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Abstract

The performance and reliability of semiconductor devices scaled down to the sub-nanome-

ter regime are being seriously affected by process-induced variability. To properly assess

the impact of the different sources of fluctuations, such as line edge roughness (LER), statis-

tical analyses involving large samples of device configurations are needed. The computa-

tional cost of such studies can be very high if 3D advanced simulation tools (TCAD) that

include quantum effects are used. In this work, we present a machine learning approach to

model the impact of LER on two gate-all-around nanowire FETs that is able to dramatically

decrease the computational effort, thus reducing the carbon footprint of the study, while

obtaining great accuracy. Finally, we demonstrate that transfer learning techniques can

decrease the computing cost even further, being the carbon footprint of the study just 0.18 g

of CO2 (whereas a single device TCAD study can produce up to 2.6 kg of CO2), while obtain-

ing coefficient of determination values larger than 0.985 when using only a 10% of the input

samples.

Introduction

In nanoelectronics, an unsolved issue is the ever-closer limit of transistor scaling that threatens

to put a halt to the digital revolution observed over the last 50 years [1]. Therefore, it is essen-

tial and urgent to investigate new alternatives and solutions to be used in future transistor

technology nodes. Currently, gate-all-around (GAA) device architectures, like nanosheet (NS)

or nanowire (NW) FETs, are suggested as strong contenders by the International Roadmap for

Devices and Systems [2], because of their excellent electrostatic control [3].

Considering that the fabrication of nanoelectronic devices is a long, complex and very

expensive process [4], the use of Technology Computer-Aided Design (TCAD) to predict

device performance is mandatory in order to reduce costs and to optimize development times

[5]. At the nanoscale, the random deficiencies introduced during the manufacturing process
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lead to variability issues, heavily impacting the performance and reliability of the final product.

Metal-gate granularity (MGG), line edge roughness (LER), random discrete dopants (RDD),

oxide thickness variation (OTV) and interface trap charges (ITC) are the main sources of vari-

ability affecting current multigate transistors [6]. To properly analyze the effect of these

sources of fluctuations, statistical analysis of large ensembles of devices are needed [7]. On top

of that, three-dimensional simulations that account for quantum effects are required to realis-

tically model device behavior [8], heavily increasing the computational cost of the studies. For

that reason, it is relevant to apply complementary techniques, such as machine learning (ML)

[9, 10], to either shorten the computational times or to open the path to the investigation of

other effects that would be unfeasible using only TCAD. Recently, different aspects of machine

learning have attracted interest in the field of nanoelectronics. At circuit level, ML techniques

have been applied to predict the current-voltage curves needed for NW FETs compact models

[11]. At device level, several works have analyzed the impact of MGG or/and RDD induced

variability in GAA NW FETs [12, 13] and NS FETs [14, 15]. However, other sources of vari-

ability, such as LER, have not been investigated so far.

Within this work, we demonstrate that multi-layer perceptron networks can efficiently pre-

dict the effect of LER in state-of-the-art GAA NW FETs, greatly reducing the number of device

simulations required to fully capture this effect and thus, the associated computational cost. In

addition, we evidence that the use of transfer learning techniques can further decrease the

computing effort, obtaining coefficient of determination values (R2) above 0.985 when using

only a 10% of the input samples.

Methodology

Fig 1 shows 2D cross-sectional schematics of the two Si-based GAA NW FETs used in this

work, a 22 nm gate length device (top figures) and a 10 nm gate length one (bottom figures).

Their main device dimensions are included in Table 1 for an easy comparison. These devices

have an uniform p-type doping in the semiconductor channel and a n-type Gaussian doping

in the source/drain (s/d) regions, that is fixed to Ns/d from the s/d contacts till a point (Xm)

nearby the gate region, where the doping exponentially decays (with a slope δ), as shown in Fig

2. The specific doping values for each device and region are also included in Table 1.

The 22 nm GAA NW FET structure is designed after an experimental device [16] and, Fig 3

shows a comparison of experimental versus simulated ID-VG characteristics, on both linear

and logarithmic scales, at a supply bias of 1.0 V. Two three-dimensional finite-element (FE)

device simulation approaches, implemented in VENDES [17], have been considered in this

Fig 1. 2D schematics of the 22 nm (top) and 10 nm (bottom) gate length GAA NW FETs.

https://doi.org/10.1371/journal.pone.0288964.g001
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work. First, a quantum-corrected drift-diffusion (DD) method, able to efficiently characterize

the device behavior in the sub-threshold region. Second, a quantum-corrected ensemble

Monte-Carlo (MC) approach, that produces noisy results in the sub-threshold (see Fig 3) but it

is able to correctly capture non-equilibrium effects, thus being valid for calculating the device

on-current (Ion). The DD approach, thanks to a careful fitting of the mobility models [18], also

shows a very good agreement with the experimental data in the device on-region; however,

this method has been previously demonstrated to produce inaccurate results in on-region vari-

ability studies that involve fluctuations in the device channel cross-section [19], as is the case

with LER. The simulation times of one gate bias point at VD = 1.0 V using either 3D quantum-

Table 1. Dimensions, dopings and configuration parameters for the two ideal, LER-free GAA NW FETs.

Device 22 nm 10 nm

Gate length (Lg [nm]) 22 10

Source/Drain lengths (Ls, Ld [nm]) 31.0 14.0

Total device length (L [nm]) 84.0 38.0

Semiconductor perimeter (Ps [nm]) 40.2 20.3

Channel width (wch) [nm] 11.3 5.7

Channel height (hch) [nm] 14.2 7.2

Oxide thickness (tox) [nm] 1.5 0.8

P-type channel doping (Nch [cm−3]) 1015 1015

N-type source/drain doping (Ns/d [cm−3]) 1020 1020

Ns/d decay starting point (Xm [nm]) ±17.1 ±7.8

Slope of Ns/d decay (δ [nm]) 7.1 3.2

Work function value (WF [eV]) 4.4 4.4

https://doi.org/10.1371/journal.pone.0288964.t001

Fig 2. Cross-section of Gaussian-like doping profile along the transport direction in the 22 nm and 10 nm gate

length GAA NW FETs.

https://doi.org/10.1371/journal.pone.0288964.g002
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corrected DD or MC simulations are on average 1.4 hours and 80.3 hours, respectively, in an

Intel i7-9700K CPU @ 3.60GHz single core for a 190 K nodes device mesh. Therefore, to save

computational time and resources, we combine fast DD simulations to obtain the values of the

sub-threshold region figures of merit, i.e. off-current (Ioff), sub-threshold slope (SS) and

threshold voltage (Vth), with slower MC results to extract the Ion. As indicated in Fig 3, Ioff and

Ion are calculated as the drain currents at the specific gate biases of 0.0 V and 1.0 V, respec-

tively. Vth is extracted via the linear extrapolation (LE) method, that defines the threshold volt-

age as the x-intercept of the I0:5

D � VG curve linear extrapolation at its maximum first derivative

point [20]. Note that, unlike the off- and on-currents, to obtain an accurate Vth value several

gate bias points need to be simulated, with average execution times of 8.4 hours. The SS is the

slope of the linear part of the ID-VG curve observed for VG values lower than Vth (see Fig 3).

Therefore, once you obtain Vth you can also estimate SS without any further computation.

Table 2 shows the main figures of merit for the 22 and 10 nm gate length devices, in ideal con-

ditions, i.e. not affected by LER.

LER is a source of variability that arises from the fabrication processes since the device

edges are not perfectly smooth and deviate from the ideal shape. At the current scaling level,

with dimensions below 10 nm, LER can be as large as the size of the device’s critical features,

thus heavily impacting the transistor’s performance and reliability [2]. To model LER, the

edges of the nanowire in y-direction (see an example in Fig 4) are deformed according to the

shape of a roughness profile created via the Fourier synthesis method [21]. These deformations

are typically characterized by two parameters: i) the correlation length (CL), which describes

the spatial correlation between deformations in the different points of the device in the x-

direction and, ii) the root mean square (RMS) height, that establishes the amplitude of the

Fig 3. Experimental (EXP) vs. simulated ID-VG characteristics at VD=1.0 V, on both logarithmic and linear scales,

for the 22 nm gate length GAA NW FET. Quantum-corrected drift-diffusion (DD) and Monte Carlo (MC)

simulations are included for comparison. The main figures of merit (FOM) that characterize device performance, off-

current (Ioff), threshold voltage (Vth) and on-current (Ion) are included.

https://doi.org/10.1371/journal.pone.0288964.g003
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roughness in the y-direction. First, the Gaussian spectrum (SG) is used to generate the rough-

ness as follows:

SG ¼
ffiffiffi
p
p
ðRMSÞ2e� k2ðCLÞ2=4; ð1Þ

being k the frequency values that are defined by the discretization in real space. Then, the spec-

trum SG is multiplied by an array of complex random numbers and transformed back to real

space via an inverse fast Fourier transform. The applied LER is uncorrelated, i.e. the deforma-

tions will not be equal at both edges of the device, mimicking the real fabrication process. Fig 5

shows an example of a roughness profile with a CL = 10 nm and a RMS = 1 nm, which is then

used to modify the device structure. Note that, the FE-based tetrahedral discretization will

allow to properly capture the LER-induced deformation.

Table 2. Main figures of merit that characterize the performance of the two ideal, LER-free GAA NW FETs.

Device 22 nm 10 nm

Supply voltage (VD [V]) 1.0 0.7

Off-current (Ioff [A]) 7.28 × 10−9 2.09 × 10−11

On-current (Ion [A]) 4.97 × 10−5 3.07 × 10−5

Sub-threshold slope (SS [mV/dec]) 85.0 69.7

Threshold voltage (Vth [V]) 0.132 0.267

https://doi.org/10.1371/journal.pone.0288964.t002

Fig 4. Example of a 22 nm gate length GAA NW FET affected by LER. The correlation length (CL) is 10 nm and the

root mean square (RMS) height is 1 nm.

https://doi.org/10.1371/journal.pone.0288964.g004
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Machine learning modeling

Machine learning and deep learning models have been successfully applied to many research

areas [22]. However, the use of such methods to deal with the most relevant transistor design

challenges has only recently been initiated. As it was previously noted, the characterization of

Si-based GAA NW FETs behavior requires very time-consuming simulations, especially in the

case of using MC methods. For this reason, we propose a machine learning approach to predict

the impact of LER on these devices with the aim of decreasing noticeably the total simulation

time. In particular, to obtain the device on-current (Ion), off-current (Ioff), sub-threshold slope

(SS) and threshold voltage (Vth), we plan to use multi-layer perceptron (MLP) networks,

which are simpler with respect to other types of neural networks but powerful enough to

deliver very good results [23]. In any case, we will also compare the performance results against

other well-established ML methods.

MLPs are fully connected feed-forward neural networks, which consist of three or more lay-

ers (an input and an output layer with one or more hidden layers). An example is shown in Fig

6. The input layer consists of a set of neurons (from x1 to xn in the figure) representing the

input features. Each neuron in the hidden layer transforms the values from the previous layer

with a weighted linear summation, followed by a non-linear activation function. The output

layer receives the values from the last hidden layer and transforms them into the output values.

The neurons in the MLP are trained with the back propagation learning algorithm. As a result,

MLPs are designed to approximate any continuous function and can solve problems which are

not linearly separable for either classification or regression. In our case, we will focus on

regression since the goal is to obtain the values that characterize a particular device (Ion, Ioff, SS
and Vth) using as input some features describing its LER deformations.

Fig 5. Line-edge roughness deformation (CL = 10 nm, RMS = 1 nm) illustrating the effect on the 22 nm gate length

device geometry. The outline of the ideal undeformed device is included as reference.

https://doi.org/10.1371/journal.pone.0288964.g005
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Specifically, to generate the input features for training the neural network, the total length

of the device (x-direction) is discretized into 400 points (see a simplified example in Fig 5), a

value large enough to capture the effect of the LER deformation. At each of these points the

downward vertical distance between the middle of the device (y = 0.0) to its edge (y = hwdown),

is measured and stored, using negative values for reference. Next, the same procedure is car-

ried out in the upward direction (y = hwup), but now these values are considered as positive.

Consequently, for each LER-affected device, there are a total of 800 input values that character-

ize its deformation. From now on, we refer to these points as the LER profile of the device.

Results and discussion

Datasets and experimental setup

As mentioned before, in this work we use two GAA NW FETs that differ both in their physical

dimensions and in other configuration parameters, as shown in Table 1. LER deformations are

then applied to these ideal non-deformed devices considering three RMS heights (0.4, 0.6 and

1.0 nm), and four CL values (10, 15, 20 and 30 nm), generating 1,000 different device configu-

rations (LER profiles) for each combination of RMS height and CL. For each LER-affected

device, as mentioned in the Methodology section, we run a DD simulation to extract the sub-

threshold region figures of merit, and a Monte Carlo simulation, to obtain the Ion. Note that,

although the material properties of the devices under study are exactly the same, their physical

dimensions will differ due to LER. Therefore, for a particular device configuration, it may

occur that one simulation methodology is able to reach convergence while the other one fails

to do so, providing a Null output in the corresponding figure of merit, which is then disre-

garded for the study. It is worth mentioning that the longer the RMS height, the larger the

Fig 6. Example of a multi-layer perceptron network (MLP) containing two hidden layers.

https://doi.org/10.1371/journal.pone.0288964.g006
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influence of LER on the device performance [24]. The impact of LER also tends to grow for

increasing CLs, although it reaches a plateau at CL values similar to the device gate length [25].

For these reasons, for both gate length devices, we have combined the extreme values of CL

(10 and 30 nm) and RMS (0.4 and 1.0 nm) to generate the training datasets, and we have used

two intermediate values of CL and RMS, i.e. CL = 15 nm, RMS = 0.6 and CL = 20 nm,

RMS = 0.4, to generate the test datasets. As a consequence, the training and test datasets for

each gate length device contain 4,000 and 2,000 examples, respectively.

All the codes used for this work have been implemented using Python 3.9 and the Scikit-

learn library (v1.2.1). The main features of the MLP network used in the experiments are

detailed in Table 3. Note that the number of hidden layers and their sizes (hyperparameters)

were previously obtained using a grid search. To train the MLP model, LBFGS (Limited-mem-

ory Broyden-Fletcher-Goldfarb-Shanno algorithm) was adopted because of the relatively small

size of the training data set (4,000 examples) [26]. It uses the square error as loss function. The

response variables Ioff and Ion are scaled using the logarithmic function as a pre-processing

stage, so the hyperbolic tangent (tanh) is the most suitable activation function because it can

work for positive as well as negative input values [12]. On the other hand, all the experiments

were conducted on a server with one Intel Core i7-9700K CPU @ 3.60GHz and 128 GB of

RAM memory.

Performance results

To evaluate and compare the different machine learning approaches, we have considered two

performance metrics:

Coefficient of determination (R2): It is a measure that provides information about the good-

ness of fit of a model. In the context of regression it is a statistical measure of how well the

regression line approximates the actual data and therefore a measure of how well unseen

examples are likely to be predicted by the model. If ŷi is the predicted value of the i-th exam-

ple and yi is the corresponding true value for total n examples, the estimated R2 is defined

as:

R2 ¼ 1 �

Pn
i¼1
ðyi � ŷiÞ

2

Pn
i¼1
ðyi � �yÞ2

ð2Þ

where �y ¼ 1

n

Pn
i¼1

yi. The best possible score is 1 and it can be negative.

Table 3. Main characteristics of the MLP network considered in this work. Note that the solver refers to the algo-

rithm or method used to solve the optimization problem involved in training the regressor. L2 regularization adds a

penalty term to the loss function during training to prevent overfitting.

Parameter Value

Hidden layers 3

Neurons per hidden layer 80

Solver LBFGS

Activation function tanh

Max. Iterations 2,000

L2 regularization 0.1

Input features 800 (LER profile)

https://doi.org/10.1371/journal.pone.0288964.t003
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Root Mean Squared Error (RMSE): It is the most common evaluation metric for regression

models. It is the square root of the mean squared error (MSE):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

� �
Xn

i¼1

ðyi � ŷiÞ
2

s

ð3Þ

The calculated value is in the same unit as the required output variable. Lower values are

better.

Figs 7 and 8 show the performance of our trained MLP model by comparing predicted and

actual values of the four figures of merit (Ioff, Ion, SS and Vth) for the 22 nm and 10 nm LER-

affected devices, respectively. It can be observed that the predictions are noticeably accurate in

all cases, also including the extreme values. It demonstrates that it is possible to predict the

(a) (b)

(c) (d)

Fig 7. Predicted and actual values for the considered figures of merit using our test dataset (LER-affected 22 nm gate

length GAA NW FETs).

https://doi.org/10.1371/journal.pone.0288964.g007
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behavior of devices affected by intermediate values of CL and RMS using as input of the MLP

only information obtained from their extreme values. In particular, Table 4 summarizes the R2

and RMSE values achieved by our models. Performance metrics confirm that predictions are

excellent, reaching R2 values up to 0.9994. Note that the worst case, Ion for 22 nm devices, is

still very good with a coefficient of determination of 0.9868. RMSE is always very low, being at

least two orders of magnitude lower than the actual values of the considered response variable.

See in Table 2 the different figures of merit reference values for the ideal GAA NW FETs.

The above results were obtained using the complete training datasets to feed the MLP net-

works. Next we will evaluate the impact of the input data size on the training process. With

this goal in mind, R2 and RMSE performance metrics were computed for MLP networks

trained using only a fraction of the input dataset ranging from 0.1 (10% of the dataset) to 1

(complete dataset). Results when considering the 22 nm devices are displayed in Fig 9. It can

be observed that even for small percentages of the input dataset, metrics for all the response

variables are quite good. For instance, R2 values range from 0.9642 (Vth) to 0.9919 (Ioff) using

(a) (b)

(c) (d)

Fig 8. Predicted and actual values for the considered figures of merit using our test dataset (LER-affected 10 nm gate

length GAA NW FETs).

https://doi.org/10.1371/journal.pone.0288964.g008

PLOS ONE A machine learning approach to model the impact of line edge roughness on gate-all-around nanowire FETs

PLOS ONE | https://doi.org/10.1371/journal.pone.0288964 July 24, 2023 10 / 17

https://doi.org/10.1371/journal.pone.0288964.g008
https://doi.org/10.1371/journal.pone.0288964


only 10% of the training dataset. The response variable that benefits the most from the increase

in the number of input examples is Vth (bottom right figure). On the other hand, as expected,

RMSE tends to decrease when adding more examples to the training dataset. It is worth noting

that the behavior for the 10 nm devices is very similar. Therefore, our approach is capable of

successfully predicting the values of the figures of merit even using a reduced training dataset.

Training our MLP models is extremely fast. In particular, it only takes on average from 50.9

to 162.6 seconds depending on the considered response variable and gate length. It means

that, for example, computing Ion from our trained model for a particular 22 nm device is about

2,370 × faster than using a MC simulation (80.3 hours, as was explained in the Methodology

section). Note that times to generate the training data are not included in these experiments.

Comparison with other machine learning methods. In addition to MLPs, we can find in

the literature many regression methods. To demonstrate the benefits of our approach, a com-

parison with some of the most successful regression techniques was carried out. In particular:

• Decision Tree (DT) regression [27]: It creates a tree-based structure that predicts the value

of a target variable by learning simple decision rules inferred from the data features. A

Table 4. Performance metrics (R2 and RMSE) of our MLP-based regression models.

Figs. of merit 22 nm 10 nm

R2 RMSE R2 RMSE

Ioff [A] 0.9994 8.730 × 10−11 0.9994 7.291 × 10−13

Ion [A] 0.9868 1.268 × 10−7 0.9986 4.812 × 10−8

SS [mV/dec] 0.9966 1.460 × 10−1 0.9963 1.216 × 10−1

Vth [V] 0.9914 1.321 × 10−3 0.9987 7.955 × 10−4

https://doi.org/10.1371/journal.pone.0288964.t004

(a) (b)

(c) (d)

Fig 9. Impact of the training data size on the performance of the MLP models (LER-affected 22 nm gate length GAA

NW FETs). (a) Ioff. (b) Ion. (c) SS. (d) Vth.

https://doi.org/10.1371/journal.pone.0288964.g009
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regression tree is built using a binary recursive partitioning process. Initially, all the training

examples are grouped into the same partition. The algorithm then begins allocating the data

into the first two partitions or branches, using every possible binary split on every feature.

The algorithm selects the split that minimizes the sum of the squared deviations from the

mean in the two separate partitions. This splitting rule is then applied to each of the new

branches. To predict a response, the decisions in the tree should be followed from the root

(beginning) node down to a leaf node. The leaf node contains the response.

• Random Forest (RF) regression [28]: It is a supervised learning algorithm that uses ensemble

learning methods for regression. In particular, it uses the combination of multiple random

decision trees, each trained on a subset of data. The use of multiple trees gives stability to the

algorithm and reduces variance.

• Support Vector Machine (SVM) regression [29]: It is one of the most successful and well

studied methods for regression. SVM regression is considered a nonparametric technique

because it relies on kernel functions. One of the main advantages of SVM regression is that

its computational complexity does not depend on the dimensionality of the input space.

Table 5 shows the performance metrics using different machine learning regression tech-

niques for the 22 nm and 10 nm LER-affected devices. For all the response variables, the best

performer is always our proposal based on MLP networks. Differences with respect to the

other methods are noticeable. Regardless, RF obtains decent results for all the studied cases.

We must highlight that RF training times are always higher than those observed for MLP. DT

and SVM are faster to train, but their results are poor and very irregular.

Transfer learning. Machine learning methods, especially those related to (deep) neural

networks, require big datasets to successfully train the models. There are scenarios where

Table 5. Performance metrics obtained by different machine learning techniques for regression.

FOM Regressor 22 nm 10 nm

R2 RMSE R2 RMSE

Ioff [A] MLP 0.9994 8.730 × 10− 11 0.9994 7.291 × 10− 13

DT 0.4950 2.571 × 10−9 0.7866 1.347 × 10−11

RF 0.9360 9.156 × 10−10 0.9601 5.820 × 10−12

SVM 0.9736 5.874 × 10−10 0.9802 4.109 × 10−12

Ion [A] MLP 0.9868 1.268 × 10− 7 0.9986 4.812 × 10− 8

DT 0.8501 4.274 × 10−7 0.9427 3.081 × 10−7

RF 0.9615 2.166 × 10−7 0.9889 1.352 × 10−7

SVM 0.3997 8.554 × 10−7 0.7380 6.589 × 10−7

SS [mV/dec] MLP 0.9966 0.146 0.9963 0.122

DT 0.6697 1.448 0.8644 0.735

RF 0.9446 0.5932 0.9761 0.309

SVM 0.7884 1.159 0.3203 1.646

Vth [V] MLP 0.9914 1.321 × 10− 3 0.9987 7.955 × 10− 4

DT 0.7392 7.262 × 10−3 0.9181 6.395 × 10−3

RF 0.9501 3.175 × 10−3 0.9869 2.553 × 10−3

SVM 0.5932 9.071 × 10−3 -0.2088 2.457 × 10−2

Bold numbers highlight the best performer for each figure of merit.

https://doi.org/10.1371/journal.pone.0288964.t005

PLOS ONE A machine learning approach to model the impact of line edge roughness on gate-all-around nanowire FETs

PLOS ONE | https://doi.org/10.1371/journal.pone.0288964 July 24, 2023 12 / 17

https://doi.org/10.1371/journal.pone.0288964.t005
https://doi.org/10.1371/journal.pone.0288964


training data is expensive or difficult to collect. In our case, for example, a single MC simula-

tion takes tenths of hours on a standard server. This is where transfer learning comes in.

Transfer Learning (TL) refers to a technique for predictive modeling on a different but

somewhat related problem that can then be reused partially or completely to speed up training

and/or improve a model’s performance on the problem of interest. In the context of neural

networks, this means reusing the weights of one or more layers of a pre-trained network

model in a new model and keeping the weights fixed, adjusting them or adapting them

completely when training the model.

Next, we will apply a transfer learning approach to predict the figures of merit of the 10 nm

devices using as starting point the trained models used for the 22 nm devices. It means that we

will retain the values of the model’s trainable parameters from the previous model (22 nm

devices) and use those initially instead of starting a training process from scratch. First, we

want to demonstrate that this way the training process will be faster. That is, the number of

iterations required to successfully train the networks is significantly lower. A comparison

between training the networks from scratch or using the transfer learning approach is shown

in Fig 10. The graphs display the results of the training process in terms of the evolution of R2

and RMSE when using different numbers of iterations. It can be observed that the transfer

learning method works since R2 and RMSE quickly reach values very close to the maximum

and minimum, respectively. For instance, R2 and RMSE are 0.9986 and 4.812 × 10−8 A when

training the network from scratch to predict Ion for the 10 nm LER-affected devices (see

Table 4). In that case, the number of iterations was 2,000. Using transfer learning, the corre-

sponding values after only 100 iterations are 0.9981 and 5.635 × 10−8 A, which are almost iden-

tical to our best ones (top right Fig 10). Note that, if we train the MLP model without transfer

(a) (b)

(c) (d)

Fig 10. Performance metrics using a transfer learning approach and training the networks from scratch (i.e.,

without transfer learning) to predict the figures of merit of the 10 nm gate length devices. (a) Ioff. (b) Ion. (c) SS. (d)

Vth.

https://doi.org/10.1371/journal.pone.0288964.g010
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learning instead, after 100 iterations, R2 and RMSE would be 0.7098 and 6.934 × 10−7 A, very

far from our best results. At the same time, reducing the iterations to converge also has a big

impact on the training times. In this way, considering 100 iterations, we reduce to less than 5

seconds the time required to train our MLP-based models in order to predict the response var-

iables. In other words, computing the figures of merit for the 10 nm devices when using trans-

fer learning is about 57,800× and 1,000× faster than MC and DD simulations, respectively (see

Methodology section).

As commented above, another important advantage of transfer learning is the reduction of

the required input data to train the models, which is especially relevant in cases where training

data is costly or difficult to collect. Table 6 shows the regression performance metrics obtained

by our transfer learning approach when using a small fraction of the training dataset to predict

the response variables of the 10 nm devices. Results confirm the benefits of our methodology

where good predictions are achieved even when using a small percentage of the training data-

set. For example, R2 is always above 0.985 using 10% of the input examples (i.e. only 400 LER

profiles).

Therefore, we can conclude that transfer learning is a good solution to speed up the training

process and also to reduce noticeably the required training dataset size. This technique could

aid in the design of variability-resistant device architectures since it could allow quick and sim-

ple testing of the impact of different device features (e.g. gate length, cross-section dimensions)

on an LER-affected transistor’s performance.

Impact on the environment: Carbon emissions. As we pointed out, our approach

reduces noticeably the computing time to calculate the figures of merit for a particular device.

Next, we demonstrate that it also has a strong impact on the environment, causing a reduction

in the carbon footprint. To estimate the carbon emissions we follow the methodology pre-

sented in Lacoste et al. [30]. In particular, the estimated carbon emissions in grams are derived

using the following expression:

eq: grams of CO2 ¼
t � Ce �Wcpu

1000
ð4Þ

where t is the equivalent CPU-hours of computation, Ce = 341 is the carbon efficiency coeffi-

cient of the grid (measured in grams of CO2eq/kWh) and Wcpu is the Thermal Design Power

of the CPU in watts (95 W in our case). Note that the carbon efficiency data for our region was

taken from Moro and Lonza [31]. We use the corresponding CPU-hours required to compute

the figures of merit by means of simulations (DD and MC) and training the MLP models (our

approach).

Carbon emissions are shown in Table 7. We compare the calculation of the figures of merit

for an LER-affected 10 nm device using simulations (DD and MC) and our proposal based on

Table 6. Performance metrics obtained by our transfer learning approach when using a small fraction of the training dataset to predict the figures of merit of the 10

nm gate length devices.

FOM Percentage of training dataset

1% 5% 10%

R2 RMSE R2 RMSE R2 RMSE

Ioff [A] 0.9256 7.955 × 10−12 0.9912 2.742 × 10−12 0.9959 1.864 × 10−12

Ion [A] 0.8603 4.812 × 10−7 0.9930 1.077 × 10−7 0.9958 8.377 × 10−8

SS [mV/dec] 0.8261 8.328 × 10−1 0.9784 2.933 × 10−1 0.9888 2.111 × 10−1

Vth [V] 0.7019 1.220 × 10−2 0.9816 3.034 × 10−3 0.9859 2.654 × 10−3

https://doi.org/10.1371/journal.pone.0288964.t006
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training MLP networks. It is important to highlight that, unlike the simulations procedure, the

carbon footprint of the training process should be paid only once, because the same trained

network can be reused for different configurations (LER profiles) of devices with equal gate

length. As a result, for instance, our proposal reduces the emissions from 2.6 kg to just 0.84 g

of CO2 for the calculation of Ion when training the MLP network from scratch. However, if

1,000 configurations are considered, the carbon emissions caused by the MC simulations will

increase up to 2.6 tons of CO2, while our method does not require additional training. If the

transfer learning method is used instead, the carbon footprint is dramatically reduced to only

0.05 g of CO2.

Conclusions

The digital world we live in would have not been possible without the continuous advance of

the semiconductor industry. In this context, the use of advanced simulation tools (TCAD) to

evaluate new semiconductor device architectures and assess their robustness is crucial for both

the semiconductor industry and academic research. However, with the current device’s critical

dimensions deep into the nanometer regime, the computational cost of some TCAD studies

can be prohibitive. Therefore, the introduction of less computationally-demanding methods is

needed to deal with this problem. Here, we have demonstrated the advantages of using

machine learning techniques to assess the effect of the line edge roughness-induced variability

on gate-all-around nanowire (GAA NW) FETs. The impact of LER on four different figures of

merit (off-current, threshold voltage, sub-threshold slope and on-current) has been predicted

for two different GAA NW FETs, a 22 nm gate length device and a scaled-down version, with

a 10 nm gate length. The MLP networks have achieved the best performance metrics (R2 and

RMSE values), when compared to well-known regression methods (DT, RF and SVM), with

R2 * 0.99 for the two devices and the four analyzed figures of merit. Finally, we demonstrate

that MLP networks can dramatically decrease variability studies computational effort, which

can be diminished even further by using transfer learning techniques, achieving R2 > 0.985

when using only a 10% of the input samples, and producing as little as 0.18 g of CO2 emissions

(when computing the four studied figures of merit), a value several orders of magnitude lower

than that of TCAD studies. Finally, it is worth mentioning that the MLP architecture could

also be applied (with an adequate calibration of the network hyperparameters and weights) to

other relevant sources of variability affecting semiconductor devices, such as metal grain gran-

ularity, gate-edge roughness or random discrete dopants.
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