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Abstract
Intermediate representations (IRs) are fundamental to classical and quantum com-
puting, bridging high-level quantum programming languages and the hardware-
specific instructions required for execution. This paper reviews the development of 
quantum IRs, focusing on their evolution and the need for abstraction layers that 
facilitate portability and optimization. Monolithic quantum IRs, such as QIR (Lubin-
ski et al. in Front Phys 10:940293, 2022. https://doi.org/10.3389/fphy.2022.940293), 
QSSA (Peduri et al. in Proceedings of the 31st ACM SIGPLAN international con-
ference on compiler construction. CC 2022. Association for Computing Machinery, 
New York, 2022), or Q-MLIR (McCaskey and Nguyen in Proceedings-2021 IEEE 
International Conference on Quantum Computing and Engineering, QCE, 2021), 
their effectiveness in handling abstractions, and their hybrid support between quan-
tum-classical operations are evaluated. However, a key limitation is their inability 
to address qubit locality, an essential feature for distributed quantum computing 
(DQC). To overcome this, InQuIR  (Nishio and Wakizaka in InQuIR: Intermedi-
ate Representation for Interconnected Quantum Computers, 2023. https://arxiv.org/
abs/2302.00267) was introduced as an IR specifically designed for distributed sys-
tems, providing explicit control over qubit locality and inter-node communication. 
While effective in managing qubit distribution, InQuIR’s dependence on manual 
manipulation of communication protocols increases complexity for developers. Net-
QIR (Vázquez-Pérez et al. in NetQIR: An Extension of QIR for Distributed Quan-
tum Computing, 2024. https://arxiv.org/abs/2408.03712), an extension of QIR for 
DQC, emerges as a solution to achieve the abstraction of quantum communications 
protocols. This review emphasizes the need for further advancements in IRs for dis-
tributed quantum systems, which will play a crucial role in the scalability and usa-
bility of future quantum networks.
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1  Introduction

The evolution of computing has consistently aimed to abstract hardware complexi-
ties to facilitate architecture-agnostic software development. A key milestone in 
classical computing was the introduction of compilers, which played a central role 
in translating high-level programming languages into hardware-specific instructions. 
Without them, every piece of software would have to be tailored to a specific hard-
ware platform, significantly slowing the development and adoption of new technolo-
gies. As computing systems became more sophisticated, so did the need for more 
flexible and efficient compilation processes [6–9].

However, compilers are some of the most complex programs ever developed, 
often rivaling operating systems in their intricacy. Their development and mainte-
nance require significant resources. To address this, the field of classical comput-
ing introduced the concept of intermediate representations (IR) or intermediate lan-
guages. These serve as a middle layer between the high-level languages (such as 
C++ or Python) and the low-level instructions specific to the hardware (such as x86 
or ARM instruction sets). The IR allows for a modular compilation process, sim-
plifying the creation of new compilers and facilitating the introduction of new lan-
guages and hardware architectures [10–12].

On the other hand, in recent decades, quantum computing has emerged as a 
groundbreaking field with the potential to revolutionize many areas of science and 
technology. The development of Shor’s algorithm, which promises an exponential 
speedup in factoring large numbers, shows the immense computational power that 
quantum systems could bring [13]. This was a direct challenge to classical cryptog-
raphy, which relies on the difficulty of prime factorization. Since then, the race to 
develop quantum computers has intensified, with the promise of solving problems 
currently intractable for classical computers [14–16].

As the field of quantum computing evolves, we are seeing the emergence of 
new languages, libraries, and frameworks designed to facilitate the programming 
of quantum hardware and simulators. Like classical computing, quantum comput-
ing has to follow a path of abstraction and simplification, building on decades of 
knowledge of classical compiler design. A key area is the proper development of 
quantum compilers and the integration of intermediate representations for quantum 
languages, easing the path toward more accessible quantum programming [17–20].

The need for quantum intermediate representations arises from what has been 
learned in classical computing, where abstraction has played a critical role in reduc-
ing the complexity of compiler development and, by extension, has enabled the pro-
liferation of new languages. Intermediate quantum representations also serve as a 
bridge between the frontend (high-level quantum languages) and the backend (quan-
tum hardware implementations) and include quantum-specific instructions such as 
quantum gates, qubit registers, and entanglement operations. These abstractions are 
essential for the future of quantum computing, as they will enable the development 
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of more efficient compilers, foster new quantum programming languages, and ulti-
mately make quantum computing more accessible to end users [1, 21].

The main objective of this work is to review the current state of the art related to 
existing IRs for quantum computing. In order to carry out this review in the most 
objective and informed manner possible, this paper has the following objectives:

•	 To review the state of the art of the well-defined characteristics of classical com-
puting IRs.

•	 To establish a classification of the different existing IRs for quantum computing.
•	 To define a qualitative comparison of the different representations for quantum 

computing.
•	 Further investigate existing representations for distributed quantum computing.

This paper is structured starting with Sect. 2 where we discuss the background or 
related work of this part of the intermediate representations in the compilation pro-
cess. Section 3 then deals with the characteristics and subsequent classification of 
quantum IRs. Section  4 discusses the different representations for the distributed 
quantum distribution. Finally, Sect.  5 discusses the conclusions and future work 
drawn through this work.

2 � Background

In the early days of computing, programs were written in assembly language, which 
is highly specific to the underlying hardware architecture. This close coupling 
between software and hardware severely limited code reusability across different 
machines. Assembly language, although highly efficient for specific hardware, hin-
dered software portability and presented a problem for developers, who had to man-
age hardware-specific instructions manually. As a result, the need for higher levels 
of abstraction in programming languages became evident. Higher-level languages, 
such as Fortran, COBOL, and later C, emerged to abstract the complexities of hard-
ware-specific details, making programming more efficient and portable [22].

One of the critical innovations that facilitated this shift was the development 
of compilers. A compiler translates high-level code into machine code, effectively 
decoupling the programming language from the hardware. This abstraction made it 
possible to write software once and run it on multiple architectures without modi-
fication, fostering code reusability. However, developing a compiler for every pro-
gramming language and hardware architecture combination was a monumental task. 
This led to introducing intermediate representations (IR), which bridge the high-
level source code and the low-level machine instructions. An IR allows a single 
high-level language to be translated into an intermediate form, which can then be 
compiled into machine code for different architectures. This reduced the complex-
ity of compiler design, as developers only needed to target the IR rather than every 
possible hardware platform directly. The IR allows for a modular compilation pro-
cess. Figure 1 shows this advantage incorporating an IR into a simple compilation 
scheme, where the number of compilers required scales from a quadratic number 
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of n ⋅ m (Fig. 1a) to a more manageable linear order of n + m compilers (Fig. 1b), 
where n is the number of high-level languages and m the number of hardware 
platforms.

One of the most influential developments in intermediate representations was cre-
ating the low-level virtual machine (LLVM) framework [23], initially designed for 
C and C++ programs. LLVM introduced a flexible, retargetable IR that could be 
used across multiple hardware platforms, making it a foundational tool in modern 
compiler design. LLVM abstracts code into a platform-independent form that can 
later be optimized and translated into architecture-specific machine code. Its modu-
lar design has allowed LLVM to support a wide range of languages beyond C++, 
including Swift, Rust, and Julia, making it a cornerstone in the development of mod-
ern compilers [24–26].

However, as computing systems have evolved, the need for more advanced IRs 
has grown, particularly with the rise of heterogeneous systems. These systems com-
bine different types of processors, such as central processing units (CPUs), graph-
ics processing units (GPUs), and field-programmable gate arrays (FPGAs), each 
of which excels at different types of computations  [27, 28]. In GPUs and FPGAs, 
where tasks are highly parallelized, traditional IRs had to be adapted for efficient 
task distribution and execution. OpenCL, CUDA, and other parallel computing plat-
forms introduced specialized IRs to manage the complexity of these devices, ensur-
ing that high-level code could be effectively translated into machine-level instruc-
tions capable of running on these specialized architectures.

The multi-level intermediate representation (MLIR)  [29] is a significant exten-
sion of LLVM, designed to address the complexity of heterogeneous architectures 
by supporting multiple levels of abstraction. MLIR enables high-level optimizations 
for domains like machine learning while still providing low-level hardware-specific 
optimizations. This multi-level approach facilitates parallelism, concurrency, and 
communication across different devices, making it ideal for handling the needs of 
heterogeneous systems. This is achieved by implementing the concept of dialects. 
Each dialect is a specialized language with its own vocabulary—operations and 

Fig. 1   Comparison between integrating IRs into a simple compilation scheme
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types—tailored to a specific subject, for instance, as already mentioned, machine 
learning. Just as you would choose a language that best suits a topic, in MLIR, you 
choose dialects that best match the domain you are working in.

In addition to MLIR, standard portable intermediate representation (SPIR) [30] 
is another vital IR in the domain of heterogeneous systems. SPIR was developed for 
the OpenCL framework to provide a platform-neutral IR that enables code portabil-
ity across different hardware platforms, including CPUs, GPUs, and FPGAs. SPIR 
simplifies the compilation of OpenCL kernels into optimized machine code, ensur-
ing performance and compatibility across diverse architectures.

NVVM-IR (NVIDIA virtual machine intermediate representation) plays a similar 
role for NVIDIA hardware systems. Based on LLVM, NVVM-IR supports CUDA, 
NVIDIA’s parallel computing platform. It abstracts CUDA code into a form that can 
be optimized and compiled for efficient execution on NVIDIA GPUs, thus improv-
ing performance and enabling parallelization on highly specialized hardware.

With the advent of quantum computing, the complexity of hardware has reached 
an entirely new level, requiring an entirely new class of intermediate representations. 
Quantum computing platforms, unlike classical ones, are based on principles such 
as superposition and entanglement, which require fundamentally different instruc-
tion sets. Quantum software frameworks such as Qiskit and Cirq were developed to 
allow high-level quantum programming. These frameworks generate code that can 
run on quantum hardware, such as superconducting qubits, trapped ions, and pho-
tonic systems. However, each of these hardware platforms has unique characteris-
tics, making the development of a unified quantum IR essential for the long-term 
scalability of quantum programming.

3 � Quantum intermediate representations: characteristics 
and classification

In this section, the characteristics that a standard IR should fulfill are defined by 
compiling information from different citations in the literature. In the following, the 
quantum IRs developed in the literature are classified and detailed, and a qualita-
tive comparison of different characteristics important for quantum software is made. 
Finally, an example code for a quantum teleportation circuit is shown.

3.1 � Characteristics of an intermediate representation

An intermediate representation (IR) has to meet specific characteristics that distin-
guish it from a high-level or machine code language. A fundamental question has to 
be asked: Why is C language—or any other high-level language— not an intermedi-
ate representation?

Different characteristics can be analyzed to define an IR. The most important one 
we should focus on is that an IR is created by and for machines. Therefore, it does 
not need to be fully readable by the human encoder; in most situations, the IR code 
is encoded in binary.
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First, an IR has to be abstract enough to represent a set of high-level languages 
(HLLs) rather than just one. This implies that it is at a different level from HLLs 
and machine codes, so there is a process of compilation, not transpilation.

On the other hand, the compilation process to the IR must keep the infor-
mation from the compiler’s previous analysis phase. For example, in quantum 
computing, it would be a mistake to transpose high-level gates to a set of elemen-
tary gates, essentially because hardware particularities such as the supported gate 
set itself or the error propagated by each gate are not known.

Some of the characteristics of an IR that can be taken into account are the 
following [31]:

•	 Comprehensive representation: The IR must encapsulate all necessary con-
structs, abstractions, and concepts from programming languages to ensure 
precise execution across diverse computing platforms. A key measure of this 
capability is how easily the IR can be transformed into and from widely used 
IRs across multiple programming languages.

•	 Device independence: The IR should remain neutral to specific hardware fea-
tures. Its execution model should reflect the programming language’s seman-
tics rather than the underlying hardware, allowing it to be compiled across 
various devices. This neutrality must be achieved by carefully balancing the 
abstraction level.

•	 Direct programmability: Like assembly languages, IRs offer programmers 
the ability to fine-tune their code manually. This is beneficial not only for 
optimization purposes but also for supporting compiler developers during the 
construction process. Typically, higher-level IRs make manual programming 
more straightforward.

•	 Forward compatibility: As programming languages evolve, the IR must be 
flexible enough to integrate new paradigms without sacrificing backward com-
patibility. This adaptability is crucial to ensure the IR remains relevant and 
functional as programming practices change over time.

From the compiler design perspective, the following three attributes are critical 
for an IR’s effectiveness as a program representation tool during the compilation 
process:

•	 Simplicity in design: The ideal IR should limit the variety of its constructs 
while still capturing all computations expressible by source languages. This 
simplicity facilitates the canonicalization process, where source code is stand-
ardized before optimization, thereby reducing code variation and easing the 
compiler’s workload.

•	 Retention of program details: The original source code contains the richest 
information about the program. If critical details are lost during translation, 
optimization can suffer. Therefore, the IR should include mechanisms to retain 
important high-level details, such as type information and pointer aliasing, 
which are essential for effective optimization.
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•	 Inclusion of analytical data: Successful program transformations often rely on 
additional data, such as information on data dependencies and aliasing patterns. 
Embedding this analytical data in the IR allows it to be used by different parts 
of the compiler. However, this must be managed carefully to avoid the risk of 
invalidation by later transformations. Balancing the inclusion of analytical infor-
mation with the complexity it adds to the IR is a crucial design consideration.

3.2 � Intermediate representations for quantum computing

In the compilation process, IR serves as a crucial intermediary between high-level 
programs and machine-executable instructions, as has already been shown. This 
representation improves translation efficiency and allows for optimization. When it 
comes to quantum computing, specialized IR becomes essential to take full advan-
tage of the intrinsic characteristics of quantum computing. A variety of IR languages 
have been developed to bridge the gap between high-level quantum programming 
languages and low-level quantum machine code. In this subsection, we will attempt 
to address the large number of IR languages proposed in the literature. Table  1 
shows the classification of the IR of the literature in the following categories:

•	 Language extensions: IRs that extend an intermediate representation of classic 
computation to add components of quantum features.

•	 Standalone languages: IRs that have been designed for quantum computing 
without having any basis in another classic IR.

•	 IR framework: An IR that is integrated within a complete compilation scheme 
or framework and has been created specifically for that scheme.

The initial intermediate language to be examined is quantum intermediate 
representation (QIR)  [1]. GIR, developed by the GIR Alliance, which counts 

Table 1   Classification of 
existing IRs in the literature

(a) Language extensions

Name Language
Q-MLIR [3] MLIR [29]
QIR [1] LLVM [23]
QSSA [2] SSA [32]
QIRO [33] MLIR and SSA
(b) Standalone
SQIR [34]
(c) IR Framework
Name Framework
XACC IR [19] XACC​
QBIR [35] Yao
t|ket⟩ IR [36] t|ket⟩
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Microsoft among its members, should be distinguished from the broader concept 
of intermediate representation (qIR) previously outlined. It functions as a univer-
sal interface between quantum programming languages or frameworks and vari-
ous quantum computing platforms. Moreover, it delineates a series of protocols 
for representing quantum programs in a language and hardware-neutral format 
within the LLVM IR [23]. Concerning the translation from high-level languages, 
GIR remains non-specific to any particular quantum programming framework, 
thereby facilitating its adoption for articulating quantum programs. Conversely, 
regarding the translation of IR to machine-specific instructions, GIR is designed 
to be hardware-independent, abstaining from prescribing a specific quantum 
instruction or gate set and instead deferring to the preferences of the target com-
putation environment.

Moving on to other quantum IRs, Q-MLIR, an extension of quantum comput-
ing to the IR multi-level intermediate representation (MLIR) described in Sect. 2, 
is introduced in  [3], highlighting the potential of this dialect to conform to the 
GIR standards recently proposed by Microsoft. This facilitates a shared optimiza-
tion and execution generation framework across multiple source languages.

Furthermore, additional quantum computing oriented extensions of MLIR, 
such as quantum intermediate representation for optimization (QIRO) 
detailed in  [33], are noteworthy. The QIRO framework is tailored for quantum-
classical co-optimization and embeds data flow directly within the IR, enabling a 
range of optimizations through data flow analysis. It comprises two dialects: one 
for input and another for optimization. In contrast, Q-MLIR focuses on defining a 
quantum IR by extending MLIR but does not explore or implement optimizations 
that leverage MLIR’s capabilities for quantum program improvement.

Moreover, IRs can adhere to specific properties or constraints to facilitate opti-
mization and verification processes. One such property, extensively explored in 
classical compilation literature, is the static single assignment (SSA) form  [32, 
37, 38]. An SSA form mandates that each variable in the source code is assigned 
uniquely in the intermediate representation. This implies that additional variables 
must be introduced if a variable receives assignments at multiple points in the 
source code to denote the distinct versions required.

Figure 2 exemplifies the LLVM IR translation of C++ source code where the 
variable a undergoes reassignment. In an SSA compliant code, it is imperative to 
generate a new variable (%3 as shown in Fig. 2c) to signify the updated version, 
thereby preserving the original variable (%1 as depicted in Fig. 2b).

Fig. 2   Comparison between an LLVM IR code with and without SSA
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The usefulness of this property in verification and optimization, together with the 
extensive study in classic compilation, allows the use of this approach in quantum 
compilation as a suitable and perfectly tested basis. The IR previously discussed, 
QIRO, uses this SSA property for the co-optimization of quantum codes.

On the other hand, the work presented in [2] as quantum static single assign-
ment (QSSA) performs an extension of the SSA properties to generate a quantum 
IR that performs a special emphasis on the verification in the compile-time of the 
physical constraints of quantum nature, such as the no-cloning theorem.

Figure 3 shows a graphical representation of the various quantum IRs that extend 
a classic representation such as LLVM. It is shown in a set format to characterize 
those representations that extend more than one language or feature.

Outside the classic IR extensions such as LLVM or MLIR, there are also stan-
dalone IR languages like small quantum intermediate representation (SQIR), 
proposed in [34]. Its primary purpose is to serve as an intermediate language to ver-
ify the correctness of the quantum circuit once optimizations have been applied to it. 
This IR is built on top of the mathematical definition language Coq.

In addition, some frameworks implement the complete compilation scheme or a 
high-level language that develops its specific IR, such as eXtreme-scale Accelera-
tor programming framework (XACC) [19] that implement the compilation scheme 
in full, based on a three-level scheme: a frontend that maps the quantum code to its 
own IR; a middle-end related to the transformation and optimization of the IR; and, 
finally, a backend that processes the IR to the specific machine code. Another exam-
ple is the quantum block intermediate representation (QBIR) [35], which is used in 
the high-level quantum language Yao.jl. The main novelty of QBIR is that it allows 
a quantum circuit to be specified using “blocks” of nested tree operations.

3.3 � Comparison of quantum IRs

The purpose of this section is to provide a comparative analysis of the different IRs 
discussed in this work. It is important to emphasize that this is a qualitative com-
parison to maintain objectivity, as a quantitative study is not viable due to the lack 
of standardized benchmarks and the different levels of maturity of the different IRs. 
To achieve this, a set of key properties has been established to evaluate how each 
IR performs in different contexts. This comparison aims not to declare one IR supe-
rior to another but to provide insights that will help readers decide which IR is best 
suited to their particular implementation priorities. This framework allows readers to 

Fig. 3   Venn diagram with the 
different quantum IRs shown 
in the “Language extensions” 
section. Each set represents a 
language or feature of classic 
computing, and each element is 
a quantum IR
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make informed decisions based on their specific needs, whether hardware compat-
ibility, optimization efficiency, or support for hybrid quantum-classical operations.

Table 2 presents a qualitative comparison of seven quantum IRs: QIR, SQIR, 
QSSA, QIRO, XACC, QBIR, and Q-MLIR, based on the next essential features 
for quantum software development: 

1.	 Hybrid quantum-classical operations: Quantum programs often combine clas-
sical and quantum computations, especially for hybrid algorithms like the vari-
ational quantum eigensolver (VQE). An IR that supports hybrid operations allows 
efficient execution of both quantum instructions and classical control logic (e.g., 
conditionals, loops).

2.	 Hardware agnosticism: An IR hardware agnosticism determines how well it 
abstracts away hardware-specific details, making code portable across various 
quantum architectures (e.g., superconducting qubits, trapped ions, photonic sys-
tems).

3.	 Optimizations and compiler passes: Quantum computations require significant 
optimizations (e.g., gate reduction, circuit simplifications) to be executable on 
quantum hardware, where resource constraints like qubit coherence times and 
gate fidelity are critical.

4.	 Expressiveness: refers to how flexibly the IR can describe quantum programs, 
supporting modularity, advanced quantum gates, and complex quantum opera-
tions.

5.	 Simulator compatibility: The ability to simulate quantum circuits before execut-
ing them on actual hardware is a crucial step in quantum program development.

6.	 Community support: IRs community support is critical for its development 
and adoption. A strong ecosystem ensures access to tools, libraries, and active 
collaboration.

7.	 Ease of use and accessibility: evaluates how approachable the IR is for devel-
opers, particularly those with limited experience in quantum computing. This 
includes factors such as comprehensive documentation, availability of debugging 
tools, seamless integration with classical programming languages, and the pres-
ence of user-friendly graphical interfaces.

In the context of Table  2, qualifiers such as high or medium are used to pro-
vide a qualitative assessment of how well an IR matches the characteristic being 
assessed. For example, in the case of expressiveness, most IRs are rated high 
due to their ability to represent a wide range of quantum operations. However, 
Q-MLIR is rated very high because its multi-level structure allows for the defini-
tion of new instructions, providing greater flexibility and extensibility compared 
to other IRs. With regard to the simulator compatibility section, the medium qual-
ifier is assigned to those IRs that cannot be directly applied by existing simulators.

In the case of ease of use, to obtain a “High” it is necessary that IR information 
is published as well as execution and debugging tools in a public code repository. 
In the case of “Medium” these tools are out of date, while “Low” means that only 
the publication paper has been found.
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Each quantum IR brings unique strengths to quantum software development. QIR 
and Q-MLIR perform particularly well in handling hybrid quantum-classical opera-
tions, optimizations, and hardware agnosticism, which makes them an excellent fit 
for scalable quantum computing applications. SQIR excels in formal verification, 
while XACC offers solid support across the software stack and full compilation. 
QSSA and QIRO emphasize optimizations and error correction, which are funda-
mental to long-term fault-tolerant quantum computing.

By comparing these features, developers can choose the most appropriate IR 
based on their specific needs, such as hardware compatibility, optimization, and 
expressiveness.

3.4 � Example of code: teleportation circuit

In this subsection, two IRs that extend LLVM, QIR, and Q-MLIR will be compared 
to analyze the differences between the two models. We aim to demonstrate how dif-
ferent IRs work when implementing a complex circuit, such as quantum telepor-
tation, where several critical aspects are involved, such as quantum gates between 
qubit pairs, intermediate measurement, or physically separated qubits.

The circuit to be implemented is the one shown in Fig. 4, corresponding to the 
well-known teleportation circuit between two physically separated qubits. The codes 
generated for this circuit are shown in Fig. 5a for QIR and Fig. 5b for Q-MLIR.

The QIR code for the teleportation circuit is very similar to the LLVM IR for-
mat. It focuses on low-level quantum operations and directly invokes quantum gates 
like Hadamard and CNOT with explicit quantum instruction calls. Measurements 
are performed with conditions applied to control subsequent gates (X and Z correc-
tions), reflecting the hybrid nature of QIR, which integrates quantum operations with 
classical control through conditional branches. This low-level representation ensures 
detailed control and optimization but requires more explicit operations management.

In contrast, the Q-MLIR code operates at a higher level of abstraction, using 
MLIR’s modular structure. While the circuit structure is similar—applying Had-
amard and CNOT gates followed by measurements—the code is more declara-
tive. The quantum gates and measurements are invoked in a more abstract 
manner, emphasizing flexibility and modularity rather than fine-tuned control. 
Q-MLIR simplifies the representation, making it easier to map to different 

Fig. 4   Circuit for teleporting a quantum state ��⟩ between two physically separated qubits (from Alice to 
Bob)
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hardware backends or domain-specific optimizations while maintaining a clearer 
structure for higher-level quantum algorithms.

These examples show that both QIR and Q-MLIR effectively handle inter-
mediate measurements (hybrid quantum-classical operations) and quantum gates 
between qubit pairs. However, the major unresolved challenge lies in commu-
nication between physically separated qubits. The current IRs do not specify 
whether qubits are located on different nodes, a crucial factor in distributed 
quantum computing (DQC). Without addressing this issue, managing the nec-
essary quantum communication and synchronization between distant quantum 
processors becomes impossible.

To address this limitation, the following section will explore various interme-
diate languages specifically designed for DQC, which incorporate mechanisms 
to handle physically separated qubits and quantum communication.

Fig. 5   Implementation of a teleportation circuit in two quantum intermediate representations (QIR and 
Q-MLIR)
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4 � IRs for distributed quantum computing (DQC)

In this section, we describe IRs for programming distributed quantum computers, 
trying to overcome the shortcoming of all quantum IRs presented in the previous 
section: the inability to define physically separated qubits. In DQC, where quan-
tum systems are distributed over multiple physical locations, it becomes crucial to 
specify the locality of each qubit and to manage the communication between qubits 
located in different nodes.

In distributed quantum systems, operations like quantum teleportation and entan-
glement swapping require an IR that can effectively model both the quantum gates 
and the communication between distant qubits  [39]. In the context of DQC, two 
intermediate representations (IRs) have emerged to address the challenges posed by 
qubit locality and inter-node communication: InQuIR [4] and NetQIR [5]. These IRs 
aim to overcome the limitations of monolithic quantum systems discussed in the 
previous section, where qubits are assumed to exist within a single physical location.

InQuIR (intermediate representation for interconnected quantum computers) 
introduces a mechanism for explicitly specifying the location of qubits across dis-
tributed nodes. Unlike conventional IRs, InQuIR enables fine-grained control of 
communication between quantum processors by allowing developers to manu-
ally manage entanglement generation and classical communication protocols. This 
explicit control is achieved through primitives such as:

•	 genEnt() for entanglement generation between nodes,
•	 send() and recv() for classical communication of measurement results.

While InQuIR provides a significant step toward enabling distributed quantum pro-
grams, its reliance on manual management increases programming complexity and 
risks introducing errors, especially as the number of nodes grows.

As an illustrative example, consider the teleporting circuit, where the goal is 
to transfer the state of a qubit from one node to another. In a distributed quantum 
system, this involves entangling two qubits at different locations and using clas-
sical communication to transfer the qubit’s state. The InQuIR code is shown in 
Fig. 6, where it can be seen that there is a different code for each qubit node (Alice 

Fig. 6   InQuIR code to implement the teleport circuit in the different nodes
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or Bob). Therefore, this IR allows to specify the physical separation of a register 
of qubits and, additionally, to program them in a different way depending on this 
characteristic.

InQuIR provides important tools for managing qubit locality and inter-node com-
munication in distributed quantum computing. However, its limitations arise from 
its dependence on manual control over communication processes, which restricts its 
ability to fully abstract the complexities inherent in quantum networking. In particu-
lar, InQuIR’s reliance on explicit entanglement generation (genEnt) and manual 
control over the transmission of classical data (send and recv) requires developers 
to work directly with the low-level details of the quantum communication process. 
This lack of abstraction contrasts strongly with the practice in classical distributed 
computing, where frameworks like MPI effectively hide the details of the underlying 
communication protocols.

The abstraction of the network layer in traditional distributed systems provides 
flexibility to work with different network architectures and protocols without expos-
ing their complexity to the user, which allows developers to focus on high-level 
logic without managing the intricacies of the interconnection network. However, 
InQuIR’s dependence on explicitly managing communication through teleportation 
or entanglement protocols requires developers to handle the complexities of quan-
tum networking, which can increase the risk of errors and limit scalability. As quan-
tum networks grow in complexity, with more nodes and greater distances between 
them, this approach becomes less feasible and more cumbersome. The need for a 
more abstract and flexible system becomes evident, one that can manage communi-
cation efficiently and transparently.

To address these issues, NetQIR  [5] emerges as an extension of GIR  [1] and 
extends it to support distributed quantum systems. NetQIR addresses the limitations 
of InQuIR by introducing higher-level abstractions that automate the management of 
quantum communication. Key features include:

•	 qsend() for transmitting qubits between nodes,
•	 expose() for making qubits accessible to other nodes.

These instructions abstract the communication process, allowing the system to auto-
matically manage the complexities of quantum entanglement, teleportation, and 
classical communication. This approach mirrors the abstraction seen in classical 
distributed computing frameworks, where message-passing or data synchronization 
details are hidden from the user. By integrating such abstraction, NetQIR not only 
simplifies the development process but also increases the flexibility and scalability 
of distributed quantum systems.

Figure 7 shows the same teleport circuit discussed throughout this article, high-
lighting the reduction in code complexity achieved by abstracting the communica-
tion protocol. The implementation becomes more agile and efficient by delegating 
these low-level details to the backend, which has access to more specific information 
about the connecting network and the hardware involved.

A significant advantage of NetQIR is that, by extending QIR, it inherits a strong 
foundation from the QIR framework, which itself is built on LLVM. This allows 
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NetQIR to leverage the extensive optimization and tooling infrastructure developed 
for QIR and LLVM, including compiler passes, simulation tools, and debugging 
environments. As a result, developers can utilize high-level abstractions for distrib-
uted quantum operations and benefit from the robust ecosystem of tools available in 
the LLVM framework. On the other hand, one of the main disadvantages of NetQIR 
is that it is currently still in a work-in-progress phase. While the IR has been defined 
conceptually, there is a significant gap in the availability of practical tools and infra-
structure for working with it. Unlike established quantum IRs such as QIR, which 
benefit from a mature ecosystem of compilers, optimizers, and simulators, NetQIR 
lacks concrete implementations and tools at this stage. As a result, developers and 
researchers are not yet able to fully utilize NetQIR in real-world distributed quantum 
systems.

In summary, Table  3 compares the characteristics discussed in this section. 
Both InQuIR and NetQIR incorporate instructions for quantum communication—
InQuIR with genEnt and send, and NetQIR with qsend. However, InQuIR lacks 
abstraction from the network layer and communication protocols. By relying on the 

Fig. 7   NetQIR code for the state teleportation between Alice and Bob

Table 3   Comparison between 
the IRs for distributed quantum 
computing analyzed

Intermediate 
representation

Instructions for 
quantum comm.

Abstraction of 
network layer

Abstraction 
of protocols

InQuIR ✓ ✗ ✗
NetQIR ✓ ✓ ✓
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genEnt() function, developers are required to implement their own teledata or tel-
egate protocols, with no built-in consideration for network connectivity or abstrac-
tion from the underlying communication layer.

5 � Conclusions

This work explored the design, evaluation, and limitations of intermediate repre-
sentations (IRs) for monolithic and distributed quantum computing. To develop an 
effective IR, certain core characteristics must be defined, such as hardware agnos-
ticism, optimization capabilities, modularity, and the ability to handle quantum-
classical hybrid operations. These features ensure that an IR can bridge the gap 
between high-level quantum programming languages and the hardware, ensuring 
efficient performance and adaptability across various quantum architectures. This 
paper began by reviewing quantum IRs designed for monolithic quantum systems, 
followed by a more in-depth discussion of the challenges associated with IRs for 
distributed quantum computing.

The study of monolithic quantum computing focused on IRs like QIR, Q-MLIR, 
SQIR, or QSSA, which are primarily designed for quantum processors located in a 
single physical location. These IRs support features such as gate-level abstractions, 
hardware-agnostic instruction sets, and optimizations targeting performance across 
various quantum platforms. They are well-suited for tasks that do not involve inter-
node communication or distributed architectures. However, they still face challenges 
in scaling with increasing qubit counts and handling the specificities of different 
quantum technologies.

The evolution of quantum IRs reflects the need for such tools to facilitate the 
development of new compilers and a complete quantum software stack. This work 
highlights the current limitations of quantum IRs, particularly the lack of support for 
managing qubit locality in systems where quantum processors are distributed across 
multiple physical locations. Therefore, IRs for DQC, such as InQuIR or NetQIR, 
have emerged in the literature.

InQuIR takes an important step by allowing programmers to define qubit locality 
and manage communication explicitly, but this approach has significant drawbacks. 
Namely, it requires developers to handle low-level communication protocols (e.g., 
genEnt, send, recv) manually, adding to the complexity and potential for error. 
In contrast, NetQIR introduces a higher level of abstraction, where instructions like 
qsend and expose delegate the details of quantum communication to the back-
end. This allows for a more flexible and scalable programming model, similar to 
how classical distributed systems abstract network protocols through frameworks 
like MPI.

The key strength of NetQIR is its foundation in QIR, which is itself built on 
LLVM. This allows it to take advantage of LLVM’s well-established ecosystem of 
optimization tools, compilers, and simulators. This strong base ensures that NetQIR 
not only simplifies the programming model for distributed quantum computing but 
also benefits from powerful optimizations and debugging capabilities developed for 
classical computing.
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In summary, while InQuIR provides an initial solution for managing distributed 
qubit locality and communication, its explicit handling of communication protocols 
limits its scalability. NetQIR, as an extension of QIR, offers a more abstract, scal-
able solution for distributed quantum systems. By integrating high-level instructions 
that hide the complexity of quantum communication, NetQIR provides a pathway to 
more efficient and manageable distributed quantum computing frameworks. How-
ever, it is important to note that NetQIR remains in a work-in-progress phase, with 
the intermediate representation defined but without practical tools available yet for 
real-world implementations. Further development is required to fully realize its 
potential in distributed quantum systems.

Finally, the development of IRs is essential to bridge the gap between high-level 
quantum programming languages and diverse quantum hardware. A standardized IR 
would ensure portability, allowing quantum programs to run seamlessly across dif-
ferent platforms, while enabling critical optimizations such as gate minimization and 
error mitigation. It would also facilitate the integration of hybrid quantum-classical 
workflows and promote a unified ecosystem of tools such as simulators, compilers, 
and debuggers.

Regarding future prospects, a common IR will be key to achieving scalable DQC 
by addressing the challenges of qubit locality and communication. Standardization 
efforts will need to balance hardware abstraction and performance. By mirroring the 
success of classical IRs such as LLVM, a well-defined quantum IR will accelerate 
the adoption and development of quantum technologies, paving the way for practi-
cal and efficient quantum systems. It is crucially important to have the necessary 
compilation tools and optimal IR for when quantum computing moves beyond gate 
specification codes to a high-level programming architecture such as currently exists 
in classical computing.
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