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Resumo

Nesta tese afrontáronse desaf́ıos na optimización dinámica da distribución e reparto
de carga computacional en dous tipos diferentes de sistemas, particularmente en siste-
mas convencionais utilizando paralelismo heteroxéneo de CPU e GPU e en servidores
Non-Uniform Memory Access (NUMA). Cada tipo de sistema conta coas súas pro-
pias caracteŕısticas e singularidades, de forma que requiren diferentes aproximacións
e distintas solucións para os problemas que se abarcaron.

En primeiro lugar, abordouse o problema da asignación dinámica de carga de tra-
ballo en paralelismo heteroxéneo, combinando o poder de computación de CPUs e
GPUs. Co auxe da computación de propósito xeral en GPUs, general-purpose compu-
ting on Graphics Processing Units (GPGPU), novas oportunidades xurdiron no eido da
computación paralela. Dende principios do século XXI, apareceron varias tecnolox́ıas
para facilitar a programación neste tipo de procesadores, establecéndose Compute Uni-
fied Device Architecture (CUDA) como a mais popular. A principal vantaxe das GPUs
reside na grande cantidade de núcleos de computación (na orde de miles no momento
de escribir esta tese) e a estreita relación entre os devanditos núcleos e a súa memoria.
Estas caracteŕısticas fan que as GPUs sexan particularmente adecuadas nos problemas
coñecidos como embarrasingly parallel e principalmente adicados ao cómputo de tipo
aritmético, como se recolle no Caṕıtulo 1. Inicialmente, foron códigos de simulación
f́ısica e procesamento de imaxes os que máis se beneficiaron da GPGPU. Na actuali-
dade, é no campo do machine learning onde se fai un maior uso destas arquitecturas
que xa incorporan procesadores espećıficos (como os tensor cores) para este propósi-
to. Sen embargo, utilizar soamente a GPU para a computación pode deixar a CPU
ociosa, o que é subóptimo en termos de xestión dos recursos. Polo tanto, facer uso do
paralelismo heteroxéneo é un camiño que merece ser explorado na busca dun mellor
rendemento e a redución dos tempos de execución.

Co obxectivo de maximizar o uso da CPU e da GPU para acelerar a computación,
particularmente en métodos iterativos ou con pasos de tempo, nesta tese proponse a
libreŕıa Iterative Heterogeneous Parallelism (IHP). Tal e como se explica no Caṕıtulo 2,
IHP divide o dominio global en dous subdominios que son asignados aos dous tipos de
procesadores para acadar o seu obxectivo. O tamaño destes subdominios é recalculado
periodicamente segundo o rendemento da CPU e da GPU, tal que, idealmente ambos
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tipos de procesadores consumen o mesmo tempo na execución dos seus respectivos
subdominios. Nesta tese desenvolvéronse dúas versións de IHP. A versión inicial de
IHP, IHP version 1 (IHPv1), asume un modelo de carga de traballo linear, onde o
tempo de execución crece linearmente coa cantidade de traballo e o reparto do mesmo
recalcúlase en función do tempo invertido pola CPU e pola GPU, respectivamente,
para facer os cálculos que lles foron asignados na iteración anterior. A segunda versión,
IHP version 2 (IHPv2), engade varios modelos de rendemento, que son clasificados
como linear, logaŕıtmico e exponencial. Estes modelos son axustados coa serie histórica
de datos de rendemento obtidos, de forma que o modelo que mellor axuste os tempos
de execución previos utiĺızase para calcular o reparto de traballo a utilizar na seguinte
iteración. Adicionalmente, IHPv2 inclúe mecanismos que utilizan os devanditos datos
históricos de rendemento co fin de reducir as custosas transferencias de datos entre
CPU e GPU. Desta forma os cambios súbitos no reparto de traballo entre ámbolos dous
tipos de procesadores poden mitigarse, contando o algoritmo cunha maior estabilidade.

Para a avaliación destas propostas, fixéronse varias probas a partires de códigos
de diferencias finitas utilizados no eido do procesamento de imaxes para reducir o
rúıdo das mesmas. Estes códigos adáptanse á perfección ás caracteŕısticas das GPUs
dada a súa natureza masivamente paralela. Ademais, a súa sinxela estrutura permite
inserir modificacións no código para emular distintos tipos de cargas computacionais
e aśı avaliar o comportamento de IHPv1 e IHPv2 en diferentes situacións.

Os resultados recollidos no Caṕıtulo 2 mostran que IHPv1 reduce os tempos de
execución en cargas de traballo de tipo linear entre un 3.20 % e un 55 % en comparación
ás implementacións que só utilizan a GPU. A porcentaxe de mellora vaŕıa dependendo
en función tanto das caracteŕısticas do código paralelo coma do tipo de rexistros que
se utilicen para o cómputo, sendo os códigos máis intensivos onde as implementacións
heteroxéneas teñen máis marxe de mellora. Noutros casos, o tempo de execución pode
ser dominado polas transferencias entre CPU e GPU. Nótese que, inclusive nas peores
situacións, onde a carga computacional é baixa, IHP consegue compensar o overhead
e manter os tempos de execución por debaixo daqueles onde só se utiliza a GPU. Por
outra banda, é coñecido que o rendemento das GPUs escala peor que o das CPUs ao
operar con rexistros de punto flotante de dobre precisión. En consecuencia, as CPUs
poden adquirir máis carga de traballo e facer unha maior contribución á mellora dos
tempos de execución. En comparación con outras libreŕıas, IHPv1 consegue obter un
mellor rendemento grazas a un cálculo do reparto da carga de computación máis preto
ao óptimo e á redución da cantidade de transferencias realizadas entre CPU e GPU.

Comparando as diferentes versións de IHP, IHPv2 consegue mellorar os resultados
de IHPv1 ante diferentes cargas de traballo, tanto lineares como non lineares. Esta
mellora é particularmente importante en cargas de traballo de tipo exponencial, dado
que unha estratexia de “divide e vencerás” xa permite reducir a cantidade total de
traballo realizado. É interesante comentar que IHPv1 é quen de acadar un bo resultado
independentemente do tipo de workload. Isto débese a que a rexión na que se localiza
o punto óptimo de reparto da carga de traballo pódese entender como localmente
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linear. Polo tanto, unha vez que IHPv1 atopa valores próximos ao óptimo, o seu
rendemento é comparable ao de IHPv2, que contempla diferentes tipos de carga. IHPv2
tamén consegue mellorar a IHPv1 lixeiramente nas transferencias de datos grazas aos
mecanismos incorporados que recollen un histórico de rendemento e permiten reducir
o tempo invertido nestas custosas comunicacións.

En canto ao consumo enerxético, a pesares das significativas reducións nos tem-
pos de execución, as solucións que utilizan computación heteroxénea non conseguen
mellorar as cifras das implementacións que soamente utilizan GPUs. Isto é debido
á diferencia na eficiencia enerxética das CPUs en comparación ás GPUs en traballos
masivamente paralelos, onde a relación entre rendemento e consumo é notablemente
mellor nestas últimas.

Na segunda parte desta tese, abordouse o problema da migración de f́ıos de exe-
cución e páxinas de memoria en sistemas NUMA. Estes servidores contan coa parti-
cularidade de que a latencia dos accesos a memoria non é uniforme entre os distintos
núcleos dos procesadores que os forman. Isto fai que aquelas operacións entre cores
e módulos de memoria que se encontren dentro dun mesmo nodo NUMA, coñecidas
como operacións locais, sexan máis rápidas que aquelas entre cores e memorias de dis-
tintos nodos, o que se denomina como operacións remotas. Neste contexto, a localidade
dos datos é fundamental para acadar un rendemento óptimo, evitando a penalización
na latencia propia dos accesos remotos. Sen embargo, é necesario acadar un equilibrio
entre accesos locais e remotos, pois un exceso de operacións locais pode implicar unha
saturación dos buses de memoria coa conseguinte perda de rendemento.

O actual (no momento de escritura desta tese) scheduler de Linux, coñecido como
Completely Fair Scheduler (CFS), foi un grande paso cara adiante no momento da súa
incorporación pois cumpre coas expectativas de rendemento na maioŕıa de sistemas e
situacións. Nótese a complexidade desta tarefa, dada a ubicuidade de Linux a través
dunha grande variedade de dispositivos: servidores, ordenadores persoais, sistemas
móbiles, sistemas empotrados, etc. Como se recolle no Caṕıtulo 3, áında que CFS ten
en conta distintos scheduling domains, distinguindo entre CPUs lóxicas e f́ısicas ou
incluso diferenciando os nodos NUMA do sistema, os algoritmos actualmente presentes
no kernel seguen a estar enfocados particularmente ao reparto da carga e non tanto
na mellora da localidade entre f́ıos de execución e datos. Co obxectivo de mellorar
estas deficiencias, varios parches foron engadidos ao código do sistema operativo dos
que cabe destacar a incorporación das Transparent Huge Pages (THPs) e do NUMA
Balancing (NB). O mecanismo das THPs encárgase de agrupar páxinas de memoria
consecutivas e, a partir destas, crear páxinas de grande tamaño cuxa xestión é máis
eficiente ca no caso das páxinas convencionais. En primeiro lugar, a frecuencia de
operacións sobre o Translation Lookaside Buffer (TLB) é reducida, dado que cada
fallo na TLB corresponde a un rango maior de direccións, polo que cada proceso ten
unha maior cantidade de datos coa que traballar antes do seguinte fallo. En segunda
instancia, o número de entradas na TLB vese diminúıdo, polo que pode ser almacenada
na memoria caché de segundo nivel, mellorando a velocidade das operacións sobre o
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buffer. Pola outra parte, NB almacena unha serie de estat́ısticas sobre cada proceso
para ter en conta o histórico de accesos a memoria recentes no momento de decidir a
localización dun f́ıo de execución. NB tamén desvincula periodicamente as páxinas de
memoria para movelas a outros nodos NUMA coa finalidade de mellorar a localidade
das devanditas páxinas. A pesares dos esforzos realizados en mellorar CFS, pénsase
que áında queda marxe de mellora en relación á asignación e localización de f́ıos de
execución e páxinas de memoria en sistemas NUMA.

Na busca de mellores solucións para o problema do scheduling en Linux, esta tese
propón unha colección de algoritmos recollidos no Caṕıtulo 3. Estas estratexias foron
implementadas nunha ferramenta chamada Thanos. Dende o espazo de usuario, esta
ferramenta recolle diversos datos de rendemento, procésaos e executa os algoritmos
que deciden que migracións facer. O rendemento é inferido principalmente a través
dos datos recollidos dos hardware performance counters (HC). Estes rexistros espe-
ciais permiten avaliar distintas métricas como as instrucións executadas ou a latencia
das operación de memoria realizadas, coas que se pode deducir o rendemento dunha
aplicación ou do propio sistema. Unha vez que estes datos son correctamente proce-
sados, os diferentes algoritmos deciden se é necesario realizar algunha migración, que
f́ıos ou páxinas deben ser migradas e o seu destino.

Dentro da ferramenta dist́ınguese entre dous tipos de estratexias: aquelas para a
migración de f́ıos, e as deseñadas para a migración de páxinas de memoria. Ademais
das métricas obtidas a partires dos contadores hardware, estes algoritmos utilizan unha
series de heuŕısticas para tomar as decisións pertinentes ao movemento dos threads e
das páxinas de memoria. Estas heuŕısticas inclúen a análise de nodos NUMA preferidos
(aqueles nodos onde se realizan máis operacións de memoria), datos históricos de
rendemento, ou comparativas entre f́ıos do mesmo proceso para detectar aqueles cuxo
desempeño está considerablemente por debaixo da media.

Nesta tese recoṕılanse sete algoritmos para a migración de f́ıos: CRA, LBMA,
IMAR2, CIMAR, NIMAR, SMA e DyRMMA. Completely Random Algorithm (CRA)
basea todas as súas decisións na aleatoriedade, sendo aśı un algoritmo utilizado uni-
camente con fins comparativos. Lottery-Based Migration Algorithm (LBMA) utiliza
un conxunto reducido de heuŕısticas coas que asigna puntuacións ás potenciais mi-
gracións para, posteriormente, realizar un proceso de loteŕıa onde aquelas migracións
con maior puntuación teñen máis probabilidades de ser efectuadas. Interchange and
Migration Algorithm with performance Record and Rollback (IMAR2), Core-aware In-
terchange and Migration Algorithm with performance Record (CIMAR) e Node-aware
Interchange and Migration Algorithm with performance Record (NIMAR) pertencen a
unha mesma familia de algoritmos que iterativamente expanden as funcionalidades de
LBMA, considerando un maior abanico de heuŕısticas. Expandindo estas heuŕısticas,
Score Maximisation Algorithm (SMA) busca óptimos globais, potencialmente migran-
do tódolos f́ıos en execución. De forma similar, e a partires das métricas do 3Dynamic
Roofline Model (3DyRM), medidas cos contadores hardware, 3DyRM Migration Algo-
rithm (DyRMMA) busca optimizar globalmente o rendemento do sistema.

4
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En canto aos algoritmos de migración de páxinas de memoria, tres son inclúıdos
nesta tese: RMMA, TMMA e LMMA. Random Memory Migration Algorithm (RM-
MA) move páxinas aleatoriamente, polo que a súa finalidade é simplemente compa-
rativa. Threshold Memory Migration Algorithm (TMMA) pretende migrar páxinas
de memoria aos nodos preferidos considerando unicamente o número de operacións
realizadas dende cada un dos nodos. Latency Memory Migration Algorithm (LMMA)
ampĺıa a TMMA e engade un análise da latencia para detectar e solucionar posibles
problemas de conxestión.

Para avaliar as propostas recollidas nesta tese, deseñáronse tres experimentos que
recollen os tres casos de uso máis habituais para os sistemas NUMA. Por unha parte,
temos o Experiment Single, onde un único programa de proba é executado no siste-
ma. Desta forma, o código en execución ten dispoñibles tódolos recursos do servidor.
No Experiment Interactive recréase un entorno interactivo, a partires de datos de uso
anónimos cedidos polo Centro de Supercomputación de Galicia (CESGA), no que
varios usuarios lanzan pequenas tarefas en momentos arbitrarios. Aśı, as condicións
son variables en canto a ocupación das CPUs e dispoñibilidade de recursos. No últi-
mo experimento, Experiment Queue, tódolos cores do servidor mantense ocupados en
todo momento emulando un sistema no que varios usuarios mandan tarefas a unha
cola. Como códigos de proba utilizáronse aqueles inclúıdos na suite NASA Advanced
Supercomputing Parallel Benchmarks (NPB). Esta colección de programas son am-
plamente utilizados na comunidade de investigación en high-performance computing
(HPC) e facilitan a avaliación do rendemento de sistemas, novas formas de parale-
lismo ou técnicas de mellora de rendemento. Nótese que dada a grande calidade de
implementación destes códigos, seŕıa de esperar pequenas ou nulas marxes de mellora
no seu tempo de execución. Estes experimentos foron executados en dous servidores
NUMA diferentes con distintas caracteŕısticas para poder realizar unha análise máis
completa dos algoritmos avaliados. Os resultados destes experimentos pódense atopar
no Caṕıtulo 4.

En primeiro lugar f́ıxose unha comparación do rendemento do actual kernel de Li-
nux, CFS, coas opcións de THP e NB activadas e desactivadas. Os resultados mostran
que a utilización de ambos parches é xeralmente positiva, incrementando o rendemento
ata un 47 %, particularmente en situacións nas que haxa varias tarefas executándose
concurrentemente, como é o caso do Experiment Queue. En consecuencia, considerouse
como punto de referencia (Baseline) aos resultados extráıdos con CFS con ámbolos
dous parches activados.

Posteriormente, foi realizada unha comparación entre o Baseline, as opcións máis
habituais de mapping como son Direct e Interleave, e os algoritmos inclúıdos en Tha-
nos. No Direct mapping, tódalas páxinas de memoria procuran ser situadas nun mesmo
nodo NUMA, sempre que a dispoñibilidade de recursos o permita. Cando se utilizan
menos f́ıos que cores dentro dun nodo, estes son asignados ao mesmo nodo que as
páxinas. Noutro caso, son situados ao longo doutros nodos. Aśı, procúrase controlar e
reducir a distancia entre f́ıos e datos para mellorar a latencia das operacións de me-
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moria. Utilizando o Interleave, as páxinas de memoria ub́ıcanse a través dos nodos do
sistema coma se dunha lista circular se tratase. Desta forma, maximı́zase o ancho de
banda dispoñible a costa de pagar potenciais penalizacións na latencia. Os resultados
mostran que o Direct mapping é unha opción moi recomendable en condicións onde
haxa múltiples programas de proba en execución concorrente, grazas a que se mantén
a localidade entre f́ıos e páxinas de memoria. Sen embargo, non sucede o mesmo cando
só hai un código en execución e situar tódalas páxinas de memoria nun único nodo
NUMA provoca que haxa f́ıos que teñan unha grande penalización na latencia de ac-
ceso aos datos, cunha perda significativa de rendemento. Por outra banda, o Interleave
acada resultados dispares en función do sistema no que se execute e do experimento en
cuestión. No Experiment Single, os tempos de execución vense beneficiados polo incre-
mento no ancho de banda naqueles sistemas cunha pequena penalización de latencia
nos accesos remotos. Noutros sistemas, as perdas de rendemento debidas ao aumento
da latencia son demasiado grandes como para ser compensadas doutra forma. Nos
experimentos onde hai máis dun código executándose concorrentemente, a perda da
localidade entre f́ıos e datos supón un aumento do tempo de execución na maioŕıa dos
benchmarks.

Respecto aos algoritmos recollidos no Caṕıtulo 3, cabe destacar os resultados aca-
dados por tres algoritmos: CIMAR, NIMAR e SMA. Estes algoritmos, que soamente
se encargan das decisión respecto das migracións de f́ıos, habitualmente conseguen
mellorar os tempos conseguidos polo Baseline nos tres experimentos e nos dous servi-
dores. CIMAR e NIMAR son evolucións do algoritmo IMAR2, migrando un conxunto
reducido de f́ıos en base un sistema de puntuación similar ao utilizado por SMA. Estes
dous algoritmos dist́ınguense principalmente pola forma de asignar a localización dos
f́ıos. Por unha banda, CIMAR asigna os f́ıos a cores particulares, polo que se reforza
o uso dos primeiros niveis da memoria caché. Sen embargo, CIMAR é subóptimo no
reparto da carga computacional entre cores, o que pode ser un problema cando se exe-
cutan concorrentemente varios códigos de altos requisitos computacionais. Pola outra,
NIMAR fai unha asignación por nodo NUMA, de forma que o traballo de balanceo
de carga é delegado ao sistema operativo. Desta forma pérdese lixeiramente a eficien-
cia no uso dos primeiros niveis de caché que se tiña con CIMAR, pero se mellora o
problema do reparto de carga delegando en CFS, capaz de efectuar esta tarefa máis
eficientemente dado que traballa en espazo de kernel. SMA utiliza un sistema de pun-
tuación para atopar un óptimo global na localización dos f́ıos no sistema polo que o
algoritmo pode chegar a migrar tódolos f́ıos nunha mesma iteración se as expectativas
na mellora de rendemento son suficientemente altas.

As cargas de traballo nas que se fai un uso intensivo da memoria caché obteñen
resultados lixeiramente mellores con CIMAR, mentres que en situacións con varias
tarefas que se executan concorrentemente é preferible utilizar NIMAR ou SMA. Com-
parado co Baseline, acadáronse melloras nos tempos de execución de ata o 46 % no
Experiment Single, e ata o 11 % cando se executan varios programas ao mesmo tempo.

En canto ás migracións de páxinas de memoria, só se acadaron pequenas melloras
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de rendemento. Isto é debido á escaseza de información proporcionada polos HC para
cada unha das páxinas de memoria. As medicións realizadas mostran que, a través
dos contadores hardware, soamente se acadan 10 ou máis mostras por segundo para
o 1 % das páxinas. Máis experimentos foron realizados para referendar esta teoŕıa,
onde os resultados mostran que para obter unha mellora de rendemento significativa
é necesario migrar unha cantidade maior de páxinas de memoria.

Finalmente, o impacto enerxético das diferentes propostas foi avaliado. Os resul-
tados experimentais mostran unha forte correlación entre o tempo de execución e
o consumo enerxético, crecendo este último de forma linear co tempo de execución.
Polo tanto, as conclusións amosadas anteriormente son tamén válidas nesta materia.
Aśı pois, os algoritmos inclúıdos en Thanos conseguen mellorar o consumo enerxético,
en comparación ao Baseline, ata un 40 % en tarefas particulares e ata un 12 % en
escenarios con varios programas en execución.
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Introduction

The continuous advances and innovations in computer science and technology carry
with them the need to develop new algorithms, solutions and hardware to meet the
demands of society. Thus, new requirements arise in terms of computational power.
It is the field of high-performance computing (HPC) that is responsible for developing
the necessary tools to keep increasing the performance of the computational systems.

With the end of the scaling of the Central Processing Unit (CPU) clock frequency,
HPC researchers have been forced to look for new ways to improve the performance
of the systems. The most common way of coping with this situation is to use parallel
computing and dedicated architectures.

Despite that the concept of parallel computing made its first appearance in the
late 1950s, it was not until the 1960s and 1970s that became a reality in the form
of supercomputers. It was in the 1990s when parallel systems, particularly shared-
memory systems, became more accessible to the general public.

Along with parallel architectures, dedicated architectures were developed to im-
prove the performance of particular tasks. Probably, the most well-known example is
the case of the Graphics Processing Unit (GPU), which was developed to accelerate
the rendering of 3D graphics in the 1990s. GPUs incorporate a large number of com-
puting units, exploiting the massively parallel nature of the graphics rendering. Thus,
they can be considered a particular case of many-core architectures.

The use of general-purpose computing on GPUs (GPGPU) has grown massively in
the last decade, particularly in the fields of physics simulation and machine learning.
The workload is offloaded to the GPUs which, given their architectural characteristics,
are particularly suited for massively parallel algorithms. However, this approach often
leaves the CPUs idle, which is suboptimal in terms of resource management. Thus, it
seems interesting to combine the computational power of the CPU and the GPU to
achieve better performance.

With respect to memory organisation, shared-memory systems might be classified
into two big groups: Uniform Memory Access (UMA) and Non-Uniform Memory
Access (NUMA) systems. In the first case, all the cores of the system share the
same physical memory, so the latency of the operations is approximately the same.
In the second case, the cores and memory modules are grouped in nodes, in such a
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way that the latency of the operations is different depending on the location of the
data. Thus, those operations between cores and memory modules that are in the same
NUMA node—known as local operations—are faster than those that are in different
nodes—remote operations.

In NUMA systems, the placement of the threads and the data is of paramount
importance to achieve a good performance. Theoretically, placing the threads and the
data in the same node should reduce the latency of the memory operations. However,
this is not always possible, and even if it is, the performance is not always improved
due to possible contention or congestion of the memory bus. Thus, the placement of
the threads and the memory pages is a complex problem and an ongoing challenge in
the field of HPC.

The scheduler of the operating system (OS) is the main responsible for the place-
ment of the threads and the data. The current—at the moment of writing this
document—scheduler of Linux, known as Completely Fair Scheduler (CFS), was a big
step forward since it performs well in most of the systems and scenarios. The present
implementation of CFS takes into account several scheduling domains, distinguishing
between physical and logical CPUs or even between NUMAs nodes. Furthermore,
several patches have been included in the Linux kernel to improve the performance of
this kind of system, like Transparent Huge Pages (THPs) and NUMA Balancing (NB).
However, this is not enough to achieve a good performance in NUMA systems since
the scheduler is primarily focused on workload balance and not so much on locality.

Within this context, the use of parallel architectures is becoming more and more
popular, either by combining different kinds of processors and accelerators or even by
using memory layouts with different access times. In this thesis, different solutions
are proposed to take advantage of this heterogeneity to improve the performance of
the applications running in them.

On one hand, this work addressed the challenge of the dynamic workload distri-
bution in heterogeneous systems, where the CPU and the GPU are used concurrently
to achieve better performance. With this objective in mind, a library named Iterative
Heterogeneous Parallelism (IHP) is proposed. IHP dynamically distributes the work-
load between the CPU and the GPU, particularly in iterative or time-step methods.
The key idea of IHP is to split the problem global domain into two subdomains that
are assigned to the CPU and the GPU, respectively. Periodically, the amount of work
assigned to each processor is adjusted attending to their performance looking for the
best use of the computational resources.

On the other hand, aiming to improve the performance of NUMA systems, this
work proposes several algorithms which are incorporated in a tool named Thanos.
Working in user space, Thanos gathers performance information from several sources,
processes the data and executes the algorithms that decide which is the best configu-
ration in threads and memory pages placement and which ones should be migrated to
achieve it. Performance information is mainly extracted from hardware performance
counters (HC) present in modern processors. These special registers allow the user to
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measure several metrics as retired instructions or the latency of memory operations.
Besides the information obtained by hardware counters, these algorithms use several
heuristics to make decisions about the migration of threads and memory pages. These
heuristics include the analysis of preferred NUMA nodes—those nodes that store more
frequently used data—, historical performance data, or comparisons between threads
of the same process to detect those with performance issues. Once the data is collected
and processed, the algorithms decide whether some threads or memory pages should
be migrated and where they should be migrated to.

Another objective of this work is to improve energy efficiency in HPC systems.
This is an important target given the growing concerns about energy consumption
and the environmental impact of the HPC systems. Since energy consumption is
strongly related to execution times, it would be desirable that the solutions proposed
in this work improve the execution times and, consequently, the energy consumption
in heterogeneous and NUMA systems.

Objectives

The main objective of this work is to develop novel solutions to improve performance
in the aforementioned fields. The specific objectives are:

• To develop a library able to distribute workload between the CPU and GPU
dynamically, taking advantage of heterogeneous parallelism. The library should
be able to take into account the performance of the different devices to balance
the amount of work assigned to each one. In the last term, the library should
be able to improve the execution times of the applications that use it.

• Design and develop several algorithms to improve the performance of NUMA
servers, as well as their energy efficiency. These algorithms should be able to
detect performance issues and take decisions about the migration of threads and
memory pages to improve the performance of the system.

• Design and develop a tool that incorporates the aforementioned algorithms and
allows the user to execute them easily. This tool should extract performance
information of the system from several sources, process the data and execute the
algorithms that decide which threads and memory pages should be migrated.

Outline

The rest of the document is structured as follows:

• Chapter 1 describes the architectures this work is focused on and the challenges
that arise when trying to maximise the performance of these architectures.
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• Chapter 2 presents a brief overview of the current state of the art in GPGPU
and introduces the library developed in this work to distribute the workload
between the CPU and GPU dynamically, named Iterative Heterogeneous Paral-
lelism (IHP). It also shows the results obtained with IHP and the comparison
to other libraries.

• Chapter 3 describes the current Linux scheduler and how it works with NUMA
systems, gives an overview of proposals in the literature and presents the tool,
named Thanos, and the different algorithms developed to improve the perfor-
mance of NUMA systems.

• Chapter 4 shows the results obtained with Thanos, and the aforementioned algo-
rithms, and compare them to the current scheduler of Linux and other popular
options.

• Chapter 5 explains the conclusions of this work and the future work that could
be done.
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Chapter 1

Parallel computing, GPUs and
NUMA

Why is it when something happens, it is always you three?
— Minerva McGonagall, Harry Potter and the Half-Blood Prince.

This thesis has faced challenges related to high-performance computing (HPC),
parallelism, and how to take the most performance of current computational architec-
tures. Parallel computing is often related to multi-cores—also to distributed-memory
clusters—, but in the last twenty years was also expanded to many-cores, Graphics
Processing Units (GPUs), and Non-Uniform Memory Access (NUMA) systems. This
chapter describes the platforms and architectures addressed, as well as the challenges
faced in this work.

1.1 Multi-core, GPUs and NUMA systems

Academy and industry are continuously facing the problem of performance scaling
in an endless path of increasing computational power. From researchers to industry
professionals, they all want to run bigger programs faster.

Traditionally, the solution has been to continuously increase processor frequency.
Even though, manufacturers began to hit some walls when increasing the frequency.
Elemental physics state that no electrical signal can propagate at a faster speed than
the speed of light, about 3× 108 m/s in the vacuum, and about 2× 108 m/s through
copper wire. This limits either the size of the chip or the frequency at which it must
work. With a target of 5 GHz, an electrical signal should not travel more than 4 cm
to get from one end of the chip to the other within a clock cycle [1]. Increasing
the target frequency would require a significant reduction in the size of the chips.
Furthermore, frequency scaling leads to an even worse problem: heat dissipation and
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power consumption. With nowadays concerns about sustainability, energy cost, and
the popularisation of battery-powered devices, this becomes the main limitation.

To cope with the aforementioned problems, the computer industry decided to
go for chips with several computational cores running collectively in parallel, either
in distributed- or shared-memory architectures. Note that shared-memory multi-
processors are also known as multi-processors or multi-core processors. This way,
computational power could be increased by adding more and more cores at each gen-
eration, while keeping reasonable operating frequencies.

Formally, a multi-processor is a computer system which has two or more comput-
ing units that share access to a common memory [1]. Depending on the number of
processors, it is possible to distinguish between multi-cores, with up to several dozens
of cores, or many-cores with hundreds or thousands of cores. Also, multi-processors
can fall into two categories depending on the architectural features: Uniform Memory
Access (UMA) or Non-Uniform Memory Access (NUMA).

Another way of coping with the limitations of performance scaling is to use par-
ticular architectures that are designed to perform specific tasks. The specialisation of
the architecture allows for an increase in the performance of the task at hand. Thus,
accelerators can be used to perform specific tasks, such as graphics processing, signal
processing, audio processing, or even general-purpose computing. Probably, the best
example of accelerators is the Graphics Processing Unit (GPU). Originally designed
to accelerate the rendering of 3D graphics, GPUs have been successfully adapted to
perform general-purpose computing given their massive number of processors, so they
can be considered a particular case of many-cores.

This work focuses on the challenges of improving performance in two kinds of
systems. On one hand, it explores the possibilities of improving the performance in
heterogeneous systems, where GPUs are used to accelerate the execution of a program,
but also explores the potential contribution of the Central Processing Units (CPUs)
in the execution. On the other hand, the challenge of improving scheduling in NUMA
systems is faced, where the memory is distributed across several nodes and the location
of threads and data is of paramount importance.

1.1.1 System performance

Before delving into the details of the GPUs and NUMA systems, it is necessary to
understand the concept of performance. In general, it can be defined as the ability of
a system to perform a given task in a given time. Depending on the needs of the user,
a system with good performance is that which completes the task in the shortest time
possible—focusing on execution time—, or the system that completes a collection of
tasks per unit of time—focusing on throughput—[2], or even completing the task with
the lowest energy consumption.

Some standard programs have been developed to measure the performance of HPC
systems. These programs are also known as benchmarks, which are gathered into
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suites. Some of the most popular benchmark suites for HPC are High Performance
Conjugate Gradient (HPCG) [3], STREAM [4, 5], NASA Advanced Supercomputing
Parallel Benchmarks (NPB) [6] and Standard Performance Evaluation Corporation
(SPEC) [7]. These benchmarks have been used for decades to evaluate the performance
of HPC systems. In general, they are based on the execution of a collection of kernels,
which are the basic building blocks of the target applications. Those applications
are usually written in high-level, and highly-optimisable languages, like C, C++ or
Fortran. The kernels are the most time-consuming parts of the application and they
are the ones that are usually measured.

In order to understand the performance of a given system or a given application,
it is necessary to have a model that describes its behaviour. This model is known
as performance model and it is used to analyse current limitations—e.g. Dynamic
Random Access Memory (DRAM) bandwidth—, detect potential optimisations—e.g.
single instruction, multiple data (SIMD) vectorisation—or predict the performance of
a given system or application.

Over the great landscape of performance models, the Roofline Model (RM) [8]
stands over the rest. This model is established as the most popular among HPC
researchers due to its simplicity in data collection, analysis and display while keeping
a high level of descriptiveness about the system characteristics and the performance of
the target code. It should be noted that the RM is not limited to CPU-only systems,
but it can be used to analyse the performance of any kind of system, including GPUs.

Two parameters are taken into account by the Roofline Model: work and inten-
sity. Work is defined as the number of operations performed by the target program.
Typically floating-point operations per second (FLOPS) have been used, but this can
be extended to any kind of instructions. In the most general form, operations per
second can be used. Intensity, commonly referred to as operational intensity (OI), is
defined as the ratio of work per byte of DRAM traffic. The Roofline Model data is
typically plotted in a two-axis logarithmic scale, where the x axis represents the OI
and y shows the operations per second.

In the simplest Roofline Model plot, the maximum performance of the system is
represented following the formula

P = min (Pth, β × I) , (1.1)

where the performance P is the minimum between the theoretical maximum perfor-
mance of the machine, Pth (in GOps/s), and the product of the peak bandwidth, β
(in GB/s), and the operational intensity I (in Ops/B).

The maximum theoretical performance that can be achieved in a system is known
as a ceiling. Different ceilings can be used to attend to the particular characteristics
of the machine, using its performance with different kinds of data types or different
levels in the memory hierarchy.

Figure 1.1 shows an empty Roofline Model chart with several ceilings for a partic-
ular system. On the left side, the bandwidth limit is shown for different levels in the
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memory hierarchy. Thus, the closer the data is to the CPU, the higher the bandwidth,
and the higher the theoretical limit. On the right side, the limit based on the max-
imum FLOPS of the CPU is shown for different kinds of operations. Regular scalar
operations offer the lowest performance, while vector operations offer the highest. A
program located on the left-hand side is more likely to be limited by the memory
bandwidth. Similarly, a program located on the right-hand side is more likely to be
limited by the CPU performance.
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Figure 1.1: Empty roofline model chart showing different ceilings.

Figure 1.2 shows an example of the RM for several benchmarks of the NPB suite [6].
In this suite, most of the programs are under the DRAM bandwidth limit, with the
exceptions of BT, FT and EP, which are above this limit, so those programs make
better use of the L3 cache. Furthermore, all of them are under the CPU performance
limit, so they are not taking full advantage of the vector units.

Nevertheless, the operations per second and the operational intensity are not al-
ways enough to show the performance of a code. Thus, several extensions of the
Roofline Model have been proposed. For example, in [9] the RM is extended to in-
clude the ceiling of the out-of-order (OoO) execution of CPU instructions. In [10], a
modification of the model is proposed to consider specific features for the GPUs, such
as the High Bandwidth Memory (HBM) or the organisation of threads into warps. In
the case of NUMA systems, the organisation and latency of the memory should be
taken into account. For this reason, Lorenzo et al. [11, 12] introduced the 3Dynamic
RM (3DyRM), adding temporal information and the average latency of memory oper-

16



Chapter 1. Parallel computing, GPUs and NUMA

0.05 0.075 0.1 0.15 0.2 0.275 0.375 0.5

10

100

DRAM Band
width

= 243
GB/s

L3
Band

width
= 129

4 GB/s
L2

Band
width

= 260
7 GB/s

L1
Band

width
= 965

6 GB/s

Scalar Add peak = 90 GFLOPS

DP vector Add peak = 362 GFLOPS

SP vector Add peak = 724 GFLOPS

DP vector FMA = 1448 GFLOPS

DP vector FMA = 2891 GFLOPS

BT.C

CG.C
DC.B

EP.D

FT.C

IS.C

LU.C

MG.D

SP.C

UA.C

GOps/B

G
O

p
s/

s

Figure 1.2: Example of roofline model chart using NASA Advanced Supercomputing Parallel
Benchmarks suite.

ations to the operations per second and OI. Given that, the performance of a NUMA
server can be characterised more precisely by the number of operations per second it
performs, the operational intensity and the average latency of the memory operations
at a given time.

1.1.2 Energy consumption in computing systems

In the last years, energy consumption has become a relevant factor in the evaluation of
computing systems. This is caused by the increasing cost of energy, the popularisation
of mobile and portable devices and the need to reduce the carbon footprint globally,
and of the industry in particular.

Energy can be defined as the integral of the power P (t) over time:

E =

∫ t

t0

P (τ) dτ . (1.2)

Typically, in computer systems, power is periodically sampled and energy is approx-
imated. Given p0, . . . , pt measurements of power, corresponding to times τ0, . . . , τt,
energy can be approximated such that

E '
t∑
i=1

pi · (τi − τi−1) . (1.3)
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A processor or accelerator has two characteristic energy footprints: the peak, when
it is operating at 100 % of its capacity, and the basal, when it is in idle mode. Never-
theless, the power demand of a system when not in idle mode is typically lower than
the peak power.

The energy consumption depends mainly on the time the system spends in each
power state. So, as a rule of thumb, the sooner the system can enter the idle state, the
lower the energy consumption. With that premise, lowering execution times is one of
the most promising ways to reduce energy consumption.

However, there are several ways to reduce to energetical impact of a system. Re-
lated to software, the use of more efficient instructions, algorithms, or the use of
more efficient programming models can also reduce energy impact. For example,
despite that vector instructions carry more power consumption than scalar instruc-
tions, they can be more energy efficient, as the performance improvement compen-
sates for the higher power demands [13]. Data locality can also help to reduce energy
consumption—for example, by improving the use of the cache, or reducing memory
latency—as improving the use of cache hierarchy and reducing the number of memory
accesses should reduce power demands. The use of the cache memory can be im-
proved by the scheduler, trying to keep threads in cores whose cache memory still has
valid data. The same scheduler can also help in reducing memory latency, by locating
threads and memory pages as close as possible.

Related to the hardware, accelerators such as GPUs can be used to improve en-
ergy efficiency. Specific hardware that incorporates specialised units would reduce
execution times, but also avoids the use of several modules that are not needed. An
example of this is the use of GPUs to accelerate the execution of graphics-intensive ap-
plications, or the use of Field Programmable Gate Arrays (FPGAs) to have dedicated
hardware for specific tasks.

Another way of improving energy efficiency is to use heterogeneous architectures.
The Arm big.LITTLE architecture [14] is a good example of this. It combines two
different types of CPUs, one with high performance and high energy consumption
and another with low performance but very efficient. In this kind of system, it is the
responsibility of the operating system (OS) to switch between the two types of CPUs
depending on the workload [15].

1.2 GPUs and GPGPU

An important kind of architecture in the field of high-performance computing and
parallel computer is the Graphics Processing Unit (GPU).

The use of specialised accelerators to process graphics data can be traced back
to the 1970s when most arcade machines used that kind of hardware to improve
performance and cost. Through the 1980s and 1990s, the presence of this kind of
accelerator kept almost restricted to entertainment systems. It was not up to 1994
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when the term GPU was first used by Sony in the context of the launch of the first
PlayStation console [16], to name the 32-bit GPU, acronym at that time of Geometry
Processing Unit. The name of GPU spread through the industry and was adopted by
several manufacturers. It was in 1999 when NVIDIA used GPU as Graphics Processing
Unit in the launch of the GeForce 256, with the title of “the world’s first graphics
processing unit (GPU)” [17].

The use of graphics accelerators kept restricted to that particular usage up to the
2000s, when several small research groups started to expand the use cases of this kind
of accelerator and programmed the shaders for other purposes than graphics, so that,
general-purpose computing on GPUs (GPGPU) had started. Good examples of these
early works are [18] and [19], accelerating linear algebra and matrix-related computa-
tions. Since then, GPGPU is a still-growing trend for implementing algorithms which
use massive parallel architectures. Two reasons lay behind this phenomenon. On one
hand, GPUs provide a large number of computational cores—better known as stream-
ing multiprocessors in the literature [2]. Despite that the “cores” of the GPUs are
not as sophisticated as those of CPUs, they can provide great performance if the code
fits the architecture. On the other hand, GPUs can be extremely efficient regarding
power and energy demands.

Two technologies have prevailed as standards for GPGPU, Compute Unified Device
Architecture (CUDA) [20] for NVIDIA devices and OpenCL [21] as an industry stan-
dard for general multi- and many-core processors. Nevertheless, it is CUDA that has
raised as the de facto standard for NVIDIA GPUs due to the strong relationship be-
tween software and hardware, usually offering better performance than OpenCL [22].

It is worth mentioning that, in the last few years, a new promising technology has
arisen, SYCL [23]. This “royalty-free” standard attempts to standardise GPGPU pro-
gramming, provide a cross-platform solution, and make device code closer to standard
C++ code, by providing a unique front-end and several implementations, known as
back-ends, such as DPC++ [24] or ComputeCPP [25]. That way, a single code should
work for every device supported by an SYCL back-end. At the time of writing this
thesis, some back-ends support CPUs, OpenCL-compatible devices—like FPGAs—,
and NVIDIA GPUs.

1.2.1 CUDA

Compute Unified Device Architecture (CUDA) is a GPGPU paradigm developed by
NVIDIA, with a tight relationship between software and hardware. Thus, it is only
possible to execute CUDA programs in NVIDIA GPUs1.

1Some technologies exist to translate CUDA code to other languages, such as OpenCL, as a
workaround for this limitation.
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CUDA software

CUDA uses an extension over standard C/C++ code. Host code—for CPU—and
device code—for GPU—are identified in such a way that host code is compiled by a
standard C/C++ compiler like GNU Compiler Collection (GCC) [26], while device
code is compiled by the NVIDIA CUDA Compiler (NVCC) [27], which is a modified
version of LLVM [28].

GPU code is written in the form of kernels, which are noted by the keyword
__global__. Listing 1.1 shows an example of a kernel that implements the SAXPY
operation, ~y = α~x+ ~y, ~x, ~y ∈ Rn, α ∈ R.

1 template<class T>

2 __global__ void saxpy(const T a, const T * __restrict__ x, T * __restrict__ y,

const size_t n) {

3 const auto i = blockIdx.x * blockDim.x + threadIdx.x;

4 if (i < n) { y[i] = a * x[i] + y[i]; }

5 }

Listing 1.1: Example of CUDA kernel performing the SAXPY operation.

These kernels should be invoked in a special manner shown in Listing 1.2, by
specifying the number of thread blocks and their size.

1 int main (const int argc, const char * argv[]) {

2 // Pre-process data to launch kernel

3 saxpy<<<numBlock, dimBlock>>>(alpha, x, y, n);

4 // Retrieve results and post-process

5 }

Listing 1.2: Example of invocation to kernel saxpy.

CUDA hardware

The architectural features of NVIDIA GPUs that are compatible with CUDA are
very similar to the GPUs designed by other vendors like AMD, so the contents of this
section can be extrapolated to other GPUs.

The most distinct characteristic of CUDA GPUs relies on thread hierarchy. GPUs
are built around the concept of streaming multi-processors (SM) that handle the
creation, scheduling and execution of warps, groups of typically 32 CUDA threads.
When a kernel is invoked from the CPU, several blocks—a grid—are executed in such
a way that each block comprehends several warps. Since the minimal execution unit
of CUDA is the warp, all threads will execute the same code over potentially different
data, exploiting single instruction, multiple thread (SIMT) parallelism—a particular
case of SIMD parallelism.
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For the sake of simplicity handling threads, grids and blocks can be thought of as
tridimensional entities. For example, Figure 1.3 shows a grid of dimensions 3× 2× 1
with blocks of dimensions 4× 3× 1.

Block (1,1) Block (1,2) Block (1,3)

Block (2,1) Block (2,2) Block (2,3)

Grid

Thread (1,1) Thread (1,2) Thread (1,3) Thread (1,4)

Thread (2,1) Thread (2,2) Thread (2,3) Thread (2,4)

Thread (3,1) Thread (3,2) Thread (3,3) Thread (3,4)

Block (2,2)

Thread (1,1) Thread (1,2) Thread (1,3) Thread (1,4)

Thread (2,1) Thread (2,2) Thread (2,3) Thread (2,4)

Thread (3,1) Thread (3,2) Thread (3,3) Thread (3,4)

Block (2,2)

Figure 1.3: Example of thread hierarchy in CUDA.

The memory hierarchy is different in GPUs as well, with a tendency to become more
similar to the CPU hierarchy. Also, compilers tend to acquire more responsibilities in
this regard, making life easier for programmers. Each thread has a little local memory,
similar to a set of registers. At the same time, each block has a shared memory whose
content lives as much as the block itself. Finally, all blocks have access to the device
global memory.

Additionally, two read-only memories exist in the GPU: constants, and textures
and surfaces memories. Constants memory is designed for the storage of constant
values during kernel execution with lower latency than global memory. Textures and
surface memory provides different addressing forms and filters implemented in hard-
ware, particularly focused on graphics applications.

It should be noted that recent GPUs include first- and second-level cache memories—
transparent to the user—to increase performance.
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1.2.2 Performance in GPGPU

The architecture of the GPUs favours their use for particular problems that are known
to be “embarrassingly” parallel. These kinds of problems require little effort to be
solved in parallel, or their parallel version is almost straightforward. For example, the
SAXPY operation shown in Listing 1.1 is a perfect case of an embarrassingly parallel
algorithm.

There are two key features required for these problems to perform well in a GPU:

• No dependencies between iterations: the result of the i-th operation should not
have any influence over any j-th operation when i 6= j.

• Same operation applied to several data: the same transformation is used over
different data to exploit SIMT parallelism.

In the case that those conditions are met, the GPUs architecture will likely be
appropriated for the problem since, as a rule of thumb, a GPU is like a CPU with
“a large number of dumb” cores. The number of cores in these accelerators is still
increasing—the NVIDIA RTX 3070 Ti [29] has a total of 6118 cores2—and also their
sophistication. Traditionally, GPU cores were only efficient when dealing with arith-
metic operations, struggling with conditional jumps, irregular memory operations, or
even double-precision instructions. Though, this is a changing tendency, where nowa-
days GPUs perform much better in the aforementioned cases and also incorporates
dedicated cores for particular purposes like tensor operations or ray tracing computa-
tions.

Furthermore, two important phenomena should be taken into account regarding
GPGPU programming: coalescent memory operations and occupancy.

As noted in [30], coalesced memory operations help to exploit the GPU memory
bandwidth, thus improving performance. To achieve that, the programmer must en-
sure that data is correctly located in the device global memory. For example, if the
n-th thread operates with the i-th element in memory, thread n+ 1 should work with
the operand i+1. Note that GPUs architecture is evolving in such a way that can de-
tect different patterns to perform coalesced operations, similarly to CPU prefetchers.

Occupancy is known as the relation between active warps in a SM against the the-
oretical maximum. As a rule of thumb, higher occupancy means better performance,
since more GPU cores are active and performing computations. Though, this is not
always true. Too high values can also diminish performance since available resources
for each thread are reduced too [31]. Thus, it is the responsibility of the programmer
to empirically ensure that optimal performance is achieved by selecting the correct
grid and block dimensions.

2Officially: 5888 CUDA Cores, 184 Tensor Cores and 46 RT Cores.
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1.2.3 Advances in GPGPU and code portability

In the last few years, several proposals focused on code portability, where the same
code can be applied to several CPUs, GPUs, and other accelerators.

The traditional example of this approach is OpenCL, where a single code can be
used on different devices. Despite that OpenCL favours code portability and achieved
some popularity given its compatibility across AMD, NVIDIA and Intel devices, it is
hard for the programmer to use in terms of development, compilation and debugging.

SYCL [23] serves as an evolution of OpenCL, whose architecture is divided into
two parts, the backend and the general specification. SYCL implementations provide
backends for different devices, such as CPUs, GPUs, FPGAs, etc. Each vendor can
support as many devices as desired, and those can differ between implementations.
The SYCL general specification gives a general Application Programming Interface
(API) that all backends must follow. That ensures that the same code is supported
by any backend implementation. The general specification allows C++ programmers
to write SYCL kernel functions with almost every feature3 available in the C++
standard language. Despite that some specific code is still required, the programming
effort compared to bare OpenCL is significantly reduced.

Finally, NVIDIA released its HPC Software Development Kit (SDK) [32] as a
suite of compilers, libraries and tools to use in NVIDIA devices in the context of HPC
applications. Regarding GPGPU, it includes the CUDA compiler, nvcc, and a novel
C++ compiler named nvc++, that offloads standard parallel C++ algorithms to the
accelerators [33]. The latter is particularly interesting since the compiler handles all
the code portability just by compiling the option -stdpar. The limitations of the
ported GPU code are mostly the same as in SYCL, where features like exceptions or
virtual functions are not supported. Nevertheless, this is probably the most promising
alternative to traditional CUDA C++ dialect, where very little effort is required from
the programmer if the original code makes use of standard C++ parallel execution
policies.

1.3 NUMA systems

As mentioned before, shared-memory parallel systems can be classified into two main
categories: UMA and NUMA systems. In conventional UMA systems, the latency of
memory operations keeps a similar value no matter which CPU triggers the load/store
instruction. They typically consist of a series of cores connected to a memory bus, as
shown in Figure 1.4. When a memory word is referenced, its cache line is transferred
from the main memory to the last level cache (LLC) of the CPU that will operate

3Some features such as exceptions or virtual functions are not available because of the limitations
in the underlying backends.
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Core 0

Cache

Core 1

Cache

. . . Core n− 1

Cache

LLC shared Cache

DDR RAM

Figure 1.4: Example of a typical UMA system.

with it. To ensure the validity of every word in memory, a cache-coherence protocol
must be implemented.

In contrast, NUMA systems are composed by connecting several nodes, such that
each node comprehends one or more multi-processors with one or more memory slots,
as illustrated in Figure 1.5. Even though the address space is shared, latencies of the
memory operations depend on which CPU triggers the operation and the location of
the word to operate with. Local accesses are performed if the CPU and the memory
bank that stores the word are placed in the same node. If not, a remote access is
performed with higher latency. Given the system shown in Figure 1.5, imagine a
thread running in a core in the NUMA node 1. If the data that the thread needs
is located in the same node—it performs local accesses—execution will be faster.
Otherwise, data will have to travel through the interconnection network, incurring an
additional latency that will slow down the execution.

Core 0

Cache

. . . Core n− 1

Cache

LLC cache

DDR RAM

NUMA node 0

Core n

Cache

. . . Core 2n−1

Cache

LLC cache

DDR RAM

NUMA node 1

Figure 1.5: Example of a typical NUMA system.
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This work focuses on a particular kind of NUMA system, called cache-coherent
NUMA (cc-NUMA), and will refer to it unless another thing is indicated. cc-NUMA
systems ensure that the cache memory is coherent across the nodes [1], so if a processor
accesses a word in memory, it will receive the most up-to-date version of the data.

1.3.1 Challenges of NUMA systems

Despite that NUMA servers are supposed to provide greater bandwidth and better
memory latencies than an equivalent UMA system, they can present performance
issues and some tuning might be required.

Cache-coherent NUMAs use inter-processors communications between cache con-
trollers to keep the integrity of the memory state when several processors access the
same location. In normal conditions, the overhead of cache protocols is greatly com-
pensated by the performance gain given by the speeds of the caches. However, cc-
NUMA might perform poorly when several processors compete for the same cache
lines, so false sharing takes place. This happens when processors in a shared-memory
parallel system—not only in cc-NUMAs—access data placed in the same coherence
block, typically a cache line, but this might extend to memory pages too [34]. In
this situation, the overhead of the coherence protocols exceeds the advantages of the
presence of shared memories, leading to serious performance issues.

Theoretically, local operations should be enforced to solve this problem and to
take advantage of the lower latency and increased bandwidth. However, reality has
shown that this is not always the best approach, and some other phenomena might
take place, like memory contention, interconnection network congestion [35] or shared
cache contention [36].

In the context of NUMA systems, thread and memory placement play a critical
role in exploiting locality and affinity, which are known to be of paramount importance
in performance.

Locality refers to the fact that applications tend to reuse the same or nearby data
and instructions within a short period of time [2]. A widely known rule of thumb
stands that 90 % of the time is spent in executing only 10 % of the code, highlighting
the use of locality for instructions reuse. Though, data reuse is more important given
the latency of DRAM memory operations, where data usually resides. As mentioned
before, when accessing data in main memory, the data is moved to the significantly
faster cache memory of the CPU. Thus, the latency of operations over that data is
reduced until it is replaced in the cache. Two kinds of locality could be distinguished
in this regard:

• Temporal locality: recently used data is likely to be accessed again.

• Spatial locality: when some data has been used, nearby data is likely to be
accessed in the near future.
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Programmers are encouraged to write their code in order to take advantage of locality,
knowing that their application will run faster with the correct affinity, that is, threads
and data are placed close to each other.

Modern OSs give the ability to bind processes or threads to a specific set of pro-
cessors or CPUs. That way, those threads will be executed exclusively in those cores.
Furthermore, OS developers put great effort into encouraging the default schedulers
to take care of affinity, especially for NUMA.

1.3.2 Performance in NUMA systems

Several works have been presented in the literature regarding performance in NUMA
systems and how affinity affects performance. A comparison included in [37] shows
how performance might change for different applications using the best and worst map-
pings. For example, execution times might vary between 2 % up to 25 % in the NPB,
depending on the sensitivity of the benchmark. Other benchmarks, like Streamclus-
ter [38] show even higher differences. In [39], a similar comparison shows performance
differences of up to 100 %, being around 15 % typically. The discrepancy in these
results also arises a conclusion: not all NUMA systems are the same. NUMA servers
might be significantly different in characteristics and how they are affected by locality
and affinity, as shown in [40, 41]. In these works, a conventional NUMA server, with
four Intel Xeon E5-4620 [42] processors, was compared with the—at that time—novel
Intel Xeon Phi Knights Landing [43, 44]. Remote accesses were up to 40 % slower
compared to local operations in the conventional NUMA server, but only up to 7 %
in the Knights Landing.

Given the complexity of the problem and the existing differences among NUMA
systems, it can be stated that this is still a non-solved topic in research that requires
novel and flexible solutions.

1.4 Scheduling tasks and processes

A scheduler is a component of a system responsible for managing the execution of
processes, tasks, data flows, etc. A good scheduler should ensure that the workload is
balanced across the system—or systems—, the resources are used efficiently and the
work is done in the best possible place. Thus, the scheduler is a critical piece of the
system and one of the main responsibles for the overall performance. It is important
to note that the scheduler is not only present in the OS, but also in other platforms,
such as workload managers like Slurm [45] or programming models like OmpSs [46].

In workload managers, the scheduler is responsible for assigning which computing
unit should execute each piece of work, and how many tasks are given to each com-
puting resource [47]. In heterogeneous systems, the scheduler should take into account
the characteristics of the computing units to assign the tasks to the most suitable one.
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Other factors that should be taken into account are the cost of communications or the
amount of data that needs to be transferred.

In operating systems, the scheduler is the component responsible for selecting
which process—or thread—will be executed next and in which CPU [48]. It is also
responsible for managing the CPU time of each process so that each process is granted
a fair share of the CPU time. In a shared memory system, the scheduler should take
into account several factors, like the amount of valid data in the cache, the NUMA
locality, and the affinity of the processes.

This work addresses both kinds of scheduling problems. First, a library for balanc-
ing workload between CPU and GPU, named IHP, is presented in Chapter 2. Second,
a user space tool named Thanos is introduced in Chapter 3. This tool incorporates
several algorithms that aim to improve the performance of NUMA systems by taking
into account different factors such as the NUMA locality and affinity of the processes.
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Chapter 2

Heterogeneous parallelism and IHP

Avengers! Assemble.
— Steve Rogers (Captain America), Avengers: Endgame.

Within the context explained in Chapter 1, a brief overview of the main research
in the field of heterogeneous computing is presented. Furthermore, a novel solution to
address the problem of workload balancing in heterogeneous architectures—regarding
collaborative CPU and GPU workload—is introduced in this chapter. The proposal
developed in this work comprehends a library for iterative or time-step methods that
handles automatically data movement and workload balancing among CPU and GPU.

2.1 GPGPU and heterogeneous computing

There are numerous examples in research of the successful application of GPGPU
to complex problems, mostly in those where matrix operations are dominant, like
numerical simulations and machine learning.

One of the first works in the topic [49] already shows important speedups when
comparing GPU and CPU codes. Performance increases go up to 60× for different
kernels regarding molecular dynamics, fluid dynamics or general matrix multiplication
algorithms. However, these gains in performance come at a cost and programmers have
to be careful when writing code for GPUs. Results in [50] show that the performance
differences between an optimally tuned kernel and a regular one can be up to 17 %.
This figure increases up to 235 % between a poorly programmed kernel and an optimal
one.

Komatitsch et al. [51] ported to CUDA a high-order finite-element application to
simulate seismic wave propagation. With the appropriate optimisation, a speed-up of
25× can be achieved compared to the CPU implementation. It should be highlighted
that the application uses single-precision computations, and the authors noted that
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double-precision would harm GPU performance significantly—by up to an order of
magnitude.

The work of Markall et al. [52] includes a comparison between optimised CPU and
GPU implementations of the matrix assembly phase of a finite element method (FEM)
solver. Authors note that these implementations should use different approaches for
them to execute optimally, where the GPU implementation uses an algorithm that
performs more computations since it fits better its capabilities. Furthermore, they
highlight that some tuning efforts should be done to achieve good performance when
dealing with accelerators. In this work, a peak speed-up of almost 10× is achieved
with an optimal GPU implementation over the best CPU code.

Special mention is required to what is arguably the most successful use case of
GPGPU, which is its application to machine learning. Since the adoption of GPUs
in this field [53], the popularity of machine learning and the quality of their results
has increased dramatically. The massively parallel architecture of GPU favours the
training and evaluation phases of artificial intelligence algorithms, resulting in speed-
ups of up to 70×, that allow faster algorithms but also bigger models. Popular machine
learning frameworks like TensorFlow [54] and PyTorch [55] make use of GPUs to
accelerate their computations and are widely used nowadays.

This is only a small sample of the research done in the field of GPGPU, which is
too broad to be completely covered.

Despite the big improvements in the performance of GPGPU, researchers pushed
the technology by combining CPU and GPU to extract the maximum performance of
their corresponding machines.

Papadrakakis et al. [56] introduced a heterogeneous approach applied to domain
decomposition methods. The problem domain is decomposed into several subdomains,
whose different solving stages are divided into various tasks. Using a queue of tasks,
CPU and GPU kept themselves constantly busy, thus improving system-wide perfor-
mance. With this methodology, the authors accomplish speed-ups of up to 50×.

Other researchers have focused on more general approaches like Maat [57], which
introduces a framework for simplifying heterogeneous computing based on OpenCL
kernels. Maat is supposed to handle the workload share among the different devices
with various policies. Unfortunately, this project has been discontinued.

Kaleem et al. [58] use Concord [59] to offload part of the tasks to integrated GPUs.
This work features two algorithms for profiling and load balancing, näıve and asym-
metric, the latter being preferred by the authors. Results show that performance can
be typically improved by 40 %, or up to 90 % depending on the benchmark.

LogFit [60, 61] is probably one of the most promising proposals regarding hetero-
geneous computing. This general-purpose library features an adaptive partitioning
strategy for parallel loops, particularly focused on irregular applications. Built over
Intel Thread Building Blocks (TBB) [62] and OpenCL [21], the algorithm dynamically
assigns work to the GPU and the CPU. Results achieved show that performance can
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be increased up to 57 %, with energy savings of up to 31 %. However, this work is
particularly focused on integrated GPUs, limiting its potential.

More recent works, like [63] also combine CPU and GPU successfully using OneAPI
and SYCL. This approach can be even expanded to other accelerators like FPGAs, as
shown in [64].

In the author’s opinion, this is still an underexplored topic in HPC research which
can bring up interesting results and significant performance benefits.

2.2 Iterative Heterogeneous Parallelism (IHP)

Iterative Heterogeneous Parallelism (IHP) is a library that aims to simplify the prob-
lem of workload balancing in heterogeneous architectures, particularly for iterative or
time-step problems.

The objective of IHP is to use all available computational capabilities of a given
machine, thus reducing execution times, by distributing the workload among CPU and
GPU. It is agnostic to the underlying technologies, so it supports multiple technologies
like CUDA [20] and OpenCL [21] for GPU kernels, and OpenMP [65] or Intel TBB [62]
for CPU computations. The scheme is designed to be used for iterative or time-step
methods, which are very common in several domains of computer science, physics and
mathematics. This kind of method follows the structure shown in Algorithm 2.1.

Algorithm 2.1 Iterative or time-step methods.

Input: Generic function ~u(~x, t).

Generic function ~f(~u, t).
Function ~s(~u) used in the stopping criterion.
The maximum number of iterations or time-steps, kmax.
Iterations or time-steps tk, k = 0, . . . , kmax.

Output: Solution ~u(~x, tk).

1: for k = 1 to kmax do
2: ~u(~x, tk) = ~f(~u(~x, tk−1), tk−1)
3: if ~s(~u(~x, tk)) meets stopping criterion then
4: return ~u(~x, tk)

5: return ~u(~x, tk)

IHP splits the problem domain, Ω, among the CPU and the GPU. Thus, two
domains, ΩCPU and ΩGPU, are defined such that Ω = ΩCPU∪ΩGPU. These subdomains
represent the regions for which the CPU and the GPU are responsible, respectively,
and their size is ruled by a parameter α ∈ [0, 1] that represents the amount of work
to be done by the CPU. For example, if α = 0.2, ΩCPU would represent the 20 % of
the complete domain and ΩGPU the remaining 80 % of Ω.

31



Ruben Laso Rodŕıguez

Since numerical methods usually use different approximations—often with higher
numerical error—at the boundaries of the domain, including overlap regions help to re-
duce these errors at the cost of slightly higher computational demands. These overlap
regions can be defined as Ωoverlap CPU ⊂ ΩGPU and Ωoverlap GPU ⊂ ΩCPU. Therefore,

the domains computed by CPU and GPU are defined as Ω̂CPU := ΩCPU∪Ωoverlap CPU

and Ω̂GPU := ΩGPU ∪ Ωoverlap GPU, respectively.

In the easiest case, regions are not overlapped, Ωoverlap CPU = Ωoverlap GPU = ∅,

and the workload is distributed straightforwardly. Therefore, Ω̂CPU = ΩCPU and
Ω̂GPU = ΩGPU.

Figure 2.1 shows both scenarios: in Figure 2.1(a) the domain is divided into two
parts without overlap, and in Figure 2.1(b) the domain is divided into two parts with
overlap.

Ω̂CPU = ΩCPU

Ω̂GPU = ΩGPU

(a) Without overlap.

ΩCPU \ Ωoverlap GPU

ΩCPU ∩ Ωoverlap GPU

ΩGPU ∩ Ωoverlap CPU

ΩGPU \ Ωoverlap CPU

Ω̂CPU

Ω̂GPU

(b) With overlap.

Figure 2.1: Representation of the domain division between CPU and GPU.

The initial value of α is estimated using a relation between theoretical peak per-
formances of CPU and GPU, PCPU and PGPU, respectively, such that

α =
PCPU

PGPU + PCPU
. (2.1)

This initial guess for α is expected to be not optimal, thus, a recalculation on the fly
is necessary according to CPU and GPU performances in execution time. Considering
that tasks are based on iterative or time-step methods, it is possible to establish a
dynamic mechanism to improve the workload balance.

The key point behind IHP is to compute chunks of iterations and recompute α
periodically, ensuring that CPU and GPU are used in the optimal way, that is

tCPU ' tGPU, (2.2)
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where tCPU and tGPU are the times required by the CPU and the GPU, respectively,
to complete their computations for a chunk. Note that the optimal α is found in
the intersection of tCPU and tGPU, since the iteration execution time comes from
max (tCPU, tGPU). Figure 2.2 shows a representation of a linear workload model built
by IHP of CPU and GPU and the optimal value of α.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Optimal α

α

T
(α

)

tCPU(α)

tGPU(1− α)

Figure 2.2: IHP linear performance model and optimal α.

Theoretically, with a stable workload through time, α converges to the optimal
value after the first chunk. In the real world, two reasons justify the periodical recal-
culation of α. First, the workload may vary with time. For example, in simulation
software, different iterations might incur different execution times due to numerical
stability. Second, other processes may be assigned to the CPU or the GPU, partic-
ularly in multi-user systems, affecting performance and balance. Usually, these situ-
ations should not carry drastic changes in performance, but should not be neglected
either. As a result, α is expected to slightly oscillate around the optimal value.

Note that the selection of the chunk size is also relevant in the performance of
IHP. Smaller chunk sizes will allow IHP to recalculate the workload distribution more
frequently, so potential workload balance issues would be solved earlier, but likely
incurring more data transfers between CPU and GPU. The opposite is expected to
happen with bigger chunks, so data movement should be reduced at the cost of a less
reactive workload balance. Therefore, it is necessary to find a compromise between
these two aspects: reactivity against performance changes or reduction of expensive
data transfers.

Algorithm 2.2 shows the pseudocode of our proposal. Note that steps 6 and 7
should be computed simultaneously, so CPU and GPU should make their respective
computations concurrently.
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Algorithm 2.2 Heterogeneous parallelism for iterative problems.

Input: Initial value problem functions ~u(~x, t) and ~f(~u, t).
Function ~s(~u) for evaluating stopping criterion.
Parameter kmax defining the maximum number of iterations.
Initial value for parameter α.
Minimum and maximum number of iterations per chunk, cmax and cmin.

Output: Function ~u(~x, tk) corresponding to the result.

1: i = 0, k = 1
2: while k < kmax do
3: Define Ω̂CPU and Ω̂GPU such that card(Ω̂CPU) ≈ α card(Ω̂GPU)
4: cchunk = min(2icmin, cmax)
5: for c = 0 to cchunk do
6: ~u(~x, tk+c) = ~f(~u(~x, tk+c−1), tk+c−1), ~x ∈ Ω̂CPU

7: ~u(~x, tk+c) = ~f(~u(~x, tk+c−1), tk+c−1), ~x ∈ Ω̂GPU

8: k = k + cchunk

9: i = i+ 1
10: if ~s(~u(~x, tk)) meets stopping criterion then
11: return ~u(~x, tk)

12: Recompute value of α

13: return ~u(~x, tk)

In order to use IHP, the user should implement the following functions:

• alloc_dev(): function to allocate the required memory on the device.

• dealloc_dev(): function to deallocate the device memory allocated in function
alloc_dev().

• host_to_dev(): code to copy data from host memory to device memory.

• dev_to_host(): code to copy data from device memory to host memory.

• CPU_operator(): code for host computations involving Ω̂CPU.

• GPU_operator(): code for device computations involving Ω̂GPU.

• stopping_criteria(): code for function ~s(~u) to check if the stopping criteria
is met.

Overlap is taken into account by the library itself during computation and communi-
cation related functions. However, the user has to decide how ΩCPU and ΩGPU are
defined, as IHP intends to be a general-purpose library.
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For example, in the image processing domain, the minimal working unit could be
defined as a row of pixels. So, when α = 0.2, the CPU will be responsible for the
calculations of the 20 % of rows of the image and the defined overlap rows.

Source code for IHP and simple example codes can be found in [66].

2.2.1 IHPv1: assuming linear workloads

In its first version, as published in [67] and [68], IHP works under the assumption
that workload is linear. This allows for very quick and efficient computation of the
workload share, following the expression

α =
tGPU

tCPU + tGPU
, (2.3)

where tCPU and tGPU represent the amount of time required by the CPU and the
GPU, respectively, to complete their computations for the last chunk. The main flaw
of this approach is that α might be computed inaccurately for workloads that are not
linear.

2.2.2 IHPv2: considering non-linear workloads

To address the aforementioned flaw of IHP version 1 (IHPv1) regarding the assumption
of linear workload, IHP version 2 (IHPv2) considers different kinds of models. For
that, historical data is stored and processed to find the model that fits best for both
CPU and GPU, and computes the optimal workload share according to these models.
The historical data also helps with the stability of α, potentially saving time in data
movement across CPU and GPU memories.

CPU and GPU performance models

Three main models can be expected in terms of performance: linear, logarithmic and
exponential. There are typical examples for all of them. The complexity of most
vector operations grows linearly with the size of the vector. Searches in trees and
sorted groups of data typically show a logarithmic behaviour. Matrix operations
and other complex linear algebra operations have an execution time that increases
exponentially with the size of the matrices. Furthermore, it is possible to consider
that algorithms which show other kinds of behaviours can be approximated by those
three models.

Note that two models have to be built, one for the CPU and another for the GPU.
Architectural differences between the two processors might lead to different behaviours
and it is also possible that both models are not of the same kind. For example, the
implementation of the host code might show a linear behaviour, while the device code
might be logarithmic.
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Fitting models

IHP uses information obtained on-the-fly, regarding how much work each kind of
processor did and how long it took. The last n samples are stored, each sample
containing the tuple (α, tCPU, tGPU). Those values are averaged and stored in the tuple(
Ā, T̄CPU, T̄GPU

)
, which are later used to fit the linear, logarithmic and exponential

models.
Different ways of computing the averages, imply differences in the behaviour of the

balancing algorithm. Some of the most common weighted averaging methods are the
following:

• The arithmetic mean—or average—is the simplest averaging method, both con-
ceptually and in terms of implementation, see equation (2.4). As a positive,
it provides more consistency over time. On the negative, it is less responsive
to abrupt changes. Note that this method weights the same for every sample,
regardless of the accuracy of that balance or how recent it is.

x̄ =
1

n

n∑
i=1

xi. (2.4)

• Linearly Weighted Moving Average (LWMA), see equation (2.5), makes the
more recent measurements to be more relevant in a linear way. This makes
the algorithm balance faster in case of important changes in performance, while
still considering historical data.

x̄ =

∑n
i=1 ixi∑n
i=1 i

(2.5)

• Exponentially Weighted Moving Average (EWMA), see equation (2.6) follows
the same idea of LWMA, with the difference that weight changes exponentially.
Thus, more recent samples have much higher weight than the older ones.

x̄ = d ·
n∑
i=1

(1− d)
n−i+1

xi, (2.6)

where d ∈ (0, 1) is the decay factor, which controls the rate of exponential decay.

• Weighting based on balance gives more relevance to those samples which implied
better workload balance. For each sample, when workload share is recomputed,
it is assigned a weight following

wi = exp

(
− |tCPU − tGPU|

max (tCPU, tGPU)

)
. (2.7)
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So that, the average is computed with

x̄ =

∑n
i=1 xiwi∑n
i=1 wi

. (2.8)

Those methods are illustrated in Figure 2.3.
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Figure 2.3: Representation of weighting methods and assigned weights when considering the last
n = 10 measurements.

Workload models

With the tuple
(
Ā, T̄CPU, T̄GPU

)
, the linear, logarithmic and exponential models can

be built. There is a constraint in these models, they should go through (0, 0), since no
workload should carry zero execution time. When building the model for the CPU,
x̄ = Ā, ȳ = T̄CPU, and x̄ = 1− Ā, ȳ = T̄GPU for the GPU.

The considered models are the following:

• Linear model: this is the simplest model in both terms of theoretical and practi-
cal simplicity. The execution time is approximated with a straight line that goes
from (0, 0) to some calculated (x̄, ȳ). Thus, the execution times are expected to
follow

flin(α) = bα, b =
ȳ

x̄
. (2.9)

• Logarithmic model: for fitting the logarithmic model, a shift in the x axis is
required, so that

flog(α) = b · log(α+ 1), b =
ȳ

log(x̄+ 1)
. (2.10)
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• Exponential model: in the case of the exponential model, the shift has to be
done in the y axis. Therefore,

fexp(α) = exp(bα)− 1, b =
log(ȳ + 1)

x̄
. (2.11)

Trade-offs

By increasing the number of samples taken into consideration, n, the balancing method
gets less responsive to changes in the performance of the CPU or GPU. On one hand,
it will provide better stability under normal system noise, potentially reducing data
movement due to the changes in workload balancing. On the other hand, respon-
siveness is reduced in situations where a big change in workload balance is required.
Imagine, for example, a scenario where CPU receives a large number of tasks from
other processes, thus reducing its performance in the process handled by IHP. In the
extreme case with n = 1, the library will assign much more work to the GPU immedi-
ately. As n increases, the time it takes to find the new optimal balance increases too.
Figure 2.4 shows how α would change in a situation like this.

0.3

0.4

0.5

Time

α

n = 1

n� 1

Figure 2.4: Example of behaviour under a large change of performance.

Another drawback of selecting high values for n resides in the computation time
taken to compute the weighted average. Nevertheless, this overhead should be negli-
gible for small values of n, from 5 to 15, for example.

The weighting average method also changes the behaviour of the algorithm, as
discussed previously.
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Selecting a model

To select which model fits the actual workload, the traditional Mean Squared Error
(MSE) can be used. Let A = {α1, . . . , αn} be the n last values of α used, T =
{t1, . . . , tn} the corresponding execution times, and f(α) the function that fits the
performance data, with n samples each, the MSE is computed following

MSE =
1

n

n∑
i=1

(ti − f(αi))
2
. (2.12)

Furthermore, the Weighted Mean Squared Error (WMSE) can be used,

WMSE =
1

n

∑n
i=1 (ti − f(αi))

2∑n
i=1 wi

, (2.13)

with W = {w1, . . . , wn} being the collection of weights for the data in T .
For both CPU and GPU, the model which has the lowest WMSE error is selected.

Recalculating workload share

Let fCPU and fGPU be the functions that fit the CPU and GPU workloads the best,
as explained previously.

To determine the new value of α, the following problem has to be solved:

Problem 2.1. Given fCPU and fGPU, find α such that:

fCPU(α)− fGPU(1− α) = 0. (2.14)

If the performance difference between the CPU and GPU is too large, the solution
to Problem 2.1 could be α ' 0 or α ' 1. In that cases where α < 0.01 or α > 0.99,
the GPU or CPU will be assigned all the work, respectively, since it is considered that
the contribution of the other device does not compensate for the overhead of data
movement.

To solve Problem 2.1, the Newton method is used:

Step 0: Let i = 0, α0 the last used value of α and δ � 1 a threshold for accepting a
solution.

Step 1: For the i-th step, compute

αi+1 = αi −
fCPU(αi)− fGPU(1− αi)
f ′CPU(αi)− f ′GPU(1− αi)

, (2.15)

where f ′CPU and f ′GPU are the derivatives of fCPU and fGPU, respectively.

Step 2: If |fCPU(αi)− fGPU(1− αi)| < δ, accept the last solution. Otherwise, i =
i+ 1, and go to Step 1.
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2.3 Image denoising as case study

This section introduces the mathematical problem to be solved in the context of image
denoising. In particular, diffusion methods, like the ones proposed in [69], are used
as they provide an easy-to-understand example and a good case study and validation
scenario for IHP.

A digital image can be described as a function ~I(x, y) : R2 → Rc, where c cor-
responds to the number of channels. Typically, c = 3 for the common RGB—Red
Green Blue—colour representation. The image domain Ω = (0, Lx)× (0, Ly) ⊂ R2 is
defined, where Lx and Ly represent the dimensions of the image in the x and y axis,
respectively.

Diffusion methods proposed in [69] are a set of coupled partial differential equations
(PDEs), where an image is considered the combination of brightness—magnitude—

and chromaticity—direction. So, in an instant t, an image is defined as ~I(x, y, t) =
R2 × [0, τ) → Rc, where (x, y) ∈ Ω are the spatial coordinates and t represents time.
Therefore, any image can be defined as the combination of its magnitude, M(x, y, t) :

R2 × [0, τ)→ R, and its unit direction, ~D(x, y, t) : R2 × [0, τ)→ Rc. These functions
are written as

M(x, y, t) =

(
c∑
i=1

Ii(x, y, t)
2

) 1
2

=
∥∥∥~I(x, y, t)

∥∥∥, (2.16)

~D(x, y, t) =
1

M(x, y, t)
~I(x, y, t). (2.17)

To eliminate noise, diffusion flows are applied to brightness and chromaticity, re-
spectively, so the image evolves through time.

2.3.1 Brightness diffusion flows

For the brightness, two types of diffusion flows are considered. First, the common
Laplacian flow, based on the heat equation,

∂M

∂t
(x, y, t) = Mxx(x, y, t) +Myy(x, y, t) = ∆M(x, y, t), (2.18)

where the subscripts denote partial derivatives. As this is an isotropic flow, the be-
haviour is the same in every direction, and as a consequence, flaws in preserving the
edges of the objects of the image. Second, the more refined anisotropic flow [69], that
is introduced as

∂M

∂t
(x, y, t) =

(
MxxM

2
y − 2MxMyMxy +MyyM

2
x

) 1
3

1 + ‖∇M‖
, (2.19)
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where the anisotropic behaviour is introduced by the term 1/ (1 + ‖∇M‖). In the
edges of objects in the image, the norm of the gradient grows up, preventing diffusion
in these areas.

2.3.2 Chromaticity diffusion

The chromaticity is defined in (2.17) and is represented by a unit vector field that

defines the direction of the colour for a given pixel. The i-th component of ~D(x, y, t)
is denoted as Di(x, y, t) : R2× [0, τ)→ R, with i = 1, . . . , c, indicating how much that
vector is drawn to a specific colour—red, green or blue in RGB codification.

Diffusion flows for chromaticity come from solutions of Problem 2.2.

Problem 2.2. Find ~D(x, y, t) : R3 → Rc, such that minimises:

min
~D:R3→Rc

∫
Ω

∥∥∥∇ ~D(x, y, t)
∥∥∥p dxdy , t ∈ [0, τ), p ≥ 1, (2.20)

subject to
∥∥∥ ~D(x, y, t)

∥∥∥ = 1, ∀(x, y) ∈ Ω, t ∈ [0, τ).

It can be proved that the gradient descent flow of (2.20) has the form

∂Di

∂t
= div

(∥∥∥∇ ~D∥∥∥p−2

∇Di

)
+Di

∥∥∥∇ ~D∥∥∥p, 1 ≤ i ≤ c. (2.21)

To narrow down the scope of this work, the two more interesting values of p are
considered. The first one is p = 2, in which the isotropic diffusion flow is obtained by

∂Di

∂t
= ∆Di +Di

∥∥∥∇ ~D∥∥∥2

, 1 ≤ i ≤ c. (2.22)

The second value is p = 1, obtaining the anisotropic flow for the chromaticity:

∂Di

∂t
= div

(∥∥∥∇ ~D∥∥∥−1

∇Di

)
+Di

∥∥∥∇ ~D∥∥∥, 1 ≤ i ≤ c. (2.23)

2.3.3 Discretisation

Attending to digital images structure, a uniform mesh with N + 2 points in the x axis
and M + 2 in the y axis is proposed, so the distance between two points in the mesh
for each axis is h = hx = Lx/(N + 1) = hy = Ly/(M + 1) = 1. This mesh is denoted
as Ωh and it is defined as the set of nodes

Ωh = {(xi, yi) , 1 ≤ i ≤ N, 1 ≤ j ≤M} , (2.24)
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and its boundary domain is

∂Ωh = {(0, yj) , (Lx, yj) , 0 ≤ j ≤M + 1} ∪ {(xi, 0) , (xi, Ly) , 0 ≤ i ≤ N + 1} . (2.25)

Therefore, domain Ω is represented by the set of nodes (xi, yj) = (ihx, jhy), i =
0, . . . , N + 1, j = 0, . . . ,M + 1.

Additionally, a discretisation of time is required in these kinds of time-step meth-
ods, so a time step δ is defined, such that k-th instant is tk = kδ for k = 0, . . . , kmax.

Finally, in this section, the following notation is used

(xi, yj , tk) = (ihx, jhy, kδ) , i = 1, . . . , N, j = 1, . . . ,M, k = 1, . . . , kmax, (2.26)

~u (xi, yj , tk) ' ~ui,j,k, i = 1, . . . , N, j = 1, . . . ,M, k = 1, . . . , kmax, (2.27)

for any given function ~u(x, y, t).

Concerning initial conditions, u(x, y, 0) = M(x, y, 0) and ~u(x, y, 0) = ~D(x, y, 0) for
brightness and chromaticity, respectively. For boundary conditions ~u(x, y, 0) = ~0 for
every (x, y) ∈ ∂Ωh.

2.3.4 Numerical solution

For computing the numerical solution of the PDEs (2.18), (2.19), (2.22), and (2.23),
finite difference schemes are used for the spatial derivatives and an Explicit Euler
method for temporal derivatives. Centred differences are used whenever possible for
first-order spatial derivatives. Note that, in the points (xi, yj) with i = {1, N} or
j = {1,M}, a different approximation is required, by using forward differences when
i = 1 or j = 1 and backward differences when i = N or j = M . Second-order
spatial derivatives are computed using centred differences in all cases, considering
that ~ui,j,k = 0 if (xi, yj) /∈ Ωh.

An explicit Euler scheme is used for temporal derivatives,{
~u(x, y, t0) = ~u(x, y, 0),

~u(x, y, tk) = ~u(x, y, tk−1) + δ ~f(~u(x, y, tk−1), tk−1), k = 1, . . . , kmax,
(2.28)

where, ~u(x, y, t) denotes brightness or chromaticity function and ~f(~u, t) represents the
corresponding isotropic or anisotropic flow function.

Additionally, the integral in (2.20) provides an estimation of the amount of noise of
an image, considering it as an energy measure. Thus, the following function is defined:

E(~u) =

∫
Ω

‖∇~u(x, y, t)‖p dxdy , (2.29)

hereinafter referred to as the image energy. Since noise alters the values of the pixels,
the norm of the gradient increases and, consequently, the energy. In this work, the
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general value of p = 2 has been used in (2.29), preserving the case with p = 1 for the
anisotropic flow for chromaticity.

Computing (2.29) involves a discretisation, so the integral of ‖∇~u(x, y, t)‖p is ap-
proximated in each rectangle of Ωh considering the trapezium rule in each iterated
integral. Therefore, (2.29) is approximated as

E(~u) =

∫
Ω

‖∇~u‖p dxdy '

h2

4

N−1∑
i=1

M−1∑
j=1

(‖∇~ui,j,k‖p + ‖∇~ui+1,j,k‖p + ‖∇~ui,j+1,k‖p + ‖∇~ui+1,j+1,k‖p) . (2.30)

The values of the energy of the image are used as a stopping criterion, so the
diffusion flow stops once the following condition is fulfilled

E(~u(x, y, tk))

E(~u(x, y, t0))
≤ ρ, k ∈ [0, kmax], ρ ∈ (0, 1). (2.31)

Therefore, the final time τ is tk for the first tk that fulfils this condition. As the energy
value is only used as a guide to stop the method, maximum precision is not needed,
while a low computation time is preferable. Additionally, in order to save computation
time, it is not necessary to compute the energy in every iteration, as it holds

lim
t→∞

E(~u(x, y, t)) = 0, (2.32)

decreasing fast when t is close to 0, but slowing down as t increases as shown in
Figure 2.5.

2.3.5 Definitions of IHP domains

As mentioned in Section 2.2, IHP splits the domain Ωh into several subdomains in
order to balance the workload between CPU and GPU. In the case of image denois-
ing, the split of the domain is almost straightforward, as it can be divided by rows.
Therefore, the subdomains of Ωh are defined like

Ω̂CPU = {(xi, yj) , 1 ≤ i ≤ N, 1 ≤ j ≤ rsplit} , (2.33)

Ωoverlap CPU = {(xi, yj) , 1 ≤ i ≤ N, rsplit < j ≤ rsplit + roverlap} , (2.34)

Ω̂GPU = {(xi, yj) , 1 ≤ i ≤ N, rsplit < j ≤M} , (2.35)

Ωoverlap GPU = {(xi, yj) , 1 ≤ i ≤ N, rsplit − roverlap ≤ j ≤ rsplit} , (2.36)

where rsplit = bαMc denotes the row where the domain is split, and roverlap denotes
the number of rows that define the overlap region.
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Figure 2.5: Example of the behaviour of energy function in the denoising of the brightness of an
image.

Concerning the overlap region, the anisotropic flow for chromaticity is the diffusion
flow that needs more points in the calculations. Computing the divergence of the
points in the i-th row requires the gradients of the points in the rows i− 1 and i+ 1.
These gradients are computed with the values of the points in the rows i − 2, i, and
i, i+ 2 respectively. Given that, roverlap = 2.

2.4 Experimental environment

To validate the proposed methodology, several tests have been carried out in two
systems with different characteristics regarding computational capabilities:

• Desktop: a Linux system, kernel version 5.15.0 with an Intel Core i5-7600 pro-
cessor [70], with 4 cores—4 threads—, Kaby Lake architecture, 6 MB L3 cache,
3.50 GHz–4.10 GHz, an NVIDIA GTX 1050 Ti GPU [71] with 768 NVIDIA
CUDA cores, 1.29 GHz–1.39 GHz, and 32 GB of DDR3 memory. Two imple-
mentations were used in this system. On one hand, a CPU-only implementation
using Intel TBB, with a GPU-only version using OpenCL, and a IHP implemen-
tation using both Intel TBB and OpenCL. The compiler GCC 7.4.0 [26] was used
with the highest optimisation options enabled. On the other hand, a CPU-only
implementation using OpenMP [65], with a GPU-only version using CUDA [72],
and the IHP implementations use both OpenMP and CUDA. Compilers GCC
10.3.0 [26] and NVCC v11.6.112 [27] were used with the highest optimisation
options enabled.
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• Laptop: a Linux system, kernel version 4.14.0, Intel Core i7-5700HQ [73] with 4
cores—8 threads—, Broadwell architecture, 6 MB L3 cache, 2.70 GHz–3.50 GHz,
an integrated GPU Intel Iris Pro 62001, 0.30 GHz–1.05 GHz, and 16 GB of DDR3
memory. In this system, the CPU-only implementation uses Intel TBB, the
GPU-only version uses OpenCL, and the IHP implementations use both Intel
TBB and OpenCL. The compiler GCC 9.4.0 [26] was used with the highest
optimisation options enabled.

According to (2.1), initially, α = 0.03 and α = 0.5 for systems Desktop and Laptop,
respectively.

Results in this section come from the average of 5 independent executions of the
image denoising algorithms with an image of 4000× 6016 pixels.

It should be noted that the main difference between the isotropic and anisotropic
diffusion flows is that the latter involves more arithmetic operations. Therefore, the
anisotropic flows are more computationally intensive than the isotropic ones.

2.5 Results with different kinds of workloads

IHPv1 and IHPv2 have been tested also under linear, logarithmic and exponential
workloads. To emulate those, the computations for each pixel of the images are re-
peated several times. In the linear case, each pixel value is computed 10 times. For
the logarithmic, computations are repeated d10− 5αe times for each pixel. Thus, the
higher value of α, the least time is spent in the kernel. Finally, in the exponential
workload, each computation is repeated d10 + 20αe times. These modifications allow
obtaining the behaviours shown in Figure 2.6.
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Figure 2.6: Execution time evolution for linear, logarithmic and exponential workloads.

1The OpenCL controller for this GPU only supported single-precision computations.
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Note that the exponential workload has the biggest potential of improving exe-
cution times when using heterogeneous parallelism since extracting part of the work
from one device reduces drastically the amount of total work to be done. It is the
opposite for the logarithmic workload, though.

Concerning diffusion methods parameters, 200 and 50 iterations have been com-
puted in systems Desktop and Laptop, respectively, with chunks cmin = 1 and cmax =
10 for both brightness and chromaticity.

Results show that significant improvements can be obtained, in terms of execution
time, when combining CPU and GPU computing power compared to GPU-only im-
plementations. This effect can be observed in the three tested workloads, particularly
in the exponential workload, and the two systems.

As shown in Figures 2.7 and 2.8, speed-ups of up to ×1.61 and ×2.60 can be
achieved for Desktop and Laptop systems, respectively. Detailed results are shown in
Tables A.1 to A.9 in Appendix A.

In the case of the Desktop system, there is a large gap between CPU and GPU
performance. When using single-precision instructions, the real performance of the
CPU is about 10 % of the GPU. Despite this difference, it is still worth combining
both kinds of processors in terms of execution time.

For the linear kind of workloads, the CPU typically handle around the 6 % of the
computations, as shown in Figure 2.9, resulting in an improvement of execution times
around the 4 %.

For logarithmic workloads, the CPU contribution is much smaller and even dis-
carded as is the case in the anisotropic flow for brightness processing. Two main
reasons lay behind this phenomenon. First, the CUDA implementation already pro-
duces low execution times, giving little room for improvement. Second, during the
time that IHP invests searching for optimal workload shares, some time is lost due
to imbalance, becoming a dominant factor in the overhead. This is not a big issue,
though, since the time loss is in the order of tenths of a second, which might be
considered negligible in this scenario. Despite that, the loss in performance is less
than 1 %.

The exponential workloads are the most benefited, where IHP version increases per-
formance approximately by 30 %. Note that, in this case, dividing the work between
CPU and GPU reduces the workload overall, being easier to improve the execution
times. When using double-precision registers, the gap between CPU and GPU per-
formance is reduced and the benefits of using heterogeneous parallelism are greater.
As a result, the achieved speed-up grows up to ×1.60.

In the Laptop system, CPU and GPU performances are closer. This allows the
CPU to handle larger parts of the workload, so the heterogeneous implementations are
more effective, see Figure 2.8. For linear workloads, execution times improve between
36 % and 39 %. In the case of logarithmic workloads, the improvements vary between
5 % and 43 %. It is the exponential workloads where execution times are furthest
reduced, with speed-ups of up to ×2.60.
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Figure 2.7: Speed-up against GPU for different flows for brightness and chromaticity and various
workload types on the Desktop system. Higher is better.
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Figure 2.8: Speed-up against GPU for different flows for brightness and chromaticity and various
workload types on the Laptop system. Single-precision computations. Higher is better.
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Finally, the differences between IHPv1 and IHPv2 should be discussed. As men-
tioned in Section 2.5.1, the region around the optimal workload share is linear. That
means that if IHPv1 reaches that point, the workload it computes will be near the
optimal, and differences with IHPv2 are negligible in that regard. Nevertheless, the
storage of historical data and the new mechanisms introduced in IHPv2 allows for
more stable values of α that reduce the data movement between CPU and GPU. Fig-
ures 2.9 and 2.10 show examples of how the workload share can change through the
execution in the Desktop system. It is possible to see several oscillations of α when
using IHPv1 that do not happen with IHPv2. These oscillations carry data movements
between CPU and GPU that increase the overhead, slightly hurting execution times
in the process.
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Figure 2.9: Evolution of α for different kind of workloads and versions of IHP on Desktop system.
Single-precision computations.

As shown in Figure 2.11, in the Laptop system, the CPU can handle much more
computations. It is also more difficult to witness the differences in behaviour between
IHPv1 and IHPv2 due to the smaller number of time steps. Note that in the first
iterations both versions behave similarly since there is not enough data for IHPv2
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Figure 2.10: Evolution of α for different kind of workloads and versions of IHP on Desktop system.
Double-precision computations.

to build a meaningful performance model of the processors. Despite that, it can be
observed that the changes for α are steeper in IHPv1 than IHPv2.

Given the importance of energy consumption in devices, it is important to evaluate
the impact of the proposed techniques in this regard. Tables 2.1 to 2.2 show the result
regarding energy consumption.

In most scenarios, using only the GPU is the most efficient option in terms of
energy. Despite that the heterogeneous implementations run faster, they are ballasted
by the highly demanding CPUs. Take, for example, the linear workload using isotropic
flow and double-precision arithmetic. The CPU handles approximately 10 % of the
workload but increases power demands by 30 %.

It is worth noting that heterogeneous implementations might improve energy con-
sumption in exponential workloads, where the large improvement in execution times
compensates for the high consumption of the CPU cores.
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Figure 2.11: Evolution of α for different kind of workloads and versions of IHP on Laptop system.
Single-precision computations.

CPU-only GPU-only IHPv1 IHPv2

Isotropic flow
Linear 4.04 0.48 0.67 0.66
Logarithmic 2.04 0.27 0.40 0.40
Exponential 19.39 2.11 2.35 2.37

Anisotropic flow
Linear 17.32 1.19 1.76 1.63
Logarithmic 8.75 0.72 0.94 0.90
Exponential 79.11 6.09 7.05 6.62

Table 2.1: Energy consumption (Wh) for different implementations and different workloads on
Desktop system. Single-precision computations. Lower is better.
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CPU-only GPU-only IHPv1 IHPv2

Isotropic flow
Linear 3.62 0.95 1.28 1.24
Logarithmic 1.86 0.52 0.70 0.71
Exponential 21.31 4.35 4.15 3.78

Anisotropic flow
Linear 16.42 3.77 4.78 4.86
Logarithmic 6.89 1.95 3.10 2.67
Exponential 81.21 18.55 16.80 16.83

Table 2.2: Energy consumption (Wh) for different implementations and different workloads on
Desktop system. Double-precision computations. Lower is better.

2.5.1 Locally, everything is linear

Despite that considering the whole picture the workloads shown in Figure 2.6 are
different, locally they can be considered linear. Figure 2.12 shows the CPU execution
time per iteration after recalculating the CPU workload share, α, ten and twenty
times. In this figure, the workload models and the share are calculated with the last
n = 10 pieces of data. Note that the first 10 values of α are slightly scattered, since
the algorithm is still looking for the optimal workload share, but it quickly converges.
Once it converges, it is difficult—to say the least—to discern whether the workload
fits a linear, logarithmic or exponential model.

2.6 Comparison of IHP against other libraries

As detailed in [67], IHP has been compared against LogFit [60, 61] and Concord [59],
all using Intel TBB and OpenCL. This comparison has been performed in the Desktop
system, using the image-denoising algorithms as a use case.

For the sake of simplicity, IHPv1 has been used in the comparison, since the
workload of the experiment is linear and, as shown in Section 2.5, there is no significant
difference between IHPv1 and IHPv2 in this kind of scenarios.

Concerning diffusion methods parameters, 1000 iterations have been computed,
for both brightness and chromaticity, with cmin = 5 and cmax = 50. Following (2.1),
initially, α = 0.03. Also, the overlap region in our experiments is two rows in the
tests. This is the smallest overlap region size that allows using centred differences for
the approximations in the domain borders.

Tables 2.3 and 2.4 show the results of the comparison of IHPv1—using OpenCL
and Intel TBB—with LogFit and Concord.

The main differences between IHPv1 and the other libraries lay in two details.
First, IHPv1 requires less data movement between CPU and GPU. While LogFit and
Concord spend several seconds in the best cases, IHP just spends up to 0.62 s in copy
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Figure 2.12: Representation of CPU execution times per iteration for different values of α.
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Brightness Chromaticity
Isotropic Anisotropic Isotropic Anisotropic

OpenCL 14.00 18.42 40.70 81.56

LogFit

CPU 9.01 25.81 54.62 112.85
GPU 6.67 23.29 36.70 97.81
Copy 12.02 21.60 59.74 61.49
Total 22.90 47.82 100.13 171.79

Concord

CPU 12.98 127.48 70.42 154.78
GPU 3.32 4.04 8.74 20.62
Copy 7.37 3.73 15.61 14.68
Total 16.65 131.04 79.34 165.58

IHPv1

CPU 5.78 17.12 32.73 68.44
GPU 6.12 16.65 32.38 69.30
Copy 0.18 0.23 0.30 0.26
Total 6.37 17.84 33.99 70.15

Table 2.3: Execution times (in seconds) of OpenCL only, LogFit, Concord and IHPv1 implementa-
tions using single-precision. Lower is better.

Brightness Chromaticity
Isotropic Anisotropic Isotropic Anisotropic

OpenCL 16.39 30.78 57.37 125.54

LogFit

CPU 21.19 49.68 113.09 182.83
GPU 4.21 22.99 42.55 100.50
Copy 18.10 43.21 96.26 128.69
Total 29.63 77.07 153.08 254.95

Concord

CPU 28.58 156.51 272.46 1058.29
GPU 8.35 24.31 41.92 83.55
Copy 27.35 29.71 91.35 85.51
Total 41.67 172.33 291.51 1103.94

IHPv1

CPU 9.16 27.65 44.76 107.59
GPU 9.54 27.79 45.58 106.03
Copy 0.48 0.52 0.62 0.62
Total 9.86 28.46 46.77 112.96

Table 2.4: Execution times (in seconds) of OpenCL only, LogFit, Concord and IHPv1 implementa-
tions using double-precision. Lower is better.
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operations. This behaviour was expected as LogFit and Concord are general-purpose
libraries, while IHP is specifically designed to address iterative problems. Second, a
much more accurate workload balance is found with IHPv1, so devices spend less time
idle, 5 % in the worst case. For LogFit and Concord, non-optimal workload balances
cause big differences in execution times, leaving GPU computational resources unused
for long periods. This is particularly critical in Concord, which does not change the
workload balance after the profiling phase, while LogFit continuously tries to find the
optimal balance using a mechanism split into several phases.

Figure 2.13 shows the evolution of parameter α throughout the execution for
IHPv1, LogFit, and Concord. Despite α being a parameter of IHP, it can be con-
sidered for LogFit and Concord too as the amount of work computed by CPU. These
data have been obtained in fixed chunks of five iterations.

IHPv1 and LogFit methods converge to a value for the parameter α in a few itera-
tions and keep it stable from very early on with single-precision operands. This is not
the case with double-precision computations, where LogFit shows some instabilities.
As mentioned before, Concord does not change the value of α after the initial profile
phase, so its charts are completely flat.

As shown in Figure 2.14, IHPv1 manages to keep both devices busy most of the
time. Note that differences between CPU and GPU execution times are around 10−2

seconds, being considerably higher only in the first iterations, where an optimal value
of α is yet to be found.

Finally, Figure 2.15 shows the performance overhead induced by copy operations
for different chunk sizes. Larger chunk sizes reduce the amount of time spent in data
movement, which is a result to be expected. Even though, as discussed in Section 2.2,
the size of the chunks should be carefully selected to find a tradeoff between the
reduction of data movement and the rate at which IHP recalculates the workload
balance.
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“Load balanced heterogeneous parallelism for finite difference problems on
image denoising”, Computational and Mathematical Methods, vol. 3, no. 3,
e1089, 2021. doi: https://doi.org/10.1002/cmm4.1089. ‘Reproduced
with permission from Springer Nature’.

• R. Laso, J. C. Cabaleiro, F. F. Rivera, M. C. Muñiz, and J. A. Álvarez-Dios,
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Chapter 3

Thanos: a user space tool for thread
and memory migration

With great power there must also come – great responsibility!
— Stan Lee, The Amazing Fantasy #15.

Focusing on the problem of efficient executions in NUMA systems, and considering
the complexity of the problem described in Chapter 1, several algorithms have been
developed to face the challenge of scheduling threads and memory pages in these com-
plex architectures. This chapter explains how the current Linux scheduler works, gives
a brief overview of the state of the art, and describes formally the algorithms developed
during this thesis for both thread and memory migrations in NUMA systems.

3.1 Linux scheduler and scheduling in NUMA systems

Linux scheduler has been evolving through the years to improve its performance at a
slow but continuous rate. Researchers and contributors to the kernel have proposed
patches and modifications to address the existing issues of the scheduler, but also to
address the new problems of incoming platforms.

3.1.1 Completely Fair Scheduler (CFS)

The current—at the time of writing this thesis—Linux scheduler algorithm is known as
Completely Fair Scheduler (CFS) and was introduced in October of 2007. According
to its developer, Ingo Molnar, “CFS basically models an ideal, precise multi-tasking
CPU on real hardware” [74].

The objective of CFS is to perfectly balance processor time to each task or group
of tasks. Ideally, with a processor that could be executing several tasks in parallel,
and with 100 % computing power, each task would use an even amount of CPU power.
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So, for two tasks running, each will be executed with the 50 % of the computational
capabilities of the CPU. Since actual processors can only work with one task at a
time, a virtual runtime measured in nanoseconds is used. This virtual runtime is the
amount of time that the task would have used if it was executed in a perfect CPU.

CFS has a minimum time period defined, in which each thread should run at least
once. This time is divided by the number of tasks to be scheduled to define the length
of the time slices. Every time a process is preempted, ends its slice, the scheduler will
take the process with the least virtual runtime to be executed during a time slice. It
should be noted that the length of the time slices is pondered with the niceness of
the processes. If the process has a high nice value, its slice will be shorter. If it has
a low nice value, it will be granted more time. Furthermore, preempting processes
incur overhead, so a minimum slice is defined to prevent switching contexts among
processes too often [75].

3.1.2 Scheduling domains

Scheduling domains is a feature introduced in the scheduler of Linux to handle different
layers of the system hierarchically.

Each scheduling domain spans one or several CPUs, which must be a superset of
its child domains until each base domains span a single logical CPU [76]. Thanks to
technologies like hyperthreading, a physical CPU can behave as several—typically, two
or four—logical CPUs. Generally, the top of the hierarchy comprehends the full set
of CPUs of the system. An example of a hierarchy is shown in Figure 3.1.

System

NUMA 0

Core 0

CPU 0 CPU 1

Core 1

CPU 2 CPU 3

NUMA 1

Core 2

CPU 4 CPU 5

Core 3

CPU 6 CPU 7

Figure 3.1: Example of scheduling domains for a system with two NUMA nodes, each node has one
processor with two physical cores, and each core has two logical CPUs. Each node of
the tree represents a scheduling domain that comprehends all its children. For example,
NUMA node 0 comprehends CPUs 0, 1, 2, and 3.

The scheduler uses the domains to take care of the workload balance, so each level
in the hierarchy is assigned a balancing policy which defines the periodicity at which
the workload is balanced, among other parameters. So, periodically, the scheduler
balances the workload on each domain based on a metric called load, which is the
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combination of each thread’s priority and its average CPU utilisation [77]. The load
of each domain corresponds to the accumulation of the load of the threads running in
that particular domain. If the load differs too much among domains in the same level
of the hierarchy, some processes will be migrated from the busiest group to the less
loaded one. It should be noted that the scheduler takes some factors into account, like
cache affinity when migrating processes. A process whose cache is still valid is less
likely to be migrated than another whose cache affinity is gone.

Imagine a NUMA system like the one shown in Figure 3.1. First, the scheduler will
compute the workload of logical CPUs. Second, for each physical core, it will balance
the workload for each logical CPU in the core. Third, for each NUMA node, it will
balance the workload for each physical core. Finally, it will balance the workload
among NUMA nodes.

Some notes about this procedure should be made [78]:

• Balancing among logical CPUs within the same core happens very often. There
is no cache affinity since, typically, logical CPUs share the same last-level cache.

• Balancing among physical cores happens less frequently. Cache affinity should be
taken into account, so processes are said to lose their affinity some milliseconds
after being preempted.

• Balancing among NUMA nodes is even less frequent, and cache affinity lasts for
longer since the cost of migrations among nodes is relatively high.

3.1.3 AutoNUMA and NUMA Balancing

In 2012, Andrea Archangeli proposed the AutoNUMA patch to the Linux scheduler,
which aimed to improve both thread and memory placement in NUMA systems. Au-
toNUMA collects statistics about recent accesses to decide if a thread or a memory
page is worth being migrated.

An array of counters is stored for each process to know which node was accessed
the most in the recent past. When the time to be scheduled comes, that thread is
moved to that node with more accesses.

Also, AutoNUMA introduced a mechanism for improving the locality of memory
pages. With this mechanism, memory pages are periodically unmapped, causing a
weak page fault the next time they are accessed. With the following non-local fault,
the memory page will be queued to be migrated to that node [79]. To avoid moving
pages too often, a quadratic filter is applied. That is, a page will be migrated only if
it is accessed twice from the same NUMA node or by the same task [80].

Currently, this option is known as NUMA Balancing (NB) and is activated if the
content of the file /proc/sys/kernel/numa_balancing is 1.
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3.1.4 Transparent Huge Pages (THPs)

Since 2003 the kernel of Linux uses a mechanism to group contiguous memory pages
aiming to improve the performance of general systems, named Huge Pages [81]. The
traditional meaning of huge—memory—pages is related to increasing the size of all
memory pages in the system, improving performance in two ways. The first way
is that the frequency of operations over the Translation Lookaside Buffer (TLB) is
reduced, since each TLB miss comprehends a wider range of physical addresses, thus,
it comprehends more data for the processes to work with. The second is that the
number of entries in the TLB is greatly reduced so, typically, the TLB fits in the L2
cache, speeding up the operations over the TLB. Nevertheless, increasing the size of
memory pages would increase the amount of reserved memory that is not finally used,
somehow “wasting” some memory.

As shown in [82], the benefit of using Huge Pages varies with the workload. CPU
intensive benchmarks might see their performance increased by between 7 % and 13 %.
For other kinds of applications, like databases, improvements are lower, around 1 %.

In version 2.6.38, the kernel incorporated a patch by Andrea Arcangeli that intro-
duced Transparent Huge Pages (THPs) [83]. The idea of this patch was to ease and
extend the use of Huge Pages. Prior to this patch, a Huge Page had to be required and
allocated explicitly in the code. After the patch, the system reserves some memory
for using Huge Pages by either an explicit request or using an automated mechanism.
The OS automatically tries to use a THP whenever a page fault occurs: if available, a
THP is used and the contiguous small pages are grouped into the Huge Page; if not,
the kernel falls back to default small pages as usual. Furthermore, a kernel daemon
is periodically attempting to use free Huge Pages. If a Huge Page is free, the daemon
scans allocated memory in small pages to be gathered. Finally, a Huge Page can be
broken into small pages again under some operations like mlock() or mprotect().

According to the benchmarks [84], using THPs can improve performance by up to
11 % with no effort from programmers or system administrators.

3.1.5 Issues of the current scheduler

By the time this thesis is being written, the scheduler presents one particular flaw re-
garding NUMA systems: it is focused on work balance rather than locality and affinity.
The AutoNUMA patch tries to solve this problem and achieved great popularity. Nev-
ertheless, manual mapping of memory and threads through numactl tools [85] are yet
preferred to extract the most performance in NUMA systems. Though, it still requires
the user to have a deep understanding of the behaviour of the applications and the
characteristics of the system.
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3.2 Thread and memory pages migration on kernel and user
spaces

When designing a new mechanism or algorithm for thread and/or memory pages
migration, there are two alternatives, implement it in kernel space or user space. Each
approach has its advantages and disadvantages which should be carefully considered
and discussed.

Algorithms implemented in kernel space benefit from being able to use all the
information available in the system, like the CPU-time used, the current location
of the memory pages, number and frequency of page faults, etc. Also, all threads
and memory pages are under the control of the algorithm, with no restriction on
permissions, so the strategy has full control over the system, and with great power,
there must also come great responsibility. Another advantage is that it might act
beforehand in resource allocation, deciding the initial placement of resources. This
initial placement might be crucial in applications that require low response times.
Nevertheless, working at a kernel level has some disadvantages too. Modifying the
kernel of Linux might be a tough task due to its complexity, and expensive in terms
of time to make the algorithms work, solve the possible bugs and so on. This time
restriction is hard to follow for the researchers since it might slow down the research
work. Also, the final users of the modules or patches might experience problems in
terms of compatibility due to the kernel version or, mainly, permissions limitations.

On the other hand, user space tools have to deal with a limited amount of informa-
tion to decide which is the optimal thread and memory mapping. Information might
come from parsing the content of the /proc directory or the performance information
from the performance monitoring unit (PMU). User space tools are also restricted
to migrate user-level threads and memory pages due to limitations in permissions.
Though, is not a big issue since kernel-level threads are often light in terms of compu-
tational demands. Also, user space algorithms are always a step behind the operating
system in terms of resource allocations because the tools can reallocate resources only
after the initial placement decided by the OS. This causes a twofold overhead: first,
the required overhead of allocating the resources, and, second, the reallocation by the
migration tool. On the advantages side, user space algorithms require less time to
develop, since a lot of things can be handled back to the OS. This saves time in devel-
opment and debugging, allowing the researchers to invest more time in improving the
existing algorithms and developing new ones. User space tools are also more flexible
in terms of compatibility since they can be independent of the kernel version used
underneath. Finally, the biggest advantage of user space tools is that they usually do
not require special permission to be executed, so the user can download the software,
compile it and run it without asking for any further permissions which might not be
granted.
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3.3 Related work

A large number of articles have been written with proposals applying different solutions
to solve the aforementioned flaws. These works can be categorised within kernel
patches or modules and user space tools.

On one hand, most of the proposals aim for Linux kernel modifications or modules
to improve memory or thread placement. Carrefour, by Dashti et al. [39], is a modifi-
cation of the kernel to prevent and alleviate memory congestion for NUMA systems,
improving performance up to 3.6× compared to the original kernel and other popular
patches like AutoNUMA [86]. Carrefour utilises hardware counters to profile and mea-
sure performance, and it takes decisions to migrate memory pages, while the OS still
decides the thread placement. In the work by Diener et al. [87] kernel Memory Affinity
Framework (kMAF) is proposed, a kernel patch that improves thread and data affinity
by analysing in runtime the shared and exclusive memory regions, migrating threads
and memory pages. Achieving improvements in runtime of 13 % on average and up
to 36 %. Multi-View Address Space (MVAS) [88], by Di Gennaro et al., is a kernel
module that changes the mechanism that handles the page faults to improve the accu-
racy of per-thread memory working-set and migrate memory pages, increasing system
performance by up to 40 %. Works by Chiang et al. [89–91] implement several mod-
ifications into the kernel to improve thread mapping, locality, and deal with memory
congestion, achieving significant performance boosts in PARSEC 3.0 [38] benchmarks.
Also, Gureya et al. [35] propose Bandwidth-Aware Page Placement (BWAP), an algo-
rithm for memory pages placement based on asymmetric weighted page interleaving,
combining an analytical performance model of the target system and online tuning,
delegating thread mapping into the OS. With this approach, BWAP improves up to
66 % the performance of the system.

On the other hand, user space tools for thread and memory mapping is the least
explored approach. Nevertheless, there are still some interesting works. AsymSched,
by Lepers et al. [37], implements a dynamic thread and memory placement algo-
rithm in Linux to improve performance, particularly, in asymmetric NUMA systems.
These systems exhibit differences among interconnection buses, in terms of band-
width, or some links might be unidirectional. Utilising information retrieved from
hardware counters in runtime, AsymSched finds the best thread and memory loca-
tion every second, focusing on maximising the bandwidth for communicating threads.
This approach achieves significant performance improvements in single and multiple
application workloads. Decongested locality (DeLoc) [92] is a tool that computes the
optimal mapping after a profiling phase where the communication and memory data
are gathered and recorded. Thus, the computed mapping aims to improve the data
locality and reduce memory congestion. Authors of DeLoc claim that performance is
improved by 61 % compared to the AutoNUMA Linux policy.

Table 3.1 shows a summary of the aforementioned works noting the advantages and
disadvantages of each approach. The last column of the table shows the features of
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Thanos—see Chapters 3 and 4—which is the main contribution of this work regarding
scheduling in NUMA systems.

Carrefour kMAF MVAS Chiang BWAP AsymSched DeLoc Thanos

No kernel changes required 8 8 3 8 3 3 3 3
No kernel modules required 3 3 8 3 8 3 3 3
Runs in user/kernel space Kernel Kernel Kernel Kernel Kernel User User User
Uses Hardware Counters 3 8 8 8 3 3 3 3
No previous profiling required 3 3 3 3 8 3 8 3
Handles threads 8 3 8 3 8 3 3 3
Handles memory pages 3 3 3 8 3 3 3 3
Max. speedup (HIB) 3.60× 1.56× 1.66× 1.51× 1.66× 2.90× 1.61× 1.46×
Runtime overhead (LIB) <5 % <4 % ? <2 % <4 % ? ? <8 %

Table 3.1: State of the art comparison. Acronyms HIB and LIB stand for “higher is better” and
“lower is better”, respectively.

3.4 Formulation

To explain in a formal way how the algorithms developed in this thesis work, and
how they use the performance information gathered through hardware counters, some
notation should be introduced in the first place.

A given NUMA system is characterised by Nnodes nodes. The k-th node, νk with
1 ≤ k ≤ Nnodes, consists of Zk cores named ζkl, 1 ≤ l ≤ Zk. At any time, there is
set of p processes running, namely, Π = {π1, . . . , πp}. Each process πi comprehends a
set of hi threads named θij , 1 ≤ j ≤ hi. The whole set of threads running at a given
moment is noted as Θ. Furthermore, the processes of Π store their data across a set
of memory pages, which will be called Ψ = {ψ1, . . . , ψm}.

Every T seconds, system information is gathered and processed to make decisions
about the migrations to be done, so the intervals τ1, τ2, . . . can be defined.

In the decision-making process, several metrics can be considered, and they are
represented by the following functions:

• A (θij , τt) represents the number of accesses to data in DRAM memory done by
the thread θij to data located in any node in the time interval τt.

• A (θij , νn, τt) represents the number of memory accesses done by the thread θij
to data located in the node νn in τt.

• Â (ψi, νn, τt) is the number of accesses performed by all the threads running in
the node νn to data located in the memory page ψi in the interval τt.

• L (θij , νn, τt) is the average latency of the memory operations performed by
thread θij while running in the node νn in τt.
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• L̂ (νn, νm, τt) returns the average latency of the memory operations performed
by threads running in the node νn to data stored in the node νm in τt.

• L̂ (ψi, νn, τt) represents the average latency of the accesses performed by all
threads running in the node νn to data stored in the memory page ψi in τt.

• L̂ (νn, τt) is the average latency of the accesses performed by all threads running
in the node νn to data located in any memory page in the time interval τt.

• L̂ (ψi, τt) is the average latency of the accesses performed by all threads in the
system to data stored in the memory page ψi in τt.

• L̂ (τt) is the average latency of the accesses performed by all threads in the
system to all memory pages in τt.

• O (θij , τt) is the number of operations performed by thread θij in the interval τt.

• O (θij , νn, τt) is the number of operations performed by thread θij while running
in the node νn in τt.

• I (θij , τt) is the operational intensity for thread θij in the time interval τt com-
puted like

I (θij , τt) =
O (θij , τt)

A (θij , τt) · Scache
, (3.1)

where Scache is the number of bytes of a cache line1.

• I (θij , νn, τt) is the operational intensity for thread θij while running in the node
νn. This operational intensity is computed as

I (θij , νn, τt) =
O (θij , νn, τt)

A (θij , νn, τt) · Scache
. (3.2)

The set of thread migrations considered candidates to be performed in τt is defined

asM = {M1,M2, . . . }. Each migration is denoted by the tupleMi =
(
~Θ, ~Z,Q

)
, where

~Θ is the list of threads to be migrated, ~Z their respective destination cores and Q is
a given score of that migration.

Two types of migrations are considered, a single migration or an interchange,
depending on whether one or two threads are involved. In the first case, with ~Θ = [θij ]

and ~Z = [ζkl], θij would be simply moved to core ζkl. In an interchange, where
~Θ = [θij , θi′j′ ] and ~Z = [ζkl, ζk′l′ ], the thread θij would be migrated to ζkl and thread
θi′j′ would be migrated to ζk′l′ .

1Assuming that for every access to data in DRAM, only Scache bytes are copied into cache
memory.
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The migration of threads to NUMA nodes is possible as well. In that case, each

migration is similarly defined like Mi =
(
~Θ, ~N,Q

)
, where ~N is the list of destination

nodes for threads in ~Θ.
Finally, memory migrations are defined by the set M̂ =

{
M̂1, M̂2, . . .

}
. Each

memory migration is represented by the tuple M̂i =
(
~Ψ, νn

)
, where all the pages in

~Ψ would be migrated to node νn.

3.5 Thanos: the migration tool

As a result of this thesis, a novel tool for thread and memory migration has been
developed, named Thread & memory migration Algorithms for NUMA Optimised
Scheduling (Thanos) [93].

Thanos works in user space, migrating the threads and the memory pages of the
target program—or script—aiming to improve its performance. Based on the infor-
mation collected from different sources, primarily the hardware performance counters
and the /proc folder, it takes decisions on-the-fly about which threads and pages
should be migrated and where. Note that Thanos implements different algorithms for
thread and memory migrations, which are described in Section 3.6. More algorithms
can be implemented in the future, using the same common infrastructure.

Three stages are periodically executed in Thanos: measurement, processing, and
decision-making for threads and memory pages.

3.5.1 Performance measurement

Several options can be considered for measuring and quantifying the performance of
the system. These options vary from considering the current use of CPU-time, the
number and frequency of page faults, etc. As mentioned in Section 1.1.1, an adequate
way of quantifying the performance of a NUMA system is to use the metrics of the
3DyRM.

Nowadays processors include hardware performance counters (HC). These are
special-purpose registers that store information on the activities of the processor such
as retired instructions, cache misses, branch predictions, memory traffic and more.
Compared to software profilers, HC provide a wider range of events and metrics with
little overhead and without requiring any change on the target program. The number
of hardware counters and the events that can be used is different for each specific
model and each manufacturer.

In particular, the tool developed during this thesis uses the hardware counters of
Intel processors2, through the use of Intel Precise Event Based Sampling (PEBS) [94]

2The tool could be adapted to be used in other platforms such AMD o ARM processors.
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and Perfmon [95]. Intel PEBS is a feature available in Intel processors that allow
for the recording and collection of periodic samples containing the selected hardware
counters. Perfmon gives an interface to simplify the extraction of the information
from these hardware counters.

To compute the 3DyRM metrics, the following counters are monitored:

• MEM TRANS RETIRED:LATENCY ABOVE THRESHOLD: memory operations for which
latency is above a given threshold. A threshold value is given as an option to
the migration tool, which by default is 1, so every transaction can be sampled.

• OFFCORE REQUESTS:ALL DATA RD: number of read requests off-core, that is, to
data allocated in DRAM memory.

• INST RETIRED: total number of instructions retired.

• FP ARITH:SCALAR DOUBLE:SCALAR SINGLE: scalar single- and double-precision
floating point operations executed.

• FP ARITH:128B PACKED DOUBLE: 128–bit vector double-precision floating point
operations executed.

• FP ARITH:128B PACKED SINGLE: 128–bit vector single-precision floating point
operations executed.

• FP ARITH:256B PACKED DOUBLE: 256–bit vector double-precision floating point
operations executed.

• FP ARITH:256B PACKED SINGLE: 256–bit vector single-precision floating points
operations executed.

For each core in the system and each hardware counter, a buffer is created. PEBS
fills the buffer with the samples, and periodically, the samples are extracted and
processed. The obtained information is used by the algorithms included in this chapter
to compute and search for the optimal mapping.

3.5.2 Processing

Adopting the 3DyRM for optimising the performance allows to define three basic
performance functions to be optimised:

Pl(θij , νn, τt) := L(θij , νn, τt), (3.3)

Po(θij , νn, τt) := O(θij , νn, τt), (3.4)

Pi(θij , νn, τt) := I(θij , νn, τt). (3.5)
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Equations (3.3), (3.4) and (3.5) focus only on improving average latency, the number
of executed operations per second or operational intensity, individually.

Nevertheless, treating the problem as a single-objective optimisation problem [96,
97] is not enough due to the complexity of NUMA systems, so a combination of the
three parameters should be used, resulting in a multi-objective optimisation problem.
To combine these parameters, a scalarisation [98] can be introduced,

P (θij , νn, τt) =
O (θij , νn, τt) · I (θij , νn, τt)

L (θij , νn, τt)
. (3.6)

and the problem is turned back into a single-objective optimisation problem. Note
that this function might be used as a fitness function in the optimisation problem of
improving performance.

According to the temporal locality principle, recently accessed data is likely to be
accessed again, so it is interesting to save the performance of a thread within a given
node. Though, the chances of accessing the same data, supposed to be in the same
node, are reduced rapidly with time. So a decay function should be applied:

f(t) = exp (−tp/d) , (3.7)

where t is the number of seconds since the performance measurement was taken, and
p and d are parameters to tune the shape of the decay function. This is a particular
case of the super-Gaussian function,

f(t) = A exp

(
−
(

(t− t0)2

2σ2
t

)P)
, (3.8)

where A = 1, t0 = 0, p = 2P and d =
(
2σ2

t

)P
.

Figure 3.2 shows how the decay function behaves for several values of p and d. The
selected values are p = 3 and d = 30, since it keeps the original value for a couple of
seconds, but decreases fast past that time.

When processing the information of memory pages for their migration, an ageing
factor is applied as well,

f(tmig) =
1

1 + tmig
, (3.9)

where tmig is the number of seconds until the next execution of a memory migration
strategy. This ageing factor introduces the concept of temporal locality in the memory
migration algorithms, giving more relevance to the most recent information.

Also, with the functions described in Section 3.4, the concept of the preferred node
can be defined for both threads and memory pages, namely νpref and ν̂pref. For a given
thread θij , its preferred node is the node in which θij performs most of its memory
operations. Formally,

νpref = arg max
νr

A (θij , νr, τt) . (3.10)
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Figure 3.2: Examples of decay function, see (3.7), for several values of p and d.

Similarly, the preferred node of the memory page ψi is the node that hosts the threads
that perform most memory accesses to data located in ψi. That is,

ν̂pref = arg max
νr

Â (ψi, νr, τt) . (3.11)

Preferred nodes are a key element of performance in NUMA systems since they define
the theoretical best node for a given thread or memory page.

It should be noted that the preferred node for a thread or a memory page might
change during the execution. Think, for example, about a program solving a problem
using a FEM. Several phases might take place, like reading the input data, building
the system matrices, solving the required systems of equations, post-processing and
writing the output. Each phase of the execution is likely to have a different mem-
ory access pattern, increasing the complexity of the problem of thread and memory
mapping.

Fake Transparent Huge Pages (fTHPs)

Given the nature of Transparent Huge Pages—see Section 3.1.4—it is problematic for
Thanos to work with them since in user space is not possible to know the THP which
a small page belongs to. It is only possible to know whether a page belongs to a THP
or not, given root permissions.

To overcome this limitation, the mechanism of THP is emulated in Thanos using
fake Transparent Huge Pages (fTHPs). Memory regions of children processes are
scanned through the information available in the /proc folder, so memory addresses
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are grouped in fTHPs of a given size. By default, Thanos takes the size of a THP
in the system, which is usually 512 small pages. Let be, for example, a memory
region that comprehends the addresses between 0x100000 and 0x700000, and suppose
that Thanos makes groups of 512 small pages of 4 kB. Thus, the region [0x100000,
0x700000) will be treated as 3 different fTHPs: [0x100000, 0x300000), [0x300000,
0x500000), [0x500000, 0x700000). Note that fake THPs can be smaller if required so,
for example, if a memory region comprehends 200 pages, those pages are grouped in
a fTHP of size 200 instead of size 512.

This mechanism also tries to solve two flaws of Thanos that will be further discussed
in Chapter 4. First, the scarcity of information collected for each memory page is
mitigated. Therefore, if the fTHPs has size 512, the number of samples per page
received is expected to be multiplied by 512. Second, the impact of migrations is
increased, since the migration of a fTHP implies the migration of a large group of
small pages. Nevertheless, it is expected some loss in granularity since the small pages
belonging to a fTHP might have different locality characteristics.

3.5.3 Decision making

Once the information has been collected and processed, the different algorithms im-
plemented in Thanos can decide which threads and memory pages should be migrated
and their respective destinations. These algorithms follow different approaches, which
are described in detail in Section 3.6.

3.6 Migration algorithms

Ideally, the running threads and their data should be as close as possible at any
moment. In a NUMA system, that would imply having the threads and the memory
pages they access in the same NUMA node since that is the shortest possible path. As
mentioned in Chapter 1, the accesses to data in remote nodes have a higher latency
and a lower bandwidth than operations in the local node. But, as usual, reality shows
that theory does not always work and an excess of local memory operations might
cause other phenomena like memory contention and saturation of the interconnection
buses [35]. In that scenario, the workload should be balanced across different NUMA
nodes by migrating memory pages to other nodes, which might result in desirable
remote accesses.

3.6.1 Thread migration algorithms

This section presents the collection of algorithms developed in this thesis for migrating
threads. Each algorithm follows a different approach and has different characteristics.
On one hand, some algorithms prioritise those threads with lower performance, taking
the decisions following lottery-based rules, where the most promising migrations are
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more likely to be selected. On the other hand, other algorithms look for a global
improvement, taking into account the performance of all the threads, and potentially
migrating a large number of threads at the same time.

CRA

The Completely Random Algorithm (CRA) serves as a validation for the rest of the
algorithms.

Every TCRA seconds, CRA is executed selecting a set of m random threads3 named
Θ̂. For each thread, θij ∈ Θ̂, a destination core, ζk′l′ , is selected also in a completely
random way. In the case that ζk′l′ was previously hosting another thread θi′j′ , an
interchange is performed between θij and θi′j′ .

Algorithm 3.1 shows the pseudo-code of CRA.

Algorithm 3.1 CRA migration strategy.

Input: Threads Θ = {θij , i = 1, . . . , p, j = 1, . . . , hi}.
Cores Z = {ζkl, k = 1, . . . , Nnodes, l = 1, . . . , Zk}.
Number of threads to be migrated, m.

Output: Migrations to perform M = {M1,M2, . . . ,Mm}.

1: procedure CRA(Θ, Z,m)
2: Θ̂ = random set {θij ∈ Θ} . Select m random threads.
3: M = ∅ . Migrations to perform is an empty set at the beginning.
4: for each θij ∈ Θ̂ do . Compute candidate migrations.
5: ζkl := core hosting θij
6: ζk′l′ := random core such that ζk′l′ 6= ζkl
7: if ζk′l′ was free during τt then
8: M = M ∪ ([θij ] , [ζk′l′ ] , 0) . Migrate thread θij to ζk′l′ .
9: else

10: θi′j′ = random thread running in ζk′l′ during τt
11: M = M ∪ ([θij , θi′j′ ] , [ζk′l′ , ζkl] , 0) . Move θij to ζk′l′ and θi′j′ to ζkl.

12: return M

LBMA

Lottery-Based Migration Algorithm (LBMA) [99] is a weighted lottery migration al-
gorithm in which migrations are driven by a reduced set of heuristic rules.

Only two rules are considered for giving points:

3The parameter m is an input argument for Thanos.
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• q1 points are granted if destination core ζkl was free during τt. By default,
q1 = 2.

• q2 points are assigned according to the NUMA distance of the destination node
νk to the preferred node of θij such that

q2 = q̂2 ·
d (νk, νk)

d (νk, νpref)
, (3.12)

where d (νi, νj) corresponds to the distance between nodes as returned by the
system call numa_distance(i, j), and q̂2 = 4 by default.

At the end of every time interval, LBMA selects a set of m random threads, such
set is named Θ̂. For each thread θij ∈ Θ̂, which is running in the core ζkl, almost
all possible destinations are considered. The cores in the node νk are not considered
since they are expected to provide similar performance to ζkl.

For the rest of the cores, the score Q is computed using the aforementioned scoring
system. In case that a core, ζkl, was hosting another thread θi′j′ in τt, the score
of migrating θi′j′ is computed too. That way, the set of migrations in τt, M =
{M1,M2, . . . }, is formed.

Once all possible migrations are computed, a weighted lottery selection process is
performed. Each candidate migration is assigned a random number between 0 and Q,
using a uniform distribution, such that migrations with higher scores will likely get a
higher random number. Finally, those m migrations with the highest random value
are performed.

Algorithm 3.2 shows the pseudocode of this migration strategy.

IMAR2

Interchange and Migration Algorithm with performance Record and Rollback (IMAR2)
[99] refines the LBMA algorithm, also using weighted lottery-based algorithm.

The algorithm is executed every T seconds, being the value of T variable within the
interval [Tmin, Tmax] according to the global performance of the system as explained
later.

Using the information provided by the 3DyRM, particularly the performance func-
tion P , the selection of threads in Θ̂ can be improved to select those with the worst
relative performance instead of selecting them randomly.

Let Prel(θij , τt) be the relative performance of a thread, defined such as

Prel(θij , τt) =
P (θij , τt)

P̄ (πi, τt)
, (3.13)

P̄ (πi, τt) =
1

hi

hi∑
j=1

P (θij , τt). (3.14)

73



Ruben Laso Rodŕıguez

Algorithm 3.2 LBMA migration strategy.

Input: Set of threads Θ = {θij , i = 1, . . . , p, j = 1, . . . , hi}.
Set of cores Z = {ζkl, k = 1, . . . , Nnodes, l = 1, . . . , Zk}.
Number of threads to be migrated m.

Output: Set of migrations to be performed M = {M1,M2, . . . ,Mm}.

1: procedure LBMA(Θ, Z,m)
2: Θ̂ := random set {θij ∈ Θ} . Set of m threads randomly selected.

3: M̂ = ∅ . Candidate migrations is an empty set at the beginning.
4: for each θij ∈ Θ̂ do . Compute candidate migrations.
5: ζkl := core hosting θij
6: νpref := preferred node of θij
7: for each ζk′l′ ∈ Z | k′ 6= k do . For each core in a different node, search

for candidate migrations.
8: if ζk′l′ is free then

9: Q = q1 + q̂2 · d(νk′ ,νk′ )
d(νk′ ,νpref)

10: M̂ = M̂ ∪ ([θij ] , [ζk′l′ ] , Q) . Single migration of θij to ζk′l′ .
11: else
12: for each θi′j′ running in ζk do
13: ν′pref := preferred node of θi′j′

14: Q = q̂2 · d(νk′ ,νk′ )
d(νk′ ,νpref)

+ q̂2 · d(νk,νk)
d(νk,ν′

pref)
. Score of migrating θij to

ζk′l′ and θi′j′ to ζkl.

15: M̂ = M̂ ∪ ([θij , θi′j′ ] , [ζkl, ζk′l′ ] , Q). Interchange, θij to ζk′l′ and
θi′j′ to ζkl.

16: M := Weighted Lottery Selection
(
M̂,m

)
. Perform weighted selection

process of candidates M̂ .
17: return M

This function allows fair comparisons between threads of different processes. Imagine
two processes πa and πb, being πa much more computationally intensive. Comparing
by raw performance would always highlight processes of πb for having low values.

Thus, Θ̂ will be formed by the n threads with the lowest relative performance—see
equation (3.13)—and that their relative performance is under a given threshold δr,

0 < δr < 1. So, ∀θ̂ij ∈ Θ̂, Prel(θ̂ij , ζkl, τt) < δr.

A minimum threshold is necessary to prevent unnecessary migrations. Let us take a
scenario in which the worst thread has a relative performance of 0.98. In that situation,
it seems not appropriate to say that there is a thread with bad performance as all
threads are performing almost equally so, probably, its mapping is already optimal or
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close to it4. On the other hand, if the worst thread has a relative performance of 0.50
or less, it is likely that its mapping is not optimal and that a migration is convenient.

Candidate migrations are considered for each θij ∈ Θ̂ in a similar way as done in
LBMA, and a score, S(θij , ζkl, τt), is computed considering four heuristic rules:

• q1 points are granted if a destination core ζk′l′ was not hosting threads during
τt. By default, q1 = 2.

• q2 points are assigned to the cores in the preferred node. By default, q2 = 4.

• q3 points are given according to the previous performance of θij in the consid-
ered destination core ζk′l′ . Performance during τt is compared with the last
performance measure obtained by θij when running in a core in node k′. If the
previous performance was better, q3 = 4. If it was worse, q3 = 1. Otherwise,
q3 = 2.

• q4 points are given if a swap is considered between θij and θi′j′ , and the relative
performance of θi′j′ is below δr, Prel(θi′j′ , ζk′l′ , τt) < δr. By default, q4 = 3.

Once there are candidate migrations for every θ̂ij ∈ Θ̂, a weighted lottery process is
used to select those m migrations to be performed. Algorithm 3.3 shows the pseu-
docode of the migration selection process of IMAR2.

Finally, in τt+1, global performance is computed using equation (3.23) and it is
compared to the performance in the previous interval. Three situations are considered:

• If Psys(µt+1, τt+1) > Psys(µt, τt), performance has improved and migrations are
considered successful, so a new time interval is selected as T = max (T/2, Tmin),
and migration process is accelerated—migrations will be performed more often.

• If Psys(µt+1, τt+1) < δgPsys(µt, τt), δg ∈ (0, 1), migrations implied a substantial
loss of performance, so a rollback is performed—migrations are undone—and
migration process is decelerated making T = min (2T, Tmax).

• Otherwise, migrations are accepted and T keeps its previous value.

CIMAR

Core-aware Interchange and Migration Algorithm with performance Record (CIMAR)
[100] is an evolution of IMAR2, with the objective of improving its stability and
consistency. There are three main differences between both algorithms: the frequency
of migrations, the selection of migrations to be performed, and the removal of the
rollback.

4It might happen—in the extreme case—that the mapping is the worst possible, but the chances
of that happening without the intervention of the user are negligible.
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Algorithm 3.3 IMAR2 migration strategy.

Input: Set of processes Π = {π1, π2, . . . , π}.
Set of threads Θ = {θij , i = 1, . . . , p, j = 1, . . . , hi}.
Set of cores Z = {ζkl, k = 1, . . . , N, m = 1, . . . , Ck}.
Relative performance threshold δr.
Number of threads to be migrated m.

Output: Set of migrations to be performed M = {M1,M2, . . . ,Mm}.

1: procedure IMAR2(Π,Θ, Z, δr,m)
2: Adjust T according to the global performance of the system.
3: if conditions for a rollback are met then
4: Perform rollback of migrations performed in τt−1.
5: return ∅.

6: Θ̂ = {θij ∈ Θ | Prel(θij , ζkl, τt) < δr} . Select n threads with worst relative
performance and Prel < δr.

7: M̂ = ∅ . Candidate migrations is an empty set at the beginning.
8: for each θij ∈ Θ̂ do . Compute candidate migrations.
9: ζkl := core hosting θij

10: for each ζk′l′ ∈ Z | k′ 6= k do . Search for candidate migrations in cores
of different nodes.

11: if ζk′l′ is free then

12: Q = q1 + S
(
θ̂ij , ζk′l′ , τt

)
. Compute score for migrating θij to ζk′l′ .

13: M̂ = M̂ ∪ ([θij ] , [ζk′l′ ] , Q) . Single migration of θij to ζk′l′ .
14: else
15: for each θi′j′ running in ζk′l′ do
16: Q = S (θij , ζk′l′ , τt) + S (θi′j′ , ζkl, τt)

17: M̂ = M̂ ∪ ([θij , θi′j′ ] , [ζk′l′ , ζkl] , Q) . Swap, θij would moved to
ζk′l′ , and θi′j′ to ζkl.

18: M := Weighted Lottery Selection
(
M̂,m

)
19: return M
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As in IMAR2, those threads with the lowest relative performance are selected
for migration. In the computation of the possible migrations for every θij ∈ Θ̂, the
following condition is added in CIMAR: a migration of θij , running in core ζkl, to the
core ζk′l′ can be considered if, and only if, it meets that

S(θij , ζk′l′ , τt) > S(θij , ζkl, τt). (3.15)

When considering an interchange between θij and θi′j′ , running in cores ζkl and ζk′l′ ,
respectively, the condition is:

S(θij , ζk′l′ , τt) + S(θi′j′ , ζkl, τt) > S(θij , ζkl, τt) + S(θi′j′ , ζk′l′ , τt). (3.16)

That is, only migrations with better scores than keeping threads still are considered.
Furthermore, the lottery-based selection process is eliminated, so the m migrations
with the highest scores are selected.

The aforementioned change has a deep impact on the behaviour of the algorithm.
The exploration of new mappings is reduced since “non-promising” migrations are not
even considered. For example, IMAR2 might perform a migration with a low score that
happens to be beneficial, but CIMAR would not. Thus, CIMAR is more conservative
than IMAR2. This is a matter of a trade-off between exploring new migrations and
avoiding those which seem counterproductive.

Another important change of CIMAR over IMAR2 is the elimination of the roll-
back. This phase of IMAR2 was introduced in the first place for undoing migrations
which resulted in the worst performance. Since CIMAR tries to prevent migrations
with expected low performance, the need for rollback is greatly reduced. Furthermore,
when undoing migrations, the overhead of moving threads is paid twice: first for the
original migration, and second for undoing it. This way, this potential penalty is
avoided.

Finally, due to the more conservative nature of CIMAR over IMAR2, and for sake
of simplicity, the frequency of the migration process is constant so the algorithm is
executed every TCIMAR seconds.

The pseudocode of CIMAR is shown in Algorithm 3.4.

NIMAR

Node-aware Interchange and Migration Algorithm with performance Record (NIMAR)
[100] is an algorithm built over CIMAR to improve and address its flaws. CIMAR
might show problems regarding work balance, where two computationally intensive
threads can share and stress a CPU even if there are other CPUs less loaded. To solve
this, NIMAR does migrations to NUMA nodes instead of cores, entrusting the work
balance within nodes to the operating system. Therefore, it is the OS that decides the
particular core in which a thread will run. Work balance in OS is a well-studied field,
so its reliability for this task is high since it has better information to do it correctly
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Algorithm 3.4 CIMAR migration strategy.

Input: Processes Π = {π1, π2, . . . , πp}.
Threads Θ = {Θij , i = 1, . . . , p, j = 1, . . . , hi}.
Cores Z = {ζkl, k = 1, . . . , Nnodes, l = 1, . . . , Ck}.
Relative performance threshold δperf.
Maximum number of migrations m.

Output: Migrations to perform M = {M1,M2, . . . }.

1: procedure CIMAR(Π,Θ, Z, δperf,m)

2: Θ̂ = {θij ∈ Θ | Prel (θij , νn, τt) < δperf} . Select m threads with worst rel.
performance and such that Prel < δperf.

3: M̂ = ∅ . Candidate migrations is an empty set at the beginning.
4: for each θij ∈ Θ̂ do . Compute candidate migrations.
5: ζkl := core hosting θij
6: Qref = S (θij , ζkl, τt)
7: for each ζk′l′ ∈ Z | k′ 6= k do . For each core in a different node, search

for candidate migrations.
8: if ζk′l′ is free then
9: Q = S (θij , ζk′l′ , τt) . Compute score for migration of θij to ζk′l′ .

10: if Q > Qref then . If it is better to migrate than keeping θij
still. . .

11: M̂ = M̂ ∪ {[θij ] , [ζk′l′ ] , Q} . Add a single migration of θij to
ζk′l′ to the set of candidates.

12: else
13: for each θi′j′ running in ζk′l′ do
14: Q = S (θij , ζk′l′) + S (θi′j′ , ζkl, τt) . Compute score for

migrations of θij and θi′j′ .
15: if Q > Qref + S (θi′j′ , ζk′l′ , τt) then . If it is better to migrate

than keeping θij and θi′j′ still. . .

16: M̂ = M̂ ∪ {[θij , θi′j′ ] , [ζk′l′ , ζkl] , Q} . Swap, θij would be
moved to ζk′l′ , and θi′j′ to ζkl.

17: M := m migrations in M̂ with highest Q
18: return M
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by working on kernel space. Thus, this algorithm presents a hybrid approach between
user-space and kernel-space thread scheduling.

NIMAR algorithm is executed every TNIMAR seconds and selects the set of threads
to be migrated, Θ̂, in the same way as CIMAR and IMAR2, selecting those threads
with worse relative performance.

For each thread θij ∈ Θ̂, running in node νn, the rest of the nodes are considered
for the destination, and a score is given to that migration. If the destination node νn′

is hosting Zn′ or more threads, an interchange is considered, and for every thread θi′j′

running in νn′ , the score of the migration of θi′j′ to νn is computed. Points are given
in a similar way to CIMAR:

• q1 points are granted if destination node νn was hosting less than Zn threads
during τt, it has free cores. By default, we set q1 = 2.

• q2 points are assigned according to the NUMA distance of the destination node
νn′ to the preferred node of θij in the same way as shown in equation (3.17).

• q3 points are given according to the previous performance of θij in the con-
sidered destination node νn′ . Performance during τt is compared with the last
performance measure obtained by θij when running in a core in node νn′ . If the
previous performance was better, q3 is set to 4, whereas if it was worse, q3 = 1.
Otherwise, q3 = 2.

• q4 points are given if a swap is considered between θij and a thread θi′j′ currently
running in the node νn′ , and Prel (θi′j′ , νn′ , τt) < δperf. By default, we set q4 = 3.

Also, migrations with a lower score than the one obtained by keeping the thread
in its current location are discarded. Finally, the m migrations with the best score
are performed.

Algorithm 3.5 shows the pseudocode of NIMAR.

SMA

Let µt : Θ→ {ν1, . . . , νNnodes
} be the function that returns the node in which a thread

is running in time interval τt and let S(θij , νn, τt) be a function that given a thread,
θij , and a NUMA node, νn, returns a score such that the higher the score, the better
performance is expected from θij while running in νn.

The value of S(θij , νn, τt) is assigned given the following heuristics:

• q1 points are granted if destination node νn was hosting less than Zn threads
during τt, so it has free cores. By default, q1 = 2.
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Algorithm 3.5 NIMAR migration strategy.

Input: Processes Π = {π1, π2, . . . , πp}.
Threads Θ = {θij , i = 1, . . . , p, j = 1, . . . , hi}.
Nodes N = {νn, n = 1, . . . , Nnodes}.
Relative performance threshold δperf.
Number of threads to be migrated m.

Output: Migrations to perform M = {M1,M2, . . . ,Mm}.

1: procedure NIMAR(Π,Θ, N, δperf,m)

2: Θ̂ =
{
θij ∈ Θ | P (θij , νn, τt)/P̄ (πi, τt) < δperf

}
. Select m threads with worst

relative performance and such that P̂ < δperf.

3: M̂ = ∅ . Candidate migrations is an empty set at the beginning.
4: for each θij ∈ Θ̂ do . Compute candidate migrations.
5: νn′ := node hosting θij
6: Qref = S (θij , νn, τt)
7: for each νn′ ∈ N | n′ 6= n do . For each different node, search for

candidate migrations.
8: if νn′ has free cores then
9: Q = S (θij , νn′ , τt) . Compute score for migration of θij to νn′ .

10: if Q > Qref then . If it is better to migrate than keeping θij
still. . .

11: M̂ = M̂ ∪ ([θij ] , [νn′ ] , Q) . Add a single migration of θij to νn′

to the set of candidates.
12: else
13: for each θi′j′ running in νn′ do
14: Q = S (θij , νn′ , τt) + S (θi′j′ , νn, τt) . Compute score for

migrations of θij and θi′j′ .
15: if Q > Qref + S (θi′j′ , νn′ , τt) then . If it is better to migrate

than keeping θij and θi′j′ still. . .

16: M̂ = M̂ ∪ ([θij , θi′j′ ] , [νn′ , νn] , Q) . Swap, θij would be
moved to νn′ , and θi′j′ to νn.

17: M := m migrations in M̂ with highest Q
18: return M
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• q2 points are assigned according to the NUMA distance of the destination node
νn to the preferred node of θij such that

q2 = q̂2 ·
d (νn, νn)

d (νn, νpref)
, (3.17)

where d (νi, νj) corresponds to the distance between nodes as returned by the
system call numa_distance(i, j), and q̂2 = 4 by default.

• q3 points are given according to the previous performance of θij in the considered
destination node νn. Performance during τt is compared with the last perfor-
mance measurement obtained by θij when running in node νn. If the previous
performance was better, q3 = 4, whereas if it was worse, q3 = 1. Otherwise,
q3 = 2.

Scoring is accumulative, so a thread that meets several requirements would ac-
cumulate the points. For example, the score of a thread θij to be migrated to νn,
meeting the requirements for q1 and q3, would be S(θij , νn, τt) = q1 + q3.

Thus, the score of a system can be computed as the sum of the scores of all threads:

Ssys(µt, τt) =
∑
θij∈Θ

S(θij , µt(θij), τt). (3.18)

Using this scoring system, Score Maximisation Algorithm (SMA) tries to maximise
the total score in the server, which can be stated as the following optimisation problem:

Problem 3.1. Find µ̂t : Θ→ {ν1, . . . , νNnodes
} such that

µ̂t = arg max
µ̂t

Ssys(µ̂t, τt) = arg max
µ̂t

∑
θij∈Θ

S(θij , µ̂t(θij), τt). (3.19)

Attending to the principle of temporal locality, it is possible to assume that threads
will have similar memory patterns in the time periods τt and τt+1. Therefore, given a
mapping µ̂t solution of Problem 3.1 for τt, it can be stated that exists µ̂t+1, solution of
Problem 3.1 for τt+1, such that µ̂t+1 ∈ B(µ̂t, δ), being B(µ̂t, δ) the ball in our solution
space centred on µ̂t with a certain radius δ > 0.

That is, an optimal mapping in τt should be optimal or near-optimal in τt+1 as
well. Therefore, SMA computes the solution of Problem 3.1 for τt, and applies that
solution to the mapping to be used in τt+1.

To solve the optimisation problem, a simulated annealing (SA) [101] algorithm is
used. Starting with the mapping µt used in τt, the algorithm iteratively searches for
solutions that optimises the fitness function (3.18), following these steps:

Step 0: Algorithm starts with i = 0 and the initial solution µi = µ0
t = µt. Also, the

parameters for initial temperature and cooling are defined such that, T0 = 0.3
and α = 0.97, respectively.
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Step 1: On the i-th step, a candidate solution µ̂i in the neighbourhood of µi is gener-
ated. The new mapping is generated by selecting a random thread θij mapped
to νn and random destination νn′ . If νn′ has free cores, θij is mapped to νn′ .
If not, another thread θi′j′ mapped to νn′ is selected, so θij is mapped to νn′

and θi′j′ is mapped to νn.

Step 2: The fitness of the candidate solution is computed:

Ssys(µ̂
i, τt) =

∑
θij∈Θ

S(θij , µ̂
i(θij), τt). (3.20)

Step 3: Generate a random number Ui ∈ [0, 1] following a uniform distribution. If

Ui ≤ exp

[
−
[
Ssys(µ

i, τt)− Ssys(µ̂
i, τt)

]+
Ti

]
, (3.21)

the candidate solution is accepted and µi+1 = µ̂i. Otherwise, µi+1 = µi.
That is, the candidate solution is accepted if its fitness is better. If not, it
is accepted with a given probability that decreases with temperature Ti and
how much worse is the candidate.

Step 4: Let i = i+1 and Ti+1 = αTi. If the maximum number of iterations is reached,
finish the algorithm. Otherwise, go to Step 1.

The algorithm finishes once a maximum number of iterations is reached or when the
algorithm was not able to improve the best solution after a given number of iterations.
Since it is assumed that the mapping for τt is already close to optimal, it is possible
to define the maximum number of operations to be low. That way, a low execution
time is also ensured.

Summarising, SMA searches for the mapping µ̂t that solves Problem 3.1, and
applies it to the time interval τt+1 under the assumption that an optimal mapping for
τt will be near the optimal for τt+1.

Once the optimal mapping is computed, the list of migrations that should be
performed is built. Let µ be the mapping used in τt and µ̂t the optimal mapping that
should have been used. For each thread θij , it is compared whether its destination
has changed or not. If µt(θij) = µ̂t(θij), the destination of θij has not changed and no
further action is required. Otherwise, µt(θij) 6= µ̂t(θij), a migration Mi = (θij , µ̂t(θij))
is added to the set of migrations to be performed.

A final condition is imposed to perform the migrations to prevent undesirable over-
head. The expected performance improvement—as a percentage—should be greater
than the number of threads to be migrated. Formally,

100×
(
Psys (µ̂t, τt)

Psys (µt, τt)
− 1

)
> card(M). (3.22)
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For example, a mapping that required migrating 10 threads to improve performance
by 1 % would not be performed. On the other hand, a mapping that is expected to
improve the performance by 10 % by migrating only 2 threads would be applied.

Algorithm 3.6 shows the pseudocode of Score Maximisation Algorithm.

Algorithm 3.6 SMA migration strategy.

Input: Threads Θ = {θij , i = 1, . . . , p, j = 1, . . . , hi}.
Mapping used in τt, µt.

Output: Migrations to perform M = {M1,M2, . . . }.

1: procedure SMA(Θ, µt)
2: M = ∅ . Migrations to perform starts empty.
3: µ̂t := arg maxµ Ssys (µ, τt) . Find the mapping solution of Problem 3.1.
4: for each θij ∈ Θ do
5: if µt(θij) 6= µ̂t(θij) then . If the mapping of θij has changed. . .
6: M = M ∪ ([θij ] , [µ̂t(θij)]) . Add migration of θij to µ̂t(θij).

7: if 100× (Ssys(µ̂t, τt)/Ssys(µt, τt)− 1) > card(M) then
8: return M . Migrations are expected to be worth.
9: else

10: return ∅ . Considered better to keep thing still.

DyRMMA

Let µt : Θ→ {ν1, . . . , νNnodes
} be the function that returns the node in which a thread

is running in time interval τt and the function

Psys (µt, τt) =
∑
θij∈Θ

P (θij , µt(θij), τt) (3.23)

that returns the performance, as defined in equation (3.6), of the system. 3DyRM
Migration Algorithm (DyRMMA) tries to maximise (3.23), thus, tries to solve the
following optimisation problem:

Problem 3.2. Find the thread mapping µ̂ : Θ→ {ν1, . . . , νNnodes
} such that

µ̂t = arg max
µ̂t

Psys (µ̂t, τt) = arg max
µ̂t

∑
θij∈Θ

P (θij , µ̂t (θij) , τt) . (3.24)

Under the assumption that an optimal solution of Problem 3.2 for time interval
τt would be optimal or near-optimal for τt+1, this algorithm computes the optimal
mapping for τt and applies it to τt+1.

As was done for SMA, a simulated annealing algorithm is used to solve Problem 3.2:
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Step 0: At first, i = 0, and the initial solution µi = µ0
t = µt is defined. Also, the

parameters for initial temperature and cooling are defined such that, T0 = 0.3
and α = 0.97, respectively.

Step 1: On the i-th step, a candidate solution µ̂i from µi is generated in the same way
as in the SMA algorithm.

Step 2: The fitness of the candidate solution is computed. To do that, an estimation
of what would have happened in τt with mapping µ̂i should be calculated
using the following equations:

l̂(θij , µ̂
i, τt) =

1

A(θij , τt)

Nnodes∑
n=1

A(θij , νn, τt) · L(µ̂i(θij), νn, τt), (3.25)

ô(θij , µ̂
i, τt) = O(θij , τt) ·

L(θij , τt)

l̂(θij , µ̂i, τt)
, (3.26)

Psys(µ̂
i, τt) =

∑
θij∈Θ

ô(θij , µ̂
i, τt) · I(θij , τt)

l̂(θij , µ̂i, τt)
. (3.27)

First, the estimated average latency, l̂, of every thread mapped with µ̂i is
computed. Second, the estimated number of operations, ô, is calculated as-
suming that it will improve proportionally to the improvement in latency.
Finally, the estimated system performance is computed using the estimated
number of operations, the estimated average latency and the intensity, which
is assumed to remain constant.

Step 3: Generate a random number Ui ∈ [0, 1] following a uniform distribution. If

Ui ≤ exp

[
−
[
Psys(µ

i, τt)− Psys(µ̂
i, τt)

]+
Ti

]
, (3.28)

the candidate solution is accepted and µi+1 = µ̂i. Otherwise, µi+1 = µi.
That is, the candidate solution is accepted if its fitness is better. If not, it
is accepted with a given probability that depends on the temperature Ti and
how much worse is the candidate.

Step 4: Let i = i+1 and Ti+1 = αTi. If the maximum number of iterations is reached,
finish the algorithm. Otherwise, go to Step 1.

In a similar way than SMA, the following condition is imposed to apply the map-
ping µ̂t:

100×
(
Ssys(µ̂t, τt)

Ssys(µt, τt)
− 1

)
> card(M). (3.29)
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That is, the migrations will only be performed if the expected performance improve-
ment is bigger than the number of threads to be migrated.

Algorithm 3.7 shows the pseudocode of this strategy.

Algorithm 3.7 DyRMMA migration strategy.

Input: Threads Θ = {θij , i = 1, . . . , p, j = 1, . . . , hi}.
Mapping used in τt, µt.

Output: Migrations to perform M = {M1,M2, . . . }.

1: procedure DyRMMA(Θ, µt)
2: M = ∅ . Migrations to perform starts empty.
3: µ̂t := arg maxµ Psys (µ, τt) . Find the mapping solution of Problem 3.2.
4: for each θij ∈ Θ do
5: if µt(θij) 6= µ̂t(θij) then . If the mapping of θij has changed. . .
6: M = M ∪ [θij , µ̂t(θij)] . Add migration of θij to µ̂t(θij).

7: if 100× (Psys (µ̂t, τt)/Psys (µt, τt)− 1) > card(M) then
8: return M . Migrations are expected to be worth.
9: else

10: return ∅ . Considered better to keep thing still.

3.6.2 Memory migration algorithms

The complexity of migrating memory pages is higher than migrating threads. On one
hand, less information is available due to two reasons: only one of the used hardware
counters gives information about the memory pages themselves (MEM TRANS RETIRED)
and there are—usually—a lot of memory pages present in the system, so there are fewer
samples per memory page. On the other hand, memory pages are more expensive to
migrate than threads, so each migration should be precise and the penalty for wrong
migrations is higher. Nevertheless, some relevant information can be extracted and
several algorithms have been implemented.

RMMA

Random Memory Migration Algorithm (RMMA) serves for validation purposes for the
rest of algorithms, similarly to CRA, but working with memory pages. Periodically,
RMMA selects a set of m memory pages, named Ψ̂. For each page ψ ∈ Ψ̂, a random
destination node is selected, νn, and ψi is migrated to νn.

Algorithm 3.8 shows the pseudo-code of RMMA.
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Algorithm 3.8 RMMA migration strategy.

Input: Memory pages Ψ = {ψ1, ψ2, . . . , ψp}.
NUMA nodes N = {νk, k = 1, . . . , Nnodes}.
Number of pages to be migrated, m.

Output: Migrations to perform M̂ =
{
M̂1, M̂2, . . . , M̂m

}
.

1: procedure RMMA(Ψ, N,m)
2: Ψ̂ = random set {ψi ∈ Ψ} . Select m random pages.
3: M = ∅
4: for each ψij ∈ Ψ̂ do . Compute candidate migrations.
5: νk := node hosting ψi
6: νk′ := random node such that νk′ 6= νk
7: M̂ = M̂ ∪ ([ψi] , [νk]) . Migrate page ψi to νk′ .

8: return M

TMMA

Threshold Memory Migration Algorithm (TMMA) counts the number of accesses and
their ratio to migrate memory pages to their preferred node. For a given memory page
ψi ∈ Ψ, let rpref be the ratio of operations done by threads located in the preferred
node of ψi, ν̂pref, such that

rpref =
Â(ψi, ν̂pref, τt)∑N
n=1 Â(ψi, νn, τt)

. (3.30)

Also, let δTMMA be

δTMMA = min

{
2

3
,

2

Nnodes

}
. (3.31)

For each memory page ψi ∈ Ψ, the algorithm checks whether rpref is greater than
δTMMA, or not. That is, the algorithm checks if the preferred node produces a number
of operations much greater than other nodes. If the page is already in its preferred
node, there is nothing else to do with it.

The threshold δTMMA is necessary to prevent migrations that are probably not
worth it. Imagine a page ψi whose vector of ratios is [0.26, 0.25, 0.25, 0.24]. Migrating
it to its preferred node is unlikely to produce significant performance improvements,
even less considering the expensive overhead of migrating memory pages. Furthermore,
the computation of the preferred node of ψi might have been altered by the inherent
noise of sampling.

Similarly to how cache prefetching works, TMMA tries to anticipate and move
contiguous memory pages to exploit spatial locality. For each page ψi to be migrated
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to a given node νdest, up to Spreload next consecutive pages might be migrated to
ν̂pref. By default, Spreload = 8. Until TMMA finds a page ψi+j with a different
preferred node, or j reaches Spreload, pages ψi, . . . , ψi+j will be migrated to the node
ν̂pref including those pages for which no information is available. For example, if the
page ψi+3 has another preferred node, only pages ψi, ψi+1 and ψi+2 will be migrated
to ν̂pref.

Algorithm 3.9 shows the pseudocode of TMMA.

Algorithm 3.9 TMMA migration strategy.

Input: Memory pages Ψ = {ψ1, ψ2, . . . , ψp}.
NUMA nodes N = {νk, k = 1, . . . , Nnodes}.
Number of pages to be migrated, m.

Output: Migrations to perform M̂ =
{
M̂1, M̂2, . . . , M̂m

}
.

1: procedure TMMA(Ψ, N,m)
2: M̂ = ∅
3: for each ψi ∈ Ψ | ψi /∈ M̂ do
4: ν̂pref := arg maxνr Â (ψi, νr, τt)
5: νk := node hosting ψi
6: rpref := Â(ψi, ν̂pref, τt)/

∑N
n=1 Â(ψi, νn, τt)

7: if νk 6= ν̂pref and rpref > δTMMA then

8: ~Ψ := {ψi}
9: for j = 1, . . . , Spreload do . Compute preload.

10: ν′pref := arg maxνr Â (ψi+j , νr, τt)
11: if ν′pref = ν̂pref or ν′pref = ∅ then . If preload is feasible. . .

12: ~Ψ := ~Ψ ∪ ψi+j . Add ψj to the set of pages to migrate.
13: else . No more pages available for preload.

14: M̂ = M̂ ∪
[
~Ψ, ν̂pref

]
. Pages in ~Ψ will be migrated to ν̂pref.

15: End preload and continue on line 3.

16: return M̂

LMMA

Latency Memory Migration Algorithm (LMMA) [100] searches for those memory pages
that present latency issues and move them to their preferred node, or the least-busy
node.

First, the algorithm decides which nodes are busy. It is said that the NUMA node
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νn is busy whenever
L̂ (νn, τt)

L̂ (τt)
> δbusy. (3.32)

By default, δbusy = 1.3. Also, the least busy node, νalt, is computed:

νalt = arg min
νn

L̂ (νn, τt)

L̂ (τt)
. (3.33)

For each page ψi ∈ Ψ, its average latency is compared to the global average latency.
If

L̂ (ψi, τt)

L̂ (τt)
> δlat, (3.34)

the page will be considered for migration since its latency is considerably higher than
the average. By default, δlat = 1.3. Given the case, two possible destinations are
considered for ψi, its preferred node or the least saturated node. If the preferred
node, ν̂pref, is not busy, then νdest = ν̂pref, else, νdest = νalt. The least saturated node
will only be its destination when the preferred node is noted as busy.

LMMA also performs preload, in the same way as TMMA (see Section 3.6.2).
Algorithm 3.10 shows the pseudocode of LMMA.
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Algorithm 3.10 LMMA migration strategy.

Input: Memory pages Ψ = {ψ1, ψ2, . . . , ψp}.
NUMA nodes N = {νk, k = 1, . . . , Nnodes}.
Number of pages to be migrated, m.

Output: Migrations to perform M̂ =
{
M̂1, M̂2, . . .

}
.

1: procedure LMMA(Ψ, N,m)

2: Nbusy :=
{
νn ∈ N | L̂ (νn, τt) /L̂ (τt) > δbusy

}
. Evaluate busy nodes.

3: νalt := arg minνr L̂ (νr, τt) /L̂ (τt) . Pick the least busy node.

4: M̂ = ∅
5: for each ψi ∈ Ψ | ψi /∈ M̂ do . Compute migrations.
6: if L̂ (ψi, τt) /L̂ (τt) > δlat then . Move ψi if the latency is too high.
7: ν̂pref := arg maxνr Â (ψi, νr, τt)
8: if ν̂pref ∈ Nbusy then . Check if the preferred node is busy.
9: νdest := νalt

10: else
11: νdest := ν̂pref

12: ~Ψ := [ψi]
13: for j = 1, . . . , Spreload do . Compute preload.

14: ν̂′pref := arg maxνr Â (ψi+j , νr, τt)
15: if ν̂′pref = νdest or ν̂′pref = ∅ then . If preload is feasible. . .

16: ~Ψ := ~Ψ + ψi+j . Add ψj to the set of pages to migrate.
17: else . Else, no more pages available for preload.

18: M̂ = M̂ ∪
[
~Ψ, νdest

]
. Pages in ~Ψ will be migrated to νdest.

19: End preload and continue on line 5.

20: return M̂
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Chapter 4

Results on NUMA scheduling

I am inevitable.
— Thanos, Avengers: Endgame.

This chapter gathers an explanation of the experimental methodology, the environ-
ment, and the results obtained with the Linux scheduler and the proposals explained
in Chapter 3. These experiments comprehend three different scenarios that repre-
sent the various ways of using NUMA systems. The results of Thanos are compared
with CFS, which is used as a baseline, but also with other typical ways of mapping
threads and memory pages. Furthermore, energy consumption is also discussed given
its increasing importance in data centres.

4.1 Experimental environment

The experiments described in this chapter have been carried out in several NUMA
servers with different topologies—see Figure 4.1—and features regarding memory la-
tencies and bandwidth. Data corresponding latency and bandwidth matrices shown
in Tables 4.1 and 4.2 were extracted with Intel Memory Latency Checker [103]:

• Server ctnuma1: a Linux system, kernel version 5.11.0 composed of four nodes
with Intel Xeon E5-4620 v4 processors with 10 cores each, Broadwell-EP ar-
chitecture, 25 MB L3 cache, 2.10 GHz–2.60 GHz, and 256 GB of DRAM. Server
topology is shown in Figure 4.1(a). In this server, remote accesses have a latency
more than 3× higher compared to local operations—see Table 4.1(a)—while its
bandwidth is reduced by 79 %—see Table 4.1(b).

Note that memory operations requiring 2-hop communications—for example,
between nodes 0 and 2—have a slightly higher latency than the other remote
accesses.
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(b) Server ctnuma2.

Figure 4.1: Topology of the servers used in experimental validation.

Node 0 1 2 3

0 87.7 254.2 271.2 255.4
1 254.9 86.0 253.2 271.5
2 271.4 252.7 86.0 254.7
3 255.1 271.9 254.3 85.7

(a) Latency matrix (ns).

Node 0 1 2 3

0 61,255 12,709 12,002 12,368
1 12,153 61,176 12,210 12,007
2 12,028 12,395 61,288 12,689
3 12,371 11,992 12,704 61,261

(b) Bandwidth matrix (MB/s).

Table 4.1: Latency and bandwidth matrices for Server ctnuma1.

• Server ctnuma2: a Linux system, kernel version 4.18.0 composed of eight nodes
with Intel Xeon Gold 6248 [104] with 10 cores each, Cascade Lake architecture,
27.50 MB L3 cache, 2.50 GHz–3.90 GHz, and 1 TB of DRAM. Server topology is
shown in Figure 4.1(b). Note that there are four physical NUMA nodes, but eight
nodes appear as a consequence of hyperthreading being enabled. All memory
channels are in use and all memories are interconnected with each other, so all
remote accesses have similar latencies. As reported by Tables 4.2(a) and 4.2(b),
remote accesses have about 1.85× higher latency, while the bandwidth is de-
creased by 61 % approximately.

4.2 Benchmarks description

For the experimental validation of Thanos, several experiments have been performed
using the NASA Advanced Supercomputing Parallel Benchmarks (NPB) [6] version
3.4.1, parallelised with OpenMP. With these benchmarks, it is expected to cover both

92



Chapter 4. Results on NUMA scheduling

Node 0 1 2 3 4 5 6 7

0 83.8 134.3 147.6 134.0 89.7 144.7 138.5 142.4
1 134.7 78.2 133.9 144.7 143.6 85.0 142.4 137.6
2 145.3 132.2 78.3 134.9 137.1 140.7 84.4 143.4
3 132.4 144.6 134.0 76.7 141.4 136.3 142.5 84.1
4 84.2 136.7 141.2 135.7 77.8 146.6 133.9 144.2
5 136.2 85.0 134.9 139.7 145.3 77.2 144.1 133.6
6 140.7 133.7 85.0 136.2 133.7 143.4 77.0 145.8
7 134.8 139.6 136.1 87.6 145.1 132.8 144.7 83.4

(a) Latency matrix (ns).

Node 0 1 2 3 4 5 6 7

0 44,368 17,299 17,289 17,306 44,571 17,282 17,297 17,269
1 17,294 44,487 17,299 17,294 17,268 44,554 17,292 17,299
2 17,297 17,302 44,467 17,302 17,301 17,256 44,566 17,288
3 17,306 17,291 17,288 44,470 17,284 17,303 17,267 44,517
4 44,489 17,295 17,290 17,281 44,443 17,282 17,301 17,258
5 17,294 44,585 17,296 17,292 17,259 44,472 17,283 17,300
6 17,297 17,296 44,546 17,297 17,306 17,257 44,474 17,281
7 17,301 17,292 17,281 44,579 17,282 17,300 17,266 44,420

(b) Bandwidth matrix (MB/s).

Table 4.2: Latency and bandwidth matrices for Server ctnuma2.

CPU-limited and memory-limited programs. This is the list of benchmarks included
in the suite:

• Block Tri-diagonal (BT): solver based on a computational fluid dynamics (CFD)
pseudo-application on 3 dimensions. The application uses an approximate fac-
torisation that decouples the x, y and z dimensions, resulting in block tri-
diagonal systems of 5× 5 blocks [6].

• Conjugate Gradient (CG): solver based on a CFD pseudo-application. The
benchmark computes an approximation of the smallest eigenvalue of a large,
sparse and unstructured matrix [6].

• Arithmetic Data Cube (DC): computations focused on data movement across
cores [105]. This benchmark aims to stress all levels of memory, but also produces
a large number of Input/Output (I/O) operations.

• Embarrasingly Parallel (EP): kernel designed to provide an estimate of the upper
achievable limits of floating-point performance by generating pairs of Gaussian
random deviates [6].

93



Ruben Laso Rodŕıguez

• 3-D Fast Fourier Transform (FT): computations with all-to-all communication.
This benchmark computes three one-dimensional Fast Fourier Transformations
based on a 3D FFT-based spectral method [6].

• Integer Sort (IS): algorithm with random memory accesses. This benchmark
was designed for evaluating both computation speed and communication perfor-
mance [106].

• Lower-Upper Gauss-Seidel (LU): pseudo-application solving a finite-difference
discretization of the Navier-Stokes equations. It uses a symmetric successive
over-relaxation (SSOR) method to solve a 7×7 block-diagonal system by splitting
a Lower-Upper factorisation [6].

• Multi-Grid (MG): computations on a sequence of meshes, long- and short-
distance communication. Memory intensive benchmark that computes the solu-
tion of a 3-dimensional scalar Poisson equation over coarse and fine meshes [6].

• Scalar Penta-diagonal (SP): solver based on a 3-D CFD pseudo-application based
on a Beam-Warning factorisation [6].

• Unstructured Adaptive (UA): computations of an unstructured adaptive mesh
with dynamic and irregular memory accesses. The benchmark solves a stylised
heat transfer problem in a cubic domain, which is discretised using an adaptively
refined and unstructured mesh [107].

The NPB have a class associated—W, S, A, B, C, D, E, F—which denote the size of
the benchmark in question. Unless otherwise mentioned, class C has been used and,
for example, an LU of class C is noted as LU.C.

Figure 4.2 shows the roofline model information obtained with Intel Advisor [108]
for all the benchmarks used in the experiments with their amount of LLC misses as
reported by perf [109]. With this information, it is possible to classify the benchmarks
according to their rate of LLC misses:

• Low (0 % to 20 %): BT, EP, CG, and IS.

• Medium (20 % to 40 %): FT, MG and UA.

• High (40 % to 100 %): DC, LU and SP.

It should be noted that, after this preliminary analysis, the DC benchmark has
been discarded since it is a benchmark limited on I/O operations, which are out the
focus of this work and introduce an undesired high variability on the execution times.
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Figure 4.2: Roofline model of the NPB as reported by Intel Advisor in Server ctnuma1. The colour
gradient shows the rate of LLC misses obtained with perf.

4.3 Experiments description

Experiments have been designed to match three common scenarios when using NUMA
systems.

• Experiment Single: in this experiment, servers are used with one application at
a time which can use all available resources, all cores and all available memory.
Since the selected benchmarks are highly optimised, with high-quality code and
well-programmed according to locality principles, little improvement could be
expected, particularly in the EP and the IS which make very good use of the
cache memory. Nevertheless, this experiment is interesting to give an idea of
the potential of our migration tool in general and the different algorithms in
particular.

• Experiment Interactive: servers are used interactively, that is, users can send
little tasks at any time. This experiment emulates an interactive system based on
anonymous data of the use of computing nodes in Centro de Supercomputación
de Galicia (CESGA)1. The time at which each task starts to execute is fixed,
so the objective is to reduce the execution time of each task. This experiment
draws a scenario where the number of concurrent tasks changes with time, so
migrations are expected to produce better results than in Experiment Single.
The start time of each task is shown in Table 4.3. Note that start times are

1https://www.cesga.es
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scaled down (×0.5) in Server ctnuma2 to achieve a similar pattern of concurrency
compared to ctnuma1.

Task ctnuma1 ctnuma2

LU.C-1 0.0 0.0
BT.C-1 18.0 9.0
CG.C-1 137.0 68.5
SP.C-1 190.0 95.0
LU.C-2 224.0 112.0
BT.C-2 244.0 122.0
CG.C-2 269.0 134.5
SP.C-2 316.0 168.0

Table 4.3: Start times in seconds for each task and server in Experiment Interactive.

Each task consists of 8 and 16 threads for Servers ctnuma1 and ctnuma2, respec-
tively. At peak, it is possible to have more working threads than cores in the
system. An example of an execution of this experiment is shown in Figure 4.3.

0 20 40 60 80 100 120 140 160 180 200 220

LU.C-1

BT.C-1

CG.C-1

SP.C-1

LU.C-2

BT.C-2

CG.C-2

SP.C-2

Total

Time (s)

Figure 4.3: Example of a time trace for the Experiment Interactive.

Note that, in this experiment, the total execution time is mainly determined
by the time at which the last benchmark is executed. This fades the possible
improvements in the rest of the benchmarks and sets a lower bound in the test
wall time.

• Experiment Queue: servers are used with a queue of tasks, like Slurm [45], where
users send tasks and only a fraction of the resources are available. It emulates
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as many users as NUMA nodes in the system, who send several tasks based on
NPB. The objective is to reduce the time to complete all tasks, increasing the
throughput of the system. There are granted only 10 cores per user for Servers
ctnuma1 and ctnuma2. At peak, there are as many threads as cores, but all
cores are in use until the end of the experiment. An example of an execution of
this experiment is shown in Figure 4.4.

0 200 400 600 800 1,000 1,200

User 4

User 3

User 2

User 1

Time (s)

BT.C CG.C SP.D FT.C IS.D

LU.C MG.D SP.C UA.C

Figure 4.4: Example of a time trace for the Experiment Queue.

This is the experiment where the potential performance improvement due to
thread and memory migrations is higher. Reducing the execution time of a task
implies launching the following tasks earlier. Also, the chances of improving
performance are greater due to the high number of processes simultaneously
running in the system.

The results shown in this chapter are the average of five executions of each exper-
iment in each server, with no warm-up phase.

4.3.1 Baseline comparison

To compare the different options available in Linux regarding scheduling in NUMA
systems and define a baseline for the following sections, an analysis of Completely
Fair Scheduler (CFS) with and without Transparent Huge Pages (THPs) and NUMA
Balancing (NB) enabled has been done. To do so, experiments Single and Queue were
performed in Server ctnuma1. Table 4.4 shows the execution times in the Experiment
Single while normalised execution times—against using only CFS—are shown in Fig-
ure 4.5. The same data for Experiment Queue is shown in Table 4.5 and Figure 4.6,
respectively.

When executing a single code in the system, the performance depends heavily
on the benchmark and its kind of workload. The option that has a larger impact on
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Algorithm BT.C CG.C EP.D FT.C IS.D LU.C MG.D SP.C UA.C

CFS 42.6 23.4 73.3 8.75 30.9 34.2 161.3 46.7 50.8
CFS+NB 44.3 22.9 73.4 8.75 25.8 33.2 158.0 50.9 57.4
CFS+THP 37.6 17.2 73.6 10.61 45.3 33.2 145.8 27.2 32.2
CFS+NB+THP 41.6 20.8 74.0 8.77 26.4 48.9 78.9 37.0 47.3

Table 4.4: Execution times (s) for Experiment Single in Server ctnuma1. Lower is better.
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Figure 4.5: Normalised execution times (%) for Experiment Single in Server ctnuma1. Lower is
better.

performance is THP. When enabling it, execution times might be drastically reduced—
up to 42 % for SP.C—or increased—up to 47 % for IS.D. NUMA Balancing has lower
influence, and its impact goes from −13 % to 17 %. It is when both options are enabled
that the biggest differences can be seen. For example, the execution time of the MG.C
benchmark is halved, but it is increased by 43 % for the LU.C.

Nevertheless, when executing several benchmarks simultaneously, the maximum
performance is consistently obtained when enabling both THP and NUMA Balanc-
ing. Improvement varies from 5 % in the FT.C up to 47 % for particular benchmarks
like CG.C or MG.D. This way, the total execution time is reduced by 27 % in the
Experiment Queue.

Attending to the results, this chapter will refer to the Completely Fair Scheduler
(CFS) with Transparent Huge Page (THP) and NUMA Balancing (NB) as Baseline
from now onwards, unless otherwise stated.

For the sake of completeness, Thanos is compared not only with the Baseline
but also with the Direct and the Interleave mappings via numactl [85], which are
popular options for experienced users [110, 111]. With the Direct mapping, threads
are pinned to a single NUMA node, and the memory is allocated in the same node.
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Algorithm BT.C CG.C EP.D FT.C IS.D LU.C MG.D SP.C UA.C Total

CFS 165 130 259 99 113 120 349 210 155 1,756
CFS+NB 136 77 233 100 104 104 287 167 117 1,483
CFS+THP 163 134 258 99 114 119 336 193 150 1,692
CFS+NB+THP 137 69 235 94 79 94 192 132 123 1,274

Table 4.5: Execution times (s) for Experiment Queue in Server ctnuma1. Lower is better.
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Figure 4.6: Normalised execution times (%) for Experiment Queue in Server ctnuma1. Lower is
better.

In the Interleave mapping, memory pages are distributed across all NUMA nodes in
a round-robin fashion. Note that using these options requires some knowledge of the
system and the application, so they are only recommended for experienced users.

4.4 Precision of hardware performance counters

This section includes a brief study about the precision of the hardware performance
counters (HC). Table 4.6 shows the giga-operations per second reported by the bench-
marks and measured through HC for the NPB, as well as the relative error between
both metrics.

Data show discrepancies of 4 % in the best scenario, though the error is typically
in the range of 15 %–25 %, with a tendency of underestimating the real figure. Note
that the biggest measurement errors happen when the reported operations per second
are low, with an overestimation of several orders of magnitude.
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Benchmark Reported Measured Error (%)

BT.C 1.91 1.83 4.18
CG.C 0.22 0.37 67.98
EP.D 4.71 · 10−2 1.41 2,896.86
FT.C 1.10 0.95 14.13
IS.D 2.13 · 10−2 0.36 1,582.12
LU.C 1.72 1.26 26.95
MG.D 1.10 0.90 18.86
SP.C 1.11 0.89 19.49
UA.C 4.80 · 10−3 0.42 8,743.35

Table 4.6: Giga-operations per second reported by the benchmarks, measured through hardware
performance counters, and relative error.

4.5 Experiment Single

This is the most traditional scenario and where the Baseline is expected to perform
better. As mentioned before, low-performance improvements—if any—might be ex-
pected. Nevertheless, this experiment is still interesting to measure the potential of
the algorithms proposed in this work.

4.5.1 Server ctnuma1

Table 4.7 shows the normalised execution times for the NPB. Raw execution times are
shown in Table B.1 in Appendix B. First, it should be noted that Direct and Interleave
mappings are suboptimal. In the case of Direct mapping, the memory is placed in a
single memory node whenever possible, causing a lot of remote—and slow—memory
operations. With the Interleave mapping, memory pages are scattered across the
NUMA nodes without attending to any locality principle causing a large number of
remote accesses.

Regarding the algorithms presented in this work, most of them manage to improve
execution times, particularly those that handle thread migrations. Those that rely
more on random processes cause losses of performance, like CRA and LBMA. For
CRA, execution times increase up to 80 %.

IMAR2 and DyRMMA achieve discrete results because of the same underlying
problem. Both algorithms rely strongly on the metrics of the hardware counters in
one or several phases. In the case of IMAR2, it is due to the rollback phase which is
triggered by calculating the global system performance based on equation (3.23), which
is computed with the values extracted from hardware counters. If those values are not
accurate, the rollback might be performed when it is not really required or vice versa.
Figure 4.7 shows that CIMAR improves IMAR2, mainly due to the removal of the
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Algorithm BT.C CG.C EP.D FT.C IS.D LU.C MG.D SP.C UA.C

Baseline 100 100 100 100 100 100 100 100 100
Direct 164 231 100 176 133 87 406 308 195
Interleave 114 103 101 111 107 58 216 150 119
CRA 111 99 100 101 109 61 184 143 123
LBMA 108 100 100 100 106 64 169 129 115
IMAR2 100 91 99 98 103 58 128 115 103
CIMAR 93 77 100 99 97 59 78 90 99
NIMAR 92 80 100 99 98 58 79 90 93
SMA 92 81 100 99 98 62 78 89 99
DyRMMA 93 96 96 88 91 91 88 96 94
LBMA+TMMA 107 97 100 97 106 57 172 129 117
IMAR2+TMMA 102 92 99 100 104 63 128 116 106
CIMAR+TMMA 95 81 101 100 100 56 80 92 99
NIMAR+TMMA 94 84 100 97 99 54 82 91 96
SMA+TMMA 94 82 101 97 99 55 82 92 96
DyRMMA+TMMA 93 94 97 93 91 71 90 96 97
LBMA+LMMA 106 99 100 98 106 63 168 131 116
IMAR2+LMMA 104 92 100 98 103 56 130 118 105
CIMAR+LMMA 95 78 100 98 99 57 81 92 95
NIMAR+LMMA 93 78 101 101 99 54 82 89 96
SMA+LMMA 93 80 100 97 100 56 81 91 95
DyRMMA+LMMA 95 86 97 91 90 79 90 99 94
RMMA 190 200 102 105 115 223 157 223 422
TMMA 101 94 101 99 102 87 94 96 97
LMMA 100 97 100 97 100 88 95 89 101

Table 4.7: Normalised execution times (%) for Experiment Single in Server ctnuma1. Lower is
better.

rollback phase. For the DyRMMA, the entire algorithm depends on equation (3.23),
so it is clear that, if the calculation of performance is not accurate, the strategy will
not be accurate either. Despite the aforementioned problems, these algorithms still
manage to slightly improve the Baseline in most of the cases, particularly DyRMMA,
which reduces the execution times for every benchmark in the experiment.

On the positive side, three algorithms should be highlighted: CIMAR, NIMAR
and SMA. These strategies are capable of improving thread location by placing them
in their preferred nodes, as shown in Figure 4.8. Thus, local operations are enforced
which allows for better execution times. Take, for example, the LU.C benchmark.
According to the obtained measurements, threads are in their preferred node 45 % of
the time with the Baseline. This number increases up to 83 % when using CIMAR
algorithm, up to 92 % for NIMAR and up to 85 % for SMA.

Regarding memory migration algorithms, the random strategy—RMMA—shows
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B
a
se
li
n
e

1 1.5 2 2.5 3 3.5 4 4.5 5

·108Operations per second

IM
A
R

2

6 8 10 12 14 16 18 20 22

Time (s)

C
IM

A
R

Figure 4.7: Traces showing operations per second for CG.C benchmark running under Baseline,
IMAR2 and CIMAR algorithms in Experiment Single in Server ctnuma1. Higher is
better.

B
a
se
li
n
e

C
IM

A
R

N
IM

A
R

5 10 15 20 25 30 35 40 45

Time (s)

S
M
A

In preferred node Not in preferred node

Figure 4.8: Traces showing whether threads are in their preferred node or not for LU.C benchmark
running under Baseline, CIMAR, NIMAR and SMA algorithms in Experiment Single
in Server ctnuma1.
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the possible impact of bad decisions when migrating memory pages, with performance
being heavily downgraded. On the other hand, TMMA and LMMA reduce execution
times slightly. The issues regarding memory pages migrations are further discussed
in Section 4.9. Examples of traces on how each algorithm affects execution time are
shown in Figure 4.9.
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Figure 4.9: Traces showing operations per second for SP.C benchmark running under Baseline,
RMMA, TMMA, and LMMA algorithms in Experiment Single in Server ctnuma1.
Higher is better.

Finally, it should be noted that when memory migrations are used alongside thread
migration algorithms, little effect on performance can be observed since thread place-
ment plays the leading role.

4.5.2 Server ctnuma2

Normalised execution times are shown in Table 4.8, while raw execution times can be
consulted in Table B.2 in Appendix B.

In Server ctnuma2 the interleaved mapping achieves big improvements, reducing
execution times up to 65 %. The benchmarks, when executed in this particular server,
benefit from the increased bandwidth caused by the Interleaved mapping, as illustrated
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Algorithm BT.C CG.C EP.D FT.C IS.D LU.C MG.D SP.C UA.C

Baseline 100 100 100 100 100 100 100 100 100
Direct 264 262 100 252 442 141 626 528 248
Interleave 72 113 101 48 97 35 116 83 84
CRA 83 102 105 81 101 65 104 89 95
LBMA 85 108 102 78 102 89 98 88 89
IMAR2 84 103 99 88 103 57 98 93 89
CIMAR 80 107 101 81 101 51 98 89 86
NIMAR 82 101 101 81 104 72 98 89 88
SMA 89 102 101 76 101 63 99 90 86
DyRMMA 81 119 100 83 102 57 109 91 96
LBMA+TMMA 84 100 100 81 101 60 100 89 91
IMAR2+TMMA 80 102 101 87 103 58 98 86 91
CIMAR+TMMA 89 109 101 87 102 69 105 90 89
NIMAR+TMMA 77 101 101 71 101 65 102 87 90
SMA+TMMA 87 106 101 82 100 57 99 93 89
DyRMMA+TMMA 103 100 101 92 99 66 116 91 95
LBMA+LMMA 84 98 101 84 102 62 99 88 91
IMAR2+LMMA 85 104 103 79 103 62 104 91 89
CIMAR+LMMA 90 102 102 79 100 62 108 88 90
NIMAR+LMMA 80 96 102 92 102 75 100 89 90
SMA+LMMA 85 102 102 85 101 77 100 95 90
DyRMMA+LMMA 83 99 101 80 101 81 113 88 96
RMMA 129 103 100 89 102 186 108 139 183
TMMA 98 105 106 92 102 97 103 101 101
LMMA 88 105 102 88 101 102 106 94 107

Table 4.8: Normalised execution times (%) for Experiment Single in Server ctnuma2. Lower is
better.

in Figure 4.10. Note that the Direct mapping is far from the Baseline given its poor
use of both locality and bandwidth.

Regarding the algorithms implemented in Thanos, almost every algorithm im-
proves the Baseline, even CRA which places the threads completely randomly across
the server or LBMA which relies heavily on randomness in the decision-making pro-
cess. This is due to the fact that CRA pins the threads to particular cores, whose
cache memory is kept in a “hot” state until the threads are assigned another CPU.
Following the same reasoning, IMAR2 and CIMAR achieve the best results. Those al-
gorithms which map threads to nodes—NIMAR, SMA and DyRMMA—have slightly
worse performance but still improve Baseline significantly in most of the benchmarks.
Figure 4.11 shows that even when NIMAR places the threads in their preferred node
more often, CIMAR achieves a better execution time because of the more efficient use
of the cache.
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Figure 4.10: Traces showing operations per second for LU.C benchmark running under Baseline
and Interleave mapping in Experiment Single in Server ctnuma2. Higher is better.
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Figure 4.11: Traces showing whether threads are in their preferred node or not for SP.C benchmark
running under Baseline, Interleave, CIMAR and NIMAR algorithms in Experiment
Single in Server ctnuma2.
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Finally, it should be noted that even memory migration algorithms improve the
execution times, particularly LMMA. Reducing the distance between the threads and
the most frequently used memory pages reduces the average latency of memory oper-
ations from 11 cycles with the Baseline to 9.41 cycles with LMMA. Furthermore, the
standard deviation of the latency is greatly reduced, from 51.31 to 19.70. Thanks to
the reduction of the latency, the CPU usage is higher, as shown in Figure 4.12, and
execution times are shortened.
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Figure 4.12: Traces showing CPU usage for BT.C benchmark running under Baseline and LMMA
algorithm in Experiment Single in Server ctnuma2. Higher is better.

4.6 Experiment Interactive

In this experiment, small tasks are launched at predetermined times, emulating an
interactive server, where the impact of migrations is expected to be higher than in
Section 4.5. Note that Tables 4.9 and 4.10 include the normalised total execution time
of the experiment, which is the time between the start of the first task and the end of
the last task. Additionally, the normalised accumulated execution time of the tasks is
shown in the last column of the tables, which is the sum of the execution times of all
the tasks.

4.6.1 Server ctnuma1

Table 4.9 shows the normalised execution times for the Experiment Interactive exe-
cuted in Server ctnuma1. Raw execution times are shown in Table B.3 in Appendix B.
Normalised computation times are shown in Figure 4.13.

The trends seen in Section 4.5 are still valid in the Experiment Interactive regarding
the algorithms implemented in Thanos. The Direct mapping has the best performance
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Algorithm BT.C CG.C LU.C SP.C Total Accum.

Baseline 100.0 100.0 100.0 100.0 100.0 100.0
Direct 95.7 55.1 89.7 91.5 98.3 85.3
Interleave 106.3 116.3 105.7 119.4 103.9 110.8
CRA 116.7 125.3 116.9 133.1 108.9 121.8
LBMA 122.7 129.5 121.7 134.9 109.7 126.3
IMAR2 105.7 99.2 105.1 108.8 102.2 105.5
CIMAR 96.0 57.6 99.6 83.7 96.6 86.9
NIMAR 98.6 66.6 101.8 90.5 97.3 91.2
SMA 97.2 58.6 102.7 84.3 97.3 87.8
DyRMMA 107.5 114.3 108.0 122.0 105.6 111.8
LBMA+TMMA 122.3 120.4 122.8 133.4 108.9 124.6
IMAR2+TMMA 105.5 90.3 106.9 109.2 101.7 103.2
CIMAR+TMMA 96.6 57.9 101.2 84.4 97.6 87.5
NIMAR+TMMA 98.8 59.8 102.8 89.5 97.8 89.3
SMA+TMMA 98.1 57.9 102.8 88.5 97.1 88.9
DyRMMA+TMMA 107.5 111.2 107.5 121.9 105.6 111.1
LBMA+LMMA 120.2 127.8 123.9 133.9 109.2 125.0
IMAR2+LMMA 103.9 91.3 105.1 110.7 103.6 104.3
CIMAR+LMMA 96.8 59.3 101.2 84.4 97.1 87.3
NIMAR+LMMA 98.4 62.0 103.1 86.2 97.3 89.7
SMA+LMMA 98.3 57.9 102.5 84.8 97.3 87.7
DyRMMA+LMMA 107.1 112.3 107.9 122.7 105.3 111.4
RMMA 123.7 118.6 144.2 147.6 110.6 132.4
TMMA 101.5 79.8 99.8 97.9 100.0 97.0
LMMA 101.0 96.1 100.5 103.2 100.7 100.1

Table 4.9: Normalised execution times (%) for Experiment Interactive in Server ctnuma1. Lower is
better.
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Figure 4.13: Normalised computation time for Experiment Interactive in Server ctnuma1. Lower
is better.

in most cases. Note that it is the only mapping which improves significantly the
Baseline time for the LU benchmark, this is due to the lower average latency of
memory operations, as shown in Figure 4.14. Since the threads are located in the
same node, cache-coherency protocols work more efficiently, and better use of the
cache can be done. This is not the case for the Baseline, nor other strategies as shown
in Figure 4.15.

CIMAR, NIMAR and SMA are the only thread migration strategies that can
improve the Baseline execution times. Should be highlighted the improvements in the
CG.C benchmark, with reduction of execution times between 34 % and 43 %, and the
SP.C, whose performance has been increased between 10 % and 17 %.

4.6.2 Server ctnuma2

Table 4.10 shows the normalised execution times for the Experiment Interactive exe-
cuted in Server ctnuma2. Raw execution times are shown in Table B.4 in Appendix B.
Normalised computation times are shown in Figure 4.16.

Results show significant performance losses in the Direct mapping, particularly
for the LU.C benchmark. The reason for this behaviour is the same as mentioned in
Section 4.5.2. The Interleave mapping is not as good as in the Experiment Single,
achieving results similar to the Baseline.

Regarding the algorithms implemented in Thanos, several thread migration algo-
rithms improve the Baseline, particularly IMAR2, CIMAR and SMA. These strategies
improve slightly the execution times of the SP.C benchmark, up to 6 %. Nevertheless,
it is in the CG.C benchmark where they perform the best, increasing performance
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Figure 4.14: Traces showing average latency of memory operations for LU.C benchmark running
under Baseline, Direct, and SMA algorithms in Experiment Interactive in Server ct-
numa1. Lower is better.
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Figure 4.15: Traces showing thread location for LU.C benchmark running under Baseline, Direct,
and SMA algorithms in Experiment Queue.
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Algorithm BT.C CG.C LU.C SP.C Total Accum.

Baseline 100.0 100.0 100.0 100.0 100.0 100.0
Direct 184.9 121.9 2,837.5 243.8 705.9 895.4
Interleave 98.3 110.5 90.8 101.0 99.0 99.7
CRA 108.6 130.8 107.9 113.6 102.5 113.1
LBMA 105.5 86.3 112.6 105.4 100.5 106.2
IMAR2 98.6 78.3 101.5 97.7 99.0 96.5
CIMAR 97.5 75.9 101.7 94.0 99.0 96.6
NIMAR 104.0 81.8 99.8 102.7 99.5 99.7
SMA 100.5 79.3 107.0 95.1 97.5 98.1
DyRMMA 106.4 127.2 100.4 115.1 102.9 110.6
LBMA+TMMA 109.9 83.9 122.3 106.6 101.0 106.5
IMAR2+TMMA 98.5 76.6 106.7 96.6 97.5 97.8
CIMAR+TMMA 104.5 80.6 106.7 98.7 98.5 101.9
NIMAR+TMMA 102.7 91.5 99.9 102.8 99.5 99.7
SMA+TMMA 99.6 76.6 101.5 91.4 96.6 95.2
DyRMMA+TMMA 109.4 129.7 106.5 115.8 102.5 114.8
LBMA+LMMA 104.2 81.1 106.5 104.5 100.5 101.5
IMAR2+LMMA 99.9 82.9 109.5 97.9 98.5 101.9
CIMAR+LMMA 98.2 75.4 101.3 96.8 99.0 95.1
NIMAR+LMMA 101.2 90.0 99.1 98.5 98.0 98.8
SMA+LMMA 100.3 72.2 97.3 90.5 96.6 94.0
DyRMMA+LMMA 106.8 128.3 104.3 113.7 102.5 111.6
RMMA 115.9 128.4 154.4 143.8 107.8 137.1
TMMA 99.9 101.2 101.8 102.2 100.5 102.8
LMMA 101.0 96.9 101.3 98.3 99.5 100.1

Table 4.10: Normalised execution times (%) for Experiment Interactive in Server ctnuma2. Lower
is better.
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Figure 4.16: Normalised computation time for Experiment Interactive in Server ctnuma2. Lower
is better.

by up to 24 %. This is caused because Thanos algorithms map the threads into their
preferred node a higher fraction of the time compared to the Baseline. For CIMAR,
it is a 91 % of the time, against the 85 % of the baseline, see Figure 4.17.
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Figure 4.17: Traces showing whether threads are in their preferred node or not for CG.C benchmark
running under Baseline, and CIMAR algorithms in Experiment Interactive in Server
ctnuma2.

Finally, it should be noted that the memory migration algorithms have a very
slight impact, following the tendency shown in Section 4.5.2.
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4.7 Experiment Queue

By simulating several users, the server is kept busy with a collection of different tasks.
Thus, it is expected that the impact of migration is the highest in this highly dynamic
scenario.

Note that Tables 4.11 and 4.12 show the total and the accumulated—normalised—
execution times of the benchmarks, which have the same meaning as in Section 4.6.

4.7.1 Server ctnuma1

Table 4.11 shows the normalised execution times for Experiment Queue. Raw execu-
tion times are shown in Table B.5 in Appendix B. Furthermore, a graphic overview of
these results is shown in Figure 4.18.

Algorithm BT.C CG.C EP.D FT.C IS.D LU.C MG.D SP.C UA.C Total Accum.

Baseline 100 100 100 100 100 100 100 100 100 100 100
Direct 91 58 99 93 60 86 83 80 90 85 86
Interleave 116 162 101 112 161 117 149 143 129 130 129
CRA 103 104 100 100 122 106 107 100 102 106 106
LBMA 100 103 99 98 111 109 100 99 107 106 103
IMAR2 101 109 99 99 112 106 97 99 115 105 103
CIMAR 99 85 100 99 105 97 77 86 88 96 93
NIMAR 95 71 99 97 105 99 71 76 85 89 88
SMA 95 69 99 98 106 97 69 74 85 89 88
DyRMMA 107 140 99 111 139 110 134 117 112 117 117
LBMA+TMMA 101 99 100 101 110 105 102 99 112 106 103
IMAR2+TMMA 99 101 105 101 114 100 100 94 99 105 102
CIMAR+TMMA 100 82 101 100 104 98 74 82 91 97 91
NIMAR+TMMA 95 70 99 96 102 99 72 76 87 90 89
SMA+TMMA 95 69 99 96 107 98 70 75 87 89 88
DyRMMA+TMMA 107 134 100 112 138 111 137 117 113 118 118
LBMA+LMMA 96 100 108 101 113 100 99 98 106 106 103
IMAR2+LMMA 100 98 99 104 118 106 105 99 102 105 104
CIMAR+LMMA 98 69 100 98 104 96 69 78 84 91 87
NIMAR+LMMA 95 70 99 96 108 99 72 75 87 90 89
SMA+LMMA 96 68 99 95 107 99 66 75 86 89 88
DyRMMA+LMMA 107 132 99 113 137 110 135 116 112 116 117
RMMA 133 136 100 111 109 129 113 161 137 121 122
TMMA 98 81 99 99 103 98 99 98 102 100 99
LMMA 99 92 99 101 100 97 98 95 103 99 99

Table 4.11: Normalised execution times for Experiment Queue in Server ctnuma1. Lower is better.

The Direct mapping is still the best placement policy, but the Baseline performs
better than in previous experiments. Again, the Interleaved mapping offers poor
results for this particular system. As shown in Figure 4.19, when running the CG.C
benchmark with the Interleave mapping, the threads are in their preferred node only
17 % of the time. With the Baseline, this time increases up to 84 %, and it is a perfect
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Figure 4.18: Normalised total execution time for Experiment Queue in Server ctnuma1. Lower is
better.

100 % with the Direct mapping—the expected outcome. Note that the Direct mapping
could cause memory congestion, as mentioned in Section 1.3.1. It was not the case in
Server ctnuma1, but it is a phenomenon to be aware of when using this option.
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Figure 4.19: Traces showing whether threads are in their preferred node or not for CG.C benchmark
running under Baseline, Direct and Interleave algorithms in Experiment Queue in
Server ctnuma1.

Among the thread placement algorithms implemented in Thanos, the best-performing
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strategies are CIMAR, NIMAR and SMA. On the other hand, LBMA, IMAR2 and
DyRMMA cannot improve the baseline. Taking the LU.C benchmark as an example,
see Figure 4.20, the Baseline manages to have the threads in their preferred node 79 %
of the time. For LBMA and DyRMMA, this number is reduced up to 50 % approxi-
mately. Despite that IMAR2 keeps the threads in their preferred node about 60 % of
the time, it is not enough to improve the execution times.
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Figure 4.20: Traces showing whether threads are in their preferred node or not for LU.C benchmark
running under Baseline, LBMA, IMAR2 and DyRMMA algorithms in Experiment
Queue in Server ctnuma1.

There are cases where the Direct mapping is not the best placement strategy as
is the case for the SP.C benchmark. NIMAR and SMA obtain better results than
the Direct by placing the threads across different nodes as shown in Figure 4.21.
The threads are still in their preferred node—see Figure 4.22—but the resources of
the system are used in a better way. Thus, operations per second performed are
increased, as shown in Figure 4.23, and execution times are improved.
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Figure 4.21: Traces showing node in which threads are running for SP.C benchmark running un-
der Baseline, Direct, NIMAR and SMA algorithms in Experiment Queue in Server
ctnuma1.
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Figure 4.22: Traces showing whether threads are in their preferred node or not for SP.C benchmark
running under Baseline, Direct, NIMAR and SMA algorithms in Experiment Queue
in Server ctnuma1.
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Figure 4.23: Traces showing operations per second for SP.C benchmark running under Baseline,
Direct, NIMAR and SMA algorithms in Experiment Queue in Server ctnuma1. Higher
is better.

4.7.2 Server ctnuma2

Table 4.12 shows the normalised execution times for Server ctnuma2. Raw times are
shown in Table B.6 in Appendix B, and a graphical overview is shown in Figure 4.24.

In this experiment, the Direct mapping improves the Baseline by 10 %, while the
Interleave increase execution times by 17 %. Since the system has several programs
running simultaneously, the potential increase of bandwidth of the Interleave mapping
is divided among the programs running. That makes the latency of memory the leading
factor, as shown in Figure 4.25. Thus, the Direct is the most adequate mapping.

The algorithms implemented in Thanos tend to slightly improve the execution
times compared to the Baseline. The only ones that could not increase the performance
are CRA, IMAR2 and RMMA. It is expected that CRA and RMMA have a negative
impact on performance since they are random algorithms, but it is not the case for
IMAR2.

Figure 4.26 shows that CIMAR improves the execution times because of the typi-
cally higher number of operations per second. Since threads are pinned to particular
cores, better use of the cache is enforced, improving performance. Despite that IMAR2
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Algorithm BT.C CG.C EP.D FT.C IS.D LU.C MG.D SP.C UA.C Total Accum.

Baseline 100 100 100 100 100 100 100 100 100 100 100
Direct 89 56 98 86 64 83 94 89 88 90 88
Interleave 113 146 103 108 134 113 118 125 119 117 118
CRA 105 109 99 97 114 106 100 105 103 105 103
LBMA 95 90 104 91 102 100 85 96 96 97 94
IMAR2 112 122 99 100 125 111 110 114 118 109 112
CIMAR 99 83 100 89 109 104 84 85 103 93 95
NIMAR 97 78 98 90 103 95 80 89 95 93 90
SMA 101 92 100 93 105 102 88 97 99 98 96
DyRMMA 100 83 99 89 105 106 85 91 102 93 95
LBMA+TMMA 96 80 97 89 100 98 77 89 95 89 90
IMAR2+TMMA 113 114 99 99 126 112 111 116 121 110 113
CIMAR+TMMA 101 84 97 88 105 101 84 87 104 93 94
NIMAR+TMMA 98 80 99 87 99 101 80 89 96 91 91
SMA+TMMA 102 98 101 95 105 100 94 99 102 101 99
DyRMMA+TMMA 101 82 99 91 104 102 83 87 101 93 93
LBMA+LMMA 97 77 100 91 102 99 79 90 95 91 91
IMAR2+LMMA 113 118 100 98 125 112 111 115 121 109 112
CIMAR+LMMA 101 81 97 90 107 103 84 88 103 93 94
NIMAR+LMMA 95 78 100 89 99 101 82 88 96 90 91
SMA+LMMA 101 89 102 99 105 101 93 97 100 98 98
DyRMMA+LMMA 101 79 99 88 104 102 83 88 103 92 94
RMMA 110 103 98 100 108 111 105 111 107 105 107
TMMA 100 89 100 100 104 102 100 98 99 99 99
LMMA 102 92 98 102 106 101 97 98 98 100 99

Table 4.12: Normalised execution times for Experiment Queue in Server ctnuma2. Lower is better.
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Figure 4.24: Normalised total execution time for Experiment Queue in Server ctnuma2. Lower is
better.
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Figure 4.25: Traces showing average latency of memory operations for IS.D benchmark running
under Baseline, Direct, and Interleave mappings in Experiment Queue in Server ct-
numa2. Higher is better.
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does the same kind of pinning, it is not capable of reducing the execution times be-
cause of the uneven performance amongst the threads of the process, particularly in
the early stages of the program.

Memory migration algorithms have a slight impact on performance. The CG.C
is the only benchmark whose execution times are significantly improved when using
these algorithms. Metrics show that with the Baseline, the threads spend the 88 % of
the time in their preferred node. This number is increased up to 96 % with TMMA, see
Figure 4.27. Though, LMMA improves Baseline execution times because of a slightly
better use of the CPU, which is kept busy more often.
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Figure 4.27: Traces showing whether threads are in their preferred node or not for CG.D bench-
mark running under Baseline, TMMA and LMMA algorithms in Experiment Queue
in Server ctnuma2.

4.8 Energy

Figures 4.28 and 4.29 show a comparison between execution time and energy and the
linear regression derived from the data. It can be seen that, in this kind of server,
energy is almost linear with execution times. Note that the slope of the regression is
similar for every experiment, reinforcing the argument that there is a linear relation-
ship between both metrics.

For memory and CPU related workload, with negligible use of I/O operations, the
power usage usually is at its maximum all the time. As mentioned in Section 1.1.2,
it is the efficiency of memory operations and CPU instructions that might reduce the
energy requirements. On one hand, the efficiency of CPU instructions can be improved
in the binary generation process, which is out of the scope of this work. On the other
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Figure 4.28: Energy (Wh) against time (s) for the results obtained in Experiments Single, Interac-
tive and Queue in Server ctnuma1 and the derived linear regressions.
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Figure 4.29: Energy (Wh) against time (s) for the results obtained in Experiments Single, Interac-
tive and Queue in Server ctnuma1 and the combined linear regression.

hand, memory operations can be optimised by the scheduler, which is one of the goals
of this thesis.

Figure 4.30 shows the total energy consumption for the Experiments Single, Inter-
active and Queue in Server ctnuma1. For Experiments Interactive and Queue, it is
not possible to know the energy consumption of each particular task, only the total
energy consumption. For Experiment Single, it is possible to assume that the power
demands of other programs like daemons or OS processes are negligible, so the energy
consumption of each task is detailed in Table 4.13.

Note that some points regarding Experiment Interactive are slightly under the
linear regression. In this experiment, not all resources are used all the time, so some
CPUs can enter a low-power state, reducing energy consumption.

Those algorithms that improved the Baseline execution time in each experiment
did roughly the same regarding the energy. A good example is the reduction of the
energy consumption for the LU benchmark in Experiment Single, where those strate-
gies that improved the most the execution time also reduced the energy consumption.
Algorithms like SMA, CIMAR and NIMAR reduced the energy around 40 %. In sit-
uations where the reduction in execution times is not so big, the energy consumption
is still reduced proportionally. This can be extended to the other experiments, where
the energy consumption is reduced up to 12 %. Thus, it can be stated that the Di-
rect mapping, SMA, CIMAR and NIMAR algorithms are the best ones in terms of
energetic efficiency.

Summarising, the most important factor related to energy efficiency in the context
of HPC systems is performance. The sooner the tasks are completed, the sooner the
processors can enter an idle state to reduce their power usage.
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Figure 4.30: Energy (Wh) for Experiments Single, Interactive and Queue in Server ctnuma1. Lower
is better.
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Algorithm BT.C CG.C EP.D FT.C IS.D LU.C MG.D SP.C UA.C Total

Baseline 3.51 2.41 8.75 1.17 5.38 6.76 10.23 4.76 5.48 47.65
Direct 7.69 5.42 8.13 2.04 6.43 5.55 36.19 12.07 9.58 92.50
Interleave 5.28 2.70 8.62 1.35 5.57 3.93 21.98 6.69 6.27 61.67
CRA 5.27 2.61 8.28 1.09 4.27 3.77 18.46 6.29 6.38 55.08
LBMA 5.16 2.64 8.42 1.16 5.16 4.26 16.50 5.48 5.54 53.59
IMAR2 4.96 2.34 8.31 1.21 5.13 3.88 12.75 5.17 5.50 48.64
CIMAR 4.29 1.97 8.56 1.22 4.80 3.89 7.89 4.25 5.09 41.37
NIMAR 4.31 2.16 8.70 1.16 5.12 3.90 8.10 4.29 5.30 42.54
SMA 4.48 2.25 8.66 1.21 5.04 4.21 8.17 4.25 5.49 43.36
DyRMMA 4.45 2.52 8.19 1.01 4.62 6.10 8.56 4.21 4.99 44.04
LBMA+TMMA 4.59 2.47 8.30 1.14 5.34 3.85 16.71 5.46 5.95 53.51
IMAR2+TMMA 4.85 2.34 8.49 1.17 5.41 4.40 12.78 5.17 5.25 48.83
CIMAR+TMMA 4.16 2.02 8.62 1.19 4.91 3.71 8.26 4.42 5.40 41.75
NIMAR+TMMA 4.73 2.35 8.60 1.17 5.11 3.56 8.61 4.36 5.46 42.79
SMA+TMMA 4.58 2.25 8.72 1.13 5.12 3.77 8.49 4.47 5.36 43.07
DyRMMA+TMMA 4.65 2.55 8.28 1.15 4.47 4.76 8.86 4.29 5.18 44.09
LBMA+LMMA 4.62 2.62 8.31 1.12 5.23 3.91 12.87 6.11 5.91 50.19
IMAR2+LMMA 4.54 2.30 8.53 1.14 5.22 3.84 14.13 5.38 6.87 51.45
CIMAR+LMMA 4.24 2.08 8.58 1.21 4.84 2.96 8.55 4.20 4.89 40.35
NIMAR+LMMA 4.60 2.46 8.72 1.20 5.15 4.15 8.56 4.29 5.12 43.39
SMA+LMMA 4.93 2.15 8.77 1.13 5.11 4.18 7.95 4.10 5.29 42.81
DyRMMA+LMMA 4.66 2.65 8.21 1.18 4.52 5.02 17.56 4.49 5.15 52.69
RMMA 8.79 4.60 8.18 1.17 5.72 14.18 15.29 9.79 20.37 87.73
TMMA 4.98 2.54 8.68 1.11 5.08 5.73 9.57 4.55 5.33 47.49
LMMA 4.78 2.53 8.52 1.16 5.03 5.93 9.60 4.11 5.46 46.46

Table 4.13: Energy consumption (in Wh) for Experiment Single in Server ct1. Lower is better.

4.9 Issues with memory pages migrations

Migrating memory pages is an expensive operation given its nature since a lot of
synchronisation and copies are required. Furthermore, previous research works have
shown that the Linux memory migration mechanism is inefficient [37, 112].

A benchmark has been developed to measure the potential impact of memory
migrations, assuming executed in a NUMA system. In this experiment, there are two
groups of workers, namely, W ∗ and W−, that will perform operations over star and
dash operands. Each group of workers will use t threads such that the threads of W ∗

run in the NUMA node 0, namely ν∗, and W− run in the opposite node, ν−. The
set of operands, Ω, span through a set of pages, Ψ = {ψ0, . . . , ψP−1}, allocated in
memory such that ψ0, . . . , ψP/2−1 are initially placed in ν∗, and pages ψP/2, . . . , ψP−1

are placed in ν−. Operands for each page are shared between workers such that, at the
beginning of the experiment, a fraction s ∈ [0, 1] of the operations over the elements
in the pages are local, that is, workers and operands are in the same NUMA node.
Operations are executed in random order to avoid the effect of prefetching. After
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a given number of operations, o, each page is migrated to the opposite node under
a certain probability p. When s < 0.5, the migration is expected to be beneficial,
when s ≥ 0.5, the migration should be counterproductive. Note that when s = 0.5,
migration should also produce bad results because of the overhead of moving pages.
Figure 4.31 shows an example of the initial placement of data.

Dash operators

Star operators

Remote
operations

Local
operations

Pages allocated in ν∗

Star operators

Dash operators

Pages allocated in ν−

Figure 4.31: Example of the initial placement of data with s = 0.70.

Algorithm 4.1 shows the pseudocode of the benchmark. Note that Steps 9 and 16
are parallel loops, also performed at the same time. The source code of the benchmark
is available at [113].

Figures 4.32 to 4.37 show the results of this experiment in the Server ctnuma1 for
different configurations of the benchmark. Note that figures 4.36 and 4.37 show a row
indicating where Thanos would be located in terms of the number of pages migrated.

Figures 4.32 and 4.33—detailed versions are shown in Figures B.1 and B.2—show
the four extreme situations and all the intermediate scenarios in between. The upper-
left corner shows the scenario where all the memory operations are remote, and pages
are not migrated until the end of the benchmark; in the upper-right corner, all memory
operations are local and pages are not migrated; in the lower-left corner all pages are
remote at the beginning, but pages are migrated at the very first operation; finally, the
lower-right corner shows the execution time where all the pages are local, but moved
quickly.

The results follow the expected theoretical output, where execution times are neg-
atively affected by remote operations. Thus, the data highlights the importance of
performing the migration as soon as possible when the locality is bad, as well as
showing the repercussions of bad migration decisions when the locality is good. Fur-
thermore, the delay at which the migrations are performed also has a severe impact,
since the sooner a decision is made, the more time it has to affect the outcome. Note
that both parameters—locality and delay—have an almost perfect linear influence on
execution times.
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Algorithm 4.1 Memory migration benchmark.

Input: Threads per node, t.
Total number of pages, P .
Local operands share, s.
Operations to migrate, o.
Probability of migration, p.

Output: Execution time of the benchmark.

1: procedure Memory migration benchmark(t, P, s, o, p)
2: N := Size of each page/Size of each operand . Operands per memory page.
3: Ω := set of operands located in P memory pages
4: Ω∗ := {ωi ∈ Ω | i mod N ≤ sN

100 ,
i
N ≤

P
2 } ∪ {ωi ∈ Ω | i mod N > sN

100 ,
i
N > P

2 }
5: Ω− := {ωi ∈ Ω | ωi /∈ Ω∗}
6: a∗ = 0
7: a− = 0
8: τs := time of the start of the benchmark
9: for each ωi ∈ Ω∗ do . Parallel loop executed by t threads in ν∗.

10: a∗ = a∗ + ωi
11: m = bi/Nc
12: if Operations over ψm = o then
13: p̂ = random number within [0, 1]
14: if p̂ ≤ p then
15: Migrate ψm to the opposite node

16: for each ωi ∈ Ω− do . Parallel loop executed by t threads in ν−.
17: a− = a− + ωi
18: m = bi/Nc
19: if Operations over ψm = o then
20: p̂ = random number within [0, 1]
21: if p̂ ≤ p then
22: Migrate ψm to the opposite node

23: τe := time of the end of the benchmark
24: return τe − τs
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Figure 4.32: Execution time (s) for different amounts of remote pages—over a total of P = 1 000 000
pages—and operations to migrate a page, with a probability of migration p = 1. t = 1
thread per worker group. Lower is better.
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Figure 4.33: Execution time (s) for different amounts of remote pages—over a total of P = 1 000 000
pages—and operations to migrate a page, with a probability of migration p = 1. t = 10
threads per worker group. Lower is better.
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Figure 4.34: Execution time (s) for different amounts of remote pages—over a total of P = 1 000 000
pages—and chances to migrate a page after o = 20 operations. t = 1 thread per worker
group. Lower is better.
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Figure 4.35: Execution time (s) for different amounts of remote pages—over a total of P = 1 000 000
pages—and chances to migrate a page after o = 20 operations. t = 10 threads per
worker group. Lower is better.
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The presence of more threads in each working unit does not affect the behaviour,
and execution times just scale almost perfectly with the number of threads involved
in the computations.

Figures 4.36 and 4.37 show the results of the benchmark when moving small pages
after 20 operations under different probabilities of migration. In the author’s opinion,
20 samples is a reasonable amount of information to decide whether a memory page
should be migrated or not and its possible destination. Again, the results are coherent
with the expected theoretical output, where the higher the number of pages to be
migrated, the higher impact of these migrations.

Note that figures 4.36 and 4.37 include a row named Thanos. This row represents
the scenario where migrations are handled by Thanos using the samples obtained from
the hardware counters. The Thanos row is at the bottom since it is only able to move
about 0.05 % of the memory pages due to the scarcity of the information extracted
from the hardware counters, which has negligible impact on performance either good
or bad. It should be noted that execution times for Thanos are slightly worse than
performing no migrations due to the overhead induced by enabling the PMUs in the
CPUs.

The main problem of Thanos regarding the migration of memory pages resides
in the scarcity of data. Despite that the raw amount of samples regarding memory
operations is high enough to have a general overview of how a process is doing in
terms of latency or remote accesses, it is not enough to highlight problems related to
particular memory pages.

Figures 4.38 to 4.39 show the number of memory pages from which a certain
quantity of samples have been gathered during the execution of the benchmark LU.D
in Server ctnuma1, which uses 2.40 million pages as reported by the information
located at /proc.

These figures show the scarcity of the information provided from the hardware
performance counters samples. When processing small pages, less than 50 % of the
pages have been sampled at least once during the execution of the benchmark. Also,
the memory samples received every second cover only 0.30 % of the memory pages
present in the system. The situation is aggravated when requiring 10 samples per
page since only 0.16 % of the pages have produced such samples at the end of the
execution. Every second, the number of pages which received 10 or more samples
represents only the 0.01 % of the total.

Treating pages using fTHPs improves the situation slightly. The 93.60 % of the
fTHPs have been sampled at least once during the execution. A similar number of
fTHPs—93 %—produced 10 or more samples. However, the number of regions sampled
per second oscillates significantly during the execution time. Between 10 % and 50 %
of the fTHPs are sampled each second, but only 1 % of the pages have been sampled
10 times or more.

Handling 1 % of the pages is usually not enough to produce relevant changes in
performance in most scenarios. Note that aiming to have information about every page
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Figure 4.38: Percentage of memory pages with at least n samples for the benchmark LU.D in Server
ctnuma1.
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Figure 4.39: Percentage of fTHPs with at least n samples for the benchmark LU.D in Server ct-
numa1.

131



Ruben Laso Rodŕıguez

in the system is not realistic either, since most codes exploit locality and only use a
reduced set of the memory pages allocated within a short period of time. Furthermore,
it is also possible that once a memory page is used, it will not be used again for a long
time, or never at all.

Given the numbers, it is possible to state that memory migration is a difficult task
for user-space tools. The correct preallocation of resources is of paramount importance
in the codes used in the HPC. Considering that samples are only obtained when
expensive memory operations are performed, user-space tools can only act a posteriori.
Therefore, user space tools like Thanos are less likely to improve performance via
memory pages migration.

The most significant contributions of this chapter are published and extracted
from the subsequent articles:

• O. Garćıa Lorenzo, R. Laso Rodŕıguez, T. Fernández Pena, J. C. Cabaleiro
Domı́nguez, F. Fernández Rivera, and J. Á. Lorenzo del Castillo, “A new
hardware counters based thread migration strategy for NUMA systems”, in
Parallel Processing and Applied Mathematics, R. Wyrzykowski, E. Deelman,
J. Dongarra, and K. Karczewski, Eds., Cham: Springer International Pub-
lishing, 2020, pp. 205–216, isbn: 978-3-030-43222-5. doi: https://doi.or

g/10.1007/978-3-030-43222-5_18.

• R. Laso, O. G. Lorenzo, F. F. Rivera, J. C. Cabaleiro, T. F. Pena, and J. A.
Lorenzo, “LBMA and IMAR2: Weighted lottery based migration strategies
for NUMA multiprocessing servers”, Concurrency and Computation: Prac-
tice and Experience, vol. 33, no. 11, e5950, 2021. doi: https://doi.org/1

0.1002/cpe.5950.

• R. Laso, O. G. Lorenzo, J. C. Cabaleiro, T. F. Pena, J. Á. Lorenzo, and
F. F. Rivera, “CIMAR, NIMAR, and LMMA: Novel algorithms for thread
and memory migrations in user space on NUMA systems using hardware
counters”, Future Generation Computer Systems, vol. 129, pp. 18–32, 2022,
issn: 0167-739X. doi: https://doi.org/10.1016/j.future.2021.11.00

8.
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Chapter 5

Conclusions

I have spoken.
— Kuiil, The Mandalorian.

This work has faced the challenge of optimising the workload distribution in two
different environments, each with its characteristics, requiring different approaches and
solutions. This chapter gathers a summary of the problems addressed, the proposals
included in this work and the results obtained. Some conclusions and notes on future
work are included too.

5.1 CPU and GPU heterogeneous parallelism

The use of GPUs for general-purpose computing boosted the performance in diverse
scenarios where parallelism could be exploited. Nevertheless, using only the GPU
leaves the CPU idle, which is suboptimal in terms of resource management. For this
reason, exploiting heterogeneous parallelism is still a way to be explored in the search
for performance.

As shown in Chapter 2, IHP is proposed in this work to maximise the usage of
CPU and GPU to speed up the computations, particularly in iterative or time-step
methods. The global domain is divided into two subdomains that are assigned to
both kinds of computing units. Accordingly to the performance, the subdomains are
dynamically resized, so ideally the time spent by the CPU and the GPU is the same.
The initial version of the library, IHPv1 assumes a linear workload model, where
the execution time grows linearly with the workload. The second version, IHPv2
incorporates different models that are fitted to the real data so the best model is
selected. Additionally, IHPv2 includes additional mechanisms to reduce data transfers
between CPU and GPU.

Results show that IHPv1 reduces execution times on linear workloads by up to
55 %, compared to the GPU-only implementation. This improvement varies depending
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on whether single or double-precision operations are used. It is known that GPUs
struggle more with double-precision floating-point operations than CPUs, so this is
the scenario where the heterogeneous implementation works better. Compared to
other libraries, IHPv1 obtains superior results mainly because of a better calculation
of the workload share and reduced data transfers between CPU and GPU.

Furthermore, IHPv2 slightly improve the performance obtained by IHPv1 when
non-linear workloads are used. It is interesting to note that IHPv1 still performs well
in this scenario since the region in which the optimal workload share is located is
locally linear. Thus, once IHPv1 is close enough to the optimal, its performance is
similar to IHPv2. It is in the amount of data transfers where IHPv2 improves IHPv1,
but it is still a small improvement.

Regarding energy consumption, the heterogeneous solutions are not as efficient as
the GPU-only implementations. This is caused by the low efficiency of CPUs compared
to GPUs in parallel workloads.

Future work would comprehend the evaluation of these strategies in production
code or more complex benchmarks, like finite-element methods. Also, further adjust-
ments could be made in the kind of workloads contemplated in the model fitting of
IHPv2 as well as the exploration of automatically providing initial guesses for the
workload share. Finally, it would be interesting to explore the use of other accelera-
tors like FPGAs, the use of more than two computing units, or incorporate weights to
the workload share, so each piece of work is assigned a different amount of resources.

5.2 NUMA scheduling

NUMA systems present a complex architecture where it is complicated to extract the
maximum performance. In particular, it is the relation between execution threads
and memory operations where this complexity lies, performance-wise. Locality is key,
and local operations should be enforced to avoid increased latency when accessing
data from remote nodes. Nevertheless, a balance between local and remote mem-
ory operations should be found to avoid potential congestion in the interconnection
network.

The current—at the time of writing this work—Linux scheduler, named CFS, is
efficient and currently meets the performance expectations in most kinds of systems,
something to be praised given the ubiquity of Linux across very different systems. Even
though it considers several scheduling domains, distinguishing between physical and
logical CPUs, and even NUMA domains, it is still too focused on workload balancing.
Interesting patches have been progressively included in the kernel to mitigate that.
Particularly, Transparent Huge Pages and NUMA Balancing should be highlighted.
The first gathers consecutive memory pages and creates huge pages, which allow for
more efficient memory handling. The second, periodically unmaps memory pages and
migrates them to other NUMA nodes trying to improve locality. Despite the advances
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in the CFS, it is believed that there is still a margin for improvement regarding the
mapping of threads and memory pages in NUMA system.

In the search for better mappings, this work proposes a collection of algorithms
which are explained in Chapter 3. These strategies have been implemented in a user-
space tool named Thanos. This tool gathers information about performance, mainly
through hardware performance counters (HC), and the different algorithms use that
data to decide whether migrations are needed or not, which threads or pages should
be migrated and their destination.

Experimental results are presented in Chapter 4. Three experiments have been
designed according to three common uses for NUMA systems, namely: Single, Inter-
active and Queue. In the Experiment Single, only one task is executed with all the
resources available. In the Experiment Interactive, several small tasks are executed at
arbitrary moments emulating an interactive environment. In the Experiment Queue,
the system is kept busy all the time by emulating the behaviour of several users send-
ing tasks to a queue. In the search for completeness, two NUMA servers with different
characteristics have been used to carry out the experiments.

First, a comparison of CFS with and without the NB and THP patches have
been carried out, showing that enabling both patches can increase performance by up
to 47 %, particularly in scenarios where different benchmarks are running simultane-
ously. Thus, CFS with NB and THP is considered as the Baseline.

Second, a comparison between the Baseline, the common mapping options Inter-
leave and Direct, and the algorithms proposed included in Thanos have been per-
formed. Results show that the Direct mapping is a strong option in multitasking
environments, but is far from optimal when running a single benchmark. The perfor-
mance obtained with the Interleaved mapping differs between systems, where those in
which remote latency is smaller can benefit from the increased bandwidth. Otherwise,
the performance losses might be too big to be compensated.

Regarding the algorithms proposed in Chapter 3, three particular strategies should
be highlighted: CIMAR, NIMAR and SMA. Those algorithms, which migrate threads
only, manage to improve the execution times of the Baseline consistently across the
three experiments and the two systems. CIMAR and NIMAR are evolutions of the
IMAR2 algorithm and they differ in the way the threads are pinned. On one hand,
CIMAR pins threads to particular cores, which enforces a better use of the cache. On
the other, NIMAR pins the threads to NUMA nodes, so the workload balance within
the node is done by the OS. SMA uses a scoring system to find the global maximum
performance, potentially migrating all the threads of the system at each time. Those
workloads that make intensive use of the cache see better results with CIMAR, while
NIMAR and SMA are more suited to multitasking environments. Performance im-
provements go up to 46 % in Experiment Single, and up to 11 % in the multitasking
experiments.

Little improvements could be achieved by migrating memory pages due to the
scarcity of the information provided by the hardware counters. Measurements show
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that sampling through HC provides 10 samples or more for only 1 % of the pages.
Further experiments have been carried out, noting that migrating that low number of
pages is usually negligible when trying to improve performance.

Finally, the impact of the proposed strategies regarding energy has been measured.
Data shows a strong correlation between execution times and energy consumption, the
latter growing linearly with the execution times. Thus, the algorithms implemented
in Thanos produce significant energy savings, up to 40 % for individual tasks and up
to 12 % in multitasking environments.

As a matter of future work, new strategies might be developed, mainly combining
the decisions of threads with the memory pages of the same process. Also, it should
be considered to incorporate the algorithms into the Linux kernel via kernel modules,
patches or using other alternatives like ghOSt [114]. The coupling between CFS and
the proposals included in this work should improve the decision quality and allow the
introduction of other features like the correct preallocation of resources, which is not
possible when working in user space.

5.3 Contributions

Attending to the objectives of this PhD dissertation and the aforementioned work and
results, it is possible to summarise the main contributions of this PhD dissertation as
follows:

• Articles in peer-reviewed journals:

– R. Laso, O. G. Lorenzo, J. C. Cabaleiro, T. F. Pena, J. Á. Lorenzo, and
F. F. Rivera, “CIMAR, NIMAR, and LMMA: Novel algorithms for thread
and memory migrations in user space on NUMA systems using hardware
counters”, Future Generation Computer Systems, vol. 129, pp. 18–32, 2022,
issn: 0167-739X. doi: https://doi.org/10.1016/j.future.2021.11.0

08.

– R. Laso, J. C. Cabaleiro, F. F. Rivera, M. C. Muñiz, and J. A. Álvarez-Dios,
“IHP: A dynamic heterogeneous parallel scheme for iterative or time-step
methods—image denoising as case study”, The Journal of Supercomputing,
vol. 77, no. 1, pp. 95–110, Jan. 2021. doi: https://doi.org/10.1007/s1

1227-020-03260-8.

– R. Laso, O. G. Lorenzo, F. F. Rivera, J. C. Cabaleiro, T. F. Pena, and J. A.
Lorenzo, “LBMA and IMAR2: Weighted lottery based migration strategies
for NUMA multiprocessing servers”, Concurrency and Computation: Prac-
tice and Experience, vol. 33, no. 11, e5950, 2021. doi: https://doi.org/1
0.1002/cpe.5950.

136

https://doi.org/https://doi.org/10.1016/j.future.2021.11.008
https://doi.org/https://doi.org/10.1016/j.future.2021.11.008
https://doi.org/https://doi.org/10.1007/s11227-020-03260-8
https://doi.org/https://doi.org/10.1007/s11227-020-03260-8
https://doi.org/https://doi.org/10.1002/cpe.5950
https://doi.org/https://doi.org/10.1002/cpe.5950


Chapter 5. Conclusions

– R. Laso, J. C. Cabaleiro, F. F. Rivera, M. C. Muñiz, and J. A. Álvarez-Dios,
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FLOPS floating-point operations per second 15, 16

FPGA Field Programmable Gate Array 18, 19, 23, 31, 134

FT 3-D Fast Fourier Transform 16, 17, 94, 98–101, 104, 112, 117, 123, 177, 178, 181,
182

fTHP fake Transparent Huge Page 70, 71, 128, 131, 156, see THP

GCC GNU Compiler Collection 20, 44, 45

GPGPU general-purpose computing on GPUs 1, 9, 12, 19, 22, 23, 29, 30, see GPU

GPU Graphics Processing Unit 1–3, 9–16, 18–23, 27, 29–33, 35, 37–39, 43, 45–51,
53, 54, 133, 134, 153, 158, 159, 171–175

HBM High Bandwidth Memory 16

HC hardware performance counters 4, 7, 10, 67, 99, 100, 128, 135, 136, 157

HPC high-performance computing 5, 9–11, 13–15, 18, 23, 31, 121, 132

HPCG High Performance Conjugate Gradient 15

I/O Input/Output 93, 94, 119

IHP Iterative Heterogeneous Parallelism 1, 2, 10, 12, 27, 31–36, 38, 40, 43–46, 48–51,
54, 133, 153

IHPv1 IHP version 1 2, 3, 35, 45, 47–51, 53–56, 133, 134, 157–159, 171–175, see IHP
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IHPv2 IHP version 2 2, 3, 35, 45, 47–51, 133, 134, 158, 159, 171–175, see IHP

IMAR2 Interchange and Migration Algorithm with performance Record and Roll-
back 4, 6, 73, 75–77, 79, 100–102, 104, 107, 108, 110, 112, 114, 116–118, 123,
135, 154, 155, 163, 177–182

IS Integer Sort 17, 94, 95, 98–101, 104, 112, 117, 118, 123, 155, 177, 178, 181, 182

kMAF kernel Memory Affinity Framework 64, 65

LBMA Lottery-Based Migration Algorithm 4, 72–75, 100, 101, 104, 107, 110, 112,
114, 117, 123, 155, 163, 177–182

LLC last level cache 23, 94, 95, 154

LMMA Latency Memory Migration Algorithm 5, 87–89, 101, 103, 104, 106, 107,
110, 112, 117, 119, 123, 154, 155, 163, 177–182

LU Lower-Upper Gauss-Seidel 17, 94, 96, 98–102, 104, 105, 107–110, 112, 114, 117,
121, 123, 128, 131, 154–156, 177–182

LWMA Linearly Weighted Moving Average 36

MG Multi-Grid 17, 94, 98–101, 104, 112, 117, 123, 177, 178, 181, 182

MSE Mean Squared Error 39

MVAS Multi-View Address Space 64, 65

NB NUMA Balancing 3–5, 10, 61, 97–99, 134, 135, see NUMA

nc-NUMA non cache-coherent NUMA see NUMA

NIMAR Node-aware Interchange and Migration Algorithm with performance Record
4, 6, 77, 79, 80, 101, 102, 104, 105, 107, 108, 110, 112, 114–117, 121, 123, 135,
154, 155, 163, 177–182, see IMAR

NPB NASA Advanced Supercomputing Parallel Benchmarks 5, 15–17, 26, 92, 94,
95, 97, 99, 100, 153, 154, see NAS

NUMA Non-Uniform Memory Access 1, 3–6, 9–14, 16, 17, 23–27, 59–62, 64, 65, 67,
69–71, 73, 77, 79, 81, 86, 87, 89, 91, 95, 97–100, 123, 134, 135, 153, 154

NVCC NVIDIA CUDA Compiler 20, 44, see CUDA

OI operational intensity 15, 17
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OoO out-of-order 16

OS operating system 10, 18, 26, 62–64, 77, 121, 135

PARSEC Princeton Application Repository for Shared-Memory Computers 64

PDE partial differential equation 40, 42

PEBS Precise Event Based Sampling 67, 68

PMU performance monitoring unit 63, 128

RM Roofline Model 15, 16

RMMA Random Memory Migration Algorithm 5, 85, 86, 101, 103, 104, 107, 110,
112, 116, 117, 123, 154, 163, 177–182

SA simulated annealing 81, 83

SDK Software Development Kit 23

SIMD single instruction, multiple data 15, 20

SIMT single instruction, multiple thread 20, 22

SM streaming multi-processors 20, 22

SMA Score Maximisation Algorithm 4, 6, 81–84, 101, 102, 104, 107–110, 112, 114–
117, 121, 123, 135, 154, 155, 163, 177–182

SP Scalar Penta-diagonal 17, 94, 96, 98–101, 103–105, 107, 108, 110, 112, 114–118,
123, 154, 155, 177–182

SPEC Standard Performance Evaluation Corporation 15

TBB Intel Thread Building Blocks 30, 31, 44, 45, 51, 158, 159, 174, 175

Thanos Thread & memory migration Algorithms for NUMA Optimised Scheduling
4, 5, 7, 10, 12, 27, 65, 67, 70–72, 91, 92, 98, 104, 106, 108, 111, 113, 116, 124,
128, 132, 135, 136

THP Transparent Huge Page 3, 5, 10, 62, 70, 71, 97–99, 134, 135

TLB Translation Lookaside Buffer 3, 62

TMMA Threshold Memory Migration Algorithm 5, 86–88, 101, 103, 104, 107, 110,
112, 117, 119, 123, 154, 155, 163, 177–182
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UA Unstructured Adaptive 17, 94, 98–101, 104, 112, 117, 123, 177, 178, 181, 182

UMA Uniform Memory Access 9, 14, 23–25, 153

WMSE Weighted Mean Squared Error 39
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Appendix A

Results of IHP

Brightness Chromaticity
Isotropic Anisotropic Isotropic Anisotropic

OpenMP 23.12 333.64 318.96 1010.56

CUDA 2.59 4.64 32.16 84.95

IHPv1

CPU 2.59 5.28 31.06 83.39
GPU 2.60 4.85 31.14 80.92
Copy 0.06 0.37 0.76 3.94
Total 2.59 5.28 31.06 83.39

IHPv2

CPU 2.26 0.42 30.02 80.39
GPU 2.42 4.54 30.45 80.36
Copy 0.07 0.02 0.65 0.07
Total 2.60 4.85 31.14 80.92

Table A.1: Execution time (in seconds) of CPU-only (with OpenMP), GPU-only (with CUDA),
IHPv1 (OpenMP + CUDA), and IHPv2 (OpenMP + CUDA) implementations using
linear workloads on Desktop system. Single-precision computations. Total execution
times noted in bold.
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Brightness Chromaticity
Isotropic Anisotropic Isotropic Anisotropic

OpenMP 12.59 168.09 161.43 509.77

CUDA 1.69 2.98 17.60 43.75

IHPv1

CPU 1.90 3.53 17.85 44.45
GPU 1.92 3.19 17.79 43.76
Copy 0.10 0.15 0.85 1.33
Total 1.90 3.53 17.85 44.45

IHPv2

CPU 1.49 0.37 16.74 42.34
GPU 1.65 2.88 16.95 42.56
Copy 0.16 0.03 0.64 1.74
Total 1.92 3.19 17.79 43.76

Table A.2: Execution time (in seconds) of CPU-only (with OpenMP), GPU-only (with CUDA),
IHPv1 (OpenMP + CUDA), and IHPv2 (OpenMP + CUDA) implementations using
logarithmic workloads on Desktop system. Single-precision computations. Total execu-
tion times noted in bold.

Brightness Chromaticity
Isotropic Anisotropic Isotropic Anisotropic

OpenMP 108.01 1661.45 1587.75 5046.31

CUDA 1.75 21.42 159.09 421.41

IHPv1

CPU 1.98 20.67 121.44 325.93
GPU 1.94 20.39 119.91 321.50
Copy 0.13 0.41 2.13 4.45
Total 1.98 20.67 121.44 325.93

IHPv2

CPU 1.61 19.98 118.25 319.35
GPU 1.71 19.91 118.47 319.60
Copy 0.11 0.02 0.09 0.08
Total 1.94 20.39 119.91 321.50

Table A.3: Execution time (in seconds) of CPU-only (with OpenMP), GPU-only (with CUDA),
IHPv1 (OpenMP + CUDA), and IHPv2 (OpenMP + CUDA) implementations using
exponential workloads on Desktop system. Single-precision computations. Total execu-
tion times noted in bold.
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Brightness Chromaticity
Isotropic Anisotropic Isotropic Anisotropic

OpenMP 44.97 344.25 269.63 983.91

CUDA 6.58 59.19 65.12 226.07

IHPv1

CPU 5.90 53.62 56.85 193.03
GPU 6.05 53.86 57.10 197.51
Copy 0.06 0.05 0.17 3.56
Total 6.11 55.05 57.41 200.54

IHPv2

CPU 5.74 52.94 56.84 194.20
GPU 6.10 54.16 57.42 197.31
Copy 0.06 0.05 0.17 2.29
Total 6.21 54.74 57.61 198.94

Table A.4: Execution time (in seconds) of CPU-only (with OpenMP), GPU-only (with CUDA),
IHPv1 (OpenMP + CUDA), and IHPv2 (OpenMP + CUDA) implementations using
linear workloads on Desktop system. Double-precision computations. Total execution
times noted in bold.

Brightness Chromaticity
Isotropic Anisotropic Isotropic Anisotropic

OpenMP 23.85 173.86 136.95 494.76

CUDA 3.07 31.16 34.17 114.60

IHPv1

CPU 3.05 28.90 31.22 102.98
GPU 3.09 29.69 31.90 106.19
Copy 0.12 0.92 1.05 4.51
Total 3.25 30.57 32.75 109.92

IHPv2

CPU 3.02 29.61 32.01 105.97
GPU 3.10 29.84 32.06 106.25
Copy 0.06 0.05 0.17 1.47
Total 3.19 29.94 32.31 107.63

Table A.5: Execution time (in seconds) of CPU-only (with OpenMP), GPU-only (with CUDA),
IHPv1 (OpenMP + CUDA), and IHPv2 (OpenMP + CUDA) implementations using
logarithmic workloads on Desktop system. Double-precision computations. Total exe-
cution times noted in bold.
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Brightness Chromaticity
Isotropic Anisotropic Isotropic Anisotropic

OpenMP 214.48 1711.84 1335.90 4910.33

CUDA 3.08 294.33 322.82 1125.00

IHPv1

CPU 2.66 194.90 194.32 682.31
GPU 2.64 196.17 196.80 683.16
Copy 0.09 0.81 0.18 0.18
Total 2.86 201.49 199.26 689.81

IHPv2

CPU 2.64 193.68 194.59 680.20
GPU 2.67 197.48 197.35 684.09
Copy 0.10 0.05 1.71 1.21
Total 2.86 201.13 199.01 689.73

Table A.6: Execution time (in seconds) of CPU-only (with OpenMP), GPU-only (with CUDA),
IHPv1 (OpenMP + CUDA), and IHPv2 (OpenMP + CUDA) implementations using
exponential workloads on Desktop system. Double-precision computations. Total exe-
cution times noted in bold.

Brightness Chromaticity
Isotropic Anisotropic Isotropic Anisotropic

TBB 7.03 72.76 70.89 246.86

OpenCL 4.98 61.21 54.51 134.59

IHPv1

CPU 4.49 35.95 33.06 93.21
GPU 4.74 37.85 35.43 98.25
Copy 0.09 2.01 2.32 5.08
Total 4.85 40.44 37.93 103.55

IHPv2

CPU 4.44 36.13 33.13 93.22
GPU 4.69 37.98 35.58 98.66
Copy 0.11 2.01 2.35 5.11
Total 4.80 40.63 38.00 103.75

Table A.7: Execution time (in seconds) of CPU-only (with TBB), GPU-only (with OpenCL), IHPv1
(TBB + OpenCL), and IHPv2 (TBB + OpenCL) implementations using linear work-
loads on Laptop system. Single-precision computations. Total execution times noted in
bold.
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Brightness Chromaticity
Isotropic Anisotropic Isotropic Anisotropic

TBB 3.69 35.59 35.65 122.75

OpenCL 15.49 31.43 28.68 68.34

IHPv1

CPU 3.49 23.34 22.32 61.20
GPU 5.34 27.27 24.41 63.68
Copy 0.66 2.33 1.80 2.71
Total 6.02 29.99 26.85 66.91

IHPv2

CPU 3.31 23.62 22.33 61.38
GPU 5.15 26.59 24.42 63.77
Copy 0.66 1.83 1.80 2.47
Total 6.03 28.43 26.88 66.90

Table A.8: Execution time (in seconds) of CPU-only (with TBB), GPU-only (with OpenCL), IHPv1
(TBB + OpenCL), and IHPv2 (TBB + OpenCL) implementations using logarithmic
workloads on Laptop system. Single-precision computations. Total execution times
noted in bold.

Brightness Chromaticity
Isotropic Anisotropic Isotropic Anisotropic

TBB 33.81 368.40 371.53 1235.94

OpenCL 136.13 299.02 262.19 520.04

IHPv1

CPU 18.08 109.29 103.53 289.56
GPU 21.71 111.26 105.27 296.04
Copy 0.99 5.05 5.49 17.08
Total 26.41 139.54 128.94 357.97

IHPv2

CPU 17.98 109.17 103.96 288.92
GPU 21.57 111.54 105.17 296.23
Copy 1.01 5.53 5.20 17.42
Total 26.10 137.64 127.33 353.54

Table A.9: Execution time (in seconds) of CPU-only (with TBB), GPU-only (with OpenCL), IHPv1
(TBB + OpenCL), and IHPv2 (TBB + OpenCL) implementations using exponential
workloads on Laptop system. Single-precision computations. Total execution times
noted in bold.
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Appendix B

Results on NUMA scheduling

Algorithm BT.C CG.C EP.D FT.C IS.D LU.C MG.D SP.C UA.C

Baseline 41 21 73 9.1 26 58 80 36 44
Direct 67 49 73 15.9 35 50 326 112 85
Interleave 46 22 74 10.1 28 34 174 54 52
CRA 45 21 73 9.1 29 35 148 52 54
LBMA 44 21 73 9.1 28 37 135 47 50
IMAR2 41 19 73 8.9 27 34 103 42 45
CIMAR 38 16 73 8.9 26 34 63 33 43
NIMAR 38 17 73 9.0 26 34 63 33 41
SMA 38 17 73 9.0 26 36 63 32 43
DyRMMA 38 20 71 8.0 24 53 70 35 41
LBMA+TMMA 44 21 73 8.8 28 33 138 47 51
IMAR2+TMMA 41 19 73 9.0 27 37 103 42 46
CIMAR+TMMA 39 17 74 9.1 26 32 64 33 43
NIMAR+TMMA 38 18 73 8.8 26 31 66 33 42
SMA+TMMA 38 17 74 8.8 26 32 66 33 42
DyRMMA+TMMA 38 20 71 8.4 24 41 72 35 42
LBMA+LMMA 43 21 73 8.9 28 37 135 47 51
IMAR2+LMMA 42 19 73 8.8 27 32 104 43 46
CIMAR+LMMA 39 16 73 8.8 26 33 65 34 42
NIMAR+LMMA 38 17 74 9.1 26 31 66 32 42
SMA+LMMA 38 17 73 8.8 26 32 65 33 41
DyRMMA+LMMA 39 18 71 8.3 24 46 72 36 41
RMMA 77 42 74 9.5 30 129 126 81 184
TMMA 41 20 74 9.0 27 50 75 35 43
LMMA 41 20 73 8.8 26 51 76 32 44

Table B.1: Execution times (in seconds) for Experiment Single in Server ct1. Lower is better.
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Algorithm BT.C CG.C EP.D FT.C IS.D LU.C MG.D SP.C UA.C

Baseline 23 7.68 18 8.29 7.20 44 59 24 40
Direct 61 20.12 18 20.93 31.83 62 367 127 99
Interleave 17 8.70 18 3.98 7.02 15 68 20 34
CRA 19 7.87 19 6.68 7.27 29 61 21 38
LBMA 20 8.26 18 6.49 7.31 39 58 21 36
IMAR2 20 7.93 18 7.26 7.44 25 57 22 36
CIMAR 19 8.18 18 6.71 7.30 23 57 21 34
NIMAR 19 7.75 18 6.73 7.47 32 57 21 35
SMA 21 7.86 18 6.28 7.25 28 58 22 35
DyRMMA 19 9.15 18 6.89 7.37 25 64 22 39
LBMA+TMMA 19 7.71 18 6.70 7.28 27 59 21 36
IMAR2+TMMA 19 7.82 18 7.25 7.40 26 57 21 36
CIMAR+TMMA 21 8.37 18 7.18 7.35 30 62 22 36
NIMAR+TMMA 18 7.77 18 5.93 7.30 28 60 21 36
SMA+TMMA 20 8.14 18 6.79 7.21 25 58 22 36
DyRMMA+TMMA 24 7.66 18 7.60 7.16 29 68 22 38
LBMA+LMMA 20 7.53 18 6.96 7.33 27 58 21 36
IMAR2+LMMA 20 7.99 18 6.55 7.40 27 61 22 36
CIMAR+LMMA 21 7.84 18 6.51 7.22 27 63 21 36
NIMAR+LMMA 19 7.40 18 7.66 7.36 33 59 21 36
SMA+LMMA 20 7.86 18 7.08 7.29 34 59 23 36
DyRMMA+LMMA 19 7.62 18 6.65 7.29 36 66 21 38
RMMA 30 7.89 18 7.37 7.31 82 64 33 73
TMMA 23 8.07 19 7.63 7.36 43 60 24 41
LMMA 20 8.04 18 7.27 7.25 45 62 23 43

Table B.2: Execution times (in seconds) for Experiment Single in Server ct2. Lower is better.
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Algorithm BT.C CG.C LU.C SP.C Total Accum.

Baseline 158.6 86.6 105.4 99.3 414.0 902.1
Direct 151.8 47.7 94.5 90.8 407.0 769.6
Interleave 168.6 100.8 111.4 118.6 430.0 999.9
CRA 185.1 108.5 123.1 132.2 451.0 1,098.5
LBMA 194.6 112.2 128.2 134.0 454.0 1,139.0
IMAR2 167.7 85.9 110.7 108.1 423.0 952.1
CIMAR 152.3 49.9 104.9 83.1 400.0 783.5
NIMAR 156.3 57.7 107.3 89.8 403.0 822.6
SMA 154.1 50.7 108.2 83.8 403.0 791.7
DyRMMA 170.5 99.0 113.8 121.2 437.0 1,009.0
LBMA+TMMA 194.0 104.3 129.4 132.5 451.0 1,124.0
IMAR2+TMMA 167.3 78.2 112.6 108.4 421.0 930.8
CIMAR+TMMA 153.3 50.1 106.6 83.9 404.0 789.6
NIMAR+TMMA 156.7 51.8 108.3 88.9 405.0 805.4
SMA+TMMA 155.6 50.2 108.3 87.9 402.0 802.1
DyRMMA+TMMA 170.5 96.3 113.2 121.1 437.0 1,001.9
LBMA+LMMA 190.6 110.7 130.5 132.9 452.0 1,128.0
IMAR2+LMMA 164.8 79.1 110.7 110.0 429.0 940.7
CIMAR+LMMA 153.5 51.3 106.6 83.8 402.0 787.6
NIMAR+LMMA 156.0 53.7 108.6 85.6 403.0 809.6
SMA+LMMA 156.0 50.2 108.0 84.2 403.0 791.6
DyRMMA+LMMA 169.9 97.3 113.7 121.9 436.0 1,005.4
RMMA 196.2 102.8 151.9 146.6 458.0 1,194.4
TMMA 161.0 69.1 105.2 97.2 414.0 875.2
LMMA 160.3 83.3 105.9 102.5 417.0 903.4

Table B.3: Execution times (in seconds) for Experiment Interactive in Server ct1. Lower is better.
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Algorithm BT.C CG.C LU.C SP.C Total Accum.

Baseline 54.3 26.9 45.2 45.3 204.0 340.9
Direct 100.4 32.8 1,282.3 110.4 1,440.0 3,052.7
Interleave 53.4 29.8 41.0 45.7 202.0 340.0
CRA 59.0 35.2 48.7 51.4 209.0 385.7
LBMA 57.3 23.2 50.9 47.7 205.0 362.1
IMAR2 53.6 21.1 45.9 44.2 202.0 329.0
CIMAR 52.9 20.4 46.0 42.5 202.0 329.4
NIMAR 56.5 22.0 45.1 46.5 203.0 339.8
SMA 54.6 21.3 48.4 43.0 199.0 334.5
DyRMMA 57.8 34.2 45.4 52.1 210.0 376.9
LBMA+TMMA 59.7 22.6 55.3 48.2 206.0 363.2
IMAR2+TMMA 53.5 20.6 48.2 43.7 199.0 333.6
CIMAR+TMMA 56.8 21.7 48.2 44.7 201.0 347.3
NIMAR+TMMA 55.8 24.6 45.1 46.5 203.0 339.9
SMA+TMMA 54.1 20.6 45.9 41.4 197.0 324.4
DyRMMA+TMMA 59.4 34.9 48.1 52.4 209.0 391.4
LBMA+LMMA 56.6 21.8 48.1 47.3 205.0 345.9
IMAR2+LMMA 54.3 22.3 49.5 44.3 201.0 347.4
CIMAR+LMMA 53.3 20.3 45.8 43.8 202.0 324.3
NIMAR+LMMA 55.0 24.2 44.8 44.6 200.0 336.8
SMA+LMMA 54.5 19.4 44.0 41.0 197.0 320.4
DyRMMA+LMMA 58.0 34.5 47.1 51.5 209.0 380.6
RMMA 63.0 34.6 69.8 65.1 220.0 467.3
TMMA 54.2 27.3 46.0 46.2 205.0 350.3
LMMA 54.9 26.1 45.8 44.5 203.0 341.4

Table B.4: Execution times (in seconds) for Experiment Interactive in Server ct2. Lower is better.
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Algorithm BT.C CG.C EP.D FT.C IS.D LU.C MG.D SP.C UA.C Total Accum.

Baseline 145 75 292 31 89 98 240 111 139 1,325 4,888
Direct 133 44 291 29 54 85 199 90 126 1,129 4,220
Interleave 169 122 296 35 145 116 359 160 181 1,732 6,343
CRA 150 78 293 31 110 105 258 113 142 1,407 5,197
LBMA 146 77 291 30 100 107 240 110 149 1,416 5,052
IMAR2 147 82 292 31 101 104 234 111 160 1,392 5,072
CIMAR 144 64 293 31 94 96 185 96 123 1,284 4,587
NIMAR 139 53 292 30 94 97 171 85 120 1,190 4,344
SMA 139 52 292 30 95 96 166 83 119 1,188 4,311
DyRMMA 157 105 292 35 124 109 323 131 156 1,554 5,753
LBMA+TMMA 147 75 293 31 99 104 246 111 157 1,413 5,078
IMAR2+TMMA 144 76 309 31 102 99 242 106 139 1,392 5,027
CIMAR+TMMA 145 61 297 31 94 97 179 92 128 1,292 4,477
NIMAR+TMMA 139 53 292 30 92 98 174 85 122 1,199 4,384
SMA+TMMA 139 51 292 30 96 96 169 84 122 1,182 4,337
DyRMMA+TMMA 156 100 293 35 124 110 330 131 158 1,566 5,784
LBMA+LMMA 139 75 317 31 101 99 238 110 148 1,413 5,059
IMAR2+LMMA 147 74 292 32 106 104 254 111 143 1,401 5,101
CIMAR+LMMA 144 52 293 30 94 95 166 87 118 1,214 4,283
NIMAR+LMMA 138 53 292 30 97 98 173 84 121 1,196 4,371
SMA+LMMA 140 51 292 30 96 98 160 84 121 1,183 4,312
DyRMMA+LMMA 156 99 292 35 123 109 325 130 156 1,549 5,721
RMMA 194 103 294 34 98 128 272 180 192 1,611 6,013
TMMA 143 61 292 31 92 97 240 110 143 1,327 4,850
LMMA 145 69 292 31 90 96 237 106 144 1,314 4,848

Table B.5: Execution times (in seconds) for Experiment Queue in Server ct1. Lower is better.
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Algorithm BT.C CG.C EP.D FT.C IS.D LU.C MG.D SP.C UA.C Total Accum.

Baseline 103 61 137 24 46 82 274 113 180 1,138 8,174
Direct 92 34 135 20 29 69 260 100 158 1,025 7,216
Interleave 117 89 142 26 62 94 325 142 215 1,332 9,713
CRA 109 67 137 23 52 88 276 118 187 1,195 8,480
LBMA 98 55 143 22 47 82 234 108 174 1,112 7,757
IMAR2 116 75 136 24 57 92 304 129 213 1,241 9,183
CIMAR 102 51 138 21 50 86 232 96 187 1,061 7,805
NIMAR 100 48 136 21 47 78 219 101 171 1,058 7,387
SMA 104 56 138 22 48 84 242 109 179 1,120 7,893
DyRMMA 103 51 136 21 48 88 234 103 185 1,068 7,765
LBMA+TMMA 99 48 134 21 46 81 213 101 172 1,021 7,378
IMAR2+TMMA 117 69 136 23 58 92 305 131 218 1,253 9,238
CIMAR+TMMA 104 51 134 21 48 84 231 99 187 1,062 7,720
NIMAR+TMMA 101 49 137 21 45 83 221 101 174 1,038 7,455
SMA+TMMA 105 60 139 22 48 83 260 112 184 1,160 8,158
DyRMMA+TMMA 105 50 137 22 47 85 228 98 183 1,064 7,682
LBMA+LMMA 100 47 138 22 47 82 217 102 172 1,037 7,470
IMAR2+LMMA 116 72 138 23 57 93 304 130 218 1,247 9,234
CIMAR+LMMA 104 49 134 21 49 85 231 100 186 1,062 7,689
NIMAR+LMMA 98 48 138 21 45 83 225 99 174 1,034 7,465
SMA+LMMA 105 55 141 24 48 84 255 110 181 1,124 8,024
DyRMMA+LMMA 104 48 136 21 48 85 228 99 187 1,055 7,697
RMMA 113 63 135 24 50 92 290 126 193 1,195 8,760
TMMA 103 55 139 24 48 85 274 111 179 1,137 8,163
LMMA 105 56 135 24 49 83 268 111 177 1,145 8,123

Table B.6: Execution times (in seconds) for Experiment Queue in Server ct2. Lower is better.
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Derived publications
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issn: 0167-739X. doi: https://doi.org/10.1016/j.future.2021.11.0

08.
Impact factor (JCR 2021): 7.307.
Category: Computer Science, Theory & Methods.
Rank: 10/110.
Contributions: Development of the algorithms, implementation of the
software, design of the experiments, analysis of the results and writing of
the article.

– R. Laso, J. C. Cabaleiro, F. F. Rivera, M. C. Muñiz, and J. A. Álvarez-Dios,
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1227-020-03260-8.
Impact factor (JCR 2021): 2.557.
Category: Computer Science, Theory & Methods.
Rank: 43/110.
Contributions: Development of the algorithms regarding workload bal-
ance, implementation of the software, design of the experiments, analysis
of the results and writing of the article.

https://doi.org/https://doi.org/10.1016/j.future.2021.11.008
https://doi.org/https://doi.org/10.1016/j.future.2021.11.008
https://doi.org/https://doi.org/10.1007/s11227-020-03260-8
https://doi.org/https://doi.org/10.1007/s11227-020-03260-8


Ruben Laso Rodŕıguez

– R. Laso, O. G. Lorenzo, F. F. Rivera, J. C. Cabaleiro, T. F. Pena, and J. A.
Lorenzo, “LBMA and IMAR2: Weighted lottery based migration strategies
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This thesis faces the challenges on dynamic workload 
optimisation and workload balancing in two different problems: 
in conventional systems using heterogeneous (CPU and GPU) 
parallelism, and in NUMA systems.
On one hand, a library named IHP is proposed. Dynamically, the 
performance of the CPU and GPU is evaluated so the 
workload is divided accordingly. Results show that execution 
times can be improved between 3% and 55% depending on 
the code and the performance of the computing units.
On the other hand, a tool for the migration of threads and 
memory pages in NUMA systems has been developed. This tool 
incorporates several algorithms that, considering performance 
measurements, decide whether a migration is required. 
Experiments show that performance can be improved by up to 
47%, particularly in multi-tasking scenarios.
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