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Abstract— 3D Time-of-Flight (ToF) cameras have recently re-
ceived a lot of attention due to their wide range of applications.
Despite remarkable advancements in ToF imaging, state-of-the-
art ToF cameras are still afflicted by the power hungriness of
their illumination sources. To tackle this problem, we exploited
existing lighting infrastructure, that ensures the ubiquitous
presence of modulated light sources in indoor spaces, which
serve as opportunity illuminators. We explored the bistatic
geometry for passive imaging using the pulse-based ToF ap-
proach. Our work is inspired by the recently introduced visible
light communication (VLC) or light-fidelity (Li-Fi) infrastructure.
VLC allows the infrastructure to provide indoor simultaneous
illumination, communication, and sensing (SICS). To this end, we designed a bistatic geometry for the purpose of attaining
passive 3D imaging. Such capabilities are achieved by exploiting the pulse shape of the autocorrelation function of real
optical signals generated by VLC/Li-Fi modules (e. g., OpenVLC and LiFiMAX). We demonstrated passive imaging by
means of matched filtering. In this work, we also studied different sampling strategies in the time shift domain, including
uniform, random, and sparse rulers, which is another step forward towards preserving high depth accuracy with a minimal
number of measurements. The proposed methodology achieved successful depth reconstruction with negligible root-
mean-square-error (RMSE) for the low signal-to-noise ratio (SNR) of the measurements. Parametric models such as
Gaussian and sum-of-sines are used to characterize the cross-correlation functions and allow for robust parametric depth
retrieval from a few measurements. Moreover, we attained 20 mm worst-case error for a target at 25 cm. The experiment
proved that the bistatic passive depth reconstruction is feasible.

Index Terms— Passive sensing, Time-of-Flight, VLC, OpenVLC, bistatic, sampling, LiFi, depth imaging.

I. INTRODUCTION

OVER the past few years, 3D Time-of-Flight (ToF) imag-
ing technology has evolved significantly and has attained

a prominent interest from industry and academic circles due to
its wide range of applications, such as robot navigation, indoor
sensing, autonomous driving, surface mapping, surveillance,
gaming, and human-machine interaction, previously reserved
to LiDARs and stereo vision systems [1]–[3]. ToF is an active
imaging technique that is able to produce both intensity and
depth maps. A ToF camera computes the distance between the
camera and the scene objects in a per-pixel basis by exploiting
the time lapse that the photons confront, when the modulated
light signals are projected onto the scene and bounce back to
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the camera, which is proportional to the distance between the
camera and each corresponding scattered point.

In recent years, rapid advances in solid-state technology
have profoundly transformed the lighting infrastructure from
conventional lamps (e. g., incandescent and halogen) to light-
emitting diodes (LEDs). Thus, LEDs have become popular
for displays and light sources because of their advantages
such as long lifetime, small size, low-cost, energy efficiency,
and low switching transient [4]. The switching capability of
LEDs enables the visible light channel to be modulated at high
frequencies, which are high enough to be imperceptible to the
human eye [5]. LED lighting has gained global recognition as
a green lighting technology in recent years [6], [7]. LEDs
are predicted to replace conventional lights eventually and
become the ultimate light source for many applications [8].
This transition has transmogrified the lighting infrastructure
into a novel communication paradigm. This paradigm shift has
accelerated the development of Visible Light Communication
(VLC). VLC is a promising mechanism and an accessible
technology, driven by the ubiquitous proliferation of low-
cost LED sources in indoor environments. LED-based VLC
systems offer numerous advantages, including low-cost front-
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ends, immunity to electromagnetic interference, high physical-
layer security, and unregulated spectrum resources (400 THZ
- 900 THz) [9]. It is believed that VLC will play a significant
role in the fifth-generation (5G) and sixth-generation (6G)
communication [10], [11]. This brings communication and
lighting together within a single module. Therefore, the VLC
infrastructure can provide multiple services simultaneously,
such as communication, illumination, and now, also ToF 3D
imaging in indoor environments. In this context, the VLC
infrastructure has laid down a solid foundation for pseudo-
passive ToF sensing.

Additionally, VLC-enabled front-ends from companies such
as pureLiFi, Philips, and Oledcomm are accessible to the
general public and have rapidly penetrated into the commercial
market, including homes, offices, and industrial buildings1.
The commercialized VLC technology (IEEE 802.15.7) offers a
data rate of 150 Mbps and the research prototypes reach 1 Gbps
of data rates [12]. Light-based wireless communication, the so-
called VLC, and ToF sensing systems, have been developed
independently for two decades after the emergence of optical
wireless communication (OWC). The passive imaging method
we present transcends the communication-only or sensing-only
philosophy and, alternatively, uses a VLC-enabled sensing
approach based on the cooperation between VLC and ToF
imaging. Thus, this study broadens the reach of VLC systems
to synergistically support communication and sensing services.

Active 3D imaging has been a vibrant research topic for
many years [13]–[15]. Despite significant progress in ToF
imaging, state-of-the-art ToF cameras are still susceptible to
the high power consumption of their dedicated illumination
units. Unfortunately, this problem remains unaddressed, and
most of the recent progress is on the signal processing side.
For example, in [16], the illumination system features 91 W
of optical power for wide-area ToF imaging. This precludes
the applicability of ToF imaging in specific scenarios. To
overcome this problem, an alternative approach that uses an
opportunity illuminator for sensing is proposed. This makes
the built-in dedicated illumination unit futile, thus enabling
passive ToF 3D sensing. VLC has recently been used for
passive ToF sensing without synchronization between the
source and the ToF camera. This leads to an unknown depth
offset in passive ToF imaging [17]. Nonetheless, this passive
modality still needs refining to attain accurate depth recovery.

Thanks to the development of a bistatic sensing geometry
and the refinement of the ToF sensing pipeline for passive
imaging modality, we solved the synchronization problem by
introducing a direct link between the emitter and a reference
photodiode. In general, the bistatic configuration uses two par-
allel channels. One is the reference channel, which transmits
signals between the VLC source and the reference photodiode
to acquire an external reference signal for the Photonic Mixer
Device (PMD) camera. Another one captures scene-related
reflections. Informative measurements are achieved by cross-
correlating the reference and reflected signals. This solution
exploits the existing VLC infrastructure [18] to illuminate
the scene with modulated light and synchronize the camera

1http://purelifi.com/case-studies/

with an externally-provided signal, allowing accurate depth
reconstruction.

To evaluate this alternative, we have used an OpenVLC1.3
module with a white LED, and a LiFiMAX module with an
infrared (IR) LED for our simulations [19], [20]. OpenVLC
is a low-cost and open-source platform with a bandwidth of
1 MHz and supports a throughput of 400 kbps. The LiFiMAX
module can provide a data rate of 40 Mbps and 100 Mbps in
uplink (UL) and downlink (DL), respectively.

Moreover, in this work, the depth is reconstructed using
different sampling methods in the time shift domain. In an
attempt to reduce the number of measurements, we compared
different sampling approaches, both uniform and non-uniform.
The signal processing community extensively relies on uni-
form sampling in the communication and sensing domains,
while non-uniform alternatives often remain unexplored, ar-
guably except from random sampling. Random sampling is
used as a basis for compressive sensing to recover sparse
signals from a few measurements [21]. In addition, for depth
reconstruction, we used matched filtering method.

Matched Filtering: A matched filter (MF) is a well-known
signal processing technique for improving signal quality and
estimating delays. The temporal shift is observed by corre-
lating a known delayed signal (or template) to an unknown
signal [22]–[24]. Matched filtering is often performed in an
analog circuit that carries out a correlation operation and then
finds the peaks, or in a digital circuit or computer that takes
samples of the signal and calculates the discrete correlation
function. The matched filter offers accurate results at a low
computational cost, thus allowing for high frame rates. In this
context, the sampling rate should be high enough.

6G technology promotes communication and sensing simul-
taneously. In this context, VLC infrastructure can be re-used
for multiple services. To the best of the authors’ knowledge,
this is the first work exploring VLC infrastructure as a drop-in
replacement for the illumination unit in ToF depth cameras.

The rest of the paper is structured as follows. Section II
provides a summary of related work in the area of pulse-based
(PB) ToF and existing passive sensing methods. Section III is
devoted to the system model. In Section IV, the depth recovery
method and different sampling schemes are briefly discussed.
The experimental setup is demonstrated and elaborated in
Section V. Section VI provides the simulation performance of
the system based on several sampling schemes and the first-
ever passive-ToF 3D reconstruction. Finally, Section VII draws
conclusions and proposes future lines of work.

II. RELATED WORK

OWC and ToF sensing have achieved unprecedented results
independently in the recent past, but without mutual intersec-
tion. To date, no prior works have studied the intersection
of both technologies for simultaneous communication and 3D
sensing. Recently, the emergence of OWC variants, such as
VLC, LiFi, and free space optical communication (FSOC),
has brought interesting avenues for passive ToF imaging.
These variants are frequently used for communications and
illumination in indoor and outdoor settings.
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In parallel, ToF cameras have made great strides in depth re-
construction. In general, ToF cameras are segregated into two
operational modes, i.e., PB-ToF mode, and continuous wave
(CW) ToF mode. In PB-ToF mode, the source emits a short
pulse that illuminates the scene, and bounce-back signals are
received by the ToF camera. ToF pixels perform an integration
of the scene reflected light mixed with a demodulation control
signal (DCS). The measurements are achieved by shifting the
DCS with respect to the illumination control signal. In CW
mode, measurements are obtained for different phase shifts
between the DCS and the illumination signal.

The phased ToF camera was primarily pioneered by Prof.
R. Schwarte [25]. His work paved the way for the success
of ToF cameras in the computer vision community. Over the
years, ToF imaging technology has become ubiquitous in a
wide range of 3D imaging applications. The PMD camera is a
leading-edge technology for CW-ToF cameras. These devices
are able to extract depth from raw data following the phase
stepping algorithm [26]. Such devices are frequently endorsed
due to their mature processing pipeline and publicly-accessible
designs [27]. A related work outlined the fundamental oper-
ation of lock-in ToF cameras, their merits and shortcomings,
the layout of ToF pixels, and a remedy to practical difficulties
that appear when a PMD camera is being used in the presence
of background light [26], [28]–[30].

LiFi was initially demonstrated by the German physicist
Harald Haas. VLC is a subset of temporally structured lighting
[31]. The challenging task is to encode the information in a
lighting framework (one or multiple VLC sources). In [32],
the authors reported recent advancements in VLC hardware
technology. They demonstrated that the blue LEDs and color
converters attained 1485 MHz and 470 MHz bandwidth,
respectively. These advances not only boost the capacity of
VLC channels, but also facilitate passive ToF sensing. In 2019,
VLC was used for ranging and vehicular communication. This
work is not directly related, but the ToF technique is analogous
[33]. The ToF sensing technique is a well-known problem:
determining the distance from the reflection of a known signal.

Recent research efforts have been devoted to the devel-
opment of PB-ToF imaging systems. Typically, rectangular
pulse shapes are used in PB-ToF sensors. It is challenging to
generate perfectly square pulses, since vertical rising or falling
edges would require unlimited bandwidth.

In 2018, Sarbolandi [34] used a PB-ToF camera (Hama-
matsu area sensor S11963-01CR) featuring two electronic
shutters, known as gates, which are used for the accumulation
of photogenerated carriers from bounced-back photons. Both
gates are triggered sequentially for a few nanoseconds. The
distance to an object leads to a shift in the reflected signal com-
pared to the emitted signal. Thereby, the time-shift determines
depth. Lang [35] developed a PB-ToF technique for classifying
materials based on their unique signatures. The authors of
[36] developed an interferometric technique for depth imaging
that uses the inherent photon bunching signature of thermal
light, which was initially demonstrated by Hanbury Brown and
Twiss [37], [38]. This work adds complexity to the system,
since the illumination signals should be conditioned before
use. This method requires high-bandwidth detectors.

In contrast to our work, other authors employed photometric
stereo (PS) and aperture masking interferometry to perform
passive imaging [39]–[42]. Furthermore, the need for multiple
sources and an appropriate footprint are fundamental prob-
lems in such techniques for scene reconstruction using low-
coherence interferometry. The aforementioned passive ToF
alternatives [36], [39] have significant drawbacks and are far
from being practical.

Differently, a VLC-enabled passive ToF system can use a
single broadcast signal for multiple purposes, such as com-
munication, illumination, and 3D sensing. This exploits the
same spectrum and hardware resources, allowing it to play a
significant role in the future wireless network industry.

Unlike previous studies, we make use of the fortunate
fact that VLC infrastructure is often found in homes, office
settings, industrial zones, and vehicles, i.e., interesting applica-
tion fields for ToF cameras [43]. We propose using the existing
VLC infrastructure for illumination, turning the background
light from a disturbance into a useful optical signal for the
ToF camera. In light of existing literature, no prior works have
shown passive ToF imaging by leveraging opportunity illumi-
nators. This paper demonstrates the VLC-enabled passive ToF
system that can provide communication and 3D sensing for
free in terms of additional power consumption.

III. SYSTEM MODEL

We consider a single-input-single-output (SISO) system that
can emit signals aimed at both probing scene objects and
enabling communication with DL users. Fig. 1 demonstrates
the detailed block diagram of our proposed VLC-enabled
passive ToF sensing scheme. In this section, we first model
the free-space optical channel, and later on, we define the
mathematical model based on the communication and the
passive ToF sensing perspectives. Consider a point-to-point
VLC-based optical wireless link that broadcasts a DL signal
toward the scene and the user. A bistatic setup is designed
to synchronize the ToF camera. In this context, the reference
signal for the PMD module can be obtained via a direct line-
of-sight (LoS) link between the VLC source and the reference
photodiode. The VLC source and the ToF camera should not
be co-located in contrast to conventional ToF cameras.

A. VLC Channel

The underlying characteristics of a VLC channel are mainly
dictated by the optical link configuration [44]. The most
influential aspect of VLC communication performance is the
quality of the communication channel. Kahn et. al [45] demon-
strated six different configuration cases for indoor VLC links
based on the presence or absence of an LoS link between an
optical transmitter (TX) and a receiver (RX). The degree of
directionality and orientation between TX and RX determines
the link configuration of indoor VLC systems. The direct
LoS link is a dominant communication link configuration and
is widely used in the literature [46]. The emitter-beam and
the Field-of-View (FoV) of the receiver define the optical
transmission channel. In this case, the LoS channel facilitates
obtaining a higher received light intensity (i.e., a higher SNR
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Fig. 1. Block diagram of proposed simultaneous illumination, commu-
nication, and 3D ToF sensing.

that can be used to achieve suitable data rates and a long
communication range). Propagation of optical signals in an
optical wireless channel [47] can be written as:

PR = PT · GOTX · GD · GORX · ASL (1)

where PR denotes the received optical power, PT is the source
transmitted signal power, GOTX is the gain of an optical
transmitter, GORX is the gain of the optical receiver, and GD

denotes the attenuation of light intensity over the propagation
distance. ASL accounts for the other system-dependent losses
due to the system design and the link misalignment configu-
rations.

Optical transmitters (i.e., LEDs) are the core components
of VLC communication. A Lambertian pattern models the
intensity profile of LEDs in the spatial domain. In fact,
the radiation pattern from the Lambertian source has radial
symmetrical profiles and is controlled by its order of emission
m = −ln(2)/ln

(
cos(Φ1/2)

)
. Here Φ1/2 represents the half-

power beam-width of the transmitter. The existing literature
on optical wireless channels has reported that the Lambertian
radiation pattern is widely accepted by the VLC research
community (see e. g., [48], [44], and references therein).
Considering the Lambertian beam transmitter aperture and
received light at the photodiode (PD), then the gain of the
optical transceiver in the presence of free-space propagation
losses can be expressed [49] as follows:

GOTX =
32

Φ2
;GORX =

(
πDR

λ

)2

;GD =

(
λ

4πdTRX

)2

(2)

where Φ is the full-width transmit beam divergence angle, DR,
denotes the optical receiver aperture diameter, dTRX is the dis-
tance between TX and RX systems, and λ is the wavelength.
Equation (1) can be rewritten as (3) by substituting the gain
values.

PR = PT

(
2D2

R

Φ2d2TRX

)
· ASL (3)

From (3), we can encapsulate the free-space propagation loss
η and this can be given by,

η =

(
2D2

R

Φ2d2TRX

)
· ASL (4)

According to (4), the attenuation factor is also affected by
the emitter’s beam width, the receiver’s aperture diameter,
and the propagation distance between TX and RX. A wider
beam width leads to high attenuation and a large aperture
reduces the attenuation coefficient because the receiver may
collect more light. In practice, LED generates the far-field
pattern with its maximum intensity region. For an LED with a
Lambertian emission pattern, the angular intensity distribution
is the maximum at 0◦, and the theoretical half-power beam
width is Φ1/2 = 120◦. Optical signal propagation loss (optical
path loss) can be computed by making use of the LED beam
divergence angle and the diameter of the PD aperture.

B. VLC Communication Model
VLC is a novel wireless communication technology sup-

ported by existing lighting infrastructure. Fig. 2 presents an
indoor VLC link. The VLC infrastructure now serves as
an opportunity illuminator in passive ToF sensing. We used
two types of light-based wireless communication modules:
OpenVLC1.3, which is a research platform, and LiFiMAX
module, which is a marketable product. The functionality of
the modules is discussed in the sequel.
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Fig. 2. Indoor VLC communication link is providing illumination and
communication services in indoor scenario.

1) OpenVLC: This is one of the most common open-
source and adaptable platforms available to the VLC research
community. It emits a manchester-coded on-off-keying (MC-
OOK) modulated signal. This translates each bit into two
transition levels, such as 0 bit and a 1 bit as ‘HIGH’ during the
first and second half of the symbol period, respectively, and
otherwise it is ’LOW’, as enunciated in (6). The transmitted
data signal for j ∈ {0, 1} can be formulated as [17]:

xMC−OOK(t) =

+∞∑
n=0

vj(t− nT ) (5)

where,

vj(t) =


1, t ∈ [0, T/2] for j = 0

1, t ∈ [T/2, T ] for j = 1

0, elsewhere
(6)

where, vj(t) denotes the pulse waveform, and T is the period
of each bit. Let us assume that xMC−OOK(t) is the transmitted
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data stream. In reality, the emitted optical signal xMC−OOK(t)
does not exactly coincide with (5) due to the low-pass behavior
of the LEDs. Therefore, our realistic theoretical model exploits
the definition of convolution between the emitted signal (5)
and the LED impulse response function, hLED(t) = e−t/τ

/τ ,
which is modeled as a first-order low-pass filter. This operation
results in a probing signal for the sensing and transmitted
signals for communication, as expressed by [46],

pVLC
TX (t) = xMC−OOK(t) ∗ hLED(t) (7)

The optical signal propagates via the LoS channel model and
is received by the DL receiver (i.e., PD). The PD translates
the light intensity into an electrical output signal yPD

DL (t). The
probing signal is further encapsulated as the received DL
signal by performing the convolution between the probing
signal (7) and the LoS channel response given in (9). This
can be mathematically represented as [46],

yPD
DL (t) = pVLC

TX (t) ∗ hLoS(t) + n(t) (8)

where, ∗ denotes the convolution operator and n(t) is the inde-
pendent Additive White Gaussian Noise (AWGN) with zero-
mean and unit-variance. Moreover, the LoS channel response
is a time-shifted and scaled delta function that signifies the
amplitude drop and delay of the transmitted data signal. As a
result, optical path loss becomes a significant parameter for
characterizing the LED illumination potential. Indoor VLC
channels may contemplate the effect of both the LoS and
the non-LoS components at the receiver end. LoS seems to
be the most frequent method used for indoor optical wireless
communication and illumination settings. In line with [50],
[51], the LoS channel resides between the optical TX and
RX. In this work, we ignored the non-LoS components of
the optical link without sacrificing generality and considered
a single LoS channel between TX and RX. The LoS channel
impulse response (CIR) can be written as,

hLoS(t) = ηδ(t−∆t) (9)

where η is the attenuation coefficient that is introduced due
to the optical channel propagation losses (path loss), ∆t is
the propagation time (delay-offset of the LoS path) that the
optical signal undergoes in free space, and δ(t) is the Dirac
delta function.

2) LiFiMAX: LiFi is a wireless networking technology that
has recently been developed for commercial applications as a
fully-networked device. We used the LiFiMAX system in this
work. It can be easily installed on the ceilings of a conference
room or workplace and it provides network access to any
device equipped with a plug-and-play LiFiMAX dongle. This
enables internet connectivity for 16 users within 28 m2 cell
size with throughputs of 60 Mbps and 40 Mbps in the DL
and UL respectively. LiFiMAX uses carrierless amplitude
and phase (CAP) modulation, one of the efficient spectral
methods to overcome modulation bandwidth challenges in
VLC. CAP modulation has seen extensive research interest in
VLC applications as a result of its excellent spectral efficiency
as well as its simplicity [52]. The transmitted signal can be

expressed by,

xCAP(t) =

+∞∑
n=−∞

[anp(t− nT )− bnp̂(t− nT )] (10)

where an and bn are the real and imaginary parts of the nth

symbol, T is the time period, and n is the symbol index. The
pulse-generating orthogonal filters are given as follows:

p(t) = g(t) cos (ωct) , p̂(t) = g(t) sin (ωct) (11)

where g(t) is the root raised cosine filter (RRC), ωc is the
angular frequency of the filter, and T is the symbol time
period. CAP is a variant modulation scheme of quadrature
amplitude modulation (QAM) signals for LiFi communication
[53]. The received signal is further demodulated and decoded
to retrieve the original data stream. Note that the uplink
VLC signals are not considered in this case. For the sensing
purpose, the received signal at the reference PD is an analog
signal that needs to be converted to the binary signal for the
synchronization of the ToF camera.

C. Passive ToF Sensing Model

In the bistatic passive ToF paradigm, opportunity illumi-
nation sources (i.e., VLC sources) illuminate the scene, and
the ToF camera acquires the reflected signal. We studied a
PB-ToF method based on VLC-modulated light signals. The
VLC signal interacts with the scene, the observed ToF signal
is affected by the scene response function (SRF), defined in
(12), denoted by hs(t), where s represents the scene. Single
reflection K = 1 is often considered in the general setting of
the ToF camera. In the most general case, (K ≥ 1), a single
ToF pixel may receive multiple reflections from the scene. In
this context, the SRF is given by the expression [54],

hs(t) =

K−1∑
k=0

Γs[k]δ(t− τs[k]), τs[k] = 2ds[k]/c (12)

where δ(t) denotes the Dirac delta function and
{Γs[k], τs[k]}K−1

k=0 are the reflective components of the
targets and corresponding delays which are introduced by
K back-scattered light paths [14]. The reflected signal is
obtained by performing the convolution between the probing
signal and the SRF, i. e., r(t) = (pVLC

TX ∗ hs)(t) and this
follows (7). The reflected signal is given by [55],

r(t) = (pVLC
TX ∗ hs)(t) (13)

where the SRF is the shift-invariant response function. The
conventional CW-ToF method uses the internal signal gener-
ated by the ToF system as DCS [14], [56]. Differently, in this
work, we exploited the thresholded version of the Reference
Photodiode (RPD) signal, yRPD(t), as the DCS. This is a
binary signal used to synchronize the ToF camera.

The received signal is sampled at every bit duration Tb.
Therein, we employed a thresholding scheme that compares
the received signal amplitude to the threshold voltage Vth; this
allows us to make a decision and generate logical levels Low
and High. The signal prior to thresholding is denoted as the
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RPD signal, yRPD(t), and the thresholding operation can be
written as follows,

ythRPD(t) =

{
A, yRPD(Tb) ≥ Vth

0, yRPD(Tb) ≤ Vth

(14)

where A is the required amplitude level of the ToF reference
signal. Let us first explain the measurement gathering process
to gain insights into how our proposed method processes the
acquired data. During the acquisition time interval, the VLC
emitter transmits signals continuously, which is long enough
to capture the reflected light signals. We can work with a
fixed time window of size τ , which is facilitated by the main
lobe of the autocorrelation of VLC signals. This allows us
to use a given range of samples in simulation and hardware
experiments and accounts for the finite exposure time of the
ToF camera. The cross-correlation between (13) and (14)
provides continuous-time measurements m(t) as given in (15).
The measurements are obtained by shifting the control signal
within a given range of delays, related to the depth range to
cover. This yields samples of the cross-correlation function.

m(t) =

∫
r(τ)ythRPD(t, τ)dτ (15)

where τ is the shift component. The discrete measurements
can be written as m[i] = m(t)|t=iT,i∈Z, where 0 ≤ t < T is
the sampling range.

IV. DEPTH RECOVERY APPROACH

The focus of this section is now shifted to depth reconstruc-
tion using matched filtering. Now, our discussion is linked to
our numerical experiments, how we built our simulations from
real optical signals and attempted to invert the model. Later,
we will use real measurements from PMD pixels. The starting
point is the generation of measurements in order to emulate our
numerical experiments. We briefly discuss the measurement
generation process to perform matched filtering for depth
recovery. The GT cross-correlation function is shifted and
downsampled by a shift operator, Sq : RN → RN and
a downsampling operator, Dq : RN → RQ, defined by[
Sq(

#»

Y )
]
p
:= Yp−q and

[
Dq(

#»

Y )
]
p
:= Y1+(p−1)q , respectively.

This yields a measurement vector that can be written as
follows,

#»

Y Meas = DR(Suτ
(

#»

Y GT)) (16)

where uτ = Nτ/T and the spacing between the samples
is defined as, R = N/Q. For the number of measurements
acquired according to the considered cases, we adhered to the
standard number of measurements, namely, Q ∈ {4, 8, 16},
while N ≫ Q and Q is different representation of M as
measurements. The MF correlates the test vector obtained from
the reference cross-correlation vector and the measurement
vector [22], [57]. To demonstrate the correct operation of
MF, AWGN is added to the measurements for our simulation,
which is a common channel model for noise. The SNR ranges
from -30 dB to 100 dB for attaining measurement vectors.
The reference cross-correlation is generated in simulations
and calibrated in experiments. We obtained the test vector

by applying the same sequence of shifting and downsampling
operations, but for a candidate delay to test, ∆τ , so that a
vector of the same dimension as the measurement vector is
obtained that is a function of ∆τ . The test vector can be
generated as follows,

#»

Y Test(∆τ) = DR(Su∆τ (
#»

Y GT)) (17)

The estimated time-delay (18) is provided by determining the
argument that maximizes the MF function, and from this, the
depth estimation can be carried out as given in (19).

τ̂ = argmax
∆τ

⟨ #»

Y Meas,
#»

Y Test(∆τ)⟩ (18)

where ⟨., .⟩ denotes the standard inner product of vectors. The
proposed methodology allows depth reconstruction, depending
on various measurement SNR values. The translation of time-
shift into the distance is a simple linear computation.

d̂ =
c× τ̂

2
(19)

Different sampling schemes are used in the time-shift domain.
The depth range is given by the width of the main lobe of the
cross-correlation function. We sampled the cross-correlation
function according to uniform, random, and sparse ruler [58],
[59] sampling schemes.

A. Bistatic Geometry
Bistatic ToF imaging is a new line of research; bistatic

configurations of emitters and receivers have not yet been
explored in 3D ToF imaging. In the passive modality setting,
the estimated depth defines a 3D ellipsoid where the target
point may lie due to the bistatic geometry. The foci of the
ellipsoid are the VLC emitter and the ToF receiver. Provided
that we know the observation direction of each pixel of the
ToF array thanks to lens calibration, we can compute the
intersection between the ellipsoid and the direction vector. This
defines the 3D location of the target point, thus retrieving the
accurate depth between the camera and the target. The 3D
location of the target can be written as follows:

T = R+ u⃗RdRT (20)

where T is the target position, R is the position of the receiver,
u⃗R is the unit vector, and dRT is the distance between the
receiver and the target. The 3D ellipsoid is defined by,

d− do = dET + dRT (21)

where dET is the Euclidean distance between the emitter and
the target, and dRT defines the Euclidean distance between
the receiver and the target. The depth offset, do, is associated
with the used cables and electronics. It is not related with
the scene geometry. The complete proof takes profit from the
lens calibration and uses the observation vector u⃗R to attain
the true depth. The proof of the final depth for the bistatic
geometry is provided in Appendix I and can be expressed as,

dRT =
dER − d2

2[(CxuRx +CyuRy +CzuRz)− d]
(22)

where dER = ∥E− R∥22, Cx, Cy, and Cz are defined in the
Appendix I. d is the total distance that is obtained by (19).
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ux, uRy, and uRz are the observation vector components in x,
y, and z directions. The demonstrated results in Section VI-E
are carried out by applying (19) first and this estimated depth
is further used in (22) to obtain the true depth between the
receiver and the target.

B. Generalized Sampling in Time-Shift Domain
Classical sampling theory, based on the Shannon-Nyquist

theorem, assumes uniform sampling, but related work has
shown that non-uniform sampling schemes may reduce the
required number of samples without compromising the signal
reconstruction quality [60]. We analyze three different sam-
pling schemes in the time-shift domain: uniform sampling,
pseudo-random sampling, and sparse-ruler-based sampling.

1) Uniform Sampling: Reconstruction of a signal from a
discrete number of sampling points, where the signal is
sampled kT uniformly at fixed-time intervals is known as
uniform sampling, where T is the time interval and is probably
the most widely-spread sampling technique. In an arbitrarily-
fine discrete domain, the samples would be located at the
positions k ∈ {0, s, 2s, 3s, ...}, where s is a discrete version of
T . Fig. 3 (a) demonstrates uniform sampling with fixed time
intervals. Provided that our signals of interest are ultimately
K-sparse, with K = 1 in the single-bounce case. Shannon
sampling yields redundant and unnecessary samples, raising
the computation complexity of subsequent processing. To
overcome this limitation, one can make use of non-uniform
sampling [61].

2) Non-Uniform Sampling: Non-uniform sampling deals
with sets of sampling points that are not uniformly distributed
over the sampling domain. Different methods can be used
to define the location of the sampling points, which may be
random or deterministic. In this work, we analyze the depth re-
construction and performance obtained by employing random
[58], [62], and sparse ruler ( [59], and references therein)
sampling on the time-shift domain. The current upsurge of
interest in sampling signals at rates lower than their Nyquist
rate can be credited to compressive sampling (also known as
compressed sensing) [63], [64], which has fueled a substantial
amount of research over the last several years, including in the
ToF 3D imaging community [1].

Conclusively, we consider sparse measurements in our sim-
ulation settings. Theoretically, a sparse ruler is one that misses
some marks, but it can still measure all integer distances
between 0 and the ruler’s length L. For example, a sparse
ruler with the length L = 23 and M = 8 marks would
be {0, 1, 2, 11, 15, 18, 21, 23}. The cardinality of the set M
determines the number of measurements, and the value of the
marks denotes the distance between each measurement sample
and the reference sample. We have exploited an optimal sparse
ruler of type Wichmann W (2, 5). Note that, since all markers
are set on a discrete grid (like a sequence), the distances
between them are always expressed in terms of integers rather
than time-shift units.

3) On-grid and Off-grid sampling: The sampling schemes
considered in this work rely on an underlying regular grid. The
regular or fine gird sampling is governed by the hardware (i.e.,
oscilloscope). It is assumed that the sample location fits within

Uniform Sampling (US)

Random Sampling (RS)

Sparse Ruler Sampling (SRS)

(a)

(b)

(c)

Fig. 3. Sampling methods. (a) A common sampling approach is
uniform sampling. (b) Pseudo-random approach samples the signal in
an irregular fashion, and (c) sparse-ruler-based sampling.

the fine grid’s resolution. For uniform and random sampling
methods, on-grid samples can always be generated, regardless
of the step size of the fine grid. In the context of the sparse-
ruler sampling method, samples may not coincide with the on-
grid locations. In this case, the signal is further down-sampled
to match the fine grid resolution required by the sparse ruler.
This results in a grid mismatch or locations which are off-grid
[65]. One has to deal with the grid mismatch between the fine
grid and the sparse-ruler-based sampling grid (off-grid). To
this end, the interpolation method can be used to predict the
samples located between the fine-grid GT samples and form a
smooth curve between on-grid and off-grid sample locations.

V. EXPERIMENTAL SETUP

In this section, the focus is on designing a bistatic setup for
passive ToF imaging. We provide the details of the hardware
components which are used in the setup. The bistatic geometry
of the VLC-enabled passive ToF setup is demonstrated in
Fig. 4(a). Our proposed experimental setup is depicted in
Fig. 4(b). The simulations and experiments are developed
based on our proposed pipeline (cf. Fig. 1). We used an
evaluation board containing a PMD camera module endowed
with built-in external reference capabilities to control the PMD
pixels. This module needs binary signals with 0 V as low and
1.8 V as high voltage levels of the external reference signal.

In this case, we employed a thresholding operation that
emulates the thresholding circuit to digitize the analog signal
for external referencing. This circuit should come before
the evaluation board. For the thresholding operation in our
experimental settings, we used a pulse generator (HP 8082A)
that carries out the thresholding operation. The key parameters
of ToF setup and evaluation board are given in Table. I and
Table. II. VLC communication experiments were carried out
in dark and bright room conditions. ToF sensing tests were
conducted in the darkroom settings. In the experimental setup,
we used an optical rail to move the emitter and receiver easily.
The rail width is our x, the height of the emitter/receiver is y,
and the depth is denoted by z. The length of the rail is 1 m.
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Fig. 4. (a) Bistatic geometry of passive ToF sensing. (b) Experimental
setup for simultaneous communication and sensing.

TABLE I
EXPERIMENTAL KEY PARAMETERS OF VLC-ENABLED PASSIVE TOF

SETUP

Modules OpenVLC1.3 LiFiMAX
Modulation MC-OOK CAP

Modulation Frequency 1 MHz 50 MHz
Throughput 400 kbps 65 Mbps

LED spectrum VL LED IR LED
Transmit Power 3 mW <7 W

Oscilloscope Bandwidth (MDO4104-6) up to 1 GHz
PD Bandwidth (PDA10A-EC) up to 150 MHz

PD responsivity 0.5 A/W
PD active area and rise time 0.8 mm and 2.3 ns

Threshold circuit (HP-8082A) -1.5 to 1.5 V
Delayer (PSD-MOD) Delay range 50 ns

TABLE II
PMD MODULE PARAMETERS

Model No IRS 2877C
Resolution 153k pixels
Frame rate 5 FPS

Exposure time 5 ms
Channels A and B
TV Lens 25 mm

Here we have provided a procedure for the proposed method
and the process for acquiring data as follows:

• Communication signals are transmitted continuously via
OpenVLC/LiFiMAX. We placed the emitter at the posi-
tion of E = (5, 47.3, 56.3) cm.

• The reference photodiode (RPD) is placed at the top of
the ToF sensor. It is responsible for obtaining the optical
signal for synchronizing the ToF camera. This establishes
a direct link between the emitter and the RPD.

• The RPD signal is inserted into the thresholding circuit,
converting the analog signal to the digital signal. Further-
more, the thresholded signals are fed to the picosecond
delayer (PSD), enabling custom delays. In our case, we
selected our range of scenarios based on the range offered
by the PSD.

• The output signal of the PSD is launched into the evalu-
ation board after the necessary voltage-level adaptation.

• On the flip side, the reflections are acquired by the PMD
camera. The ToF camera is mounted on the optical rail
at the position of R = (7, 21.5, 60) cm. The evaluation
board has a reference mixer, which takes the reflected

signal and mixes it with the external reference signal.
Assuming that the signal which is fed into the sensor
board is a thresholded representation of the VLC signal.
This yields a cross-correlation operation and by delaying
the signal, we can obtain measurements.

• The target is placed at a distance of 25 cm from the ToF
evaluation board.

In our case, we used a MiraVera PMD version that features
a high-resolution of 640×240 pixels. The Boehler star is used
as a target in 3D. This is useful for evaluating the camera’s
real lateral resolution.

VI. RESULTS AND DISCUSSION

A. Evaluation of OpenVLC and LiFiMAX modules

For evaluating the performance of both exploited modules,
we obtained optical signals using a Thorlabs photodiode (PDA
10A-EC) via an Agilent Oscilloscope (MDO4104-6). The
optical signals can be seen in Fig. 5 (a) and (b). The random
data signals are generated from both modules (OpenVLC and
LiFiMAX). These signals are used to emulate the passive
modality. The acquired data signals are thresholded by fol-
lowing (14) with respect to their local average. Fig. 5 (c) and
(d) show the thresholded signals of both modules. The output
signal of the thresholded signal is kept 1.8 V maximum to
adhere to the PMD evaluation board requirements. The cross-
correlation functions, between the optical signals and their
respective thresholded versions, are demonstrated in Fig. 5 (e)
and (f). The magnified parts of both signals demonstrate the
expected central peaks and the provided time-span which can
be used for shift-domain sampling.

B. Depth Reconstruction error in presence of noise

A number of simulations are carried out using real optical
signals of both modules. We exploited the two different ranges
of each of the modules. For the OpenVLC module, which has
the largest time period, the range can be covered up to 150 m,
but we restricted simulations to a range of 6.72 m because of
our PSD, which can provide shifts only up to the considered
range.

In this section, we group our results based on different
sampling approaches, according to section IV-B and the
number of measurements. Synthetic ToF data measurements
were generated and modeled as pulse-shaped cross-correlation
samples, as reported in the previous section. The shape is
approximately Gaussian with standard deviation of 44.8 ns
for OpenVLC and 10 ns for LiFiMAX. The measurements
are generated via (15) by following the considered sampling
methods in the time-shift domain. We took into account 40
realizations for each approach used.

Four samples of the correlation function are often used for
phase computation in consumer devices, such as PMD cam-
eras. Without sacrificing generality, samples are studied using
a single-echo case in which the cross-correlation function
range has been partitioned into several measurement samples.
The depth reconstruction results of this study are depicted in
box plots as shown in Fig. 6 for the OpenVLC module. We
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Fig. 5. OpenVLC and LiFiMAX module signal characterization.

utilized RMSE as our performance metric to evaluate the depth
reconstruction performance of our method, that is,

RMSE =

√√√√ 1

N

N∑
n=1

(
d̂n − dGT,n

)2

(23)

where N is the number of independent depth scenarios, d̂
is the estimated depth, and dGT is the ground truth depth.
The RMSE is considered in logarithmic scale RMSE[dB] =
10 log10(RMSE). The measurements SNR is controlled rang-
ing from -30 dB to 100 dB. The matched filtering results are
restricted up to 50 dB since a plateau at a negligible error was
attained, as presented in Fig. 6.

Several depth tests are carried out for a number of con-
sidered ranges. When the SNR is greater than 0 dB, matched
filtering method attained a negligible error. More comprehen-
sive analysis showed few outliers in all sampling schemes.
One may observe a large error for sparse ruler sampling due
to the combined effect of noise and the off-grid phenomenon
due to a mismatch between the fine grid and the grid required
by the sparse ruler. The matching filtering approach performs
well, with uniform and random sampling.

The matched filter performs better, since the transition from
failure to successful reconstruction happens at a much lower
measurement SNR. Fig. 7 presents the depth reconstruction
error for matched filtering using the LiFiMAX module. The
same procedure is conducted for the LiFi module. We attained
a -90 dB RMSE value for uniform, -95 dB for random, and
almost -80 dB for sparse ruler. It is observed here that sparse
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ruler depth reconstruction error has a minimal difference in
results with respect to the other two techniques.
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Our results demonstrate how depth retrieval from samples
gained according to different sampling schemes performed in
noisy environments. Assume we have noisy measurements,
the noise might be from the ToF sensors or the surroundings.
We attempted to provide the results of the measurement SNR
and the estimated depth SNR. The effects of measurement
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SNR on the estimated depth SNR were studied for both the
OpenVLC and LiFiMAX modules. We provide the OpenVLC
SNR results here. The estimated SNR becomes constant after
0 dB SNR in matched filtering, as shown in Fig. 8.
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C. Parametric Modeling
The measurements are samples of the cross-correlation

model in (15). The data points were constrained to a range
that meets the range of our PSD. In the time-shift domain, a
window size of about 45 ns was taken into consideration. The
cross-correlation was obtained from the full range. The cross-
correlation is approximated as a sum of Gaussian functions in
(24) and a sum of sines model in (25) for the OpenVLC. The
sum of sines and Fourier models in (26), were found to be
best in describing the LiFiMAX cross-correlation function.

#»

Y GT =

n∑
i=1

aie
−
(

t−bi
ci

)2

(24)

#»

Y GT =

n∑
i=1

ai sin(bit+ ci) (25)

#»

Y GT = ao +

n∑
i=1

ai cos(iωt) + bi sin(iωt) (26)

where t is the time scale of the cross-correlation function, ai,
bi, ci, and ω are the model parameters and n = 2. The fitted
models for the considered range cases are demonstrated in
Fig. 9 against the points used for fitting. Plots of Fig. 9 demon-
strate an excellent match with the cross-correlation functions,
with R2 = 0.9999 in almost all cases considered. Fig. 10
shows the depth reconstruction using the Gaussian model for
the OpenVLC module and the sum of sines model for the
LiFiMAX cross-correlation function. We attained successful
depth reconstruction up to constant for both models.
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Fig. 9. Parametric modeling results of cross-correlation for different
target ranges.
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Fig. 10. Depth Reconstruction RMSE by means of parametric models
using Matched Filtering for M = 4 measurements. OpenVLC module
(1

st
row) and LiFiMAX module (2nd row).

D. Performance evaluation of VLC Communication
This part focuses on the communication-oriented system

performance, considering both modules. Here, we concentrate
our analysis on the OpenVLC module due to the fact that it
is a research-based module, while the LiFiMAX module is
a commercial product. We evaluated the OpenVLC module
performance in terms of SNR and theoretical bit error rate
(BER) as a function of distance. These metrics are used to
examine the MC-OOK VLC link for indoor communication.
The BER is given by BER = Qf

(√
SNR

)
, where Qf is

a quality factor that can be defined as, Qf = erfc
(

SNR√
2

)
.

Fig. 11 (a) represents the throughput of the OpenVLC link
as a function of distance. It can be seen that this can provide
illumination without affecting the communication data rate.
Fig. 11 (b) shows the measured SNR and theoretical BER of
an indoor VLC channel using the ThorLabs photodiode and
the Agilent oscilloscope. The eye diagrams are measured after
down-sampling to one sample per bit. The MC-OOK modu-
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lation is used and an eye diagram is generated by making use
of OpenVLC random data signals. The eye-diagram settings
are enabled in the oscilloscope to see the eye patterns. It is
possible to define the quality of a transmission network using
eye diagrams. The SNR can be computed as follows:

SNRdB = 20 log10

(
Vsignal

Vnoise

)
(27)
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Fig. 11. Communication performance of the VLC module. (a) Measured
Throughput. (b) SNR and BER curves as a function of distance.

First insights can be gained by analysis of the eye diagram’s
vertical and horizontal characteristics. We choose to measure
the vertical amplitude and horizontal eye openings, as illus-
trated in Fig. 12.
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Fig. 12. Eye diagrams obtained for the optical signals of the OpenVLC
module at different distance ranges.

E. Preliminary 3D Imaging Results
This experiment aims to demonstrate that the concept of

passive depth recovery works in practice. To this end, we
used only four uniformly-distributed samples for depth re-
construction. The results are shown in Fig. 13. Fig. 13 (a)

depicts the so-called Boehler star [66] used as a target, which
is a three-dimensional representation of the Siemens star used
to determine the spatial resolution of depth sensors. The
VLC module is used to acquire raw images with custom
delays, and the exposure time is maintained at 5 ms. The
depth can be obtained via (22) using the lens normals. In the
experiments, we recorded the measurements for the reference
function,

#»

Y GT, in the range provided by our PSD. One can
cover the complete range of the main lobe of the cross-
correlation function. A plane is used to acquire the reference
function data. Then, MF is used to retrieve the depth from the
measurements by leveraging the recorded reference function.
The 3D reconstruction in Fig. 13 is the first one ever obtained
from a ToF camera without a dedicated illumination system
and validates the proposed passive ToF imaging concept.

(a) Boehler star as a target (b) Reconstructed point cloud

100 200 300 400 500 600
Column

50

100

150

200

R
ow

s

5

10

15

20

D
ep

th
 [

cm
]

(c) Recovered depth image

Fig. 13. First 3D reconstruction results of a real target obtained via the
proposed passive ToF approach.

VII. CONCLUSION AND FUTURE OUTLOOK

In this work, we proposed a novel VLC-enabled passive
imaging pipeline that allows depth estimation up to ma-
chine precision in simulations. This study opens up new
possibilities for simultaneous communication and 3D sensing
systems by exploiting different sampling schemes in the time-
shift domain. The validity of the proposed method has been
demonstrated using matched filtering, resulting in a depth
reconstruction accuracy of 95 % at suitable SNR levels for
both modules. The key advantage of our work is a drop-in
replacement of the classical ToF illumination units by existing,
uncontrolled VLC sources. This method drastically reduces the
power consumption of ToF cameras and eliminates tempera-
ture drift effects from measurements which are generated by
the light source [67]. We have also shown that this method
performs well with noisy measurement data in simulations.
Low-complexity parametric models, including Gaussian and
the sum of sines, have been proposed to characterize the
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cross-correlation functions of both modules. Extremely low
fitting errors confirmed the validity of the proposed models.
Hardware experiments validate our proposed methodology by
attaining the worst-case depth error 20 mm at 25 cm target
distance. In addition, we acknowledged that the depth accuracy
depends on the VLC source bandwidth. The communication
signals are not optimized for sensing purposes. The design
of modulation waveforms that are jointly optimized for both
purposes is a subject of future work. On the theoretical front,
we have provided a complete formulation of the direct sensing
model and the method we use for solving the inverse problem.
Our method raises interesting considerations regarding the
hardware. We intend to explore our hardware implementation
further in the future.

APPENDIX I
PROOF OF EQUATION (22)

Remember that (22) is derived from (20) and (21), since
the emitter and the receiver locations are known. In this
regard, (21) is further re-arranged and represented in Euclidean
distance between the emitter and the target. By omitting the
do, this can be expressed as follows,

d− dRT = ∥E− T∥2 (28)

d− dRT =
√
(Ex − Tx)2 + (Ey − Ty)2 + (Ez − Tz)2 (29)

where E = (Ex,Ey,Ez) and T = (Tx,Ty,Tz) are 3D loca-
tions of the emitter and the target, respectively.

Equation (21) is broken down into 3D coordinate compo-
nents and it can be defined as,

Tx = Rx + uRxdRT

Ty = Ry + uRydRT

Tz = Rz + uRzdRT

(30)

where R = (Rx,Ry,Rz) are the 3D coordinates of the receiver
and u⃗R = (uRz, yRy, uRz) are the components of observation
vector. We substitute (30) in (29) and, after carrying out some
re-arrangements and manipulation, we get,

d2 − 2ddRT + d2RT = (C2
x +C2

y +C2
z)

+ d2RT(u
2
Rx + u2

Ry + u2
Rz)

− 2dRT(CxuRx +CyuRy +CzuRz)
(31)

where d2ER = C2
x +C2

y +C2
z is the Euclidean distance

between emitter and receiver, where Cx = Ex − Rx,
Cy = Ey − Ry, and Cz = Ez − Rz are the differences of x,
y, and z coordinates of emitter and receiver, respectively.
At this point, it is noted that the sum of normal vector
components is equal to unity,

(
uRx2 + uRy2 + uRz2 = 1

)
. By

substituting this in (31) and making some re-arrangements,
we obtain the bistatic depth recovery formulation as given in
(22).
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[26] T. Möller, H. Kraft, J. Frey, M. Albrecht, and R. Lange, “Robust 3D
measurement with pmd sensors,” Range Imaging Day, Zürich, vol. 7,
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[33] B. Béchadergue, L. Chassagne, and H. Guan, “Simultaneous visible
light communication and distance measurement based on the automotive
lighting,” IEEE Transactions on Intelligent Vehicles, vol. 4, no. 4,
pp. 532–547, 2019.

[34] H. Sarbolandi, M. Plack, and A. Kolb, “Pulse based time-of-flight range
sensing,” Sensors, vol. 18, no. 6, p. 1679, 2018.

[35] S. Lang, J. Zhang, Y. Cai, X. Zhu, and Q. Wu, “Classification of
materials using a pulsed time-of-flight camera,” Machine Vision and
Applications, vol. 32, no. 1, pp. 1–19, 2021.

[36] F. Wagner, F. Schiffers, F. Willomitzer, O. Cossairt, and A. Velten,
“Intensity interferometry-based 3D imaging,” Optics Express, vol. 29,
no. 4, pp. 4733–4745, 2021.

[37] R. H. Brown and R. Twiss, “A test of a new type of stellar interferometer
on sirius,” Nature, vol. 178, no. 4541, pp. 1046–1048, 1956.

[38] R. Brown and R. Q. Twiss, “Correlation between photons in two
coherent beams of light,” Nature, vol. 177, no. 4497, pp. 27–29, 1956.

[39] J. Boger-Lombard and O. Katz, “Passive optical time-of-flight for non
line-of-sight localization,” Nature communications, vol. 10, no. 1, pp. 1–
9, 2019.

[40] J. Herrnsdorf, J. McKendry, M. Stonehouse, L. Broadbent, G. C. Wright,
M. D. Dawson, and M. J. Strain, “Led-based photometric stereo-imaging
employing frequency-division multiple access,” in 2018 IEEE Photonics
Conference (IPC), pp. 1–2, IEEE, 2018.

[41] E. Le Francois, J. Herrnsdorf, L. Broadbent, M. D. Dawson, and M. J.
Strain, “Top-down illumination photometric stereo imaging using light-
emitting diodes and a mobile device,” in Laser Science, pp. JTu3A–106,
Optical Society of America, 2019.

[42] J. Herrnsdorf, J. McKendry, M. Stonehouse, L. Broadbent, G. C. Wright,
M. D. Dawson, and M. J. Strain, “Lighting as a service that provides
simultaneous 3D imaging and optical wireless connectivity,” in 2018
IEEE Photonics Conference (IPC), pp. 1–2, IEEE, 2018.

[43] Y. Almadani, D. Plets, S. Bastiaens, W. Joseph, M. Ijaz, Z. Ghassemlooy,
and S. Rajbhandari, “Visible light communications for industrial appli-
cations—challenges and potentials,” Electronics, vol. 9, no. 12, p. 2157,
2020.

[44] A. Al-Kinani, C.-X. Wang, L. Zhou, and W. Zhang, “Optical wireless
communication channel measurements and models,” IEEE Communica-
tions Surveys & Tutorials, vol. 20, no. 3, pp. 1939–1962, 2018.

[45] J. M. Kahn and J. R. Barry, “Wireless infrared communications,”
Proceedings of the IEEE, vol. 85, no. 2, pp. 265–298, 1997.

[46] Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible
light communications: theory and applications. CRC press, 2017.

[47] H. Henniger and O. Wilfert, “An introduction to free-space optical
communications.,” Radioengineering, vol. 19, no. 2, 2010.

[48] H. Haas, L. Yin, C. Chen, S. Videv, D. Parol, E. Poves, H. Alshaer, and
M. S. Islim, “Introduction to indoor networking concepts and challenges
in LiFi,” Journal of Optical Communications and Networking, vol. 12,
no. 2, pp. A190–A203, 2020.

[49] M. S. Amjad and F. Dressler, “Integrated communications and non-
invasive vibrations sensing using strobing light,” in ICC 2020-2020 IEEE
International Conference on Communications (ICC), pp. 1–6, IEEE,
2020.

[50] S. Long, M.-A. Khalighi, M. Wolf, S. Bourennane, and Z. Ghassemlooy,
“Channel characterization for indoor visible light communications,” in
2014 3rd International Workshop in Optical Wireless Communications
(IWOW), pp. 75–79, IEEE, 2014.

[51] S. Long, M.-A. Khalighi, M. Wolf, Z. Ghassemlooy, and S. Bourennane,
“Performance of carrier-less amplitude and phase modulation with fre-
quency domain equalization for indoor visible light communications,” in
2015 4th International Workshop on Optical Wireless Communications
(IWOW), pp. 16–20, IEEE, 2015.

[52] R. Le Priol, M. Hélard, S. Haese, and S. Roy, “Experimental comparison
of pam and cap modulation for visible light communication under
illumination constraints,” IEEE Photonics Journal, vol. 14, no. 2, pp. 1–
11, 2022.

[53] K. O. Akande, P. A. Haigh, and W. O. Popoola, “On the implementation
of carrierless amplitude and phase modulation in visible light commu-
nication,” IEEE Access, vol. 6, pp. 60532–60546, 2018.

[54] A. Bhandari and R. Raskar, “Signal processing for time-of-flight imaging
sensors: An introduction to inverse problems in computational 3-d
imaging,” IEEE Signal Processing Magazine, vol. 33, no. 5, pp. 45–
58, 2016.

[55] M. Heredia Conde, K. Kagawa, T. Kokado, S. Kawahito, and O. Loffeld,
“Single-shot real-time multiple-path time-of-flight depth imaging for
multi-aperture and macro-pixel sensors,” in IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pp. 1469–
1473, IEEE, 2020.

[56] M. Heredia Conde, T. Kerstein, B. Buxbaum, and O. Loffeld, “Fast
multipath estimation for pmd sensors,” in 5th International Workshop
on Compressed Sensing Theory and its Applications to Radar, Sonar,
and Remote Sensing (CoSeRa 2018), 2018.

[57] F. Boßmann, S. Krause-Solberg, J. Maly, and N. Sissouno, “Structural
sparsity in multiple measurements,” IEEE Transactions on Signal Pro-
cessing, vol. 70, pp. 280–291, 2021.

[58] P. Maechler, N. Felber, and A. Burg, “Random sampling ADC for
sparse spectrum sensing,” in 2011 19th European Signal Processing
Conference, pp. 1200–1204, IEEE, 2011.

[59] Y. Zhang, Y. Wang, Z. Tian, G. Leus, and G. Zhang, “Efficient super-
resolution two-dimensional harmonic retrieval with multiple measure-
ment vectors,” IEEE Transactions on Signal Processing, 2022.

[60] M. Heredia Conde, A. Bhandari, and O. Loffeld, “Nonuniform sampling
of echoes of light,” in 2019 13th International conference on Sampling
Theory and Applications (SampTA), pp. 1–4, IEEE, 2019.

[61] T. Beyrouthy, L. Fesquet, and R. Rolland, “Data sampling and process-
ing: Uniform vs. non-uniform schemes,” in 2015 International Confer-
ence on Event-based Control, Communication, and Signal Processing
(EBCCSP), pp. 1–6, IEEE, 2015.

[62] J. Laska, S. Kirolos, Y. Massoud, R. Baraniuk, A. Gilbert, M. Iwen,
and M. Strauss, “Random sampling for analog-to-information conversion
of wideband signals,” in 2006 IEEE Dallas/CAS Workshop on Design,
Applications, Integration and Software, pp. 119–122, IEEE, 2006.

[63] D. Donoho, “Compressed sensing,” IEEE Transactions on Information
Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[64] E. J. Candes and M. B. Wakin, “An introduction to compressive
sampling,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21–30,
2008.

[65] A. Abtahi, S. Gazor, and F. Marvasti, “Off-grid localization in mimo
radars using sparsity,” IEEE Signal Processing Letters, vol. 25, no. 2,
pp. 313–317, 2018.

[66] W. Boehler, M. B. Vicent, A. Marbs, et al., “Investigating laser scanner
accuracy,” The International Archives of Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, vol. 34, no. Part 5, pp. 696–701,
2003.

[67] M. Heredia Conde, T. Kerstein, B. Buxbaum, and O. Loffeld, “Near-
infrared, depth, material: Towards a trimodal time-of-flight camera,”
IEEE Sensors Journal, vol. 22, no. 12, pp. 11271–11279, 2022.

Faisal Ahmed received his B.E. degree in
Telecommunication Engineering and MEng in
Telecommunication Engineering and Manage-
ment from Mehran UET Jamshoro in 2016 and
2019 respectively. He had an opportunity to
complete his Master thesis as an Erasmus ex-
change student. In collaboration under the Eras-
mus exchange scholarships between Mehran
UET and the University of Malaga, Spain. Be-
sides, he served as a visiting faculty member at
IICT, University of Sindh, Pakistan. In 2020, he

joined the Marie Skłodowska-Curie Innovative Training Network Project
MENELAOSNT as an Early-Stage Researcher at the Center for Sensor
Systems (ZESS), University of Siegen, Germany, where he is currently
pursuing his Ph.D. degree in the field of optical sensing and communi-
cation from the same university. His research interests include Visible
Light Communication, Time-of-Flight imaging, compressive sensing,
and indoor 3D sensing.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2022.3208085

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



14 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

Miguel Heredia Conde (M’14) received the Dr.
Eng. degree in the field of sensor signal pro-
cessing from the University of Siegen, Siegen,
Germany, in 2016. In 2013, he joined the Cen-
ter for Sensorsystems (ZESS), at the Univer-
sity of Siegen. Since then he has also been a
member of the Research Training Group GRK
1564 ”Imaging New Modalities”. Since 2016 he
is the Leader of the research group “Compres-
sive Sensing for the Photonic Mixer Device”
and since 2020 also the General Manager of

the H2020-MSCA-ITN “MENELAOSNT”. His current research interests
include Time-of-Flight Imaging systems, such as those based on the
Photonic Mixer Device (PMD), Compressive Sensing, Computational
Imaging, and unconventional sensing. Miguel Heredia was one of the
recipients of the 2006 Academic Excellence Prices, awarded by the
Government of Galicia, Spain. In 2017 he was awarded the University
of Siegen Prize for International Young Academics, for the excellent
performance in his doctoral studies. He is a member of the ITG/VDE
and the IEEE/SPS.
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