
Vol.:(0123456789)

The Journal of Supercomputing (2025) 81:418
https://doi.org/10.1007/s11227-024-06892-2

Review of intermediate representations for quantum
computing

F. Javier Cardama1 · Jorge Vázquez‑Pérez1 · César Piñeiro1,2 · Juan C. Pichel1,2 ·
Tomás F. Pena1,2 · Andrés Gómez3

Accepted: 23 December 2024
© The Author(s) 2025

Abstract
Intermediate representations (IRs) are fundamental to classical and quantum com-
puting, bridging high-level quantum programming languages and the hardware-
specific instructions required for execution. This paper reviews the development of
quantum IRs, focusing on their evolution and the need for abstraction layers that
facilitate portability and optimization. Monolithic quantum IRs, such as QIR (Lubin-
ski et al. in Front Phys 10:940293, 2022. https://doi.org/10.3389/fphy.2022.940293),
QSSA (Peduri et al. in Proceedings of the 31st ACM SIGPLAN international con-
ference on compiler construction. CC 2022. Association for Computing Machinery,
New York, 2022), or Q-MLIR (McCaskey and Nguyen in Proceedings-2021 IEEE
International Conference on Quantum Computing and Engineering, QCE, 2021),
their effectiveness in handling abstractions, and their hybrid support between quan-
tum-classical operations are evaluated. However, a key limitation is their inability
to address qubit locality, an essential feature for distributed quantum computing
(DQC). To overcome this, InQuIR (Nishio and Wakizaka in InQuIR: Intermedi-
ate Representation for Interconnected Quantum Computers, 2023. https://arxiv.org/
abs/2302.00267) was introduced as an IR specifically designed for distributed sys-
tems, providing explicit control over qubit locality and inter-node communication.
While effective in managing qubit distribution, InQuIR’s dependence on manual
manipulation of communication protocols increases complexity for developers. Net-
QIR (Vázquez-Pérez et al. in NetQIR: An Extension of QIR for Distributed Quan-
tum Computing, 2024. https://arxiv.org/abs/2408.03712), an extension of QIR for
DQC, emerges as a solution to achieve the abstraction of quantum communications
protocols. This review emphasizes the need for further advancements in IRs for dis-
tributed quantum systems, which will play a crucial role in the scalability and usa-
bility of future quantum networks.

F. Javier Cardama, Jorge Vázquez-Pérez, César Piñeiro, Juan C. Pichel, Tomás F. Pena and Andrés
Gómez these authors contributed equally to this work.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-06892-2&domain=pdf

	 F. J. Cardama et al. 418   Page 2 of 21

Keywords  Intermediate representation · Quantum compiling · Distributed quantum
computing · Compilers

1  Introduction

The evolution of computing has consistently aimed to abstract hardware complexi-
ties to facilitate architecture-agnostic software development. A key milestone in
classical computing was the introduction of compilers, which played a central role
in translating high-level programming languages into hardware-specific instructions.
Without them, every piece of software would have to be tailored to a specific hard-
ware platform, significantly slowing the development and adoption of new technolo-
gies. As computing systems became more sophisticated, so did the need for more
flexible and efficient compilation processes [6–9].

However, compilers are some of the most complex programs ever developed,
often rivaling operating systems in their intricacy. Their development and mainte-
nance require significant resources. To address this, the field of classical comput-
ing introduced the concept of intermediate representations (IR) or intermediate lan-
guages. These serve as a middle layer between the high-level languages (such as
C++ or Python) and the low-level instructions specific to the hardware (such as x86
or ARM instruction sets). The IR allows for a modular compilation process, sim-
plifying the creation of new compilers and facilitating the introduction of new lan-
guages and hardware architectures [10–12].

On the other hand, in recent decades, quantum computing has emerged as a
groundbreaking field with the potential to revolutionize many areas of science and
technology. The development of Shor’s algorithm, which promises an exponential
speedup in factoring large numbers, shows the immense computational power that
quantum systems could bring [13]. This was a direct challenge to classical cryptog-
raphy, which relies on the difficulty of prime factorization. Since then, the race to
develop quantum computers has intensified, with the promise of solving problems
currently intractable for classical computers [14–16].

As the field of quantum computing evolves, we are seeing the emergence of
new languages, libraries, and frameworks designed to facilitate the programming
of quantum hardware and simulators. Like classical computing, quantum comput-
ing has to follow a path of abstraction and simplification, building on decades of
knowledge of classical compiler design. A key area is the proper development of
quantum compilers and the integration of intermediate representations for quantum
languages, easing the path toward more accessible quantum programming [17–20].

The need for quantum intermediate representations arises from what has been
learned in classical computing, where abstraction has played a critical role in reduc-
ing the complexity of compiler development and, by extension, has enabled the pro-
liferation of new languages. Intermediate quantum representations also serve as a
bridge between the frontend (high-level quantum languages) and the backend (quan-
tum hardware implementations) and include quantum-specific instructions such as
quantum gates, qubit registers, and entanglement operations. These abstractions are
essential for the future of quantum computing, as they will enable the development

Review of intermediate representations for quantum computing﻿	 Page 3 of 21  418

of more efficient compilers, foster new quantum programming languages, and ulti-
mately make quantum computing more accessible to end users [1, 21].

The main objective of this work is to review the current state of the art related to
existing IRs for quantum computing. In order to carry out this review in the most
objective and informed manner possible, this paper has the following objectives:

•	 To review the state of the art of the well-defined characteristics of classical com-
puting IRs.

•	 To establish a classification of the different existing IRs for quantum computing.
•	 To define a qualitative comparison of the different representations for quantum

computing.
•	 Further investigate existing representations for distributed quantum computing.

This paper is structured starting with Sect. 2 where we discuss the background or
related work of this part of the intermediate representations in the compilation pro-
cess. Section 3 then deals with the characteristics and subsequent classification of
quantum IRs. Section 4 discusses the different representations for the distributed
quantum distribution. Finally, Sect. 5 discusses the conclusions and future work
drawn through this work.

2 � Background

In the early days of computing, programs were written in assembly language, which
is highly specific to the underlying hardware architecture. This close coupling
between software and hardware severely limited code reusability across different
machines. Assembly language, although highly efficient for specific hardware, hin-
dered software portability and presented a problem for developers, who had to man-
age hardware-specific instructions manually. As a result, the need for higher levels
of abstraction in programming languages became evident. Higher-level languages,
such as Fortran, COBOL, and later C, emerged to abstract the complexities of hard-
ware-specific details, making programming more efficient and portable [22].

One of the critical innovations that facilitated this shift was the development
of compilers. A compiler translates high-level code into machine code, effectively
decoupling the programming language from the hardware. This abstraction made it
possible to write software once and run it on multiple architectures without modi-
fication, fostering code reusability. However, developing a compiler for every pro-
gramming language and hardware architecture combination was a monumental task.
This led to introducing intermediate representations (IR), which bridge the high-
level source code and the low-level machine instructions. An IR allows a single
high-level language to be translated into an intermediate form, which can then be
compiled into machine code for different architectures. This reduced the complex-
ity of compiler design, as developers only needed to target the IR rather than every
possible hardware platform directly. The IR allows for a modular compilation pro-
cess. Figure 1 shows this advantage incorporating an IR into a simple compilation
scheme, where the number of compilers required scales from a quadratic number

	 F. J. Cardama et al. 418   Page 4 of 21

of n ⋅ m (Fig. 1a) to a more manageable linear order of n + m compilers (Fig. 1b),
where n is the number of high-level languages and m the number of hardware
platforms.

One of the most influential developments in intermediate representations was cre-
ating the low-level virtual machine (LLVM) framework [23], initially designed for
C and C++ programs. LLVM introduced a flexible, retargetable IR that could be
used across multiple hardware platforms, making it a foundational tool in modern
compiler design. LLVM abstracts code into a platform-independent form that can
later be optimized and translated into architecture-specific machine code. Its modu-
lar design has allowed LLVM to support a wide range of languages beyond C++,
including Swift, Rust, and Julia, making it a cornerstone in the development of mod-
ern compilers [24–26].

However, as computing systems have evolved, the need for more advanced IRs
has grown, particularly with the rise of heterogeneous systems. These systems com-
bine different types of processors, such as central processing units (CPUs), graph-
ics processing units (GPUs), and field-programmable gate arrays (FPGAs), each
of which excels at different types of computations [27, 28]. In GPUs and FPGAs,
where tasks are highly parallelized, traditional IRs had to be adapted for efficient
task distribution and execution. OpenCL, CUDA, and other parallel computing plat-
forms introduced specialized IRs to manage the complexity of these devices, ensur-
ing that high-level code could be effectively translated into machine-level instruc-
tions capable of running on these specialized architectures.

The multi-level intermediate representation (MLIR) [29] is a significant exten-
sion of LLVM, designed to address the complexity of heterogeneous architectures
by supporting multiple levels of abstraction. MLIR enables high-level optimizations
for domains like machine learning while still providing low-level hardware-specific
optimizations. This multi-level approach facilitates parallelism, concurrency, and
communication across different devices, making it ideal for handling the needs of
heterogeneous systems. This is achieved by implementing the concept of dialects.
Each dialect is a specialized language with its own vocabulary—operations and

Fig. 1   Comparison between integrating IRs into a simple compilation scheme

Review of intermediate representations for quantum computing﻿	 Page 5 of 21  418

types—tailored to a specific subject, for instance, as already mentioned, machine
learning. Just as you would choose a language that best suits a topic, in MLIR, you
choose dialects that best match the domain you are working in.

In addition to MLIR, standard portable intermediate representation (SPIR) [30]
is another vital IR in the domain of heterogeneous systems. SPIR was developed for
the OpenCL framework to provide a platform-neutral IR that enables code portabil-
ity across different hardware platforms, including CPUs, GPUs, and FPGAs. SPIR
simplifies the compilation of OpenCL kernels into optimized machine code, ensur-
ing performance and compatibility across diverse architectures.

NVVM-IR (NVIDIA virtual machine intermediate representation) plays a similar
role for NVIDIA hardware systems. Based on LLVM, NVVM-IR supports CUDA,
NVIDIA’s parallel computing platform. It abstracts CUDA code into a form that can
be optimized and compiled for efficient execution on NVIDIA GPUs, thus improv-
ing performance and enabling parallelization on highly specialized hardware.

With the advent of quantum computing, the complexity of hardware has reached
an entirely new level, requiring an entirely new class of intermediate representations.
Quantum computing platforms, unlike classical ones, are based on principles such
as superposition and entanglement, which require fundamentally different instruc-
tion sets. Quantum software frameworks such as Qiskit and Cirq were developed to
allow high-level quantum programming. These frameworks generate code that can
run on quantum hardware, such as superconducting qubits, trapped ions, and pho-
tonic systems. However, each of these hardware platforms has unique characteris-
tics, making the development of a unified quantum IR essential for the long-term
scalability of quantum programming.

3 � Quantum intermediate representations: characteristics
and classification

In this section, the characteristics that a standard IR should fulfill are defined by
compiling information from different citations in the literature. In the following, the
quantum IRs developed in the literature are classified and detailed, and a qualita-
tive comparison of different characteristics important for quantum software is made.
Finally, an example code for a quantum teleportation circuit is shown.

3.1 � Characteristics of an intermediate representation

An intermediate representation (IR) has to meet specific characteristics that distin-
guish it from a high-level or machine code language. A fundamental question has to
be asked: Why is C language—or any other high-level language— not an intermedi-
ate representation?

Different characteristics can be analyzed to define an IR. The most important one
we should focus on is that an IR is created by and for machines. Therefore, it does
not need to be fully readable by the human encoder; in most situations, the IR code
is encoded in binary.

	 F. J. Cardama et al. 418   Page 6 of 21

First, an IR has to be abstract enough to represent a set of high-level languages
(HLLs) rather than just one. This implies that it is at a different level from HLLs
and machine codes, so there is a process of compilation, not transpilation.

On the other hand, the compilation process to the IR must keep the infor-
mation from the compiler’s previous analysis phase. For example, in quantum
computing, it would be a mistake to transpose high-level gates to a set of elemen-
tary gates, essentially because hardware particularities such as the supported gate
set itself or the error propagated by each gate are not known.

Some of the characteristics of an IR that can be taken into account are the
following [31]:

•	 Comprehensive representation: The IR must encapsulate all necessary con-
structs, abstractions, and concepts from programming languages to ensure
precise execution across diverse computing platforms. A key measure of this
capability is how easily the IR can be transformed into and from widely used
IRs across multiple programming languages.

•	 Device independence: The IR should remain neutral to specific hardware fea-
tures. Its execution model should reflect the programming language’s seman-
tics rather than the underlying hardware, allowing it to be compiled across
various devices. This neutrality must be achieved by carefully balancing the
abstraction level.

•	 Direct programmability: Like assembly languages, IRs offer programmers
the ability to fine-tune their code manually. This is beneficial not only for
optimization purposes but also for supporting compiler developers during the
construction process. Typically, higher-level IRs make manual programming
more straightforward.

•	 Forward compatibility: As programming languages evolve, the IR must be
flexible enough to integrate new paradigms without sacrificing backward com-
patibility. This adaptability is crucial to ensure the IR remains relevant and
functional as programming practices change over time.

From the compiler design perspective, the following three attributes are critical
for an IR’s effectiveness as a program representation tool during the compilation
process:

•	 Simplicity in design: The ideal IR should limit the variety of its constructs
while still capturing all computations expressible by source languages. This
simplicity facilitates the canonicalization process, where source code is stand-
ardized before optimization, thereby reducing code variation and easing the
compiler’s workload.

•	 Retention of program details: The original source code contains the richest
information about the program. If critical details are lost during translation,
optimization can suffer. Therefore, the IR should include mechanisms to retain
important high-level details, such as type information and pointer aliasing,
which are essential for effective optimization.

Review of intermediate representations for quantum computing﻿	 Page 7 of 21  418

•	 Inclusion of analytical data: Successful program transformations often rely on
additional data, such as information on data dependencies and aliasing patterns.
Embedding this analytical data in the IR allows it to be used by different parts
of the compiler. However, this must be managed carefully to avoid the risk of
invalidation by later transformations. Balancing the inclusion of analytical infor-
mation with the complexity it adds to the IR is a crucial design consideration.

3.2 � Intermediate representations for quantum computing

In the compilation process, IR serves as a crucial intermediary between high-level
programs and machine-executable instructions, as has already been shown. This
representation improves translation efficiency and allows for optimization. When it
comes to quantum computing, specialized IR becomes essential to take full advan-
tage of the intrinsic characteristics of quantum computing. A variety of IR languages
have been developed to bridge the gap between high-level quantum programming
languages and low-level quantum machine code. In this subsection, we will attempt
to address the large number of IR languages proposed in the literature. Table 1
shows the classification of the IR of the literature in the following categories:

•	 Language extensions: IRs that extend an intermediate representation of classic
computation to add components of quantum features.

•	 Standalone languages: IRs that have been designed for quantum computing
without having any basis in another classic IR.

•	 IR framework: An IR that is integrated within a complete compilation scheme
or framework and has been created specifically for that scheme.

The initial intermediate language to be examined is quantum intermediate
representation (QIR) [1]. GIR, developed by the GIR Alliance, which counts

Table 1   Classification of
existing IRs in the literature

(a) Language extensions

Name Language
Q-MLIR [3] MLIR [29]
QIR [1] LLVM [23]
QSSA [2] SSA [32]
QIRO [33] MLIR and SSA
(b) Standalone
SQIR [34]
(c) IR Framework
Name Framework
XACC IR [19] XACC​
QBIR [35] Yao
t|ket⟩ IR [36] t|ket⟩

	 F. J. Cardama et al. 418   Page 8 of 21

Microsoft among its members, should be distinguished from the broader concept
of intermediate representation (qIR) previously outlined. It functions as a univer-
sal interface between quantum programming languages or frameworks and vari-
ous quantum computing platforms. Moreover, it delineates a series of protocols
for representing quantum programs in a language and hardware-neutral format
within the LLVM IR [23]. Concerning the translation from high-level languages,
GIR remains non-specific to any particular quantum programming framework,
thereby facilitating its adoption for articulating quantum programs. Conversely,
regarding the translation of IR to machine-specific instructions, GIR is designed
to be hardware-independent, abstaining from prescribing a specific quantum
instruction or gate set and instead deferring to the preferences of the target com-
putation environment.

Moving on to other quantum IRs, Q-MLIR, an extension of quantum comput-
ing to the IR multi-level intermediate representation (MLIR) described in Sect. 2,
is introduced in [3], highlighting the potential of this dialect to conform to the
GIR standards recently proposed by Microsoft. This facilitates a shared optimiza-
tion and execution generation framework across multiple source languages.

Furthermore, additional quantum computing oriented extensions of MLIR,
such as quantum intermediate representation for optimization (QIRO)
detailed in [33], are noteworthy. The QIRO framework is tailored for quantum-
classical co-optimization and embeds data flow directly within the IR, enabling a
range of optimizations through data flow analysis. It comprises two dialects: one
for input and another for optimization. In contrast, Q-MLIR focuses on defining a
quantum IR by extending MLIR but does not explore or implement optimizations
that leverage MLIR’s capabilities for quantum program improvement.

Moreover, IRs can adhere to specific properties or constraints to facilitate opti-
mization and verification processes. One such property, extensively explored in
classical compilation literature, is the static single assignment (SSA) form [32,
37, 38]. An SSA form mandates that each variable in the source code is assigned
uniquely in the intermediate representation. This implies that additional variables
must be introduced if a variable receives assignments at multiple points in the
source code to denote the distinct versions required.

Figure 2 exemplifies the LLVM IR translation of C++ source code where the
variable a undergoes reassignment. In an SSA compliant code, it is imperative to
generate a new variable (%3 as shown in Fig. 2c) to signify the updated version,
thereby preserving the original variable (%1 as depicted in Fig. 2b).

Fig. 2   Comparison between an LLVM IR code with and without SSA

Review of intermediate representations for quantum computing﻿	 Page 9 of 21  418

The usefulness of this property in verification and optimization, together with the
extensive study in classic compilation, allows the use of this approach in quantum
compilation as a suitable and perfectly tested basis. The IR previously discussed,
QIRO, uses this SSA property for the co-optimization of quantum codes.

On the other hand, the work presented in [2] as quantum static single assign-
ment (QSSA) performs an extension of the SSA properties to generate a quantum
IR that performs a special emphasis on the verification in the compile-time of the
physical constraints of quantum nature, such as the no-cloning theorem.

Figure 3 shows a graphical representation of the various quantum IRs that extend
a classic representation such as LLVM. It is shown in a set format to characterize
those representations that extend more than one language or feature.

Outside the classic IR extensions such as LLVM or MLIR, there are also stan-
dalone IR languages like small quantum intermediate representation (SQIR),
proposed in [34]. Its primary purpose is to serve as an intermediate language to ver-
ify the correctness of the quantum circuit once optimizations have been applied to it.
This IR is built on top of the mathematical definition language Coq.

In addition, some frameworks implement the complete compilation scheme or a
high-level language that develops its specific IR, such as eXtreme-scale Accelera-
tor programming framework (XACC) [19] that implement the compilation scheme
in full, based on a three-level scheme: a frontend that maps the quantum code to its
own IR; a middle-end related to the transformation and optimization of the IR; and,
finally, a backend that processes the IR to the specific machine code. Another exam-
ple is the quantum block intermediate representation (QBIR) [35], which is used in
the high-level quantum language Yao.jl. The main novelty of QBIR is that it allows
a quantum circuit to be specified using “blocks” of nested tree operations.

3.3 � Comparison of quantum IRs

The purpose of this section is to provide a comparative analysis of the different IRs
discussed in this work. It is important to emphasize that this is a qualitative com-
parison to maintain objectivity, as a quantitative study is not viable due to the lack
of standardized benchmarks and the different levels of maturity of the different IRs.
To achieve this, a set of key properties has been established to evaluate how each
IR performs in different contexts. This comparison aims not to declare one IR supe-
rior to another but to provide insights that will help readers decide which IR is best
suited to their particular implementation priorities. This framework allows readers to

Fig. 3   Venn diagram with the
different quantum IRs shown
in the “Language extensions”
section. Each set represents a
language or feature of classic
computing, and each element is
a quantum IR

	 F. J. Cardama et al. 418   Page 10 of 21

make informed decisions based on their specific needs, whether hardware compat-
ibility, optimization efficiency, or support for hybrid quantum-classical operations.

Table 2 presents a qualitative comparison of seven quantum IRs: QIR, SQIR,
QSSA, QIRO, XACC, QBIR, and Q-MLIR, based on the next essential features
for quantum software development:

1.	 Hybrid quantum-classical operations: Quantum programs often combine clas-
sical and quantum computations, especially for hybrid algorithms like the vari-
ational quantum eigensolver (VQE). An IR that supports hybrid operations allows
efficient execution of both quantum instructions and classical control logic (e.g.,
conditionals, loops).

2.	 Hardware agnosticism: An IR hardware agnosticism determines how well it
abstracts away hardware-specific details, making code portable across various
quantum architectures (e.g., superconducting qubits, trapped ions, photonic sys-
tems).

3.	 Optimizations and compiler passes: Quantum computations require significant
optimizations (e.g., gate reduction, circuit simplifications) to be executable on
quantum hardware, where resource constraints like qubit coherence times and
gate fidelity are critical.

4.	 Expressiveness: refers to how flexibly the IR can describe quantum programs,
supporting modularity, advanced quantum gates, and complex quantum opera-
tions.

5.	 Simulator compatibility: The ability to simulate quantum circuits before execut-
ing them on actual hardware is a crucial step in quantum program development.

6.	 Community support: IRs community support is critical for its development
and adoption. A strong ecosystem ensures access to tools, libraries, and active
collaboration.

7.	 Ease of use and accessibility: evaluates how approachable the IR is for devel-
opers, particularly those with limited experience in quantum computing. This
includes factors such as comprehensive documentation, availability of debugging
tools, seamless integration with classical programming languages, and the pres-
ence of user-friendly graphical interfaces.

In the context of Table 2, qualifiers such as high or medium are used to pro-
vide a qualitative assessment of how well an IR matches the characteristic being
assessed. For example, in the case of expressiveness, most IRs are rated high
due to their ability to represent a wide range of quantum operations. However,
Q-MLIR is rated very high because its multi-level structure allows for the defini-
tion of new instructions, providing greater flexibility and extensibility compared
to other IRs. With regard to the simulator compatibility section, the medium qual-
ifier is assigned to those IRs that cannot be directly applied by existing simulators.

In the case of ease of use, to obtain a “High” it is necessary that IR information
is published as well as execution and debugging tools in a public code repository.
In the case of “Medium” these tools are out of date, while “Low” means that only
the publication paper has been found.

Review of intermediate representations for quantum computing﻿	 Page 11 of 21  418

Ta
bl

e 
2  

Q
ua

lit
at

iv
e

co
m

pa
ris

on
 o

f t
he

 d
iff

er
en

t I
R

s e
xi

sti
ng

 in
 th

e
bi

bl
io

gr
ap

hy

Fe
at

ur
e

Q
IR

Q
-M

LI
R

Q
SS

A
Q

IR
O

X
A

C
C

​
Q

B
IR

SQ
IR

H
yb

rid
 q

ua
nt

um
-

cl
as

si
ca

l o
ps

Ye
s (

vi
a

LL
V

M
)

Ye
s

Ye
s

Ye
s

Ye
s

N
o

N
o

H
ar

dw
ar

e
ag

no
sti

ci
sm

H
ig

h
H

ig
h

H
ig

h
H

ig
h

H
ig

h
(v

ia
 X

A
C

C

co
m

pi
le

r)
H

ig
h

H
ig

h
(C

oq
-b

as
ed

)

O
pt

im
iz

at
io

ns
B

ui
lt-

in
 (L

LV
M

pa

ss
es

)
B

ui
lt-

in
 (v

ia
 M

LI
R

)
C

om
pi

le
r o

pt
im

iz
a-

tio
ns

Li
m

ite
d

LL
V

M
 O

pt
im

iz
at

io
ns

C
irc

ui
t

Si
m

pl
ifi

-
ca

tio
ns

Fo
rm

al
 V

er
ifi

ca
tio

n

Ex
pr

es
si

ve
ne

ss
H

ig
h

Ve
ry

 H
ig

h
H

ig
h

H
ig

h
Ve

ry
 H

ig
h

(v
ia

M

LI
R

)
M

ed
iu

m
M

ed
iu

m

Si
m

ul
at

or
 c

om
pa

t-
ib

ili
ty

H
ig

h
(L

LV
M

 si
m

ul
a-

to
rs

)
H

ig
h

M
ed

iu
m

H
ig

h
H

ig
h

M
ed

iu
m

H
ig

h

C
om

m
un

ity
 su

pp
or

t
St

ro
ng

 (L
LV

M
,

M
ic

ro
so

ft)
G

ro
w

in
g

(M
LI

R
 c

om
-

m
un

ity
)

G
ro

w
in

g
(Q

ua
nt

um

re
se

ar
ch

)
Li

m
ite

d
St

ro
ng

 (X
A

C
C

 fr
am

e-
w

or
k)

Li
m

ite
d

G
ro

w
in

g
(C

oq
 c

om
-

m
un

ity
)

Ea
se

 o
f u

se
 a

nd
 a

cc
es

-
si

bi
lit

y
H

ig
h

Lo
w

Lo
w

M
ed

iu
m

H
ig

h
H

ig
h

H
ig

h

	 F. J. Cardama et al. 418   Page 12 of 21

Each quantum IR brings unique strengths to quantum software development. QIR
and Q-MLIR perform particularly well in handling hybrid quantum-classical opera-
tions, optimizations, and hardware agnosticism, which makes them an excellent fit
for scalable quantum computing applications. SQIR excels in formal verification,
while XACC offers solid support across the software stack and full compilation.
QSSA and QIRO emphasize optimizations and error correction, which are funda-
mental to long-term fault-tolerant quantum computing.

By comparing these features, developers can choose the most appropriate IR
based on their specific needs, such as hardware compatibility, optimization, and
expressiveness.

3.4 � Example of code: teleportation circuit

In this subsection, two IRs that extend LLVM, QIR, and Q-MLIR will be compared
to analyze the differences between the two models. We aim to demonstrate how dif-
ferent IRs work when implementing a complex circuit, such as quantum telepor-
tation, where several critical aspects are involved, such as quantum gates between
qubit pairs, intermediate measurement, or physically separated qubits.

The circuit to be implemented is the one shown in Fig. 4, corresponding to the
well-known teleportation circuit between two physically separated qubits. The codes
generated for this circuit are shown in Fig. 5a for QIR and Fig. 5b for Q-MLIR.

The QIR code for the teleportation circuit is very similar to the LLVM IR for-
mat. It focuses on low-level quantum operations and directly invokes quantum gates
like Hadamard and CNOT with explicit quantum instruction calls. Measurements
are performed with conditions applied to control subsequent gates (X and Z correc-
tions), reflecting the hybrid nature of QIR, which integrates quantum operations with
classical control through conditional branches. This low-level representation ensures
detailed control and optimization but requires more explicit operations management.

In contrast, the Q-MLIR code operates at a higher level of abstraction, using
MLIR’s modular structure. While the circuit structure is similar—applying Had-
amard and CNOT gates followed by measurements—the code is more declara-
tive. The quantum gates and measurements are invoked in a more abstract
manner, emphasizing flexibility and modularity rather than fine-tuned control.
Q-MLIR simplifies the representation, making it easier to map to different

Fig. 4   Circuit for teleporting a quantum state ��⟩ between two physically separated qubits (from Alice to
Bob)

Review of intermediate representations for quantum computing﻿	 Page 13 of 21  418

hardware backends or domain-specific optimizations while maintaining a clearer
structure for higher-level quantum algorithms.

These examples show that both QIR and Q-MLIR effectively handle inter-
mediate measurements (hybrid quantum-classical operations) and quantum gates
between qubit pairs. However, the major unresolved challenge lies in commu-
nication between physically separated qubits. The current IRs do not specify
whether qubits are located on different nodes, a crucial factor in distributed
quantum computing (DQC). Without addressing this issue, managing the nec-
essary quantum communication and synchronization between distant quantum
processors becomes impossible.

To address this limitation, the following section will explore various interme-
diate languages specifically designed for DQC, which incorporate mechanisms
to handle physically separated qubits and quantum communication.

Fig. 5   Implementation of a teleportation circuit in two quantum intermediate representations (QIR and
Q-MLIR)

	 F. J. Cardama et al. 418   Page 14 of 21

4 � IRs for distributed quantum computing (DQC)

In this section, we describe IRs for programming distributed quantum computers,
trying to overcome the shortcoming of all quantum IRs presented in the previous
section: the inability to define physically separated qubits. In DQC, where quan-
tum systems are distributed over multiple physical locations, it becomes crucial to
specify the locality of each qubit and to manage the communication between qubits
located in different nodes.

In distributed quantum systems, operations like quantum teleportation and entan-
glement swapping require an IR that can effectively model both the quantum gates
and the communication between distant qubits [39]. In the context of DQC, two
intermediate representations (IRs) have emerged to address the challenges posed by
qubit locality and inter-node communication: InQuIR [4] and NetQIR [5]. These IRs
aim to overcome the limitations of monolithic quantum systems discussed in the
previous section, where qubits are assumed to exist within a single physical location.

InQuIR (intermediate representation for interconnected quantum computers)
introduces a mechanism for explicitly specifying the location of qubits across dis-
tributed nodes. Unlike conventional IRs, InQuIR enables fine-grained control of
communication between quantum processors by allowing developers to manu-
ally manage entanglement generation and classical communication protocols. This
explicit control is achieved through primitives such as:

•	 genEnt() for entanglement generation between nodes,
•	 send() and recv() for classical communication of measurement results.

While InQuIR provides a significant step toward enabling distributed quantum pro-
grams, its reliance on manual management increases programming complexity and
risks introducing errors, especially as the number of nodes grows.

As an illustrative example, consider the teleporting circuit, where the goal is
to transfer the state of a qubit from one node to another. In a distributed quantum
system, this involves entangling two qubits at different locations and using clas-
sical communication to transfer the qubit’s state. The InQuIR code is shown in
Fig. 6, where it can be seen that there is a different code for each qubit node (Alice

Fig. 6   InQuIR code to implement the teleport circuit in the different nodes

Review of intermediate representations for quantum computing﻿	 Page 15 of 21  418

or Bob). Therefore, this IR allows to specify the physical separation of a register
of qubits and, additionally, to program them in a different way depending on this
characteristic.

InQuIR provides important tools for managing qubit locality and inter-node com-
munication in distributed quantum computing. However, its limitations arise from
its dependence on manual control over communication processes, which restricts its
ability to fully abstract the complexities inherent in quantum networking. In particu-
lar, InQuIR’s reliance on explicit entanglement generation (genEnt) and manual
control over the transmission of classical data (send and recv) requires developers
to work directly with the low-level details of the quantum communication process.
This lack of abstraction contrasts strongly with the practice in classical distributed
computing, where frameworks like MPI effectively hide the details of the underlying
communication protocols.

The abstraction of the network layer in traditional distributed systems provides
flexibility to work with different network architectures and protocols without expos-
ing their complexity to the user, which allows developers to focus on high-level
logic without managing the intricacies of the interconnection network. However,
InQuIR’s dependence on explicitly managing communication through teleportation
or entanglement protocols requires developers to handle the complexities of quan-
tum networking, which can increase the risk of errors and limit scalability. As quan-
tum networks grow in complexity, with more nodes and greater distances between
them, this approach becomes less feasible and more cumbersome. The need for a
more abstract and flexible system becomes evident, one that can manage communi-
cation efficiently and transparently.

To address these issues, NetQIR [5] emerges as an extension of GIR [1] and
extends it to support distributed quantum systems. NetQIR addresses the limitations
of InQuIR by introducing higher-level abstractions that automate the management of
quantum communication. Key features include:

•	 qsend() for transmitting qubits between nodes,
•	 expose() for making qubits accessible to other nodes.

These instructions abstract the communication process, allowing the system to auto-
matically manage the complexities of quantum entanglement, teleportation, and
classical communication. This approach mirrors the abstraction seen in classical
distributed computing frameworks, where message-passing or data synchronization
details are hidden from the user. By integrating such abstraction, NetQIR not only
simplifies the development process but also increases the flexibility and scalability
of distributed quantum systems.

Figure 7 shows the same teleport circuit discussed throughout this article, high-
lighting the reduction in code complexity achieved by abstracting the communica-
tion protocol. The implementation becomes more agile and efficient by delegating
these low-level details to the backend, which has access to more specific information
about the connecting network and the hardware involved.

A significant advantage of NetQIR is that, by extending QIR, it inherits a strong
foundation from the QIR framework, which itself is built on LLVM. This allows

	 F. J. Cardama et al. 418   Page 16 of 21

NetQIR to leverage the extensive optimization and tooling infrastructure developed
for QIR and LLVM, including compiler passes, simulation tools, and debugging
environments. As a result, developers can utilize high-level abstractions for distrib-
uted quantum operations and benefit from the robust ecosystem of tools available in
the LLVM framework. On the other hand, one of the main disadvantages of NetQIR
is that it is currently still in a work-in-progress phase. While the IR has been defined
conceptually, there is a significant gap in the availability of practical tools and infra-
structure for working with it. Unlike established quantum IRs such as QIR, which
benefit from a mature ecosystem of compilers, optimizers, and simulators, NetQIR
lacks concrete implementations and tools at this stage. As a result, developers and
researchers are not yet able to fully utilize NetQIR in real-world distributed quantum
systems.

In summary, Table 3 compares the characteristics discussed in this section.
Both InQuIR and NetQIR incorporate instructions for quantum communication—
InQuIR with genEnt and send, and NetQIR with qsend. However, InQuIR lacks
abstraction from the network layer and communication protocols. By relying on the

Fig. 7   NetQIR code for the state teleportation between Alice and Bob

Table 3   Comparison between
the IRs for distributed quantum
computing analyzed

Intermediate
representation

Instructions for
quantum comm.

Abstraction of
network layer

Abstraction
of protocols

InQuIR ✓ ✗ ✗
NetQIR ✓ ✓ ✓

Review of intermediate representations for quantum computing﻿	 Page 17 of 21  418

genEnt() function, developers are required to implement their own teledata or tel-
egate protocols, with no built-in consideration for network connectivity or abstrac-
tion from the underlying communication layer.

5 � Conclusions

This work explored the design, evaluation, and limitations of intermediate repre-
sentations (IRs) for monolithic and distributed quantum computing. To develop an
effective IR, certain core characteristics must be defined, such as hardware agnos-
ticism, optimization capabilities, modularity, and the ability to handle quantum-
classical hybrid operations. These features ensure that an IR can bridge the gap
between high-level quantum programming languages and the hardware, ensuring
efficient performance and adaptability across various quantum architectures. This
paper began by reviewing quantum IRs designed for monolithic quantum systems,
followed by a more in-depth discussion of the challenges associated with IRs for
distributed quantum computing.

The study of monolithic quantum computing focused on IRs like QIR, Q-MLIR,
SQIR, or QSSA, which are primarily designed for quantum processors located in a
single physical location. These IRs support features such as gate-level abstractions,
hardware-agnostic instruction sets, and optimizations targeting performance across
various quantum platforms. They are well-suited for tasks that do not involve inter-
node communication or distributed architectures. However, they still face challenges
in scaling with increasing qubit counts and handling the specificities of different
quantum technologies.

The evolution of quantum IRs reflects the need for such tools to facilitate the
development of new compilers and a complete quantum software stack. This work
highlights the current limitations of quantum IRs, particularly the lack of support for
managing qubit locality in systems where quantum processors are distributed across
multiple physical locations. Therefore, IRs for DQC, such as InQuIR or NetQIR,
have emerged in the literature.

InQuIR takes an important step by allowing programmers to define qubit locality
and manage communication explicitly, but this approach has significant drawbacks.
Namely, it requires developers to handle low-level communication protocols (e.g.,
genEnt, send, recv) manually, adding to the complexity and potential for error.
In contrast, NetQIR introduces a higher level of abstraction, where instructions like
qsend and expose delegate the details of quantum communication to the back-
end. This allows for a more flexible and scalable programming model, similar to
how classical distributed systems abstract network protocols through frameworks
like MPI.

The key strength of NetQIR is its foundation in QIR, which is itself built on
LLVM. This allows it to take advantage of LLVM’s well-established ecosystem of
optimization tools, compilers, and simulators. This strong base ensures that NetQIR
not only simplifies the programming model for distributed quantum computing but
also benefits from powerful optimizations and debugging capabilities developed for
classical computing.

	 F. J. Cardama et al. 418   Page 18 of 21

In summary, while InQuIR provides an initial solution for managing distributed
qubit locality and communication, its explicit handling of communication protocols
limits its scalability. NetQIR, as an extension of QIR, offers a more abstract, scal-
able solution for distributed quantum systems. By integrating high-level instructions
that hide the complexity of quantum communication, NetQIR provides a pathway to
more efficient and manageable distributed quantum computing frameworks. How-
ever, it is important to note that NetQIR remains in a work-in-progress phase, with
the intermediate representation defined but without practical tools available yet for
real-world implementations. Further development is required to fully realize its
potential in distributed quantum systems.

Finally, the development of IRs is essential to bridge the gap between high-level
quantum programming languages and diverse quantum hardware. A standardized IR
would ensure portability, allowing quantum programs to run seamlessly across dif-
ferent platforms, while enabling critical optimizations such as gate minimization and
error mitigation. It would also facilitate the integration of hybrid quantum-classical
workflows and promote a unified ecosystem of tools such as simulators, compilers,
and debuggers.

Regarding future prospects, a common IR will be key to achieving scalable DQC
by addressing the challenges of qubit locality and communication. Standardization
efforts will need to balance hardware abstraction and performance. By mirroring the
success of classical IRs such as LLVM, a well-defined quantum IR will accelerate
the adoption and development of quantum technologies, paving the way for practi-
cal and efficient quantum systems. It is crucially important to have the necessary
compilation tools and optimal IR for when quantum computing moves beyond gate
specification codes to a high-level programming architecture such as currently exists
in classical computing.

Acknowledgements  This work was supported by MICINN through the European Union NextGen-
erationEU recovery plan (PRTR-C17.I1), and by the Galician Regional Government through the
“Planes Complementarios de I+D+I con las Comunidades Autónomas” in Quantum Communication.
This work was also supported by financial support from the Agencia Estatal de Investigación (Spain)
(PID2022-141623NB-I00), the Xunta de Galicia - Consellerí a de Cultura, Educación, Formación Pro-
fesional e Universidades (Centro de investigación de Galicia accreditation 2024-2027 ED431G-2023/04
and Reference Competitive Group accreditation ED431C-2022/016), and the European Union (European
Regional Development Fund - ERDF).

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Review of intermediate representations for quantum computing﻿	 Page 19 of 21  418

References

	 1.	 Lubinski T, Granade C, Anderson A, Geller A, Roetteler M, Petrenko A, Heim B (2022) Advancing
hybrid quantum-classical computation with real-time execution. Front Phys. https://​doi.​org/​10.​3389/​
fphy.​2022.​940293

	 2.	 Peduri A, Bhat S, Grosser T (2022) QSSA: an SSA-based IR for quantum computing. In: Proceed-
ings of the 31st ACM SIGPLAN International Conference on Compiler Construction. CC 2022.
Association for Computing Machinery, New York, pp. 2–14. https://​doi.​org/​10.​1145/​34977​76.​
35177​72

	 3.	 McCaskey A, Nguyen T (2021) A MLIR dialect for quantum assembly languages. In: Proceed-
ings—2021 IEEE International Conference on Quantum Computing and Engineering, QCE 2021,
pp 255–264. https://​doi.​org/​10.​1109/​QCE52​317.​2021.​00043

	 4.	 Nishio S, Wakizaka R (2023) InQuIR: Intermediate Representation for Interconnected Quantum
Computers. https://​arxiv.​org/​abs/​2302.​00267

	 5.	 Vázquez-Pérez J, Cardama FJ, Piñeiro C, Pena TF, Pichel JC, Gómez A (2024) NetQIR: An Exten-
sion of QIR for Distributed Quantum Computing. https://​arxiv.​org/​abs/​2408.​03712

	 6.	 Alfred VA, Monica SL, Jeffrey DU (2007) Compilers principles. Techniques & Tools. Pearson Edu-
cation Inc, London

	 7.	 Schneck PB (1973) A survey of compiler optimization techniques. In: Proceedings of the ACM
Annual Conference, pp 106–113

	 8.	 Tremblay J-P, Sorenson PG (1985) Theory and practice of compiler writing. McGraw-Hill Inc, New
York

	 9.	 Torczon L, Cooper K (2007) Engineering a compiler. Morgan Kaufmann Publishers Inc.,
Cambridge

	10.	 Conway ME (1958) Proposal for an UNCOL. Commun ACM 1(10):5–8. https://​doi.​org/​10.​1145/​
368924.​368928

	11.	 Ottenstein KJ (1984) Intermediate program representations in compiler construction: a supplemen-
tal bibliography. SIGPLAN Not 19(7):25–27. https://​doi.​org/​10.​1145/​988574.​988579

	12.	 Stanier J, Watson D (2013) Intermediate representations in imperative compilers: a survey. ACM
Comput Surv 45(3):1–27. https://​doi.​org/​10.​1145/​24807​41.​24807​43

	13.	 Shor PW (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J Comput 26(5):1484–1509. https://​doi.​org/​10.​1137/​s0097​53979​52931​72

	14.	 Steane A (1998) Quantum computing. Rep Prog Phys 61(2):117. https://​doi.​org/​10.​1088/​0034-​
4885/​61/2/​002

	15.	 Ladd TD, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien JL (2010) Quantum computers.
Nature 464(7285):45–53. https://​doi.​org/​10.​1038/​natur​e08812

	16.	 Nielsen MA, Chuang IL (2010) Quantum computation and quantum information: 10th, Anniver-
sary. Cambridge University Press

	17.	 Chong FT, Franklin D, Martonosi M (2017) Programming languages and compiler design for realis-
tic quantum hardware. Nat Publ Group. https://​doi.​org/​10.​1038/​natur​e23459

	18.	 Häner T, Steiger DS, Svore K, Troyer M (2018) A software methodology for compiling quantum
programs. Ins Phys Publ. https://​doi.​org/​10.​1088/​2058-​9565/​aaa5cc

	19.	 McCaskey AJ, Lyakh DI, Dumitrescu EF, Powers SS, Humble TS (2020) XACC: a system-level
software infrastructure for heterogeneous quantum-classical computing. Quantum Sci Technol
5(2):024002. https://​doi.​org/​10.​1088/​2058-​9565/​ab6bf6

	20.	 Mintz TM, McCaskey AJ, Dumitrescu EF, Moore SV, Powers S, Lougovski P (2020) QCOR: a
language extension specification for the heterogeneous quantum-classical model of computation. J
Emerg Technol Comput Syst 16(2):1–7. https://​doi.​org/​10.​1145/​33809​64

	21.	 McCaskey AJ, Dumitrescu EF, Liakh D, Chen M, Feng W, Humble TS (2018) A language and hard-
ware independent approach to quantum-classical computing. SoftwareX 7:245–254. https://​doi.​org/​
10.​1016/j.​softx.​2018.​07.​007

	22.	 Knuth DE, Pardo LT (1980) The early development of programming languages. In: A History of
Computing in the Twentieth Century, pp 197–273. https://​doi.​org/​10.​1016/​B978-0-​12-​491650-​0.​
50019-8

	23.	 Foundation L (2009) LLVM Assembly Language Reference Manual. https://​relea​ses.​llvm.​org/2.​6/​
docs/​LangR​ef.​html

https://doi.org/10.3389/fphy.2022.940293
https://doi.org/10.3389/fphy.2022.940293
https://doi.org/10.1145/3497776.3517772
https://doi.org/10.1145/3497776.3517772
https://doi.org/10.1109/QCE52317.2021.00043
https://arxiv.org/abs/2302.00267
https://arxiv.org/abs/2408.03712
https://doi.org/10.1145/368924.368928
https://doi.org/10.1145/368924.368928
https://doi.org/10.1145/988574.988579
https://doi.org/10.1145/2480741.2480743
https://doi.org/10.1137/s0097539795293172
https://doi.org/10.1088/0034-4885/61/2/002
https://doi.org/10.1088/0034-4885/61/2/002
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature23459
https://doi.org/10.1088/2058-9565/aaa5cc
https://doi.org/10.1088/2058-9565/ab6bf6
https://doi.org/10.1145/3380964
https://doi.org/10.1016/j.softx.2018.07.007
https://doi.org/10.1016/j.softx.2018.07.007
https://doi.org/10.1016/B978-0-12-491650-0.50019-8
https://doi.org/10.1016/B978-0-12-491650-0.50019-8
https://releases.llvm.org/2.6/docs/LangRef.html
https://releases.llvm.org/2.6/docs/LangRef.html

	 F. J. Cardama et al. 418   Page 20 of 21

	24.	 Lattner C, Adve V (2004) LLVM: a compilation framework for lifelong program analysis & trans-
formation. In: International Symposium on Code Generation and Optimization, 2004. CGO 2004,
pp 75–86. https://​doi.​org/​10.​1109/​CGO.​2004.​12816​65

	25.	 Terei DA, Chakravarty MM (2009) Low level virtual machine for Glasgow Haskell compiler. PhD
Thesis, Bachelor’s Thesis, Computer Science and Engineering Dept., The University of New South
Wales

	26.	 Ştirb I, Gillich GR (2023) A low-level virtual machine just-in-time prototype for running an energy-
saving hardware-aware mapping algorithm on C/C++ applications that use pthreads. Energies
16(19):6781. https://​doi.​org/​10.​3390/​en161​96781

	27.	 Weaver G (1995) Compiler representations for heterogeneous processing. Technical Report UM-CS-
1995-102, University of Massachusetts

	28.	 Belwal M, TSB, S (2015) Intermediate representation for heterogeneous multi-core: A survey.
In: 2015 International Conference on VLSI Systems, Architecture, Technology and Applications
(VLSI-SATA), pp 1–6. https://​doi.​org/​10.​1109/​VLSI-​SATA.​2015.​70504​96

	29.	 Lattner C, Amini M, Bondhugula U, Cohen A, Davis A, Pienaar J, Riddle R, Shpeisman T, Vasi-
lache N, Zinenko O (2021) MLIR: scaling compiler infrastructure for domain specific computation.
In: CGO 2021—Proceedings of the 2021 IEEE/ACM International Symposium on Code Generation
and Optimization, pp 2–14. https://​doi.​org/​10.​1109/​CGO51​591.​2021.​93703​08

	30.	 Kessenich J, Ouriel B, Krisch R (2018) SPIR-V specification. Khronos Group 3:17
	31.	 Chow F (2013) Intermediate representation. Queue 11:30–37. https://​doi.​org/​10.​1145/​25426​61.​

25443​74
	32.	 Cytron R, Ferrante J, Rosen BK, Wegman MN, Zadeck FK (1989) An efficient method of comput-

ing static single assignment form. In: Proceedings of the 16th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. POPL ’89. Association for Computing Machinery,
New York, pp 25–35. https://​doi.​org/​10.​1145/​75277.​75280

	33.	 Ittah D, Häner T, Kliuchnikov V, Hoefler T (2022) QIRO: a static single assignment-based quantum
program representation for optimization. ACM Trans Quantum Comput 3(3):1–32. https://​doi.​org/​
10.​1145/​34912​47

	34.	 Hietala K, Rand R, Hung SH, Wu X, Hicks M (2019) Verified Optimization in a Quantum Interme-
diate Representation. https://​arxiv.​org/​abs/​1904.​06319

	35.	 Luo XZ, Liu J-G, Zhang P, Wang L (2020) Yao. jl: extensible, efficient framework for quantum
algorithm design. Quantum 4:341. https://​doi.​org/​10.​22331/q-​2020-​10-​11-​341

	36.	 Sivarajah S, Dilkes S, Cowtan A, Simmons W, Edgington A, Duncan R (2020) t�ket⟩ : a retargetable
compiler for NISQ devices. Quantum Sci Technol 6(1):014003. https://​doi.​org/​10.​1088/​2058-​9565/​
ab8e92

	37.	 Van Emmerik MJ (2007) Static single assignment for decompilation. PhD Thesis, University of
Queensland, Queensland, Australia

	38.	 Rastello F, Tichadou FB (2022) SSA-based compiler design. Springer International Publishing, pp
1–382. https://​doi.​org/​10.​1007/​978-3-​030-​80515-9

	39.	 Barral D, Cardama FJ, Díaz G, Faílde D, Llovo IF, Juane MM, Vázquez-Pérez J, Villasuso J, Piñeiro
C, Costas N, et al (2024) Review of Distributed Quantum Computing. From single QPU to high
performance quantum computing. https://​arxiv.​org/​abs/​24004.​01265

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

F. Javier Cardama1 · Jorge Vázquez‑Pérez1 · César Piñeiro1,2 · Juan C. Pichel1,2 ·
Tomás F. Pena1,2 · Andrés Gómez3

 *	 F. Javier Cardama
	 javier.cardama@usc.es

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.3390/en16196781
https://doi.org/10.1109/VLSI-SATA.2015.7050496
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/2542661.2544374
https://doi.org/10.1145/2542661.2544374
https://doi.org/10.1145/75277.75280
https://doi.org/10.1145/3491247
https://doi.org/10.1145/3491247
https://arxiv.org/abs/1904.06319
https://doi.org/10.22331/q-2020-10-11-341
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1007/978-3-030-80515-9
https://arxiv.org/abs/24004.01265

Review of intermediate representations for quantum computing﻿	 Page 21 of 21  418

	 Jorge Vázquez‑Pérez
	 jorgevazquez.perez@usc.es

	 César Piñeiro
	 cesaralfredo.pineiro@usc.es

	 Juan C. Pichel
	 juancarlos.pichel@usc.es

	 Tomás F. Pena
	 tf.pena@usc.es

	 Andrés Gómez
	 andres.gomez.tato@cesga.es

1	 Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de
Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain

2	 Departamento de Electrónica e Computación, Universidade de Santiago de Compostela,
15705 Santiago de Compostela, Galicia, Spain

3	 Galicia Supercomputing Center (CESGA), 15705 Santiago de Compostela, Galicia, Spain

	Review of intermediate representations for quantum computing
	Abstract
	1 Introduction
	2 Background
	3 Quantum intermediate representations: characteristics and classification
	3.1 Characteristics of an intermediate representation
	3.2 Intermediate representations for quantum computing
	3.3 Comparison of quantum IRs
	3.4 Example of code: teleportation circuit

	4 IRs for distributed quantum computing (DQC)
	5 Conclusions
	Acknowledgements
	References

