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A Conformance Checking-based Approach for
Sudden Drift Detection in Business Processes

Victor Gallego-Fontenla, Juan C. Vidal, Member, IEEE, and Manuel Lama

Abstract— Real life business processes change over time, in both planned and unexpected ways. The detection of these changes is
crucial for organizations to ensure that the expected and the real behavior are as similar as possible. These changes over time are called
concept drifts and its detection is a big challenge in process mining since the inherent complexity of the data makes difficult distinguishing
between a change and an anomalous execution. In this paper, we present C2D2 (Conformance Checking-based Drift Detection), a new
approach to detect sudden control-flow changes in the process models from event traces. C2D2 combines discovery techniques with
conformance checking methods to perform an offline detection. Our approach has been validated with a synthetic benchmarking dataset
formed by 68 logs, showing an improvement in the accuracy while maintaining a very low delay in the drift detection.

Index Terms—Business Processes, Concept drift, Process mining, Conformance checking-based detection

1 INTRODUCTION

EAL-LIFE processes are not immutable. Instead, they
Revolve to adapt to changes in their context, as new
regulations or new consumption patterns. Changes can be
planned by the organization, but also happen unexpectedly.
In the first case, the impact on the process can be computed
and minimized. But in the second case, it may lead to
wrong decisions because of outdated information. Thus,
organizations should put in place prevention measures to
detect when something is running differently from planned
to reduce this negative impact. These unforeseen changes
over time are known as concept drifts, which is one of the
challenges presented in the Process Mining Manifesto [1].

Changes can be classified based on their distribution over
time [2]: (i) sudden drifts (Figure , which means that the
new concept replaces the previous one; (ii) gradual drifts
(Figure [Ib), where the new and the old concepts coexist
for some time; and (iii) incremental drifts (Figure , when
the transition from the oldest concept to the newest one
passes through some intermediate states that are, usually,
some kind of combination from both. Furthermore, when
changes can be repeated over time, periodically switching
between concepts, the change is classified as a recurrent drift
(Figure[1d). In this paper, we focus on sudden drift detection.

In addition, based on how data are processed [3], concept
drift can be: (i) offline, when change detection is made
post-mortem, being all data available from the beginning,
and (ii) online, when change detection is made on-the-fly,
and new data are processed just when it is generated. In this
paper we focus on offline concept drift, which additionally
faces two challenges: a) the inherent complexity of process
models, that can contain and combine different structures
such as sequences, loops, parallel branches and choices; and
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b) the distinction between a change and an outlier which
is not always clear [2], [4], [5], [6] and may depend on
the application domain and the context of the detection.
For example, when analyzing a sales process, the changes
caused by the increase in customers on Black Friday can be
considered a drift if we analyze the data on a weekly time
frame. But if we analyze the data for a whole year to get
an overall perspective, these changes can be considered as
outliers, because they last for a very short time.

Although some authors have proposed different ap-
proaches for concept drift detection in process mining [3],
(71, [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21]], identifying all possible change patterns [22] with
a short delay, allowing organizations to know exactly when
the change took place and helping in the identification of
the reasons that caused the change, are still a challenge. In
addition, many of the existing approaches can only detect
some change patterns, which makes them less suitable for
real use, as some of the drifts will remain unknown to the
organizations. Another issue in some proposals is their high
dependence on the end-user, who is required to have some a-
priori knowledge of the process structure or skills to identify
accurately the drift within a set of possibilities.

To address the aforementioned issues, in this paper we
present C2D2, a novel and fully automatic approach based on
discovery and conformance checking techniques for offline
detection of sudden concept drifts in the control-flow of
process models. The method starts by defining a reference
window, that will serve as a ground truth. Then traces are
processed by a discovery algorithm to extract the corre-
sponding process model. To process the remaining traces, the
window is slid over the log, updating conformance metrics
related to that process model. With these conformance values
a regression is computed, and when the measurements
decrease significantly a drift is detected. The underlying idea
is that the value from the conformance metrics computed
over the reference model and the new traces should decrease
when the latter comes from a modified process, being this
enough to determine if a change exists or not with a low
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Figure 1. Types of concept drift based on their occurrence over time.

delay. Specifically, the main contribution of this paper is
the use of conformance metrics, in particular, fitness and
precision, to detect changes in processes, which is a novel
and unexplored approach so far. Namely, we propose the use
of fitness metrics to detect changes that include traces with
behavior not supported by the current process model, and the
use of precision metrics to detect changes that imply behavior
from the model disappearing from the real executions.

C2D2 has been tested using a dataset with 68 synthetic
event logs. The results have been compared with the ones
obtained by the methods available in the state of the art.
C2D2 has proved to be better at the accuracy level, getting bet-
ter Fscore. In addition, C2D2 gets very low delays, identifying
changes closer to the point in which they happened. Getting
good values for both metrics is important for organizations
for minimizing the number of unidentified changes and for
reacting as soon as possible to those changes.

The remainder is structured as follows. In Section 2l we
analyze the main approaches to concept drift analysis. In
Section 3| we define a set of terms necessary to understand
correctly our approach. In Section [4{a formal proof of the
hypothesis for sudden concept drift detection is presented.
In Section 5] we detail our method for offline control-flow
process concept drift detection. In Section [6| we present the
experimentation performed to validate our approach and
how it outperforms the main algorithms from the literature.
Finally, in Section [/]we present our conclusions and outline
our future work.

2 RELATED WORK

Although process mining is a rather active research field,
concept drift analysis has not received much attention
until recently. It is worth noting that, although the method
proposed in this paper focuses on offline detection, online
approaches are also considered in the following analysis,
because they can be easily adapted to detect this type
of change by simulating an online environment from the
complete event log.

In [7], the authors propose a method for online concept
drift detection using a polyhedron-based log representation.
Then, they monitor the probability that a trace falls into
that polyhedron using the ADWIN algorithm [23]. The main
drawback of this approach is that it can only detect the
presence of a change, but it does not give any information
about when it happened.

Online detection is also addressed in [8]], where the
authors discover a probabilistic process model that, given
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an activity, assigns a probability to every possible successor,
and check how these probabilities evolve throughout the
complete log using statistical hypothesis tests. Although the
method identifies drifts in most cases, small changes in less
likely activities generate changes in the probabilities that can
stay undetected.

In [9] the authors propose an online approach based
on the extraction of histograms from traces and then use a
clustering algorithm to generate groups of similar traces.
A change is triggered when a new cluster appears. An
important drawback of this approach is that events order
is not accounted for. Thus, it can only detect the addition
or removal of new activities, but not the changes in the
precedence relations between them.

In [3]], the authors use a fixed-size window over some fea-
tures extracted from the follows/precedes relations present
in traces, and statistical hypothesis tests to evaluate whether
these features have changed significantly. The weak point of
this method is that it requires a lot of interaction from the
user, including previous knowledge of the process model
and the areas where the changes can be located. An extension
of this work has been proposed in [11]], where the authors
implement a recursive bisectioning approach. Specifically,
they take the traces that are involved in a drift detection and
recursively split them into halves, intending to automatically
localize the change. A drawback of this approach is that it
still requires the user to know the possible changes to obtain
good results. A similar solution is presented in [12], where
the authors propose the usage of event class correlation as
a feature, and apply statistical hypothesis tests to detect
changes. However, it fails in detecting some change patterns
such as the changes in the execution order of activities.

Another approach followed by some authors is the usage
of clustering techniques to detect the drift. In [14], the authors
cluster traces using the distance between pairs of activities.
However, this approach does not support models with loops.
Moreover, the distance can ignore certain change patterns
depending on how many activities are affected by the change.
In [15], the authors extend a trace clustering algorithm
[24] adding a time dimension to force clusters to include
only consecutive traces, and thus be able to detect changes.
Their approach highly depends on the number of clusters,
fixed by the user, and only obtain good results when the
number of clusters is equal to the number of changes. In
[16], the authors use a Markov clustering algorithm over
different time windows to detect changes, but the approach
does not focus on the control-flow perspective. Instead,
multiple viewpoints of the process are taken into account
simultaneously, mixing control-flow changes with behavioral
and resource changes.

Another interesting approach, called ProcessDrift, is pro-
posed in [17], where the authors transform traces into partial-
ordered-runs and then apply a statistical hypothesis test over
two windows (one for reference and one for detection) to
detect changes. The main drawback of this approach lies
in its sensitivity to changes in the frequencies of certain
relations present in the log, which may lead to false positives
in the detection. A related method is presented in [21],
where the authors focus on detecting the change at the
event level instead of at trace level. Specifically, they extract
the a™ relations from two consecutive adaptive windows
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of events, and then, applying a statistical test, namely
the G-test, compare the relations distribution of these two
windows. This allows the detection even with unfinished
executions, and reduce the detection delay. The drawback of
this approach is that it requires high amounts of traces to be
able to detect changes, being possible to ignore them when
they are close to each other.

In [18], [19] the authors apply graph metrics to detect
changes. In [18], the authors compare the eigenvectors and
the eigenvalues of undirected weighted graphs representing
the log at different instants. In this graph, each vertex
represents a trace. The edges weight is the similarity between
the vertex (traces) it connects. However, this method needs
a huge amount of traces, being unable to detect changes in
logs with less than 2,000 traces. In [19] the authors compare
models over time using graph features, such as the node
degree, the graph density or the occurrence of nodes and
edges. However, this approach does not perform well in
processes with loops.

In [20] the authors present TPCDD, a method that
transforms the event log into a relation matrix using direct
succession and weak order relations, where each column
represents a trace and each row a relation. Then, based
on the trend of these relations, it generate candidate drift
points. These points are clustered using DBSCAN, to group
candidates that belong to the same drift point. This approach
relies heavily in the user defining a correct radius for the
DBSCAN algorithm, potentially getting a high number of
false positives when it is too low and a high number of false
negatives when it is too high.

In [25], authors propose an algorithm for detecting
sudden drifts in event streams using relation frequency maps
and an adaptive window. They propose the use of an ADWIN
with different distances between these frequency matrices,
so a change would be detected if two consecutive frequency
maps are different enough. The main drawback with this
approach lies in choosing a good distance metric that serves
to detect all types of drift in any context.

A similar approach to the proposed one is presented in
[26], where the authors perform the drift discovery over an
event stream using a sliding window and process histories.
A process history is a collection of every process model used
to represent the behaviour in the event stream along time.
For detecting changes they compute the fitness between
the last known model from the process history and the
trace for the current event, considering that a trace fits a
model if the computed fitness is over a threshold. If the trace
that is being processed does not fit the last known model,
they discover a new one by using only the unfitting traces
from the window. To avoid false positives due to anomalous
executions, they also assign a score to the model, and these
positives are considered viable only if the computed score
is over a threshold. Finally, detected changes are classified
based on the models present in the process history, using
two thresholds. The drawbacks of this approach are that it
requires the end-user to provide multiple parameters (the
window size and 4 different thresholds), and that it can not
detect all types of change in the model, as when optional
parallel paths from the model change to an exclusive choice.

Finally, an interesting job is presented in [27], where
multiple configurations for [3] and [17] are tested in a real
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Table 1
An example of a process log.

Case Timestamp Activity Resource Cost
1 01-01-2010 10:00 A User 1 10
1 01-01-2010 11:30 B User 2 4
1 01-01-2010 11:40 C User 3 6
1 01-01-2010 15:00 D User 3 11
1 02-01-2010 08:00 E User 1 7
1 02-01-2010 09:00 G User 1 5
2 01-01-2010 12:00 A User 3 12
2 01-01-2010 12:10 C User 2 2
2 02-01-2010 07:25 B User 2 17
2 02-01-2010 13:15 D User 1 18
2 02-01-2010 13:25 E User 3 18
2 02-01-2010 14:00 G User 2 1
3 01-01-2010 11:45 A User 3 4
3 01-01-2010 12:30 B User 1 7
3 03-01-2010 10:00 C User 3 13
3 03-01-2010 17:25 D User 1 1
3 03-01-2010 17:30 F User 2 117
3 03-01-2010 17:35 G User 3 3

life scenario, showing the complexity of the concept drift
detection in process mining.

With C2D2 we take the aforementioned issues and try to
minimize them to improve the results of the process drift
detection. The method removes any user interaction in the
drift detection, requiring only a minimum window size to
be specified. Moreover, the method can detect all change
patterns independently of the process structure. Furthermore,
the method is designed to identify drifts with low delay,
minimizing the detection of false negatives and positives.

3 PRELIMINARIES

Below we present some concepts needed to understand the
proposed method. The method takes an event log of a process
and tries to detect the changes in the execution of that process
over time.

Definition 1 (Event). An event ¢ represents the execution of
the activity « in the context of a process. Events have some
mandatory attributes such as the activity, the execution case
or the execution timestamp. They can also have optional
attributes, such as the resource that performed the activity,
the variables that were modified or the location.

Definition 2 (Trace). A trace is an ordered sequence of
events 7 = (e1,...,e,) Where every event belongs to the
same execution case.

Definition 3 (Log). A log is defined as an ordered collection
of traces L = (71, ...,7,) where each trace represents one
execution of the process. The size of the log, denoted as |L|,
represents the number of traces in that log.

Table [I|shows an example of a log, where each row is an
event, and dotted lines separate different traces. In addition
to the mandatory attributes, the log has information about
who performed the activity and the cost of executing that
activity. For clarity, in the rest of the paper we represent
traces as a sequence of ordered activities, without showing
the rest of the attributes, and logs as collections of traces,
ordered by the timestamp of their last event.
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Figure 2. Example of a Petri net representing a process model.

A process model is a graph that describes the log behavior,

that is, a graph that can replay the log traces. A process model
contains a representation of the coordination between the
process activities, through sequences, parallels, choices and
so on. In this paper we formalize process models using Petri
nets.

Definition 4 (Petri net). A Petrinetis a tuple N =
where:

« P is a finite set of places

o T is a finite set of transitions;

e« PNT = 0; and

e« FC(PxT)U(T x P)is a set of directed arcs.
Given z € TU P, the set *z = {y | (y,x) € F'} is the set of

inputs of z, and z* = {y | (z,y) € F'} the set of outputs of z.

Given a Petrinet N = (P, T, F'), a marking of N is a mapping
M : P — N, where N is the number of tokens in the place.

Processes usually have a unique start place s € P which
has no inputs (*s = 0) and a unique end place f € P which
has no outputs (f* = (). The initial marking of the Petri net
My contains only the initial place My(s) = 1AVg# s € P:
Moy (¢q) = 0. For a transition ¢ to be fired, all its input places
must contain at least one token (Vp € *t : M (p) > 1). When
t is executed, it consumes a token from each of its inputs
and puts a token in every of its outputs. Petri nets can be
depicted as bipartite graphs, being transitions represented as
rectangles and places as circles. A black bullet into a place
represents a token.

Figure [2| shows a Petri net example. In this example, the
process is conformed by the activities A, B, C, D, E, F' and
G. In real executions, A must be executed first. Then, B and
C can be executed in any order. After these two activities
are finished, D is executed. Then, exclusively one of E or
F must be executed. Finally, G is executed and the process
execution finishes.

The quality of a process model N with respect to a log L
can be estimated comparing the allowed and the observed
behaviour through some well established metrics such as
fitness and precision.

Definition 5 (Fitness metric). Given a log L and a process
model N, the fitness can be defined as a functiony : Lx N —
R which represents the fraction of the observed behaviour
that is captured by the model [28]. Fitness can be represented
by the following expression, where B represents the allowed
behaviour of N:

_LnB, o

T

For instance, every trace in the log from Table [1] fits
perfectly in the model depicted in Figure 2} because they
can be fully executed from start to end. Conversely, traces
(A,B,D,E,F,G) or (A,C,D, E, F,G) do not fit the model
because D can not be executed without executing both B
and C previously and, furthermore, E and F' can not appear
both in the same trace.
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Definition 6 (Precision metric). Given a log L and a process
model N, the precision can be defined as a function p :
L x N — R which measures the fraction of the allowed
behaviour that is observed in the log [28]]. Precision can
be defined by the next expression, where B represents the
allowed behaviour of N:

_ |L|“;|B| @)

For instance, if we compute the precision of the model
depicted in Figure [2| against cases 1 and 2 from the log
in Table|1} the value will be lower than when using the full
log, because the model allows for executing alternatively £
or F, but in the first two traces only F is observed.

Although there exist multiple ways to compute these
metrics, these approaches can be grouped in two main groups
[29]:

1) Metrics based on replaying the log over the model, like
in [30], where each trace is re-executed over the model
in order to detect discrepancies.

2) Metrics based on the alignment between the log and
the model, like in [31] and [32], where an alignment
is computed between the expected and the observed
behaviour (namely, the one supported by the model and
the one presented in the log).

Despite using Petri nets for modeling the processes, not
all discovery algorithms use this representation. Indeed, the
literature contains multiple ways for representing a process
model (e.g., process trees or heuristics nets). However, these
representations can be translated to an equivalent Petri net
without loosing information. Moreover, all the conformance
metrics used in this paper need a Petri net as its input [33]].
Using Petri nets as an intermediate representation of the
processes allows C2D2 to be agnostic with respect to the
chosen discovery and conformance metrics.

It is worth mentioning that, although the proposed
algorithm is agnostic to a specific metric, results will depend,
to a large extent, on the ability of the metric to stabilize
over time. In order to study the impact that the choice
of a particular metric may have, tests have been carried
out using metrics that are well established in the state
of the art. Specifically, the following metrics were used:
Alignment Based Fitness [31] and Negative Event Recall [34]
for fitness; and Advanced Behavioural Appropriateness [35]
and Negative Event Precision [34] for precision. In addition,
two new metrics are proposed (one for fitness and one for
precision). The proposed metrics are better suited for this
problem (Section and, as we will see below, obtain better
results in change detection, in addition of having a lower
computational complexity.

One of the objectives in this paper is the identification
of changes in the process structure over time. This is done
exploring the traces generated by the process and assessing
if the more recent traces are product of the same process
model. The concept of a sliding window captures this latter
set of traces.

Definition 7 (Sliding window). Given a log L and an integer
n < |L|, a sliding window of size n over the log L can be
defined as the sublog that at instant i contains the last n
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Figure 3. Example of the sliding window behaviour.

traces, denoted by w; = (7, ..., Ti4n). When a new trace is
read from the log, i is incremented, so the oldest trace from
the window is forgotten, and the new one is added at the
end of the window (W(;11) = (T(i41)s > T(i41)4n))-

Figure [3| shows an example log and the behaviour of a
six-sized sliding window over it. At instant 0, the sliding
window wq contains traces 7y to 75. When a new trace is
read from the log, i is incremented, so the oldest trace in the
window (7p) is forgotten and the new trace (75) is added to
the window. This behaviour continues until the full log has
been read.

The structural evolution of the process over time, e.g., to
adapt to new context circumstances or organization needs, is
known as a drift candidate.

Definition 8 (Drift candidate). Let w; = (7, ..., Titn) and
W(it1) = (T(i+1)» -+ T(i+1)4n) De two consecutive windows
over alog. Let N; = (P,T,F') and N,4; = (P*,T*, F'*) be the
models describing the behaviour observed in w; and w;11)
respectively, mined using a discovery algorithm. We say that
the trace 7,4, is a drift candidate when any of the following
conditions is satisfied:

o T # T*, which means that there are different activities
in both models

e FF # F*, which means that the conections between
activities have changed.

A drift candidate indicates a potential change point in
the log, which has to be confirmed ex post. To prevent false
positives due to the presence of noise or anomalous data, a
trace 7; will be considered as a confirmed change if it was
marked as a drift candidate and several of the next traces are
also marked as drift candidates.

4 CONFORMANCE CHECKING BASED DRIFT DE-
TECTION

The algorithm proposed in this paper is based on the
assumption that changes in the model structure (drifts) can
be detected through changes in fitness or precision.

Theorem 1. Fitness detects changes related to unsupported
behaviour that is being observed, but it can not detect fitting
behaviour that is disappearing from the log.

Proof. Let us suppose a log L, a model M, and let B be the
behaviour supported by M. Also, let us suppose that every
trace in the log is supported by the model.

VreL:7eB=—= LCB =— LNnB=L

If we replace the former property in Eq. (I) and Eq. (2), then:

L L
v(L,N) = Iz _

IL| Bl
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Now, let us suppose we observe a new trace 7* that is not
part of the supported behaviour, that is, 7* ¢ B. If we add 7*
to L, Eq. (1) and Eq. (2) can be written as:

_|(LuT*)NB| _ [(LNB)U (7 N B)|

LUT* N) =
’Y( T, ) |LUT*| |LUT*|
LU Ny = (LUTINB _[(LNB)U( NB)|
’ Bl 1B]

If we apply the assumption that every trace is supported by
the model to the former equation then:

: ILUO| IL|
MU N) = 0] T T+
" ILUB] _ L
p(LUT*,N) = =
B IB|

Thus, v(L,N) > v(LU7*,N) and p(L,N) = p(LU 7*,N), i.e.,
when a new behaviour arises in the log, fitness can detect
the change but precision can not. O

Theorem 2. Precision detects changes related to the fitting
behaviour that is disappearing from the log, but it can not detect
new unsupported behaviour that is being observed.

Proof. Let us suppose now a trace 7%, which behaviour is
unique, disappears from the log. In this situation, Eq. (1) and
Eq. (2) are equivalent to:

_JEN) Bl _ [ENB)NTT] LA T

AT = T el L
oy EVINBLnB)
AN = =B T

Since all the behaviour in the log is supported by the model,
the equations can be simplified to:

AN

LA7] L1
" LA7* _ L1t
p(L\7",N) = =

- BB

Therefore, v(L,N) = (L \ 7*,N) and p(L,N) > p(L \
7*,N), i.e., when some behaviour disappears from the log
the fitness can not detect changes but precision can. O

YLATYN)

Corollary. Fitness and precision separately can not detect all
possible changes in the process structure, but a combination of both
can.

To illustrate these theorems, let us suppose the models N;
and N, depicted in Figure [#a|and Figure [db] The difference
between both models is that activities B and C are in parallel
in Ny, but in sequence in Ns. Let us also suppose that the
process N; changes to N, at instant ¢ = 8, which log is
represented in Figure henceforth denoted as L;. Traces 7;
to 73 correspond to the execution of N; and traces 79 to 76
correspond to Ns. In Ly, the concurrent execution of activities
B and C becomes a sequence from 79 onwards. After this
change, traces are still replayable, so the fitness remains
unaltered. However, no trace in the window contains the
path A — C' — D from 19 onwards, so the precision falls.
This can be seen in Figure {4e} where precision falls because
the model allows more behaviour than is present in the traces,
but fitness remains unaltered.
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ID Trace ID Trace

1 ABCDEG 1 ABCDEG
o ACBDEG T2 ABCDEG
T3 ABCDFG T3 ABCDEG
T4 ACBDEG T4 ABCDEG
T5 ABCDEG Ts ABCDEG
T6 ACBDEG T6 ABCDEFG
7 ABCDFG 7 ABCDEG
TS ACBDEG T8 ABCDFG
To ABCDEG To ABCDEG
T10 ABCDFG T10 ACBDEG
11 ABCDEG T11 ABCDFG
T12 ABCDFG T12 ACBDFG
T13 ABCDEG T13 ABCDEG
T14 ABCDFG T14 ACBDEG
T15 ABCDEG T15 ABCDEG
T16 ABCDEG T16 ACBDEG

(c) Log generated using N; as
the initial process and N, as the
modified one.
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(e) Fitness and precision evolution
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(d) Log generated using N, as
the initial process and N; as the
modified one.
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(f) Fitness and precision evolution
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log from Figure [4d|and reference
model N.

Figure 4. Measurements evolution for two logs with different changes.

Let us now suppose a different change, from model N
to Nj, at the same time instant, which log is represented
in Figure @ henceforth denoted as Ls. Traces 71 to 73 are
generated by N, while traces 79 to 76 by Ny.In Ly, B and C,
originally in sequence, are in parallel from 79 onwards. This
change can not be detected using precision (the model does
not generate more behavior than the present in the log), but
it can be detected though fitness, since 719, T12, 714 and 76
can not be replayed by N,. This situation is represented in
Figure [4f] where precision remains unchanged, but fitness
falls in the 7% iteration of the algorithm.

5 ALGORITHM

In this section we will detail how changes in the structure of
a process can be identified when significant variations in the
conformance are detected when comparing incoming traces
and the process model.

Algorithm [1] (C2D2) performs drift detection based on a
sliding window (Def. [7) whose optimal size is automatically
adjusted at the beggining and after a drift is confirmed (line
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Algorithm 1 Conformance Checking-based Drift Detection

Inputs: an event log L and a minimum window size
min_ws < |L|
Outputs: a list of trace causing drift D

1: procedure CONCEPTDRIFTDETECTION(L, min_ws)

2 D« [] //confirmed drift traces

33 i +0

4:  while: < |L| do

5: F < H //fitness measures (Def.

6 H //precision measures (Def.

7 H //drift candidates (fitness)

8: DP H //drift candidates (precision)

9: n < ADJUSTWINDOW(min_ws, (T, ..., T|1|))

10: Wi <T¢,...7Ti+n>

11: N <« discover(w;)

12: while (( +n) < |L|) A (Ti4n—1 ¢ D) do

13: I' «T: fy(wi, N) //append current fitness
14: P «P: p(wl,N) //append current precision
15: D'« DI :: : IDENTIFYDRIFTCANDIDATE(n, T DF)
16: Df « D' :: IDENTIFYDRIFTCANDIDATE(n, P, DY)
17: if CONFIRMDRIFT(n, D', DY) then

18: D+ D:71itn

19: end if
20: i —i1+1
21: Wi — <Ti7~--77'i+n>
22: end while

23:  end while
24:  return D
25: end procedure

26: function IDENTIFYDRIFTCANDIDATE(n, data, D*)

27 T < regress({data|gata|—(n/2), -, datG|gata| })

28:  m< « Y.slope < 0 A Y.confidence < 0.05

29:  m” <« Y.slope > 0 A Y.confidence < 0.05

30 m= <+ (=mS)A(=m”)

31 return (|data| > n/2)A(m=Vm”V(m~A(Dp.| = true)))
32: end function

33: function CONFIRMDRIFT(n, D', DY)
3 d «Vde {D{?Dr‘ o FD‘"|} :d = true
35 4 «Vde {D‘Dl I oD IJ} d = true

36:  return (D7 >nAd") v (D' >nAd)
37: end function

). Thus, the only input of the algorithm is a minimum
window size, aside from the event log. The algorithm starts
by initializing a list D of traces that are confirmed drifts (line
[), and the initial window index i = 0 (line [B).

From lines[4to[23} the main loop will identify and confirm
the drifts of the process. In this loop, the list I will store the
fitness of a model N that is discovered from the traces of a
window. For instance, I'; will contain the fitness of the model
N with respect to the traces of the window w;. Similarly, the
list P will store the precision measurements. In addition, the
lists DT and DT store, at index i, a boolean that indicates
whether the last trace from window w; has been marked as a
drift candidate or not for fitness and precision, respectively.
For instance, Df is set to true when the trace 7;;,, has been
marked as a drift candidate. In line 9} the optimal sliding
window size is calculated from the remaining traces that
have not been processed (more details in Section [5.2), and
then the sliding window w; and the model that describes the
behavior observed in this window are obtained (lines [L0]and
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. These four lists, the sliding window w; and the model N
are reinitialized whenever a drift has been confirmed.

The inner loop (lines [12) to 22) performs the detection
of drifts based on conformance measurements. This loop
iterates from the index 4, corresponding to the window
w;, until the end of the log as long as no drift has been
confirmed (line [12). In each iteration i, the fitness and
precision of the model N are computed with respect to the
sliding window w; (lines [I3| and [14). Traces are identified
as a drift candidate (lines and by computing in
function IDENTIFYDRIFTCANDIDATE a linear regression over
the values of the lists D' and D” (lines 26| to[32) and then
by checking if the slope of the fitted function is statlstlcally
different from zero (more details in Section .1).

If the trace 7,4, is identified as a drift candidate, the
function CONFIRMDRIFT checks if this drift persist over time
(line[I7). This function checks that the last n traces have been
classified as drift candidates either for fitness (line or
precision (line B5). This allows the method to prevent false
positives due to the existence of temporal falls in the metrics
caused by outlier traces. Once the candidate is confirmed as
a real drift, trace 71, is added to the list of confirmed drifts
D (line [I8), the window slides one position, reading a new
trace from the log (line 21)), and the algorithm loops back to
the initialization phase.

5.1 Drift detection

The detection mechanism is listed in lines 26 to of
Algorithm(function IDENTIFYDRIFTCANDIDATE). As a first
step, a simple linear regression [36] is computed over the last
n/2 measurements for both fitness and precision (line 27). To
calculate this regression, the ordinary least squares method
has been used, which minimizes the sum of squares of the
difference between the real and the predicted values of the
dependent variable (i.e., the fitness/precision value). Also, a

statistical test over the regression slope has been performed.

Namely a t-test with (n/2) — 2 degrees of freedom. The null
hypothesis (Hj) states that the slope of the regression is
equal to zero. The minimum significance level has been set
at 0.05. When Hj is rejected (i.e. Y.confidence < 0.05) we
asume that enough evidences exist to accept the slope value
T slope. Otherwise, we can not assume that the slope value
is different from 0.
There are three possible situations:

1) The regression slope is negative (line 28): metrics get
lower values, so more traces are not replayable for fitness
or, conversely, more paths of the model are not contained
in traces for precision. Thus the window is marked as a
drift candidate.

2) The regression slope is positive (line 29): metrics get
higher values, since more traces are replayable for fitness
or, conversely, more paths of the model are contained
in traces for precision. Thus the window is marked as a
drift candidate.

3) The regression slope is zero (line B0): no change in
conformance metrics, i.e., the window does not present
any drift. In this case, a drift can also be detected, but
only if the previous window was marked as a drift
candidate.
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Figure 5. Evolution of fithess and precision metrics when computed over
a sliding window of 100 traces on logs p1 and cb.

An example of this behaviour is depicted in Figure
This example shows the drift detection using the logs pl
and cb, that will be described in Section [6.1} which contain
a change every 250 traces. In the case of p1 (Figure[5a), two
fragments that are originally executed in a concurrent form
are transformed into a sequential execution, which should
imply a reduction in precision but not in fitness. In the case
of cb (Figurepb), a fragment is transformed from mandatory
to skippable, which should imply a reduction in fitness but
not in precision.

5.2 Adjusting the Window Size

When some behaviour appears in some traces but not in the
model, they can be initially considered as outliers. But when
this behaviour persists for a long time, it can be flagged as a
change, having the organization an opportunity to enhance
its process. Something similar happens when some behaviour
is no longer observed in the log. A path of the process that
is not present during a short period of time can be seen as
a temporary exception. But if this behaviour is absent for
a long time, some optimizations can be made to improve
the process performance. Hence, small windows will detect
less durable changes, while larger window sizes will detect
changes that persist.

Adjusting the window size for processing the log is
not a trivial task. A small window would led to multiple
false detections, due to the window not containing enough
information to describe the process executed at a given
instant. On the other hand, a big window would not detect
some changes, because the reference window will contain
traces from before and after the change. Thus, a good balance
between the two options is essential. To adjust the window
size, C2D2 uses an approach based on the comparison of
models from consecutive sublogs (Algorithm [2). We start
with three empty models (line ) and a window size n/,
that is initialized to the minimum window size n (line ).
Then, three new models for three consecutive sublogs are
discovered with the same discovery algorithm used for the
detection (lines [B}f7). If these three discovered models are
equal, we increment the window size and try again (lines
BII0). Else, if any of the discovered models differ from the
rest, the procedure finishes and the last n’ is used as the
window size. By default, we use a minimum window size of
1% and an increment of 0.1 % of the log size.

Figure [6| shows why three consecutive models are re-
quired. Let us consider the log in Figure [4d} that presents a
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Algorithm 2 Automatic window size optimizer

Inputs: an event log L and a minimum window size n < |L|
Outputs: the optimal window size for processing L

1: function ADJUSTWINDOW(n, L)

2 N1, N2, N3 < )

3 n < n

4: while Ny = N> = N3 do

5: N1« discover({To, ..., Tn'))

6: N2  discover({Tn/y ..., Tan’))
7 N3 + discover((Tan/, ..., Tan’))
8: if N1 = Ny = N3 then

9: n’ < increment(n’)
10: end if
11:  end while
12:  returnn’
13: end function

Change

TL T2 T3 T4 T5 Te Tr T8YT9 Tio Ti1 Ti2 T13 Ti4 T15 Ti6

| | | | | | | | % | | | | | | | |

we w12

Added Behaviour Ny # Ny

Removed Behaviour Ny = M
Ws wi0 wib
Added Behaviour N, # M = N
Removed Behaviour Ny = Ny #* N>

Figure 6. Behaviour of the adaptive window in the example from Flgurel
Log correspond with the one in Figure [4c|and Figure [4d]for removing
and adding behaviour, respectively. N1 and N> refer respectively to the
models in Figure[daland Figure [4b}

change between traces 73 and 79. The change consist in some
behaviour being added to the process (the execution of B
before C is replaced by a concurrent execution of these two
activities). In this case, using two windows, one that contains
behaviour from before the change and one that contains
behaviour from both before and after the change, is enough
because the models will be different. Consider now the log
in Figure that also contains a change between traces 75
and 79. This time, the change consists in some behaviour
being removed from the process (the execution of C' before
B disappears from the log). In this case, when using just two
windows, the model discovered with traces from both pre-
and post-drift traces reflects no changes, because the missing
path is present in the pre-drift traces used for discovery. In
this scenario three windows, with their respective models,
are required: one to depict the behaviour of the process before
the change, one to detect both pre- and post-drift behaviour,
which will be the same as in the pre-drift case, and one to
represent the behaviour after the change.

5.3 Custom Fitness and Precision

Traditional fitness and precision metrics are designed to
assess the global quality of a model. These metrics use
different approaches to compute fitness and precision in
a reliable way, giving each trace a score in a continuous scale
depending on how well they conform to the model, rather
than following a discrete approach where traces can only get
a binary rating for Conformance. However, C2D2 use them to
detect structural changes in the execution of a process. In this
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Figure 7. PC computation example.

paper, we propose two simpler fitness and precision metrics
aside from the well-established metrics from the state of the
art. These two approaches have much lower computational
complexity and were designed to detect changes in simple
and noise-free logs.

In the case of fitness, we use the percentage of replayable
traces (Eq. [I). This approach is not particularly useful for
measuring the quality of a model, since it equally penalizes
traces that do not fit the model and those that deviate slightly
from it. Despite this, it can be used to estimate changes in
fitness, since a change in the percentage of traces that can be
replayed in the model always leads to a change in the metric
value.

For precision, the following approach is used:

|OLP \ DFR

=1—
bc |OLP]

®)
where:

o A set of one-length paths (OLP) is extracted from the
model. An OLP is a pair of activities that are directly
connected in the process model, without any other
activity in between.

o A set of directly-follows relations (DFR) is extracted
from the log. A DFR is a pair os activities that appear
one after the other in the log, without any activity in
between.

« Operator \ is the difference between two sets.

Eq. does not measure the precision per se, but the
change in the precision. The moment a OLP stops appearing
in the log is indicative that some path of the model has
disappeared. The proposed approach returns 1 when all the
supported behavior of the model appear at least once in
the log, and 0 otherwise, i.e., when none of the behavior
supported by the model appears in the log. The computation
of this metric is illustrated with an example in Figure[7]

6 EXPERIMENTATION

Concept drift algorithms are assessed based on two quality
measures: Fi.ore , which is an accuracy metric computed
as the harmonic mean between precision {@b) and recall (d);
and delay (henceforth A), which is the distance between
the point when the change really happened and when it is
detected.

2 x precision x recall
precision + recall

Fscore = (4a)
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Figure 8. Change results classification in TP, FP and FN. A dot repre-
sents a real change. A cross represents a detection. Shadowed in the
neighborhood.

Table 2
Simple change patterns from [22] applied to the original model.

Code Change pattern Class
cm Move fragment into/out of conditional branch I
cp Duplicate fragment I
pm Move fragment into/out of parallel branch I
re Add/remove fragment I
rp Substitute fragment I
sw Swap two fragments I
cb Make fragment skippable/non-skippable 0
1p Make fragments loopable/non-loopable o
cd Synchronize two fragments R
cf Make two fragments conditional /sequential R
pl Make two fragments parallel/sequential R
TP
recision = ———— 4b
P TP + FP (40)
TP
recall = —— 4c
TP +FN (4c)

To classify the detected changes as true positives (TP), false
positives (FP) or false negatives (FN), we use a threshold ¢,
that represents the error tolerance of the quality measures,
and a neighborhood 67, defined as the interval between i — ¢
and i + €. Let a change happen at instant i. This change is
classified as a TP only when it is detected in ¢;. When no
change is detected in ¢ it is classified as FN. Finally, all
changes detected in J; where a previous change has been
already detected are classified as a FP, as well as the ones
detected outside any 6°. Figure |8 shows an example with
two real changes (ds, at instant 5, and dyo, at instant 20), and
three detections, at instants 4 (c4), 7 (c7) and 12 (¢12), using a
¢ = 5. In this example, ¢, is classified as a TP, because it lies
in the neighborhood of ds; c7 is classified as a FP, because,
despite being in the neighborhood of d5, another change has
been detected previously; c;5 is classified too as a FP, in this
case for being detected outside any neighborhood §°; and
finally, dog is classified as a FN since no change is detected
in its neighborhood.

The algorithm implementation is published online and
available to researchers as a REST AP

6.1

Our proposal has been tested with three models extracted
from the literature [37], [38], [39], which describe a loan
application process, a hospital emergency ward process,
and a central venous catheter process, respectively. These
models are usually part of benchmarks for concept drift

Validation Data

1. https:/ /tec.citius.usc.es/ concept-drift-api/swagger-ui.html
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detection, process discovery and conformance ckecking. A
set of sythetic logs for each one of the process models have
been generated using the methodoloy and change patterns
described in [17]]. This is the most extended methodology [19],
[20], [40] for generating datasets when validating sudden
concept drift detection algorithms in process mining. For
each process, we generated a dataset composed of 68 logs:
17 with 2,500 traces, 17 with 5,000, 17 with 7,500 and 17
with 10,000. The original dataset from [17] contains 4 more
logs (one for each of the sizes), but they have been discarded
because its drifts (changing the frequency of the branches in a
choice construct) are not control-flow drifts, but behavioural
ones. It should be noted that, for simplicity and space
limitation, the explanation of the concept drift tests will
only describe the results of the loan application process.
Detailed results of the other two models can be found in the
supplemetary material of this paper.

The Petri net corresponding to the loan application
process is depicted in Figure [0} To generate the 17 modified
models, 11 simple change patterns from [22] are applied to
the original process. The applied patterns are collected in
Table [2} These changes can imply an insertion (labeled as
I), an optionalization (labeled as O) or a resequentialization
(labeled as R). For each simple change pattern a different
model is generated. The remaining 6 models are generated by
applying a combination of simple change patterns, picking
one change from each of the previously named classes.

Once all the models are available, the logs are generated
simulating executions of those processes. The original log is
then combined with the modified ones to generate logs with
drifts. The final log is composed joining alternatively sublogs
from both the original model and the modified ones. Each
drifting log presents a change every 10% of its final size.
A log generation example is represented in Figure [10, Two
logs (L1 and L) with different models are split in 5 sublogs
with equal sizes (L1 to L} and L3 to L3). This sublogs are
combined alternatively into a log L, with size |Lq| + |Ls|.

6.2 Impact of Discovery Algorithm in Fithess and Pre-
cision Metrics during Detection

In order to check the impact of the discovery algorithm
and the conformance metrics in C2D2 performance, different
configurations have been tested:

1) Discovery algorithms: Inductive Miner (IM) [41] and
Heuristics Miner (HM) [42], which are two of the most
used methods for discovering models from event logs.
No algorithm based on evolutionary computation has
been selected because it would increase the computa-
tional complexity significantly.

2) Fitness metrics: Alignment Based Fitness (AF) [43],
Negative Event Recall (NR) [34] and the percentage
of completely replayable traces (RT) from Section 5.3}

3) Precision metrics: Advanced Behavioural Appropriate-
ness (ABA) [35], Negative Event Precision (NP) [34] and
precision change assessment (PC) from Section 5.3}

The key when choosing a discovery algorithm and a pair
of fitness and precision metrics is to obtain a combination that
allows the results of the regression to stabilize around a value,
so the slope is zero while there are no changes. If we focus
on fitness, reaching a constant value in absence of changes
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Figure 10. Log generation example.

is easier if we use a discovery algorithm that ensures traces
replayability, such as Inductive Miner. However, if we use a
discovery algorithm that does not ensure traces replayability,
such as Heuristics Miner, the selected metric should take
this into account, or the obtained values will not stabilize, so
more false positives will be notified. This can be seen in the
experiments in Table [3] where the results of Inductive Miner
do not change significantly no matter which fitness metric is
used. On the contrary, when we use Heuristics Miner, best
results are obtained when a more robust fitness metric is
used (e.g., alignments based one vs. percentage of replayable
traces).

On the other hand, if we focus on precision, the chosen
discovery algorithm has less impact, as none of the discovery
algorithms used in the experimentation ensures a perfect
precision. When computing precision, situations in which a
path from the model is only present in few traces (or even in
none) are quite common, so the metric can oscilate a lot. With
the use of the PC' precision metric this is partially addressed,
because this metric does not take into account how many
times a path occurs but only its presence. This forces the
metric to converge quickly, so the regression slopes are near
to zero earlier, and change more abruptly when the path
disappears competely from the executions.

Taking into account the former results, the experiments
in the following sections have been performed using IM
algorithm, RT fitness and PC precision.

6.3 Comparison with Other Process Drift Detection Al-
gorithms

In this section, C2D2 algorithm is compared with Trace-
Based ProDrift (PD-T) [17], Event-Based ProDrift (PD-E) [21]
and TPCDD [20], the three sudden process drift detection
algorithms with best results in the state of the art. Specifically,
we used the following configurations:
1) PD-T with an adaptive window and an initial size of 50;
2) PD-E with an adaptive window and an initial size of 50.
Relation noise filter threshold was set to 0 % and sensitivity
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Table 3
Mean A and Fi.ore for every tested configuration over the 2,500 traces
logs. Window size has been fixed to 100 traces. Best results are
shadowed in a darker grey and runners-up in a lighter one. Error
tolerance has been set to a 5 % of the log size.

ES‘CO'I‘E A
p=ABA 0.9028 4.0915
y=AF p=NP 0.7985 43.6243
p=PC 0.9969 3.6471
p=ABA 0.9028 4.0915
M y=NR p=NP 0.7864 41.5318
p=PC 0.9969 3.5948
p=ABA 0.9425 4.0663
y=RT p=NP 0.7955 41.7028
p=PC 0.9969 3.5948
p=ABA 0.9327 7.4608
y=AF p=NP 0.7365 36.1014
p=PC 0.9789 4.4412
p=ABA 0.9402 10.3758
HM ~y=NR p=NP 0.7427 36.8831
p=PC 0.9750 5.3828
p=ABA 0.4724 6.0812
y=RIT p=NP 0.7025 73.5175
p=PC 0.7176 2.9829
IM Inductive Miner
HM Heuristics Miner
AF Alignment Based Fitness
NR Negative Event Recall
RT Percentage of Replayable Traces
ABA  Advanced Behavioural Appropriateness
NP Negative Event Precision
PC Precision Change Assessment
0.93 0.83 /0.3?
b 7 3.49  3.59
‘ A ‘ A Pl oo :
C2D2 TPCDD PD-T PD-E C2D2 TPCDD PD-T  PD-E
FSCOT@ A

Figure 11. Mean Fi..re and A values for C2D2, TPCDD, PD-T and
PD-E.

to very high, as the authors recommend for analyzing
synthetic logs without noise;

3) TPCDD with minimum window size set to 100 and
DBSCAN radius to 10.

Table @] to Table [/l show the detailed results. C2D2 out-
performs the rest of algorithms in terms of F.or. in all the
cases, except in OIR log, getting always the best average
value. Moreover, C2D2 is also the second best in terms of
delay, very close to TPCDD, and being all the values in the
same order of magnitude.

For the 2,500 trace logs, C2D2 obtains a Ficore of 1.0 in
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Table 4
Mean Fs.ore and A values for each algorithm using logs with 2,500 traces.

C2D2 TPCDD PD-T PD-E
Log
FSCO’I‘S A FSCOT& A FSCOT& A FSCOT& A
cb 1.0000 6.2222 1.0000 5.5556 0.2000 90.0000 1.0000 78.4444
cd 1.0000 1.7778 1.0000 0.7778 0.0000 — 1.0000 42.4444
cf 1.0000 3.8889 1.0000 1.4444 1.0000 40.0000 1.0000 49.7778
cm 1.0000 5.8889 1.0000 11.5556 0.7143 66.0000 0.9412 95.1250
cp 1.0000 2.8889 1.0000 1.2222 1.0000 45.2222 1.0000 39.0000
1p 1.0000 3.6667 0.9474 10.0000 1.0000 52.7778 0.9412 36.5000
sw 1.0000 2.8889 1.0000 1.0000 1.0000 43.5556 0.9412 38.1250
pl 1.0000 1.7778 1.0000 1.3333 0.9412 36.0000 0.9412 51.3750
pm 1.0000 3.2222 1.0000 3.3333 0.8000 49.6667 1.0000 48.4444
re 1.0000 2.0000 1.0000 1.1111 1.0000 19.8889 0.9412 49.8750
rp 1.0000 3.0000 1.0000 1.2222 1.0000 45.2222 1.0000 65.0000
IOR 1.0000 2.6667 1.0000 2.0000 1.0000 38.7778 1.0000 63.3333
IRO 1.0000 6.0000 1.0000 2.7778 1.0000 52.3333 1.0000 43.0000
OIR 0.9000 2.6667 1.0000 0.6667 0.6154 29.5000 0.9412 15.7500
ORI 1.0000 2.5556 1.0000 0.6667 1.0000 50.5556 1.0000 35.0000
RIO 1.0000 4.6667 1.0000 10.8889 0.9412 51.1250 0.9412 53.8750
ROI 1.0000 2.0000 1.0000 0.7778 1.0000 32.3333 0.9412 40.1250
AVG 0.9941 3.3987 0.9969 3.3137 0.8360 46.4349 0.9723 49.7173
Table 5
Mean Fsc.ore and A values for each algorithm using logs with 5,000 traces.
C2D2 TPCDD PD-T PD-E
Log
FSCOT‘(’. A FSCO’I‘C A FSCO'I‘C A FSCOTC A

cb 1.0000 6.7778 0.9000 6.5556 0.7143 57.4000 1.0000 99.6667
cd 1.0000 1.2222 0.9474 0.7778 0.0000 — 0.9412 2.5555
cf 1.0000 3.3333 0.9474 9.2222 1.0000 25.7777 1.0000 50.1111
cm 1.0000 7.7778 0.9474 6.1111 0.7143 51.8000 0.8750 117.5714
cp 1.0000 3.5556 0.9000 5.4444 1.0000 33.3333 1.0000 66.2222
1p 1.0000 2.0000 0.9000 41111 1.0000 48.4444 1.0000 45.3333
sw 1.0000 2.7778 0.9474 0.6667 1.0000 29.6667 1.0000 21.3333
pl 1.0000 1.2222 0.9474 0.7778 0.0000 —_ 1.0000 51.2222
pm 1.0000 3.6667 0.9474 3.4444 0.9412 37.0000 1.0000 25.8889
re 1.0000 2.0000 0.9474 1.5556 1.0000 19.1111 0.9474 16.7778
rp 1.0000 2.8889 0.9000 0.4444 1.0000 28.2222 0.9412 48.7500
IOR 1.0000 2.2222 0.9474 2.7778 1.0000 242222 1.0000 52.0000
IRO 1.0000 5.4444 0.9000 1.7778 1.0000 49.4444 0.9412 31.2500
OIR 0.9474 2.0000 0.9000 1.0000 1.0000 26.6667 0.9412 0.0000
ORI 1.0000 3.2222 0.9000 1.1111 1.0000 36.1111 0.9412 22.7500
RIO 1.0000 5.2222 0.9474 1.7778 1.0000 45.2222 1.0000 59.7778
ROI 1.0000 2.0000 0.9474 0.4444 1.0000 26.0000 0.9412 7.5000
AVG 0.9969 3.3725 0.9279 2.8235 0.8453 35.8948 0.9692 42.2771

all logs, except in OIR, where it returns two false positives.
TPCDD also obtains a perfect Fy.ore, €xcept in 1p. In this
case the error is due to a false negative (i.e., a change that
remains undetected). Both PD-T and PD-E have much worse
results, having 7 and 8 cases where they does not detect all
changes. In fact, PD-T even is unable to detect any change in
cd.

For logs with 5,000, 7,500 and 10,000 traces, C2D2 gets
similar results, and only do not have a perfect Fs.ore in OIR,
again because of false positives and negatives. However,
TPCDD behaves much worse, being unable to get a perfect
Fycore in any log. The same happens to PD-E in logs with
7,500 and 10,000 traces, where it can not detect all changes
correctly. PD-T gets worse Fior in most of the logs, and, in
addition, is unable to detect any change in cd and p1, for
logs with 5,000 and 7,500 traces, and in cd and cm, for logs
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with 10,000 traces.

In terms of A, C2D2 and TPCDD obtain similar results
for all the logs, being able to detect all changes always with
less than 10 traces of delay. In comparison with PD-T and
PD-E, C2D2 A are always an order of magnitude below, thus
being able to detect changes closer to the point where they
really happened.

As a summary, Figure shows the mean Fi.,.. and
the mean A for each algorithm. As can be seen, C2D2 out-
performs every other algorithm in terms of mean Fi.or.
and A. Additional experiments supporting these results and
conclusions can be found in the supplementary material.

6.3.1 Statistical tests

Fscore results (including those from the supplementary
material) have been evaluated using a statistical test in
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Table 6
Mean Fs.ore and A values for each algorithm using logs with 7,500 traces.
C2D2 TPCDD PD-T PD-E
Log
FSCO’I‘E A FSCO’I‘& A FSCOT‘G A FSCOT& A
cb 1.0000 7.7778 0.9474 16.6667 1.0000 68.6667 0.9474 70.2222
cd 1.0000 2.1111 0.9474 1.0000 0.0000 — 0.9474 22222
cf 1.0000 2.7778 0.9474 1.5556 1.0000 22.3333 0.9474 37.5556
cm 1.0000 5.3333 0.9474 4.4444 0.9412 83.8750 0.8889 78.6250
cp 1.0000 3.2222 0.9000 1.3333 1.0000 33.2222 0.9474 26.5556
1p 1.0000 1.4444 0.7500 1.2222 1.0000 52.8889 0.7200 34.6667
sw 1.0000 2.6667 0.8571 0.8889 1.0000 32.4444 0.9000 16.1111
pl 1.0000 2.1111 0.9474 1.6667 0.0000 — 0.9474 30.8889
pm 1.0000 3.1111 0.9474 2.6667 1.0000 43.4444 0.9474 14.6667
re 1.0000 2.0000 0.9474 0.5556 1.0000 21.4444 0.9474 27.5556
rp 1.0000 2.5556 0.8571 30.6667 1.0000 29.8889 0.9000 50.5556
IOR 1.0000 4.3333 0.9474 10.7778 0.9000 34.5556 0.9474 53.2222
IRO 1.0000 4.2222 0.9000 2.7778 1.0000 53.4444 0.9474 14.3333
OIR 0.5000 2.0000 0.7826 0.3333 1.0000 69.7778 0.9474 0.0000
ORI 1.0000 2.3333 0.8571 0.8889 1.0000 33.1111 0.9000 36.8889
RIO 1.0000 4.2222 0.8571 2.4444 1.0000 40.6667 0.9000 47.6667
ROI 1.0000 2.0000 0.9474 1.0000 1.0000 31.3333 0.9474 7.8888
AVG 0.9706 3.1895 0.8993 4.7582 0.8730 43.4065 0.9194 32.3309
Table 7
Mean Fs.ore and A values for each algorithm using logs with 10,000 traces.
C2D2 TPCDD PD-T PD-E
Log
FSCOT‘(’. A FSCO’I‘C A FSCO'I‘C A FSCOTC A

cb 1.0000 9.0000 0.8571 18.2222 0.5000 41.6667 0.8571 84.4444
cd 1.0000 1.5556 0.9474 1.0000 0.0000 — 0.9000 3.3333
cf 1.0000 3.8889 0.9474 5.8889 1.0000 29.6667 0.9474 45.8889
cm 1.0000 8.5556 0.9000 7.6667 0.0000 —_ 0.9474 97.7778
cp 1.0000 4.4444 0.9000 2.3333 1.0000 33.5556 0.9000 30.7778
1p 1.0000 2.3333 0.8182 8.1111 1.0000 471111 0.8182 32.8889
sw 1.0000 3.6667 0.9474 1.5556 1.0000 33.4444 0.9000 4.6667
pl 1.0000 1.5556 0.9474 1.1111 0.2000 84.0000 0.9474 30.7778
pm 1.0000 3.6667 0.9474 21111 0.7500 31.3333 0.9474 9.0000
re 1.0000 2.0000 0.9000 0.7778 1.0000 17.7778 0.9000 23.0000
rp 1.0000 3.7778 0.8182 1.3333 1.0000 31.2222 0.8571 46.2222
IOR 1.0000 2.7778 0.9000 3.0000 1.0000 27.7778 0.9474 59.5556
IRO 1.0000 7.6667 0.9474 2.1111 0.8750 50.1429 0.8571 18.0000
ORI 1.0000 3.8889 0.8182 1.1111 1.0000 32.6667 0.9000 54.6666
OIR 0.1333 2.0000 0.7200 0.2222 1.0000 37.7778 0.9474 2.7778
RIO 1.0000 5.8889 0.7500 21111 0.8889 41.0000 0.8182 63.0000
ROI 1.0000 2.0000 0.9474 0.4444 1.0000 20.6667 0.9000 8.4444
AVG 0.9490 4.0392 0.8831 34771 0.7773 37.8540 0.8995 36.1895

order to confirm the quality of the proposed method. A
non-parametric one-vs-all test has been executed using the
STAC tool [44]. Namely, Friedman's Aligned Ranks test with
a significance level of 0.05 has been used. The test result
confirms that Hy is rejected, thus algorithms do not converge
to the same mean, being C2D?2 statistically the best in terms
of Fycore. Table [8]shows the rankings of the algorithms. In
this case, C2D2 clearly outscores the other algorithms.

A post-hoc test (namely Holm-Bonferroni post-hoc test), a
pairwise comparison, was also performed. Results are shown
in Table E} For all the cases, Hj is rejected, meaning that no
algorithm is able to equal C2D2 in F,,. values. Finally, tests
were also conducted for A values. C2D2 and TPCDD are
tied as the best-performing algorithms. Friedman’s Aligned
Ranks for A is depicted in Table |10} Both C2D2 and TPCDD
obtain similar scores, thus rejecting the hypothesis that one
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of the algorithms outperforms the other. Table [11|shows the
post-hoc test for A. As we can see in the last row, the null
hypothesis Hy between C2D2 and TPCDD cannot be rejected,
which is consistent with the scores obtained by Friedman’s
Aligned Ranks.

7 CONCLUSIONS AND FUTURE WORK

In this paper we presented C2D2, an approach to the offline
detection of sudden control-flow drifts in process mining.
C2D2 drift detection is supported by the assumption that
conformance checking measures are suitable to detect control-
flow drifts. Specifically, we argue that fitness and precision
are complementary metrics in concept drift, and while fitness
is useful to identify traces that are not supported by the
model, precision looks for behaviour not present in the
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Table 8
Fscore ONe-vs-all statistical test results.

Rank

220.45597
278.38679
293.05031
482.10692

Algorithm

C2D2
TPCDD
PD-E
PD-T

Table 9
Fscore POSt-hoc statistical test results. Hy indicates that the mean of
the results of each pair of algorithms is equal.

Algorithms Pualue Result
C2D2 vs. PD-T <1x10~° Hy is rejected
C2D2 vs. PD-E 0.00085 Hy is rejected

C2D2 vs. TPCDD 0.00494 Hj is rejected

window of traces. Related to this, we propose the usage
of two new metrics, one for fitness and one for precision,
that have a low computational complexity to detect changes
in models.

Our approach has been validated against 3 synthetic
benchmarking dataset, each one consisting of 68 logs, outper-
forming the best concept drift algorithms in terms of accuracy
(Fscore) while maintaining a minimum delay (A). Finally, a
statistical test over the results of all algorithms confirmed
that the presented solution is statistically better in terms of
accuracy.

As future work, we plan to extend the algorithm in
order to deal with other types of change, and study the
usage of memory mechanisms in order to be able to classify
them. We plan also to extend the method to be executed
in online environments, where the requirements in terms of
computational complexity are different.
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