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Abstract Hyperspectral image registration is a relevant task for real-time
applications like environmental disasters management or search and rescue
scenarios. Traditional algorithms were not really devoted to real-time per-
formance, even when ported to GPUs or other parallel devices. Thus, the
HYFMGPU algorithm arose as a solution to such a lack. Nevertheless, as sen-
sors are expected to evolve and thus generate images with finer resolutions
and wider wavelength ranges, a multi-GPU implementation of this algorithm
seems to be necessary in a near future. This work presents a multi-device
MPI+CUDA implementation of the HYFMGPU algorithm that distributes
all its stages among several GPUs. This version has been validated testing
it for 5 different real hyperspectral images, with sizes from about 80 MB to
nearly 2 GB, achieving speedups for the whole execution of the algorithm
from 1.18× to 1.59× in 2 GPUs and from 1.26× to 2.58× in 4 GPUs. The
parallelization efficiencies obtained are stable around 86% and 78% for 2 and
4 GPUs respectively, which proves the scalability of this multi-device version.
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1 Introduction

The task consisting on estimating the translation, rotation and scaling param-
eters of a given image with respect to a second take of the same scene obtained
at different times, viewpoints and/or lighting conditions is known as image reg-
istration. During the last years, different hyperspectral image registration tech-
niques have been proposed, but most of them ignore time performance. How-
ever, many real-time applications such as the management of natural disasters
or surveillance operations depend on hyperspectral images being processed in
real-time. GPUs were used to boost tasks like classification, target detection
or segmentation of this kind of images, but few efforts were made to achieve
a real-time implementation of a hyperspectral registration algorithm. In [21],
Ordóñez et al. introduced HYFM, a Fourier-Mellin algorithm for hyperspec-
tral images registration, and implemented a sequential CPU version of it. That
work was followed by HYFMGPU, a single-GPU CUDA-based version whose
performance makes it suitable to be used in real-time environments [22]. As
hyperspectral sensors technology improve, images will have finer resolutions
in both spatial and spectral domains. Because of that, more computational
power and more memory space, this latter one being a limited resource in
GPUs, will be needed. In this paper we propose a coarse-grained multi-device
implementation of HYFMGPU able to satisfy such present and future needs.
This proposal results of a thorough study of the inner computing stages per-
formed in each step of the original single-GPU version, conducted in order to
assess the feasibility of distributing them among several devices. This work
is a full version of a short paper [3] presented in the CMMSE 2018
conference. That initial approach was a prospective multi-GPU im-
plementation on which only the most embarrasingly parallel stages
of the algorithm were distributed, and that was evaluated using a
single small image as test case.

The rest of this paper is organized as follows: Section 2 summarises the
HYFMGPU algorithm, describing then in Section 3 our proposal and the
implementation process followed to achieve a multi-GPU version of it. The
results obtained by this approach are introduced in Section 4, whereas some
related research work is discussed in Section 5. Finally, Section 6 presents the
conclusions and some feasible research lines for the future.

2 The HYFMGPU algorithm

The HYFMGPU algorithm expects a pair of hyperspectral images (reference
and target) as inputs. Its goal is to register the target image, this is, to com-
pute how it is rotated, shifted and scaled with respect to the reference image.
The procedure comprises six main stages, which are depicted in Figure 1.
These stages are launched to a single GPU by means of a CUDA [13] imple-
mentation that relies on some specific-purpose libraries, namely cuBLAS [12],
cuFFT [14], cuSOLVER [15], the NVIDIA Performance Primitives (NPP) [18],
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A Multi-GPU Version of the HYFMGPU Algorithm 3

and Thrust [19]. As Figure 1 shows, this implementation can be roughly de-
composed in the following steps:

Step 1
Initialization

Step 2
Preprocessing

Step 3
Bands processing and composition

Step 4
Peak processing

Fig. 1 HYFM scheme for registration of two hyperspectral images

1. Initialization: Input images are transferred from the host CPU main
memory to the GPU global memory.

2. Preprocessing: In Stage I, first a single-element kernel applies a Black-
man filter to both inputs to remove higher frequencies, which might be
detrimental for the precision of the registration. Those filtered images are
centered, and then a principal component analysis (PCA) [24] is applied
to each of them in order to extract their most relevant features by retain-
ing a reduced number of principal components (i.e., transformed bands of
the original images). Both cuBLAS and cuSOLVER operations are used to
implement this analysis. Finally, rows and columns of both band-reduced
images are expanded to the nearest common upper power of 2, and data
is transformed to complex values.

3. Selected bands processing and composition: In this step, pairs com-
posed of the same PCA-extracted band from both inputs are processed
by computing a high-pass filter and a multilayer fractional Fourier
transform (MLFFT) [23] (Stage II). Log-polar coordinate maps
are extracted from the MLFFT-transformed bands in each pair
(Stage III), and then a phase correlation (Stage IV) is applied
on them. Stages II and IV are FFT-based, so that the underlying
operations are implemented by means of the cuFFT library. Since this is
a single-GPU implementation, the device is commanded to iterate over all
the band pairs in order to perform this stage. Finally, a reduction (Stage
V) is performed in the global memory of the device in order to average the
log-polar correlated maps obtained for each pair of PCA-extracted bands.

4. Peak processing: The peaks contained in the average map of log-
polar coordinates computed in the previous step are sorted in the device
using the Thrust library, selecting a given number and processing them one-
by-one. This process starts by rotating and scaling the first component
of the target image several times using specific functions from the NPP
library. Next, a phase correlation and a cuBLAS-based maximum search
are performed on the cartesian grid to determine the correct angle and

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-018-2689-7

3

http://dx.doi.org/10.1007/s11227-018-2689-7
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translation parameters. Finally, the highest peak of all the cartesian grids
is selected, as its coordinates determine the shift parameters. In turn, their
log-polar counterparts decide the scale factor and the rotation angle. All
these values are the expected output of the Stage VI of the algorithm.

3 Proposal of multi-GPU parallelization

A glance at the HYFM scheme depicted in Figure 1 quickly reveals the work-
load comprising Stages II, III and IV as a very interesting candidate to a multi-
device coarse-grained parallelization. This workload, described in the Step 3 of
the single-GPU CUDA implementation introduced in Section 2, is performed
by a loop that iterates over the set of band pairs extracted from reference and
target images. Only this embarrasingly parallel loop was distributed
among several GPUs in the initial approach presented in [3]. To im-
plement that parallelization, we prepared first an OpenMP-threaded
version of the HYFMGPU host program. In such a version, a master thread
controlled the parts of the multi-device implementation that were kept as
single-GPU (Steps 1, 2 and 4), whereas a parallel section was defined to com-
mand each GPU to run its stake of the Step 3. So, in this code, once the master
thread loads the images, it commands its GPU to apply the Blackman filter, to
compute the PCA, and to distribute the extracted components equally among
the GPUs available. When the program enters the parallel section, each thread
commands its GPU to convert its subset of the PCA-extracted pairs of bands
to complex datatype and to perform over them Stages II, III and IV of the
algorithm. After the program exits this parallel section, the master thread
takes the control back, averaging the partial log-polar maps computed by each
GPU (Stage V) and processing the peaks (Stage VI) in order to get the final
shift, scale and angle outputs expected after this last stage.

3.1 Moving from OpenMP to MPI

As the description of the Step 3 from Section 2 shows, several FFT
operations are performed on the PCA-extracted bands. In our multi-
GPU version of the algorithm, each GPU performs the same FFT-
based operations on a different subset of bands. So, the correspond-
ing cuFFT routines will run on their own in each device, and hence
separated sets of FFT execution plans are needed. Despite creating
each set of plans separately for each GPU from its corresponding
OpenMP thread, we observed that these initialization operations
were eventually sequentialized, since the execution time of the Step
3 was always multiplied by the number of selected devices, instead
of being divided as expected. To solve this issue, we shifted from
forking multiple OpenMP parallel threads to run separated MPI
processes. Since MPI programs follow a SPMD (Single Program,
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Multiple Data) model, each of these processes manages an isolated
host memory region, instead of sharing all the host memory space as
OpenMP parallel threads do. This ensured the independent sets of
FFT plans needed by each GPU to be prepared in different processes
each with its own memory space, eventually avoiding the sequential-
ization problem.

In addition, moving the coarse-grained parallelization support
of the initial multi-device implementation from OpenMP to MPI
introduced on it some issues related to workflow synchronizations
and data communications among processes. Such questions must be
taken into account not only to adapt the parallelization of Step 3
introduced in our initial approach but also to distribute Steps 1, 2
and 4 among several GPUs.

3.2 Full algorithm with coarse-grained parallelization

In this section we provide a description of the MPI-based parallelization pro-
cess of all the HYFM algorithm steps, identifying which inner parts of these
steps have been just replicated and which ones have been totally distributed
among the processes and their corresponding GPUs. In these latter cases, all
the particularities introduced by the usage of MPI are also explained. More-
over, let us note that all explicit data transfers among different GPUs re-
ferred from now on are made by properly combining CUDA API synchronous
memory copy calls and MPI communication primitives in either origin and
destination host processes. Such an explicit management of data trans-
fers allows our implementation to run in any multi-GPU environ-
ment, no matter either the specific features of the NVIDIA devices
available or how they are connected both to their hosts or among
them. Nevertheless, future versions could rely on CUDA-aware MPI
implementations [16] and the NVIDIA Collective Communications
Library (NCCL) from CUDA 9 [17] to exploit peer-to-peer com-
munications where available or, at least, to avoid intermediate host
buffers when data transfers among devices connected to different
nodes are needed [9].

3.2.1 Initialization

Both reference and target images are scattered among the GPUs in equally
distributed groups of rows, so given an input image of c columns, r rows and
b bands, each GPU will store in its global memory a slice of c columns, rk rows
and b bands, being k = 0, . . . , n−1 and n the number of selected GPUs. When
this distribution is not exact, the uneven rows are cyclically assigned to each
GPU in order to keep the load balanced.
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Fig. 2 Multi-GPU workflow for Blackman filter and image centering parts of Step 2

3.2.2 Preprocessing

The preprocessing step of the algorithm is composed of three different parts,
on which both reference and target images are first filtered using a Blackman
window, then normalized, and finally shrunk to a reduced number of bands by
means of a principal component analysis (PCA). In the original HYFM imple-
mentation, this analysis is performed by a single-GPU non-iterative procedure
based on that one presented in [5].

In this MPI+CUDA approach, the GPU commanded by each process takes
the reference and target images slices loaded in Step 1 and applies on them
the aforementioned Blackman filter using a single-position kernel. Once the
slices of each GPU are filtered, they must be normalized by centering the
value of each pixel with relation to the mean value of all the pixels of its
band. However, the GPUs only keep for each band the pixel values of their
corresponding group of rows. So, at this point, each GPU uses cublasSgemv

to accumulate band-by-band the pixel values of the slices of both filtered
images in 2 arrays of b elements. Then the host process retrieves these arrays
and performs on them an MPI Allreduce operation, so after this message
exchange, all the processes have the full summation of each band of the input
images. Finally, each process transfers both band summations arrays to its
GPU, which uses them to compute the mean values needed to center the
filtered images slices. Figure 2 depicts the workflow of these two first parts
of the input images preprocessing. As the Table 1 provided at the end of
this section summarises, we are considering these first parts of the Step 2 as
totally distributed among the GPUs, the overload derived from the MPI-based
summation and the bidirectional host-GPUs transfers it needed being the cost
of such a parallel distribution.

The principal component analysis of a filtered and centered input image is
composed of several stages. First, a correlation matrix of the input is calcu-
lated. In the single-GPU version, it is calculated as I×IT , I being a matrix of
r× c columns and b rows that represents the input image. Figure 3 shows how
this full correlation matrix can be obtained in parallel from the slice available
in each GPU. This is possible thanks to properties of the matrix product oper-
ation. So, each GPU computes a partial correlation matrix, all of them being
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Fig. 4 Workflow of distributed band extraction

gathered and summed up into a full correlation matrix and then broadcast to
all processes with an MPI Allreduce operation. Once every GPU has its copy
of the full correlation matrix, it can perform its own decomposition of it. No-
tice how only partial correlation matrices of just b× b elements are exchanged
among the processes, instead of the slices of c × rk × b elements that would
be needed to recompose the full input image in each GPU and then making
them to compute their own full correlation matrix from scratch.

Second, each GPU computes the singular value decomposition (SVD) of
its copy of the full correlation matrix by means of the cusolverDnSgesvd

function, which returns the U × Σ × V T sequence of matrices. The latter
one is transposed and then used to transform the corresponding input image
slice into a principal-component ordered version of the slice by means of a
cublasSgemm operation. As Figure 4 shows, by multiplying the input image
slice by a submatrix with the eb (extracted bands) first columns of V , the
resulting matrix is not only a principal-component ordered version of that
slice but also a band-reduced one. However, such versions are still submatrices
with just the group of rows initially assigned to each device.
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Fig. 5 Workflow of row-to-band group redistribution

The last part of the PCA calculation consists on a MPI-based reconstruc-
tion of the band-reduced input images, which is sketched in Figure 5. By
this reconstruction, images are rearranged from a row-based distribution to a
band-based one, since GPUs are expecting as inputs for the Step 3 slices with
ebk bands, each one with r × c elements. So first, each process k gets from its
GPU the c× rk× eb slice and scatters it among the rest of processes by means
of asynchronous MPI Isend messages, represented as individual arrows in the
left part of the figure. The data received by each process is not retrieved from
MPI buffers using as many individual MPI Recv messages as data packages
are sent to it, but thanks to a user-defined MPI Type vector the expected
slice with ebk bands of r× c elements is directly reconstructed using the parts
coming from every process by means of a single MPI Recv message. Let us
also note that a band-based distribution of input images was evaluated too. In
this alternative distribution, every GPU stored in its global memory an slice
of c columns × r rows × bk bands for each image. However, in that case the
workflow would force the GPUs to recompose the filtered and centered input
images in order to compute the full correlation matrices, which leads to a much
more massive data exchange during the PCA calculation part. These inconve-
niences were experimentally confirmed, the PCA computation resulting to be
up to 9 times slower than when applying the row-based distribution strategy.

We classify the whole PCA calculation as distributed among the GPUs, in
the same way we did for the Blackman filtering and image centering parts. The
cost of such a parallel distribution is the overloads introduced by the MPI-
based operations needed to compute the full correlation matrices, by the SVD
decomposition needed to perform the band reduction, and by the rearrange-
ment of the reduced image row-based slices in the GPUs as groups of full image
reduced bands. Moreover, the creation of the cuBLAS and cuSOLVER han-
dlers needed by some inner operations of both the normalization and the PCA
parts must be replicated in all the processes. The creation of these handlers is
consuming a fixed time of about 430 ms, no matter the input image sizes or
the number of GPUs available. Table 1 also includes these considerations.
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A Multi-GPU Version of the HYFMGPU Algorithm 9

Table 1 Summary of replicated and distributed operations performed by each step of the
MPI+CUDA multi-GPU HYFM implementation

Step 1: Initialization
Replicated -

Distributed Input images GPU loading

Step 2: Preprocessing
Replicated cuBLAS and cuSOLVER handlers creation

Distributed Blackman filter, image centering, PCA calculation

Step 3: Band processing
and composition

Replicated cuFFT plans creation, auxiliary arrays calculation

Distributed Complex conversion, processing, composition

Step 4: Peak processing
Replicated -

Distributed Peak sorting, highest peak search

3.2.3 Band processing and composition

In this step, for each input image, every GPU takes its corresponding band-
grouped slice of c columns, r rows and ebk reduced bands and performs on
it the high-pass filter, the MLFFT, the log-polar map calculation and the
phase correlation, just as it is introduced in the algorithm description from
Section 2 and following the same parallelization approach described in our
preliminary work presented in [3]. Some of these operations are computed
by cuFFT routines that expect cufftComplex data as inputs and that also
need the previous creation of several FFT execution plans. In this parallel
implementation, the conversion of the band-grouped slices to that complex
type, the FFT plans creation, and the calculation of some auxiliary coefficient
arrays needed by those operations, have been moved to this step from their
original location at the end of the Preprocessing step. Regarding the reduction
of the partial log-polar maps computed by each GPU into the final one, these
maps are first gathered in a root MPI process and then sent to its GPU in
order to average them using a specific kernel. Let us recall that these maps are
in cufftComplex format, so a suitable MPI Type contiguous type is defined
to simplify their transfer. Finally, as it is applied also on both the reference and
the target slices processed by each device, the complex conversion is considered
as a distributed part of the algorithm. In turn, the FFT plans creation and
the calculation of the auxiliary arrays are both just replicated, as every GPU
need its own copies of them.

3.2.4 Peak processing

In the first part of this step, the root MPI process uses Thrust to generate a
host-side ordered indexes vector from the GPU-stored final average map. Both
arrays are broadcast to the rest of processes along with the first PCA com-
ponent from both reference and target images, since all these data structures
are needed to process the peaks pointed by a number of the top elements of
the ordered indexes vector. Then, every MPI process traverses cyclically that
top subset of the ordered indexes array, applying to each peak the operations
described in Step 4 from Section 2 and obtaining a partial maximum peak by
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Table 2 Dimensions and size in MB of hyperspectral images used as test cases

Name Width Height Bands Image size

Pavia University 340 610 103 81 MB

Pavia Centre 715 1096 102 305 MB

Jasper Ridge 588 1286 224 646 MB

Indian North South 614 2678 220 1447 MB

Bay Area Box Line 512 4096 224 1879 MB

means of a cublasIcamax operation. The information of these partial peaks
is on structs that are packed as MPI Type contiguous messages and then
gathered in the root process. Finally, this process inspects the partial peaks
received and computes the expected outputs of cartesian shift, scale factor
and rotation angle. For this step, all the operations are being considered as
distributed among the available devices, as Table 1 shows.

4 Experimental work

The performance obtained by this multi-GPU implementation has been eval-
uated by registering rotated and scaled variations of five real hyperspectral
images used as references, and whose main relevant properties are described
in Table 2. The images named Pavia University, Pavia Centre and Jasper
Ridge are commonly used for testing in remote sensing [20]. The smallest
one, Pavia University, was the only test case used in the prospective
implementation from [3]. In turn, the images Indian North South and Bay
Area Box Line are obtained from Purdue Research Foundation MultiSpec [2]
and NASA AVIRIS [11] repositories, respectively. Let us note that the number
of operations performed by the algorithm depends only on the sizes of both
input images, being independent of scale, rotation and shift differences among
them. Moreover, this is a multi-GPU distribution of the original HYFMGPU
algorithm, hence it has the same registration precision as the reference im-
plementation from [22]. All the tests were run in a node equipped with a
dual-socket host CPU composed of 2 Intel Xeon E5-2609v3 (1.9 GHz, 6 cores
each) with 64 GB of RAM, and 4 GPUs NVIDIA GeForce GTX TITAN Black
(GK110B architecture, compute capability 3.5, 15 SMs with 192 CUDA cores
each up to 2880, 6 GB RAM) controlled by the 384.59 driver. The CUDA
code has been compiled under Linux using nvcc from CUDA Toolkit 9.0, as
well as the libraries used. Multi-threaded preliminary tests were supported by
linking libraries from OpenMP 3.1, whereas the MPI support was provided by
mpich-3.2. The values of the parameters that control the registration algorithm
are the same as those specified in [22], this is: 8 bands to be extracted in the
PCA, vector α = {1, 1/4, 1/16, 1/64} for the FFTs performed to obtain the
log-polar maps, and 50 highest peaks to be examined in the peak processing
stage.

Table 3 shows, for each test case, the wall time consumed by Steps 1
to 4 from Section 2 individually, and by the whole algorithm, when run in
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a single-GPU using the original CUDA implementation of HYFM and in 2
and 4 GPUs with the MPI+CUDA version. Moreover, the global speedups
achieved by these two latter experiments are shown in a separated column.
Those speedups range from 1.18× to 1.59× for 2 GPUs and from 1.26× to
2.58× for 4 GPUs, which could seem quite away from the expected peaks of
2× and 4× respectively. By decomposing the wall times of each algorithm step
according to the parallelization process summarised in Table 1 we can weigh
the influence of every inner part of each step in the global performance of this

Table 3 Wall times in seconds for each step and the whole algorithm, and global speedups
obtained for tests run in NVIDIA GeForce Titan Black GPUs

Test case Version
Wall time in seconds

Speedup
Step 1 Step 2 Step 3 Step 4 Total

Pavia
University

HYFM 0.031 0.557 0.924 0.303 1.815 -

2-GPU 0.025 0.566 0.719 0.227 1.537 1.18×
4-GPU 0.015 0.585 0.630 0.212 1.442 1.26×

Pavia
Centre

HYFM 0.114 0.662 2.309 0.949 4.035 -

2-GPU 0.089 0.673 1.426 0.611 2.800 1.44×
4-GPU 0.047 0.646 1.000 0.440 2.133 1.89×

Jasper
Ridge

HYFM 0.241 1.061 2.327 0.933 4.562 -

2-GPU 0.186 0.971 1.441 0.631 3.230 1.41×
4-GPU 0.097 0.840 0.994 0.440 2.371 1.92×

Indian
North South

HYFM 0.838 2.188 8.319 3.172 14.518 -

2-GPU 0.445 1.440 4.560 2.957 9.402 1.54×
4-GPU 0.231 1.036 2.578 1.833 5.678 2.56×

Bay Area
Box Line

HYFM 0.912 2.622 8.330 2.845 14.709 -

2-GPU 0.706 1.662 4.553 2.345 9.265 1.59×
4-GPU 0.281 1.140 2.585 1.704 5.710 2.58×

Table 4 Disgregated wall times in seconds for replicated and distributed parts of Steps 2
and 3 obtained for tests run in NVIDIA GeForce Titan Black GPUs

Test case Version
Step 2 Step 3

Replicated Distributed Replicated Distributed

Pavia
University

HYFM 0.431 0.126 - 0.463 0.461 -

2-GPU 0.431 0.135 0.93× 0.473 0.247 1.87×
4-GPU 0.431 0.154 0.82× 0.495 0.135 3.42×

Pavia
Centre

HYFM 0.428 0.234 - 0.476 1.833 -

2-GPU 0.428 0.246 0.95× 0.472 0.954 1.92×
4-GPU 0.428 0.219 1.07× 0.498 0.501 3.66×

Jasper
Ridge

HYFM 0.424 0.636 - 0.496 1.831 -

2-GPU 0.424 0.547 1.16× 0.493 0.947 1.93×
4-GPU 0.424 0.416 1.53× 0.497 0.497 3.69×

Indian
North South

HYFM 0.432 1.757 - 0.559 7.761 -

2-GPU 0.432 1.008 1.74× 0.583 3.977 1.95×
4-GPU 0.432 0.604 2.91× 0.519 2.059 3.77×

Bay Area
Box Line

HYFM 0.434 2.188 - 0.590 7.740 -

2-GPU 0.434 1.228 1.78× 0.588 3.965 1.95×
4-GPU 0.434 0.706 3.10× 0.530 2.056 3.77×
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Fig. 6 Evolution of parallelization efficiencies against input images size in MB for the tests
run in NVIDIA GeForce Titan Black GPUs

implementation. Table 4 shows such times decomposed in replicated and dis-
tributed parts along with the speedup obtained for this latter portion for Steps
2 and 3. Regarding the Step 2, the distributed speedups range from 0.93× to
1.78× for 2 GPUs and from 0.82× to 3.10× for 4 GPUs, something expectable
having in mind that the distributed part of this step is quite intensive on MPI
data transfers and synchronizations, as explained in Section 3.2.2. Speedups
for the distributed part of the Step 3 range from 1.87× to 1.95× for 2 GPUs
and from 3.42× to 3.77× for 4 GPUs, all being very close to the theoretical
peaks. Only the final gathering and averaging of the partial maps makes this
distributed part not to be embarrassingly parallel. Times for Steps 1 and 4 are
not disgregated in Table 4, as they are considered as fully distributed. Nev-
ertheless, the wall times from the Step 4 (column in Table 3) are consistent
with the overload expected as a consequence of the input data broadcast and
the final peak reduction performed in this step and described in Section 3.2.4.

Besides the aforementioned data transfer and synchronization overloads,
let us also recall that Steps 2 and 3 perform some replicated parts whose time
cost can be considered as fixed no matter the input images size or the number
of GPUs available. Amdahl efficiencies for each test case have been calculated
computing these fixed times as not parallelizable. The line chart of Figure 6
represents these efficiencies in relation to the size in MB of the input images,
and grouped by the number of GPUs used. Moreover, the ideal efficiency is
represented as a constant horizontal dotted line at the 100% value. All the
tests cases obtained quite high efficiencies which are stable around 86% and
78% for 2 and 4 GPUs respectively.

5 Related work

Spatial unmixing algorithms [8] are another kind of hyperspectral analysis
procedures that perform PCAs based on SVD decompositions. For example,
Jiménez et al. [7] implement a single-GPU version of the spatial–spectral end-
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member extraction algorithm [25] that, unlike HYFMGPU, computes SVDs
by means of a CPU LAPACK routine. However, they still rely on cuBLAS for
matrix multiplications.

Lončar et al. cover in [10] how multiple FFT operations are integrated in
both OpenMP- and MPI-based solvers for the dipolar Gross–Pitaevskii equa-
tion, a condensed matter physics problem. They present first a couple of mul-
tithreaded multi-CPU implementations that are based on the aforementioned
parallel programming standards. Both versions use the FFTW3 [4] library for
FFT routines, since it is tailored to their specific needs. Moreover, they also
present an MPI-based implementation that distributes the work among several
nodes in a cluster, each with a single NVIDIA GPU. In this case the solver
must call cuFFT routines, as there is no CUDA version of FFTW3. They also
state that such a combination of MPI processes and cuFFT routines should
work properly in a single cluster node with several GPUs, something that our
work confirms.

CUDA-aware MPI implementations are commonly exploited in different
multi-device versions of algorithms from multiple applied science scopes. For
instance, Glaser et al. [6] implement strong scaling versions of general-purpose
molecular dynamics simulations on GPUs, and Lončar et al. use it too in the
aforementioned solver from [10]. Deep learning and data analytics are other
scopes that are taking advantage of CUDA-aware MPI implementations, for
example by exploiting it to support efficient large message broadcast oper-
ations [1]. That work also exploits NCCL in order to optimize intra-node
communications among directly-connected GPUs.

6 Conclusions and future work

In this paper we present a coarse-grained distributed, multi-device version
of the original HYFMGPU CUDA implementation, starting with a thorough
study of all the steps that compose this registration algorithm. In a very first
approach, we opted for OpenMP to support the multi-device distribution of the
Band Processing step, but some sequentialization issues related to the cuFFT
routines called in this step led us to develop the full distributed version using
MPI. Due to the properties of the different parts of the algorithm, we had to
deal with multiple communication and synchronization points along the MPI-
based implementation, as well as with the fixed latencies introduced by some
specific-purpose libraries used by the GPUs. Nevertheless, this multi-device
version of HYFMGPU is able to boost the registration process of the test
cases up to 1.59× using 2 GPUs and up to 2.59× for 4 GPUs, and with quite
high and stable parallelization efficiencies around 86% and 78%, respectively.
It must be noted that these test cases are real hyperspectral images that
cover a wide range of sizes from about 80 MB to nearly 2 GB, which proves
this implementation to have a robust scalability. The results have shown
that GPUs are adequate platforms to perform efficient registration
even for large images. The computational efficiency achieved have
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practical applications especially for environments where real-time
registration is required, for example, in the case of disaster and
damage control or surveillance.

In relation to feasible future research lines, the development of a version
based in both NCCL and a CUDA-aware MPI environment stands up as a
promising option to improve the data communication and synchronization op-
erations among GPUs. On the one hand, such an implementation of the
algorithm should be less error-prone and easier to maintain, as all
the transfer operations now explicitly coded will be replaced by their
equivalent library calls. On the other hand, important performance
improvements can be expected thanks to the transparent exploita-
tion of peer-to-peer data transfers among GPUs, if supported by
the underlying hardware. Moreover, there are some CUDA-related fine-
grain optimizations taking into account several GPU architectures that by
now are being inherited from the original single-GPU implementation. Fur-
ther optimizations for both current and upcoming GPU architectures could
be studied. A survey of such details will help to exploit, for instance, the
asynchronous CUDA API. The usage of this interface might lead to discover
delay slots on which the fixed latencies derived from the cuFFT plans and
cuBLAS/cuSOLVER handlers creations could be hidden.
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3. Fernández-Fabeiro, J., Álvaro Ordóñez, González-Escribano, A., Heras, D.B.: Towards
a multi-device version of the HYFMGPU algorithm for hyperspectral scenes registra-
tion (2018). DOI 10.5281/zenodo.1475157. URL http://dx.doi.org/10.5281/zenodo.

1475157

4. Frigo, M., Johnson, S.G.: Massachusetts Institute of Technology (MIT) FFTW3 Library.
URL http://www.fftw.org

This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11227-018-2689-7

14

http://dx.doi.org/10.1007/s11227-018-2689-7


A Multi-GPU Version of the HYFMGPU Algorithm 15
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