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The explanatory capacity of interpretable fuzzy rule-based classifiers is usually limited to
offering explanations for the predicted class only. A lack of potentially useful explanations
for non-predicted alternatives can be overcome by designing methods for the so-called
counterfactual reasoning. Nevertheless, state-of-the-art methods for counterfactual expla-
nation generation require special attention to human evaluation aspects, as the final deci-
sion upon the classification under consideration is left for the end user. In this paper, we
first introduce novel methods for qualitative and quantitative counterfactual explanation
generation. Then, we carry out a comparative analysis of qualitative explanation genera-
tion methods operating on (combinations of) linguistic terms as well as a quantitative
method suggesting precise changes in feature values. Then, we propose a new metric for
assessing the perceived complexity of the generated explanations. Further, we design
and carry out two human evaluation experiments to assess the explanatory power of the
aforementioned methods. As a major result, we show that the estimated explanation com-
plexity correlates well with the informativeness, relevance, and readability of explanations
perceived by the targeted study participants. This fact opens the door to using the new
automatic complexity metric for guiding multi-objective evolutionary explainable fuzzy
modeling in the near future.
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Artificial intelligence (Al)-based algorithms show striking accuracy in a wide range of domains and applications [1]. How-
ever, the most accurate models are known to produce scarcely explainable decisions [2]. This lack of explainability may dam-
age the overall trust in Al [36]. In the light of possible negative consequences of following such automatic decisions without
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having them explained, legal regulations concerning data processing are becoming widely adopted, e.g. the General Data
Protection Regulation (GDPR) in the European Union [33]. Moreover, a new European regulation on Al is in progress and
highlights the importance of preserving the European values by promoting trustworthy and responsible human-centric Al
[9,34].

The gap between obscurity of automatic decisions and their explainability can be overcome by using interpretable models
[37]. Among all Al tools, such soft computing techniques as fuzzy sets and systems have been shown to be not only inter-
pretable but also explainable [3]. Thus, two key advantages are distinguished when relating the properties of interpretability
and explainability of fuzzy systems. First, their transparent (i.e., interpretable) structure allows for making unambiguous
inferences of why the given output was produced. Second, the use of linguistic variables and rules enables such systems
to be explainable, i.e., to produce comprehensible explanations in natural language.

Nevertheless, the ability to demonstrate evidence on why specific output is produced (i.e., explain the factual output) may
not be sufficient to display the underlying reasoning to the end user. Therefore, a factual explanation may need to be com-
plemented with an explanation of why some other output was not produced. Opposed to factual explanations justifying the
given prediction, counterfactual (CF) explanations (or counterfactuals) inform the end user about minimally different alter-
ations to the input features for the outcome to change [41]. In the context of classification problems, CF explanations are
typically designed as answers to the template question “Why was P predicted rather than Q?” where P is the output (factual)
class and Q is a non-predicted hypothesized alternative CF class [29].

CF explanation generation is often regarded as an optimization problem in search of the data point of another class which
represents the closest data point alternative to the test instance in an n-dimensional Euclidean space [46]. In the context of
fuzzy sets and systems, however, such minimal changes may be described not only by means of a continuous variable rep-
resenting numerical feature values (which we call “quantitative CFs” in this paper) but also by a discrete linguistic variable
whose values are linguistic terms (which we refer to as “qualitative CFs” in this paper). In the former case, distinctive (nu-
merical) features point to specific values, which are minimally different from those the test instance has, that should be set
for the outcome to change. In the latter case, linguistic terms represent sets of suitable CF feature values in form of text and
conceal the underlying numerical intervals.

The difference in end user’s perception of these types of CF explanations remains unclear [45]. On the one hand, it may be
affected by peculiarities of the structure of explanation, such as the number of explanatory features or explanation length.
On the other hand, user’s perception may be influenced by a degree of precision of the explanation content. Thus, qualitative
CFs may be regarded as pieces of imprecise information which can facilitate understanding of the communicated explana-
tion but may, however, be underinformative or even misleading to the end user. Conversely, quantitative CFs specify fine-
grained changes to values of features. Last but not least, existing metrics for measuring quality of CF explanations (e.g., valid-
ity, proximity, diversity, among others) are strongly related to the data used for explanation generation [31]. However, those
metrics ignore perceptual skills of the explanation’s recipient and may not be sufficient for assessing the overall explanation
effectiveness. In order to make another step towards human-centric Al, it therefore appears necessary to propose novel
means of capturing and assessing human perception of explanations.

As part of previous work [41], we introduced a method for generating qualitative CF explanations applied to decision trees
(DT). Then, we generalized this method to fuzzy information granules [43]. In this paper, our contribution is fourfold. First,
we extend our previous work with a generalized Euclidean distance-based metric for CF explanation generation which better
grasps membership function values. Second, we propose a novel genetic-based quantitative CF explanation generation
method. Third, we define a new metric for assessing the complexity of automated explanations. Fourth, we carefully validate
both qualitative and quantitative CF explanations via human evaluation in agreement with the best known practices for fair
and sound evaluation of Natural Language Generation (NLG) and analyze the findings in terms of explanation complexity as
expected to be perceived by the end user.

The rest of the manuscript is structured as follows. Section 2 presents a brief overview of existing methods for quantita-
tive and qualitative CF explanation generation. Section 3 introduces our methods for generating CF explanations associated
to fuzzy rule-based classification systems (FRBCS). Section 4 describes the key characteristics of the experimental design for
subsequent human evaluation studies. Section 5 goes in detail with the analysis of the data collected in two evaluation sur-
veys. Section 6 discusses the findings and offers suggestions on how they can be exploited. Finally, we outline directions for
future work and conclude in Section 7.

2. Related work

CF explanation generation has in recent years attracted increasing attention from researchers in the Al field. As CFs
oppose actual and potential outcomes, they are most widely used to explain the output of various classifiers, from linear
machine learning models to deep neural networks [42]. Further, they are extensively found across different application
domains. For example, CFs are found applicable in healthcare where they, e.g., serve to provide a patient with a bigger picture
of the risk of developing diabetic retinopathy [26] or in banking where CFs suggest recommendations on necessary changes
to have a loan application approved if previously rejected [16]. In addition, CF explanations are as well extensively used in
robotics (e.g., in planning - to justify the choice of a robot over other feasible but unfavored possible solutions [44]). Despite
numerous potential application domains, the use of CFs is advised to be controled due to possible malicious implications. As
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such, they have been misused or misinterpreted (what may lead to data breaches) in cases of, e.g. password masking or e-
voting [20]. Other privacy concerns include inferring sensitive patterns of the training data or manipulations with the
revealed internals of the model [40].

In the context of qualitative CFs, a number of generation methods output CF sets to support diversity. For example, Sokol
and Flash inspect the internal structure of DTs in their “Glass-Box” framework for generating CF sets [40]. Thus, the authors
retrieve CF sets from the decision paths ranking them by their leaf-to-leaf distance to the actual prediction. On a similar note,
Stepin et al. generate set-based (i.e., qualitative) CFs from either crisp or fuzzy DTs [41] but also regarding fuzzy information
granules [43] while introducing an extra-linguistic layer to approximate numerical intervals or membership function values,
respectively, using predefined linguistic terms.

Whereas the aforementioned methods are model-specific, i.e., they only allow for explaining counterfactually the given
output of the DT itself, DT-based approaches are also used for model-agnostic methods. In their LOcal Rule-based Explana-
tion (LORE) method, Guidotti et al. employ a genetic algorithm to first synthesize a local neighborhood around the test
instance which is subsequently used to train a DT and generate CF sets [17]. The collection of CF sets is then reconstructed
from the decision paths. Then, the minimally different CF set is selected on the basis of the (minimal) number of Boolean split
conditions of the DT that the given CF path does not satisfy. Maaroof et al. extend LORE to fuzzy logic-based applications by
proposing Contextualised LORE for Fuzzy attributes (C-LORE-F) [26]. Alternatively to LORE, the researchers formulate a local
neighborhood generation approach for solving the uniform cost search problem. Potential neighbors are generated by apply-
ing iterative changes over a single feature taking into account intersections between two corresponding fuzzy sets. Further,
the authors propose to induce the rules instead of building up a DT using the Dominance-based Rough Set Approach (DRSA)
where the decision rules take into consideration the preference directions of the input variables. In addition, Fernandez et al.
extract CF sets from a random forest classifier by partly fusing individual tree predictors [12]. Further, their Random Forest
Optimal Counterfactual Set Extractor (RF-OCSE) prunes the search space of candidate CFs using the minimum observable
approach to filter out CFs whose distance to the test instance exceeds the best up-to-now distance.

On the other hand, quantitative (i.e., single-point-output) CF explanation generation methods address the optimization
problem searching for an individual data point found to be minimally different from the test point under consideration in
accordance with the selected distance function, e.g., Manhattan distance weighted by the inverse median absolute deviation
[46]. Similarly, Moore et al. use a differentiable model on the basis of a gradient-based method over the cross entropy loss
function to identify a single minimally distant CF data point [30].

Alternatively, genetic algorithms are also frequently used to generate CFs [39]. Model-agnostic genetic algorithms are
used not only to generate a local neighborhood but also to identify a specific optimal CF data point. In addition to the stan-
dard genetic algorithm, Lash et al. apply local search to non-mutated children so that the best solution is preserved for the
next generation [24]. Sharma et al. propose another approach called Counterfactual Explanations for Robustness, Trans-
parency, Interpretability, and Fairness of Artificial Intelligence (CERTIFAI) where a genetic algorithm based on natural selec-
tion, mutation, and crossover appeals to user feedback (regarding feature mutation, feature range specification, and
enquiries for a specific number of explanations) [39]. Whereas these user constraints allow for generating actionable
human-centric explanations, imposing too severe restrictions may overreduce the search space resulting in generating null
explanations. In addition, Schleich et al. make use of a complete search space in their GeCo framework [38]. Thus, the authors
present a customizable genetic algorithm enhanced with two optimization techniques to reduce memory costs and running
time. The compressed s-representation of the input features reduces the memory storage required for mutation-related cal-
culations whereas the so-called partial evaluation optimizes the evaluation of the classifier, as static components of the clas-
sifier can be pre-evaluated using an equivalent sub-model of the same classifier [38].

Finally, both qualitative and quantitative generation methods are primarily evaluated with automatically computable
metrics (e.g., fidelity, validity, proximity, or diversity) [12,17,31]. Unfortunately, empirical studies involving human evalua-
tion for assessing the goodness of automated CFs are scarcely found in the literature. Baaj and Poli show that explanations
based on the use of linguistic terms appear rather satisfactory and convincing despite being overly repetitive for a general
audience [5]. Wang and Yin state that CFs increase understanding for users who have sufficient domain knowledge but fail to
calibrate trust in the model [47]. Further, Lucic et al. demonstrate that CFs help users understand why a model makes large
errors [25]. Olson et al. show that CFs can be also effective for non-expert users in the identification of flawed agents [32]. In
addition, Woodcock et al. stress that lay users trust CFs only if the information gap in the existing domain knowledge
between them and expert users is not significant, specifically in the healthcare domain [48]. Nevertheless, unlike our work,
none of the aforementioned studies contrasts the output of single-point-output quantitative generation methods and set-
based qualitative ones.
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3. Explanation generation methods
3.1. Notation

The methods proposed in this study address a multi-class classification problem, i.e., learning a mapping function
h:X—Y from a dataset X = {x;}|_; containing n labeled instances to a discrete output variable (class) Y = {yj}\j’il where
m is the number of classes. The dataset is characterized by the set of p numerical' features F = {f,}|P_,, which are mapped

to the corresponding linguistic variables. By definition [49], each feature is a tuple f, = <Lfk,T{", Ufk,Gfk7Mfk>,ka € F where
/¥ is the name of the feature f,, T = {t{*}ﬁ:] is the set of linguistic terms defined in the universe of discourse ¥, G and

M* being syntactic and semantic rules, respectively. Let V; = UT{k,ka € F denote the set of all linguistic terms.
In our experiments (see Sections 4 and 5), we aim to explain (both factually and counterfactually) the output of an FRBCS
[23] which is defined by the following components:

« a knowledge base containing a set of input and output variables and a rule base which represents a set R = {r;(w;)}|'¥!, of
weighted fuzzy rules of the form r;(w;) : IFL" is tf]‘ {AND .. ris tJ,Z" ...AND .. | THENyISy;, wherer; € R,w; € [0, 1] is the

rule weight (i.e., the higher w; the more relevant r;), t{(“ € T{hfk eFy eY;

e a fuzzy processing structure containing fuzzification and defuzzification interfaces as well as a fuzzy reasoning mecha-
nism. Given an input vector X =[x1,...,X,] and a rule r; €R, its activation degree a; is computed as a;(x)
= ,utjll X)) ®..® #fik (X)) ®...® ,uri,, (xp), being 'ufik (xx) the membership degree of the value x; for the linguistic term ¢

associated to feature f,, and ® is a t-norm such as minimum or product.

Any rule r; can be denoted as a tuple r;(w;) = (AG;, cq;) where AC; is an antecedent (i.e., a non-empty set of feature-value
pairs) and cq; is a consequent (i.e., a class label).
The output class yp, € Y predicted by an FRBCS is said to be the factual explanation class. All the rules from the rule base
that lead to the predicted outcome form a set of factual explanation rules Resc = |J {rj|cqj = ymc}, being Reac C R. Similarly,
rjeR

all the non-predicted classes form a set of CF classes, with a collection of the corresponding rules mapped to each of them:
R = U {rj‘cqrj :.VCF}7YCF ={YlVer € Y \ Yeac}-
rjeR
Given an FRBCS s, a data instance x € X, and the classification output yg predicted by s, each class y; € Y is associated
with a single explanation of why x is classified in the given way. Hence, there exists only one factual explanation Egac(s,

X,Yrac)- In addition, there is a non-empty set of CF explanations Ec+(sX,Yr) = | Ecr(sX,Y¢r) for each non-predicted class
Yer€Ycer

Yer € Yer-

Throughout the manuscript, we assume that the output is explained in its entirety if the corresponding explanation con-
tains a factual explanation specifying why the given decision is made as well as |Y| — 1 CF explanations indicating why all the
alternative classification options are discarded. Therefore, a (full) explanation for a data instance x € X is assumed to contain
one factual explanation and a non-empty set of CF explanations: E(5,X,Y) = Egac(SX.Vrac) U Ecr(5,X,Ycr). Accordingly, explana-
tion generation methods aim to produce (1) a factual explanation for the test instance and (2) the most relevant CF expla-
nations for all the CF classes.

3.2. Factual explanation generation

We design the process of explanation generation to include three main stages (text planning, sentence planning, and sur-
face text realization) as in the NLG pipeline proposed by Reiter and Dale [35]. We selected this NLG pipeline because it is by
far the most commonly used in the scientific community [14]. It is worth noting that we apply the same NLG pipeline no
matter if we consider either factual or CF explanations:

« Text planning, where the information to be conveyed in the text is identified (content determination), as well as some
order and general structure of the text is planned. In the case of CF explanations, content determination relies on rele-
vance estimation (as described in the next section).

e Sentence planning, which includes grouping of messages when needed (sentence aggregation) and decisions about the
words/expressions to be used (referring expression generation and/or lexicalization). This stage is crucial to avoid repe-
titions and make the output text more natural.

T The use of categorical features is out of the scope of this work.
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« Surface text realization, which consists of generating a syntactically, morphologically, and orthographically correct text.
This last stage is implemented using a pool of templates dynamically instantiated, populated and mixed with a Python
wrapper of the SimpleNLG library [6].

Specifically, the factual explanation generation process presupposes the following steps: factual explanation rule selec-
tion, linguistic approximation of the feature values used in the antecedent (optionally), and linguistic realization. First,
the factual explanation rule is selected from all the rules whose consequent is the predicted class. To do so, we calculate
the product of the activation degree g; of each rule r; € R and its associated rule weight wj, s.t. argmax w; - g;, i.e., the factual
explanation rule has the maximum product of the activation degree g; and rule weight w;. Second, if the rules are semanti-
cally grounded, i.e., if they use meaningful strong fuzzy partitions (SFP), the feature values in the factual explanation are
readily available and mapped to the corresponding linguistic terms (e.g., “IF Color IS Pale AND Strength IS Standard THEN
Beer style IS Blanche” where Pale and Standard are expert-defined linguistic terms). Otherwise, i.e., if only local semantics
are available (e.g., “IF Color IS MFO AND Strength IS MF1 THEN Beer-style IS Blanche” where MFO and MF1 are two member-
ship functions with local semantics), linguistic approximation is necessary to generate a meaningful explanation. Notice that
the mechanism of linguistic approximation is also used for qualitative CF explanation generation and will be described in
detail in the next section. Finally, once the relevant pieces of information are identified, linguistic realization is performed.

3.3. Qualitative counterfactual explanation generation

In this section, we introduce a new method for generating qualitative CF explanations (hereinafter denoted as EUC). This
method can be regarded as an extension of our previously proposed method (hereinafter denoted as XOR) [43]. The EUC
method aims to be more sensitive than XOR to variations in membership functions. Despite certain methodological differ-
ences, both methods form a pipeline containing the following steps to be described in detail below (see Fig. 1): CF rule rep-
resentation, relevance estimation, linguistic approximation (optional in terms of the local/global semantics attached to the
FRBCS), and textual explanation generation.

CF rule representation. First of all, the test instance (as well as all the CF candidates) must be represented in a compatible
form. Both EUC and XOR methods reason over the information retrieved from the rule base. Multiple candidates form CF sets
which are labeled in accordance with the selected linguistic terms for the given features. Thus, we regard CF sets as collec-
tions of data instances covered by the rules leading to the desired CF class. In this sense, there exist as many potential CFs as
there are rules that lead to the desired CF class.

For a given FRBCS, a test instance X € X can be represented as a vector X = X;,v,| = [,ux(ti)”g‘] of membership function

values of each linguistic variable. Similarly, each CF rule can be regarded in terms of the membership function values that
the linguistic variables take on. Therefore, each CF rule r¢ € R is vectorized over V for compatibility purposes so that
the collection of such vectorized rules makes up a rule-term matrix Mg <y, where the i-th row corresponds to a CF rule
and the j-th column corresponds to the given linguistic term ¢; € V1. Hence, the rule-term matrix is populated with such
membership values as functions of a given linguistic term My = u,(t;).

for each feature in rule
Approximation:

+ Input: H 6=00

H Factual rule
Test H ]
instance H

FRBCS

: 1 (Binarized) test instance
[ i vector

XOR rule matrix

CF Qualitative
generation CF explanation rules [ e
method?,

Linguistic [ |
approximation
6-001

Linguistic | |
Lappro<iztion] ! Textual explanation ;

Relevance estimation:
XOR

! Output:

i | Factual explanation
Textplanning | i | forfactual class F

major voting

CF explanation rules
ranked by relevance planning H explanation

Linguistic | | for counterfactual

6=0.99 : Sentence | Counterfactual

EUC :
(Non-binarized) test instance lapproximation : i class CF4
vector : Surfacetext |
6=1.0 H realization ' Counterfactual
EUC rule matrix L : [ i
Linguistic | for count
|approximation ] class CFp

GEN

Counterfactual

explanation :

Quantitative e Binary st Yes for counterfactual :

— || i Fitness tournament Crossover H Mutation l—»l e class CFy :
selection

Fig. 1. CF explanation generation pipeline. The shadowed building blocks influence the surface realization of the output explanation.
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It is worth noting that the XOR method additionally binarizes both the test instance vector and the rule-term matrix, at
the cost of information loss because of the test instance and rule vectors being approximated. Instead, the EUC method rep-
resents the original information without further approximation. This is claimed to better capture fuzzy variable ambiguity
and avoid potential information loss.

Relevance estimation. Given vector representations of the candidate CF rules, it becomes essential to identify the CF set
that is minimally different from (and therefore most relevant to) the test instance. Whereas XOR calculates relevance by min-
imizing the number of different bits, EUC relates each vectorized CF rule to the test instance vector in a |Vr|-dimensional
space and measures CF relevance as the Euclidean distance d between pairs of vectors (X,Tcr) 1 <i< |Rer|; being

Tcr, = M, the vector associated to row i in matrix M, i.e., the vector which corresponds to CF rule i.

J_p
Zj\x Ter, |

° dXOR(*vTFi) :\V—T\[ (S [0, 1],

. 2
° dEUC ()7(, T[:') = Zj (Xj — erF,-> c [OOO)

where ¥ and erFi are the j-th elements in vectors X and 7¢r,, respectively.

The candidate CF rules are then ranked in accordance with the given distance metric. Subsequently, we include the min-
imally distant (or most relevant) CF rules for each CF class in the pool Ec of the resulting CF explanations for the given test
instance x. If multiple CF rules are equally minimally distant from X, such rules are deemed equally explanatory. In this case,
the most relevant CF is selected randomly. Representing the test instance and CF rules in a Euclidean |V|-dimensional space
is hypothesized to better capture fuzzy-specific properties of an FRBCS. For example, the Euclidean distance appears more
sensitive to changes in membership function values. The number of unique values that the XOR-based distance can take
on is limited by |Vr|. In consequence, several CF rules may result in having the same relevance score while being distinct
in the number of features or their labeling. On the contrary, EUC provides a more flexible and diverse measure of relevance
of different CF rules and therefore gives a better insight into the fuzzy system’s behavior.

Linguistic approximation. If the linguistic terms are not based on a SFP and therefore not semantically grounded, the
selected CF rule must be enhanced with an additional linguistic layer so that the output explanation is meaningful to the
end user. Once the CF rules are ranked by relevance and the most relevant CF is identified, it must therefore be linguistically
approximated. To do so, each fuzzy set corresponding to the linguistic term of the selected CF rule is mapped to the gold
standard annotations. Note that this mapping is actionable if the «-cut is applied to such a fuzzy set given some threshold
value 6. To illustrate the process of linguistic approximation, consider a fuzzy set FS characterized by a trapezoidal member-
ship function and three linguistic terms (T = {t1, t;, t3}) which are candidates to be associated with FS (see Fig. 2 for details).
Given some cut-off threshold value §,, the fuzzy set FS can be projected to an interval of numerical values L = [wa Z/(;z]. In
addition, each linguistic term t; € T can be projected to an interval t;;; (1 < i < |T|). Then, the interval L can be compared with
the intervals t;;; using the Jaccard Similarity Index [13]:

VL~ tf e Vi : S(ting, L) = 0,1 1
aE T (1()17) t,‘()'lULE[’L ()
M) A
1 ..........
T S c(tgs1) = 0.505
/ \ Cltzp1) = 0.198
/ \ cltys1) = 0.297
0 V1 Vel vazz Vo X
: 1 —~~ :
te1 |
o s .
— S 13 g 1
o1
t3s1 :
1 }

Fig. 2. Illustrative example of the linguistic approximation mechanism.
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Table 1
Approximation confidence score calculation.
Term ) Approximation confidence
t [0.0, 0.3) 30/101 =0.297
ty [0.3,0.5) 20/101 =0.198
ts [0.5, 1.0] 51/101 = 0.505

where t;s5; is the numerical interval closer to the linguistic term t;, and L is the numerical interval associated to the selected o~
cut. As follows from Fig. 2, S(ts3s1,L) > S(t2s1,L) > S(t151,L). Hence, the feature fj characterized by fuzzy set FS is verbalized as
“f; is t3” in this case.

Note that the threshold value ¢ for the a-cut serves as a hyperparameter. The previously proposed XOR method uses
heuristics to specify 6 manually. Instead, both qualitative CF generation methods now use major voting in order to reduce
possible approximation error. Thus, given some small enough step, we inspect all the approximated linguistic terms over
the cut-off interval [0,1] for each term in the given CF rule and assign a confidence score to each term t; as follows:
c(ti) = jtﬁ, being #t; the number of times t; is the winner.

For each feature f; involved in the classification and considered in the output explanation, we apply major voting to iden-
tify which linguistic term is covered by the widest range of the inspected approximations using the approximation confi-
dence score c(t;) as a reference, so that the selected linguistic term is t; € Vr|argmax c(t;). Considering the example in
Fig. 2, let step be 0.01. We therefore perform n =1+ 1/0.01 = 101 linguistic approximations. Suppose that the term under
consideration is mapped to the set of linguistic terms as indicated in Table 1.

Approximation confidence scores are calculated for all the competing linguistic terms. Since we aim to use the most fre-
quently found term among all the considered threshold values, the linguistic term that has the highest score (in this case, t3)
is selected for the output explanation. It is worth noting that in this illustrative example, the selected linguistic term is the
same as the one selected when considering only §;. However, in the general case they may be different. Therefore, it is rec-
ommended to follow the major voting approach instead of relying only on a single ¢ value selected heuristically.

As only two building blocks (relevance estimation and linguistic approximation) influence the output explanation (see
the shadowed blocks in Fig. 1), XOR and EUC generate CFs following one of the three scenarios below:

o the two methods select the same rule to be the most relevant, the approximation algorithm gets the same semantically
grounded linguistic terms;

o the two methods select two different CF rules (e.g., “IF f; IS MF, and f, IS MF, THEN y” and “IF f, IS MF; and f, IS MF,
THEN y") which nevertheless generate identical CF explanations due to a large enough overlap between the correspond-
ing fuzzy sets. This scenario is possible when all the features used in both rules are identical and their non-semantically
grounded values overlap to a large enough extent;

o the two methods select two different CF rules (e.g., “IF f; IS MF, and f, IS MF, THEN y.” and “IF f, IS MF; and f; IS MF,
THEN y,") where feature values are approximated to different linguistic terms.

Textual explanation realization. At the last stage, the selected factual and CF pieces of information are converted to
explanations in natural language while applying the NLG pipeline introduced in the previous section. It is worth noting that
the text and sentence planning along with text realization for a factual explanation follow the structure of the corresponding
winner rule from the rule base. Thus, a factual explanation is assumed to include a subordinate clause of cause (e.g., “The
data instance x is of class y, because f; is v, and f, is ©,”), which lists the features and the corresponding values or linguistic
terms that influenced the actual decision. On the other hand, a CF explanation is verbalized in natural language as a complex
conditional sentence that adopts the structure of the rule, e.g., “x would be of class y if f, were v, and f; were v,” for the
given CF class y,.

Implementation details. The XOR and EUC methods are implemented as open source software in Python and are made
publicly available at a Gitlab repository?.

3.4. Quantitative counterfactual explanation generation

In this section, we present a new method for CF explanation generation which is grounded in evolutionary and bio-
inspired computation algorithms for explainable Al [11]. More precisely, we have implemented a Genetic Algorithm (here-
after denoted as GEN) which takes as the starting point the genetic fuzzy tuning approach previously proposed by Alonso
et al. [4]. Indeed, the original algorithm was first introduced by Cordon and Herrera [7] and later adapted to explainable
SFP tuning in [4].

GEN manages a population P with N individuals which evolve in g generations. The given test instance x is used for build-
ing the first individual of the population. Each individual is associated to a real-coded chromosome which is made up of p

2 https://gitlab.citius.usc.es/ilia.stepin/fcfexpgen (branch “xor_euc_gen”)
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genes, with each gene representing one of the features in F. Since all the features are numerical, gene i € [1, p] encodes the
double value associated to feature i. The rest of the population is generated randomly. Thus, a random value is assigned to
each gene i within its variation interval which is determined by the numerical range associated to feature i. The pseudocode
of the developed algorithm is as follows (see the GEN shadowed block in Fig. 1):

1. Initialize the generation counter, g = 0, and evaluate the initial population, P'”. Evaluating a population means comput-
ing Fitness for each individual in the population. Here, Fitness is computed as the Euclidean distance between the data
instance x associated to the current chromosome and the original test instance X, if the inferred output is in agreement
with the target CF class. Otherwise, Fitness equals the maximum distance which comes out from the Euclidean distance
between the two vectors representing the extreme values (min/max) for the variation intervals associated to each feature.
Hence, the smaller Fitness, the better.

2. while g < MaxGener and Fitness >StopThres and Nbest <NrepThres

g=g+1

Select P'® from P&~
Crossover P®
Mutate P®

Elitist selection P&V

Evaluate P®
end while

The procedure ends either when the maximum number of generations (MaxGener) is reached, or Fitness is under the pre-
defined threshold (StopThres), or the number of consecutive generations for which the best fitness value remains the same
(Nbest) is greater than the predefined threshold (NrepThres). On the one hand, MaxGener should be defined empirically in
terms of the complexity of the dataset under consideration. It must be large enough to guarantee that GEN converges to a
good enough solution. On the other hand, StopThres and NrepThres are threshold values to speed up the procedure, so that
the algorithm stops before MaxGener is reached in case Fitness is small enough or becomes constant for a large enough num-
ber of generations. For each generation, the following steps are repeated:

o The selection of P'® from P®~" is made as a deterministic tournament selection procedure. Each individual in the new
population, P, is chosen from the previous one, P¢~", after making a tournament that involves TS individuals randomly

selected from P'¢~!. The best individual is selected in any tournament. The selection pressure can be adjusted by changing
TS < N. The larger TS, the smaller the chance of weak individuals to be selected. For example, if TS = N, then all the indi-

viduals in P® are equal to the best one in PV, what is unsatisfactory from the point of view of diversity in the
population.

o The BLX — « crossover operator [10] is applied to P‘®). The parents, i.e., the selected chromosomes in the current popula-
tion, are crossed over in pairs. Each pair of parents, dad = (d;,---,d,) and mom = (my,---,my,), is replaced in the new pop-
ulation by two offsprings, Oy = (041,---,04) and Op, = (oml,-u,omp), where o4 and o, are random values from the
intervals [ming;, maxg] and [min,;, max,,], respectively. I]-=[I'-, I}] is the variation interval of gene j. According to the taxon-
omy for the crossover operator presented by [21], « = 0.3 is a suitable value for letting BLX — « exploit the nature of real
coding as follows:

ming = maximum <I] j—o-|dy — m]|>
maxg; = minimum (d; + o - |d; — m,»\,I}*)
Mming,; = maximum I] m; —o - |m; — d,-\)

Maxy; = minimum ( j—dj|,Ij’r‘)

o A uniform mutation operator is considered. The value of the selected gene is changed by another one generated randomly
within its variation interval.
e The elitist selection ensures perpetuating the best individual from the given generation to the next one. If the best indi-

vidual, B; in P, is not included in P, then the worst individual in P'®’ is replaced by B;.
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Once GEN ends, we have identified a new data instance X that is assumed to minimally change the original test instance x
while making the FRBCS infer the desired CF output>. Then, it is time for generating the related CF explanation in natural lan-
guage. To do so, we once again apply the NLG pipeline described previously. First of all, we compute the percentage of modi-

fication D; = 100 = ’@ associated to each feature j to go from x to . The text which describes D; is as follows: x; is [slightly]
I

increased | decreased; where increased appears if D; > 0. On the contrary, decreased is used if D; < 0. In addition, the linguistic
modifier slightly appears only in case of small modifications, i.e., only if 0.9 < D; < 5, which means the percentage of modifica-
tion is smaller or equal than 5%. Notice that nothing is said about feature j if D; < 0.9. In this case, we consider the feature j to
remain the same assuming that such a small change (less than 0.9%) does not have sufficient explanatory power for the recip-
ient of the explanation. This assumption is made heuristically in accordance with our previous experience with designing NLG
systems while keeping in mind the limited processing capability of human beings [28]. As a result, the generated textual expla-
nations are shorter and easier to process while referring only to relevant changes.

Afterwards, at the sentence planning stage, for the sake of simplicity and naturalness, we aggregate those pieces of infor-
mation associated to different features which are affected by the same type of modification (e.g., “f, and f, are slightly
increased” replaces to “f, is slightly increased and f, is slightly increased”). We also apply lexicalization for each feature to
be described in a fully meaningful way. Therefore, increased and decreased are replaced by more meaningful terms (e.g.,
strength is bigger or color is darker).

Finally, text realization is done again using the following template and the SimpleNLG library with the aim of ensuring
syntactically, morphologically and orthographically correct final text: “[Output Class Name] would be [CF Class Name] if
[Name of the most Relevant Feature;] were [linguistic description of D;] (new data value) [AND...]”. Notice that the new val-
ues for the features associated with the most relevant changes are given in brackets.

Implementation details. The GEN method is implemented as a piece of open source software in Python and is made pub-
licly available at a Gitlab repository®. It is also integrated with the open source software GUAJE® which is devoted to facilitating
the design of explainable fuzzy systems [3]. The following GEN parameters are considered when generating the quantitative CF
explanations under evaluation in the rest of the paper: population length (N = 30), tournament size (TS = 2), mutation proba-
bility (mprob = 0.1), crossover probability (cprob = 0.8), a-crossover (o = 0.3), MaxGener = 1000, StopThres = 0, NrepThres = 30.
The interested reader is kindly referred to Appendix A for further details about how such parameters were selected.

4. Evaluation design

In this section, we specify some of the key features that subsequent human evaluation studies rely upon. Section 4.1
introduces the dataset and FRBCS whose classifications are explained. Then, Section 4.2 presents a novel metric for measur-
ing the complexity of automated explanations.

4.1. Dataset and fuzzy inference system

The experiments have been carried out using the BEER dataset®. It contains characteristics of 400 instances of beer each of
which belongs to one of 8 classes (Blanche, Lager, Pilsner, IPA, Stout, Barleywine, Porter, or Belgian Strong Ale). All data instances
are described in terms of three features: color, strength, and bitterness. The corresponding linguistic terms and their ranges of
values are displayed in Table 2. It is worth noting that all linguistic terms are commonsense and fully meaningful because they
were provided by expert brewers.

In our experiments, we generate explanations for an FRBCS associated with the Fuzzy Unordered Rule Induction Algo-
rithm (FURIA) [22]. The min-max inference mechanism [27] is applied so that both conjunction (AND) and implication
(THEN) are implemented by the t-norm minimum, and the output accumulation is done by the t-conorm maximum. All
membership functions are trapezoidal. All rule weights are set to the default value of 1. In addition, it is necessary to apply
linguistic approximation as part of the explanation generation pipeline because FURIA rules are endowed only with local
semantics. It is worth noting that such a linguistic approximation makes use of meaningful SFP-based linguistic terms as well
as their combinations. Thus, explanations may contain combinations of adjacent terms (e.g., “Feature; is Term; or Term,")
with the aim of enhancing further their explanatory capacity. Fig. 3 illustrates the SFP associated to color.

In this work, we use the same FRBCS that was previously designed and evaluated in [43] with 10-fold cross-validation,
achieving 95.5% of correctly classified instances and F1-score equals 0.954 (see the confusion matrix in Table 3 for further
details). Notice that, with the aim of avoiding generation of misleading explanations and mainly because the present work
focuses on the intended human evaluation, the misclassified test instances are excluded from further analysis in the rest of
this manuscript. Whereas explaining misclassification is a challenging problem, it falls outside the scope of this work.

3 Due to the well-known random heuristic nature of genetic algorithms, they avoid stacking in a local minimum but they can not always guarantee the
convergence to the global minimum. Anyway, as shown in Appendix A, GEN succeeds to be effective in the search of “sub-optimal” solutions which are
expected to be close enough to the optimal one.

4 https://gitlab.citius.usc.es/ilia.stepin/fcfexpgen (branch “xor_euc_gen”)

5 https://gitlab.citius.usc.es/jose.alonso/guaje/

¢ The BEER dataset is publicly available athttps://dx.doi.org/10.13140/RG.2.2.20313.67680
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Table 2
Numerical intervals associated to each SFP-based linguistic term.
Feature Linguistic term Range of values
Color Pale [0.0, 3.0]
Straw [3.0, 7.5]
Amber [7.5, 19.0]
Brown [19.0, 29.0]
Black [29.0, 45.0]
Bitterness Low [7.0, 21.0]
Low-medium [21.0, 32.5]
Medium-high [32.5, 47.5]
High [47.5, 250.0]
Strength Session [0.035, 0.052]
Standard [0.052, 0.067]
High [0.067, 0.090]
Very high [0.090, 0.136]
§ : >
0 3 7.5 45 X
— .
I T L] T T 1
a) [pale][straw | [amber | black
b) [pale straw amber brown | —[black
c) pale straw —1 [brown black]
Fig. 3. Interpretation of SFP-based linguistic terms associated to Color.
Table 3
FURIA confusion matrix. UC stands for Unclassified instances.
Predicted class
Observed class BLA LAG PIL IPA BAR POR BSA uc
Blanche (BLA) 50
Lager (LAG) 48 1 1
Pilsner (PIL) 1 49
IPA 1 43 5 1
Stout (STO)
Barleywine (BAR) 5 43 1 1
Porter (POR) 1 47 1
Belgian Strong Ale (BSA) 1 1 47

4.2. Perceived explanation complexity

The use of explanations in natural language poses the problem of adequate estimation of explanation complexity. For
example, it remains unclear whether the use of adjacent linguistic terms in an explanation (e.g., “...if color were pale or
straw”) increases or decreases understandability (and therefore effectiveness and usability) of such an explanation.

As the starting inspiring point for our proposal of automatic calculation of explanation complexity, we refer to existing
readability tests in linguistics, which estimate how easily a text can be read by the intended audience. More precisely,
the well-known Gunning Fog Index [19] is the weighted average of the normalized sentence length and the percentage of
complex words in the text. Similarly, an estimate of complexity of a feature-based linguistic explanation (as perceived by
the end user) may rely on the explanation length as well as on the number of features and linguistic terms used in the

explanation.
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In light of the above, we formally define the perceived explanation complexity (PEC) of an automated explanation e as
follows:

i fi
PEC(e) = 4 7mm(lée)7 9) \F| Z |7t~f, (2)

where / € [0, 1] is the weight regularizing the impact of the explanation length and number of features and terms used in the
explanation, I(e) is the explanation length in characters, ¢ is a normalization hyperparameter over the explanation length, |F]|
is the total number of features in the dataset, F, is the number of unique features used in the given explanation, t/i is the

number of terms associated with the i-th feature used in the explanation, |T{"\ is the power of the set of linguistic terms
of the i-th feature.

In the case of the qualitative methods XOR and EUC, the basic linguistic terms to take into account are those already
described in Table 2. However, in order to guarantee a fair comparison between quantitative and qualitative CF explanations,
it is necessary to linguistically represent numerical feature value changes suggested by the quantitative method GEN. The
sets of linguistic terms associated to each feature by the GEN method are the following:

T.(Color) = {darker, slightly darker, lighter, slightly lighter}.

T, (Bitterness) = {smaller, slightly smaller, bigger, slightly bigger}.

T.(Strength) = {smaller, slightly smaller, bigger, slightly bigger}.

To illustrate computation of PEC(e), let us consider the following example: given a data instance, 2 = 0.5 and ¢ = 150, we
have three alternative CF explanations with their corresponding complexity scores.

e XOR: “Beer style would be Stout if color were black.”
PEC ()=05 * £ +05 * 1 « 1=0.153+0.033 =0.186

e EUC: “Beer style would be Stout if bitterness were low or low-medium, color were black, and strength were standard or
high or very high.”

PEC(e) =05 * 132+05 « 1 * (2+1+3)=0.433+0.242 = 0.675
e GEN: “Beer style would be Stout if color were bigger (30.501) and strength were smaller (0.078).”
PEC(e) =05 * 2 +05 « I = (3+1) =0.300+ 0.083 =0.383

Noteworthy, it always holds that PEC(e) € [0, 1]. PEC(e) is null only if the explanation is empty and the associated weight
A= 1. On the contrary, the highest value of PEC(e) is obtained when the explanation length is equal to the normalization
hyperparameter ¢ or all the dataset features and all the linguistic terms are included in the explanation. However, both
of these special cases are of no interest, as the empty explanation has got null explanatory power whereas explanation
including all the possible categories of features is clearly misleading.

5. Human evaluation

The human evaluation study consisted of two online questionnaires that allowed us to assess how the metric PEC is
related to different explanation aspects. Section 5.1 presents the instruments and design of the first questionnaire (here-
inafter referred to as Survey GM because the items to rate are associated to the so-called Gricean Maxims [15] as we will show
below) as well as the analysis of collected data and the discussion of main results. In the light of lessons learned from this
survey, we developed a subsequent one (hereinafter referred to as Survey TS because the focus is on assessing Trustworthiness
and Satisfaction of the given explanations) whose experimental design and main discoveries are described in Section 5.2. In
both surveys, all the subjects participated voluntarily and anonymously. This research obtained ethics approval from the
University Ethics committee.

5.1. Survey GM: Evaluating CF explanations in terms of Gricean Maxims

5.1.1. Experimental settings

The first experiment was designed as a within-subject study. In order to perform a comparative analysis of qualitative and
quantitative CF explanations, we considered only those test instances for which the qualitative methods (XOR and EUC) gen-
erated distinct explanations (thus avoiding misleading repetitions).

Since the BEER dataset has 8 classes, given a test instance we have 1 factual class and 7 alternative CF classes. Because the
FURIA rules were trained and evaluated with 10-fold cross-validation, the 400 data instances in the BEER dataset were split
10 times into training set (90%) and test set (10%). As a result, we built 10 sets of FURIA rules. They were used to make pre-
dictions for all test instances in each fold (see details in Table 4). Then, we filtered out unclassified and misclassified test
instances with the aim of avoiding the inclusion of void or misleading explanations to be evaluated in the survey. Notewor-
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Table 4

Screening of test instances for defining the survey stimuli in terms of XOR and EUC CF explanations generated fold by fold. Unclassified instances are those for
which no rule was activated. Misclassified instances are those where the FRBCS prediction does not match the ground-truth class label. Wrong factuals
correspond to test instances for which wrong factual explanations were generated.

Fold Ccvo 1 Ccv2 Ccv3 cv4 CV5 CV6 cv7 Cvs cv9
Test instances 40 40 40 40 40 40 40 40 40 40
Unclassified instances - - 2 - - 1 - - - -
Misclassified instances 2 2 3 1 3 1 2 - 3 3
Wrong factuals 1 - 1 - 1 2 - 1 - 2
Screened instances 37 38 34 39 36 36 38 39 37 35
CF explanations 259 266 238 273 252 252 266 273 259 245
Distinct CF pairs 25 28 29 24 20 36 32 74 28 38
Unique CF pairs 6 5 6 4 2 7 8 10 3 5
Table 5
Test instances and the corresponding CF explanations under study.
Task Feature Factual CF class CF explanations
class
Color Bitterness Strength XOR EUC GEN
Beer style would be IPA
. if strength were if color were pale or straw or  if strength were
1 17 87 0.096 Barleywine IPA high (PEC=0.195) amber and strength were smaller (0.085)
session or standard or high  (PEC=0.232)
(PEC=0.582)
Beer style would be Barleywine
. if strength were if color were amber or if strength were
2 8 69 0.083 IPA Barleywine very high brown or black and strength bigger (0.096)
(PEC=0.235) were very high (PEC=0.465) (PEC=0.252)
Beer style would be Lager
3 5 34 0.068 Pilsner Lager if bitterness were if bitterness were low or if color were
low or low-medium low-medium or medium- slightly darker
or medium-high high and color were straw or  (6.500)
and color were amber (PEC=0.552) (PEC=0.255)
amber (PEC=0.488)
Beer style would be Stout
4 28 38 0.091  Belgian Stout if color were black if bitterness were low or  if color were
Strong Ale (PEC=0.186) low-medium, color were darker (30.501)
black, and strength were and strength were
standard or high or very smaller (0.078)
high (PEC=0.675) (PEC=0.383)
5 3 16 0.054 Blanche Porter if color were brown  Beer style would be Porter if color were

and strength were
session or standard

if bitterness were low-
medium or medium-high or

darker (16.001)
and strength were

(PEC=0.400) high, color were brown, and  slightly smaller
strength were session or (0.052)
standard (PEC=0.699) (PEC=0.416)

thy, only 3 out of the 400 (0.75%) test instances (across all the folds) were unclassified, whereas 20 out of the 400 (5%) test
instances were misclassified. Then, we generated CF explanations for each given prediction using the qualitative methods
XOR and EUC. All in all, after careful screening, we identified all unique pairs of distinct CFs to exclude pieces of repeated
explanations from the survey. Then, we picked 5 test instances representing illustrative cases (among the instances associ-
ated to all the previously identified unique CF pairs) that would be used as stimuli in the human evaluation study. After-
wards, we generated quantitative CF explanations for the selected stimuli using the GEN method.

Hence, Survey GM includes the following 5 tasks which were presented in a randomized order to each subject (see Table 5
for details). Task 1 (predicted class: Barleywine, CF class: IPA) and Task 2 (predicted class: IPA, CF class: Barleywine) represent
pairs of classes where the classifier predicted the greatest number of incorrect results (see the confusion matrix from Table 3
in the previous section for details). Hereinafter we therefore refer to the first two tasks as “confusing” (CONF) while the rest
of the tasks are deemed “non-confusing” (NON-CONF). In addition, the last three stimuli were selected by their relation to
color. In Task 3 (predicted class: Pilsner, CF class: Lager) both the predicted and CF classes are characterized by low values of
color (i.e., from Pale to Amber in Table 2). In contrast, Task 4 (predicted class: Belgian Strong Ale, CF class: Stout) the corre-
sponding classes presume high values of color (i.e., Brown or Black in Table 2) for both factual and CF classes. Finally, the
stimulus for Task 5 (predicted class: Blanche, CF class: Porter) was selected to have contrastive values of color for the pre-
dicted and CF classes (i.e., Pale for Blanche versus Black for Porter).
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Table 6

Explanation aspects under evaluation in Survey GM.
Related maxim Evaluation Description

of aspect
Quantity Informativeness An estimate of how complete a CF explanation is perceived to be
Quality Trustworthiness An estimate of how credible a CF explanation is perceived to be
Accuracy An estimate of how precisely a CF explanation describes the CF class instances
Relevance Relevance An estimate of how pertinent the CF explanation details are in order to make a minimal change in feature
values
Manner Readability An estimate of how grammatical a CF explanation is perceived to be

Table 7

Self-reported demographic data (Survey GM). The number of subjects comes along with the percentage in brackets for each category.
Demographic parameter Number of participants
(a) Age
18-25 3(16.67%)
26-35 7 (38.89%)
36-45 5 (27.78%)
46-55 3(16.67%)
(b) Gender
Male 15 (83.33%)
Female 2 (11.12%)
Preferred 1 (5.55%)
not to say

(c) Education

Doctorate (Ph.D) 10 (55.56%)
Master’s (M.A./M.Sc.) 7 (38.89%)
Bachelor’s (B.A./B.Sc.) 1 (5.55%)
(d) English proficiency

Native speaker 3 (16.67%)
Proficient (C2) 7 (38.89%)
Advanced (C1) 4 (22.22%)
Upper intermediate (B2) 4 (22.22%)

(e) Areas of expertise
Explainable Al

12 (66.67%)

Fuzzy logic 9 (50.00%)
Mathematics 6 (33.33%)
Engineering 8 (44.44%)
Computer science 14 (77.78%)
Computational linguistics 4 (22.22%)
Social sciences 1 (5.56%)

The survey was implemented as an online questionnaire’ which was developed in Python®. Each task screen included two
panels. On the left panel, the factual explanation was given in the upper-left corner (for reference only) followed by three dif-
ferent CF explanations, each corresponding to one of the methods under study. The given test instance was depicted as a parallel
coordinates plot below the explanations. On the right panel, the subjects were asked to rate each CF explanation on a 7-point
Likert scale regarding several explanation aspects which are linked to the following Gricean Maxims [8,15]: Maxim of quantity
(make your contribution as informative as is required without making it more informative than required); Maxim of quality (do
not give information that is untruthful or lacks evidence); Maxim of relevance (present information pertinent to the discussion);
and Maxim of manner (be clear and orderly, avoid ambiguity and obscurity).

It is worth noting that these four maxims were transformed into five explanation aspects (see Table 6). First, informative-
ness is related to the maxim of quantity and estimates whether the information present in the explanation sufficiently
describes a necessary feature perturbation and whether it contains any unnecessary information. Then, the maxim of quality
is represented by two explanation aspects. On the one hand, trustworthiness measures how credible the suggested changes
are perceived (without them necessarily being accurate). On the other hand, accuracy indicates whether the suggestions
found in the explanation are perceived to be correct and truly leading to the desired different outcome. In addition, the
aspect of relevance aims to estimate how adequate the suggested changes are with respect to the test instance characteris-
tics. Further, the aspect of readability estimates how grammatical and easy to read the given explanation is. Finally, in order

7 https://tec.citius.usc.es/qxaisurvey1/
8 https://gitlab.citius.usc.es/jose.alonso/surveygenerator
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to estimate a degree of association between PEC and the estimated explanation aspects, Spearman’s rank correlation coeffi-
cients (p) were calculated pairwise for the PEC scores and mean human evaluation scores of each explanation aspect. The
threshold of p = 0.05 was used to confirm whether the correlation between PEC and the given explanation aspect exists.

5.1.2. Results

A total of 18 subjects participated in the Survey GM, each evaluating all the three explanation generation methods. All the
demographic data collected from participants in Survey GM as well as their self-reported areas of expertise can be found in
Table 7. To sum it up, 15 participants were males (83.33%), two were females (11.12%), and one person (5.55%) did not dis-
close its gender. In addition, all the participants held at least a Bachelor degree and had expertise in a wide range of sciences.
Further, all the participants had at least the B2 level of English proficiency and represented various areas of expertise. Note
that participants were allowed to select multiple areas.

Table 8 shows the mean and median human evaluation scores in Survey GM as well as the corresponding standard devi-
ation (St.dev.). On average, the EUC explanations are perceived more informative than GEN or XOR explanations. However,
the quantitative GEN method is perceived to generate more trustworthy explanations, XOR explanations being the second
most credible, and the EUC method offering the least trustworthy explanations among the three methods. The GEN explana-
tions are found more accurate than those generated by XOR and EUC methods. The GEN method also appears to generate
more relevant explanations than XOR and EUC. Nevertheless, XOR explanations are perceived as grammatical as those offered
by GEN, with EUC offering the least readable explanations, possibly due to their increased length.

As we consider all the sample explanations collectively, we observe important correlations between PEC and averaged
scores for several explanation aspects. Thus, explanation complexity is found to moderately correlate with informativeness
(p =0.545,p =0.036). In addition, strong negative correlations are observed between PEC and relevance
(p = —0.688,p = 0.005) but also between PEC and readability (p = —0.871,p < 0.001). On the other hand, no conclusion
can be made regarding the correlation either between PEC and trustworthiness (p = —0.3,p = 0.278) or between PEC and
accuracy (p = 0.07,p = 0.804).

As for the “confusing” tasks alone, a strong negative correlation is found only between PEC and trustworthiness
(p = —0.87,p = 0.024). The human evaluation scores for the other explanation aspects do not allow us to draw any other
significant conclusions on their association with PEC. As for the “non-confusing” tasks alone, the findings testify that more
complex explanations are perceived less readable (p = —0.983,p < 0.001).

The main lessons learned from this survey are as follows: (1) most participants agreed that the online questionnaire was
long because it involved many different evaluation aspects for the three different methods; and (2) PEC turned out to be a
good estimate for some of the explanation aspects under study. Then, we may take profit from these facts when designing
future surveys: provide subjects with short questionnaires that regard only those specific aspects which cannot be inferred
from PEC.

5.2. Survey TS: Evaluating Trustworthiness and Satisfaction of explanations

5.2.1. Experimental settings

In the light of lessons learned from previous survey, we defined a subsequent one. Survey TS was designed to have a sim-
plified structure and follow a between-subject design where each subject would assess only one given explanation genera-
tion method. We considered the same stimuli as in the previous survey but focused only on trustworthiness and satisfaction
of explanations instead. In the new questionnaire®, the subjects were asked to evaluate the given CF explanation only in terms
of trustworthiness and satisfaction. In addition, we adhered to the DARPA!® [18] guidelines for assessing these explanation
aspects on a 5-point Likert scale.

As designed previously, the task screens were presented in a randomized order to each subject. Similarly to Survey GM,
Spearman’s rank correlation coefficients (p) were calculated to estimate the association between PEC scores and human eval-
uation scores for trustworthiness and satisfaction. The same threshold value of p = 0.05 was used to verify whether such
correlations existed.

5.2.2. Results

Sixty subjects participated in Survey TS. Each method was assessed by 20 participants independently. All the demographic
data collected from participants are detailed in Table 9. Out of all the participants, a total of 57 (95 %) disclosed their demo-
graphic data. Thus, 32 of all the participants reported to be males (56.14%), 21 participants were females (36.84%) whereas 4
people (7.02%) preferred not to indicate their gender. Similarly to Survey GM, all the participants self-assessed their English
language proficiency to be of at least the B2 level, and 53 out of 57 subjects disclosed their area of expertise.

Table 10 summarizes the human evaluation scores in Survey TS. Regarding trustworthy, XOR and GEN explanations are on
average perceived nearly the same, the EUC explanations slightly falling behind. A similar pattern is observed for satisfaction.
The quantitative GEN explanations are, in general, found to be the most satisfying. Nevertheless, the qualitative XOR expla-

9 https://tec.citius.usc.es/cfsurvey/
10 The acronym DARPA stands for Defense Advanced Research Projects Agency, which is the research and development agency of the USA.
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Table 8
Survey GM results. ALL corresponds to the average for the five tasks. CONF averages only confusing tasks (1 and 2). NON-CONF averages only non-confusing tasks (3, 4 and 5). The highest average values for each (group
of) task(s) and explanation aspect are highlighted in bold. Notice that, PEC values for ALL, CONF, and NON-CONF are averaged scores for the corresponding groups of tasks.

€6¢

Task Method PEC Informativeness Trustworthiness Accuracy Relevance Readability
Mean Median St.dev. Mean Median St.dev. Mean Median St.dev. Mean Median St.dev. Mean Median St.dev.
1 XOR 0.195 4.667 4.500 1.152 4.889 5.000 1.451 4.667 5.000 1.609 4.722 5.000 1.447 5.778 7.000 1.592
EUC 0.582 5.333 5.000 1.188 4.333 5.000 1.749 4.667 5.000 1.814 3.611 3.500 1.754 4.500 4.500 1.917
GEN 0.232 5.222 6.000 1.517 5.222 5.000 1.166 5.500 6.000 1.581 5.056 6.000 1.697 5.556 6.000 1.580
2 XOR 0.235 4611 4.500 1.614 4.778 5.000 1.396 4.778 5.000 1.592 5.111 5.000 1.323 6.222 7.000 1.003
EUC 0.465 5.000 5.000 1414 4.222 5.000 1.865 3.889 4.500 2.083 4.611 5.000 1.685 4.333 4.500 1.815
GEN 0.252 4,722 4.500 1.742 4.778 5.000 1.353 4.667 5.000 1.715 5.278 5.500 1.487 5.611 6.000 1.501
3 XOR 0.488 4.722 5.000 1.526 4111 4.000 1.676 4444 4.000 1.688 4.389 5.000 1.335 4.556 4.500 1.617
EUC 0.552 4.833 5.000 1.339 4.333 5.000 1.414 4.167 4.000 1.618 4.167 4.000 1.383 4.333 4.500 2.058
GEN 0.255 4.333 4.500 1.572 4.167 4.500 1.791 4.278 4.000 1.447 4.667 5.000 1.572 6.000 6.000 1.237
4 XOR 0.186 4.500 4.000 1.581 4.389 4.500 1.819 3.889 3.500 1.676 4.667 4.500 1.879 6.278 6.000 0.826
EUC 0.675 5.389 6.000 1.501 4.944 5.000 1.211 4778 5.000 1.734 4278 5.000 1.487 3.833 3.000 2.121
GEN 0.383 5.556 6.000 1.338 5.833 6.000 1.200 5.833 6.000 1.339 5.611 5.500 1.290 5.778 6.000 1.166
5 XOR 0.400 4722 5.000 1.638 5.000 5.000 1.495 5.000 5.000 1.283 4.889 5.000 1.451 5.667 6.000 1.609
EUC 0.699 4.889 5.000 1.231 4.667 5.000 1.534 5.056 5.000 1474 4.389 4.000 1.787 4.056 4.000 1.893
GEN 0.416 4.889 5.000 1.323 4.333 5.000 1.749 4.833 5.000 1.791 4.889 5.500 1.676 5.389 6.000 1.539
ALL XOR 0.301 4.644 5.000 1.553 4.633 5.000 1.575 4.556 5.000 1.187 4.756 5.000 1.486 5.700 6.000 1.480
EUC 0.595 5.089 5.000 4944 4.500 5.000 1.560 4511 5.000 1.769 4211 4.000 1.625 4211 4.000 1.934
GEN 0.308 4.944 5.000 1.531 4.867 5.000 1.567 5.022 5.000 1.649 5.100 5.000 1.551 5.667 6.000 1.398
CONF XOR 0.215 4.639 4.500 1.570 4.833 5.000 1.404 4,722 5.000 1.579 4.917 5.000 1.381 6.000 7.000 1.331
EUC 0.524 5.167 5.000 1.298 4278 5.000 1.783 4278 5.000 1.966 4111 4.500 1.769 4417 4.500 1.842
GEN 0.242 4.972 5.000 1.630 5.000 5.000 1.265 5.083 5.500 1.680 5.167 6.000 1.577 5.583 6.000 1519
NON-CONF XOR 0.358 4.648 5.000 1.556 4.500 5.000 1.680 4.444 5.000 1.598 4.648 5.000 1.556 5.500 6.000 1.551
EUC 0.642 5.037 5.000 1.359 4.648 5.000 1.389 4.667 5.000 1.625 4278 4.000 1.535 4.167 4.000 1.979
GEN 0.351 4.926 5.000 1.478 4.778 5.000 1.745 4.981 5.000 1.642 5.056 5.000 1.547 5.722 6.000 1433
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Table 9

Self-reported demographic data (Survey TS). The number of subjects comes along with the percentage in brackets for each category.
Demographic parameter Number of participants
(a) Age
18-25 9 (15.79%)
26-35 19 (33.33%)
36-45 10 (17.54%)
46-55 10 (17.54%)
56-65 7 (12.28%)
66+ 2 (3.52%)
(b) Gender
Male 32 (56.14%)
Female 21 (36.84%)
Preferred 4 (7.02%)
not to say
(c) Education
Doctorate (Ph.D) 33 (57.89%)
Master’s (M.A./M.Sc.) 17 (29.82%)
Bachelor’s (B.A./B.Sc.) 5(8.77%)
Short-cycle terciary 1(1.76%)
Post-secondary non-terciary 1(1.76%)

(d) English proficiency

Native speaker 9 (15.79%)
Proficient (C2) 20 (35.09%)
Advanced (C1) 21 (36.84%)
Upper intermediate (B2) 7 (12.28%)
(e) Areas of expertise
Explainable Al 29 (54.72%)
Fuzzy logic 14 (26.42%)
Mathematics 6 (11.32%)
Engineering 11 (20.75%)
Computer science 35 (66.04%)
Computational linguistics 22 (41.51%)
Social sciences 5(9.43%)
Table 10

Survey TS results. ALL corresponds to the average for the five tasks. CONF averages only confusing tasks (1 and 2). NON-CONF averages only non-confusing tasks
(3, 4 and 5). The highest average values for each (group of) task(s) and explanation aspect are highlighted in bold. Notice that, PEC values for ALL, CONF, and
NON-CONF are averaged for the corresponding groups of tasks.

Task Method PEC Trustworthiness Satisfaction

Mean Median St.dev. Mean Median St.dev.

1 XOR 0.195 3.100 3.000 1.221 2.750 2.000 1.545
EUC 0.582 3.000 3.000 1.183 2.550 2.000 1.161

GEN 0.232 3.100 3.500 1.338 3.100 3.000 1.375

2 XOR 0.235 3.100 3.000 1.179 2.900 3.000 1.261
EUC 0.465 2.850 3.000 1.108 2.800 2.000 1.288

GEN 0.252 3.300 3.500 1.308 2.950 3.000 1.117

3 XOR 0.488 3.700 4.000 1.345 3.150 3.500 1.352
EUC 0.552 2.850 3.000 1.108 2.650 2.000 1.108

GEN 0.255 3.150 3.000 1.152 2.950 3.000 1.203

4 XOR 0.186 3.300 3.000 1.382 3.150 3.000 1.424
EUC 0.675 3.300 3.500 1.145 2.900 3.000 1.044

GEN 0.383 3.800 4.000 1.030 3.900 4.000 1.179

5 XOR 0.400 3.700 4.000 1.100 3.550 4.000 1.203
EUC 0.699 3.600 4,000 1.020 3.400 4.000 1.158

GEN 0.416 3.400 3.000 1.020 3.200 3.000 1.077

ALL XOR 0.301 3.380 4.000 1.279 3.100 3.000 1.389
EUC 0.595 3.120 3.000 1.151 2.860 2.500 1.192

GEN 0.308 3.350 4.000 1.203 3.220 3.000 1.246

CONF XOR 0.215 3.100 3.000 1.200 2.825 3.000 1412
EUC 0.524 2.925 3.000 1.149 2.675 2.000 1.233

GEN 0.242 3.200 3.500 1.327 3.025 3.000 1.255

NON-CONF XOR 0.358 3.567 4.000 1.296 3.283 3.500 1.343
EUC 0.642 3.250 3.000 1.135 2.983 3.000 1.147

GEN 0.351 3.450 4.000 1.102 3.350 3.000 1.222
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nations turn out more satisfying for certain tasks (3 and 5) whereas the EUC explanations appear less favorable in 4 out of the
5 tasks as well as on average.

Considering all the methods and tasks together, the findings from Survey TS do not allow us to make any conclusion
regarding the correlation either between PEC and trustworthiness (p = 0.07,p = 0.803) or between PEC and satisfaction
(p = —0.081,p = 0.775). The same situation is observed irrespective of the “confusing” nature of the tasks. On the one hand,
there is a negative correlation but not enough statistical evidence for making distinctive conclusions in the case of “confus-
ing” tasks: PEC versus trustworthiness (p = —0.516,p = 0.295); and PEC versus satisfaction (p = —0.371,p = 0.468). On the
other hand, correlation coefficients are smaller but, once again, lack evidence in case of “non-confusing” tasks: PEC versus
trustworthiness (p = —0.025,p = 0.949); PEC versus satisfaction (p = —0.209,p = 0.589).

6. Discussion

The explanation generation methods under study have a number of strengths and weaknesses. The qualitative methods
favor two essential properties of CFs. First, the output CFs turn out to be diverse, as they can be mapped to a set of individual
data points that are all equally minimally different on a categorical scale. Second, these methods are expected to maximize
the validity of the generated CFs, as the corresponding explanations mimic the rules from the rule base. Therefore, following
such explanations maximizes the probability of the corresponding CF rule to fire. On the other hand, the proposed qualitative
methods may generate explanations that include a high number of features, some of them possibly being irrelevant or poorly
explanatory.

The human evaluation study testifies that more complex explanations are perceived to be more informative, whereas
increasing complexity jeopardizes readability and relevance. These findings specify the necessity of a careful design of auto-
mated explanations for specific tasks and/or application domains and/or intended audience. Thus, high-stakes decisions may
require the corresponding explanations to be more informative and therefore encourage the use of methods that guarantee
higher PEC scores of their output explanations (EUC). On the other hand, if the intended audience involved only lay users,
more readable and therefore less complex explanations (XOR or GEN) may be preferred.

PEC scores allow us not only to quantify the perceived complexity of automatically computed CFs but also discern the
most favorable of them. Lower PEC values appear to represent lower explanation complexity from user’s point of view
and therefore be more comprehensive. It can be seen that explanation length has a major impact on explanation complexity
if the number of explanation features is low or if the linguistic terms used for such features are selected from a wider range of
terms. Indeed, the terms covering narrower intervals appear more characteristic for the corresponding features and therefore
more comprehensive. Further, the use of the proposed metric favors shorter but more informative (in terms of the number of
features and/or linguistic terms used) explanations. Hence, driven by a complexity-oriented approach to evaluating CFs, a
better understanding of a feature-based explanation can be reached by finding a balance between short enough explanation
length and the number of unique features and/or linguistic terms used in the explanation.

Importantly, PEC can help to choose among alternative but semantically equivalent explanations. For example, the piece
of explanation “if color were pale or straw or amber or brown” can be replaced by the shorter “if color were not black” (see
Fig. 3). Then, it becomes essential to define how many linguistic terms are necessary to be properly understood to guarantee
a consistent use of the metric. We thus suggest two strategies to calculate the number of terms associated to a feature if the
term under consideration is negated. On the one hand, it may be sufficient to calculate the sum of the non-negated terms. In
this case, the number of linguistic terms in the aforementioned explanation t“°" = |{pale, straw, amber, brown}| = 4 (see
Fig. 3b). On the other hand, it may be argued that, to fully understand the meaning of the negated term, it is only necessary
to understand the meaning of the negated term itself (black, in this case) as well as that of the collective linguistic terms
covering all the contrasting linguistic terms (i.e., lighter/darker than black). Thus, if the negated linguistic variable takes
on either of the extreme values (e.g., pale or black), the number of terms associated with the given explanation for feature
t/i always equals 2. Moreover, if the fuzzy partition presumes that both lower and higher values can be captured by other
linguistic terms with respect to the negated term (e.g., “...if color were not amber”), the number of the associated terms
always includes the negated term as well as the values from the extended set of terms covering both smaller and higher cor-
responding intervals (see Fig. 3c).

7. Concluding remarks and future work

In this paper, we presented one quantitative method (GEN) of CF explanation generation and two methods (XOR and EUC)
of qualitative CF explanation generation for FRBCSs. As all of them provide the end user with output of different kinds, they
can be used solely or complementarily to offer explanations on demand and customized for different user profiles. In addi-
tion, we proposed the new metric PEC for estimating the complexity of a given explanation (as expected to be perceived by
an end user).

To evaluate the proposed methods, we collected human evaluation scores in an empirical study which comprised two
online questionnaires. In addition, we computed PEC scores for each of the explanations under consideration in the study.
We observed that a more complexly structured within-subject questionnaire (Survey GM) appears to provide a better insight
into the goodness of automated explanations given an equivalent number of participants. However, collecting data in such a
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survey is costly as it requires higher cognitive load and more time from the participants. Therefore, calculating PEC automat-
ically allows the survey designer to set up and deploy a shorter questionnaire and thus easier to fill (Survey TS). It is worth
noting that PEC strongly correlates with several explanation aspects but does so in different directions, so an FRBCS designer
is advised to carefully select the method of explanation generation based on the peculiarities of the application domain and/
or intended audience.

All in all, the insights from this work are expected to advance methods of generation and evaluation for various explana-
tion approaches. As such, they are expected to be helpful for designing future human evaluation surveys in the area of
explainable Al. Moreover, as part of future work, we will go deeper with selecting and fusing CF explanations with the
aim of customizing them for users having different profiles in different application scenarios. Further research is therefore
necessary: (1) to extend the proposed CF explanation generation methods beyond numerical features; (2) to better assess the
impact of the PEC hyperparameters (¢ and A); and (3) to better understand the connection between complexity and trust-
worthiness of automated explanations. Notice that, the conclusions derived from the current study are only applicable to the
target population under consideration. As part of future work, for the sake of generalization, we intend to design and carry
out other similar experiments with a larger and wider panel of respondents, including non-expert lay users. Finally, we plan
to use PEC as one of the criteria to optimize when designing explainable multi-objective evolutionary fuzzy systems.
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Appendix A

In addition to the human evaluation study on the automatically generated CFs, we performed three independent experi-
ments on the genetic algorithm hyperparameter fine-tuning. In particular, we estimated the impact of the following hyper-
parameters associated to the GEN method: (i) the size of the population, (ii) the crossover probability and the corresponding
alpha value, and (iii) the mutation probability. All the experiments were run for the five survey stimuli where both the pre-
dicted classes and the CF classes were known. The experimental results were assessed in terms of the best achieved fitness
scores.

Fig. 4 summarizes the impact of the population size (10, 20, 30, 40, 50). It can be observed that the default population size
(30) provides good results, on average, for all the test instances under consideration.

Impact of the size of the population
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Fig. 4. An empirical assessment of the impact of the population size in the GEN method.
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Fig. 5 shows the results of the experiment on the crossover probability values (0.7, 0.8, 0.9), considering different o values
(0.2, 0.3, 0.4). In short, the combination of the crossover probability (0.8) and o = 0.3 yields the best results for the consid-
ered CF data points.

Fig. 6 illustrates the impact of the selected mutation probability values (0.05, 0.1, 0.15, 0.2). It can be seen that doubling
the default mutation probability value may result in worsened performance of the algorithm.

To sum it up, the analysis carried out allows us to conclude that the selected hyperparameter values do not only agree
with the guidelines found in the literature (e.g., [21]) but also prove to be effective in the given experiments and can indeed
be recommended for future use. All the detailed calculations as well as additional plots and the source code for replicating
this experimental analysis can be found in our Gitlab repository:https://gitlab.citius.usc.es/ilia.stepin/fcfexpgen (branch
“xor_euc_gen”).

Impact of the crossover probabilities
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Fig. 5. An empirical assessment of the impact of the crossover hyperparameters (the crossover probability and the o crossover operator) in the GEN
method.

Impact of the mutation probability
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Fig. 6. An empirical assessment of the impact of the mutation probability in the GEN method.
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