitive,
and fluid biomarker data is crucial to understand the disease and to improve its early
diagnosis, accurate prediction, and patient monitoring (Bayram et al. 2018). Fusion of
multimodal data results in big complex data, including multimedia data (image, sound,
etc.), time-series data, structured data (lab tests, symptoms, demographics, etc.), and
semantic data (medications, symptoms, and comorbidities), towards semi-structured
and unstructured text documents. This fusion calls for complex algorithms to extract
meaningful features and to learn from these features. Although many techniques exist
for analyzing big data, they have rarely been rigorously tested and put into practical
use in medical environments (Brati and Zoran 2018). In addition, the resulting models
are very complex and hard to interpret by domain experts.

8. Knowledge-based models are based on domain experts, CPG knowledge, and literature.
The extraction of this knowledge is a challenge. In addition, the number of publications
in the AD domain is exponentially increasing. For example, nearly 15,000 publica-
tions appeared in 2017 (Khatami et al. 2020). Collecting the most recent findings in a
representative high-quality literature corpus and using text mining and NLP techniques
to extract meaningful and computable knowledge representations is a big challenge
(Gyori et al. 2017). Moreover, the automatic checking of the medical applicability
and compatibility of the extracted knowledge is time-consuming and difficult. Repre-
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10.

11.

13.

senting this knowledge in the form of IF-THEN rules, knowledge graphs, Bayesian
networks, or semantic ontologies is another challenge. More research is needed in this
direction to improve the knowledge extraction and representation process. In addition,
research work is needed to shed light on the possible ways for improving the integra-
tion between this general knowledge and patient-specific knowledge extracted from
data-driven models.

A way to address the challenge of data labeling is to use clustering techniques as a step
before classification to categorize data into groups. However, different clusters could
be found among MCI subjects, so further research is also required here.

TAI techniques are still in an immature stage. For example, the tools, techniques,
and metrics for dealing with Al fairness face many dilemmas, including the lack of
a unified definition of fairness, the need to measure equity versus equality as well as
the tradeoff between fairness and model performance, facing the disagreement and
incompatibility of fairness metrics, and tensions with context and policy (Caton and
Haas 2020; Mehrabi et al. 2019).

Longitudinal data analysis faces two main challenges to be used in a clinically mean-
ingful way in AD progression detection. The first challenge is temporal alignment.
To consistently compare patients, the acquired markers should be temporally aligned,
but different patients can be (1) at different stages of the disease at the same acquisi-
tion time and (2) at different biological ages. Moreover, the collected data show only
a short period of the full AD onset, more than 20 years. There are many approaches
to handle this issue like using reference variables, including (1) time from baseline
acquisition (Franke 2012), (2) patient age (R.J. Bateman et al. 2012), (3) normalized
age (Lorenzi et al. 2014), (4) cognitive scores (Guerrero et al. 2016), and (5) data-
driven progression scores (Casanova et al. 2018). However, this issue is still a major
challenge that needs to be considered either as a preprocessing step or as a standalone
task. The issue becomes more sophisticated in multimodal longitudinal data because
(1) each patient could have a different number of acquisitions, what causes imbalanced
data, (2) missing data results from missing acquisitions, (3) data are not collected at
the same time point for all patients, and (4) the time window between follow-ups may
not to be uniform. The second issue is the missing values. This is a very common
issue in longitudinal data. Handling missing values is required to avoid biased models,
leveraging available data, etc. Missing longitudinal data have many types depending
on the pattern of missing values, but most studies assumed that data are missing at
random. The issue becomes more complex when handling missing data in multimodal
longitudinal data (Marti-Juan et al. 2020).

Further investigations of neuroimaging modalities are required to define the most
accurate modality and the best pipeline to prepare data. Some studies have reported
that sMRI is more discriminative than PET (Suk and Lee 2014) or DTI (Ebrahimighah-
navieh et al. 2020); others reported MRI to be as discriminative as PET (Suk and Lee
2015) or less discriminative (Lu et al. 2018c), and some studies reported fMRI (Sarraf
2016) as more helpful.

Preparing neuroimaging data carefully for DL models is crucial. For example, using 2D
slices as input instead of the whole 3D prevents the generation of millions of training
parameters and results in simpler neural network models. Voxel-based methods can
obtain all 3D information in a single brain scan. However, these methods have the limi-
tations of (1) all brain regions are treated uniformly without caring about the special
anatomical structures, (2) they ignore local information because they treat each voxel
independently, and (3) they carry high feature dimensionality and high computational
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load. These raw brain scans suffer from noise at different levels and from different
sources such as equipment, operator issues, patient’s random neural activity, and envi-
ronment. The generated complex patterns of voxels from single scans create difficulties
in classifying and interpreting features. ROI-based methods select a limited number
of discrete predefined and more representative regions, which are easier to implement
and interpret in a real environment. These methods are based on the predefined domain
expert’s knowledge of the most important brain regions, and their performance is
based on the number of defined regions. As a result, the abnormalities of the neglected
regions might be ignored, what leads to the loss of some discriminative information
and limit the discriminative power of the extracted features. Hippocampus is the most
significant region where its volume, shape, and texture are affected and have been used
for early AD detection (Ebrahimighahnavieh et al. 2020). However, a few studies have
combined the volume, shape, thickness, intensity, and texture features to perform an
integrative analysis for AD detection and prediction (Rémi Cuingnet et al. 2011). In
addition, the role of longitudinal change for these features has not been studied in the
literature. Notice that the effect of other brain regions has not been deeply studied as
for the hippocampus.

14. To provide an efficient CDSS for real clinical settings, developers should study how to
enrich CDSSs with multiple comorbidities simultaneously, how to provide and to esti-
mate the effect of CDSSs on the clinical and organizational outcomes, and how CDSSs
can be more effectively integrated into the workflow and deployed across diverse
settings (Lebedev et al. 2014). Validation of CDSSs is a factor that can make their
implementation successful but providing evidence of clinical efficiency is a resource-
consuming task that requires support from a sustainable validation methodology (Ito
et al. 2011; Zhou et al. 2013).

15. The role of non-functional methods for TAI like regulation, standardization, certifi-
cation, regulation, education and awareness, and accountability by the government,
should be further deeply studied.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10462-023-10415-5.
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