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Abstract

The linguistic description of data intends to pro-
vide texts that convey the most important informa-
tion contained in the data. One of the main tasks
to be carried out in order to build a linguistic de-
scription is the extraction and representation of the
knowledge to be transmitted. To perform this task,
adequate mechanisms for knowledge representation
are needed. In this paper we focus on time series
data and analyze three knowledge representation
languages that arise in the field of Fuzzy Sets The-
ory, particularly Computing with Words and Per-
ceptions: the use of Protoforms, the Granular Lin-
guistic Model of a Phenomenon and, specially, the
use of Fuzzy Temporal Knowledge Representation
Models.

Keywords: Linguistic Description of Data, Time
Series, Knowledge Representation, Protoforms,
Granular Linguistic Model of a Phenomenom, Fuzzy
Temporal Knowledge representation models, Fuzzy
Temporal Rules.

1. Introduction

The development of systems for human-computer
interaction based on natural language has played
a relevant role in ICT research and is growing in
importance today, due in part to the widespread use
of mobile devices along with the many possibilities
offered by technology to interact with these devices.
Within this context, the field of linguistic descrip-

tion of data (LDD) aims to provide in text format
the most relevant information in data to interested
users. This area of research is increasingly impor-
tant as a bridge between the large amounts of data
acquired by computer systems and the user inter-
ested in valid, valuable and useful knowledge con-
tained in such data. Solutions within this area come
more and more through the use of integrated ap-
proaches where tools and techniques of disciplines
like Natural Language Generation and processing,
Soft Computing, and Intelligent Data Analysis and
Data Mining, converge and complement each other.
In this area of research it is widely recognized the

contribution that uncertainty representation tech-
niques, particularly those related to the Fuzzy Set
Theory and its extensions, can provide. Thanks to

Fuzzy Set Theory, models can be designed which
are more understandable, less complex and more
robust, being this theory especially useful for the
representation of vague patterns and the modeling
and processing of various forms of uncertain and in-
complete information [1]. In the community of Nat-
ural Language Generation (NLG), the role that this
theory can play to cover the semantic gap between
data and linguistic expressions is also recognized,
for instance in the management of different types of
uncertainty which are inherent to the linguistic ex-
pression of knowledge about real world data [2, 3, 4].
This is in line with the known suitability and the
high potential of fuzzy sets to represent the seman-
tics of natural language expressions [5].

From a general point of view, in order to pro-
vide a linguistic description of the data, two main
tasks must be performed, which are: to extract from
the data the knowledge to be transmitted, and to
generate an appropriate linguistic expression of the
knowledge for the target user. The first task, by its
nature, can be considered a Knowledge Data Dis-
covery (KDD) process, which aims to provide a col-
lection of messages that computationally represent
the knowledge that is in the data. This requires
defining a knowledge representation formalism that
allows to represent the semantics of the messages.
The expressive power of this formalism defines the
space of possible messages to be considered as base
for the construction of the final description.

Frequently, data is presented in the form of time
series. In a broad sense, a time series can be con-
sidered a data stream produced by a given phe-
nomenon ordered in time. In this work, we study
three relevant approximations to the problem of
knowledge representation in linguistic description of
time series data that arise in the field of Fuzzy Set
Theory, namely: the use of protoforms, the Granu-
lar Linguistic Model of a Phenomenon, and Fuzzy
Temporal Models.

In the next section, we analyze the three men-
tioned approaches to the problem of knowledge rep-
resentation; finally, in Section 4, we present our con-
clusions and point out some guidelines for future
work in the area.

16th World Congress of the International Fuzzy Systems Association (IFSA) 
9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT) 

© 2015. The authors - Published by Atlantis Press 1346



2. Some Fuzzy Knowledge Representation
Elements for Linguistic Description of
Data

In the following sections we describe different knowl-
edge representation languages that have been em-
ployed to a larger or lesser extent in the literature.
It is important to remark that these languages are
not three alternatives to the same problem, but they
cover different aspects of knowledge representation.
In fact, they have been frequently combined for de-
veloping systems for linguistic description of data.

2.1. Protoforms

Protoforms (prototypical forms) arise within the
Computing with Words and Perceptions paradigm
proposed by L.A. Zadeh, and the closely related
Generalized Theory of Uncertainty (GTU) [6]. A
protoform is defined as an abstracted model which
instances represent knowledge about data [7]. They
are particularly useful in formalizing human consis-
tent reasoning and for providing deduction capabil-
ities, specially in natural language-based knowledge
discovery tools [8].
Some of the most widely employed protoforms

are:

• The protoform X is A, defining a possibilistic
constraint. Examples of instances are “Temper-
ature is High”, “Wind Speed is 33 mph”, and
“Stock price variation is highly increasing”.
• The protoform Q D are A, where Q is a lin-
guistic quantifier, and D and A are fuzzy sub-
sets of the same universe of reference defined
by fuzzy predicates. This is a particular case
of fuzzy quantified sentence [9, 6]. Examples of
instances are “Most days are foggy” and “Usu-
ally between 12 and 15 h. the price is con-
stant”. Kacprzyk and Zadrozny [8] point out
that protoforms can be seen as a general form
of a linguistic data summary, a term coined by
Yager for a specific kind of linguistic descrip-
tion based on quantified guided aggregation of
data [10], and it is very frequently used as a
synonym for linguistic description even in the
NLG community, see for instance [11].

Protoforms are useful for dealing with different
kinds of uncertainty inherent to the linguistic ex-
pression of knowledge about real world data. For
instance, the protoform X is A represents the (par-
tial) knowledge we have about the actual value a of
the variable X (we only know a is in A, being the
membership function A(x) a measure of the possi-
bility that a certain value x is the actual value of
X). However, in the setting of linguistic descrip-
tion of data, in which the values of the time series
are usually known, the expression X is A is gener-
ally given a different use, particularly as a way to
connect data values to linguistic terms in a kind of
change of granularity.

Knowledge representation in linguistic descrip-
tion of time series is employed in order to represent
the semantics of messages through the semantics
of protoforms and those of their instance’s compo-
nents, which are the basic elements of any formal-
ism. For example, the semantics of the message rep-
resented by the instance “Usually between 12 and
15 h. the price is constant” is given by the semantics
of:

• the protoform Q D are A (the fraction of ob-
jects in D that are in A is Q)
• the component between 12 and 15 h. (repre-
sented by a crisp set),
• the component constant (which, when measur-
ing the variation of a time series by means of
the angle with the horizontal axis of a line ad-
justed to the series, can be represented by a
fuzzy subset of angles around zero),
• the component Usually (a fuzzy relative quanti-
fier represented by a non-decreasing fuzzy sub-
set of [0,1])

as well as a collection Ω of time segments (taken
from a single series or from different series). Then,
D is the (in this case crisp) set of intervals with
boundaries 12 and 15 h. in Ω, and A is the fuzzy
subset of Ω satisfying that the variation of the time
series is constant in the sense explained before.

A very important aspect of protoforms is the as-
sessment of protoform instances by measuring the
degree to which the knowledge expressed by the in-
stance is an accurate description of the data. The
assessment of the accuracy of instances of X is A
is very simple, and given by the membership of the
actual value of X to the fuzzy set A, having been
employed by many authors; for instance, in [12]
A is a categorical value or a crisp interval of nu-
merical values, ordered in time, whilst in [13] X
represents a trend or the sign of a trend, and A is a
label obtained by combining basic linguistic labels
and linguistic hedges.

In the case of quantified sentences, there are
many different approaches that have been employed
in practical LDD applications, like Zadeh’s ap-
proach based on compatibility of a quantifier with
the sigma-count cardinality [14], the Sugeno in-
tegral [15], the Choquet integral [16], Yager’s
method based on OWA [17], method GD in [18, 19],
and methods based on generalized quantification
in [20, 21, 22, 23, 24]. A review of techniques for the
evaluation of quantified sentences including these
and other methods can be found in [25].

2.2. Granular Linguistic Model of a
Phenomenon

The Granular Linguistic Model of a Phenomenom
(GLMP) is a hierarchically organized knowledge
representation model for linguistic description. A
formal description of the model is presented in [26].
Figure 1 shows a simple example of GLMP. The
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nodes of the hierarchy represent perceptions, each
one being usually expressed in practice by means of
an associated protoform. There is no restriction as
to which protoforms can be employed; in fact, the
(many) applications in which this model has been
applied use a wide variety of protoforms, even in the
same application.
A directed link between two perceptions in the hi-

erarchy indicates that the first perception explains
the second, meaning that protoform instances of a
certain perception are calculated by inference on the
basis of instances of the perceptions which explain
it, using generally fuzzy rules and Mamdani-based
inference, but allowing for other kinds of inference.
Perceptions which are explained by the input data
are called first order perceptions (P̂ 1

1 , P̂ 1
2 and P̂ 1

3
in Figure 1), and are usually associated to low-level
protoforms like X is A or quantified sentences. Per-
ceptions explained by other perceptions are called
second order perceptions (P̂ 2

4 and P̂ 2
5 in Figure 1).

The model allows the representation of uncertainty
about the perceptions (represented by Wi in Figure
1), as well as associating specific linguistic expres-
sion mechanisms to each perception.

Figure 1: Simple example of GLMP.

This model has been employed in many applica-
tions. For instance, in the linguistic description of
the human gait quality [27, 28], the description of
rehabilitation exercises [29], the linguistic descrip-
tion of energy consumption data of households [30],
reporting in driving simulation environments [31],
description of perceptions while driving [32], and
the linguistic description of traffic [33, 34], among
others.

Figure 2 shows a GLMP used to describe the
physical style of life of a person. The first order
perceptions are obtained from the accelerations pro-
vided by using a smartphone carried by the subject.

ρ is the acceleration modulus and σ is the typical
deviation of this temporal signal.
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Figure 2: GLMP used to describe the physical style
of life of a person

2.3. Fuzzy Temporal Models

It is well-known that linguistic reporting from time
series data in non-trivial fields of application de-
mands the use of expressions where time explic-
itly appears, either as a temporal reference or as
a framework for the occurrence of events. Some ex-
amples of descriptions, taken from the process mon-
itoring and control areas are: The distance to the
wall has kept low in part of the last measurements
or The temperature rose considerably a little before
that the pressure became high. Other expressions
involving different types of operators or describing
complex relations among values of variables or rel-
evant events are also frequent in these and related
areas (e.g. for a minute the mean value of the tem-
perature in boiler 1 was bigger than the mean value
of the temperature in boiler 2 ). These expressions
pose knowledge representation needs that do not
fit neither within the classical non-temporal fuzzy
protoforms X is A or the quantified ones Q Bs are
As mentioned in Section 2.1. Modelling complex ex-
pressions in real and demanding application realms
requires to use adequate models that take into ac-
count an explicit fuzzy representation of time and
consider that fuzziness can appear not only in the
temporal references, but also in the sets of values
and the operators involved in the descriptions.

Although many models have been proposed in the
literature for fuzzy temporal knowledge representa-
tion and reasoning [35], [36], [37], [38], [39], [40],
[41], [47] to explicitly include time as another deci-
sion variable in fuzzy propositions and rules, they
have received little attention, in general, from re-
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searchers in the LDD area. Nevertheless, many of
these models are valuable sources of inspiration for
endowing LDD models with the syntactic expre-
siveness and linguistic richness many applications
and users demand. If we aim that LDD may face
truly complex real problems, the underlying models
should be endowed with knowledge representation
elements that may allow the descriptions produced
to be close to the language used by human users
(that should be always in the center of interest of
LDD).
Our starting point of view it that many of the

approaches described in the LDD literature do not
produce, in general, texts that are adequate for di-
rect human consumption by non-specialized users.
Linguistic summaries in these cases are usually
made up of limited expressions that involve sim-
ple type I or type II quantified propositions (Q Xs
are A or Q Bs are As) where Q is a basic ab-
solute/relative quantifier. Therefore, these mod-
els lose most of the semantic richness that many
models described in the fuzzy knowledge represen-
tation and reasoning literature are endowed with.
Since LDD is finally addressed to human consump-
tion it should be a fundamental requisite that they
are based on sound knowledge representation mod-
els that are truly able to fit the users semantic needs
and not on the contrary. It seems that most of these
LDD models have been described exclusively from
a computational point of view, thus forgetting to
look for inspiration on other fields (such as linguis-
tics or logics, but also in process supervision and
control, dynamic or complex systems or even signal
processing) where similar problems and representa-
tion needs have been successfully dealt with for long
time.
In many of these areas systems are usually de-

scribed as the evolution of a sequence of pre-defined
states. Transitions between states are modelled in
this field by means of fuzzy knowledge bases, since
they represent complex change situations where
the context, involving temporal relationships among
other states or variables, should be taken into con-
sideration.

A model for representing dynamic behavior,
called Fuzzy Finite State Machine (FFSM), has
been proposed by Trivino et al. [32]. A FFSM is
formally defined as a tuple:

{X,U, Y, f, g,X0}

where:

• X is the set of states {x1, x2, ..., xnx
}. Every

state represents the pattern of a repetitive sit-
uation. We say that, the system is in a specific
state, when the current input variables and the
previous state activations fulfill certain condi-
tions. The activation of a state is a matter
of degree, i.e. the FFSM could be partially in
several states simultaneously. We will denote
Xiε[0, 1] the degree of activation of a state,

Defining the states includes determining their
temporal order, i.e., the sequence with which
the system follows the different relevant states.
• U is the input vector {u1, u2, ..., unu

}. U is a set
of first-order perceptions where each variable ui

takes its value in a domain defined with a set
of linguistic labels {Ai1, Ai2, ..., Ain}.
• Y is the output vector {y1, y2, ..., yny

}. Y rep-
resents a summary of the values taken by the
inputs while staying in a specific state.
• f is the state transition function X[t + 1] =
f(U [t], X[t]). This function can be imple-
mented using a set of fuzzy rules:

– Rules that constrain the signal amplitude.
We distinguish between rules to stay in a
state xi (Rii) and rules to change from the
state xi to the state xj (Rij):
Rii : IF Xi(t)∨ (u is Ci) THEN Xi(t+ 1)
Rij : IF Xi(t)∧(u is Cj) THEN Xj(t+1)
where Ci and Cj represent the conditions
of amplitude for the state xi and xj re-
spectively.
∨ in Rii is used to introduce an inertia to
change of state. This makes the FFSM
more robust against spurious in the in-
put. This OR is typically implemented
using the Maximun operator. ∧ in Rij is
used to define more sharply the conditions
to change. This AND is typically imple-
mented using the Minimum operator.

– Rules that constrain the signal time span.
Two additional linguistic labels are used
for this purpose:
Time_to_stayi: is the maximum time
that the signal is expected to remain in
state xi.
Time_to_changeij: is the minimum time
that the signal is expected to remain in
state xi before changing to state xj .
Therefore, adding the temporal condi-
tions:
Rii : IF Xi(t) ∨ (u = Ci) ∨ (di =
Tstayi

) THEN Xi(t+ 1)
Rij : IF Xi(t) ∧ (u = Cj) ∧ (di =
Tchangeij

) THEN Xj(t+ 1)
where di is the duration of the state xi.

• g is the output function Y [t] = g(U [t], X[t]).
The output variables are obtained as a sum-
mary of the values of the inputs while the sys-
tem remained in the considered state, e.g. us-
ing the average or the standard deviation (See
an example in the next section).

• X0 is the initial state.

Figure 3 shows the states diagram of a FFSM
used to recognize different states of activity of a per-
son. This FFSM is used to implement PMST AT ES

in the previous example where we present a GLMP
that describes the physical style of life of a person
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Figure 3: This FFSM is used to implement
PMST AT ES in the GLMP that describes the phys-
ical style of life of a person

2.3.1. Fuzzy Representation of Time

Although [40] firstly formalised the representation
of fuzzy time by means of intervals associated with
fuzzy sets, the most important work regarding the
formalisation of fuzzy time was carried out in [41],
where the basis for the representation of impreci-
sion and uncertainty in temporal knowledge within
the framework of the possibility theory were estab-
lished. Taking time points as primitives, basic con-
cepts are introduced, such as fuzzy instant and fuzzy
temporal interval, shaping the possible temporal
relations between these temporal entities through
fuzzy relations. With some variations, these con-
cepts and the way of representing them appear in
the majority of the works related to fuzzy temporal
knowledge representation. Other models [35] handle
Allen’s basic temporal relations [42] between tempo-
ral entities and are able to model expressions where
temporal relations are established between the oc-
currence of different events, such as in temperature
increased a few minutes after pressure decreased. In
[38] a model is presented introducing a nonlinear
perception of time, giving more precision, reliability
and certainty to the observations and actions closer
in time, by means of the fading of the fuzzy tem-
poral sets. In [39] a temporal proposition, assumed
to describe a situation valid for a given time period,
is split into two components: a non-temporal com-
ponent and a time-dependent component. In the
medical domain, [43] introduced a generic language
(Patient Case Report Language: PCRL) for patient
case reports, based in general medical temporal con-
cepts and focusing on the modelling of the concepts
expressed in natural language. The problem of tem-
porally relate time intervals is reduced to tempo-
rally relate time points (instants) since intervals are
fully characterized by the (fuzzy) instants they be-
gin and end at. The concept of quantification is used
to express information like: all the episodes in the
last 2 weeks when the headache lasted no more than
2 hours, and is extended to allow quantifier margins
(at least, at most, precisely...), making the quan-
tification less precise and more adapted to medical
descriptions.

In general, there are some aspects related to the
semantic richness of the temporal expressions used
by a human expert that are not satisfactorily cov-
ered with these models. An example is the concept
of persistence: when a condition on a variable must
be evaluated over a fuzzy temporal interval, it may
be required that the condition is fulfilled, to some
degree, for all the time points in the interval, or just
for any of them. Between both extremes there is a
range of intermediate situations (in most of the pre-
vious hour) not yet fully considered by the previous
models. In this regard, the proposal in [44], and
more extensively [47], presents formal proposals for
time quantification in a temporal expressions. In
particular, the Fuzzy Temporal Propositions model
in [47] also describes a temporal ontology and lan-
guage than permits the explicit modelling of relative
occurrences among events, fuzzy quantification and
a number of other operators of interest. Many of the
models for the elements in the ontology are compiled
or taken from other temporal knowledge models pre-
viously mentioned [41, 42], but also from other ar-
eas (quantification models [9, 48], Zadeh’s Exten-
sion Principle [50], Fuzzy Arithmetics, ...). All these
elements may be seen as a catalogue that provides
models that can be taken into consideration for the
definition of language specifications in LDD models
that explicitly manage temporal information.

2.3.2. Some Fuzzy temporal elements for LDD
specification

Temporal primitives

From the temporal model in [41, 45], the following
basic temporal primitives should be considered:

• Fuzzy temporal instant, described through a
possibility distribution whose support elements
represent mutually exclusive candidates for an
imprecise instant defined as a disjunctive set
(e.g. around eight o’clock).
• Fuzzy temporal duration, represented by
means of a possibility distribution on the set
of the integers that represent time units (e.g.
around six hours).
• Fuzzy temporal interval, which is a time period
defined by two of the following three elements:
an initial fuzzy instant, an ending fuzzy instant,
and the interval duration. It is a possibility
interval that represents the conjunctive fuzzy
set of all the time points possibly comprised
between the start and the end of the interval.
• Fuzzy temporal relations: all the basic tem-
poral relations (both qualitative and quantita-
tive [45]) can be considered (e.g. before, at the
end of, when, ...). In particular, Allen’s tempo-
ral interval relations [42], which have been ex-
tended in [46] to fuzzy intervals are well-known
models.
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Temporal constraints

Temporal constraints can be fuzzy instants or in-
tervals. Intervals can also act as a general temporal
context [43] or temporal window for an event. Ab-
solute temporal constraints related to a fixed tem-
poral entity (at 20:00 ), or to the current time point
(ten minutes ago), whereas relative temporal con-
straints depend on the occurrence time (imprecise)
point of other event/s (a little after an increase in
pressure, between 30 minutes and 2 hours after the
beginning of the irradiation). When the temporal
constraint is an interval, the previously mentioned
concept of persistence of an event within an inter-
val naturally arises, giving way to the use of tempo-
ral quantification of propositions and, therefore, to
fuzzy quantification models. The occurrence of an
event may happen at all the time points in the tem-
poral interval, at a single time point in the interval,
or be required in a partial way. Fuzzy quantifiers
allow to linguistically model these situations as: X
is A in Q of T, being X a variable, A a linguis-
tic value, Q a fuzzy quantifier and T a temporal
interval. In the example the temperature has been
high most of the time between 18h and 21h) we have
X=temperature, A=high, Q=most and T=previous
half an hour. As pointed out in previous sections,
fuzzy quantification has been very widely dealt with
in the literature from many research points of view
and a number of models have been proposed and
characterized in the fuzzy and linguistics literature
[48, 49, 25].

Fuzzy specification operators

A fuzzy specification operator selects a candidate
among several values, according to fuzzy non-
temporal or temporal criteria. Examples of this
type of operators are terms like first, last, maxi-
mum, minimum, like in the maximum of pressure
values in the last 30 minutes, the last value of high
temperatures or the minimum of the velocity val-
ues in the proximity of an obstacle. In the crisp
case, a specification operator simply selects the cor-
responding crisp value among the different candi-
dates: in the first example, it would take the great-
est of the pressure values in the last 30 minutes.
But in the fuzzy case the value selected from the
operator will not necessarily be a crisp and unique
value, but a possibility distribution. In this case,
Zadeh’s extension principle [9, 50] provides a well-
known sistematic tool form building fuzzy models
of operators starting from crisp definitions. Other
approaches based on α-cuts [49] or γ-cuts [48] have
also been considered. Analysis of the properties of
the extended models becomes here a crucial issue,
since it has been shown for very well-known cases
(e.g. fuzzy arithmetics, fuzzy quantifiers) that the
extended models do not always keep intuitive prop-
erties that hold in the crisp models the come from.

Fuzzy reduction operators

Reduction operators area applied on data within on
a temporal reference, to obtain a new single value
that somehow numerically summarizes the original
ones. Some examples aremean value or accumulated
value. In many application areas these operators are
modelled assuming a crisp definition. Nevertheless,
when the operator is applied on fuzzy values (e.g.
the mean of high temperatures), it is necessary again
to extend crisp definitions to the fuzzy case by using
any of the extension models previously indicated [9,
50].

3. Conclusions

Fuzzy Sets Theory offers a wide range of techniques
that are potentially useful in the challenge of ob-
taining linguistic descriptions of time series data,
among other topics, in relation to the problem of
knowledge representation which the construction of
the descriptions involves.

In this paper, we have shown that the represen-
tation of knowledge in such systems can be done
through more or less structured collections of proto-
forms, in which, in many cases, quantification plays
a fundamental role. Though the number of signifi-
cant proposal in the literature is remarkable and in-
creasing, there are many results in the field of fuzzy
quantification (fuzzy cardinality and entropy, prob-
ability of fuzzy events and fuzzy probabilities, ...)
which can play an important role in achieving more
powerful systems.

Among the more structured representations using
protoforms, the so called Granular Linguistic Model
of a Phenomenom is a remarkable approach, where
perceptions and inference mechanisms are mixed
to build a knowledge representation of problems of
some complexity.

Finally, we have pointed out that more attention
should be paid to the treatment of time and tem-
poral relations in knowledge representation models.
Research initiatives that focus on the representa-
tion of imprecision and uncertainty in the temporal
knowledge within the Theory of Possibility would
improve the variety of tools for linguistic descrip-
tion of data sets. Though the inclusion of time as
a principal variable in fuzzy propositions and rules
has received insufficient attention in the literature,
its solvent use should serve to address issues of com-
plexity and bring the description closer to the lan-
guage used by human users. Although many stud-
ies have emerged to complete initial works in the
literature, there are still many open challenges re-
garding temporal primitives, constraints and other
fuzzy operators.
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