
i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page i — #1 i
i

i
i

i
i

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

CiTiUS Centro Singular de Investigación en Tecnoloxías da Información

PhD Dissertation

HARDWARE COUNTER BASED PERFORMANCE
ANALYSIS, MODELLING, AND IMPROVEMENT

THROUGH THREAD MIGRATION IN NUMA
SYSTEMS

Author:

Oscar García Lorenzo

PhD Supervisors:

José Carlos Cabaleiro Domínguez

Tomás Fernández Pena

January 2016

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page ii — #2 i
i

i
i

i
i

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page iii — #3 i
i

i
i

i
i

José Carlos Cabaleiro Domínguez, Profesor Titular de Universidad del Área de Arquitectura de

Computadores de la Universidad de Santiago de Compostela

Tomás Fernández Pena, Profesor Titular de Universidad del Área de Arquitectura de Computadores

de la Universidad de Santiago de Compostela

HACEN CONSTAR:

Que la memoria titulada HARDWARE COUNTER BASED PERFORMANCE ANALYSIS, MOD-

ELLING, AND IMPROVEMENT THROUGH THREAD MIGRATION IN NUMA SYSTEMS

ha sido realizada por D. Oscar García Lorenzo bajo nuestra dirección en el Centro Singular de Inves-

tigación en Tecnoloxías da Información de la Universidad de Santiago de Compostela, y constituye la

Tesis que presenta para obtar al título de Doctor.

January 2016

HEREBY CERTIFY:

That the dissertation entitled HARDWARE COUNTER BASED PERFORMANCE ANALYSIS,

MODELLING, AND IMPROVEMENT THROUGH THREAD MIGRATION IN NUMA SYS-

TEMS has been developed D. Oscar García Lorenzo under our direction at the Centro Singular de

Investigación en Tecnoloxías da Información (CiTiUS) of the Universidad de Santiago de Compostela,

in fullfilment of the requirements for the Degree of Doctor of Philosophy.

January 2016

José Carlos Cabaleiro Domínguez

Codirector de la tesis

Tomás Fernández Pena

Codirector de la tesis

Oscar García Lorenzo

Autor de la tesis

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page iv — #4 i
i

i
i

i
i

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page v — #5 i
i

i
i

i
i

Agradecimentos/Acknowledgments

Galician Supercomputing Centre, Centro Tecnolóxico de Supercomputación de Galicia (CESGA).

Red de Computación de Altas Prestaciones sobre Arquitecturas Paralelas Heterogéneas (CAPAP-

H). (CAPAP-H4 TIN2011-15734-E).

Galician network under the Consolidation Program of Competitive Research Units (Network

ref. R2014/041)

European network HiPEAC-2

Computer Architecture & Operating Systems Department (CAOS), Departamento de Arqui-

tectura de Computadores y Sistemas Operativos, Universitat Autònoma de Barcelona.

High Performance and Distributed Computing Research Cluster, Queen’s University of Belfast

This work has been partially supported by the Ministry of Education and Science of Spain,

FEDER funds under contracts TIN 2010-17541 and TIN 2013-41129P, and by the Xunta

de Galicia (Spain) under contracts 2010/28, EM2013/041 and GRC2014/008, and project

09TIC002CT

January 2016

v

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page vi — #6 i
i

i
i

i
i

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page vii — #7 i
i

i
i

i
i

Contents

Introduction 1

1 Processors, NUMA and HC 3

1.1 Multicore processors and NUMA systems 3

1.1.1 Symmetric multiprocessors . 5

1.1.2 Distributed shared memory . 6

1.1.3 Memory gap . 7

1.1.4 Locality and affinity . 8

1.1.5 Thread migration . 9

1.2 Intel processors . 10

1.2.1 Itanium . 10

1.2.2 Sandy Bridge . 12

1.3 Hardware counters . 13

1.3.1 EAR counters . 15

1.3.2 PEBS . 17

1.3.3 Floating Point overcounting . 23

1.4 Recap . 24

2 Analysis of memory accesses in SMPs 25

2.1 Performance monitoring . 26

2.2 Information capture with HC . 28

2.2.1 Data capture tool . 28

vii

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page viii — #8 i
i

i
i

i
i

viii CONTENTS

2.2.2 Instrumentation tool . 29

2.3 Data visualisation . 31

2.3.1 Visualisation tool . 33

2.4 Case studies . 36

2.4.1 Sparse Matrix Vector Product . 38

2.4.2 Vector-vector dot product, SDOT 40

2.5 Recap . 42

3 Performance models based on runtime information 45

3.1 Berkeley Roofline Model . 46

3.1.1 Adding ceilings . 50

3.2 Roofline Model extensions . 53

3.2.1 Dynamic Roofline Model . 53

3.2.2 Latency Extended Dynamic Roofline Model 55

3.3 Performance analysis tool . 56

3.3.1 Performance visualisation tool . 58

3.4 Case studies . 60

3.4.1 Overhead of data capture . 60

3.4.2 Floating Point overcounting . 64

3.4.3 Effect of compiler optimisations . 66

3.4.4 Effect of the problem size . 66

3.4.5 Comparison among processors . 70

3.4.6 The effect of latency . 70

3.5 Recap . 72

4 Thread migration based on runtime information 75

4.1 Introduction . 75

4.2 Migration strategies and algorithms . 77

4.2.1 IMA Interchange Migration Algorithm 78

4.2.2 IMAR Interchange Migration Algorithm with performance Record . . 79

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page ix — #9 i
i

i
i

i
i

CONTENTS ix

4.2.3 IMAR2 Interchange Migration Algorithm with performance Record

Rollback . 82

4.2.4 IMAR example . 83

4.3 Migration tool . 86

4.4 Case Studies: SDOT and SAXPY . 87

4.4.1 The SDOT and SAXPY routines . 87

4.4.2 The implementations . 88

4.4.3 Selection of parameters . 88

4.4.4 Results for IMA . 89

4.5 NAS Case Studies . 94

4.5.1 NAS implementations . 94

4.5.2 Baseline results . 95

4.5.3 Study of traces . 98

4.5.4 Case study on two nodes with IMAR 105

4.5.5 Case study on four nodes with IMAR 108

4.5.6 Results with IMAR2 . 111

4.6 Recap . 115

Conclusions and Future Work 117

4.7 Publications . 121

Summary of the thesis 125

Appendix - NAS Parallel Benchmark Suite 135

*

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page x — #10 i
i

i
i

i
i

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 1 — #11 i
i

i
i

i
i

Introduction

While for most of the history of computing programming and execution was sequential, one

instruction followed another, with few exceptions, on the last ten years this paradigm has

completely changed. Modern computer systems are based on multicore processors, which

means parallel programming and execution is now dominant, when before it was mostly the

realm of high performance computing. This change has brought many challenges, not all of

them solved. Parallel programming is inherently more difficult than sequential programming.

If, during the 20th century, it could be taken for granted that someone who needed parallel

programming would at least have access to expert knowledge, this is no longer the case. As

such, all approaches to make parallel programming more accessible are welcomed.

A parallel computer system where all its components are equal and have the same per-

formance is simpler to program for. Unfortunately, these systems do not allow for the higher

peak performance or for enough flexibility to carry out a variety of tasks. This is why,

nowadays, many computers are of a heterogeneous nature, mixing different architectural ap-

proaches in the same system. But even on those computers apparently simpler, like shared

memory systems with multiple processors, imbalances negatively affect performance. These

systems are prevalent on internet servers and workstations, and are the foundation of high per-

formance supercomputers. In this work, a series of tools, applications and models designed

to help the programming of these systems, and even to improve their performance without

direct user intervention, are presented.

The advantages modern processors give for performance monitoring allow the users to

gain insight on the execution of their applications. Nevertheless, the performance information

1

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 2 — #12 i
i

i
i

i
i

2 Introduction

processors give may not be used to analyse program improvements in a straightforward way.

This information may be complex and, by virtue of its detail, extensive. During this work,

the tools and models presented take advantage of these facilities to offer the users a clear

view of the behaviour of their codes to tackle actual issues that affect performance. With

the experience acquired developing these tools and models, an application to automatically

improve the performance of parallel applications or mixed workloads was implemented and

tested.

In Chapter 1, the shared memory computers that are the scope of this work are pre-

sented, along with the performance monitoring facilities of modern Intel processors. Chap-

ter 2 presents a set of memory accesses analysis tools, designed to allow its users to under-

stand the data locality and data placement of their codes. Its usefulness in a series of cases

is shown. A new performance model, based on the Berkeley Roofline Model, is introduced

in Chapter 3, alongside with a set of tools to simplify the task of obtaining it, is presented.

A series of applications of the model are presented to highlight its usefulness. Finally, in

Chapter 4, a tool to improve the performance in parallel computers is presented. This tool

automatically places and migrates threads during execution, using different strategies. Those

proposals are detailed and tested, clearly showing the importance of thread and data place-

ment for performance.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 3 — #13 i
i

i
i

i
i

Chapter 1

Multicore Processors, NUMA

Systems and Hardware Counters

Throughout this work we will be dealing with shared memory computer systems composed

of various multicore processors. This chapter describes the main characteristics of these

systems, as well as the configuration of the actual computers used. More specifically, the per-

formance monitoring facilities of the modern Intel processors are described. These facilities

allow to obtain during runtime a number of useful performance information, which can be

used to increase the performance the execution of programs.

1.1 Multicore processors and NUMA systems

This work focuses on multiprocessors, which has been defined [22] as computers consisting

of tightly coupled processors whose coordination and usage are typically controlled by a sin-

gle operating system and that share memory through a shared address space. Such systems

exploit thread-level parallelism through two different software models. The first one is the

execution of a tightly coupled set of threads collaborating on a single task, which is typically

called parallel processing. The second one is the execution of multiple, relatively indepen-

dent processes that may originate from one or more users, which is a kind of request-level

3

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 4 — #14 i
i

i
i

i
i

4 Chapter 1. Processors, NUMA and HC

parallelism. Request-level parallelism may be exploited by a single application running on

multiple processors, such as a database responding to queries, or multiple applications run-

ning independently, often called multiprogramming. The multiprocessors typically range in

size from a dual processor to dozens of processors with several cores each, and communi-

cating and coordinating through the sharing of memory. Although sharing through memory

implies a shared address space, it does not necessarily mean that there is a single physical

memory. Such multiprocessors include both single-chip systems with multiple cores, known

as multicore, and computers consisting of multiple chips, each of which may be a multicore

processor. In addition to true multiprocessors, the multithreading technique supports multiple

threads executing in an interleaved way on a single multiple issue processor. Many multicore

processors also include support for multithreading.

To take advantage of a multiprocessor with n cores, we must usually have at least n

threads or processes to execute [22]. The independent threads within a single process are

typically identified by the programmer or created by the operating system (from multiple

independent requests). At the other extreme, a thread may consist of a few tens of iterations of

a loop, generated by a parallel compiler exploiting data parallelism in the loop. Although the

amount of computation assigned to a thread, called the grain size, is important in considering

how to exploit thread-level parallelism efficiently, the essential qualitative distinction from

instruction-level parallelism is that thread-level parallelism is identified at a high level by

the software system or programmer. Also, each thread consists of hundreds to millions of

instructions that may be executed in parallel. Threads can also be used to exploit data-level

parallelism, although the overhead is likely to be higher than would be seen with an Single

Instruction, Multiple Data (SIMD) [22] processor or with a GPU.

Existing shared-memory multiprocessors fall into two classes, depending on the number

of cores involved, which in turn dictates a memory organisation and interconnect strategy. We

refer to the multiprocessors by their memory organisation because what constitutes a small

or large number of processors is likely to change over time. These two classes are called

symmetric (shared-memory) multiprocessors (SMPs) [22] and distributed shared memory

(DSM) [22]. In both architectures, communication among threads can be performed through

a shared address space, meaning that a memory reference can be made by any processor to

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 5 — #15 i
i

i
i

i
i

1.1. Multicore processors and NUMA systems 5

Figure 1.1: Architecture of a centralised shared-memory multiprocessor based on a multicore chip [22].

any memory location. The term shared memory associated with both SMP and NUMA refers

to the fact that the address space is shared. These two architectures are detailed in the next

subsections.

1.1.1 Symmetric multiprocessors

The first group, which has been called symmetric (shared-memory) multiprocessors (SMPs) [22],

or centralised shared-memory multiprocessors, features a small numbers of processors or

cores, typically eight or fewer. Those processors are highly coupled. For multiprocessors

with such small processor counts, it is possible to share a single centralised physical mem-

ory that all processors have equal access to, hence the term symmetric. In multicore chips,

the memory is effectively shared in a centralised fashion among the cores, and all existing

multicores are SMPs. An example of SMPs are the multicore chips (Figure 1.1), where the

memory is effectively shared in a centralised fashion among the cores.

SMP architectures are also sometimes called uniform memory access (UMA) multipro-

cessors, arising from the fact that all processors have a uniform latency from memory, even

if the memory is organised into multiple banks.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 6 — #16 i
i

i
i

i
i

6 Chapter 1. Processors, NUMA and HC

Figure 1.2: The basic architecture of a distributed-memory multiprocessor typically consists of a mul-

ticore multiprocessor chip with memory and possibly I/O attached and an interface to an

interconnection network that connects all the nodes [22].

1.1.2 Distributed shared memory

The alternative design approach consists of multiprocessors with physically distributed, and

logically shared, memory, and it has been called distributed shared memory (DSM) [22]. Pro-

cessors are loosely coupled. Figure 1.2 shows the basic organisation of these multiprocessors.

To support larger processor counts, memory must be distributed among the processors

rather than centralised; otherwise, the memory system would not be able to support the band-

width demands of a larger number of processors without incurring in excessively long access

latency. Given the fast increase in processor performance and the associated increase in a

processor’s memory bandwidth requirements, the size of a multiprocessor for which dis-

tributed memory is preferred continues to shrink. The introduction of multicore processors

has meant that even two-chip multiprocessors may use distributed memory. The larger num-

ber of processors or cores also raises the need for a high- bandwidth interconnect. Both

directed networks (i.e., switches) and indirect networks (often multidimensional meshes) are

used.

Distributing the memory among the nodes both increases the bandwidth and reduces the

latency to local memory. A DSM multiprocessor is also called a NUMA (NonUniform Mem-

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 7 — #17 i
i

i
i

i
i

1.1. Multicore processors and NUMA systems 7

ory Access), since the access time depends on the location of a data word in memory. This

will be the preferred term in this work, because it will be dealing mostly with issues related to

memory accesses. The key disadvantages for a NUMA system are, first, that communicating

data among processors becomes somewhat more complex, and, second, that a NUMA system

requires more effort in the software to take advantage of the increased memory bandwidth af-

forded by distributed memories. Under NUMA, a processor can access its own local memory

faster than non-local memory (local to another processor). Because almost all multicore-

based multiprocessors with more than one processor chip (or socket) use distributed memory,

we will explain the operation of distributed memory multi- processors from this viewpoint.

With NUMA, maintaining cache coherence across shared memory has a significant over-

head. Cache coherent NUMA (ccNUMA) systems use inter-processor communication among

cache controllers to keep a consistent memory image when more than one cache stores the

same memory location. For this reason, ccNUMA may perform poorly when multiple pro-

cessors attempt to access the same memory area in rapid succession. Support for NUMA in

operating systems attempts to reduce the frequency of this kind of accesses by allocating pro-

cessors and memory in concurrent ways, improving the performance by means of exploiting

the so called affinity [54].

Many OS have included support for ccNUMA, specifically in Linux, processor cores and

memory are logically distributed in nodes, which closely mimic the hardware distribution. In

multiprocessor systems there is usually one multicore processor per node, that consists of the

cores in one processor and their local memory. As with ccNUMA processes, threads and data

may be placed in any node or combination of them, it is expected that data accesses between

cores and memory of the same node to be faster. These node assignment can be modified

by an user to more closely reflect the hardware (by creating more nodes or changing the

distribution of cores), and they can be characterised by distance metrics, that represent how,

in terms of delay, far is the memory location from one node to the others.

1.1.3 Memory gap

The first main memories to be used on digital computers were constructed using a technology

much slower than that used for the logic circuits, and it was taken for granted that there would

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 8 — #18 i
i

i
i

i
i

8 Chapter 1. Processors, NUMA and HC

be a memory gap [84]. Mercury delay line memories spent a lot of their time waiting for the

required word to come round and were very slow indeed. CRT (Williams Tube) memories

and the core memories that followed them were much better. By the early 1970s semicon-

ductor memories were introduced in the design. This did not result in memory performance

catching up fully with processor performance, although in the 1970s it came close. It might

have expected that from that point memories and processors would scale together, but this

was not the case. The reason for that is the significant differences in the DRAM semicon-

ductor technology used for memories compared with the technology used for microprocessor

circuits. The memory gap makes itself felt when a cache miss occurs and the missing word

must be supplied from main memory. It thus affects users whose programs do not fit into the

last cache level. As far as a workstation user is concerned, the most noticeable effect of an in-

creased memory gap is to make the observed performance more dependent on the application

area than it would be otherwise.

Since 1980, the memory gap has been increasing steadily, as the speed of processors

increase. On the other hand, shrinkage enables L2 caches to increase in size and, to some

extent, this balances out the effect of the increased memory gap. However, there are reasons

that indicate that non-cacheable problems are increasing in importance [84]. For example,

large simulations in science and technology, big data computing, multimedia, etc. Also many

database servers used in transaction processing rarely, if ever, manage to establish a working

set that will fit entirely within a cache. It must be accepted that, however large the cache

memory may be, there will be plenty of problems for which it may never be enough. For

such problems the cache actually gets in the way and slows down the running of the program.

1.1.4 Locality and affinity

To take advantage of parallelism and of the memory hierarchy, one of the most important

code property regularly exploited is the locality: codes tend to reuse data and instructions

they have used recently [22]. A widely held rule of thumb is that a program spends 90%

of its execution time in only 10% of the code. An implication of locality is that it can be

predicted with reasonable accuracy what instructions and data a program will use in the near

future based on its accesses in the recent past. The principle of locality also applies to data

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 9 — #19 i
i

i
i

i
i

1.1. Multicore processors and NUMA systems 9

accesses, though not as strongly as to code accesses. Two types of locality can be considered:

– Temporal locality states that recently accessed items are likely to be accessed in the

near future.

– Spatial locality says that items whose addresses are near one another tend to be refer-

enced close together in time.

Modern OS enable the binding and unbinding of a process or a thread to a specific central

processing unit (CPU), core or a range of cores, so that the process or thread will execute

only on the designated core or cores rather than in any others. This is done by defining for

a thread an affinity to a particular set of CPUs or cores. This mechanism helps to make the

most of the principle of locality.

1.1.5 Thread migration

In NUMA systems, taking into account architectural features, particularly the behaviour of

memory accesses, it is critical to improve locality among accesses and affinity between data

and cores to improve performance. In particular, both locality and affinity are important to

reduce the access latency to data. In addition, a large fraction of the on-chip multicore in-

terconnect traffic is originated not from actual data transfers but from communication among

cores to maintain data coherence [75]. An important impact of this overhead is the on-chip

interconnect power and energy consumption.

Moving threads close to where their data reside can help to alleviate those issues. When

threads migrate, the corresponding data usually stays in the original memory module, and is

accessed remotely by the migrated thread. This could be a source of inefficiencies that, some-

times, cannot be overlapped by the benefits of the migration [11, 78, 79, 38, 33]. Also, pro-

posals for heterogeneous multicore move threads between cores to exploit power-performance-

area trade-offs [34]. Performance information can be used to guide thread migration strate-

gies to improve the efficiency of the execution of the code by increasing data locality and/or

thread affinity. Each such migration incurs overhead, similar to a context switch [37, 39],

from saving and restoring processor states and virtual machine control structures, extra trans-

lation lookaside buffer misses and related page walks, cache misses, and interrupt rerouting.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 10 — #20 i
i

i
i

i
i

10 Chapter 1. Processors, NUMA and HC

The indirect overhead of TLB and cache misses produced by each migration is potentially

higher than for a context switch, because the migrated thread begins execution in a different

processor environment and cache hierarchy. The performance benefit of saving and restoring

cached data during migration is analyzed in [74]. Thread startup performance can be acceler-

ated after migration by predicting and prefetching the working set of the application into the

new cache [6].

1.2 Intel processors

In this work, we have focused on Intel processors, more specifically on the Itanium 2 [25] and

the Sandy Bridge [28] architectures. In these processor families, cores are equipped with a

Performance Monitoring Unit (PMU) that allows a user to obtain various metrics to evaluate

the behaviour of the processor. In particular, these Intel processors allow to monitor the

memory performance of the processor at core level, including memory latency, which makes

them useful to study the behaviour in NUMA systems. In next subsections, the particular

systems used through this work are presented and detailed.

1.2.1 Itanium

Itanium is a family of 64-bit Intel microprocessors that implement the Intel Itanium archi-

tecture (formerly called IA-64). IA-64 implements a form of Very Long Instruction Word

(VLIW) architecture, instead of the Reduced Instruction Set Computing (RISC) architectures

of x86. Intel marketed the processors for enterprise servers and high-performance computing

systems. The Itanium architecture originated at Hewlett-Packard (HP), and was later jointly

developed by HP and Intel. In November 2007, the Itanium 2 9100 series, codenamed Mont-

vale, was released. This is the one we are using in this work.

The Itanium 2 Montvale processor has two cores, each with a three level cache memory

hierarchy [25]. In each core the first level consists of two 16 KB caches, one for data (L1D),

and another for instructions (L1I). The second level has a 256 KB cache dedicated exclusively

to data (L2D), and another 1 MB for instructions (L2I). The size of the third level cache (L3)

varies among each processor family between 1.5 MB and 24 MB (see Figure 1.3). Minimum

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 11 — #21 i
i

i
i

i
i

1.2. Intel processors 11

Figure 1.3: The Itanium 2 Montvale processor memory hierarchy.

latency for a cache miss in the L1D is 5 cycles, reached when the data are on the L2D.

Meanwhile, if the data are on the L3, the latency is, at least, 14 cycles. Floating point data

are stored directly in the L2D, so their access always implies a L1D cache miss. All the case

studies in this work for the Itanium architecture were executed on a HP Integrity rx7640 [23,

15] computation node, with 8 Itanium 2 Montvale processors (16 cores) and 128 GB of RAM.

The HP Integrity rx7640 consists of two cells, each with 64 GB of memory and 4 dual-core

processors (8 cores per cell), connected by a buffer. Cache coherence is maintained by a

mixed protocol, using a memory directory between cells and a snooping protocol inside each

cell. Cores 0 to 7, that are in node 0, have greater affinity to one half of the main memory

(local to 0 to 7) and cores 8 to 15, that are in node 1, to the other half (remote to 0 to 7).

Furthermore, the different delays of access to local and remote main memories mean that

the data access time is one of the aspects that influences the performance of shared memory

parallel codes the most, specially in those with irregular accesses. This system will be called

“our Itanium Server” for the remainder of this work.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 12 — #22 i
i

i
i

i
i

12 Chapter 1. Processors, NUMA and HC

1.2.2 Sandy Bridge

Sandy Bridge [28] is the codename for a microarchitecture developed by Intel beginning in

2005 for central processing units in computers to replace the Nehalem microarchitecture.

It uses the x86 instruction set. Intel demonstrated a Sandy Bridge processor in 2009, and

released first products based on the architecture in January 2011. Developed primarily by the

Israeli branch of Intel, the codename was originally “Gesher” (meaning “bridge” in Hebrew).

The Sandy Bridge cache is divided into 3 levels, with the L1 (32 KB for data) and L2

(256 KB) private to each core, and the L3 shared among the cores in a processor, up to 8

cores. The cache line size is 64 bytes, storing 16 floating point numbers per line. In the L1

there is a line buffer where the last cache line read is stored before being written to cache.

This way, if an outstanding core cache miss to same cache-line address was already underway,

data can be read directly from the buffer, reducing latency. Furthermore, the L2 can prefetch

the next cache line, thus reading two cache lines (128 bytes) in just one memory transaction.

The case studies in this work for the Xeon Sandy Bridge architecture were carried out in

three different systems. For future reference, they are:

– Xeon Server X - A server with two quad-core Xeon E5-2603 (8 cores in total, Sandy

Bridge architecture, 10 MB L3 cache, 1.8 GHz) and 16 GB of RAM. It has two nodes,

each local to 8 GB of RAM, one consists of cores 0 to 3 (node 0), and the other of cores

4 to 7 (node 1).

– Xeon Server Y - A server with two octo-core Xeon E5-2650 (16 physical cores in total,

32 considering hyperthreading, Sandy Bridge architecture, 20 MB L3 cache, 2 GHz -

2.8 GHz) and 64 GB of RAM. It has two nodes, each comprising 32 GB of RAM.

Node 0 is made of the eight even indexed cores while node 1 is made of the eight odd

indexed cores.

– Xeon Server Z - A server with four octo-core Xeon E5-4620 (32 physical cores in

total, 64 when hyperthreading is used, Sandy Bridge architecture, 16 MB L3 cache,

2.2 GHz-2.6 GHz) and 512 GB of RAM. It has four nodes, each local to 128 GB of

RAM. Node 0 has cores 0 to 7, node 1 has cores 8 to 15, node 2 has cores 16 to 23 and

node 3 has cores 24 to 31.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 13 — #23 i
i

i
i

i
i

1.3. Hardware counters 13

Processors on Xeon Servers Y and Z use frequency scaling, so the frequency of the cores

may change in a range of values. Intel uses a technology, called Turbo Boost, which dy-

namically increases the processor’s frequency as needed by taking advantage of thermal and

power headroom. This means that, when only a few number of cores are used and the proces-

sor does not dissipate too much heat, the CPU frequency increases. Nevertheless, if all the

cores are in use, the frequency is set to its lowest value. This may influence performance and

must be taken into account when measured.

1.3 Hardware counters

Hardware performance counters, or hardware counters (HC) for short, are special-purpose

registers built into modern microprocessors to store information of hardware-related activities

within computer systems. The number of available hardware counters in a processor is limited

while each CPU model might have a lot of different events that a developer might like to

measure. Each counter can be programmed with an event type to be monitored, like L1 cache

misses or branch mispredictions, for example.

Compared to software profilers, hardware counters provide low-overhead access to a

wealth of detailed performance information related to CPU’s functional units, caches, main

memory, etc. Another benefit of using them is that no source code modifications are needed

in general. However, the types and meanings of hardware counters vary from one architec-

ture to another due to the variation in hardware organisations. Also, the limited number of

registers to store the counters often force users to conduct multiple measurements to collect

all desired performance metrics.

Due that modern superscalar processors schedule and execute multiple instructions out-

of-order at one time there can be difficulties correlating the low level performance metrics

back to source code. These “in-flight” instructions can be retired at any time, depending

on memory accesses, hits in cache, stalls in the pipeline and many other factors. This can

cause performance counter events to be attributed to the wrong instructions, making precise

performance analysis difficult or even impossible.

In the Itanium 2 two sets of performance monitor registers are defined [25]. Performance

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 14 — #24 i
i

i
i

i
i

14 Chapter 1. Processors, NUMA and HC

Monitor Configuration (PMC) registers are used to configure the monitors. Performance

Monitor Data (PMD) registers provide data values from the monitors. The Itanium 2 proces-

sor provides four generic performance counters (PMC/PMD pairs), and the following model-

specific monitoring registers (all present on the Itanium 2 Montvale): instruction and data

event address registers (EARs) for monitoring cache and TLB misses, a branch trace buffer,

two opcode match registers, and an instruction address range check register.

The counter width on the Itanium 2 processor is 48 bits (bit 47 indicates overflow con-

dition). PMC/PMD pairs on the Itanium 2 processor are symmetrical, i.e., nearly all event

types can be monitored by all counters. The main task of PMCs is to select the events to be

monitored by the respective PMDs. Only the use of data event address registers (EARs) will

be detailed in this document (in Subsection 1.3.1).

In more modern Intel processors, hardware counters are called model-specific registers

(MSRs) [28]. For performance monitoring they add some additional nomenclature. The

MSRs are registers available primarily to operating system or executive procedures (that is,

code running at privilege level 0). These registers control items such as the debug extensions,

the performance-monitoring counters, the machine-check architecture, and the memory type

ranges (MTRRs). The number and function of these registers varies among different mem-

bers of the Intel 64 and IA-32 processor families. Most systems restrict access to system

registers by application programs. Systems can be designed, however, where all programs

and procedures run at the most privileged level (privilege level 0). In such a case, application

programs would be allowed to modify the system registers.

Among the MSRs are the performance event select registers, which allow configuring a

performance monitoring event. There is a finite number of performance event select MSRs

(IA32_PERFEVTSELx MSRs), only 4 on the Sandy Bridge architecture. This means that,

at most 4 events can be measured at the same time, as long as there are no conflicts among

them that preclude their concurrent counting. The result of a performance monitoring event is

reported in a performance monitoring counter (IA32_PMCx MSR). Performance monitoring

counters are paired with performance monitoring select registers. The precise event based

sampling (PEBS) facilities for Sandy Bridge processors will be detailed in Subsection 1.3.2.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 15 — #25 i
i

i
i

i
i

1.3. Hardware counters 15

1.3.1 EAR counters

The Itanium 2 provides a set of Event Address Registers (EARs) that record the instruction

and data addresses of data cache misses for loads, the instruction and data addresses of data

TLB misses, and the instruction addresses of instruction TLB and cache misses [25]. When

used to capture cache misses, EARs allow latency detection from 4 cycles upwards, so using

them any miss, or floating point access (floating point data are always stored on the L2D),

can be potentially detected. Table 1.1 summarises the capabilities offered by the Itanium 2

processor EARs and the branch trace buffer. Exposing miss event addresses to software al-

lows them to be monitored either by sampling or by code instrumentation. This eliminates the

need for trace generation to identify and solve performance issues and enables performance

analysis by a much larger audience.

The Itanium 2 processor EARs enable statistical sampling by configuring a performance

counter to count the occurrences of a given event. The performance counter value is set up to

interrupt the processor after a predetermined number of events have been observed. The data

cache event address register repeatedly captures the instruction and data addresses of actual

data cache load misses. Whenever the counter overflows, miss event address collection is

suspended until the event address register is read by software (this prevents software from

capturing a miss event that might be caused by the monitoring software itself). So, when the

counter overflows, an interruption is delivered, the observed event addresses are collected,

and a new observation interval can be setup by rewriting the performance counter register. For

time-based (rather than event-based) sampling methods, the event address registers indicate

whether or not a qualified event was captured. Statistical sampling can achieve arbitrary event

resolution by varying the number of events within an observation interval and by increasing

the number of observation intervals.

On the Itanium 2, performance monitoring can be confined to a subset of events. Events

can be qualified for monitoring based on an instruction address range, a particular instruction

opcode, a data address range, an event-specific “unit mask” (umask), the privilege level and

instruction set the event was caused by, and the status of the performance monitoring freeze

bit (PMC0.fr). In particular, the Itanium 2 processor allows event collection for memory

operations to be constrained to a programmable data address range. This enables selective

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 16 — #26 i
i

i
i

i
i

16 Chapter 1. Processors, NUMA and HC

Table 1.1: Itanium 2 Processor EARs and Branch Trace Buffer.

Event Address

Register

Triggers On What is Recorded

Instruction

Cache

Instruction fetches that miss the

L1 instruction cache (demand

fetches only)

Instruction Address, Number of cycles

fetch was in flight

Instruction

TLB (ITLB)

Instruction fetch missed L1 ITLB

(demand fetches only)

Instruction Address Who serviced L1,

ITLB miss: L2 ITLB VHPT or software

Data Cache Load instructions that miss L1

data cache

Instruction Address, Data Address, Num-

ber of cycles load was in flight.

Data TLB

(DTLB)

Data references that miss L1

DTLB

Instruction Address, Data Address, Who

serviced L1 DTLB miss: L2 DTLB,

VHPT or software.

Branch Trace

Buffer

Branch Outcomes Branch Instruction Address, Branch Tar-

get Instruction Address, Mispredict status

and reason

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 17 — #27 i
i

i
i

i
i

1.3. Hardware counters 17

monitoring of data cache miss behaviour of specific data structures. Four architectural Data

Breakpoint Registers (DBRs) can be used to specify the desired address range. Data address

range checking capability is controlled by a Memory Pipeline Event Constraints Register

(PMC13). When enabled (using bits 1 and 0, to indicate one of the four DBRs to be used),

data address range checking is applied to loads, stores, semaphore operations, and the lfetch

instruction.

To program the PMU and gather the execution results of the target codes, the libpfm2

library and the perfmon2 [14] communication interface were used. libpfm2 is a helper

library that can be used to implement CPU monitoring tools. This library contains all the

information about the specific PMUs in each processor model. The programmer only needs

to indicate what to measure, using generic events common to most processor models, and the

library maps these events to the ones implemented in the actual PMU. The libpfm2 library

supports many processor families, like IA-64, X86-64, P6, and even others from AMD, ARM,

etc. The perfmon2 interface is a performance monitoring subsystem for Linux used to get

access to the PMU counters and registers, to program and read them. Perfmon2 uses the

system specific information provided by libpfm2 to program counters.

1.3.2 PEBS

Intel processors based on Intel Core microarchitecture support precise event based sampling

(PEBS [28]). This feature was introduced in processors based on Intel NetBurst microar-

chitecture. PEBS uses a debug store mechanism and a performance monitoring interruption

to store a set of architectural state information for the processor. This information provides

the architectural state of the instruction executed after the instruction that caused the event.

On Intel Sandy Bridge, all general-purpose performance counters can be used for PEBS if

the performance event is supported. The MSR IA32_PEBS_ENABLE provides 4 bits that

must be used to enable which overflow condition will cause the PEBS record to be captured.

Additionally, the MSR IA32_PEBS_ENABLE provides 4 additional bits that software must

use to enable latency data recording in the PEBS record upon the respective IA32_PMCx

overflow condition. The layout of IA32_PEBS_ENABLE for processors based on Intel Ne-

halem or Sandy Bridge is shown in Figure 1.4. When a counter is enabled to capture machine

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 18 — #28 i
i

i
i

i
i

18 Chapter 1. Processors, NUMA and HC

state (PEBS_EN_PMCx = 1), the processor will write machine state information to a mem-

ory buffer specified by software as detailed below. When the counter IA32_PMCx overflows

from maximum count to zero, the PEBS hardware is armed.

Figure 1.4: Layout of IA32_PEBS_ENABLE MSR.

Upon occurrence of the next PEBS event, the PEBS hardware triggers an assist, causing a

PEBS record to be written. The return instruction pointer (RIP) reported in the PEBS record

will point to the instruction after the instruction that causes the PEBS assist. The machine

state reported in the PEBS record is the machine state after the instruction that causes the

PEBS assist is retired. For instance, if the instructions

mov eax, [eax] ; causes PEBS assist

nop

are executed, the PEBS record will report the address of the nop, and the value of EAX in

the PEBS record will show the value read from memory, not the target address of the read

operation. The PEBS record format is shown in Figure 1.5 and in Table 1.2. Each field in the

PEBS record is 64 bits long. The PEBS record format, along with debug/store area storage

format, does not change regardless of IA-32e mode is active or not.

In IA-32e mode, the full 64-bit value is written to the register. If the processor is not

operating in IA-32e mode, 32-bit value is written to registers with bits 63:32 zeroed. Registers

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 19 — #29 i
i

i
i

i
i

1.3. Hardware counters 19

Table 1.2: PEBS Record Format for Intel Core i7 Processor Family.

Byte Offset Field Byte Offset Field

0x0 R/EFLAGS 0x58 R9

0x8 R/EIP 0x60 R10

0x10 R/EAX 0x68 R11

0x18 R/EBX 0x70 R12

0x20 R/ECX 0x78 R13

0x28 R/EDX 0x80 R14

0x30 R/ESI 0x88 R15

0x38 R/EDI 0x90 IA32_PERF_GLOBAL_STATUS

0x40 R/EBP 0x98 Data Linear Address

0x48 R/ESP 0xA0 Data Source Encoding

0x50 R8 0xA8 Latency value (core cycles)

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 20 — #30 i
i

i
i

i
i

20 Chapter 1. Processors, NUMA and HC

Figure 1.5: The PEBS buffer.

not defined when the processor is not in IA-32e mode are written to zero. Bytes 0xAF:0x90

are an enhancement to the PEBS record format. The value written to bytes 0x97:0x90 is the

state of the IA32_PERF_GLOBAL_STATUS register before the PEBS assist occurred. This

value is written so software can determine which counters overflowed when this PEBS record

was written. Note that this field indicates the overflow status for all counters, regardless of

whether they were programmed for PEBS or not.

The load latency facility provides a means to characterise the average load latency to

different levels of the memory hierarchy. This facility requires processor supporting enhanced

PEBS record format in the PEBS buffer, see Table 1.2, where the last three fields are added

for load latency. The facility measures latency from micro-operation (uop) dispatch to when

data is globally observable (GO). To use this feature software must assure three conditions:

– One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit MEM

INST RETIRED, and the LATENCY_ABOVE_THRESHOLD event mask must be

specified (IA32_ PerfEvtSelX[15:0] = 0x100). The corresponding counter IA32_PMCx

will accumulate event counts for architecturally visible loads which exceed the pro-

grammed latency threshold specified separately in a MSR. Stores are ignored when

this event is programmed.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 21 — #31 i
i

i
i

i
i

1.3. Hardware counters 21

– The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired la-

tency threshold in core clock cycles. Loads with latencies greater than this value are

eligible for counting and latency data reporting. The minimum value that may be pro-

grammed in this register is 3 (because the minimum detectable load latency is 4 core

clock cycles).

– The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the correspond-

ing IA32_PMCx counter register. This means that both the PEBS_EN_CTRX and

LL_EN_CTRX bits must be set for the counter(s) of interest. For example, to enable

load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register must be pro-

grammed with the 64-bit value 0x00000001.00000001.

When the load-latency facility is enabled, load operations are randomly selected by hard-

ware and tagged to carry information related to data source and latency. Latency and data

source information of tagged loads are updated internally. When a PEBS assist occurs, the

last update of latency and data source information are captured by the assist and written as

part of the PEBS record. Loads are randomly tagged to collect latency data. The number of

tagged loads with latency information that will be written into the PEBS record field by the

PEBS assists can be controlled. The load latency data written to the PEBS record will be

for the last tagged load operation which was retired just before the PEBS assist was invoked.

The load-latency information written into a PEBS record (see Table 1.2, bytes 0xAF:0x98)

consists of:

– Data Linear Address: This is the linear address of the target of the load operation.

– Latency Value: This is the elapsed cycles of the tagged load operation between dispatch

to GO, measured in processor core clock domain.

– Data Source: The encoded value indicates the origin of the data obtained by the load in-

struction. The encoding is shown in Table 1.3. In the descriptions, local memory refers

to system memory physically attached to a processor package, and remote memory

referrals to system memory physically attached to another processor package.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 22 — #32 i
i

i
i

i
i

22 Chapter 1. Processors, NUMA and HC

Table 1.3: Data Source Encoding for Load Latency Record.

Encoding Description

0x0 Unknown L3 cache miss

0x1 Minimal latency cache hit. This request was satisfied by the L1 data cache.

0x2 Pending core cache HIT. Outstanding core cache miss to same cache-line address

was already underway.

0x3 This data request was satisfied by the L2.

0x4 L3 HIT. Local or Remote home requests that hit L3 cache in the uncore with no

coherency actions required (snooping).

0x5 L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced

by another processor core with a cross core snoop where no modified copies were

found. (clean).

0x6 L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by

another processor core with a cross core snoop where modified copies were found.

(HITM).

0x7 Reserved

0x8 L3 MISS. Local homed requests that missed the L3 cache and was serviced by

forwarded data following a cross package snoop where no modified copies found.

(Remote home requests are not counted).

0x9 Reserved

0xA L3 MISS. Local home requests that missed the L3 cache and was serviced by local

DRAM (go to shared state).

0xB L3 MISS. Remote home requests that missed the L3 cache and was serviced by

remote DRAM (go to shared state).

0xC L3 MISS. Local home requests that missed the L3 cache and was serviced by local

DRAM (go to exclusive state).

0xD L3 MISS. Remote home requests that missed the L3 cache and was serviced by

remote DRAM (go to exclusive state).

0xE I/O, Request of input/output operation.

0xF The request was to un-cacheable memory.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 23 — #33 i
i

i
i

i
i

1.3. Hardware counters 23

The layout of MSR_PEBS_LD_LAT_THRESHOLD is shown in Figure 1.6. Bits 15:0

specify the threshold load latency in core clock cycles. Performance events with latencies

greater than this value are counted in IA32_PMCx and their latency is reported in the PEBS

record. Otherwise, they are ignored.

Figure 1.6: Layout of MSR_PEBS_LD_LAT MSR.

The overhead from using PEBS comes from having to record in a buffer the state of the

core each time it is sampled, with an extra cost for memory operations, due to latency and

data source recording. As such, the overhead is mainly determined by the sampling rates: the

higher the desired resolution, the larger the overhead. For most cases it can be kept below

1% while still providing enough information, specially when sampling cache misses [5, 82].

In Section 3.4.1 a study of the overhead incurred in our use of PEBS is presented.

1.3.3 Floating Point overcounting

In the Intel Sandy Bridge and following Ivy Bridge architectures, floating point operations

counters count executed operations, not retired operations [86]. As a consequence, if a FP_OP

is issued, but its operands are not in the cache or registers, it is counted as if it was executed,

and will be reissued until its operands are stored in the cache. This means that, in cases

when main memory is accessed very aggressively, floating point operations can be counted

in excess, and, as a consequence, hardware counters may not be accurate. In Section 3.4.2,

this issue is explained in more detail and an example is provided.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 24 — #34 i
i

i
i

i
i

24 Chapter 1. Processors, NUMA and HC

1.4 Recap

As described in Section 1.1, this work focused on computers consisting of tightly coupled

processors that share memory through a shared address space. These systems fall broadly

into two categories: SMP and NUMA systems The SMPs share a single centralised memory

that all processors have equal access to, but in NUMA systems processors have physically

distributed memory. In NUMA systems, the access time depends on the location of a data

word in memory, so a processor can access its own local memory faster that a non-local

one. In this way communicating data among processors becomes somewhat more complex.

Modern OS allow to define an affinity among cores and memories to improve data locality and

memory latency. Moving threads close to where their data reside can increase performance.

In Section 1.2, IA-64 and Intel 64 architectures were presented, and the specific computer

systems used throughout this work were described.

In Section 1.3, Hardware counters were presented. Hardware counters in Intel processors

allow to obtain detailed information about the memory accesses with low overhead. Sampling

memory operations using EARs in Itanium 2 and PEBS in Sandy Bridge, the data memory

address and the memory latency of the operations, among other information, can be recorded.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 25 — #35 i
i

i
i

i
i

Chapter 2

Analysis of memory accesses in

SMPs

The behaviour of memory accesses is one of the most significant aspects influencing the per-

formance of any code. This fact is more and more relevant as the memory wall increases [22].

One area where the memory management and utilisation is specially important is that of par-

allel and distributed systems and, in particular, in current multiprocessor/multicore architec-

tures.

For a parallel code to be correctly and efficiently executed, its programming must be

careful. Taking into account architectural features, particularly the behaviour of memory

accesses, is critical to improve locality among accesses and affinity of threads to cores to

improve data accesses. Understanding the performance of a program requires considering

several factors, such as the underlying system or the type of workload, which can lead to

bottlenecks, or parts of the code where most of the time is spent. These parts can be identified

by collecting information related to how the program or the system performs when executing.

This collection is known as performance monitoring. Characterising the nature and cause of

the bottlenecks using this information allows us to understand why a program behaves in a

particular way.

25

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 26 — #36 i
i

i
i

i
i

26 Chapter 2. Analysis of memory accesses in SMPs

2.1 Performance monitoring

Performance monitoring is particularly important in modern multiprocessor and multicore

systems. The interplay of the cache coherency and consistency, memory hierarchies, buses,

and processors is fairly complicated and far from being intuitive. Sophisticated techniques

must be used to characterise the behaviour of an application executed in such systems. While

profiling has been typically used to collect data in order to find out what is going wrong,

another not-so-widespread use consists of using that information to take effective decisions

either in runtime or in a pre-execution stage. Some performance issues in which this infor-

mation is important are, among others, data locality or load balancing. Characterising them

may help to improve performance.

As it was introduced in Chapter 1, HC are a powerful monitoring mechanism included in

the PMU [60] of most modern microprocessors. Their use is gaining popularity as an analysis

and validation tool for profiling. Their effect in the monitored program is virtually impercep-

tible and their precision has noticeably increased thanks to the new PEBS [28, 69] features.

However, although the PMU can harvest useful information, it is not always exploited to

the fullest of its capabilities. Indeed, the lack of standard tools and libraries to program HC

keeps them restricted to very specific issues. Therefore, many of the possibilities that they

offer have not been fully exploited yet.

There are some tools available for instrumentation and performance analysis of parallel

programs. The most prevalent approach taken by these tools is to collect performance data

during program execution and then provide post-mortem analysis and display performance

information [58]. Important examples are SvPablo [12], TAU [77], Paradyn [68], Pin [51], or

HP Caliper [24], among others. SvPablo can insert instrumentation code automatically and

provide performance data for numerous metrics. TAU is capable of gathering performance in-

formation through instrumentation of functions, methods, basic blocks, and statements. The

Paradyn tool leverages a technique called dynamic instrumentation to obtain performance

profiles of unmodified executables. Finally, Pin and HP Caliper analyse the code at the in-

struction level by the use of dynamic compilation to instrument executables while they are

running. They insert new instructions into the code around the instructions of the target code,

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 27 — #37 i
i

i
i

i
i

2.1. Performance monitoring 27

which is the cause for important slowdowns.

In most cases, there is no need for precise information about the events captured, so

sampled information is enough. Sampling based tools such as gprof [17] and hprof [65]

are implemented by halting program execution at pre-specific times. The use of these tools

implies recompiling the codes and they usually present high overheads.

Almost all of the above tools generate huge amount of profile trace-based data, which

is hard to manage and manipulate. Some of them add instrumentation to the source code

during the build process. Source code instrumentation may affect compiler transformations,

and incurs in large overheads. Usually the execution time of the instrumented code is sev-

eral times higher than the non-instrumented counterpart. In addition, they usually introduce

side effects, like polluting call stacks, changes in the cache behaviour, etc., into the profiled

program when adding or removing instrumentation points [10]. For example, the VTune [27]

call path profiler uses binary instrumentation that fails to measure functions in stripped ob-

ject code and imposes enough overhead so that Intel explicitly discourages program-wide

measurement [1].

These effects are minimised in the instrumentation tool introduced in this work, which

implements a much simpler method without necessarily generating trace data. Thus, if the

analysis of memory behaviour of OpenMP codes is the main goal, this implementation does

it with minimal effort and low overhead.

In this chapter, a set of tools that use HC to monitor the memory usage of sequential or

parallel C programs is presented. This set is composed of two mostly independent parts. The

first one is a instrumentation and data capture tool that, on one hand, gathers memory access

information of binary codes when executing and, on the other hand, allows to insert in the

user code, in a simple and transparent way, the code needed to monitor and manage HC. This

way, data about the memory performance of the code can be gathered. The second one, a

visualisation tool, takes the information gathered by the monitored parallel code, processes it

and, finally, displays this information graphically. These tools allow users to finely tune their

programs according to the use they make of the memory hierarchy.

A research field where data locality is of paramount importance is the case of irregular

codes. One of the most significant group of irregular codes is composed by those ones in

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 28 — #38 i
i

i
i

i
i

28 Chapter 2. Analysis of memory accesses in SMPs

which indirections prevent from identifying, at compile time, the set of memory accesses

performed by the application. Examples of these accesses are those performed by pointers,

the indirection arrays whose content is unknown in compile time, or the use of external func-

tions that access memory and whose structure cannot be determined a priori. Irregular codes

present low locality and, due to the unpredictability of their accesses, their effective reuse of

the memory is scarce. Hence, the memory hierarchy is the most important bottleneck for the

efficient execution of most of these codes, being one of the issues where performance can be

improved [70, 72]. In this chapter, we have used the sparse matrix vector product (SpMxV)

as an example of irregular code [19], using our tools to study the behaviour of its memory

accesses [40, 41]. SpMxV is the core of many important scientific applications, and several

widespread techniques to improve their data locality exist in the literature [71, 13, 20].

The presented tools can also be very useful for regular codes. Another case study con-

sidered in this chapter is the vector dot product (SDOT), a regular kernel present in many

scientific and engineering applications.

2.2 Information capture with HC

Gathering the information about memory accesses from EAR counters or PEBS is not as

straightforward task as interacting with other kinds of HC. Instead of just reading a simple

value from a few counters, there is the need to process a data buffer at irregular intervals

during the execution of a program. Moreover, when running in parallel several threads or

processes, filtering the information to be sure that all the relevant data are gathered in each

core can become a complex task, specially if threads or processes migrate during the exe-

cution. To deal with these issues, two tools to automate this task were implemented, a data

capture tool and an instrumentation tool.

2.2.1 Data capture tool

This is a command line tool [43, 42] that can work alongside any compiled binary and gathers

its memory access information during its execution. The data capture tool accepts three

options: the event to monitor (i.e. cache misses or TLB misses, in case of EARs; load or

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 29 — #39 i
i

i
i

i
i

2.2. Information capture with HC 29

store instructions in case of PEBS), the sampling period, and the minimum load latency from

which events are captured. This tool samples from all the events in the system, regardless

of the process that originated them or the core where they took place, and saves them in a

file. This file can then be read by the visualisation tool, described in Section 2.3.1, which

discriminates the ones that belong to the monitored program.

2.2.2 Instrumentation tool

If a more detailed monitoring is needed, i.e. only some parts of a code or a limited data range,

instead of the entire virtual memory space, and the source code to monitor is available, the

instrumentation tool [43, 42] can be used. This tool helps us to directly add the PEBS or

EAR monitoring code to a target source code so that the program can monitor itself. The user

only needs to indicate, through directives in the source code, where the data capture must

start and end. These directives indicate the event to sample, the sampling rate, the minimum

load latency, and the data range, indicated either by variable names or memory addresses

(currently, this functionality is only available on Itanium). Afterwards, our instrumentation

tool parses the source code and inserts the necessary monitoring code automatically.

A second version of the instrumentation tool was implemented, which includes a graph-

ical interface designed to simplify the annotation of the code to be monitored. The reason

to implement a GUI enabled version of this tool was essentially to simplify its use by non

specialised users or by those not experienced with HC or even parallel programming. This

version includes a text editor that allows the user to indicate directly in the source code where

to insert the monitoring code. The GUI also automatically prevents the use of illegal ar-

guments. Figure 2.1 shows the argument selection screen, where the user chooses both the

initial point to start monitoring and its parameters.

The instrumentation tool uses an XML file where the monitoring code which is added to

the source code under analysis, can be edited. This way, if changes are made to the machine

executing the program, or new versions of the libraries are available, the monitoring code can

be updated, making the tool easily portable.

The monitoring code added by the tool is placed at different points in the target code:

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 30 — #40 i
i

i
i

i
i

30 Chapter 2. Analysis of memory accesses in SMPs

Figure 2.1: Instrumentation tool. Parameter selection screen.

– Previous Code: This code precedes both counters programming and their reading. It

includes the libraries and defines several needed constants to run the code. It also

includes a number of variables and global functions (mainly for reading the EARs) to

be used afterwards.

– Begin Code: This code is included in the program just before the beginning of the

section to be monitored. It includes both the libpfm2 library initialisation and the

PMU registers programming, and finally the order to trigger sampling.

– End Code: This code finishes the monitoring, so it follows the section of the program

being monitored. It processes the information obtained by the sampling.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 31 — #41 i
i

i
i

i
i

2.3. Data visualisation 31

Fig. 2.2 shows how the user annotations would be included in a typical situation. The tool

substitutes these annotations for the appropriate monitoring code.

Using hardware counters in a SMP system presents several drawbacks, one of which is the

need to program each of the counters present in each core. Thus performing accurate readings

or measurements may be complicated and costly. Additionally, when running several threads

or processes, it is important to identify on which core will they be located, or even if they will

be migrated during execution.

When all processors are identical, and therefore with the same PMU, accessing the HC

is simpler, as they can be accessed in the same way. Note that monitoring in one core may

be performed from threads executing in different ones. Nevertheless, this complicates both

programming and tracking, because it becomes harder to know exactly which code segment

is being monitored. Therefore, it is simpler for each thread to monitor itself. This way,

identifying which CPU and which thread executes a particular code segment becomes easier.

Although less complex, this self-monitoring has several drawbacks. The most obvious one is

the fact that the application performance decreases, since each thread uses some of its time

for monitoring purposes. Anyway, this overhead is usually very low. In Section 3.4.1 a study

of the overhead of an enhanced version of this data capture tool is performed.

The instrumentation tool presented here solves the problem of adding the necessary mon-

itoring code, making the use of HCs (including PEBS) in programs an almost automatic task.

This automation is not complete, as the user must still indicate, through simple directives, the

event to capture or the starting point of monitoring in the code, but it greatly simplifies the

task. For each selected event, the tool automatically adds the necessary code to access the

HCs.

2.3 Data visualisation

The data gathered by the monitoring tool have to be processed and visualised to be useful.

First, because of the large number of events that can be captured during the execution of a

program and, second, since the interesting information is obtained by studying the data as a

whole, not each event by itself. With the data obtained from the HC, the program memory

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 32 — #42 i
i

i
i

i
i

32 Chapter 2. Analysis of memory accesses in SMPs

Figure 2.2: Simple parallel vector initialisation annotated program.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 33 — #43 i
i

i
i

i
i

2.3. Data visualisation 33

hierarchy accesses can be studied in a comprehensive way. To carry out this kind of studies,

different monitoring, processing and visualisation tools [77, 61, 35, 66, 27] can be used, as

well as statistical or mathematical tools like Matlab, Octave, or R [53, 18, 73]. Nevertheless,

it is more convenient to use a simpler tool specialised in the memory access problem, which

allows a fast and general view of the results, allowing, at the same time, more detail if needed.

A tool like this avoids the need to use complex and potentially difficult applications, while its

specialisation makes it easier to adapt its functionality to the task at hand, simplifying its use.

2.3.1 Visualisation tool

The visualisation tool [43, 42] presented here allows to classify captured events into cate-

gories according to their memory address or the thread. These events can be either cache

misses or TLB misses. It shows captured events jointly in a histogram, which can be delim-

ited by the initial and final addresses of the studied virtual memory range, or with a category

for each thread.

With this tool, the data obtained by the HC can be used to analyse cache behaviour. When

these data come from EARs, the tool decides whether a miss was resolved in L2 cache, L3

cache or the main memory, given the latency of the access. Note that, for PEBS the precise

source of the data can be obtained directly (according to Table 1.3).

Using the captured information, several types of histograms can be displayed: Occurrence

Histograms, Latency Histograms, Cache Histograms, and False Sharing or Replacement His-

tograms.

Occurrence Histograms show the amount of individual event instances grouped by the

memory address they reference. For each histogram bar, different colors show the cache

level where the miss was resolved, or, if they are TLB events, the TLB level where the

address translation took place. For example, Figure 2.3 shows the number of cache misses

resolved in more than 4 cycles. They are grouped by the memory address they referenced.

Each bar represents a range of 400 consecutive addresses (this value can be modified by the

user). Each bar in the histogram is divided in coloured sections depending on the number of

misses in each level of the memory hierarchy.

Latency Histograms show the mean access latency of a group of memory addresses or

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 34 — #44 i
i

i
i

i
i

34 Chapter 2. Analysis of memory accesses in SMPs

Figure 2.3: General Occurrence histogram, showing total number of cache misses detected. In the his-

togram L2 misses are shown in red, L3 in green, and main memory in orange.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 35 — #45 i
i

i
i

i
i

2.3. Data visualisation 35

Figure 2.4: Detailed Latency histogram, showing average latency of memory loads.

threads, in cycles. In this case, horizontal lines show, for each level of the memory hierarchy,

the minimum latency for a read in the level. For example, in Figure 2.4, lines for the L2

cache, the L3 cache, and main memory are shown.

The tool can show the mapping of the captured events in each cache level in the so called

Cache Histogram. Individual event instances are grouped according to their cache set. The

cache line size and the number of cache sets can be chosen by the user in the graphical

interface. When these parameters are set to the actual values of a cache level of the studied

system, an accurate view of the execution is obtained. The visualisation tool can also simulate

different kinds of cache memories, and it can show how the program data would be mapped

in other systems. This way different cache architectures can be studied with data traced from

just one execution of the code. Note that latency data depend on the executing system, so the

simulated caches do not include latency histograms.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 36 — #46 i
i

i
i

i
i

36 Chapter 2. Analysis of memory accesses in SMPs

False Sharing or Replacement Histograms show conflicts among threads in a cache line.

The tool can extract information about the cache replacements or possible instances of false

sharing [81]. The replacement histogram may be useful in cases where some threads share

the same cache level, because it shows the instances of accesses to the same cache set by

different threads. So, this histogram shows how a different data partitioning among threads

may affect the cache usage. False sharing can arise in systems with distributed, coherent

caches: if two processors operate with different data stored in the same cache line, a write

operation in one of them may force the whole cache line to be invalidated. The visualisation

tool offers a histogram showing the instances where two different CPUs access different data

in the same cache line.

When showing any of these histograms by address, both a General and a Detailed view are

available. The General view shows the complete memory range under study. The number of

categories in the histogram can be modified (by clicking in the ‘Number of Columns’ spinner

shown in Figure 2.3). The Detailed view shows the whole studied memory range, adjusting

the number of addresses making up each category, down to just one address. If the memory

range does not fit inside the application window, a scroll can be used to move through the

range, and a small general histogram is used to help navigation. (See Figure 2.4.)

Figure 2.5 shows and example of how the tool helps the user to detect memory addresses

with large access time. In this example, a group of 3 main memory loads can be seen in

Figure 2.5(a), highlighted with an arrow. A detailed view shows how these 3 events read data

from 3 different virtual memory addresses (Figure 2.5(b)). In Figure 2.5(c) the mean latency

for each of the categories present in Figure 2.5(b) is shown, being higher in those with main

memory loads. By clicking in any histogram bar, a table with the events in that memory

range is displayed, as shown in Figure 2.5(d), which allows the user to see the details of any

particular event.

2.4 Case studies

In this section, the use of the tools we propose to characterise the behaviour of the memory

accesses for an irregular parallel code, the sparse matrix vector product (SpMxV, y=A×v),

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 37 — #47 i
i

i
i

i
i

2.4. Case studies 37

(a) Number of cache misses, each bar represents 400 con-

secutive addresses. Group of 3 main memory loads high-

lighted.

(b) Number of cache misses, each bar represents 16 ad-

dresses. The same 3 events highlighted in Figure 2.5(a)

can be seen in orange.

(c) Latencies, each bar represents 16 addresses. The

same 3 events highlighted in Figure 2.5(a) can be seen

increasing mean latency in their respective categories.

(d) Event table.

Figure 2.5: Individual cache misses.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 38 — #48 i
i

i
i

i
i

38 Chapter 2. Analysis of memory accesses in SMPs

and a regular dense SDOT product (y = x·y), are shown. These codes were parallelised using

OpenMP [64]. The SpMxV was executed in our Itanium Server (see 1.2 for more details).

Remember that in this system, cores 0 to 7 have greater affinity to one half of the main

memory (local to them) and cores 8 to 15 to the other half (remote to cores 0 to 7).

The study for the SDOT was carried out in our Xeon Server X (see 1.2.2 for more details).

2.4.1 Sparse Matrix Vector Product

The main goal of this study was to test how, by using EAR counters and the developed

tools, a useful picture of the behaviour of shared memory accesses of a parallel program

can be obtained. In this study, we have executed the SpMxV with several double precision

floating point sparse matrices and different numbers of threads, capturing EAR events in each

execution.

The parallelisation of the SpMxV can be made by distributing either the rows or columns,

or both, of the matrix among the processors. In the implementation under study, the matrix is

evenly distributed by rows in a block fashion, and each thread calculates a slice of the result

vector. When working with sparse matrices, the irregularities in data placement make the

distribution among threads unbalanced. This way, the cores with a larger workload usually

present more cache misses. Both the locality and affinity of the threads and data can be

analysed with our tools.

The event capture begins just before the main matrix vector product, and ends just after

its termination. Events that take place during vector initialisation or matrix reading are not

captured. How OpenMP shares work among threads can be checked easily, and in particular,

how the dispersion of the data affects matrix operations and how the processor PMU captures

events.

In the Itanium 2 family, accesses to floating point data do not use the L1D cache, but

they are read from the L2D directly. Therefore, as vector v stores floating point data, all read

accesses to v will give rise to a cache miss with a latency greater than 4 cycles, and they can be

captured by the EARs. Only the sampling procedure imposed by the PMU to read and write

these counters limits the percentage of accesses that can be detected. Note that all accesses

to v are guided by the indirection given by the sparse matrix A pattern, as the SpMxV code

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 39 — #49 i
i

i
i

i
i

2.4. Case studies 39

(a) bcsstk29 matrix

(b) Thread 0 (c) Thread 1 (d) Thread 2 (e) Thread 3

Figure 2.6: Number of cache misses by address, the x axis represents the memory range of vector v.

Distribution of the bcsstk29 matrix in 2.6(a).

accesses only the positions in v that match nonzero entries in the rows.

Figures 2.6 and 2.7 show the amount of captured read accesses to v made by each thread,

for two different matrices. Each histogram shows, for a given v address range, the number

of captured events. In this example, the data have been gathered using the instrumentation

tool, with a 50 events sampling period. These figures show how the matrix pattern influences

the dispersion of read accesses. Because the bcsstk29 matrix (Figure 2.6(a)) has a band

pattern, accesses to v from each of the 4 threads are gathered in different memory areas as

it can be seen in Figures 2.6(b) to 2.6(e). On the other hand, since the psmigr_1 matrix

(Figure 2.7(a)) is more homogeneous than bcsstk29, memory is shared uniformly among

threads (Figures 2.7(b) to 2.7(e)). Note that there is a small band component in this matrix,

as a rise of accesses in that zone from each thread shows.

Figure 2.8 shows the latencies gathered from executing the SpMxV with 4 threads using

the sme3Da matrix (Figure 2.8(a)). Due to the pattern of this particular matrix, work is

distributed among threads quite evenly. In this example, the threads were forced to be in

different cores of two cells (threads 0 and 1 run in cores 0 and 1, in cell 1, whereas threads

2 and 3 run in cores 8 and 9, in cell 0). Moreover, core 0 is imposed to take care of reading

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 40 — #50 i
i

i
i

i
i

40 Chapter 2. Analysis of memory accesses in SMPs

(a) psmigr 1 matrix

(b) Thread 0 (c) Thread 1 (d) Thread 2 (e) Thread 3

Figure 2.7: Number of cache misses by address, the x axis represents the memory range of vector v.

Distribution of the psmigr_1 matrix in 2.7(a).

both the matrix and the vector from file, so they are stored in the local memory of cores 0

to 7. This means that core 0 has its cache preloaded, so it shows fewer accesses to main

memory (Figure 2.8(b)). Core 1 needs to fill its L2 cache, so it presents more accesses to

main memory than core 0. Finally, cores 8 and 9 are placed in a different cell, so all their

accesses to main memory take more time, as depicted in Figures 2.8(d) and 2.8(e). This is

a graphical representation of the effects of the affinity between cores and memory accesses.

Latencies of more than 16 cycles are those usually served by the main memory, or, in some

cases, by the L3 cache.

2.4.2 Vector-vector dot product, SDOT
To illustrate capabilities of the tools to study the low levels of the cache, the SDOT operation,

y = x·y, was considered, where both x and y are single precision floating point vectors of

length n. The SDOT was parallelised with a block cyclic data distribution with a block size b.

Since the result is stored in vector y, there might be false sharing among cores. We have used

our tools to show how the block size influences the use of cache memories and their impact

on the performance. The accesses to vector y, where data is being both loaded and stored,

were studied. Depending on the value of b, the use made of the lower levels of the cache is

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 41 — #51 i
i

i
i

i
i

2.4. Case studies 41

(a) sme3Da matrix

(b) Core 0 (c) Core 1 (d) Core 8 (e) Core 9

Figure 2.8: Latencies to access main memory per core (in cycles). The x axis represents the memory

range of vector v.

different. In this example, all accesses with a latency higher than 10 cycles were sampled,

this means that low latency L1 accesses are ignored.

Note that the cache line size in Xeon Server X is 64 bytes long, storing 16 floating points

per line. This way, if this code is executed with 8 cores and b = 2, there will be false sharing

in vector y among the 8 cores, since they all access the same line, but different data. In

Figure 2.9, L1 hits are shown in blue, L1 Line Buffer hits in red, L2 hits in green, and L3

hits in orange. This figure shows how, as the block size increases, the number of L1 cache

accesses increase, since fewer cache lines are invalidated. Also, the mean access latency in

the program decreases. With b = 2, false sharing greatly influences performance. In this

case, many accesses to the L1 Cache Line Buffer are captured, as well as to the L2. This

is because the cores are invalidating lines to each other, causing misses to the L1. Data can

be served from higher cache levels or directly by the L1 line buffer if there are outstanding

requests from other cores. With b = 16, false sharing is completely eliminated, so the L1

is used more efficiently, since there are fewer invalidations, but there is no use of preloaded

lines. Due to a sampling artifact, more accesses to L3 are detected. This is because, as low

latency L1 accesses are ignored, and with b= 16 their frequency increases compared to b= 2,

the L3 accesses have a greater chance of being captured, thus higher latencies are obtained.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 42 — #52 i
i

i
i

i
i

42 Chapter 2. Analysis of memory accesses in SMPs

With b = 32 there is no false sharing and preloaded lines (to the L2 level) are used, so fewer

accesses to L3 are needed and latency greatly decreases.

A pure block distribution shows the best results for this problem, since memory is dis-

tributed among threads in contiguous slices and thus there is no false sharing, memory can

be preloaded, and the cache is used evenly.

2.5 Recap
Obtaining performance data is not a straightforward matter, as explained in Section 2.1. Al-

though several tools exist, they present some drawbacks . Tools to simplify the process of

obtaining and studying data provided by complex hardware counters have been presented.

Tools presented in Section 2.2 aim to gather information about the memory addresses ac-

cessed by the threads and their latencies from these counters. The specific focus on memory

accesses of our tools makes them more suitable for analysing the memory behaviour than

other general purpose ones. In addition, the use of HC allows these monitoring tools to

present reduced overheads. Since the added monitoring code is user editable, the tools can

be adapted for their use in any number of environments, architectures or languages. The data

visualisation tool presented in Section 2.3 allows the user to carry out statistical studies of the

captured events, to understand the behaviour if their codes. It does so by offering the most

important functionalities of hardware counters. This tool shows, in a friendly way, valuable

information about locality, memory access patterns and affinity among data and cores. In

particular, the information provided by the tool can be useful to analyse the influence of false

sharing, load balance, coherence implications and other memory related issues.

In Section 2.4, parallel OpenMP shared memory programs were considered in to show the

functionality of the tools. The parallel SpMxV problem was used as a case study in a Itanium

2 based system, showing how the proposed tools can be used for analysing the behaviour of

the memory hierarchy. A regular parallel code, SDOT, was used as a different case study, to

illustrate the detection of false sharing on a Xeon based system. Both examples show how

the proposed tools can be useful for analysing the effects of the cache coherence mechanisms

on data partitioning in parallel systems.

Manuals for the applications presented in this chapter, as well as the source code of the

tools, can be found at the CiTIUS git repository [62].

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 43 — #53 i
i

i
i

i
i

2.5. Recap 43

(a) b = 2, Occurrences (b) b = 2, Latencies

(c) b = 16, Occurrences (d) b = 16, Latencies

(e) b = 32, Occurrences (f) b = 32, Latencies

(g) Block distribution, b = 4000, Occurrences (h) Block distribution, b = 4000, Latencies

Figure 2.9: Occurrences and latencies of cache accesses with 4 threads, n = 32000, r = 100000, and

different block sizes, including a block distribution.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 44 — #54 i
i

i
i

i
i

44 Chapter 2. Analysis of memory accesses in SMPs

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 45 — #55 i
i

i
i

i
i

Chapter 3

Performance models based on

runtime information

While memory accesses are an important issue influencing performance, it is not the only one.

Issues dealing with the code execution, and, in parallel codes, issues of thread synchronisation

like the operations issue order or the use of vector data, are also of the utmost importance.

This makes measuring and modelling performance in an easy way an invaluable tool for

programmers to improve their codes.

To understand the performance of a code running on a particular system, various perfor-

mance models and tools have been proposed [58, 1, 59, 16, 10, 57, 76]. In [21] a mean value

analysis of a multithreaded multicore processor is performed. Their results show that there

is a performance valley to be avoided as the number of threads increases. Markovian models

are used in [8] to model a cache memory subsystem with multithreading. Other works [4, 31]

propose to model multithreaded multicore using queuing theory.

One of the most succesful models for multicore architectures is the Roofline Model

(RM) [85], which offers a nice balance between simplicity and descriptiveness based on

two important concepts: the operational intensity (OI) and the number of FLOPS (floating

point operations per second). Nevertheless, its own simplicity might hide some performance

bottlenecks present in modern architectures. Two extensions to the RM are proposed in this

45

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 46 — #56 i
i

i
i

i
i

46 Chapter 3. Performance models based on runtime information

chapter. In the first one, the RM is extended taking different measurements during the life

of an application, in order to show the evolution of different phases of the execution. This

extension shows the evolution in time of a kernel, in a per thread basis. This has special

importance in multicore and heterogeneous systems, since it shows clearly the differences in

the execution on each core. We call this model the Dynamic Roofline Model (DyRM). In the

second one, a third dimension is added to the model, showing the average latency of mem-

ory accesses for each measurement, in order to show imbalances in memory access among

threads or cores. The representation of this new model is 3D, in contrast with the 2D nature

of the former RM and DyRM, hence we called it 3DyRM.

Both models make use of hardware counters to collect data which is analised and visu-

alised using a performance visualisation too that we have also developed.

3.1 Berkeley Roofline Model

The Berkeley Roofline Model [85] (RM) is an easy-to-understand model, offering perfor-

mance guidelines and information about the behaviour of a program, information that can

help programmers to understand the performance of their codes.

It is likely that for the recent past and foreseeable future, off-chip memory bandwidth will

often be the constraining resource. Hence, a model that relates processor performance to off-

chip memory traffic is needed. Towards that goal, the term operational intensity (OI) is used

to mean number of floating point operations (Flops) per byte of DRAM traffic (in Flops/Byte

or FlopsB). Total bytes accessed are defined as those that go to the main memory after they

have been filtered by the cache hierarchy. That is, traffic is measured between the caches

and memory rather than between the processor and the caches. Thus, operational intensity

quantifies the DRAM bandwidth needed by a kernel on a particular computer.

In the RM, operational intensity is used instead of the terms arithmetic intensity or ma-

chine balance for two reasons. First, arithmetic intensity and machine balance measure traffic

between the processor and cache, whereas the goal is to measure traffic between the caches

and DRAM. This subtle change allows to include memory optimisations of a computer into

this bound and bottleneck model. Second, the model will work with kernels where the oper-

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 47 — #57 i
i

i
i

i
i

3.1. Berkeley Roofline Model 47

ations are not arithmetic, so a more general term than arithmetic is needed.

The RM ties together floating point performance, operational intensity, and memory per-

formance in a two-dimensional graph. Peak floating point performance can be found using

the hardware specifications or microbenchmarks. If the working sets of the kernels consid-

ered do not fit fully in on-chip caches, peak memory performance is defined by the mem-

ory system behind the caches. Memory performance can be found, for example, with the

STREAM benchmark [56], or other optimised microbenchmarks designed to determine sus-

tainable DRAM bandwidth.

Figure 3.1(a) shows the RM for a 2.2 GHz AMD Opteron X2 model 2214 in a dual socket

system. The graph is on a log-log scale. The Y-axis is attainable floating point performance.

The X- axis is operational intensity, varying from 1/4 Flops/DRAM byte accessed to 16

Flops/DRAM byte accessed. The system being modelled has a peak double precision floating

point performance of 17.6 GFlops and a peak memory bandwidth of 15 GBytes/sec from a

memory bandwidth benchmark. Note that this latter measure is the steady state bandwidth

potential of the memory in a computer, not the pin bandwidth of the DRAM chips.

A horizontal line showing peak floating point performance of the computer can be plot-

ted. Obviously, the actual floating point performance of a floating point kernel can be

no higher than the horizontal line, since that is a hardware limit. Besides, since X-axis

is Flops per byte and the Y-axis is GFlops per second, bytes per second—which equals

(GFlops/second)/(Flops/byte)— the peak memory performance is just a line at a 45-degree

angle in this figure. Hence, a second line can be plotted that gives the maximum floating

point performance that the memory system of that computer can support for a given opera-

tional intensity. Next formula drives the two performance limits in the graph in Figure 3.1(a):

Attainable GFlops = Min(Peak Floating Point Performance, Peak Memory Bandwidth ×

Operational Intensity)

These two lines intersect at the point of peak computational performance and peak mem-

ory bandwidth. The horizontal and diagonal lines give this bound model its name.

Note that these limits are representative of a multicore system and they are created once

per multicore system, not once per kernel. For a given kernel, a point on the X-axis can be

found based on its particular operational intensity. If a (pink dashed) vertical segment from

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 48 — #58 i
i

i
i

i
i

48 Chapter 3. Performance models based on runtime information

(a) AMD Opteron X2

(b) Opteron X2 vs. Opteron X4

Figure 3.1: Roofline Model for (a) AMD Opteron X2 on left and (b) Opteron X2 vs. Opteron X4 on

right.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 49 — #59 i
i

i
i

i
i

3.1. Berkeley Roofline Model 49

that point to the model limit is drawn, the performance of the kernel on that computer must

lie somewhere along that segment.

The Roofline sets an upper bound on performance of a kernel depending on its operational

intensity. If we view the operational intensity as a column that hits the roof, either it hits

the flat part of the roof, which means performance is compute bound, or it hits the slanted

part of the roof, which means performance is ultimately memory bound. In this example,

in Figure 3.1(a), a kernel with operational intensity 2 is compute bound and a kernel with

operational intensity 1 is memory bound.

Note that the ridge point, where the diagonal and horizontal roofs meet, offers an insight

into the overall performance of the computer. The x-coordinate of the ridge point is the

minimum operational intensity required to achieve maximum performance. If the ridge point

is far to the right, then only kernels with very high operational intensity can achieve the

maximum performance of that computer. If it is far to the left, then almost any kernel can

potentially hit the maximum performance. The ridge point suggests the level of difficulty for

programmers and compiler writers to achieve peak performance.

To illustrate these concepts, we can compare the Opteron X2 with two cores in Fig-

ure 3.1(a) to its successor, the Opteron X4 with four cores (Figure 3.1(b). To simplify board

design, they share the same socket. Hence, they have the same DRAM channels and can

thus have the same peak memory bandwidth, although the prefetching is better in the X4. In

addition to doubling the number of cores, the X4 also has twice the peak floating point per-

formance per core: X4 cores can issue two floating point SSE2 instructions per clock cycle

while X2 cores can issue two every other clock cycle. As the clock rate is slightly faster—2.2

GHz for X2 versus 2.3 GHz for X4—the X4 has slightly more than four times the peak float-

ing point performance of the X2 with the same memory bandwidth. Figure 3.1(b) compares

the Roofline models for both systems. As expected, the ridge point shifts right from 1.0 in

the Opteron X2 to 4.4 in the Opteron X4. Hence, to see a performance gain in the X4, kernels

need an operational intensity higher than 1.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 50 — #60 i
i

i
i

i
i

50 Chapter 3. Performance models based on runtime information

3.1.1 Adding ceilings

According to [36], one advantage of bound and bottleneck analysis is that:

a number of alternatives can be treated together, with a single bounding analysis

providing useful information about them all.

The Roofline model provides this bound and bottleneck analysis for performance. Suppose

a code is performing far below its Roofline, we could ask what optimisations should be per-

formed, and in what order.

This insight can be leveraged to add multiple ceilings to the Roofline model to guide

which optimisations to perform, which are similar to the guidelines that loop balance gives

the compiler. Each of these optimisations can be thought of as a “performance ceiling” below

the appropriate Roofline, meaning that you cannot break through a ceiling without performing

the associated optimisation.

For example, to reduce computational bottlenecks on the Opteron X2, two optimisations

can help almost any kernel:

1. Improving instruction level parallelism (ILP) and applying SIMD. For superscalar ar-

chitectures, the highest performance comes when fetching, executing, and committing

the maximum number of instructions per clock cycle. One way to increase ILP is by

unrolling loops. For the x86-based architectures, another way is using floating point

SIMD instructions whenever possible, since an SIMD instruction operates on two or

four pairs of adjacent operands.

2. Balancing floating point operation mix. The best performance requires that a signif-

icant fraction of the instruction mix be floating point operations. Peak floating point

performance typically also requires an equal number of simultaneous floating point

additions and multiplications, since many computers have multiply-add instructions or

because they have an equal number of adders and multipliers.

To reduce memory bottlenecks, three optimisations can help:

4. Restructuring loops for unit stride accesses. Optimising for unit stride memory ac-

cesses engages hardware prefetching, which significantly increases memory bandwidth.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 51 — #61 i
i

i
i

i
i

3.1. Berkeley Roofline Model 51

5. Ensuring memory affinity. Most microprocessors today include a memory controller on

the same microprocessor. Data and the threads tasked to that data should be allocated

to the same memory-processor pair, so that the processors rarely have to access the

memory attached to other chips.

6. Using software prefetching. Usually the highest performance requires keeping many

memory operations in flight, which is easier to do via prefetching rather than waiting

until the data is actually requested by the program. On some computers, software

prefetching delivers more bandwidth than hardware prefetching alone.

The computational ceilings can come from a manual optimisation, although it is easy

to collect the necessary parameters from simple microbenchmarks. The memory ceilings

require running experiments on each computer to determine the gap between them. The good

news is that ceilings only need be measured once per multicore computer.

Figure 3.2 adds ceilings to the Roofline model in Figure 3.1. In particular, Figure 3.2(a)

shows the computational ceilings and Figure 3.2(b) the memory bandwidth ceilings. Al-

though the higher ceilings are not labelled with lower optimisations, they are implied: to

break through a ceiling, it is necessary to have already broken through all the ones below it.

Figure 3.2(a) shows the computational “ceilings” of 8.8 GFlops if the floating point opera-

tion mix is imbalanced and 2.2 GFlops if the optimisations to increase ILP or SIMD are also

missing.

Figure 3.2(b) shows the memory bandwidth ceilings of 11 GBytes/sec without soft-

ware prefetching, 4.8 GBytes/sec without memory affinity optimisations as well, and 2.7

GBytes/sec with only unit stride optimisations (all measured with the STREAM benchmark).

Figure 3.2(c) combines the other two figures into a single graph. The operational intensity of

a kernel determines the optimisation region, and thus which optimisations to try. The mid-

dle of Figure 3.2(c) shows that the computational optimisations and the memory bandwidth

optimisations overlap. Colours were picked to highlight that overlap. For example, kernel 2

falls in the blue trapezium on the right, which suggests working only on the computational

optimisations. If a kernel fell in the yellow triangle on the lower left, the model would suggest

trying just memory optimisations. Kernel 1 falls into the green (= yellow + blue) parallelo-

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 52 — #62 i
i

i
i

i
i

52 Chapter 3. Performance models based on runtime information

(a) Computational Ceilings. (b) Bandwidth Ceilings (c) Optimisation Ceilings

Figure 3.2: Roofline Model with Ceilings for Opteron X2.

gram in the middle, which suggests trying both types of optimisations. Note that the vertical

lines of kernel 1 fall below the floating point imbalance optimisation, so optimisation 2 may

be skipped.

Therefore, the ceilings of the Roofline model suggest which optimisations to perform.

The height of the gap between a ceiling and the next higher one is the potential reward

for trying that optimisation. Thus, Figure 3.2 suggests that optimisation 1, which improves

ILP/SIMD, has a large potential benefit for improving computation on that computer, and

optimisation 4, which improves memory affinity, has a large potential benefit for improving

memory bandwidth on that computer.

The order of the ceilings suggest the optimisation order, so the ceilings should be ranked

from bottom to top: those most likely to be realised by a compiler or with little effort by a

programmer are at the bottom and those that are difficult to be implemented by a programmer

or inherently lacking in a kernel are at the top. The one quirk is floating point balance,

since the actual mix is dependent on the kernel. For most kernels, achieving parity between

multiplies and additions is very difficult, but for a few, parity is straightforward. One example

is the sparse matrix-vector multiplication. For that domain, we would place floating point mix

as the lowest ceiling, since it is inherent.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 53 — #63 i
i

i
i

i
i

3.2. Roofline Model extensions 53

3.2 Roofline Model extensions

The RM gives a simple representation of a program performance on a particular system.

Nonetheless, in some cases it may be misleading. For example, consider a program which

goes through two phases of execution. One of them might be close to the maximum GFLOPS

and OI of the machine, while the other is performing much poorly. The RM would place the

program performance at a single point of the figure, perhaps between the performance of both

phases, which would not be representative of the real program behaviour. In another example,

consider a heterogeneous system. While the RM would give a performance point for the

entire system, thus hiding the heterogeneity, differences inside the system would suggest that

threads should have to be studied separately. Situations like these justify our proposal which

provides information at regular intervals of an execution, on a thread by thread basis. This

extension can be viewed as a Dynamic Roofline Model (DyRM) [44, 45].

3.2.1 Dynamic Roofline Model

Our proposal, the DyRM, is essentially the equivalent of dividing in time slices the execution

of a code and getting one RM for each one, then combining them in just one graph. This

way, a more detailed view of the performance during the entire life of the code, showing its

evolution and behaviour, is obtained. In DyRM, linear axes are used instead of the logarithmic

axes of the original RM to show more minute differences in the behaviour. As an example,

Figure 3.3(a) shows the DyRM of a NAS [30] application running on an Intel Xeon E5-2603

(Xeon Server A, introduced in Section 1.2.2). A colour gradient is used to show the program

evolution in time. In this way, each point in the model is coloured according to the time

elapsed since the start of the program.

With this approach different execution phases or behaviours in the code can be easily de-

tected, as can be seen in Figure 3.3. In addition, to better show the phases, a two dimensional

density estimation of the points in the extended model can be performed (Figure 3.3(b) and

red dotted lines in Figure 3.3(a)). Such an estimation allows us to readily find clusters, i.e.,

zones where the code spends more time, which are needed to identify performance bottle-

necks. The resulting groups can be highlighted and, by changing the colour of the points in

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 54 — #64 i
i

i
i

i
i

54 Chapter 3. Performance models based on runtime information

(a) DyRM (b) Density colouring

Figure 3.3: Examples of Dynamic Roofline Models for the NAS Parallel benchmark SP.B.

the DyRM, a better view of the clusters can be obtained. By using both graphs, we combine

the simplicity of the RM with a detailed view of a program execution.

In the example of Figure 3.3, three roofs were drawn, representing the expected maximum

performance of a computer core in certain situations. Note that the slope of the slanted part

of the roof depends on the memory bandwidth used. The topmost roof represents the peak

GFLOPS using SIMD instructions and its theoretical maximum memory bandwidth [26].

This roof reaches 14.4 GFLOPS for the Xeon E5-2603 and it is cut from the figure, because

of the use of a lineal scale, as said before. The middle roof represents the maximum GFLOPS

without SIMD instructions, considering one multiply and one add operations per cycle and

the maximum memory bandwidth given by the STREAM benchmark [56, 55]. The lowest

roof represents the GFLOPS considering only one floating operation per cycle and the worst

memory bandwidth given by the STREAM benchmark. In Figure 3.3(a), it is shown that the

example application remains mostly under the lower roof during its execution. Figure 3.3(b)

shows two clusters where the application spends more of its execution time. One of these

clusters exceeds the lower roof, meaning it makes more than one floating point operation per

cycle by combining add and multiply operations. The other cluster is below the slanted side

of the roof, so it is ultimately memory bound.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 55 — #65 i
i

i
i

i
i

3.2. Roofline Model extensions 55

3.2.2 Latency Extended Dynamic Roofline Model

RM models the memory performance of a system-program using the OI. OI takes into ac-

count the cache hierarchy (since a better use of cache memories would mean less use of

main memory) and the memory bandwidth and speed (since its performance would affect

GFLOPS). Yet, to characterise the performance, it may be insufficient, specially on NUMA

systems. The RM sets system upper limits to performance, but on a NUMA system, distance

and connection to memory cells from different cores may imply variations in the memory

latency. This information is valuable in many cases. Variations in access time cause different

values in the GFLOPS for each core, even if each core performs the same number of opera-

tions. This way the same code may perform differently depending on where it was scheduled.

In these cases, OI may remain the same, hiding the fact that poor performance is due to the

memory subsystem. A programmer trying to increase the application performance would not

know whether the differences in GFLOPS are due to memory access or a different reason, like

power scaling or the execution of other processes in some processors. Extending the DyRM

with a third dimension showing the mean latency of memory accesses for each point in the

graph would clarify the source of the performance issue. We call this new model Latency

Extended Dynamic Roofline Model, 3DyRM [46, 45]. As stated in Chapter 1, modern Intel

processors can measure the latency of memory accesses using PEBS [28], so this model can

be easily obtained for Intel systems.

Figure 3.4 shows an example of the 3DyRM for the execution of an example code, using

8 threads on a dual processor system with 8 cores and NUMA memory system. In this

model, a third dimension showing the mean memory latency in number of cycles is added.

Figure 3.4(a) shows the GFLOPS and OI axes, in terms of the Roofline Model with the

dynamic information introduced in the previous section. Points from threads in cores of

processor 0 are shown in black, while points from threads in cores of processor 1 are shown

in green. Note that the example code presents different phases, and some of them result in

lower GFLOPS for processor 0. In Figure 3.4(b) the same 3DyRM is shown focusing on the

GFLOPS and Latency axes. Note that for processor 1, memory accesses may take longer than

for processor 0. This is because, in this example, all data are stored in a memory cell closer to

processor 0, so memory accesses take longer for processor 1. This way, in phases with many

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 56 — #66 i
i

i
i

i
i

56 Chapter 3. Performance models based on runtime information

(a) GFLOPS/FlopB (b) GFLOPS/Latency (cycles)

Figure 3.4: 3DyRM. Two views for the same code, GFLOPS/FlopsB/Latency (cycles). Data from pro-

cessor 0 are shown in black, those from processor 1 are in green.

main memory accesses, the same code reaches better performance in cores of processor 0.

This information, which was not clear in Figure 3.4(a), may become increasingly important

for larger shared memory machines, with more cores and memory cells, and with larger

differences in access time.

3.3 Performance analysis tool

In order to obtain the 3DyRM, a set of tools that collects and processes performance infor-

mation of a complete shared memory system has been implemented. The first one is a data

capture tool which takes advantage of the Intel PEBS (Precise Event Based Sampling) [69]

to sample Flops and bytes transferred from main memory to the processor. This tool is an

evolution of the tool presented in 2.2 and, in its current version, it obtains both memory ac-

cesses data and 3DyRM data. It uses the perf_events interface from the Linux kernel

to interact with the HC, which makes it highly portable. The information obtained by this

tool is processed by our second tool in an R environment [73] to generate the model and to

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 57 — #67 i
i

i
i

i
i

3.3. Performance analysis tool 57

visualise it. Using this second visualisation tool, the 3DyRM can be easily rendered for each

core, thread or process in the system, or even displayed as a video, showing the evolution of

the execution of the monitored programs.

Intel PEBS captures the entire content of the core registers in a buffer each time it detects a

certain number of hardware events. These registers include hardware counters, which can be

measuring other events. The data capture tool uses two PEBS buffers. One of them captures

floating point information each time a certain number of instructions has been executed. This

number can be fixed by the user, determining the instruction sampling rate. The other one

captures the detailed information of a memory load event, including its latency, after certain

number of memory load events, in the same way as it was explained in Section 2.2. The user

not only can select the memory sampling rate, but the minimum load latency that an event

must have in order to be counted, allowing the user to focus only on the loads he is interested

in. Note that, the instruction sampling rate and the memory sampling rate can be different.

These sampling rates determine the overhead (overhead will be detailed in Section 3.4.1).

To obtain the information needed to create the 3DyRM, the number of floating point op-

erations executed by each core must be extracted. This means that at least ten different events

must be considered in Intel Sandy/Ivy Bridge [28] processors. These events are in the set of

FP_COMP_OPS_EXE: SSE_SCALAR_DOUBLE and FP_COMP_OPS_EXE: SSE_FP_SCALAR

_SINGLE. As stated in Section 1.3, only 4 counters, counting 4 events, can be used at

the same time without time multiplexing, which complicates counting all possible floating

point operations. Anyway, if no packed floating point operations are considered, only two

of these events can be taken into account: FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE and

FP_COMP _OPS_EXE:SSE_FP_SCALAR_SINGLE. Additionally, data traffic between main

memory modules and caches have to be considered for each core. Therefore, virtual addresses

that produce cache misses have to be stored by using the OFFCORE_REQUEST: ALL_DATA

_READ event. The sampling frequency is established through the number of instructions ex-

ecuted by each core. In this way, information about the number of instructions, the number

of floating point operations, and the number of data read are stored.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 58 — #68 i
i

i
i

i
i

58 Chapter 3. Performance models based on runtime information

Figure 3.5: The Graphical User Interface in R.

3.3.1 Performance visualisation tool

To deal with the study of the performance data we have used the R environment. A series

of R functions were implemented to read and process the performance data obtained by the

HC, and a Graphical User Interface (GUI) was implemented (see Figure 3.5). This interface

allows to read and process the data, as well as to draw several graphs and figures to show

relevant performance data. These figures range from simple graphics showing the evolution

in time of different performance metrics (such as memory latency or instructions retired per

second) to more complex ones, like the DyRM and 3DyRM models. It can even show the

DyRM as an animation to highlight its evolution through time.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 59 — #69 i
i

i
i

i
i

3.3. Performance analysis tool 59

To obtain a complete image of the system, the performance tool can show the information

in different ways. It is possible to focus on the hardware, and show figures for each system

core individually, showing the performance without caring for which process is responsible.

It is also possible to focus on processes or threads and represent models for each pid or

tid in execution, even following them between core migrations. In this way, users may have

a complete view of the system performance. This application can show composites made

of different kinds of figures simultaneously. The tool can also show relevant statistics, such

as mean GFLOPS, mean memory latency, or even the data source in cache misses (that is,

the memory level were data was found after a cache miss), from different perspectives (core,

thread, node,...). An example of a summary screen provided by the visualisation tool is shown

in Figure 3.6. In this figure, the number of data accesses captured in each core from every

possible data source in a 4 node system are shown, as given by the HC.

Figure 3.6: Statistics screen. Memory accesses captured by data source.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 60 — #70 i
i

i
i

i
i

60 Chapter 3. Performance models based on runtime information

As an example of these functionalities, Figures 3.7, 3.8 and 3.9 show the execution of two

NPB-OMP benchmarks [30] run one after the other, first the ep.A and then the ft.A, in our

Xeon Server X (see Section 1.2.2). In Figure 3.7, the complete evolution of the performance

is shown, using a DyRM for each core. In this figure, each point in the DyRM is coloured

relative to the total data capture time. In Figure 3.8, the DyRM for core 2 and the applications

there executed are shown separately. Note that the DyRM colouring is made relative to the

total time, and the tool itself scales data to obtain an accurate vision of each thread perfor-

mance evolution. Finally, in Figure 3.9, the 3DyRM is show, with performance information

for the whole system, and all cores combined in it. Here colouring depends on the proces-

sor (temporal colouring could also be used), so each processor data has a different colour to

highlight possible differences in performance between them (such as memory latency due to

remote RAM accesses). In this particular case, there are no visible performance differences

between processors but differences between both benchmarks can be appreciated. Note that

the information shown in Figure 3.8 is the same as in Figure 3.9(a).

3.4 Case studies

In this section, performance results for some of the NPB3.3-OMP benchmarks [30] are

shown, executed on two different systems, Xeon Servers X and Y (see 1.2.2 for more details).

All executions on these systems were carried out with 16 threads, disabling multithreading.

The NPB benchmarks we considered in this study are: CG (Conjugate Gradient), FT (Discrete

3D Fast Fourier Transform), EP (Embarrasingly Parallel), and the solvers LU (Lower-Upper

Gauss-Seidel), BT (Block Tri-diagonal), and SP (Scalar Pentadiagonal).

In the next subsections the overhead of the data capture tool and some results are dis-

cussed. In particular, the effects of diverse changes in the benchmark codes studied are ex-

plained using the DyRM and 3DyRM models.

3.4.1 Overhead of data capture

As previously stated (in subsection 1.3.2), the overhead from using PEBS is determined by

the sampling rates. Obtaining more detailed information requires a higher sampling rate and a

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 61 — #71 i
i

i
i

i
i

3.4. Case studies 61

Figure 3.7: DyRM models for the 8 system cores.

larger overhead. Since we want to sample both memory events and floating point information,

there are two sampling rates. The 3DyRM is based on floating point performance, so each

point in the model corresponds to a sampled event. As such, the more often floating point

information is sampled, the more points per second the 3DyRM can render. The memory

latency assigned to that point in the model is given by the mean latency of memory events

captured in the previous time interval. So, if the memory events are captured in a rate close

to that of the floating point information, each point is a close approximation of the actual

latency in that time interval.

The overhead in this study on Xeon Server Y, executing each benchmark with 16 threads,

is shown in Table 3.1. Two sets of sampling rates were used to illustrate the effect of the over-

head. In this table the execution times for the NPB benchmarks studied, compiled with O2

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 62 — #72 i
i

i
i

i
i

62 Chapter 3. Performance models based on runtime information

(a) DyRM core 2 with ep.A and ft.A (b) DyRM core 2 tid 2809, ep.A (c) DyRM core2 tid 2815, ft.A

Figure 3.8: DyRM of ep.A y ft.A. Bechmark detection.

(a) 3DyRM, GFLOPS FlopsB (b) 3DyRM, FlopsB Latency(cycles)

Figure 3.9: 3DyRM de ep.A y ft.A. Processor 0 (cores 0-3) in red, processor 1 (cores 4-7) in black.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 63 — #73 i
i

i
i

i
i

3.4. Case studies 63

Table 3.1: Data capture overhead relative to the number of samples taken per thread. Ms/th/s, number of

memory operations sampled per thread per second. Is/th/s, number of samples of instructions

counts per thread per second.

Low Sampling Rate High Sampling Rate

Code Time(s) Ms/th/s Is/th/s Over.(%) Ms/th/s Is/th/s Over.(%)

cg.A 0.27 45 23 9.6 224 118 14.7

ft.A 0.86 34 27 4.1 174 137 5.2

ep.A 1.58 23 27 0.8 116 133 1.9

lu.A 5.09 54 37 2.4 122 185 4.1

bt.A 5.73 47 57 0.7 176 278 3.8

sp.A 4.57 41 40 1.2 175 201 3.5

cg.B 10.60 41 21 0.6 322 259 2.9

ft.B 6.69 28 45 1.1 369 382 4.1

ep.B 5.33 21 37 0.1 208 316 2.4

lu.B 23.84 41 39 0.5 201 332 3.9

bt.B 28.53 31 55 0.4 303 326 3.5

sp.B 29.38 20 31 1.0 203 267 3.8

optimisation, are shown in column 2 (called Time). The next three columns show the mean

number of memory events sampled per thread each second, the mean number of instruction

counts sampled per thread per second, and the overhead incurred during measurement using

low sampling rates. As shown in this table, to obtain a good resolution in the model, with

about 40 points per second, overheads are not usually greater than 1%. Only benchmarks CG

and FT present high overheads due to their small execution time, which means that the ini-

tialisation and execution of the data capture is important. We have got a significant overhead

(about 3%) only when a high resolution is used, i.e. about 200 points per second, as shown in

the last three columns of Table 3.1. All figures in this thesis were obtained using a resolution

of approximately 40 points per second.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 64 — #74 i
i

i
i

i
i

64 Chapter 3. Performance models based on runtime information

3.4.2 Floating Point overcounting

As it was described in Section 1.3.2, there is an issue with the floating point operations

(FP_OPs) hardware monitoring in Intel architectures. In the Intel Sandy Bridge architecture,

floating point operations counters count executed operations, not retired operations [86]. A

FP_OP is will be reissued until its operands appear in the registers. This distorts the 3DyRM

for low values of FlopsB when main memory is accessed aggressively.

To illustrate this problem, a test program was implemented and executed on the Xeon

Server Y. This program simply computes the dot product of two vectors of float numbers

(SDOT), and allows a stride t to be specified, which means only the values every t vector

positions are multiplied. This stride is used to modify the operational intensity of the appli-

cation, since data is brought from memory in cache lines of 64 bytes, that is, 8 floats at a

time. From t = 1 to t = 8 the same data is brought to the cache, although fewer operations

are executed every time. In a simple program like this, the theoretic number of floating point

operations can be easily calculated and compared with the result provided by the hardware

counters. The program was executed both placing all of the data in node 0 and sharing the

data between nodes 0 and 1, with each core accessing to its local memory. Results of the flop

overcounting, in percentage, are shown in Figure 3.10. Note that a low OI, with long stalls

waiting for data, produces an overcount in the number of flops. Furthermore, when each core

is operating with its local memory (the case with data in nodes 0 and 1) the overcounting

is similar for all cores, since they all suffer the same latency, but when some cores access

remote memory and others local (the case with all data on node 0) the overcounting varies

greatly, due to the longer latency of some cores (for instance, for t = 8 the mean latency of

accesses larger than 400 cycles was 910 cycles for node 0 and 1280 cycles for node 1).

As it can be seen in Figure 3.10, the overcounting can reach more than 700%. This creates

problems in some cases for obtaining the 3DyRM. For instance, Figures 3.11(a) and 3.11(b)

show the 3DyRM for this SDOT with t = 8 and all data on node 0. In this execution, cores

on node 0 have lower latency and execute their work faster than those on node 1; once node

0 finishes its work, node 1 works alone until the end. Node 0 should show greater GFLOPS

than node 1, except at the end, when node 1 is left alone and no longer has to compete with

node 0 to access the memory. Nevertheless, in Figure 3.11(a) node 0 (in green) seems to

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 65 — #75 i
i

i
i

i
i

3.4. Case studies 65

Figure 3.10: Flop overcounting results.

have lower GFLOPS than node 1 (in black) all the time. According to Figure 3.11(b), it

seems that the node with the longer latency executes better. Even more, in Figure 3.11(a)

it seems that there are three phases with different OI, which is not likely the case, since the

application always performs the same operation. All these negative effects are due to flop

overcounting. Summarising, as node 1 has larger latencies, it overcounts more flops than

node 0, as it appears to present more GFLOPS and messes the FlopB count. This issue is

illustrated and discussed in several forums in internet [86, 67, 29].

In Figures 3.11(c) and 3.11(d) an alternative model, similar to the 3DyRM, is shown.

Although the use of number of instructions could have many drawbacks to measure perfor-

mance, this new model uses data from instruction retired counts instead of floating point

operations. So, GFLOPS are substituted by Giga Instructions Per Second (GIPS) and FlopsB

by Instructions per Byte (InstB). This model shows, in Figure 3.11(c), how the equivalent to

the OI measured with instructions does not change, because the operation is the same, and

how node 0 has greater GIPS, except for some points, which are due to the time at the end

when node 1 is running alone. In Figure 3.11(d), it is clear how a greater latency leads to a

lesser performance, and clearly shows the two phases of node 1. This alternative model using

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 66 — #76 i
i

i
i

i
i

66 Chapter 3. Performance models based on runtime information

instructions is called i3DyRM.

We consider the i3DyRM model complementary to the 3DyRM, and can be used in cases

of low OI. Alternatively, this model can be obtained in systems with no hardware counters

for floating point operations, like the Intel Haswell architecture [28], successor to Intel Ivy

Bridge. Nevertheless, in the scope of the following subsections, the DyRM and 3DyRM

models are sufficient, since used NPB-OMP benchmarks do not present an excessive floating

point overcounting.

3.4.3 Effect of compiler optimisations

To illustrate the use of the tool and the utility of the model, the effect of general optimisations

in a code was analysed, throughout the analysis of the behaviour of a NPB benchmark com-

piled without optimisation and with an O2 optimisation level. The DyRM of a FT benchmark

is shown in Figure 3.12, executed on System X with 8 threads. Note that different phases can

be identified using the information provided by the model. Optimising the program improves

the GFLOPS count, but the difference among the phases persists, which may indicate the

need to optimise each one separately.

3.4.4 Effect of the problem size

In this section we show the effects in our model of different problem sizes in the NAS bench-

marks, executed on the Xeon Server X with 8 threads. Only the most representative bench-

marks are shown. For example, the CG benchmark presents an initialisation phase, which

shows a low performance behaviour. This is shown in Figure 3.13 in the lower left corner

of each graph, with a blue colour, which means it happens early in time. This figure shows

only the information for one core, but all cores show a similar behaviour. Note that this is

a memory bound benchmark, and, as problem size increases, both OI and GFLOPS count

decrease, while the initialisation phase still remains important. It hits the slanted part of the

roof, since it is memory bound. In the case of size C, the performance overcomes the second

roof, although not the top one. It means that it achieves a better bandwidth than expected, but

obviously not more than the limit imposed by hardware.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 67 — #77 i
i

i
i

i
i

3.4. Case studies 67

(a) 3DyRM GFLOPS/FlopsB (b) 3DyRM GFLOPS/latency

(c) i3DyRM GIPS/InstB (d) i3DyRM GIPS/latency

Figure 3.11: 3DyRM and i3DyRM for an SDOT with t = 8, node 0 in green, node 1 in black.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 68 — #78 i
i

i
i

i
i

68 Chapter 3. Performance models based on runtime information

(a) No Optimisations (b) O2 optimised

Figure 3.12: DyRM for FT.A on Xeon Server X (core 0).

(a) CG.A (b) CG.B (c) CG.C

Figure 3.13: Roofline for CG (Sizes A, B and C) on Xeon Server X.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 69 — #79 i
i

i
i

i
i

3.4. Case studies 69

(a) BT.A (b) BT.B

(c) BT.C

Figure 3.14: DyRM for BT benchmark (Sizes A, B and C) on Xeon Server X.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 70 — #80 i
i

i
i

i
i

70 Chapter 3. Performance models based on runtime information

For the BT benchmark (Figure 3.14) at least three phases were found. Note that, as the

problem size increases, the GFLOPS count stabilises, but this is not the case for the OI,

which decreases. Anyway, this is clearly a compute bound program, and the use of SIMD

instructions is advisable.

3.4.5 Comparison among processors

Figure 3.15 shows the DyRM in one core of a LU.A benchmark executed on two different

processors, with different number of threads. Figure 3.15(a) shows the benchmark results on

Xeon Server X, whereas in Figures 3.15(b) and 3.15(c) the execution takes place on System

Y. The difference in GFLOPS between both processors is clear. Figure 3.15(b) shows the

results when the benchmark is executed with 8 threads, while in Figure 3.15(c) it is executed

with 16 threads. Due to the power scaling features of the Xeon E5-2650L, Figure 3.15(c)

does not attain a GFLOPS count as high as the one in Figure 3.15(b).

3.4.6 The effect of latency

On a NUMA system each core may be at a different latency from different cells of main mem-

ory. That is, it may have a different affinity to various modules of main memory. Intercon-

nexion between cores and memory may also vary inside the same shared memory machine.

These differences may affect performance, and can be modelled using the main memory

access time from each core.

Figure 3.16 shows the representation of the 3DyRM model with the EP.B benchmark on

the Xeon Server X. Note that one processor achieves better OI than the other (Figure 3.16(a)).

We can see clearly how, after an initialisation period, processor 0 executes the benchmark

more efficiently than processor 1. Figure 3.16(b) shows that the accesses with longer latencies

correspond to processor 1. The reason is that, in this case, in the EP.B benchmark, data is

initialised by only one thread, on processor 0. This means it is stored in the nearest memory

cell. Afterwards the benchmark launches all the other threads. Threads in processor 1 have a

less efficient access to the data, because they are in the memory cell nearest to processor 0,

leading to higher latencies and lower OI and GFLOPS.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 71 — #81 i
i

i
i

i
i

3.4. Case studies 71

(a) Server X, 8 threads (b) Server Y, 8 threads

(c) Server Y, 16 threads

Figure 3.15: DyRM for LU.A on different systems.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 72 — #82 i
i

i
i

i
i

72 Chapter 3. Performance models based on runtime information

(a) GFLOPS/FlopB (b) Latency(cycles)/FlopB

Figure 3.16: 3DyRM of EP.B in Xeon Server X with 16 threads. Data from processor 0 is shown in

black, those from processor 1 is in green.

3.5 Recap

In Section 3.1 the Berkeley Roofline Model was introduced. While it remains a useful and

simple model, it hides some characteristics of the applications that become important in many

systems, specially manycore, NUMA or heterogeneous systems.

To overcome these limitations, a set of extensions to the Berkeley Roofline Model have

been proposed in Section 3.2. The first extension shows the evolution of a program during

its execution, and the second one shows, additionally, the differences of memory access la-

tency among threads. To obtain the data for these models, advantage was taken of the PEBS

counters of Intel processors.

A set of tools to automate the task was also implemented, allowing us to gather useful

information with low overhead, they were presented in Section 3.3. We have shown their

usefulness with a set of cases on two different multicore systems in Section 3.4, were their

overhead and issues with floating point counting were detailed.

We use the proposed tools to show how parallel applications like the NPB-OMP bench-

marks present complex behaviours and imbalances on multicore systems. These problems

can be easily modelled with our tools, without influencing the normal execution of the appli-

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 73 — #83 i
i

i
i

i
i

3.5. Recap 73

cations, and showing a realistic model of their performance. Thanks to the proposed exten-

sions of the Roofline Model, a program’s behaviour, its phases or imbalances can be more

easily detected, making it easier to deal with performance issues.

Manuals for the applications presented in this chapter, as well as the source code of the

tools, can be found at the CiTIUS git repository [62].

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 74 — #84 i
i

i
i

i
i

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 75 — #85 i
i

i
i

i
i

Chapter 4

Thread migration based on

runtime information

As stated previously, multicore systems present on-board memory hierarchies and commu-

nication networks that influence performance when executing shared memory parallel codes.

Characterising this influence is complex, and understanding the effect of particular hardware

configurations on different codes is of paramount importance. In preceding chapters, moni-

toring information extracted from hardware counters at runtime has been used to characterise

the behaviour of each thread in the parallel code in terms of the number of floating point op-

erations per second, operational intensity, and latency of memory access. In this chapter, we

propose to use this information to guide thread migration strategies that improve execution

efficiency by increasing locality and affinity.

4.1 Introduction

Current microprocessors implement multicores that feature a diverse set of compute cores and

on board memory hierarchies connected by increasingly complex communication networks

and protocols with area, energy, and performance implications. For a parallel code to be

correctly and efficiently executed in a multicore system, it must be carefully programmed,

75

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 76 — #86 i
i

i
i

i
i

76 Chapter 4. Thread migration based on runtime information

and memory sharing stands out as a sine qua non for general purpose programming [80]. A

critical programming challenge for these systems is to partition application tasks, mapping

them to one of many possible core thread configurations to achieve a desired performance

in terms of throughput, delay, power, and resource consumption, among others [31]. The

number of mapping choices increases as the number of cores and threads increase.

Considering the architectural features, particularly those that determine the behaviour of

memory access, it is critical to improve locality of access and affinity among threads, data,

and cores. Both locality and affinity are important to reduce the access latency to data. In

addition, a large fraction of the on-chip multicore interconnect traffic is originated not from

actual data transfers but from communication between cores to maintain data coherence [75].

An important impact of this overhead is the on-chip interconnect power and energy consump-

tion.

Moving threads close to where their data reside can help alleviate memory related perfor-

mance issues, since when threads migrate, the corresponding data usually stays in the original

memory module, and is accessed remotely by the migrated thread. This could induce inef-

ficiency that, sometimes, cannot be alleviated by the benefits of the migration [11, 78, 79,

38, 33]. Alternatively, memory pages can be migrated, instead of threads, to improve perfor-

mance [2]. Some results and studies are available for multicore processor analysis. For exam-

ple, [21] performed a mean value analysis of a multithreaded multicore processor and showed

that there is a performance decrease to be avoided as the number of threads increases. Marko-

vian models were used in [8] to model a cache memory subsystem with multithreading, and

other works [4, 31] have modelled multithreaded multicore using queuing theory. Proposals

for heterogeneous multicore [34] move threads between cores to exploit power-performance

trade-offs. Performance information can be used to guide thread migration strategies to im-

prove the efficiency of the execution of the code by increasing data locality and/or thread

affinity. Each such migration incurs overhead, similar to a context switch [37, 39], from

saving and restoring processor states and virtual machine control structure, extra translation

lookaside buffer misses and related page walks, cache misses, and interrupt rerouting. The

indirect overhead of TLB and cache misses for a migration is potentially higher than for a

context switch, because the migrated thread begins execution in a different processor envi-

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 77 — #87 i
i

i
i

i
i

4.2. Migration strategies and algorithms 77

ronment and cache hierarchy. The performance benefits of saving and restoring cached data

during migration are analysed in [74]. Thread startup performance can be accelerated after

migration by predicting and prefetching the working set of the application into the new cache

according to [6].

In the previous chapter various performance models have been commented [58, 1, 59, 16,

10, 57, 76]. In particular, the Roofline Model (RM) [85] was detailed. Based on this model

the 3DyRM model was proposed.

In this chapter, we propose using the 3DyRM to implement strategies for migrating

threads in shared memory systems [48]. In particular, based on the parameters of this model,

new functions that characterise the efficiency of each thread are proposed. As a result, just a

single value is used to quantify the behaviour of each thread in terms of locality and affinity.

4.2 Migration strategies and algorithms

In this thesis, a tool to monitor a program execution and to perform thread migrations was

implemented. Given a target parallel shared memory program to be optimised, this tool

captures information about the behaviour of every thread on the system. The migration tool is

constantly gathering performance data in terms of the parameters that define the 3DyRM, that

is, GFLOPS, flopsB and latency for each core and thread. This information is proposed

to be used to guide a thread migration mechanism that is activated every T miliseconds. After

each migration, performance data must be initialised, since the configuration has changed.

The concept is to use the defining parameters of 3DyRM as objective functions to be op-

timised [50]. Thus, it can be considered as a multiobjective optimisation (MOO) problem.

The proposed technique is an iterative method inspired in evolutive optimisation algorithms.

To this end, we define an utility function to represent the relative importance of each of the

3DyRM parameters. This function is a weighted product that can be considered as representa-

tive of the performance of each parallel thread, and the parameters characterise the efficiency

of each thread. Thus, a single value is proposed to quantify the performance of each thread

in terms of locality and affinity. A number of methods for the MOO problem can be found in

the literature [52]. The aim of many of them is to obtain Pareto optimality numerically, but

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 78 — #88 i
i

i
i

i
i

78 Chapter 4. Thread migration based on runtime information

this task is usually computationally complex and different approaches were proposed.

Note that, in our case, there are no functions to be optimised, but a set of values that are

measured in the system. Therefore, we propose to apply multiobjective optimisation methods

to deal with our problem by using the values of these parameters measured on the fly. Thread

migration is then used to modify the state of each thread trying to simultaneously optimise

these three target parameters.

In following sections, three proposals for thread migration strategies, based on three mi-

gration algorithms, are presented. They are, in increasing complexity, the Interchange Mi-

gration Algorithm (IMA) [47, 49], the Interchange Migration Algorithm with performance

Record (IMAR), and the Interchange Migration Algorithm with performance Record and

Rollback (IMAR2) [63]. For all these algorithm case studies were made to show their useful-

ness.

4.2.1 IMA Interchange Migration Algorithm

GFLOPS, flopsB and latency (the 3DyRM parameters) are considered as optimisation

functions whose values present different orders of magnitude. For this kind of situations, to

aggregate these parameters, the use of weighted product methods is recomended [9], char-

acterising each thread by the value of an aggregated objective function P that combines the

three parameters. In particular, we propose the following function for the i-th thread, where

M is the number of threads:

Pi =
GFLOPSβ ·flopsBγ

latencyα
i = 1, . . . ,M (4.1)

Each thread is ranked with its corresponding Pi, where higher values of Pi indicate better

performance1. Note that the importance of each factor is scaled by a different weighting

factor α , β and γ , which indicates the relative significance of the corresponding objective

function. Therefore, this function is the result of scalarising the multiobjective optimisation

problem [52] as the product of the three objective values weighted by these three factors. This

1Because of the implementation of the migration tool, placing the latency value in the lower term of the

division gave problems with the floating point operations; so the actual tool uses the inverse of the P function. The

algorithm is functionally the same.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 79 — #89 i
i

i
i

i
i

4.2. Migration strategies and algorithms 79

approach was successfully used in different applications [9, 7, 83]. Note that this function

produces a value whose dimensionality is not related with any performance metric.

As discussed in section 3.4.2, GIPS and instB may be substituted for GFLOPS and

flopsB, where appropriate, using an alternate form of equation 4.1,

Pi =
GIPSβ · instBγ

latencyα
i = 1, . . . ,M (4.2)

During the execution of the code to be optimised, values of Pi are computed each T ms

for each thread. Based on these values, a certain number Θ < M of threads are selected to

be migrated. This process is inspired in iterative evolutive optimisation methods, in which

random selection plays a key role, in particular to improve convergence. Different strategies

can be considered to select threads to be migrated. For the IMA algorithm, two strategies are

proposed:

1. W_RBEST, to swap the Θ/2 threads that present the highest values of P with Θ/2

threads selected randomly among the rest of them.

2. W_RWORST, to swap the Θ/2 threads that present the lowest values of P with Θ/2

threads selected randomly among the rest of them.

To avoid ping-pong effects in the migration of any thread, both version of the IMA avoid

migrating the same threads two consecutive times. Note that these strategies also contribute to

balance the workload among threads. To simplify notation, an IMA including its parameters

is denoted as IMA[T ;Θ;α,β ,γ].

4.2.2 IMAR Interchange Migration Algorithm with performance Record

As an alternate proposal, the initial migration algorithm presented in the previous section

was modified to make it more predictive and to take into account past performance. This new

algorithm is called Interchange Migration Algorithm with performance Record (IMAR).

This algorithm functions the same way as the IMA, but adds a performance record. In-

stead of having just one instant value P of performance for each thread, the IMAR keeps a

record with the previous performance of each thread in each node of the system.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 80 — #90 i
i

i
i

i
i

80 Chapter 4. Thread migration based on runtime information

Let Pi j be the performance for the i-th of M threads on the j-th of N nodes. Then, for each

iteration of the aggregate function,

Pi j =
GFLOPSβ

i j ·flopsBγ

i j

latencyα
i j

i = 1, . . . ,M j = 0, . . . ,N−1 (4.3)

where GFLOPSβ

i j is the GFLOPS of the thread scaled by β , flopsBγ

i j and latencyα
i j, are the

flopsB and latency values scaled by γ and α , respectively, and larger values of Pi j imply

better performance.

The alternate form of equation 4.3 using instruction counts would be:

Pi j =
GIPSβ

i j · intsBγ

i j

latencyα
i j

i = 1, . . . ,M j = 0, . . . ,N−1 (4.4)

Initially, no values of Pi j are available for any thread on any node. For each iteration, Pin

is computed for every thread in the system and stored, where n is the node where the i-th

thread is being executed at that moment. If there is a previous value of Pin, the new value

replaces the previously saved one. Thus, the algorithm adapts to possible behaviour changes

for the threads. For example, in a Xeon server with four nodes, N = 4, four values of P (one

for each thread) are saved each iteration. As threads migrate and are executed on different

nodes, matrix Pi j is progressively updated and filled.

Unlike IMA, IMAR does not allow to select the number of threads to be moved per

iteration, instead the value of T is used to increase or decrease the number of migrations per

unit of time. At each iteration, every T milliseconds, once the new values of Pi j are computed,

the thread with the worst current performance, in terms of Pi j, is selected to be migrated. To

compare threads from different processes, each individual Pin is normalised by dividing it by

the mean of all threads of the same process, identified by its PID,

P̂ic =
Pic

P jc
∀ j/PID(i) = PID(j) (4.5)

where P jc is the mean performance of all the threads in the same process as i. Thus, for

each process, those threads with P̂in < 1 are currently performing worse than the mean of the

threads in the same process, and the worst performing thread in the system is considered to

be the one with the lowest P̂in, i.e., the thread performing worse when compared to the other

threads of its process. This is the migration thread, denoted by Θm.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 81 — #91 i
i

i
i

i
i

4.2. Migration strategies and algorithms 81

The migration can be to any core in a node other than n. A weighted random process is

used to choose the destination, based on the stored performance values. The aim is to con-

sider all possible migrations, and so all Pi j values are updated and behavioural changes are

incorporated. To ensure the migration will globally improve performance, every possible des-

tination is granted a number of tickets according to the likelihood of that migration improving

performance, and the destination with the larger likelihood overall is chosen. Migration may

take place to an empty core, where no other thread is currently being executed, or to a core

occupied with other threads. If there are already threads in the core, one would have to be

swapped with Θm. The swap thread is denoted as Θg, and all threads are candidates to be Θg.

While not all threads may be selected to be Θm, e.g. a process with a single thread would

always have P̂in = 1 and so never be selected, they may still be considered for Θg to ensure

we obtain the best possible performance for the system as a whole.

The rules applied to distribute tickets (B) for the random selection procedure are:

– Destinations in nodes where Θm has previously performed worse than the current node

get B1 tickets.

– Destinations in nodes where there is no previous data recorded for Θm get B2 tickets.

– Destinations in nodes where Θm has previously performed better than the current node

get B3 tickets.

The best migration should be that which results in good performance from both threads,

Θm and Θg. Therefore, additional tickets are awarded to each destination according to the

values of Pgn, where g is Θg, and n is the node that currently hosts Θm:

– Destinations where Θg has previously performed worse in n in the past get B4 tickets.

– Destinations with no previous information for Θg get B5 tickets.

– Destinations where Θg has previously performed better get B6 tickets.

– Destinations for cores with no threads assigned get B7 tickets.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 82 — #92 i
i

i
i

i
i

82 Chapter 4. Thread migration based on runtime information

Although Pi j are only saved for nodes, by including the performance of the possible Θg,

different cores in the same node, and even different threads in the same core, may get a

different number of tickets.

Suitable choice of Bk is critical, and this is discussed further below. When all tickets have

been assigned, a final destination core is randomly selected based on the awarded tickets.

The interchanging thread, Θg, is chosen from those currently being executed on that core, if

the core is not free. Once the threads to be migrated are selected, the migrations are actually

performed.

To simplify notation, an IMAR including its parameters is denoted as IMAR[T ;α,β ,γ].

4.2.3 IMAR2 Interchange Migration Algorithm with performance Record

Rollback

After considering the results of the IMAR algorithm some changes were proposed to improve

the migration algorithm. Note that, migrations may affect not only the involved threads, Θm

and Θg, but all threads in the system due to synchronisation or other side effects among

threads. These relations are not accurately modelled using each thread performance sepa-

rately. Therefore, we propose the interchange algorithm with performance record and roll-

back (IMAR2), where the total performance for each iteration is calculated as the sum of

all Pic for all threads. Thus, the current total performance, Ptcurrent , that is, a single value,

is available to evaluate a thread configuration, independent of the particular processes being

executed. The total performance of the previous iteration is denoted as Ptlast . An acceptable

ratio, 0.9 < ω ≤ 1 is previously defined for Ptcurrent/Ptlast .

Incorporating these concepts, decisions are made regarding the next iterations of the algo-

rithm. The algorithm may dynamically adjust the rate of migrations by changing T between

a given minimum, Tmin, and maximum, Tmax, doubling or halving the previous value. A

rollback mechanism was also implemented, to undo migrations if they result in a significant

loss of performance, returning migrated threads to their former locations. If a rollback is

performed, no other migrations are made during that iteration.

Thus, the rules guiding the procedure are:

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 83 — #93 i
i

i
i

i
i

4.2. Migration strategies and algorithms 83

– If Ptcurrent ≥ωPtlast , i.e., the total performance remains stable or improves: Migrations

are considered productive, T is halved (T → T/2), and a new migration is performed

according to IMAR.

– If Ptcurrent < ωPtlast , i.e., the total performance decreases more than a given threshold:

Migrations are considered counter-productive, T is doubled (T → 2×T), and the last

migration is rolled back.

IMAR2 considers that, on one hand, if a thread placement has low total performance,

migrations should be performed to obtain better thread placement. In this case, migrations are

likely to increase performance (Ptcurrent ≥ ωPtlast) so T is decreased to perform migrations

more often and reach optimal placement quicker. On the other hand, if thread placement

has high total performance, migrations have a greater chance of being detrimental. In this

case, if Ptcurrent < ωPtlast , there is no requirement for many migrations, so T is increased.

The algorithm continues to migrate threads to allow for changes in system behaviour, and

to obtain performance information, rolling these back if necessary. To simplify notation,

IMAR2 with its parameters is denoted as IMAR2[Tmin,Tmax;α,β ,γ;ω].

4.2.4 IMAR example

A simple example is presented to clarify our proposal. Consider a system with 6 cores in

three different nodes, incorporating three processes, each with two threads. Initially, Process

1 has threads 100 and 101 executed in node 0 (cores 0 and 1), Process 2 has threads 200 and

201 executed in node 1 (cores 2 and 3), and Process 3 has threads 300 and 301 executed in

node 2 (cores 4 and 5), as shown in Table 4.0(a), where threads are shown with the core they

currently reside, and their recorded performance in each node. Nodes where threads have not

been executed previously have no performance information recorded.

Table 4.0(b) shows a later state, where some migrations have been executed and more

performance information is available. The performance of each thread in its current node is

shown in bold. Suppose a migration has to be decided at this point. Table 4.2 shows each

thread’s performance and normalised performance P̂in (equation 4.5). In this example thread

300 has the worst relative performance, so Θm=300.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 84 — #94 i
i

i
i

i
i

84 Chapter 4. Thread migration based on runtime information

(a) Initial state.

thread (core) Pi0 Pi1 Pi2

100 (0) 2.4 – –

101 (1) 2.6 – –

200 (2) – 1.4 –

201 (3) – 1.6 –

300 (4) – – 6.3

301 (5) – – 5.2

(b) State after i-th iteration

thread (core) Pi0 Pi1 Pi2

100 (2) 2.5 1.9 2.9

101 (4) 2.7 1.8 3.1

200 (0) 0.9 1.4 –

201 (5) – 1.6 2.1

300 (1) 3.3 – 6.3

301 (3) – 8.1 5.7

Table 4.1: Example of use of IMAR. Thread state.

The case studies, Section 4.5, show good values for Bk to be the following:

– B1 = B4 = 1: previous low performances are penalised,

– B2 = B5 = 2: allow more performance information to be obtained,

– B3 = B6 = 4: previous good performances are rewarded, and

– B7 = 3: allow migrations to free cores and improve load balance.

With these values, a thread interchange that would increase the performance of both

threads involved would get eight tickets, the maximum, whereas one that would worsen the

performance of both threads would get only two tickets, the minimum. Migrations and inter-

changes where there are no data still have a chance of being selected, (eventually) providing

values for all possible Pi j.

Table 4.3 shows the distribution of tickets for this example, where destinations can be

considered the same as cores or threads, because there is only one thread per core and no idle

cores. Tickets are awarded according to the past performance of thread Θg=300.

– Thread 300 cannot move to core 1 (its current location) or 0 (it is in the same node), so

both cores get 0 tickets.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 85 — #95 i
i

i
i

i
i

4.2. Migration strategies and algorithms 85

Table 4.2: Thread performance for the example of Table 4.1.

– 100 101 200 201 300 301

P 1.9 3.1 0.9 2.1 3.3 8.1

P̂ 0.76 1.24 0.6 1.4 0.58 1.42

– Cores 2 and 3 get B2 tickets, since there is no past information of thread 300 on node

1.

– Cores 4 and 5 get B3 tickets, because performance of thread 300 was better on node 2

than on the current node.

Tickets are then awarded considering the past performance of the threads that are currently

executing on each particular core, when executed previously on node 0, the node currently

hosting thread 300.

– Core 2 gets B6 tickets because thread 100 performed better on node 0.

– Core 3 gets B5 tickets because thread 301 has no previous performance information on

node 0.

– Core 4 gets B4 tickets because thread 101 performed worse on node 0.

– Core 5 gets B5 tickets because thread 201 has no previous performance information on

node 0.

Thus, 21 tickets were awarded, and

– Thread 300 has 6/21 chances of migrating to core 2 and being interchanged with thread

100. This would be favourable to thread 100 and unknown to thread 300.

– Thread 300 has 6/21 chances of moving to core 5 and being interchanged with thread

201. This would be unknown to thread 201 and favourable to thread 300.

– Thread 300 has 5/21 chances of migrating to core 4 and being interchanged with thread

101. This would be detrimental to thread 101 and favourable to thread 300.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 86 — #96 i
i

i
i

i
i

86 Chapter 4. Thread migration based on runtime information

Table 4.3: Ticket distribution for the example of Table 4.2.

thread (core) Pi0 Pi1 Pi2 tickets

100 (2) 2.5 1.9 2.9 B2 + B6 = 2+4

101 (4) 2.7 1.8 3.1 B3 +B4 = 4+1

200 (0) 0.9 1.4 – 0

201 (5) – 1.6 2.1 B3 + B5= 4+2

300 (1) 3.3 – 6.3 0

301 (3) – 8.1 5.7 B2 + B5=2+2

– Thread 300 has 4/21 chances of going to core 3 and being interchanged with thread

301. This would be detrimental to thread 301 and unknown to thread 300.

Once all tickets are awarded, Θg is chosen in a lottery. The interchange can be performed

when Θm and Θg are chosen, migrating both threads to each other cores. Note that this is a

small example, in a real situation with more threads and nodes, the probability differences

among the possible migrations would be larger.

4.3 Migration tool

In order to obtain the three parameters in Pi and Pi j, the dynamic runtime information about

the behaviour of the code, the same mechanism using PEBS described in sections 2.2 and 3.3

is used. This information includes, for load operations, the latency in which the data is served,

as well as information about the memory level from where the data was actually read. Also,

information about floating point operations can be captured each time a certain number of

instructions has been executed. All these events are obtained in a sampled way, so each point

in the 3DyRM or i3DyRM corresponds to a sampled event. The memory latency assigned

to that point in the model is given by the mean latency of memory events captured along the

previous time interval. So, if the memory events are captured in a rate close to that of the

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 87 — #97 i
i

i
i

i
i

4.4. Case Studies: SDOT and SAXPY 87

floating point information, each point will have a close approximation of the mean latency in

such time interval.

The migration tool captures events for all the processes executed in the system. It can

store performance information for each thread in the system as needed for IMA, IMAR or

IMAR2. It can pin any thread to an specific core, and perform migrations guided by the

algorithms.

4.4 Case Studies: SDOT and SAXPY

In this section the IMA algorithm is tested using a couple of examples. The experiments

presented in this section were carried out on our Xeon Server Y (see section 1.2 for more

details). Each processor has a 20 MB shared L3 cache. The main memory is divided into

two 32 GB cells, cell0 and cell1. Each processor is associated to one of these cells.

All executions were carried out with 16 threads, and the Hyper-Threading capability was

disabled. The system runs a Linux kernel 3.10.

4.4.1 The SDOT and SAXPY routines

In our experiments, two single precision Level 1 BLAS routines, SDOT and SAXPY, were

used. These routines were selected because their behaviour is well known and to fix the

reproducibility of results.

– The SDOT operation computes the dot product of two real vectors in single precision:

s← x> · y = ∑x(i)∗ y(i)

– The SAXPY operation computes a constant a times a vector x plus a vector y. The

result overwrites the initial values of vector y:

y← a · x+ y

Both operations work with strided vectors. Two values, named incx and incy, are used

to specify the stride between two consecutive elements of vector x and vector y, respectively.

Different strides are used to change the behaviour of the codes in terms of memory accesses.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 88 — #98 i
i

i
i

i
i

88 Chapter 4. Thread migration based on runtime information

4.4.2 The implementations

To place segments of each vector in different memory cells, the libnuma library [32] has

been used. Each vector has been divided into 16 segments, one for each execution thread, so

each one can be allocated to a specific memory cell using numa_alloc_onnode(). Fur-

thermore, each thread can be assigned to a specific core using sched_setaffinity().

In this way, different configurations have been tested:

– IDEAL: Each thread operates with the vector segments it needs in its local memory.

– CROSSED: Each thread operates with the vector segments it needs in its remote mem-

ory.

– ALL_IN_0: All the segments are placed in cell0.

– ALL_IN_1: All the segments are placed in cell1.

4.4.3 Selection of parameters

In order to show the use of our strategies, in these case studies, the following values have

been selected for the parameters that rule the algorithms: T = 1 s, as the time between mi-

grations, and Θ = 2, the number of thread to be migrated. The value of T was selected as a

trade-off between efficiency and overhead. We found that, in our system, this time is good

to detect the effects of the last migration from the monitoring information. Also, the mi-

gration itself does not interrupt the execution of the codes. The value of Θ was selected to

make transitions between consecutive migrations as smooth as possible. In addition, four

configurations of the weighting factors of equation 4.1 were considered to study the relative

importance of the three components of Pi. Using the notation of the IMA, these configura-

tions are IMA[1;2;1,1,1], IMA[1;2;2,1,1], IMA[1;2;1,2,1] and IMA[1;2;1,1,2]. Since T

and Θ remain the same they can be called 111, 211, 121, and 112 according to the values of

α , β and γ , respectively. These configurations cover both the case in which the importance

of the parameters is balanced, and the one in which one of the parameters is more relevant

than the others. In addition, these values guarantee a fast computation of Pi. Each set of

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 89 — #99 i
i

i
i

i
i

4.4. Case Studies: SDOT and SAXPY 89

experiments was performed 5 times and average execution time was extracted. The system

used was our Xeon Server Y (see Section 1.2.2 for details).

4.4.4 Results for IMA

Results obtained for the SAXPY kernel with 16 threads using stride 4 are shown in Figure 4.1.

In order to be fair, both of IMA, W_RBEST and W_RWORST, described in Section 4.2.1, are

compared with other two strategies: FIXED, that means that all threads remain executing

always in the same core (no migrations at all), and FREED that means that the OS migrates

threads following its own mechanisms. Horizontal axis indicates the weighting of the factors

in Equation 4.1. The size of x and y were fixed in all the experiments to 5 ·107 elements, that

is, 2 ·108 bytes, far larger than the size of L3 cache. Each experiment was repeated 700 times.

As the stride increases, less operations are performed. For stride 8, for example, only half

of the vector takes part in the operation compared to stride 4. Nevertheless, from stride 4 to

stride 16 (see Figures 4.1, 4.2, and 4.3 for SAXPY, and Figures 4.4, 4.5, and 4.6 for SDOT)

execution times remain almost the same. This is due to the management costs of the memory

hierarchy. In the Sandy Bridge architecture, the cache line size is 64 bytes, which means it

can hold 16 floats. Furthermore, the processor always reads two consecutive cache lines from

main memory, so it brings 32 floats from the cache. This means that from stride 4 to stride 16

the system will transfer from main memory to the cache the same amount of data, essentially

the whole vectors x and y. So, with stride 16 only one float is needed per cache line for each

vector, but the system will still move the full cache lines, 128 bytes. As a consequence, these

codes are memory bound, and therefore, their execution time is limited by memory accesses,

and it is not reduced, even though they are executing less floating point operations.

In the IDEAL configuration each thread is using the memory module closest to itself,

which should be the best case for memory access and should present lower latencies. In the

CROSSED configuration each thread is using the memory opposite to itself. As expected, the

ALL_IN_0 and ALL_IN_1 configurations show the worst results. This is because all threads

access the same memory cell, which produces bus conflicts and saturation. In the CROSSED

configuration data need more time to reach its destination, but the number of read conflicts

is similar to the IDEAL configuration. In the ALL_IN configurations, the cell where the data

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 90 — #100 i
i

i
i

i
i

90 Chapter 4. Thread migration based on runtime information

Figure 4.1: Execution times of SAXPY with stride 4.

Figure 4.2: Execution times of SAXPY with stride 8.

.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 91 — #101 i
i

i
i

i
i

4.4. Case Studies: SDOT and SAXPY 91

Figure 4.3: Execution times of SAXPY with stride 16.

Figure 4.4: Execution times of SDOT with stride 4.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 92 — #102 i
i

i
i

i
i

92 Chapter 4. Thread migration based on runtime information

Figure 4.5: Execution times of SDOT with stride 8.

Figure 4.6: Execution times of SDOT with stride 16.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 93 — #103 i
i

i
i

i
i

4.4. Case Studies: SDOT and SAXPY 93

is stored shows better behaviour than its opposite, but the overall performance is diminished.

In fact, for ALL_IN configurations, threads in the same cell as the data finish their execution

before threads in the opposite cell. This states the importance of balancing the memory use.

In the IDEAL case there is no gain from using our migration mechanisms. This is because,

the IMA algorithm always migrate threads every T milliseconds, and they do not stop even

when a good configuration is reached. Since the IDEAL case already starts with the best

possible configuration, any thread movement is basically detrimental.

In the ALL_IN cases the threads placed in the processor with affinity to the data finish

their computation before the threads in the other processor. This is why migrations help per-

formance, since they balance the load between the processors and make them finish roughly

at the same time. When only the OS is in charge of migrations (FREED case), one of the pro-

cessors finishes first, but the remaining threads are then balanced between the two processors,

balancing the load in the end.

The CROSSED case is the one in which more gain is obtained by our migration strategies.

During the execution, all threads are balanced and at the same distance from data, so they take

roughly the same time to finish. This means that load is balanced and therefore the OS by

itself does not perform migrations at all. Nevertheless, it takes longer to finish computation

compared to the IDEAL case due to the high memory latency. Using our migration strategies,

threads are placed closer to their data and execution time gets closer to the IDEAL case. In the

CROSSED configuration is where choosing the correct strategy for thread migration is more

important.

The migration configurations of the scaling factors (111, 211, 121, and 112) affect the

results of both migration algorithms. Configuration 112 gets the worst results. This is be-

cause it amplifies the importance of the OI, and this factor should be roughly the same for

all threads, since they perform the same number of operations. As a consequence, the algo-

rithms are essentially migrating threads randomly. Configuration 121 gives more importance

to GFLOPS. Nevertheless, there is a problem with the floating point operations (FP_OPs)

hardware monitoring in the Intel architectures, as stated in section 3.4.2. This makes results

for configuration 121 slightly worse than those for 211. Configuration 211 gives more im-

portance to latency. It achieves the best results with these codes, since memory latency is the

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 94 — #104 i
i

i
i

i
i

94 Chapter 4. Thread migration based on runtime information

determining factor of their performance. W_RWORST performs better than W_RBEST with

the SDOT kernel, while with the SAXPY kernel results are similar for both strategies. The

W_RWORST should reach the IDEAL configuration from the CROSSED one faster, since it

starts moving the worst performing threads first and, once threads are placed in the proper

cell, they perform better and tend to not be migrated. Anyway, since neither algorithm stops

migrating once a good configuration is reached, both perform similarly.

4.5 NAS Case Studies

NPB-OMP benchmarks were used to study the effect of the memory allocation. These bench-

marks are well suited for multicore processors, although they do not greatly stress the mem-

ory of large servers. In this section a series of tests based on these benchmarks are presented.

These tests are designed to stress NUMA memories and allow to carry out experiments with

algorithms IMAR and IMAR2. To simulate the effects of NUMA memory allocation, differ-

ent memory stress situations were forced using the numactl tool [32], which allows to define

the memory cell to store data and to pin the threads to specific cores or processors.

4.5.1 NAS implementations

We designed an experiment where four instances of the NPB-OMP benchmarks are executed

concurrently in a multiprocessor system, and the placement of each one can be directly con-

trolled. Each benchmark instance was executed in one multi-threaded process. The system

used was our Xeon Server Z (see Section 1.2.2 for details). Each benchmark was executed

with just enough threads to fill one node. Thus, each process could have its execution threads

pinned to any node and its data assigned to a selected memory cell. Different memory place-

ment scenarios can be established by executing as many process as nodes. We tested the

following options:

– FREE test: The benchmarks started execution at the same time, and the OS controlled

memory and thread placement.

– DIRECT test: Each benchmark had its threads fixed to one node and preferred memory

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 95 — #105 i
i

i
i

i
i

4.5. NAS Case Studies 95

set to the same cell.

– CROSSED test: Each benchmark had its threads fixed to one processor and preferred

memory set to a different cell. When more than two cells were considered, there were

several possible combinations. The configuration used in the case study with four cells

was:

– threads in node 0 had their data in cell 1,

– threads in node 1 had their data in cell 0,

– threads in node 2 had their data in cell 3, and

– threads in node 3 had their data in cell 2.

– INTERLEAVE test: Each benchmark had its threads fixed to one node and memory set

to interleave, with each consecutive memory page set to a different memory cell in a

round robin fashion.

Four class C NPB-OMP codes were selected to be considered: lu.C, sp.C, bt.C and

ua.C. This selection was made according to two main criteria: To consider codes with dif-

ferent memory access patterns and with different computing requirements.

– The DyRM model (see Figure 4.7) was used to select two benchmarks with low flopsB

(lu.C and sp.C) and two with high flopsB (bt.C and ua.C).

– Since the execution times of these codes are similar, they remain in concurrent execu-

tion most of the time. This helps studying the effect of thread migrations.

All benchmarks were compiled with gcc and O2 optimisation.

4.5.2 Baseline results

In this section, the results of the execution of our tests are shown. The effects of the memory

placements in the execution of the NPB-OMP benchmarks are evaluated, without migration

strategies, and these results are used as a baseline to evaluate IMAR and IMAR2. These

tests were executed on system Z using only nodes 0 and 1, to see the behaviour on 2 nodes,

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 96 — #106 i
i

i
i

i
i

96 Chapter 4. Thread migration based on runtime information

(a) DyRM LU.C (b) DyRM SP.C

(c) DyRM BT.C (d) DyRM UA.C

Figure 4.7: DyRM for selected NAS Benchmarks. Note that lu.C and sp.C have much lower FlopB

than bt.C and ua.C.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 97 — #107 i
i

i
i

i
i

4.5. NAS Case Studies 97

Table 4.4: Baseline times for dual NAS on System Z with 2 nodes.

Time (s)

test free direct interleave crossed

lu.C 218,05 210.21 533.95 1201.93

sp.C 265.91 268.246 697.75 1680.43

bt.C 195.72 181.24 279.46 443.6

ua.C 203.84 190.6 368.39 659.71

sp.C 205.77 264.9 911.44 1683.93

ua.C 224.56 191.02 376.03 677.99

sp.C 204.84 265.48 743.09 1695.49

bt.C 206.84 182.99 284.35 463.11

lu.C 221.15 202.99 545.75 1220.02

bt.C 198.32 188.35 282.99 455.83

lu.C 212.61 209.88 541.61 1203.03

ua.C 196.63 190.86 368.26 664.38

and using the 4 nodes. The NAS benchmarks were combined when executed in 2 nodes as

two different instances (6 combinations were considered, lu.C/sp.C, bt.C/ua.C, sp.C/ua.C,

sp.C/bt.C, lu.C/bt.C, and lu.C/ua.C). The execution times obtained for these benchmarks

are shown in table 4.4. These results show that, for the FREE case, when threads and memory

are left to be freely placed by the OS (limited to 2 nodes, not using the 4 available ones),

execution times are, in most cases, worse than the DIRECT case. Since the NAS benchmarks

perform reasonably well on multicores and they do not stress the memory, on the FREE test

the OS placement of threads and memory performs well, although it is not as good as the

DIRECT case.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 98 — #108 i
i

i
i

i
i

98 Chapter 4. Thread migration based on runtime information

The exception is with benchmark sp.C, specially when paired with bt.C or ua.C. This

benchmark is memory intensive, and the OS seems to accelerate its execution by making the

opposite application slower. For the rest of the cases, placing the memory and the execution

threads in the same node seems to be the best option. Interleaving the memory does not get

good results, but by far the worst case is the CROSSED test, where memory and threads are in

opposite nodes.

When 4 nodes are considered, each test was executed on the four nodes, combined

as four processes of the same code that produced four combinations (4 lu.C, 4 sp.C, 4

bt.C, and 4 ua.C), and four processes of different codes, that produced one combination

(lu.C/sp.C/bt.C/ua.C). Every test was executed five times and the mean execution times

are shown in Table 4.5. The times for all benchmarks of lu.C/sp.C/bt.C/ua.C are shown,

whereas, for considerations of space, only the times of the fastest and slowest instances are

shown for the four equal benchmarks.

Results are similar to the ones of the 2 nodes case. The FREE test, where the OS placed

threads and memory freely, performs reasonably well, although inferior to the DIRECT case.

sp.C is inferior to the DIRECT test, but only when executed with other codes in the lu.C/sp.C/

bt.C/ua.C combination. For that case, when benchmarks ua.C and bt.C finish execution

in the FREE test, the OS is free to place sp.C threads in other processors to balance the load,

which leads to a faster execution. For the other cases, placing memory and execution threads

in the same node appears to be the best option, while interleaving memory does not produce

good results. As expected, by far the most inferior case is the CROSSED test, where memory

and threads are on different nodes.

Thus, the DIRECT case is the best option, although it has some load balancing issues that

can decrease the global performance, and the CROSSED test is the worst case, as expected.

4.5.3 Study of traces

Before presenting the execution times of the benchmarks when the IMAR and IMAR2 al-

gorithms are applied, a few examples of the behaviour on specific cases are warranted. The

migration tool can be configured to dump the PEBS trace to a file, which can be read by a

performance visualization tool, such as in [46]. Thus, the evolution of the performance of

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 99 — #109 i
i

i
i

i
i

4.5. NAS Case Studies 99

Table 4.5: Baseline times for 4 NAS on System Z with 4 nodes.

Time (s)

test free direct interleave crossed

lu.C 220.24 210.00 428.41 1221.05

sp.C 235.53 267.89 557.39 1698.36

bt.C 201.69 180.77 260.46 500.037

ua.C 197.03 190.26 316.26 759.17

fastest lu.C 213.09 209.99 444.09 1265.46

slowest lu.C 215.84 212.20 452.15 1278.86

fastest sp.C 267.80 265.29 511.15 1848.41

slowest sp.C 287.49 267.71 763.88 1864

fastest bt.C 181.27 180.74 242.52 452.47

slowest bt.C 185.37 182.29 246.90 453.13

fastest ua.C 194.51 189.36 303.76 677.31

slowest ua.C 203.54 190.46 313.59 684.70

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 100 — #110 i
i

i
i

i
i

100 Chapter 4. Thread migration based on runtime information

Figure 4.8: Evolution of performance for one thread of the 4 lu.C configuration for the DIRECT case.

The thread runs in node 0.

each thread, in terms of Pi j and its components (equation 4.4), through the execution of the

benchmarks can be plotted. In these cases the parameters α , β , and γ are set to 1 to make the

figures easier to interpret. Figures 4.8 and 4.9 show the performance of a thread of the 4 lu.C

benchmark in the DIRECT and the CROSSED configurations, respectively.

In these figures, different line colors represent different cores, and a change in color

represents a migration of the thread. To better visualise the changes, we used a frame average

of 50 measurements, corresponding to measurement every 1.5 seconds. This frame average

implies that performance changes between migrations are not instantly visible, but usually

take the form of peaks and valleys. In Figures 4.8 and 4.9, migrations were performed by the

OS among cores in the same node, so performance does not vary greatly during execution.

As expected, performance is lower on the CROSSED test, with more migrations involved.

In Figures 4.10 and 4.11 the performance of two threads during the execution of the

4 lu.C combination in the CROSSED test and IMAR migrations are shown. For example, in

Figure 4.11, it can be seen that performance increases and approaches the DIRECT case due to

the IMAR migrations. Using IMAR, migrations take place between nodes, so they influence

the performance more than in the case of Figure 4.9. Peaks in the graph of the same color,

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 101 — #111 i
i

i
i

i
i

4.5. NAS Case Studies 101

Figure 4.9: Evolution of performance for one thread of the 4 lu.C configuration for the CROSSED case.

The thread runs in node 1.

Figure 4.10: Evolution of the performance for one thread of the 4 lu.C configuration for the CROSSED

test with IMAR migrations, thread 3143.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 102 — #112 i
i

i
i

i
i

102 Chapter 4. Thread migration based on runtime information

Figure 4.11: Evolution of the performance for one thread of the 4 lu.C configuration for the CROSSED

test with IMAR migrations, thread 3154.

are likely due to migrations of other threads that influence the single-color thread, whereas

peaks with a color change are due to migrations of the thread itself. Note that migrations

usually occur after a performance dip, because the thread was chosen to be among the worst

performing by the IMAR algorithm. For example, in Figure 4.11, the migration after 250

seconds is apparently due to an increase in memory latency.

The performance of two threads during the execution of the 4 lu.C combination in the

CROSSED test and IMAR2 migrations (ω = 0.97) are shown in Figures 4.12 and 4.13. The

tendency towards increasing performance is clear, because the rollbacks reduce the number

of migrations. There are less pronounced variations in performance than in the IMAR case,

due to the varying T and rollback strategies. In Figure 4.12, a dip in performance of thread

109565 close to 150 seconds triggers a migration from core 3 back to core 25, that is, a

rollback. In Figure 4.13, a migration from core 13 (in node 1) places the thread in core

6 (in node 0), and subsequently there are rollbacks around 70, 130, and 260 seconds, which

indicate that thread 109553 was placed in an efficient node, and it is inefficient to move it. The

IMAR2 algorithm explores all possible placements for all threads, and so counter-productive

migrations can be performed, but including rollback allows their effects to be minimised.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 103 — #113 i
i

i
i

i
i

4.5. NAS Case Studies 103

Figure 4.12: Evolution of performance for one thread of the 4 lu.C configuration for the CROSSED test

with IMAR2 migrations, thread 109565.

Figure 4.13: Evolution of performance for one thread of the 4 lu.C configuration for the CROSSED test

with IMAR2 migrations, thread 109553.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 104 — #114 i
i

i
i

i
i

104 Chapter 4. Thread migration based on runtime information

Figure 4.14: Evolution of performance for the 4 lu.C configuration for the CROSSED and DIRECT cases

with IMAR2 migrations. A linear approach for each case is also shown.

The algorithm tries other node placements for the thread, computing the whole performance

record (moving to core 28, node 4, to core 23, node 3, etc.) and checking for behaviour

changes, but always returns the thread to core 6 in node 0.

An example of migration timing in the 4 lu.C combination for the CROSSED and DIRECT

tests with IMAR2 migrations is shown in Figure 4.14, along with a lineal approximation

to show the tendency of the performance evolution. Thresholds ω = 0.90 and ω = 0.97

were considered, and the performance record for the whole system is shown, where a circle

represents a migration, a cross represents a rollback, and triangles mark the execution time of

each test. This graph is from a single execution of each case for each value of ω .

In DIRECT cases, performance remains higher with ω = 0.97 through the executions, due

to rollbacks, since migrations are counter-productive in this case. When performance dips, a

rollback is executed (a yellow cross in the figure) and it recovers.

In the CROSSED configurations, where migrations are initially productive, when all threads

are in inefficient placements, performance increases faster with ω = 0.90 than with ω = 0.97.

With ω = 0.90, no rollbacks are performed during the first minute, while rollbacks with

ω = 0.97 are counter-productive, since they make the process slower when approaching the

best placements. Nevertheless, once performance is high enough, and more threads are cor-

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 105 — #115 i
i

i
i

i
i

4.5. NAS Case Studies 105

rectly placed, the ω = 0.97 case helps keep performance high with rollbacks, whereas when

ω = 0.90, migrations continue even once a good configuration is obtained.

4.5.4 Case study on two nodes with IMAR

All figures in this next sections show the experimental execution times performing migra-

tions, by IMAR, as a proportion of the baselines times of each test (FREE, DIRECT, INTER-

LEAVE and CROSSED), expressed as a percentage. A percentage greater that 100 means a

worse execution time, while a result under 100 shows a better execution time. A special case

is shown for the OS, where the DIRECT, INTERLEAVE and CROSSED tests are modified to

fix only the memory placement, letting the OS select thread placement. These tests were

made to see if the OS was able to detect where each thread had its data and place the thread

accordingly.

The mean results of using the IMAR algorithm with 2 nodes and different values of T

and α , β and γ are shown in Figure 4.15. First, it must be noted that the OS mainly migrates

threads for load balance; so there are few migrations done until one of the benchmarks ends.

Also, for all the modified tests for the OS, it does not seem to take into account the memory

placement to pin or migrate threads, in fact, the initial thread placement seems to be done at

random. This means that, for the DIRECT case, the performance is being decided by the initial

thread placement, which is unlikely to be the ideal one, therefore, it implies worse results,

and with a greater variability, than those of the guided migrations. In the same way, results

are better for the CROSSED test, because the initial placement is also unlikely to be the worst

one. Actually, results for the DIRECT and CROSSED tests with the OS are similar in absolute

execution times values, since conceptually, once there is no thread pinning, they are almost

the same test (both pin the data of each process to one of the nodes). In the INTERLEAVE test,

where the initial placement matters less, the OS performs better. In essence, the OS works

well when it can decide both the memory and threads placements, the FREE test, but it is not

able to detect a forced memory placement and act accordingly.

For the IMAR algorithm, in general, performing any migrations on the FREE test or on

the DIRECT test results in a worse performance compared to the baseline. This is mainly

because in both cases the starting configuration is close to the ideal one. Loss of performance

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 106 — #116 i
i

i
i

i
i

106 Chapter 4. Thread migration based on runtime information

Figure 4.15: Mean results for all test with 2 nodes.

is greater on the FREE case where the Operating System may not place all the data of a

benchmark in one node, which would make our algorithm less accurate on its migrations.

On the DIRECT case, our algorithm seems to favour memory intensive applications, like

lu.C and sp.C. When these applications are paired with others with high instB, like bt.C

and ua.C, they suffer less performance loss, and may even gain performance (like lu.C on

lu.C/bt.C and lu.C/ua.C). For instance, results for sp.C/bt.C show better performance for

sp.C (Figure 4.16) than for bt.C (Figure 4.17). In these figures, for sp.C in the DIRECT case,

there is little loss of performance but at the cost of decreasing the performance of bt.C.

On the INTERLEAVE case, migrations give better performance. Results with the OS,

which hardly performs any migrations during execution, are close to those with our algo-

rithm, which indicates that when memory is interleaved the thread affinity is not considered

important.

On the CROSSED case, migrations lead to better performance. This is to be expected

since the initial configuration was the worst possible, so any migration should lead to a better

configuration. Performing more migrations (every 4 seconds instead of every 8 seconds) give

better results, contrary to the FREE or DIRECT cases.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 107 — #117 i
i

i
i

i
i

4.5. NAS Case Studies 107

Figure 4.16: Variations of sp.C for sp.C/bt.C with respect to the baseline (2 nodes).

Figure 4.17: Variations of bt.C for sp.C/bt.C with respect to the baseline (2 nodes).

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 108 — #118 i
i

i
i

i
i

108 Chapter 4. Thread migration based on runtime information

Figure 4.18: Variations of lu.C for lu.C/sp.C/bt.C/ua.C with respect to the baseline.

4.5.5 Case study on four nodes with IMAR

Results for 4 nodes are broadly similar to those with 2 nodes. Here we discuss variations

in execution time of our tests compared to the baseline results of Table 4.5. Figures 4.18

to 4.21 show the results of one benchmark for all the tests with the lu.C/sp.C/bt.C/ua.C

combination. Executions using IMAR with different values of T , α , β , and γ are also shown.

In this case, the effect of T , which determines the number of migrations, is critical. On

most of these tests, the benchmarks use the same code, which makes comparing their perfor-

mance fairer and easier. For the lu.C/sp.C/bt.C/ua.C combination, there is an apparent bias

towards applications with low instB (Figs. 4.18, 4.19, 4.20 and 4.21), with superior results

for lu.C and sp.C than for bt.C and ua.C. Note that bt.C and ua.C execute faster, and so

must always share the system among four benchmarks, whereas lu.C and sp.C have more

free cores at the end of their execution. This situation produces superior performance, in part

due to frequency scaling capabilities on Xeon systems, when core frequency increases if not

all cores are active.

Changing the scaling factors α , β , and γ has a slight impact on the effect of the migra-

tions. For example, in the lu.C/sp.C/bt.C/ua.C combination, for lu.C, Fig. 4.18, configura-

tions which give greater importance to memory latency, IMAR[T ;2,2,1] and IMAR[T ;2,1,2],

performance is superior in the DIRECT and CROSSED tests, where data locality is more im-

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 109 — #119 i
i

i
i

i
i

4.5. NAS Case Studies 109

Figure 4.19: Variations of sp.C forlu.C/sp.C/bt.C/ua.C with respect to the baseline.

Figure 4.20: Variations of bt.C forlu.C/sp.C/bt.C/ua.C with respect to the baseline.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 110 — #120 i
i

i
i

i
i

110 Chapter 4. Thread migration based on runtime information

Figure 4.21: Variations of ua.C for lu.C/sp.C/bt.C/ua.C with respect to the baseline.

portant, and inferior in the INTERLEAVE test, where memory latency is more balanced in all

nodes. Figure 4.19, corresponding to sp.C, shows similar outcomes to lu.C, since they are

both memory intensive benchmarks, but with more clear influence of the migrations, since

memory latency is more important. Figures 4.20 and 4.21 show less difference among con-

figurations because latency is not so important in these cases. Nevertheless, given that all

configurations take into account all the 3DyRM parameters, the differences are small, mean-

ing the selection of the scaling factors is not critical, only needed for an extreme fine-tuning.

Figures 4.22 and 4.23 show the results for the 4 lu.C combination. In this combination all

the instances are of the same code, a lu.C, so results for the fastest and slowest instances are

shown. While lu.C is a memory intensive benchmark, the best results are for configurations

that prioritise GIPS and instB, not latency, probably because here these prioritise cache

reuse and fewer main memory accesses. Since all processes compute the same operations,

their instB should be approximately the same. This means that variations in the OI may

be due to variations in the number of bytes accessed from memory (occurrences of the HC

event OFFCORE_REQUEST: ALL_DATA _READ, see Section 3.3), that is, a better OI would

mean better use of the caches. What is very clear in these figures is the effect of T , the lower

T is, the more migrations are performed. Migrations are counter-productive in the DIRECT

case, and this is shown in the figures, where the best results are with T = 4, but productive in

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 111 — #121 i
i

i
i

i
i

4.5. NAS Case Studies 111

Figure 4.22: Variations of the fastest lu.C for 4 lu.C with respect to the baseline.

the CROSSED case, although the effect is not as pronounced. To ameliorate these results the

IMAR2 can be used, as described in the next subsection.

4.5.6 Results with IMAR2

To compare IMAR2 with IMAR, the minimum and maximum times for IMAR2 were set to

Tmin = 1 and Tmax = 4, so migrations would take place at approximately the same times as

in the IMAR study of the previous subsection. In general, IMAR2 is superior to IMAR. For

example, for combination 4 lu.C (Figs. 4.24 and 4.25), as ω increases from 0.90 to 0.97,

the loss of performance in FREE and DIRECT tests is reduced, while in the INTERLEAVE

and CROSSED cases the behaviour of IMAR2 remains similar to the one of the IMAR algo-

rithm. Figures 4.26–4.29 show a closer look at the tests with only OS migration, compared

to IMAR[1;1,1,1], and IMAR2[1,4,2;1,1;0.97]. These are similar to previous figures, but the

data were collated in a different way. Results are shown for each benchmark instance, for

every combination, for one given test. With ω = 0.97, most cases show less than a 10%

loss of performance from the baseline FREE (Fig. 4.26) and DIRECT (Fig. 4.27) tests, and the

performance increase from baseline INTERLEAVE (Fig. 4.28) and CROSSED (Fig. 4.29) tests

are similar or superior to the IMAR case.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 112 — #122 i
i

i
i

i
i

112 Chapter 4. Thread migration based on runtime information

Figure 4.23: Variations of the slowest lu.C for 4 lu.C with respect to the baseline.

Figure 4.24: Variations of the fastest lu.C for 4 lu.C with respect to the baseline, with IMAR2.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 113 — #123 i
i

i
i

i
i

4.5. NAS Case Studies 113

Figure 4.25: Variations of the slowest lu.C for 4 lu.C with respect to the baseline, with IMAR2.

Figure 4.26: Mean results for free test with 4 nodes.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 114 — #124 i
i

i
i

i
i

114 Chapter 4. Thread migration based on runtime information

Figure 4.27: Mean results for direct test with 4 nodes.

Figure 4.28: Mean results for interleave test with 4 nodes.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 115 — #125 i
i

i
i

i
i

4.6. Recap 115

Figure 4.29: Mean results for crossed test with 4 nodes.

4.6 Recap

Modern multicore systems present complex memory hierarchies, and make load balancing,

data locality and thread affinity important issues to obtain high performance. In this chapter,

thread migration algorithms, based on the optimisation of 3DyRM parameters, were used to

increase performance. The proposed techniques improve execution times when thread local-

ity is poor and the OS cannot improve thread placement during runtime. A multiobjective

optimisation method, weighted product, was proposed to combine the 3DyRM parameters.

In Section 4.2, three migration algorithms have been presented.

In Section 4.3, we described how, using hardware counters, the performance of each

thread in the system could be obtained in runtime with low overhead, and a tool was imple-

mented to perform thread migration and allocation during runtime, applying different migra-

tion strategies and algorithms, tuned by a set of factors.

The IMA algorithm was based on interchanging, at regular intervals, the worst performing

thread with another. As case studies for this algorithm, analysis of the parallel SDOT and

SAXPY routines were performed, in Section 4.4.4, in different scenarios to explore different

locality and affinity properties. Also, different thread migration strategies were considered,

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 116 — #126 i
i

i
i

i
i

116 Chapter 4. Thread migration based on runtime information

relative to the selection of the threads to be interchanged. This way, two thread migration

strategies were used to minimise the detrimental effects of the memory affinity in parallel

codes on a multicore system. The results show how, given a bad distribution of threads

and data, the OS by itself is not able to detect and correct it, and this greatly influences

the performance. Improvements up to 25 % with respect to the OS were achieved in cases

with low locality and affinity (CROSSED scenarios), whereas in the opposite situation (IDEAL

scenarios) only a small loss in performance was observed in some situations.

The IMAR algorithm uses collected information about previous performance for each

thread to guide thread migration decisions. This algorithm was tested on a server using

benchmarks from the NPB-OMP (in Section 4.5). On complex systems, where NUMA effects

are more pronounced, a poor allocation of threads and data can degrade performance by a

factor of up to 5 or 6. Given a poor distribution of threads and data, the OS by itself is not

able to detect and correct it, which greatly influences performance. The IMAR algorithm was

able to improve execution by up to 70%. However, small performance losses were obtained

in cases where the thread configuration was initially good.

The IMAR2 algorithm can be considered a refining of the IMAR algorithm. It is based

on the concept of evaluating the effects on the system total performance of previous migra-

tions and acting accordingly. Specifically, IMAR2 is based on IMAR, but adds rollback and

changes in the period between migrations. This provides for greater tuning and performs bet-

ter for those cases where migrations are unnecessary, while still improving the performance

for cases with low initial performance. Generally, IMAR2 was superior to IMAR, which, in

turn, was superior to allowing the OS to self-optimise.

Manuals for the applications presented in this chapter, as well as the source code of the

tools, can be found at the CiTIUS git repository [62].

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 117 — #127 i
i

i
i

i
i

Conclusions and Future Work

Nowadays, most computer systems are multicore and even multiprocessor based. In these

systems, the behaviour of memory accesses from each thread to the different memory nodes

is one of the most significant aspects influencing the performance of any code. This fact is

more and more relevant as the memory wall increases.

In this work, this issue has been tackled from two points of view. On one hand, from the

point of view of a programmer of parallel applications, tools and models to characterise the

behaviour of codes and help her in their implementation have been developed. In Chapter 2

a set of tools to gather and show information about memory accesses was presented. In

Chapter 3 a performance model for parallel applications, the 3DyRM, along with tools to help

to characterise performance, were presented. On the other hand, from the point of view of a

user of parallel applications, a migration tool, based on the 3DyRM, to automatically select

and adapt, during runtime, the thread placement on a system to improve their performance,

has been developed. This tool and its operation, was described in Chapter 4. All these tools

make the use of runtime performance data obtained from Hardware Counters (HC) present

on Intel processors. Precise Event Based Sampling (PEBS) on modern Intel processors and

Event Address Counters (EARs) on the legacy Itanium 2 processors were used.

Analysis of memory accesses in SMPs

HC give detailed information about the memory addresses accessed by a code and the la-

tency of the data loads. In Chapter 2, it was shown that, although only a sampled trace can

be obtained with these counters, it gives valuable information about locality, memory access

117

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 118 — #128 i
i

i
i

i
i

118 Conclusions

patterns and affinity among data and cores. This means that useful information can be gath-

ered with a low overhead and a minimum impact on the application behaviour. The set of

tools developed in this work simplify the process of obtaining and studying hardware counter

data. Their focus on memory accesses makes them more suitable for analysing the memory

behaviour than other general purpose ones. The tools are adaptable for their use in any envi-

ronment, architecture or language. First, because they are split between a visualisation tool

and a data capture tool, both independent. Second, because the data capture tool has been

designed to be easily modifiable. The data visualisation tool can be used to do an statistical

study of the captured events. The information and graphs provided by the tool can be used

to analyse the influence of false sharing, coherence implications, and other memory related

issues.

To test these tools, parallel OpenMP shared memory programs were considered. The

SpMxV problem was used as a case study in an Itanium 2 based system. This study showed

how the tools can be used to analyse the behaviour of the memory hierarchy in a friendly way.

Studying the SpMxV problem as an example, it was found that the information obtained is

useful to model the execution of a parallel program by analysing its memory access patterns

and latencies. For example, it is easy to identify which threads have a greater workload,

relative to their input data, since it determines the number of memory accesses, their locality,

and latency. Programmers may find this information useful to increase the performance of

their applications. A regular parallel code, SDOT, was also used as a different case study. This

study focused on the detection of false sharing on a Xeon based system. Both examples show

the usefulness of these tools for analysing the effects of the cache coherence mechanisms on

data partitioning in parallel environments.

Performance models based on runtime information

Berkeley Roofline Model is a useful and simple model to characterise performance. It ties

together floating-point performance, operational intensity, and memory performance in a 2D

graph. Nevertheless, it hides some important characteristics, specially in multicore and many-

core, NUMA or heterogeneous systems. A set of extensions to the Berkeley Roofline Model

have been presented in Chapter 3. These extensions aim to give more expressivity to the

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 119 — #129 i
i

i
i

i
i

Conclusions 119

model while retaining its simplicity as much as possible. The first extension, the Dynamic

Roofline Model (DyRM) shows the evolution of an application in runtime. This highlights

differences during execution, such as different phases in the execution. This model is defined

for each core in a multicore or multiprocessor system, since the behaviour of an application

do not need to be the same on every core. The second extension builds on the DyRM, it is the

Latency Extended Dynamic Roofline Model (3DyRM). The 3DyRM adds a third dimension

to the graph: the memory latency.

To simplify the obtention of the models a set of tools were implemented. A data capture

tool, based on the one developed for memory accesses, uses PEBS to obtain performance data

during execution with a low overhead. Due to the constrains of the HC and the PEBS when

measuring floating point operations, two new models, the iDyRM and the i3DyRM, were de-

fined. These models use instructions instead of floating point operations for the performance

metrics. A performance data visualisation tool helps create the DyRM and 3DyRM models

(and the iDyRM and i3DyRM), alongside other performance graphs and statistics.

A set of cases on two different multicore systems were used to show their usefulness.

These cases are instances of the NPB-OMP benchmarks. Using the models, it can be shown

how these benchmarks present complex behaviours and imbalances on multicore systems.

These problems can be modelled with these tools and the DyRM and 3DyRM models. Using

HC, influence in the normal execution of the applications is minimal, and a realistic model

of their performance can be made. Thanks to the DyRM, a program’s behaviour, its phases

or imbalances, can be more easily detected, making it easier to correct performance issues.

It has been shown how some applications may have different phases that require different

optimisations approaches, which are detected by the 3DyRM and may be obscured in a reg-

ular Roofline Model. It has been proved how the latency axis of the 3DyRM can help to

detect memory issues that are not apparent in the operational intensity of the regular Roofline

Model.

Thread migration based on runtime information

The complex memory hierarchies present in modern multicore and NUMA systems make

load balance, data locality and thread affinity to be important issues for obtaining good per-

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 120 — #130 i
i

i
i

i
i

120 Conclusions

formance. In Chapter 4, the effect of thread and data placement on performance was tested

in a series of benchmarks. In some cases, a bad thread and data placement resulted in a

performance more than 6 times worse. To alleviate the detrimental effects of a random place-

ment and to improve the performance of parallel codes and concurrent applications a thread

migration tool has been presented. Using different thread migration algorithms, based in

the optimisation of the parameters defined in the 3DyRM and the i3DyRM, the performance

of a system was measured and improved. By using HC, the performance of each thread in

the system can be obtained in runtime with low overhead. These algorithms use variations

of a multiobjective optimisation method, in particular, a weighted product method. Three

different migration algorithms were tested in a variety of scenarios.

A first approach, the IMA algorithm, was based in interchanging, at regular time intervals,

the worst performing thread with another one. This other thread could be either one of the best

performing or one of the worst performing, depending on the strategy. This algorithm was

tested on parallel SDOT and SAXPY routines, modified to be executed in different scenarios,

to explore different locality and affinity properties. Both migration strategies were used to

minimise the detrimental effects of the memory affinity in these codes, when executed in a

dual processor system. The results showed how, given a bad distribution of threads and data,

the OS by itself is not able to detect and correct it, and this greatly influences the performance.

Improvements up to 25% with respect to the OS migration were achieved in cases with low

locality and affinity. In situations were locality and affinity were already good from the

beginning, a limited loss of performance was observed.

A second approach, the IMAR algorithm, was designed to operate in more complex sys-

tems. While still executing during runtime, it uses information about past performance for

each thread to better guide the thread migration. This algorithm was tested with custom

benchmarks based on the NPB-OMP on a quad processor system, were NUMA effects are

more pronounced. This algorithm was able to improve the performance of the worst cases up

to 70%. Nevertheless, a loss of performance was observed in cases were the thread configura-

tion was good from the beginning. This issue leads to the IMAR2 algorithm, a refining of the

IMAR algorithm. The IMAR2 algorithm allows for greater tuning and can detect when mi-

grations are detrimental to the performance and roll them back. This means it performs better

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 121 — #131 i
i

i
i

i
i

4.7. Publications 121

in those cases were migrations are mainly unnecessary, while still improving the performance

in the bad cases.

In conclusion, it has been shown that managing thread migration and placement may lead

to a performance improvement. It has been shown how the 3DyRM and i3DyRM are useful

models not only for programmers and designers, but can be used to model the performance

of a system in runtime. This way they can be used to improve the execution time and concur-

rency of parallel codes in NUMA systems.

Future work

As future work several lines of research remain open. Given the detailed information about

memory accesses available from PEBS, and already processed by the migration tool, a next

step would be to perform data migration to complement thread migration. This could be done

by implementing page migration using information like the data source of load operations.

This would give raise to new migration algorithms which could include new features for

thread migration. Also thread and data migration on manycore processors should be studied.

As a parallel improvement goal, energy efficiency could be considered. A similar approach

as the one taken for performance could work with energy efficiency if it were combined with

other sensors, like those of temperature and power consumption, present on processors and

processor boards.

4.7 Publications

• Oscar G. Lorenzo, Juan A. Lorenzo, Dora B. Heras, Juan C. Pichel, Francisco F. Rivera,

"Herramientas para la monitorización de los accesos a memoria de códigos paralelos

mediante contadores hardware", Actas XXII Jornadas de Paralelismo (JP2011), La

Laguna 2011, pages 651–656.

• Oscar G. Lorenzo, Juan A. Lorenzo, José C. Cabaleiro, Dora B. Heras, Marcos Suarez,

Juan C. Pichel "A Study of Memory Access Patterns in Irregular Parallel Codes Using

Hardware Counter-Based Tools" 2011 International Conference on Parallel and Dis-

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 122 — #132 i
i

i
i

i
i

122 Conclusions

tributed Processing Techniques and Applications. Las Vegas (USA). 2011

• Oscar G. Lorenzo, Tomás F. Pena, José C. Cabaleiro, Juan C. Pichel, Juan A. Lorenzo,

Francisco F. Rivera, "Hardware Counters Based Analysis of Memory Accesses in

SMPs", 10th IEEE International Symposium on Parallel and Distributed Processing

with Applications, pp. 595-602. Leganés (Spain). 2012

• Oscar G. Lorenzo , Tomás F. Pena, José C. Cabaleiro, Juan C. Pichel and Francisco

F. Rivera, "DyRM: A Dynamic Roofline Model Based on Runtime Information", 2013

International Conference on Computational and Mathematical Methods in Science and

Engineering, pp. 965-967. Almería (Spain). 2013

• Oscar G. Lorenzo , Tomás F. Pena, José C. Cabaleiro, Juan C. Pichel and Francisco F.

Rivera, "Extensión del modelo Roofline y herramientas para su uso", XXIV Jornadas

de Paralelismo, pp. 157–162. Madrid (Spain). 2013

• Oscar G. Lorenzo , Tomás F. Pena, José C. Cabaleiro, Juan C. Pichel and Francisco

F. Rivera, "Multiobjective optimization technique based on monitoring information to

increase the performance of thread migration on multicores", IEEE International Con-

ference on Cluster Computing, pp. 416-423. Madrid (Spain). 2014

• Oscar G. Lorenzo, Tomás F. Pena, José C. Cabaleiro, Juan C. Pichel, Juan A. Lorenzo,

Francisco F. Rivera, "A hardware counters based toolkit for the analysis of memory

accesses in SMPs", Concurrency and Computation: Practice and Experience, vol. 26,

no. 6, pp. 1328-1341. 2014

• Oscar G. Lorenzo, Tomás F. Pena, José C. Cabaleiro, Juan C. Pichel and Francisco

F. Rivera, "Using an extended Roofline Model to understand data and thread affinities

on NUMA systems", Annals of Multicore and GPU Programming, vol. 1, no. 1, pp.

56-67. 2014

• Oscar G. Lorenzo, Tomás F. Pena, José C. Cabaleiro, Juan C. Pichel and Francisco F.

Rivera, "3DyRM: a dynamic roofline model including memory latency information",

Journal of Supercomputing, vol. 67, pp. 696-708. 2014

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 123 — #133 i
i

i
i

i
i

4.7. Publications 123

• Oscar G. Lorenzo , Tomás F. Pena, José C. Cabaleiro, Juan C. Pichel and Francisco

F. Rivera, "Study of data locality and thread affinity on multicore systems using the

Roofline Model", I Jornadas de Programación Paralela Multicore y GPU, pp. 67–76.

Granada (Spain). 2014

• Oscar G. Lorenzo , Tomás F. Pena, José C. Cabaleiro, Francisco F. Rivera and Dimitrios

S. Nikolopoulos, "Power and Energy Implications of the Number of Threads Used on

the Intel Xeon Phi", II Jornadas de Programación Paralela Multicore y GPU, pp. 1–8.

Cáceres (Spain)

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 124 — #134 i
i

i
i

i
i

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 125 — #135 i
i

i
i

i
i

Resumo da Tese

Hoxe en día, a maioría dos sistemas de computación son multicore e mesmo multiprocessa-

dor. Nestes sistemas, o comportamento dos accesos á memoria de cada fío para os distintos

nodos de memoria é un dos aspectos que máis significativamente afectan o rendemento de

calquera código. Este feito é cada vez máis relevante a medida que aumenta o chamado "me-

mory wall".

Neste traballo, esta cuestión foi abordada baixo dous puntos de vista. Desde o punto de

vista dun programador de aplicacións paralelas, desenvolvéronse ferramentas e modelos para

caracterizar o comportamento de códigos e axudao para a súa aplicación. Desde o punto

de vista dun usuario de aplicacións paralelas, desenvolveuse unha ferramenta de migración

para seleccionar e adaptar, automaticamente durante a execución, a colocación de fíos no

sistema para mellorar o seu funcionamento. Todas estas ferramentas fan uso de datos de

rendemento en tempo de execución obtidos a partir de Contadores Hardware (HC) presentes

nos procesadores Intel.

En comparación cos "software profilers", os HC proporcionan, cunha baixa sobrecarga,

unha información de rendemento detallada e rica referente ás unidades funcionais, caches,

acceso á memoria principal por parte da CPU, etc. Outra vantaxe de usalos é que non precisa

ningunha modificación do código fonte. Con todo, os tipos e os significados dos contadores

hardware varían dunha arquitectura a outra debido á variación nas organizacións do hardware.

Ademais, pode haber dificultades para correlacionar as métricas de rendemento de baixo nivel

co código fonte orixinal. O número limitado de rexistros para almacenar os contadores moitas

veces pode forzar aos usuarios a realizar múltiples medicións para recoller todas as métricas

125

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 126 — #136 i
i

i
i

i
i

126 Resumo da Tese

de rendemento desexadas.

En concreto, neste traballo, utilizáronse os Precise Event Based Sampling (PEBS, MOS-

TRAXE BASEADO EN EVENTOS PRECISOS) nos procesadores Intel modernos e os Event Ad-

dress Register (EARs, REXISTROS DE ENDEREZO DE EVENTO) nos procesadores Itanium

2.

O procesador Itanium 2 ofrece un conxunto de rexistros, os EARs que rexistran os en-

derezos de instrución e datos dos fallos caché, e os enderezos de instrución e datos de fallos

de TLB [25]. Cando se usan para capturar fallos caché, os EARs permiten a detección das

latencias maiores de 4 ciclos. Xa que os accesos de punto flotante sempre provocan un fallo

(os datos de punto flotante son sempre almacenados na L2D), calquer acceso pode ser poten-

cialmente detectado. Os EARs permiten a mostraxe estatística, configurando un contador de

rendemento para contar as aparicións dun determinado evento.

O PEBS usa un mecanismo de interrupción cos HC para almacenar un conxunto de in-

formación sobre o estado da arquitectura para o procesador. A información ofrece o estado

arquitectónico da instrución executada despois da instrución que causou o evento. Xunto con

esta información, que inclúe o estado de todos os rexistros, os procesadores Sandy Bridge

posúen un sistema de medición da latencia a memoria. Ista é un medio para caracterizar a la-

tencia de carga media para os diferentes niveis da xerarquía de memoria. A latencia é medida

dende a expedición da instrucción ata cando os datos son globalmente observables, e dicir,

cando chegan ao procesador. Ademáis da latencia, o PEBS permite coñecer a orixe dos datos

e o nivel de memoria de onde se leron. A diferenza dos EARs, o PEBS permite tamén medir

a latencia de operacións enteiras ou de almacenamento de datos.

Análise de accesos a memoria en SMPs

Os HC dan información detallada sobre os enderezos de memoria accedidos por un código

e a latencia das cargas de datos. Aínda que só unha traza de mostras pode ser obtida con

estes contadores, ista dá información valiosa sobre localidade, patróns de acceso de memoria

e afinidade entre os datos e núcleos. Isto significa que se pode recoller información útil cunha

baixa sobrecarga e un impacto mínimo sobre o comportamento da aplicación.

O proceso de recollida de información sobre os accesos á memoria dos contadores EAR

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 127 — #137 i
i

i
i

i
i

Resumo da Tese 127

ou PEBS non é tan sinxelo como interactuar con outros tipos de HC. No canto de ter que

realizar só a lectura dun valor desde simples contadores, hai a necesidade de procesar un

"buffer"de datos a intervalos irregulares durante a execución dun programa. Debido a isto,

desenvolveuse un conxunto de ferramentas para simplificar o proceso de obtención e estudo

dos datos dos contadores hardware. O seu foco en accesos á memoria tórnaos máis axeita-

do para a análise do comportamento da memoria que outras ferramentas de uso xeral. As

ferramentas desenvolvidas son adaptables para o seu uso en calquera tipo de entornos, ar-

quitecturas ou linguaxes de programación. En primeiro lugar, porque están divididos entre

unha ferramenta de visualización e unha ferramenta de captura de datos, ambas independen-

tes entre si. En segundo lugar, porque a ferramenta de captura de datos está deseñada para ser

facilmente modificable.

A ferramenta de captura de datos é unha ferramenta de liña de comandos que pode traba-

llar xunto a calquera programa xa compilado e que reúne a información de acceso de memoria

durante a súa execución. A ferramenta acepta tres opcións: o evento para supervisar (fallos

cache ou TLB, en caso de EARs, instrucións de carga ou almacenamento, en caso de PEBS),

o período de mostraxe e a latencia de carga mínima a partir da cal os eventos son captura-

dos. De ser necesario un seguimento máis detallado só dalgunhas partes dun código ou dun

intervalo de datos limitado, e se o código fonte a supervisar está dispoñible, a ferramenta

de instrumentación pode ser usada. Esta ferramenta axuda a engadir directamente o código

para EAR ou PEBS a un código fonte para que o programa se poida supervisar. O usuario

só precisa indicar, mediante directivas no código fonte, onde comezar e rematar a captura de

datos.

A ferramenta de visualización de datos pode usarse para facer un estudo estatístico dos

eventos capturados. Permite clasificar eventos capturados en categorías segundo o seu ende-

rezo de memoria ou o fío. Estes eventos poden ser tanto fallos de caché coma fallos de TLB.

Amosa os eventos capturados nun histograma, que se pode delimitar polos enderezos inicial e

final do rango de memoria virtual estudado, ou cunha categoría para cada fío. A información

e gráficos proporcionados pola ferramenta poden ser utilizados para analizar a influencia do

"false sharing", as implicacións de coherencia e outros problemas relacionados coa memoria.

Para probar estas ferramentas, utilizáronse programas paralelos de memoria compartida

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 128 — #138 i
i

i
i

i
i

128 Resumo da Tese

OpenMP. O problema SpMxV usouse como caso de estudo nun sistema baseado en Itanium2.

Este estudo demostrou que as ferramentas poden usarse para analizar o comportamento da

xerarquía de memoria. Estudando o problema SpMxV como exemplo, verificouse que a in-

formación obtida é útil para modelar a execución dun programa paralelo, analizando os seus

patróns de acceso á memoria e as latencias. Por exemplo, foi doado ver qué fíos teñen unha

maior carga de traballo, respecto dos seus datos de entrada, xa que determina o número de

accesos á memoria, a súa localidade e latencia. Os programadores poden atopar esta infor-

mación útil para aumentar o rendemento das súas aplicacións. Un código paralelo regular,

SDOT, usouse como un caso de estudo diferente. Este estudo incidiu sobre a detección de

"false sharing"nun sistema baseado en Xeon. Ambos exemplos demostran a utilidade destas

ferramentas para analizar os efectos dos mecanismos de coherencia caché no particionamento

de datos en entornos paralelos.

Modelos de rendemento baseados en información en tempo real

O Berkeley Roofline Model (RM) [85] é un modelo útil e sinxelo para caracterizar o ren-

demento. É un modelo sinxelo que ofrece directrices de actuación e información sobre o

comportamento dun programa, información que pode axudar aos programadores a entender

o desempeño ou rendemento dos seus códigos. Nembargantes, é probable que no futuro pró-

ximo o ancho de banda fóra do chip de memoria sexa o recurso limitante na maioria das

situacións. Así, un modelo que relaciona o desempeño do procesador e o tráfico entre o chip

e a memoria é necesario. Para este obxectivo, a intensidade operacional (OI) úsase para sig-

nificar número de operacións en punto flotante (Flops) por byte de tráfico DRAM. O total

de bytes accedidos defínense como aqueles que se dirixen á memoria principal despois de

ser filtradas pola xerarquía da caché. É dicir, o tráfico mídese entre as cachés e a memoria

en vez de entre o procesador e as caches. Así, a intensidade operacional suxire o ancho de

banda DRAM necesaria por un núcleo computacional nun ordenador particular. O RM une

o rendemento de punto flotante, a intensidade operacional e o rendemento da memoria nun

único gráfico 2D. Sen embargo, esconde algunhas características importantes, especialmen-

te en sistemas multicore e manycore, NUMA (Non Uniform Memory Access, ACCESO A

MEMORIA NON UNIFORME) ou heteroxéneos.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 129 — #139 i
i

i
i

i
i

Resumo da Tese 129

Nesta tese propóñense un conxunto de extensións para o RM. Estas extensións preten-

den dar máis expresividade ao modelo, mantendo a súa sinxeleza, na medida do posible. A

primeira extensión, o Dynamic Roofline Model (DyRM, MODELO RM DINÁMICO) mostra a

evolución dunha aplicación durante a súa execución. Isto permite destacar diferenzas durante

a execución, como as distintas fases na execución. O DyRM é, esencialmente, equivalente

a dividir o tempo de execución dun código en partes, e crear un RM para cada unha, para,

a continuación, combinalas nun único gráfico. Este modelo define un comportamento para

cada núcleo nun sistema multiprocesador ou multinúcleo, xa que o comportamento dunha

aplicación non ten por qué ser o mesmo en cada núcleo. No DyRM, úsanse eixes lineais

en vez dos eixos logarítmicos do RM orixinal para amosar mellor pequenas diferenzas no

comportamento.

A segunda extensión baséase no DyRM e é o Latency Extended Dynamic Roofline Model

(3DyRM, DyRM extendido en latencia). A OI, para caracterizar o rendemento, pode ser insu-

ficiente, especialmente en sistemas NUMA. O RM define límites superiores de rendemento,

pero nun sistema NUMA, a distancia e a conexión con celdas de memoria de diferentes nú-

cleos pode implicar variacións na latencia de acceso. Variacións no tempo de acceso poden

causar valores diferentes nos GFLOPS (Giga Floating Point Operations per Second, UN MI-

LLÓN DE OPERACIÓNS EN PUNTO FLOTANTE POR SEGUNDO) para cada núcleo, aínda que

cada núcleo execute o mesmo número de operacións. Nestes casos, a OI pode permanecer

prácticamente constante, agochando o feito de que o baixo rendemento é debido ao subsiste-

ma de memoria. Por iso o 3DyRM engade unha terceira dimensión ao gráfico: a latencia de

memoria.

Para simplificar a obtención do modelo, nesta tese desenvolvéronse un conxunto de fe-

rramentas. Unha ferramenta de captura de datos, sobre a base da que foi deseñada para os

accesos á memoria, utiliza PEBS para obter os datos de rendemento durante a execución,

cunha baixa sobrecarga. Debido as restriccións dos HC e os PEBS cando miden operacións

de punto flotante, definíronse dous novos modelos, o iDyRM eo i3DyRM. Estes modelos uti-

lizan instrucións no canto de operacións de punto flotante para as métricas de rendemento.

Unha ferramenta de visualización de datos de rendemento axuda a crear os modelos DyRM

e 3DyRM (máis os iDyRM e i3DyRM), xunto a outros gráficos de rendemento e estatísticas.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 130 — #140 i
i

i
i

i
i

130 Resumo da Tese

Para mostrar a utilidade destas ferramentas, utilizáronse un conxunto de casos de estudo

en dous sistemas multicore diferentes. Estes casos utilizan instancias dos programas de pro-

ba NPB-OMP. Usando os modelos pode mostrase como estes "benchmarks"presentan com-

portamentos complexos e desequilibrios nos sistemas multicore. Estes problemas poden ser

facilmente modelados con estas ferramentas e os modelos DyRM e 3DyRM. Usando HC, a

influencia na execución normal das aplicacións é mínimo, e se pode obter un modelo realis-

ta do seu rendemento. Grazas ao DyRM, o comportamento dun programa, as súas fases ou

desequilibrios poden detectarse máis facilmente, o que o fai máis fácil resolver problemas

de rendemento. Demostrouse como algunhas aplicacións poden ter distintas fases que requi-

ren diferentes enfoques de optimizacións, as cales son detectadas polo 3DyRM e poden ser

obscurecidos nun RM estándar. Demostrouse que o eixe de latencia do 3DyRM pode axudar

a detectar problemas de memoria que non son evidentes na intensidade operacional do RM

regular.

Migración de fíos baseada en informanción en tempo de execución

As complexas xerarquías de memoria presentes nos sistemas multicore e NUMA modernos

fan do balanceo da carga, da localidade de datos e da afinidade de fíos cuestións importan-

tes para a obtención dun bo rendemento. Nesta tese, comprobouse o efecto da colocación

de fíos e de datos sobre o rendemento usando unha serie de "benchmarks". Nalgúns casos

unha mala colocación de fíos e datos deu lugar a un rendemento máis de 6 veces peor. Pa-

ra paliar os efectos prexudiciais dunha colocación aleatoria e para mellorar o rendemento,

implementouse unha ferramenta de migración dinámica de fíos. Esta ferramenta encárgase

de monitorizar todos os fíos do sistema (usando HC) e decide a súa colocación utilizando

un algoritmo de migración. Ao usar HC, o desempeño de cada fío do sistema pode obterse

en tempo de execución con baixo custo. Usando diferentes algoritmos de migración de fíos,

con base na optimización dos parámetros definidos no 3DyRM e i3DyRM, o rendemento dun

sistema mediuse e mellorouse. Estes algoritmos utilizan variacións dun método de optimiza-

ción multiobxectivo, en particular, o método do produto ponderado. Todos combinan os tres

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 131 — #141 i
i

i
i

i
i

Resumo da Tese 131

parámetros do 3DyRM nunha soa medida de rendemento coa expresión:

Pi j =
GFLOPSβ

i j ·flopsBγ

i j

latencyα
i j

i = 1, . . . ,M j = 0, . . . ,N−1

(4.6)

sendo Pi j o rendemento para o i-ésimo fío, M o número de fíos, no j-ésimo nodo e N o

número de nodos do sistema. GFLOPSβ

i j é a medida de GFLOPS do i-ésimo fío executado

no j-ésimo nodo no momento de calcular Pi j, escalado por certo valor β . A súa contribución

a Pi j pódese modificar cambiando β . O mesmo ocorre para flopsBγ

i j e latencyα
i j con γ e α ,

respectivamente. Tres algoritmos de migración diferentes foron probados nunha variedade de

escenarios.

A primeira versión, o algoritmo IMA, baseouse no intercambio regular do fío con peor

rendemento con outro. Este outro fío podería ser calquera, ben un dos de mellor desenpeño

ou un dos de peor desempeño, dependendo da estratexia. Esta proposta probouse en paralelo

coas rutinas SDOT e SAXPY, modificadas para seren executadas en diferentes escenarios,

para poder así explorar diferentes propiedades de localidade e afinidade. Ambas estratexias

de migración foron usadas para minimizar os efectos prexudiciais da afinidade de memoria

nestes códigos, cando se executan nun sistema de dous procesadores. Os resultados mostraron

como, dada unha mala distribución de fíos e de datos, o sistema operativo por si só non é capaz

de detectalos e corrixilos, o que inflúe grandemente no rendemento. Melloras de ata o 25%

en relación ao SO foron alcanzadas nos casos de baixa localidade e afinidade. En situacións

onde a localidade e a afinidade xa era boa dende o principio, observouse unha pequena perda

de rendemento.

Unha segunda versión, o algoritmo IMAR, deseñouse para operar en sistemas máis com-

plexos. Durante o tempo de execución, o IMAR usa información do rendemento pasado de

cada fío para orientar mellor a migración de fíos. A ferramenta de migración garda para cada

fío o seu rendemento (os Pi j) nos diferentes nodos dun sistema NUMA. En cada iteración

o algoritmo detecta o fío que peor rendemento ten respecto ao seu proceso. Despois escolle

a onde migralo dependendo dos valores de Pi j anteriores. Se xa existen fíos ocupando o lu-

gar de destino, os valores Pi j pasados deses fíos son tidos en conta para atopar a migración

máis axeitada para ambos. Xa que non toda a información pode estar dispoñible, e pensando

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 132 — #142 i
i

i
i

i
i

132 Resumo da Tese

que o comportamento do sistema pode variar, valoráronse distintas opcións de migración,

escollendose como mellor solución unha baseada nunha "lotería poderada".

Este algoritmo foi probado con tests personalizados baseados nos NPB-OMP nun sistema

de catro procesadores, onde os efectos NUMA son máis pronunciados. Estes tests executan

catro procesos dos "benchmarks"NPB-OMP á vez, fixando os núcleos que usarán ao principio

e os nodos nos que gardarán os datos, para poder forzar diferentes situacións. O IMAR foi

capaz de mellorar ata un 70% o rendemento dos peores casos, aqueles onde os procesos son

executados coa memoria en nodos diferentes aos que executan os fíos. Con todo, observouse

unha perda de rendemento nos casos nos que a configuración de fíos era boa desde o principio,

e dicir, aquela onde os datos e os fíos residen no mesmo nodo. Esta cuestión levou a propoñer

o algoritmo IMAR2, como un refinamento do algoritmo IMAR.

O algoritmo IMAR2 permite unha maior regulación e pode detectar cando as migracións

son prexudiciais para o rendemento e revertelas. Tamén permite modificar automáticamente

a frecuencia das migracións, dependendo do resultado no rendemento total das mesmas. Is-

to significa que ten mellor comportamento nos casos onde as migracións son innecesarias,

mentres que segue mellorando o rendemento nos casos malos. En conclusión, demostrouse

que a xestión da migración e o posicionamento de fíos pode conducir a unha mellora do ren-

demento. Demostrouse tamén que os 3DyRM e i3DyRM son uns modelos útiles non só para

os desenvolvedores e deseñadores, senón tamén para modelar o rendemento dun sistema en

tempo de execución. Deste xeito se pode empregar para mellorar o tempo de execución e a

concurrencia en sistemas NUMA.

Traballo futuro

Como traballo futuro, varias liñas de investigación permanecen abertas. Dada a información

detallada sobre accesos á memoria dispoñible usando os EAR e os PEBS, e xa procesados

pola ferramenta de migración, o seguinte paso sería realizar a migración de datos para com-

plementar a migración de fíos. Isto podería ser feito a través do uso da migración de páxinas,

usando información como o enderezo dos operandos das operacións de carga de datos. Iso da-

ría pé a novos algoritmos de migración que poden incluír novas características na migración

de fíos. Tamén a migración de fíos e datos nos procesadores manycore pode ser estudada

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 133 — #143 i
i

i
i

i
i

Resumo da Tese 133

en conxunto. Como obxectivo, poderíase pensar en mellorar a eficiencia enerxética. Unha

visión semellante á tomada para o rendemento podería tamén funcionar coa eficiencia ener-

xética, utilizando outros sensores, como os de temperatura e consumo de enerxía, presentes

en procesadores e placas madre.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 134 — #144 i
i

i
i

i
i

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 135 — #145 i
i

i
i

i
i

Appendix - NAS Parallel

Benchmark Suite

The NAS Parallel Benchmarks (NPB) are a set of programs designed to evaluate the per-

formance of parallel supercomputers. The benchmarks are derived from computational fluid

dynamics (CFD) applications, and consist of five kernels and three pseudo-applications in

the original “pencil-and-paper” specification [3]. The benchmark suite has been extended

to include new benchmarks for unstructured adaptive meshes, parallel I/O, multi-zone appli-

cations, and computational grids. Problem sizes in NPB are predefined and indicated as a

number of different classes. Reference implementations of NPB are available in commonly-

used programming models like MPI and OpenMP (NPB 2 and NPB 3) [30].

– The kernels are:

– EP: An “embarrassingly parallel” kernel. It generates pairs of Gaussian random

deviates according to a specific scheme. The goal of this kernel is to establish the

reference point for peak performance of a given platform.

– MG: A simplified multigrid kernel. It uses a V-cycle multigrid method to com-

pute the solution of the 3-D scalar Poisson equation. The algorithm works con-

tinuously on a set of grids that are between coarse and fine. It tests both short and

long distance data movements.

– CG: A conjugate gradient method. It computes an approximation to the smallest

eigenvalue of a large, sparse, symmetric positive definite matrix. This kernel is

135

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 136 — #146 i
i

i
i

i
i

136 Appendix A

used on unstructured grid computations in which it tests irregular long distance

communications employing unstructured matrix vector multiplications.

– FT: A 3-D partial differential equation solution using FFTs. This kernel performs

the basis of many “spectral” codes. It is a rigorous test of long distance commu-

nications performance. FT runs three one-dimensional (I-D) FFTs, one for each

dimension.

– IS: A large integer sort. This kernel performs a sorting operation that is important,

for example, in “particle method” codes. It tests both integer computation speed

and communications performance.

– The pseudo applications are:

– BT: Block Tri-diagonal solver. A simulated CFD application that uses an im-

plicit algorithm to solve 3-dimensional (3-D) compressible Navier-Stokes equa-

tions. The finite differences solution to the problem is based on an Alternating

Direction Implicit (ADI) approximate factorization that decouples the x, y and z

dimensions. The resulting systems are block-tridiagonal of 5x5 blocks and are

solved sequentially along each dimension.

– SP: Scalar Penta-diagonal solver. A simulated CFD application that has a similar

structure to BT. The finite differences solution to the problem is based on a Beam-

Warming approximate factorization that decouples x, y and z dimensions. The

resulting system has scalar pentadiagonal bands of linear equations that are solved

sequentially along each dimension.

– LU: Lower-Upper Gauss-Seidel solver. A simulated CFD application that uses

symmetric successive over-relaxation (SSOR) method to solve a seven-block-

diagonal system resulting from finite-difference discretisation of the Navier-Stokes

equations in 3-D by splitting it into block lower and block upper triangular sys-

tems.

The problem sizes available are:

– Class S: small, for quick test purposes.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 137 — #147 i
i

i
i

i
i

Appendix A 137

– Class W: workstation size (a 90’s workstation; now likely too small).

– Classes A, B, C: standard test problems; 4X size increase going from one class to the

next.

– Classes D, E, F: large test problems; 16X size increase from each of the A, B, and C

classes, respectively.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 138 — #148 i
i

i
i

i
i

138 Appendix A

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 139 — #149 i
i

i
i

i
i

Bibliography

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and

N. R. Tallent. HPCToolkit: Tools for performance analysis of optimized parallel

programs. Concurrency and Computation: Practice and Experience, 22(6):685–701,

2010.

[2] Juan Ángel Lorenzo del Castillo. Performance counter-based strategies to improve

data locality on multiprocessor systems: Reordering and page migration techniques,

PhD Dissertation. 2012.

[3] H. Bailey, D, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A.

Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, et al. The NAS parallel

benchmarks. International Journal of High Performance Computing Applications,

5(3):63–73, 1991.

[4] V. Bhaskar. A closed queuing model with multiple servers for multithreaded

architecture. J. Computer Comm., 31:3078–3089, 2008.

[5] G. Bitzes and A. Nowak. The overhead of profiling using PMU hardware counters.

CERN openlab Report 2014, 2014.

[6] J. A. Brown, L. Porter, and D. M. Tullsen. Fast thread migration via cacheworking set

prediction. In 17th International Symposium on High Performance Computer

Architecture, 2011.

139

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 140 — #150 i
i

i
i

i
i

140 BIBLIOGRAPHY

[7] Y. H. Chang and C. H. Yeh. Evaluating airline competitiveness using multiattribute

decision making. Omega, 29(5):405–415, 2001.

[8] X. E. Chen and T. M. Aamodt. A first-order fine-grained multithreaded throughput

model. In IEEE 15th Int. Symp. High-performance computer architecture (HPCA),

2009.

[9] S. Cheng, C. W. Chan, and G. H. Huang. Using multiple criteria decision analysis for

supporting decisions of solid waste management. Environmental Science and Health,

Part A: Toxic/Hazardous Substances and Environmental Engineering, 37(5):975–990,

2002.

[10] A. Cheung and S. Madden. Performance profiling with EndoScope, an acquisitional

software monitoring framework. Proceedings of the VLDB Endowment, 1(1):42–53,

2008.

[11] T. Constantinou, Y. Sazeides, P. Michaud, D. Fetis, and A. Seznec. Performance

implications of single thread migration on a chip multi-core. ACM SIGARCH

Computer Architecture News, 33(4):80–91, 2005.

[12] L. De Rose, Y. Zhang, and D. A Reed. SvPablo: A multi-language performance

analysis system. In Computer Performance Evaluation, pages 352–355. Springer,

1998.

[13] R. Eigenmann, J. Hoeflinger, and D. Padua. On the automatic parallelization of the

perfect benchmarks. IEEE Trans. Parallel Distrib. Syst., 9(1):5–23, 1998.

[14] S. Eranian. Perfmon2: a flexible performance monitoring interface for Linux. In Proc.

of the 2006 Ottawa Linux Symposium, pages 269–288. Citeseer, 2006.

[15] Galicia Supercomputing Center. Finisterrae Supercomputer.

https://www.cesga.es/es/infraestructuras/computacion/finisterrae, 2010. [Online;

accessed December 2015].

https://www.cesga.es/es/infraestructuras/computacion/finisterrae

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 141 — #151 i
i

i
i

i
i

BIBLIOGRAPHY 141

[16] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and B. Mohr. The

Scalasca performance toolset architecture. Concurrency and Computation: Practice

and Experience, 22(6):702–719, 2010.

[17] GNU. gprof. https://sourceware.org/binutils/docs/gprof/, 2015. [Online; accessed

December 2015].

[18] GNU. Octave. http://www.gnu.org/software/octave/, 2015. [Online; accessed

December 2015].

[19] G. H. Golub and C. F. Van Loan. Matrix computations. The John Hopkins University

Press, 1989.

[20] E. Gutiérrez, O. Plata, and E. L. Zapata. A compiler method for the parallel execution

of irregular reductions in scalable shared memory multiprocessors. In Proc. of the Int.

Conf. on Supercomputing, LNCS, pages 78–87. ACM SIGARCH, Springer-Verlag,

May 2000.

[21] Z. Guz, E. Bolotin, I. Keidar, A. Mendelson, and U. C. Weiser. Manycore vs.

manythread machines: Stay from the valley. IEEE Computer Architecture Letter,

8(1):25–28, 2009.

[22] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative approach.

Elsevier, 2012.

[23] HP. HP Integrity rx7640 Server Quick Specs.

http://www8.hp.com/h20195/v2/getpdf.aspx/c04140246.pdf?ver=25, 2009. [Online;

accessed December 2015].

[24] HP. HP Caliper. www.hp.com/go/caliper, 2015. [Online; accessed December 2015].

[25] Intel. Dual-Core Update to the Intel Itanium 2 Processor Reference Manual.

http://www.intel.com/content/www/us/en/processors/itanium/

dual-core-update-itanium-2-processor-manual.html, 2015. [Online; accessed

December 2015].

https://sourceware.org/binutils/docs/gprof/
http://www.gnu.org/software/octave/
http://www8.hp.com/h20195/v2/getpdf.aspx/c04140246.pdf?ver=25
www.hp.com/go/caliper
http://www.intel.com/content/www/us/en/processors/itanium/dual-core-update-itanium-2-processor-manual.html
http://www.intel.com/content/www/us/en/processors/itanium/dual-core-update-itanium-2-processor-manual.html

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 142 — #152 i
i

i
i

i
i

142 BIBLIOGRAPHY

[26] Intel. Intel Ark, Intel Xeon Processor E5-2603. http://ark.intel.com/products/64592/,

2015. [Online; accessed December 2015].

[27] Intel. Intel VTune performance analyzer.

https://software.intel.com/en-us/intel-vtune-amplifier-xe, 2015. [Online; accessed

December 2015].

[28] Intel. Intel R©64 and IA-32 Architectures Software Developer’s Manual Volume 3B:

System Programming Guide, Part 2.

http://www.intel.com/content/www/us/en/architecture-and-technology/

64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html, 2015. [Online;

accessed December 2015].

[29] J. D. McCalpin. Preventing FP overcounts for AVX instructions on Sandy Bridge.

https://software.intel.com/en-us/forums/

software-tuning-performance-optimization-platform-monitoring/topic/564455, 2015.

[Online; accessed December 2015].

[30] H. Jin, M. Frumkin, and J. Yan. The OpenMP implementation of NAS parallel

benchmarks and its performance. Technical report, Technical Report NAS-99-011,

NASA Ames Research Center, 1999.

[31] M. Ju, H. Jung, and H. Che. A performance analysis methodology for multicore,

multithreaded processors. IEEE Tr. on Computers, 63(2):276–289, 2014.

[32] A. Kleen. A NUMA API for Linux. Novel Inc, 2005.

[33] T. Klug, M. Ott, J. Weidendorfer, and C. Trinitis. Autopin–automated optimization of

thread-to-core pinning on multicore systems. In Transactions on high-performance

embedded architectures and compilers III, pages 219–235. Springer, 2011.

[34] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas. Single-ISA

heterogeneous multi-core architectures for multithreaded workload performance. In

31st International Symposium on Computer Architecture, pages 64–75, 2004.

http://ark.intel.com/products/64592/
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/564455
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/564455

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 143 — #153 i
i

i
i

i
i

BIBLIOGRAPHY 143

[35] J. Labarta, S. Girona, V. Pillet, T. Cortes, and L. Gregoris. Dip: A parallel program

development environment. In Luc Bougé, Pierre Fraigniaud, Anne Mignotte, and Yves

Robert, editors, Euro-Par’96 Parallel Processing, volume 1124 of Lecture Notes in

Computer Science, pages 665–674. Springer Berlin / Heidelberg, 1996.

[36] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative system

performance: computer system analysis using queueing network models. Prentice-Hall

Englewood Cliffs, 1984.

[37] C. Li, C. Ding, and K. Shen. Quantifying the cost of context switch. In Proceedings of

the 2007 workshop on Experimental computer science, page 2. ACM, 2007.

[38] Y. Li, I. Pandis, R. Müller, V. Raman, and G. M. Lohman. NUMA-aware algorithms:

the case of data shuffling. In 6th Biennial Conference on Innovative Data Systems

Research (CIDR’13), 2013.

[39] F. Liu, F. Guo, Y. Solihin, S. Kim, and A. Eker. Characterizing and modeling the

behavior of context switch misses. In Intl. Conf. on Parallel Architectures and

Compilation Techniques, 2008.

[40] O. G. Lorenzo, J. A. Lorenzo, J. C. Cabaleiro, D. B. Heras, M. Suarez, and J. C.

Pichel. A study of memory access patterns in irregular parallel codes using hardware

counter-based tools. In Int. Conf. on Parallel and Distributed Processing Techniques

and Applications (PDPTA), pages 920–923, 2011.

[41] O. G. Lorenzo, J. A. Lorenzo, D. B. Heras, J. C. Pichel, and F. F. Rivera. Herramientas

para la monitorización de los accesos a memoria de códigos paralelos mediante

contadores hardware. XXII Jornadas de Paralelismo (JP2011), 9:07–2011, 2011.

[42] O. G. Lorenzo, T. F. Pena, J. C. Cabaleiro, J. C. Pichel, J. A. Lorenzo, and F. F. Rivera.

A hardware counter-based toolkit for the analysis of memory accesses in smps.

Concurrency and Computation: Practice and Experience, 26(6):1328–1341, 2014.

[43] O. G. Lorenzo, T. F. Pena, J. C. Cabaleiro, J. C. Pichel, J. A. Lorenzo, F. F. Rivera,

et al. Hardware counters based analysis of memory accesses in SMPs. In Parallel and

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 144 — #154 i
i

i
i

i
i

144 BIBLIOGRAPHY

Distributed Processing with Applications (ISPA), 2012 IEEE 10th International

Symposium on, pages 595–602. IEEE, 2012.

[44] O. G. Lorenzo, T. F. Pena, J. C. Cabaleiro, J. C. Pichel, and F. F. Rivera. DyRM: A

dynamic roofline model based on runtime information. In 2013 International

Conference on Computational and Mathematical Methods in Science and Engineering,

pages 965–967, 2013.

[45] O. G. Lorenzo, T. F. Pena, J. C. Cabaleiro, J. C. Pichel, and F. F. Rivera. Extensión del

modelo roofline y herramientas para su uso. In XXIV Jornadas de Paralelismo, pages

157–162, 2013.

[46] O. G. Lorenzo, T. F. Pena, J. C. Cabaleiro, J. C. Pichel, and F. F. Rivera. 3DyRM: a

dynamic roofline model including memory latency information. The Journal of

Supercomputing, 70(2):696–708, 2014.

[47] O. G. Lorenzo, T. F. Pena, J. C. Cabaleiro, J. C. Pichel, and F. F. Rivera. Multiobjective

optimization technique based on monitoring information to increase the performance

of thread migration on multicores. In Cluster Computing (CLUSTER), 2014 IEEE

International Conference on, pages 416–423. IEEE, 2014.

[48] O. G. Lorenzo, T. F. Pena, J. C. Cabaleiro, J. C. Pichel, and F. F. Rivera. Study of data

locality and thread affinity on multicore systems using the roofline model. In I

Jornadas de Programación Paralela Multicore y GPU, pages 67–76, 2014.

[49] O. G. Lorenzo, T. F. Pena, J. C. Cabaleiro, J. C. Pichel, and F. F. Rivera. Thread

migration techniques based on dynamic roofline models and latency information. In

Avances en computación paralela, distribuida y de alto rendimiento, XXV Jornadas de

Paralelismo, pages 261–268, 2014.

[50] O. G. Lorenzo, T. F. Pena, J. C. Cabaleiro, J. C. Pichel, and F. F. Rivera. Using an

extended roofline model to understand data and thread affinities on NUMA systems.

Annals of Multicore and GPU Programming, 1(1):56–67, 2014.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 145 — #155 i
i

i
i

i
i

BIBLIOGRAPHY 145

[51] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi,

and K. Hazelwood. Pin: building customized program analysis tools with dynamic

instrumentation. In ACM SIGPLAN Notices, volume 40, pages 190–200. ACM, 2005.

[52] R. T. Marler and J. S. Arora. Survey of multi-objective optimization methods for

engineering. Structural and Multidisciplinary Optimization, 26:369–395, 2004.

[53] MathWorks. Matlab. http://www.mathworks.com, 2015. [Online; accessed December

2015].

[54] A. Mazouz, S. Touati, and D. Barthou. Performance evaluation and analysis of thread

pinning strategies on multi-core platforms: Case study of SPEC OMP applications on

intel architectures. In High Performance Computing and Simulation (HPCS), 2011

International Conference on, pages 273–279. IEEE, 2011.

[55] J.D. McCalpin. Memory bandwidth and machine balance in current high performance

computers. IEEE Computer Society Technical Committee on Computer Architecture

(TCCA) Newsletter, pages 19–25, December 1995.

[56] McCalpin, J.D. STREAM benchmark. www.cs.virginia.edu/stream/ref.html, 1995.

[Online; accessed December 2015].

[57] B. Mohr, A. D. Malony, H. C. Hoppe, F. Schlimbach, G. Haab, J. Hoeflinger, and

S. Shah. A performance monitoring interface for OpenMP. In Proceedings of the

Fourth Workshop on OpenMP (EWOMP 2002), 2002.

[58] S. Moore, D. Cronk, K. London, and J. Dongarra. Review of performance analysis

tools for MPI parallel programs. In Recent Advances in Parallel Virtual Machine and

Message Passing Interface, pages 241–248. Springer, 2001.

[59] A. Morris, W. Spear, A. D. Malony, and S. Shende. Observing performance dynamics

using parallel profile snapshots. In Euro-Par 2008–Parallel Processing, pages

162–171. Springer, 2008.

[60] D. Mosberger and S. Eranian. IA-64 Linux Kernel: Design and Implementation.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

http://www.mathworks.com
www.cs.virginia.edu/stream/ref.html

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 146 — #156 i
i

i
i

i
i

146 BIBLIOGRAPHY

[61] W. E. Nagel, A. Arnold, M. Weber, H. Ch. Hoppe, and K. Solchenbach. VAMPIR:

Visualization and analysis of MPI resources. Supercomputer, 12:69–80, 1996.

[62] O.G. Lorenzo. GIT repository for 3DyRM tools.

https://gitlab.citius.usc.es/tf.pena/hc-thread-migration, 2015. [Online; accessed

December 2015].

[63] O.G. Lorenzo and T.F. Pena and J.C. Cabaleiro and J.C. Pichel and F.F. Rivera. Thread

migration strategies for NUMA systems. Manuscript submitted for publication, 2015.

[64] OpenMP Architecture Review Board. The OpenMP API specification for parallel

programming. http://openmp.org, 2015. [Online; accessed December 2015].

[65] Oracle. hprof. http://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html,

2015. [Online; accessed December 2015].

[66] P. Mucci. Performance Application Programming Interface (PAPI).

http://icl.cs.utk.edu/papi/, 2015. [Online; accessed December 2015].

[67] PAPI Topics. Counting Floating Point Operations on Intel Sandy Bridge and Ivy

Bridge. http://icl.cs.utk.edu/projects/papi/wiki/PAPITopics:SandyFlops, 2015.

[Online; accessed December 2015].

[68] Paradyn Project. Paradyn. http://www.paradyn.org/, 2015. [Online; accessed

December 2015].

[69] perfmon2. Precise Event-Based Sampling (PEBS).

http://perfmon2.sourceforge.net/pfmon_intel_core.html#pebs, 2015. [Online; accessed

December 2015].

[70] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F. Rivera. Increasing data reuse of

sparse algebra codes on simultaneous multithreading architectures. Concurrency and

Computation: Practice and Experience, 21(15):1838–1856, 2009.

[71] J. C. Pichel, J. A. Lorenzo, D. B. Heras, J. C. Cabaleiro, and T. F. Pena. Analyzing the

execution of sparse matrix-vector product on the Finisterrae SMP-NUMA system. The

Journal of Supercomputing, 58(2):195–205, 2011.

https://gitlab.citius.usc.es/tf.pena/hc-thread-migration
http://openmp.org
http://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html
http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/projects/papi/wiki/PAPITopics:SandyFlops
http://www.paradyn.org/
http://perfmon2.sourceforge.net/pfmon_intel_core.html#pebs

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 147 — #157 i
i

i
i

i
i

BIBLIOGRAPHY 147

[72] J. C. Pichel, D. E. Singh, and J. Carretero. Reordering algorithms for increasing

locality on multicore processors. In Proc. of the IEEE Int. Conf. on High Performance

Computing and Communications, pages 123–130, 2008.

[73] R Development Core Team. R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN

3-900051-07-0.

[74] S. Reza and G. T. Byrd. Reducing migration-induced cache misses. In IEEE 26th

International Parallel and Distributed Processing Symposium, 2012.

[75] M. Schuchhardt, A. Das, N. Hardavellas, G. Memik, and A. Choudhary. The impact of

dynamic directories on multicore interconnects. IEEE Computer, 46(10):32–39, 2013.

[76] M. Schulz and B. R. de Supinski. PN MPI tools: A whole lot greater than the sum of

their parts. In Proceedings of the 2007 ACM/IEEE conference on Supercomputing.

ACM, 2007.

[77] S. S. Shende and A. D. Malony. The Tau parallel performance system. International

Journal of High Performance Computing Applications, 20(2):287–311, Summer 2006.

[78] K. S. Shim, M. Lis, O. Khan, and S. Devadas. Judicious thread migration when

accessing distributed shared caches. In Proceedings of the Third Workshop on

Computer Architecture and Operating System Codesign (CAOS), 2012.

[79] F. N. Sibai. Simulation and performance analysis of multi-core thread scheduling and

migration algorithms. In 2010 International Conference on Complex, Intelligent and

Software Intensive Systems (CISIS), pages 895–900. IEEE, 2010.

[80] A. G. Sodan. Message-passing and shared-data programming models: Wish vs. reality.

In Proc. IEEE Int. Symp. High Performance Computing Systems Applications, pages

131–139, 2005.

[81] J. Torrellas, M. S. Lam, and J. L. Hennessy. False sharing and spatial locality in

multiprocessor caches. Computers, IEEE Transactions on, 43(6):651–663, 1994.

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 148 — #158 i
i

i
i

i
i

148 BIBLIOGRAPHY

[82] T. Walsh. Generating miss rate curves with low overhead using existing hardware.

PhD thesis, University of Toronto, 2009.

[83] M. Wang, S. Liu, S. Wang, and K. K. Lai. A weighted product method for bidding

strategies in multi-attribute auctions. Systems Science and Complexity, 23(1):194–208,

2010.

[84] M. V. Wilkes. The memory gap and the future of high performance memories. ACM

SIGARCH Computer Architecture News, 29(1):2–7, 2001.

[85] S. Williams, A. Waterman, and D. Patterson. Roofline: An insightful visual

performance model for multicore architectures. Commun. ACM, 52(4):65–76, April

2009.

[86] Intel Developer Zone. Fluctuating FLOP count on Sandy Bridge.

http://software.intel.com/en-us/forums/topic/375320, 2014. [Online; accessed

September 2015].

http://software.intel.com/en-us/forums/topic/375320

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 149 — #159 i
i

i
i

i
i

List of Figures

1.1 Architecture of a centralised shared-memory multiprocessor based on a

multicore chip [22]. 5

1.2 The basic architecture of a distributed-memory multiprocessor typically

consists of a multicore multiprocessor chip with memory and possibly I/O

attached and an interface to an interconnection network that connects all the

nodes [22]. 6

1.3 The Itanium 2 Montvale processor memory hierarchy. 11

1.4 Layout of IA32_PEBS_ENABLE MSR. 18

1.5 The PEBS buffer. 20

1.6 Layout of MSR_PEBS_LD_LAT MSR. 23

2.1 Instrumentation tool. Parameter selection screen. 30

2.2 Simple parallel vector initialisation annotated program. 32

2.3 General Occurrence histogram, showing total number of cache misses

detected. In the histogram L2 misses are shown in red, L3 in green, and

main memory in orange. 34

2.4 Detailed Latency histogram, showing average latency of memory loads. . . . 35

2.5 Individual cache misses. 37

2.6 Number of cache misses by address, the x axis represents the memory range

of vector v. Distribution of the bcsstk29 matrix in 2.6(a). 39

149

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 150 — #160 i
i

i
i

i
i

150 LIST OF FIGURES

2.7 Number of cache misses by address, the x axis represents the memory range

of vector v. Distribution of the psmigr_1 matrix in 2.7(a). 40

2.8 Latencies to access main memory per core (in cycles). The x axis represents

the memory range of vector v. 41

2.9 Occurrences and latencies of cache accesses with 4 threads, n = 32000, r =

100000, and different block sizes, including a block distribution. 43

3.1 Roofline Model for (a) AMD Opteron X2 on left and (b) Opteron X2 vs.

Opteron X4 on right. 48

3.2 Roofline Model with Ceilings for Opteron X2. 52

3.3 Examples of Dynamic Roofline Models for the NAS Parallel benchmark SP.B. 54

3.4 3DyRM. Two views for the same code, GFLOPS/FlopsB/Latency (cycles).

Data from processor 0 are shown in black, those from processor 1 are in green. 56

3.5 The Graphical User Interface in R. 58

3.6 Statistics screen. Memory accesses captured by data source. 59

3.7 DyRM models for the 8 system cores. 61

3.8 DyRM of ep.A y ft.A. Bechmark detection. 62

3.9 3DyRM de ep.A y ft.A. Processor 0 (cores 0-3) in red, processor 1 (cores

4-7) in black. 62

3.10 Flop overcounting results. 65

3.11 3DyRM and i3DyRM for an SDOT with t = 8, node 0 in green, node 1 in black. 67

3.12 DyRM for FT.A on Xeon Server X (core 0) 68

3.13 Roofline for CG (Sizes A, B and C) on Xeon Server X 68

3.14 DyRM for BT benchmark (Sizes A, B and C) on Xeon Server X 69

3.15 DyRM for LU.A on different systems . 71

3.16 3DyRM of EP.B in Xeon Server X with 16 threads. Data from processor 0 is

shown in black, those from processor 1 is in green 72

4.1 Execution times of SAXPY with stride 4. 90

4.2 Execution times of SAXPY with stride 8. 90

4.3 Execution times of SAXPY with stride 16. 91

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 151 — #161 i
i

i
i

i
i

LIST OF FIGURES 151

4.4 Execution times of SDOT with stride 4. 91

4.5 Execution times of SDOT with stride 8. 92

4.6 Execution times of SDOT with stride 16. 92

4.7 DyRM for selected NAS Benchmarks. Note that lu.C and sp.C have much

lower FlopB than bt.C and ua.C. 96

4.8 Evolution of performance for one thread of the 4 lu.C configuration for the

DIRECT case. The thread runs in node 0. 100

4.9 Evolution of performance for one thread of the 4 lu.C configuration for the

CROSSED case. The thread runs in node 1. 101

4.10 Evolution of the performance for one thread of the 4 lu.C configuration for

the CROSSED test with IMAR migrations, thread 3143. 101

4.11 Evolution of the performance for one thread of the 4 lu.C configuration for

the CROSSED test with IMAR migrations, thread 3154. 102

4.12 Evolution of performance for one thread of the 4 lu.C configuration for the

CROSSED test with IMAR2 migrations, thread 109565. 103

4.13 Evolution of performance for one thread of the 4 lu.C configuration for the

CROSSED test with IMAR2 migrations, thread 109553. 103

4.14 Evolution of performance for the 4 lu.C configuration for the CROSSED and

DIRECT cases with IMAR2 migrations. A linear approach for each case is

also shown. 104

4.15 Mean results for all test with 2 nodes. 106

4.16 Variations of sp.C for sp.C/bt.C with respect to the baseline (2 nodes). 107

4.17 Variations of bt.C for sp.C/bt.C with respect to the baseline (2 nodes). 107

4.18 Variations of lu.C for lu.C/sp.C/bt.C/ua.C with respect to the baseline. . . . 108

4.19 Variations of sp.C forlu.C/sp.C/bt.C/ua.C with respect to the baseline. 109

4.20 Variations of bt.C forlu.C/sp.C/bt.C/ua.C with respect to the baseline. 109

4.21 Variations of ua.C for lu.C/sp.C/bt.C/ua.C with respect to the baseline. . . . 110

4.22 Variations of the fastest lu.C for 4 lu.C with respect to the baseline. 111

4.23 Variations of the slowest lu.C for 4 lu.C with respect to the baseline. 112

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 152 — #162 i
i

i
i

i
i

152 LIST OF FIGURES

4.24 Variations of the fastest lu.C for 4 lu.C with respect to the baseline, with

IMAR2. 112

4.25 Variations of the slowest lu.C for 4 lu.C with respect to the baseline, with

IMAR2. 113

4.26 Mean results for free test with 4 nodes. 113

4.27 Mean results for direct test with 4 nodes. 114

4.28 Mean results for interleave test with 4 nodes. 114

4.29 Mean results for crossed test with 4 nodes. 115

i
i

“teseCITIUS” — 2016/1/13 — 16:26 — page 153 — #163 i
i

i
i

i
i

List of Tables

1.1 Itanium 2 Processor EARs and Branch Trace Buffer. 16

1.2 PEBS Record Format for Intel Core i7 Processor Family. 19

1.3 Data Source Encoding for Load Latency Record. 22

3.1 Data capture overhead relative to the number of samples taken per thread.

Ms/th/s, number of memory operations sampled per thread per second.

Is/th/s, number of samples of instructions counts per thread per second. . . . 63

4.1 Example of use of IMAR. Thread state. 84

4.2 Thread performance for the example of Table 4.1. 85

4.3 Ticket distribution for the example of Table 4.2. 86

4.4 Baseline times for dual NAS on System Z with 2 nodes. 97

4.5 Baseline times for 4 NAS on System Z with 4 nodes. 99

153

	Portada
	Índice general
	Introduction
	Processors, NUMA and HC
	Multicore processors and NUMA systems
	Symmetric multiprocessors
	Distributed shared memory
	Memory gap
	Locality and affinity
	Thread migration

	Intel processors
	Itanium
	Sandy Bridge

	Hardware counters
	EAR counters
	PEBS
	Floating Point overcounting

	Recap

	Analysis of memory accesses in SMPs
	Performance monitoring
	Information capture with HC
	Data capture tool
	Instrumentation tool

	Data visualisation
	Visualisation tool

	Case studies
	Sparse Matrix Vector Product
	Vector-vector dot product, SDOT

	Recap

	Performance models based on runtime information
	Berkeley Roofline Model
	Adding ceilings

	Roofline Model extensions
	Dynamic Roofline Model
	Latency Extended Dynamic Roofline Model

	Performance analysis tool
	Performance visualisation tool

	Case studies
	Overhead of data capture
	Floating Point overcounting
	Effect of compiler optimisations
	Effect of the problem size
	Comparison among processors
	The effect of latency

	Recap

	Thread migration based on runtime information
	Introduction
	Migration strategies and algorithms
	IMA Interchange Migration Algorithm
	IMAR Interchange Migration Algorithm with performance Record
	IMAR2 Interchange Migration Algorithm with performance Record Rollback
	IMAR example

	Migration tool
	Case Studies: SDOT and SAXPY
	The SDOT and SAXPY routines
	The implementations
	Selection of parameters
	Results for IMA

	NAS Case Studies
	NAS implementations
	Baseline results
	Study of traces
	Case study on two nodes with IMAR
	Case study on four nodes with IMAR
	Results with IMAR2

	Recap

	Conclusions and Future Work
	Publications

	Summary of the thesis
	Appendix - NAS Parallel Benchmark Suite

