
Computers & Security 115 (2022) 102626

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

TC 11 Briefing Papers

Digital forensic analysis methodology for private browsing: Firefox and

Chrome on Linux as a case study

�

Xosé Fernández-Fuentes a , ∗, Tomás F. Pena

a , b , José C. Cabaleiro

a , b

a Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela, Rúa de Jenaro de la Fuente Domínguez,

15782 Santiago de Compostela, Spain
b Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, 15782 Santiago de Compostela, Spain

a r t i c l e i n f o

Article history:

Received 26 April 2021

Revised 23 December 2021

Accepted 22 January 2022

Available online 24 January 2022

Keywords:

Digital Forensics

Browsing artefacts

Private browsing

Internet privacy

Virtualization

a b s t r a c t

The web browser has become one of the basic tools of everyday life. A tool that is increasingly used to

manage personal information. This has led to the introduction of new privacy options by the browsers,

including private mode. In this paper, a methodology to explore the effectiveness of the private mode in-

cluded in most browsers is proposed. A browsing session was designed and conducted in Mozilla Firefox

and Google Chrome running on four different Linux environments. After analyzing the information writ-

ten to disk and the information available in memory, it can be observed that Firefox and Chrome did not

store any browsing-related information on the hard disk. However, memory analysis reveals that a large

amount of information could be retrieved in some of the environments tested. For example, for the case

where the browsers were executed in a VMware virtual machine, it was possible to retrieve most of the

actions performed, from the keywords entered in a search field to the username and password entered

to log in to a website, even after restarting the computer. In contrast, when Firefox was run on a slightly

hardened non-virtualized Linux, it was not possible to retrieve any browsing-related artifacts after the

browser was closed.

© 2022 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

a

a

A

h

w

s

t

o

I

b

G

2

F

t

t

a

K

c

c

t

t

u

t

c

P

m

h

0

. Introduction

In recent years, there have been several events that have raised

 lot of attention on the importance of privacy. Revelations such

s Edward Snowden’s (Greenwald, 2013a; 2013b), the Cambridge

nalytica scandal 1 , or the big Equifax data breach (Berghel, 2017)

ave given a big push to make the world aware of the level to

hich personal data collection reaches. Personal data are collected,

hared, and sold by a large number of online services. Services

hat, most of the time, do not need to handle such a large amount

f personal data to perform their function (Felt and Evans, 2008;
� This work has received financial support from the Ministerio de Ciencia e

nnovación, Spain within the project PID2019-104834GB-I00. It was also funded

y the Consellería de Cultura, Educación e Ordenación Universitaria of Xunta de

alicia (accr. 2019–2022, ED431G 2019/04 and reference competitive group 2019–

021, ED431C 2018/19) and the European Regional Development Fund (ERDF). X.

ernández-Fuentes is supported by the Ministerio de Universidades, Spain under

he FPU national plan (FPU18/04605).
∗ Corresponding author.

E-mail addresses: xosefernandez.fuentes@usc.es (X. Fernández-Fuentes),

f.pena@usc.es (T. F. Pena), jc.cabaleiro@usc.es (J.C. Cabaleiro).
1 https://abcnews.go.com/Business/facebook- agrees- pay- uk- fine- cambridge-

nalytica-scandal/story?id=66635145

n

l

t

a

a

i

c

c

a

e

t

ttps://doi.org/10.1016/j.cose.2022.102626

167-4048/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article u
rasnova et al., 2013). However, they continue to collect them be-

ause it is very easy and very cheap to store them with the ex-

use that they could be useful in the future. Not only that, but

hey do not invest enough in adequately protecting the informa-

ion, which leads to leaks. Leaks where the biggest victims are the

sers, whose personal data are exposed to anyone with access to

he Internet.

In order to ensure greater control over the data collected by

ompanies, the European Parliament introduced the General Data

rotection Regulation (GDPR) in 2016. GDPR restricts and deter-

ines how personal data should be managed. For example, compa-

ies must now make users aware of what information they are col-

ecting, they must delete the data once they are no longer needed,

hey must not collect more information than is strictly necessary,

nd they must ensure that the data are protected with appropri-

te security measures (Anderson and von Seck, 2020). Since the

ntroduction of the GDRP, companies have reduced their use of

ookies, web users have noticed an increase in the number of

onsents, and websites show users what information they collect

nd for what purpose (Anderson and von Seck, 2020; Kretschmer

t al., 2021). New studies have also been published that aim

o help companies adapt to the new regulation. For example,
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cose.2022.102626
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102626&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:xosefernandez.fuentes@usc.es
mailto:tf.pena@usc.es
mailto:jc.cabaleiro@usc.es
https://abcnews.go.com/Business/facebook-agrees-pay-uk-fine-cambridge-analytica-scandal/story?id=66635145
https://doi.org/10.1016/j.cose.2022.102626
http://creativecommons.org/licenses/by/4.0/

X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro Computers & Security 115 (2022) 102626

i

p

a

t

h

F

2

p

m

O

r

i

b

e

i

s

o

l

t

o

m

a

a

f

b

I

U

t

t

o

v

w

i

t

b

t

s

c

v

S

t

s

6

2

i

T

y

s

a

a

w

t

d

s

v

i

o

g

i

s

s

v

C

w

v

b

u

t

t

d

T

t

R

m

c

b

T

s

z

e

u

o

d

t

t

p

m

r

a

p

t

e

v

i

s

f

I

r

h

s

o

a

v

t

a

t

t

s

s

i

t

i

l

W

r

c

S

n Caruccio et al. (2020) a methodology is presented to detect

ossible privacy violations when performing operations with large

mounts of data, such as data integration or record linking.

To help users realize how their personal data are shared be-

ween different web services, there are tools that graphically show

ow information flows in the network during a browsing session.

or example, CHRAVAT (Cirillo et al., 2019) or VIPAT (Breve et al.,

020), which allow to obtain real–time graphs of the different

roviders with which the user interacts while surfing the web.

The more aware users are of the importance of privacy, the

ore they will demand tools that help them preserve their privacy.

ne example is the incorporation of the private mode in most cur-

ent browsers. This new browsing mode is designed to prevent any

nformation related to browsing from being stored on the device

eing used.

Different papers can be found in the literature exploring the

ffectiveness of the private mode of different browsers. However,

n these papers, browsers are often tested in a superficial and un-

tructured way, making it difficult to verify the correct functioning

f the private mode in different environments or to compare the

evel of privacy offered by different browsers. Therefore, the objec-

ive of this paper is to describe a consistent and thorough method-

logy for testing the private mode of Internet browsers. Further-

ore, this methodology is completely independent of the browser

nd the operating system used.

Once the methodology has been presented, it will be applied,

s an example, to Mozilla Firefox and Google Chrome running on

our different Linux-based environments. In the first scenario, the

rowser will be run on a bare-metal computer with Ubuntu 20.04.

n the second scenario, it will be executed on a slightly hardened

buntu. In the third scenario, it will be launched on a Ubuntu vir-

ual machine, with Ubuntu as the host system and VirtualBox as

he hypervisor. Finally, the fourth scenario is the same as the third

ne, but using VMware as hypervisor.

The reason for testing browsers in different environments is to

erify that the private mode continues to work as it should, even

hen used in different or less common situations. As an operat-

ng system, it was decided to use a Linux distribution because, to

he best of our knowledge, there is no work focused on a Linux-

ased operating system, apart from Anuradha et al. (2016) where

he behavior of Chrome running on Ubuntu is tested but without

tudying the behavior of the private mode nor analyzing the RAM

ontent.

The paper is structured as follows: Section 2 summarizes pre-

ious work related to forensic analysis of different browsers;

ection 3 describes the proposed methodology; Section 4 shows

he application of the methodology to Firefox and Chrome; the re-

ults obtained and their discussion are covered in Sections 5 and

 , respectively; finally, Section 7 contains the closing thoughts.

. Related work

In the literature, there are previous works that study possible

nformation leaks from the private mode included in the browsers.

his section discusses the most relevant studies of the last few

ears ordered from oldest to newest.

Calum Findlay and Petra Leimich (Findlay and Leimich, 2014)

tudied the behavior of Firefox in four different situations: normal

nd private mode with Firefox installed on the system and normal

nd private mode using the portable version of Firefox. Their goal

as to establish which conditions reduced the amount of data fil-

ered, thus maximizing the user’s privacy. They observed that no

ata were written to permanent storage during private browsing

essions, neither with the installed version nor with the portable

ersion. The only exception where there was a possibility of writ-

ng to disk was if the operating system decided to move a mem-
2
ry page containing sensitive information to the swap memory. As

ood practice, they recommend restarting the computer after fin-

shing a browsing session in order for the RAM to be restored.

Reza Montasari and Pekka Peltola (Montasari and Peltola, 2015)

tudied what information could be extracted if a forensic analy-

is were to be performed on a computer after browsing in pri-

ate mode. For this purpose, they tested the following browsers:

hrome 26, Firefox 20, Internet Explorer 9, and Safari 5. All of them

ere run on a Windows operating system running on VirtualBox

irtual machines. Various activities were executed with each of the

rowsers such as playing a video on YouTube, searching for a prod-

ct on Amazon, or previewing a PDF file. To perform the analysis,

hey decided to dump the RAM just before closing the browser and

o create a disk image just after closing the browser. The tools used

uring the analysis were FTK Imager, Autopsy, FTK, and WinHex.

he results of analyzing the disk images revealed that Chrome was

he only one that did not leave any artifacts on disk. However, the

AM analysis did reveal nearly all activities performed in private

ode, regardless of the browser used.

Anuradha et al. (2016) studied what information could be re-

overed from a disk image after deleting browsing artefacts. The

rowser chosen for testing was Chrome running on Ubuntu 14.04.

he browsing session consisted of watching videos in YouTube,

earching for images in Google Images, searching for items in Ama-

on, and accessing Gmail. Once the navigation session had been

nded using Chrome in normal mode (not incognito), they man-

ally deleted all browsing artefacts. Then, they created an image

f the hard drive used and performed a series of searches on the

isk image with the AccessData Forensic Tool Kit. They were able

o recover much of the information generated, including some of

he images displayed. However, they were unable to recover the

asswords or the videos played.

Nikolaos Tsalis et al. (Tsalis et al., 2017) studied the private

ode of Chrome 47, Firefox 43, Internet Explorer 11, and Opera 34

unning on a Windows 7 virtual machine. They performed the

nalysis from the point of view of an attacker who had temporary

hysical access to the computer after a user had browsed using

he private mode and left the computer on. After conducting the

xperiments, they discovered situations where there were privacy

iolations that should not have occurred in private mode accord-

ng to browser documentation. In one of the tests, they found that

aving a bookmark in Firefox or in Chrome stored additional in-

ormation indicating that it had been created using private mode.

n another test, they discovered that Firefox stored OCSP protocol

esponses in the browser’s cache folder, leaking the websites that

ad been accessed. As a solution to avoid this type of leaks, they

uggest storing the browser profile in a virtual file system hosted

n a volatile medium (such as RAM).

Graeme Horsman (Horsman, 2017) performed a process–level

nalysis of Chrome during a private browsing session. The Chrome

ersion analyzed was 55 running on Windows 7. To show the in-

eraction with the operating system, he used the different tools

vailable in the Windows Sysinternals suite. In particular, one of

he experiments carried out was to compare the number of sys-

em events generated by a normal session with an incognito ses-

ion. The result was a significant decrease of events in the private

ession. After the analysis, and despite not having been able to ver-

fy the content of some of the temporary files created by Chrome,

he author concludes that the best way to recover browsing actions

s by analyzing the RAM.

There are also previous works that explore the private mode of

ess popular browsers. For example, Szu-Yuan Teng et al. (Teng and

en, 2018) tested six different browsers with incognito functions

unning on a virtualized Windows 10: Epic Privacy Browser, Se-

ure Browser, Comodo Dragon, SRWare Iron, Dooble, and Maxthon.

pecifically, they analyzed the network traffic generated when each

X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro Computers & Security 115 (2022) 102626

b

w

t

p

t

p

o

r

a

s

fi

a

t

f

p

2

E

m

e

d

d

p

o

a

a

r

i

b

m

h

T

f

i

3

v

o

p

a

m

a

3

m

I

a

v

i

t

b

a

t

h

t

3

d

r

a

b

a

i

s

o

s

j

3

t

t

t

e

rowser was opened as well as retrieved the username and pass-

ord used to log into a website from memory. They conclude that

he private mode poses a challenge for forensic analysis, being only

ossible to recover valuable information when accessing the con-

ents of the memory allocated to the browser.

Abid Khan Jadoon et al. (Jadoon et al., 2019) designed and im-

lemented a series of scenarios to test the privacy and anonymity

ffered by Tor Browser. All tests were conducted on Windows 8.1

unning on VMware Workstation. Data acquisition was performed

t three different points in time: firstly, with the browser open;

econdly, after the browsing activities have been performed; and,

nally, after closing the browser. They conducted a comprehensive

nalysis of the registry, RAM, and hard drive, which led them to

he conclusion that Tor Browser leaves a large number of arte-

acts, especially in memory, which allows many of the activities

erformed online to be discovered.

In a more recent study, Graeme Horsman et al. (Horsman et al.,

019) tested the private browsing mode of 30 different browsers.

ach of them was deployed on a standalone Windows 10 virtual

achine on VirtualBox. The test consisted of visiting five URLs with

ach of them and then using a search term for each URL in order to

etermine if the browser had written any browsing-related data to

isk. The results show that only 5 of the 22 browsers that offered

rivate mode leaked browsing session information to disk.

Rebecca Nelson et al. (Nelson et al., 2020) performed a thor-

ugh analysis of the following browsers: Firefox 55, Chrome 61,

nd Tor Browser 7. The main forensic analysis tool used was FTK

nd all browsers were tested on Windows 7 virtual machines. The

esults show that it was possible to retrieve practically all the

nformation related to the browsing performed when using the

rowsers in normal mode, how the amount of retrievable infor-

ation is drastically reduced when using the private mode, and

ow it was not possible to recover almost anything when using

or Browser. The entire analysis is focused exclusively on the in-

ormation that can be recovered from a hard disk image.

Comparing the present manuscript with these previous works,

ts main contributions can be summarized in the following points:

1. RAM is captured in more situations, not just when the browser

is running or just after closing it, allowing a more complete pic-

ture of the information that can be retrieved at different times.

2. No previous work, to the best of our knowledge, has studied

whether the password keychain of a browser can be recov-

ered from a memory dump. In this work, it is shown that, in

some situations, it is possible to recover the complete browser

keyring.

3. Both, bare metal and virtual machines have been tested in this

work, whereas all previous works mentioned in this section use

virtualized or non-virtualized environments, but not both. In

addition, some of the kernel hardening options were also tested

to see how they affect the behavior of the browsers.

4. A browsing session has been designed that includes all the ac-

tivities used in previous works and some additional ones not

considered so far. The deployment, execution and test capture

phases were designed and executed to cover a wide number of

scenarios, which has made it possible to thoroughly study the

behavior of private browsing.

. Methodology

The methodology introduced in this paper aims to test the pri-

ate mode included in most current browsers. With this method-

logy it is possible to determine the level of effectiveness of this

rivacy feature, as it will reveal what information can be retrieved

fter browsing in private mode.
3
The proposed methodology is divided into five phases: environ-

ent setup, monitoring changes, browsing, data acquisition, and

nalysis.

.1. Environment setup

The objective of this phase is to design and deploy the environ-

ent (or environments) where the selected browser will be tested.

t is essential to consider using more than one environment, as it

llows to get a broader picture of how the browser behaves in di-

erse situations. In this case, when using multiple environments, it

s important to take into account the following characteristics:

• Different operating systems or low-level options of the same

operating system.
• A bare metal environment and a virtualized environment.

The inclusion of a bare metal environment is of vital impor-

ance since it should not be assumed that the information that can

e retrieved from a virtualized environment is the same as from

 bare metal environment. For example, memory management in

he virtualized environment is different due to the addition of the

ypervisor layer.

When setting up a computer for testing, the following sugges-

ions should be considered:

• Use a dedicated computer with a freshly installed operating

system. Thus, any artefacts found must have been created by

the browser. It is also advisable to use another computer for all

subsequent analysis and processing tasks, avoiding contamina-

tion of the test computer.
• Disable automatic updates. To prevent the browser version from

changing between executions of the same experiment, it is

necessary to disable automatic updates. To do this, there are

two options: 1) Configure the system not to update the web

browser but to update the rest of the packages or 2) Config-

ure the system not to perform any updates. The problem with

the first option is that more variables are introduced when per-

forming the experiments. For example, if repeating a test yields

a different result, it will be more difficult to determine whether

the problem is in the test itself or in the change of version of

a particular package. Therefore, it is recommended to configure

the second option. Another benefit of disabling automatic up-

dates is that the number of background processes is reduced,

allowing better isolation of the browser’s behavior.

.1.1. Browser setup

Once the environment (or environments) to be used has been

ecided, it is time to prepare the selected browser. The only prepa-

ation necessary to apply this methodology is to add a username

nd password to the browser’s keychain. However, the specific

rowser configuration will depend on what is to be tested. For ex-

mple, this methodology could be used to test whether it is worth

nstalling an extension that deletes the cookies created by a web-

ite after leaving it. In this case, two profiles would be required:

ne with the extension installed and one without. When the re-

ults were analyzed, it would be checked if the extension did its

ob correctly and, therefore, if it is worth installing.

.2. Monitoring changes

In this phase, it must be established how the changes made to

he file system by the browser will be monitored and how the sys-

em RAM will be dumped. The tools used will vary depending on

he operating systems selected in the environment setup phase.

To monitor changes made to the file system, a tool that logs

ach time a file or folder is created, modified or deleted in the

X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro Computers & Security 115 (2022) 102626

m

t

t

p

m

H

p

t

t

t

p

i

3

a

h

f

i

w

o

a

T

P

t

b

l

l

3

t

t

p

a

a

t

a

t

3

3

d

c

b

h

i

w

t

m

a

o

d

c

onitored directories should be selected. The recommended op-

ion when specifying the directories to monitor is to include only

he folders where the browser profile is stored as well as tem-

orary folders. The other option would be to monitor all changes

ade to the entire file system during the execution of the tests.

owever, this option makes subsequent analysis much more com-

licated.

To obtain a dump of the RAM content, there are tools that allow

o dump the memory space of a particular process. However, this

ype of tool is not valid for the purpose of this methodology for

wo reasons:

1. Dumping only the memory currently allocated to the browser

process would not dump memory areas that were previously

allocated to the browser, but were freed.

2. It would not be possible to dump the memory associated with

the browser process after closing the browser or after restart-

ing the computer, because the browser process would no longer

exist and, therefore, it would not be possible to dump its asso-

ciated memory.

Due to the above reasons, a tool that allows to obtain a com-

lete dump of the computer’s RAM must be selected. Both special-

zed hardware and software solutions are available (Kollár, 2010).

.3. Browsing

In this phase, a browsing session should be designed to gener-

te data for subsequent analysis. Having this session pre-planned

as two main advantages: 1) it is easily reproducible and 2) allows

or a more targeted analysis in the next stage. This session should

ncorporate the most common activities performed when using a

eb browser. As mentioned in Montasari and Peltola (2015) , some

f the most common actions are: downloading a file, performing

 search, watching a streaming video, or viewing a PDF document.

herefore, based on the methodologies described in Montasari and

eltola (2015) ; Muir et al. (2019) , an outline for a browsing session

hat includes a variant of these actions as well as new actions has

een created. As new activities, the following can be highlighted:

ogging into a website, entering a URL but not accessing it, or using

ogin information stored in the browser’s keychain.

The outline for the browsing session is as follows:

1. Access a web page that hosts multimedia content, such as mu-

sic or videos. Use the search engine and play one of the items

returned by the search. Motivation: Is it possible to retrieve the

words entered in the search field and the name of the item

played?

2. Open a new tab and access a web page that stores a cookie

in the browser. Motivation: Is it possible to retrieve the cookie

created by the website?

3. Open a new tab and access a website that hosts a PDF file. Pre-

view the content of the PDF file with the browser. Motivation:

Is it possible to recover the name and the content of the file?

4. Open a new tab and enter a URL in the address bar. Without

accessing that website, delete the written URL. It is important

not to use a URL that can be easily found in memory or on disk.

For example, using a URL such as bing.com should be avoided,

as it will produce many false positives due to the fact that it is

one of the built-in search engines in the majority of browsers.

Therefore, it is advisable to make sure that there is no match

when searching for that URL before performing the tests. Moti-

vation: Is it possible to retrieve the URL entered?

5. Open a new tab and access the website for which the login in-

formation is stored in the browser’s keychain. Attempt to log in

using the saved credentials. Motivation: Is it possible to retrieve

the full database of logins and passwords from memory?
4
6. Open a new tab and access a different website from the previ-

ous one where there is also a login page. Try to log in by en-

tering the information requested by the page (username, pass-

word...). Motivation: Is it possible to retrieve the information

entered?

.4. Data acquisition

The purpose of this phase is to gather the necessary data from

he test machine for further analysis. Specifically, the aim is to ob-

ain the list of changes made to the hard disk as well as a com-

lete dump of the RAM. In order to make the test runs as “clean”

s possible, the capture of the changes on disk has to be done in

 completely independent run from when the RAM memory con-

ents are dumped. In addition, only one browser can be tested at

 time. The following subsections describe in detail how and when

he different acquisitions should be made.

.4.1. Hard disk

In this case, the steps to be taken are very simple:

1. Launch the monitoring tool chosen in Section 3.2 .

2. Perform the navigation session designed according to the

scheme described in Section 3.3 .

3. Close the browser.

4. Stop the monitoring tool.

.4.2. Memory

In the case of RAM, the process is more complex, as it varies

epending on whether the browser is running on a virtual ma-

hine or directly on the machine. Generically, the memory should

e dumped at four different times:

T1. With the browser running and after having completed the

designed browsing session.

T2. After closing the browser.

T3. After rebooting the computer.

T4. After the computer has been turned off for 10 seconds.

As in the case of the acquisition of disk changes, the runs

ave to be completely separate. That is, in one run the memory

s dumped in only one of the moments described above. In this

ay, the “cleanest” possible memory dumps are obtained.

As mentioned above, the RAM dump process depends on where

he browser is being executed. When it is running directly on the

achine, the steps to be performed to create the different dumps

re as follows:

T1. Turn on the computer, launch the browser in private mode,

perform the browsing session, and dump the RAM.

T2. Turn on the computer, launch the browser in private mode,

perform the browsing session, close the browser, wait one

minute , and dump the RAM.

T3. Turn on the computer, launch the browser in private mode,

perform the browsing session, close the browser, restart the

computer, and, once started , dump the RAM.

T4. Turn on the computer, launch the browser in private mode,

perform the browsing session, close the browser, turn off the

computer, wait 10 seconds, turn on the computer, and, once

started , dump the RAM.

Fig. 1 shows an overview of the different actions to be done to

btain each of the dumps.

When the browser is running in a virtual machine, the proce-

ure is slightly different. In this case, the steps to be performed to

reate the various dumps are:

https://bing.com

X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro Computers & Security 115 (2022) 102626

Fig. 1. Diagram of the steps to be performed to obtain the different memory dumps when the browser is running directly on the machine.

s

t

i

r

3

s

o

b

i

f

b

f

s

f

T1. Turn on the computer, start the virtual machine, launch the

browser in private mode, perform the browsing session, and

dump the RAM.

T2. Turn on the computer, start the virtual machine, launch the

browser in private mode, perform the browsing session, close

the browser, turn off the virtual machine , and dump the RAM.

T3. Turn on the computer, start the virtual machine, launch

the browser in private mode, perform the browsing session,

close the browser, turn off the virtual machine, restart the

computer, and, once started , dump the RAM.

T4. Turn on the computer, start the virtual machine, launch

the browser in private mode, perform the browsing session,

close the browser, turn off the virtual machine, turn off the

computer, wait 10 seconds, turn on the computer, and, once

started , dump the RAM.

Fig. 2 shows a diagram of the steps to be followed with this

etup.
Fig. 2. Diagram of the steps to be performed to obtain the different me

5
It is important to mention that there are some BIOSes that wipe

he contents of the RAM memory on reboot (Kollár, 2010), prevent-

ng potentially interesting information from being retrieved after

estarting the computer.

.5. Analysis

In this stage the aim is to retrieve as much information as pos-

ible from the browsing session. On the one hand, the list of files

btained by the tool that monitors changes on the hard disk has to

e parsed. Each of these files has to be examined to check whether

t is possible to obtain information about any of the activities per-

ormed. On the other hand, the different memory dumps have to

e analyzed, trying to recover as much information as possible

rom each one of them.

To parse the list of files obtained, it is possible to develop

cripts that perform keyword searches related to the browsing per-

ormed. In addition, when the browser is executed in a virtual
mory dumps when the browser is running on a virtual machine.

X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro Computers & Security 115 (2022) 102626

m

d

o

o

t

t

G

o

v

r

b

n

t

H

D

f

4

m

S

n

d

t

t

t

i

p

4

w

r

a

r

f

i

m

t

f

o

f

a

t

z

i
h

m

i

6

m

w

a

a

c

p

P

a

t

e

w

i

4

p

b

l

n

w

v

e

m

4

b

s

t

4

t

w

t

i
g

u

i

d

F

i

achine, it should also be searched directly on the virtual

isks. This ensures that the browser has not written to one

f the directories that was not being monitored. In the case

f memory dumps, the use of the following two cross-platform

ools is recommended: Volatility Framework 2 and wxHexEdi-

or 3 . In addition, for Volatility Framework there is the Actaeon

4

raziano et al. (2013) plugin that facilitates the analysis of mem-

ry dumps containing running virtual machines. This plugin can be

ery useful when analyzing a memory dump where the browser is

unning in a virtual machine. As in the case of the files, scripts can

e written to automate the search for information related to the

avigation.

For the particular case of retrieving the complete content of

he keychain, the tools to be used vary depending on the browser.

owever, there are cross-platform tools, such as HackBrowser-

ata 5 , that allow saved passwords, history, cookies, and bookmarks

rom different browsers to be recovered.

. Firefox and Chrome as use cases

This section is dedicated to show the result of applying the

ethodology described in this work to two different browsers.

pecifically, the browsers tested were Firefox and Chrome run-

ing on a Linux operating system. As mentioned in the intro-

uction, the reason for focusing on Linux is because, although

here are previous works that study the private mode of browsers,

here is none focused on that particular operating system to

he best of our knowledge. The only work that uses Linux

s Anuradha et al. (2016) , but it does not study the behavior of

rivate mode or analyze the contents of RAM.

.1. Environment setup

All experiments were tested in four different environments,

hich will be referred to as environment A, environment B, envi-

onment C, and environment D. They were deployed on a PC with

 Core i7-4700K processor and 8 GB of DDR3-1600 MHz RAM. As

ecommended in Section 3.1 , this equipment was used exclusively

or the execution of the tests. All subsequent analysis and process-

ng tasks were performed on a different machine.

In environment A, the browser was executed directly on the

achine. The operating system chosen was Ubuntu 20.04 running

he 5.4.0-26-generic version of the kernel. A clean install was per-

ormed and only three changes were made to the system:

1. Automatic updates were disabled.

2. Firefox was updated to version 95.0.

3. Chrome version 96.0.4664.110 was installed.

The versions of both browsers were the most recent at the time

f testing.

Environment B is almost the same as environment A. The dif-

erence is that two boot options were added, init_on_alloc = 1
nd init_on_free = 1 . As can be read in the commit descrip-

ion where these options were introduced

6 , init_on_alloc = 1
eroes new memory pages as well as heap objects, while

nit_on_free = 1 zeroes pages that have been freed as well as

eap objects that have been deleted. The purpose of this environ-

ent was to test the effectiveness of these options and determine

f they provide any improvement in terms of privacy.
2 https://github.com/volatilityfoundation/volatility .
3 https://github.com/EUA/wxHexEditor .
4 https://www.s3.eurecom.fr/tools/actaeon .
5 https://github.com/moonD4rk/HackBrowserData .
6 https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=

471384af2a6530696fc0203bafe4de41a23c9ef .

c

6
In environment C, the browser was run in a VirtualBox virtual

achine. For this, starting from environment A, VirtualBox 6.1.30

as installed and a virtual machine was created with 4 GB of RAM

llocated. It ran the same operating system with the same changes

s those mentioned for environment A.

In environment D, the browser was also run in a virtual ma-

hine but, in this case, using VMware as hypervisor. As in the

revious case, starting from environment A, VMware Workstation

ro16.2.1 was installed and a virtual machine with 4 GB of RAM

llocated was created. The operating system executed in the vir-

ual machine and the modifications made were the same as in the

nvironment C.

The purpose of the latter two environments was to determine

hether, from a privacy standpoint, there was any advantage in

solating the browser in a virtual machine.

.1.1. Browser setup

The browser configuration used was the default one. The only

reparation done was to add a username and password to the

rowser’s keychain. To do this, the https://mail.protonmail.com/

ogin website was accessed and test was entered as the user-

ame and 1234 as the password. Once typed, this information

as added to the keychain. This action was not done using pri-

ate mode because, in the case of Chrome, it is not possible to add

ntries to the keychain from incognito mode. Once the login infor-

ation was saved, the history, cache, and cookies were cleared.

.2. Monitoring changes

This section describes the tools used to log the changes made

y the browser. All the data obtained in this phase will be pre-

ented in the next section, where it will be checked what traces

he browsers left behind.

.2.1. Monitoring changes in the hard drive

To verify that the browser was not writing to disk any data

hat would reveal the activity carried out in the private mode, it

as necessary to monitor the changes made to the file system. For

his purpose, the inotifywait tool was used. It is part of the

notify-tools 7 package, which groups together a set of pro-

rams to monitor file system events.

This tool allows the capture a variety of events. For this partic-

lar use case, the capture was limited to the following ones:

• create . A file or directory was created within a watched di-

rectory.
• modify . A watched file or a file within a watched directory

was written to.
• delete . A file or directory within a watched directory was

deleted.

The mandatory parameter when configuring the tool is to spec-

fy the files or folders to be watched. In the case of Firefox, the

irectories monitored were:

• ˜ / .mozilla/
• ˜ / .cache/mozilla/

These are the two directories inside the home folder where

irefox writes data. These paths, which can be obtained by access-

ng the page with the address about:profiles in Firefox, are

alled “Root Directory” and “Local Directory”, respectively.

In the case of Chrome, the directories monitored were:

• ˜ / .config/google-chrome/
• ˜ / .cache/google-chrome/
7 https://github.com/inotify-tools/inotify-tools .

https://github.com/volatilityfoundation/volatility
https://github.com/EUA/wxHexEditor
https://www.s3.eurecom.fr/tools/actaeon
https://github.com/moonD4rk/HackBrowserData
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6471384af2a6530696fc0203bafe4de41a23c9ef
https://mail.protonmail.com/login
https://github.com/inotify-tools/inotify-tools

X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro Computers & Security 115 (2022) 102626

c
u

4

m

w

p

p

p

o

p

b

w

l

4

o

4

s

t

t

w

f

w

4

m

d

b

w

t

s

d

d

(

fi

m

F

o

C

c

a

b

5

o

B

a

i

5

m

S

i

n

fi

5

t

5

t

i

c

a

The user data directory can be obtained by accessing

hrome://version and looking for the “Profile Path” field. The

ser data directory is the parent of that path.

.2.2. Memory dump

To dump the memory completely, LiME 8 (Sylve, 2012) (com-

it ID fa37b69) was used. LiME is a Loadable Kernel Module that,

hen it is loaded, dumps the memory content in the file that is

assed to it as an argument. This file can be used later, for exam-

le, with the Volatility Framework tool. Another tool whose pur-

ose is practically the same as LiME is AVML 9 . The main difference

f AVML with respect to LiME is that it is not necessary to know, a

riori, the Linux distribution or the kernel version on which it will

e launched.

In all four environments, the entire memory of the host was al-

ays captured. In other words, the LiME kernel module was always

oaded on the host.

.3. Browsing

Using the scheme in Section 3.3 as a basis, the specific sequence

f steps forming the browsing session used is as follows:

1. Go to https://www.youtube.com and search kernel bugs .
Play the video with the title Syzbot and the Tale of
Thousand Kernel Bugs - Dmitry Vyukov, Google .
After 15 seconds, pause the video.

2. Open a new tab and go to https://stackoverflow.com .

3. Open a new tab and go to https://meltdownattack.com . Click on

Spectre Paper . The browser will display the contents of the

spectre.pdf file.

4. Open a new tab and write myurl.com in the address bar. With-

out accessing this website, delete the written URL.

5. Access https://mail.protonmail.com/login . Attempt to log in us-

ing the credentials stored in the browser’s keychain. The login

will fail.

6. Open a new tab and go to https://www.google.

com/gmail . Click on Sign in . Try logging in us-

ing virtual112233@gmail.com as username and

@thisis4testing1 as password. The login will fail.

.4. Data acquisition

The acquisition phase was performed following the steps de-

cribed in Section 3.4 . In the particular case of memory, to dump

he RAM content in environments A and B, the steps described for

he situation in which the browser runs directly on the machine

ere followed and, for environments C and D, the steps described

or the situation in which the browser runs in a virtual machine

ere followed.

.5. Analysis

As described in Section 3.5 , this phase attempts to retrieve as

uch information as possible from both the hard disk and memory

umps.

In the case of the hard disk, to parse the list of files provided

y inotifywait , several scripts were developed to perform key-

ord searches related to the browsing performed. In addition, in

he instance of environments C and D, the virtual disks were also

canned to ensure that the browser had not written to one of the

irectories that was not being monitored. In the case of memory

umps, the following two tools were used: Volatility Framework
8 https://github.com/504ensicsLabs/LiME .
9 https://github.com/microsoft/avml .

7
commit ID 703b29b) and wxHexEditor 0.24. As in the case of the

les, several scripts were created to automate the search for infor-

ation related to the navigation.

As for the tools used to retrieve the contents of the keychains,

irefox Decrypt 10 (commit ID 557bb60) tool was used in the case

f Firefox and, in the case of Chrome, a custom script based on the

hrome-Password-Grabber 11 script was developed. For this spe-

ific case, different tools were used for each browser. However,

s mentioned in Section 3.5 , there are tools that support multiple

rowsers and are cross-platform.

. Results

Each run, whether to monitor disk changes or to obtain a mem-

ry dump, was repeated several times in order to verify the results.

etween each execution, the following precautions were taken to

void contaminating the results:

• The contents of the ˜ / .mozilla and ∼
/ .config/google-chrome folders were restored with a

clean profile. As mentioned in Section 4.1.1 , the only change

made to the profiles was to add a username and password to

the browser’s keychain.
• The contents of the ∼ / .cache/mozilla/ and ∼

/ .cache/google-chrome/ folders were deleted.
• In the case of environments C and D, a clean snapshot of the

virtual machine was restored.
• The computer was turned off and the power cord was un-

plugged from the wall for a period of at least 1 minute. The

goal was to try to start each execution with a “clean” RAM. As

described in Gruhn and Müller (2013) , the number of correct

bits that can be physically recovered from DDR3 memory at

room temperature is less than 50% after only 10 seconds. They

also point out that with this type of memory, the only informa-

tion recoverable after a cold reboot is noise patterns. More re-

cent studies (Bauer et al., 2016; Yitbarek et al., 2017) show that

it is possible to descramble the contents of DDR3 and DDR4

DRAM by performing a cold boot attack.

The findings in each of the scenarios described above are shown

n detail in the following subsections.

.1. Findings from hard disk analysis

While the browsing session was being conducted, changes

ade to the file system were monitored as described in

ection 4.2.1 . After analyzing the files indicated by the monitor-

ng tool, and the virtual disks used in the environments C and D,

o information associated with browsing was found in any of the

les.

.2. Findings on the memory dumps

This subsection shows the information that was possible to re-

rieve from the different memory dumps.

.2.1. Environment A

The first part of the analysis consisted of loading the files con-

aining the memory dumps into the hexadecimal editor mentioned

n Section 4.5 . Once opened, a series of searches were executed to

heck whether or not those keywords existed in memory, as well

s to obtain the number of occurrences of those keywords.

The set of keywords searched in the memory dump was:
10 https://github.com/unode/firefox _ decrypt .
11 https://github.com/priyankchheda/chrome _ password _ grabber .

https://www.youtube.com
https://stackoverflow.com
https://meltdownattack.com
https://myurl.com
https://mail.protonmail.com/login
https://www.google.com/gmail
https://github.com/504ensicsLabs/LiME
https://github.com/microsoft/avml
https://github.com/unode/firefox_decrypt
https://github.com/priyankchheda/chrome_password_grabber

X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro Computers & Security 115 (2022) 102626

Fig. 3. Password and username entered on the Gmail login page found in the memory dump.

1

1

1

1

i

e

T

b

Y

t

fi

w

f

l

H

w

T

t

s

c

p

u

c
b

f

c

t

i

t

F

t

o

T

w

t

5

t

i

o

5

fi

5

w

6

a

6

t

T

t

t

t

1. kernel bugs
2. kernel%20bugs
3. kernel+bugs
4. kernel%2Bbugs
5. Syzbot and the Tale of Thousand Kernel Bugs -

Dmitry Vyukov, Google
6. prov =

7. spectre.pdf
8. myurl.com
9. virtual112233@gmail.com
0. virtual112233%40gmail.com
1. @thisis4testing1
2. %40thisis4testing1
3. The Google Safe Storage key

The first four items are searches related to the words entered

n the YouTube search field. Number 2 is the same as number 1

xcept that the space has been replaced by its HTML code (%20).

he same was done in number 4, where the + has been replaced

y its hexadecimal code (%2B). Item 5 is the full name of the

ouTube video played. Number 6 corresponds to the cookie set by

he https://stackoverflow.com site. Item 7 is the name of the PDF

le previewed in the browser. Number 8 corresponds to the URL

ritten in the address bar that was not accessed. The following

our items are the username and password entered on the Gmail

ogin page. As in the first items, the @ has been replaced by its

TML code (%40) in items 10 and 12. Finally, if the browser used

as Chrome, the Google Safe Storage key would be searched for.

his key is used to encrypt, among other things, the contents of

he keychain. As an example, Fig. 3 shows the result of performing

earches number 9 and 11 in the hexadecimal editor.

The next part consisted of checking if it was possible to recover

ertain files from memory. First, the spectre.pdf file that was

reviewed in the browser was searched for. Then, if the browser

sed was Firefox, the following three files would be searched for:

ert9.db , key4.db , and logins.json . On the contrary, if the

rowser used was Chrome, the following file would be searched

or: Login Data . All these files are the ones that store the key-

hain. To check if they existed in memory, a script was developed
8
o search for the complete content of these files and indicate if

t was possible to retrieve them in their entirety. Another option

o perform this part of the analysis would be to use the Volatility

ramework linux_find_file plugin to retrieve the aforemen-

ioned files.

The result of performing the above procedure on the four mem-

ry dumps obtained with environment A can be seen in Table 1 .

his table shows the number of occurrences of each keyword as

ell as whether or not it was possible to recover the files men-

ioned above.

.2.2. Environment B

The procedure performed in this environment was identical to

he one executed in environment A. Table 2 summarized all the

nformation that was possible to recover after analyzing the dumps

btained with this environment.

.2.3. Environment C

As in environment B, only the summary table (Table 3) with the

ndings is included.

.2.4. Environment D

As in environments B and C, only the summary table (Table 4)

ith the findings is included.

. Discussion

The following subsections discuss the results obtained after an-

lyzing the RAM and hard disk in the different configurations.

.1. Hard disk

The purpose of this work was to find out how much informa-

ion was possible to recover after having used the private mode.

he results show that both Firefox and Chrome kept their word

hat no data associated with browsing in private mode are written

o disk.

When using the browser’s built-in keychains, it was noted that

he behavior was slightly different between the two browsers. In

https://stackoverflow.com

X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro Computers & Security 115 (2022) 102626

Table 1

Summary of the analysis of memory dumps performed in environment A. The first part of the table (Keyword searches) shows the number of matches for each

of the search terms. The second part (File recovery) shows whether or not it was possible to retrieve those files.

Firefox Chrome

T1 T2 T3 T4 T1 T2 T3 T4

Keyword searches

kernel bugs 13 0 0 0 48 0 0 0

kernel%20bugs 18 0 0 0 14 0 0 0

kernel + bugs 40 0 0 0 58 0 0 0

kernel%2Bbugs 34 0 0 0 25 6 0 0

Syzbot and the Tale of... 17 0 0 0 38 3 0 0

prov = 2 0 0 0 1 0 0 0

spectre.pdf 167 2 0 0 72 1 0 0

myurl.com 3 0 0 0 0 0 0 0

virtual112233@gmail.com 11 11 0 0 17 0 0 0

virtual112233%40gmail.com 13 3 0 0 6 1 0 0

@thisis4testing1 25 2 0 0 2 0 0 0

%40thisis4testing1 4 2 0 0 3 0 0 0

Chrome Safe Storage key (Chrome only) - - - - 4 4 4 3

File recovery

spectre.pdf Yes No No No Yes No No No

cert9.db (Firefox only) No Yes No No - - - -

key4.db (Firefox only) No Yes No No - - - -

logins.json (Firefox only) No Yes No No - - - -

Login Data (Chrome only) - - - - Yes No No No

Table 2

Summary of the analysis of memory dumps performed in environment B. The first part of the table (Keyword searches) shows the number of matches for each

of the search terms. The second part (File recovery) shows whether or not it was possible to retrieve those files.

Firefox Chrome

T1 T2 T3 T4 T1 T2 T3 T4

Keyword searches

kernel bugs 8 0 0 0 42 0 0 0

kernel%20bugs 11 0 0 0 25 0 0 0

kernel + bugs 37 0 0 0 55 0 0 0

kernel%2Bbugs 27 0 0 0 27 0 0 0

Syzbot and the Tale of... 14 0 0 0 36 5 0 0

prov = 2 0 0 0 2 0 0 0

spectre.pdf 159 0 0 0 75 0 0 0

myurl.com 3 0 0 0 0 0 0 0

virtual112233@gmail.com 7 0 0 0 17 0 0 0

virtual112233%40gmail.com 7 0 0 0 6 0 0 0

@thisis4testing1 7 0 0 0 2 0 0 0

%40thisis4testing1 2 0 0 0 2 0 0 0

Chrome Safe Storage key (Chrome only) - - - - 5 4 2 2

File recovery

spectre.pdf Yes No No No Yes No No No

cert9.db (Firefox only) No Yes No No - - - -

key4.db (Firefox only) No No No No - - - -

logins.json (Firefox only) No Yes No No - - - -

Login Data (Chrome only) - - - - Yes No No No

F

t

a

o

n

m

p

p

a

c

t

t

o

t

p

6

s

c

f

c

t

h

o

c

t

i

d

irefox, it was possible to save new entries and use existing en-

ries from the private mode. This could be a problem since saving

 new entry from the private mode would be storing information

n disk about the visited websites. In the case of Chrome, it was

ot possible to add new entries to the keychain from the incognito

ode, but it was possible to use the existing ones. Firefox should

robably add a warning message when adding new entries from

rivate mode, at least.

In this work, the contents of the swap memory have not been

nalyzed. Swap memory contains memory pages that have been

opied to disk due to a low amount of available RAM. It is impor-

ant to realize that if a browser is being used in private mode, and

he amount of RAM is very limited, there is a possibility that some

f the memory pages allocated to the browser will be stored in

he swap. This could be a problem as it would imply that memory

ages with possible sensitive information would be stored on disk.
9
.2. RAM

The tests performed show that neither Firefox nor Chrome

tored browsing-related information on the hard disk. However, as

an be seen in the results section, it was possible to retrieve arti-

acts related to the browsing session from memory.

It is important to note that if only the memory space asso-

iated with the browser had been dumped, regions of memory

hat were allocated to the browser process, but were freed, would

ave been left unanalyzed. This is a problem because those mem-

ry regions may still contain sensitive information. This behavior is

learly seen when, after restarting the machine, it was still possible

o retrieve information from the activity performed during brows-

ng.

To facilitate the discussion of this subsection, the memory

umps will be discussed according to when each was created.

X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro Computers & Security 115 (2022) 102626

Table 3

Summary of the analysis of memory dumps performed in environment C. The first part of the table (Keyword searches) shows the number of matches for each

of the search terms. The second part (File recovery) shows whether or not it was possible to retrieve those files.

Firefox Chrome

T1 T2 T3 T4 T1 T2 T3 T4

Keyword searches

kernel bugs 13 4 0 0 43 0 0 0

kernel%20bugs 26 13 0 0 17 6 0 0

kernel + bugs 41 27 0 0 56 1 0 0

kernel%2Bbugs 47 18 0 0 31 11 0 0

Syzbot and the Tale of... 16 4 0 0 40 0 0 0

prov = 2 0 0 0 2 0 0 0

spectre.pdf 156 60 0 0 76 11 0 0

myurl.com 3 2 0 0 0 0 0 0

virtual112233@gmail.com 8 1 0 0 20 2 0 0

virtual112233%40gmail.com 10 4 0 0 10 1 0 0

@thisis4testing1 24 2 0 0 4 0 0 0

%40thisis4testing1 4 0 0 0 4 0 0 0

Chrome Safe Storage key (Chrome only) - - - - 2 0 0 0

File recovery

spectre.pdf Yes No No No Yes No No No

cert9.db (Firefox only) Yes No No No - - - -

key4.db (Firefox only) Yes No No No - - - -

logins.json (Firefox only) Yes No No No - - - -

Login Data (Chrome only) - - - - Yes No No No

Table 4

Summary of the analysis of memory dumps performed in environment D. The first part of the table (Keyword searches) shows the number of matches for each

of the search terms. The second part (File recovery) shows whether or not it was possible to retrieve those files.

Firefox Chrome

T1 T2 T3 T4 T1 T2 T3 T4

Keyword searches

kernel bugs 17 0 10 0 81 0 8 0

kernel%20bugs 51 15 26 0 41 8 36 0

kernel + bugs 62 30 16 0 109 2 16 0

kernel%2Bbugs 67 26 49 0 57 22 68 0

Syzbot and the Tale of... 21 4 12 0 60 0 10 0

prov = 3 0 0 0 3 0 0 0

spectre.pdf 254 216 230 0 110 23 45 0

myurl.com 6 6 10 0 0 0 0 0

virtual112233@gmail.com 26 10 16 0 34 27 26 0

virtual112233%40gmail.com 16 20 18 0 11 8 8 0

@thisis4testing1 54 26 63 0 8 5 4 0

%40thisis4testing1 3 6 6 0 7 7 14 0

Chrome Safe Storage key (Chrome only) - - - - 6 5 2 0

File recovery

spectre.pdf Yes No No No Yes No No No

cert9.db (Firefox only) Yes Yes No No - - - -

key4.db (Firefox only) Yes Yes No No - - - -

logins.json (Firefox only) Yes Yes No No - - - -

Login Data (Chrome only) - - - - Yes Yes No No

6

a

t

f

p

e

t

w

t

i

s

p

b

b

v

a

t

n

p

d

p

i

p

o

t

2

.2.1. Memory dump in T1

The first activity performed was to access YouTube and watch

 video. Regardless of the environment or browser, it was possible

o retrieve both the keywords entered in the search field and the

ull name of the video played. It is worth mentioning that in the

re-planned browsing session, it was decided to use YouTube as an

xample. However, this demonstrates that it is possible to retrieve

he words entered in a search field as well as the chosen result,

hatever the web page used.

The second activity was to access a website in order to later at-

empt to retrieve the name and content of the cookie created. As

n the previous activity, regardless of the environment, it was pos-

ible to retrieve the cookie created. The value of this cookie is not

articularly interesting. However, it demonstrates that it is possi-

le to retrieve cookies set by any website. For example, it would
10
e possible to retrieve the cookies associated with a web mail ser-

ice and copy them to another computer to impersonate that user,

s long as the cookie is still valid.

Activity number three consisted of viewing a PDF file directly in

he browser. As can be seen in the previous section, both the file

ame and the complete contents were found in memory.

One of the tests that may seem irrelevant is number four of the

re-planned browsing session. In it, a URL was entered in the ad-

ress bar but was not accessed. The results show that it was only

ossible to retrieve the words entered in the case of Firefox. Tak-

ng into account that search suggestions are disabled by default in

rivate mode, the two most likely reasons why this behavior was

bserved are: 1) the browser probably constructs the entire URL in

he background (adding, for example, http://) as it is typed and

) the browser allows words entered in the address bar to be used

X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro Computers & Security 115 (2022) 102626

Fig. 4. Suggested options when typing in the Firefox address bar.

a

G

a

b

t

i

s

w

i

p

d

p

i

o

T

t

b

t

o

w

c

b

c

a

i

b

C

e

t

r

t

s

r

t

c

m

t

6

t

b

o

a

g

w

v

a

t

k

f

c

k

t

i
i

C

i

p

p

T

d

w

t

a

t

Y

G

s

o

c

c

c

c

w

c

6

t

c

c

t

t

s

l

i

r

t

t

c

e

t

a

T

v

w

r

s keywords to be searched for in a web search engine (by default

oogle). Fig. 4 shows this behavior in Firefox when typing in the

ddress bar.

In a similar way to activity three, the idea behind activity num-

er five was to see if it was possible to retrieve the files needed

o obtain all the passwords stored in the browser. This may seem

rrelevant considering that these files were already permanently

tored on disk. However, this test becomes relevant if the case

here the browser profile was stored on an removable device

s considered. This device could be plugged into a shared com-

uter in order to check email, for example. Once finished, the

evice would be disconnected and, in theory, it should not be

ossible to retrieve the login information entered. Moreover, even

f the computer used had a keylogger installed, either hardware

r software, the login information would not have been leaked.

his is due to the fact that this information would have been en-

ered automatically by the browser’s keychain and would not have

een entered by keyboard. The problem is that the files where

he browser stores the passwords could have remained in mem-

ry and not yet been overwritten. This means that if those files

ere to be retrieved from memory, it would be possible to ac-

ess not only the username and password used at that moment

ut all the usernames and passwords stored in the keyring. As

an be seen in the results tables, in the case of Firefox, the files

ssociated with the keychain were not found intact in memory

n environments A and B. However, they were found when the

rowser was executed in environments C and D. In the case of

hrome, it was possible to recover the Login Data file in all the

nvironments.

The last activity was to try to log in to Gmail. The results show

hat, regardless of the environment or browser, it was possible to

ecover, in full, both the username and password entered. Although

he login fails, the objective of this point was to see if it was pos-

ible to recover the login data.

The results of analyzing the memory dumps with the browser

unning show that it was possible to recover practically all the ac-

ivities performed. In the case of Firefox it was not possible to re-

over the files containing the keychain in the first two environ-

ents and, in the case of Chrome, it was not possible to recover

he myurl.com address.

.2.2. Memory dump in T2

Table 1 shows that, in environment A, the amount of informa-

ion that was possible to retrieve is drastically reduced after the

rowser was closed. In the case of Firefox, it was only possible to

btain the name of the previewed PDF and the Gmail username

nd password, as well as the Firefox profile files containing the lo-

ins database. In the case of Chrome, it was possible to retrieve the

ords entered in the YouTube search field, the title of the played

ideo, the name of the previewed PDF file, the Gmail username,

nd the Chrome Safe Storage key. Although it was possible to re-

rieve the key, the Login Data file, which actually contains the

eychain, was not found in memory.
11
Table 2 , associated with environment B, reveals a whole dif-

erent situation. In the case of Firefox, it was only possible to re-

over two of the three files needed to obtain the contents of the

eychain. The rest of the information generated by Firefox seems

o have been successfully deleted from memory thanks to the

nit_on_free = 1 boot option. However, in the case of Chrome,

t was possible to retrieve the title of the played video and the

hrome Safe Storage key. Therefore, the situation seems to have

mproved with respect to the previous environment from a user

rivacy point of view.

Table 3 , corresponding to the analysis of the environment C,

resents a totally different situation from that of environment B.

he amount of information that could be retrieved after shutting

own the virtual machine is substantial. In the case of Firefox, it

as possible to recover all the activities performed with the excep-

ion of the cookie set by stackoverflow.com , the previewed PDF file,

nd the profile files containing the keychain. In the case of Chrome,

he situation seems slightly better. Only the words entered in the

ouTube search field, the name of the previewed PDF file, and the

mail username could be retrieved.

Table 4 , corresponding to the analysis of the environment D,

hows a slightly worse situation than the previous one. In the case

f Firefox, the only information that could not be retrieved was the

ookie set by stackoverflow.com and the previewed PDF file. In the

ase of Chrome, the title of the video played, the stackoverflow.

om cookie, the myurl.com address, and the previewed PDF file

ould not be retrieved. It is noteworthy that in both browsers it

as possible to recover the complete keychain after the virtual ma-

hine was completely shut down.

.2.3. Memory dump in T3

After the computer was restarted, no artifacts associated with

he navigation performed in any of the first three environments

ould be recovered. It is true that the Chrome Safe Storage key

ould be recovered in the first two environments. This is because

he key is stored in the system keychain, which is unlocked when

he user logs in. As in environment C the virtual machine was not

tarted after rebooting the computer, the associated key was not

oaded.

The situation presented in the environment where the browser

s executed in a VMware virtual machine is totally opposite to the

est of the environments. The only artifacts that could not be re-

rieved in the case of Firefox were the stackoverflow.com cookie,

he previewed PDF file and the profile files containing the key-

hain. In the case of Chrome, the artifacts that could not be recov-

red were the stackoverflow.com cookie, the myurl.com address,

he previewed PDF file and the Login Data file.

These results show that adding a hypervisor in between may

ffect memory management, which can work against user privacy.

his is a curious result since the virtual machine represents an en-

ironment where RAM is more limited, so information in memory

ould be expected to be more easily overwritten and harder to

etrieve.

https://myurl.com
https://stackoverflow.com
https://stackoverflow.com
https://stackoverflow.com
https://myurl.com
https://stackoverflow.com
https://stackoverflow.com
https://myurl.com

X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro Computers & Security 115 (2022) 102626

s

m

R

e

w

6

p

r

t

t

k

u

7

o

T

a

t

t

w

e

a

D

t

a

b

m

m

n

t

o

b

m

o

o

w

i

w

D

c

i

C

v

t

C

R

A

A

B

B

B

C

C

F

F

G

G

G

G

H

H

J

K

K

K

M

M

N

S

T

T

Y

X

v
f

d
(

T

s
v

T

C

E
2

t

g
f

It is also possible to see that a simple reboot did not prevent

ensitive information from being recovered in environment D. As

entioned in Section 3.4.2 , some BIOSes erase the contents of the

AM on restart. If the BIOS of the computer used for testing had

rased the RAM memory on reboot, the results obtained in T3

ould have been the same as in T4.

.2.4. Memory dump in T4

After having the computer turned off for 10 seconds, it was not

ossible to recover any information associated with the navigation,

egardless of the environment or browser used. The only informa-

ion that could be retrieved was the Chrome Safe Storage key in

he first two environments. As explained above, this is because the

ey is stored in the system’s keychain, which is unlocked when the

ser logs in.

. Conclusion

This paper presents a methodology to test the effectiveness

f the private mode included in the different web browsers.

his methodology consists of performing a comprehensive forensic

nalysis of different machine configurations under different condi-

ions after having completed a predefined browsing session using

he private mode.

As an example of application of the proposed methodology, it

as applied to Firefox and Chrome running on four different Linux

nvironments. The memory and hard disk were analyzed for any

rtifacts that were generated during the private browsing sessions.

espite being a targeted analysis, it shows the amount of informa-

ion that can be recovered from a complete memory dump when

 comprehensive and in-depth analysis is performed. It has also

een found that running Firefox or Chrome in a VMware virtual

achine can decrease the level of privacy, allowing sensitive infor-

ation to be recovered even after rebooting the computer, being

ecessary to turn off the computer for a minimum amount of time

o guarantee the memory is emptied.

As future work it can be highlighted to apply this methodol-

gy to new combinations of operating system, hypervisor, and web

rowser. In addition, this methodology could be easily adapted to

obile platforms such as Android, since LiME can dump the mem-

ry of an Android device. One area where the scope of the method-

logy could be extended would be by adding a new environment

ith a very limited amount of RAM. This would allow to test what

nformation can be retrieved from the swap, since swap memory

as not analyzed in this work.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

RediT authorship contribution statement

Xosé Fernández-Fuentes: Conceptualization, Methodology, In-

estigation, Writing – original draft. Tomás F. Pena: Conceptualiza-

ion, Methodology, Writing – review & editing. José C. Cabaleiro:

onceptualization, Methodology, Writing – review & editing.

eferences

nderson, D. , von Seck, R. , 2020. The GDPR and its impact on the web. In: Carle, G.,

G ȭ nther, S., Jaeger, B. (Eds.), Proceedings of the Seminar Innovative Internet

Technologies and Mobile Communications (IITM). Chair of Network Architec-
tures and Services, Munich, pp. 1–5 .

nuradha, P. , Kumar, T.R. , Sobhana, N. , 2016. Recovering deleted browsing artifacts
from web browser log files in Linux environment. In: 2016 Symposium on

Colossal Data Analysis and Networking (CDAN). IEEE, pp. 1–4 .
12
auer, J. , Gruhn, M. , Freiling, F.C. , 2016. Lest we forget: cold-boot attacks on scram-
bled DDR3 memory. Digital Invest. 16, S65–S74 .

erghel, H. , 2017. Equifax and the latest round of identity theft roulette. Computer
(Long Beach Calif) 50 (12), 72–76 .

reve, B. , Caruccio, L. , Cirillo, S. , Desiato, D. , Deufemia, V. , Polese, G. , 2020. Enhanc-
ing user awareness during Internet browsing. In: Proceedings of the Fourth Ital-

ian Conference on Cyber Security, ITASEC 2020. In: CEUR Workshop Proceed-
ings, Vol. 2597, pp. 71–81 .

aruccio, L. , Desiato, D. , Polese, G. , Tortora, G. , 2020. GDPR Compliant infor-

mation confidentiality preservation in big data processing. IEEE Access 8,
205034–205050 .

irillo, S. , Desiato, D. , Breve, B. , 2019. CHRAVAT-Chronology awareness visual ana-
lytic tool. In: 2019 23rd International Conference Information Visualisation (IV).

IEEE, pp. 255–260 .
elt, A. , Evans, D. , 2008. Privacy protection for social networking platforms. Work-

shop on Web 2.0 Security and Privacy . Oakland, CA

indlay, C. , Leimich, P. , 2014. An assessment of data leakage in Firefox under differ-
ent conditions. In: 7th International Conference on Cybercrime Forensics Edu-

cation & Training, CFET 2014 . Canterbury, UK
raziano, M. , Lanzi, A. , Balzarotti, D. , 2013. Hypervisor memory forensics. In: In-

ternational Workshop on Recent Advances in Intrusion Detection. Springer,
pp. 21–40 .

reenwald, G., 2013. NSA Collecting phone records of millions of verizon cus-

tomers daily. The Guardian. https://www.theguardian.com/world/2013/jun/06/
nsa- phone- records- verizon- court- order

reenwald, G., 2013. NSA Prism program taps in to user data of apple, google
and others. The Guardian. https://www.theguardian.com/world/2013/jun/06/

us- tech- giants- nsa- data
ruhn, M. , Müller, T. , 2013. On the practicability of cold boot attacks. In: 2013 Inter-

national Conference on Availability, Reliability and Security. IEEE, pp. 390–397 .

orsman, G. , 2017. A process-level analysis of private browsing behavior: A focus
on Google Chromes incognito mode. In: 2017 5th International Symposium on

Digital Forensic and Security (ISDFS). IEEE, pp. 1–6 .
orsman, G. , Findlay, B. , Edwick, J. , Asquith, A. , Swannell, K. , Fisher, D. , Grieves, A. ,

Guthrie, J. , Stobbs, D. , McKain, P. , 2019. A forensic examination of web browser
privacy-modes. Forensic Science International: Reports 1, 10 0 036 .

adoon, A.K. , Iqbal, W. , Amjad, M.F. , Afzal, H. , Bangash, Y.A. , 2019. Forensic analysis

of Tor browser: a case study for privacy and anonymity on the web. Forensic
Sci. Int. 299, 59–73 .

ollár, I. , 2010. Forensic RAM dump image analyzer. Charles University in Prague,
Faculty of Mathematics and Physics .

rasnova, H. , Eling, N. , Schneider, O. , Wenninger, H. , Widjaja, T. , Buxmann, P. , 2013.
Does this app ask for too much data? The role of privacy perceptions in user

behavior towards Facebook applications and permission dialogs. In: Proceedings

of the 21st European Conference on Information Systems, ECIS 2013. Association
for Information Systems, pp. 1–12 .

retschmer, M. , Pennekamp, J. , Wehrle, K. , 2021. Cookie banners and privacy poli-
cies: measuring the impact of the GDPR on the web. ACM Trans. Web 15 (4),

1–42 .
ontasari, R. , Peltola, P. , 2015. Computer forensic analysis of private browsing

modes. In: International Conference on Global Security, Safety, and Sustainabil-
ity. Springer, pp. 96–109 .

uir, M. , Leimich, P. , Buchanan, W.J. , 2019. A forensic audit of the Tor Browser Bun-

dle. Digital Invest. 29, 118–128 .
elson, R. , Shukla, A. , Smith, C. , 2020. Web Browser Forensics in Google Chrome,

Mozilla Firefox, and the Tor Browser Bundle. In: Digital Forensic Education.
Springer, pp. 219–241 .

ylve, J. , 2012. LiME-Linux memory extractor. In: Proceedings of the 7th ShmooCon
Conference .

eng, S.-Y. , Wen, C.-Y. , 2018. A forensic examination of anonymous browsing activi-

ties. Forensic Science Journal 17 (1), 1–8 .
salis, N. , Mylonas, A. , Nisioti, A. , Gritzalis, D. , Katos, V. , 2017. Exploring the pro-

tection of private browsing in desktop browsers. Computers & Security 67,
181–197 .

itbarek, S.F. , Aga, M.T. , Das, R. , Austin, T. , 2017. Cold boot attacks are still hot: Secu-
rity analysis of memory scramblers in modern processors. In: 2017 IEEE Inter-

national Symposium on High Performance Computer Architecture (HPCA). IEEE,

pp. 313–324 .

osé Fernández-Fuentes obtained his B.Sc. Computer Science degree from the Uni-

ersidade de Santiago de Compostela (Spain) in 2016 and a MSc Degree in In-
ormation and Communication Technologies Security from the Universitat Oberta

e Catalunya, Universitat Rovira I Virgili, and Universitat Aut șnoma de Barcelona
Spain) in 2017. Currently, he is a PhD Student at the Research Center in Intelligent

echnologies (CiTIUS) of the Universidade de Santiago de Compostela. His main re-

earch interests include computer security in general, cloud computing, data pri-
acy, and virtualization.

omás F. Pena got his Ph.D. in Physics in 1994 in the University of Santiago de
ompostela (Spain). From 1994, he is an associate professor in the Department of

lectronics and Computer Science of the University of Santiago de Compostela. From

010, he is a member of the Research Center in Intelligent Technologies (CiTIUS) of

his University. His main research lines include the high performance computing in

eneral, the architecture of parallel systems, the development of parallel algorithms
or clusters and supercomputers, the optimization of the performance in irregular

http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0010
https://www.theguardian.com/world/2013/jun/06/nsa-phone-records-verizon-court-order
https://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00025-6/sbref0026

X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro Computers & Security 115 (2022) 102626

c
m

d

N

J
p

A

s

i

c
f

t
i

B

odes and with sparse matrices, the prediction, and improvement of the perfor-
ance of parallel applications in general, the development of applications and mid-

leware for Grid and Cloud, and the use of Big Data technologies for scientific and
LP applications.

osé C. Cabaleiro got his Ph.D. in Physics in the University of Santiago de Com-
ostela (Spain). From 1994 he is an associate professor in the area of Computer

rchitecture in the Department of Electronics and Computer Science in the Univer-
13
ity of Santiago de Compostela. From 2010, he is a member of the Research Center
n Intelligent Technologies (CiTIUS) of this University. His main lines of interest in-

lude the architecture of parallel systems, the development of parallel algorithms
or irregular problems and with sparse matrices, prediction, and improvement of

he performance of parallel applications, optimization of the memory hierarchy in
rregular problems and development of applications and middleware for Cloud and

ig Data.

	Digital forensic analysis methodology for private browsing: Firefox and Chrome on Linux as a case study
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Environment setup
	3.1.1 Browser setup

	3.2 Monitoring changes
	3.3 Browsing
	3.4 Data acquisition
	3.4.1 Hard disk
	3.4.2 Memory

	3.5 Analysis

	4 Firefox and Chrome as use cases
	4.1 Environment setup
	4.1.1 Browser setup

	4.2 Monitoring changes
	4.2.1 Monitoring changes in the hard drive
	4.2.2 Memory dump

	4.3 Browsing
	4.4 Data acquisition
	4.5 Analysis

	5 Results
	5.1 Findings from hard disk analysis
	5.2 Findings on the memory dumps
	5.2.1 Environment A
	5.2.2 Environment B
	5.2.3 Environment C
	5.2.4 Environment D

	6 Discussion
	6.1 Hard disk
	6.2 RAM
	6.2.1 Memory dump in T1
	6.2.2 Memory dump in T2
	6.2.3 Memory dump in T3
	6.2.4 Memory dump in T4

	7 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	References

