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Abstract—Powerline inspection and modelization using airborne
light detection and ranging (LiDAR) data have been widely studied
through the years. However, to the best of our knowledge, the
proposed methods rely on intentional flights carried out along the
high-voltage powerline. Thus, the state-of-the-art studies focus on
detecting and characterizing a single powerline whose presence and
location are known beforehand. We propose a method to detect
and model powerlines of any voltage from airborne LiDAR point
clouds not necessarily acquired for this purpose. Also, the method is
suitable to be applied to those point clouds whose density is usually
lower than that obtained using specific purpose flights over the
powerlines. Our solution starts filtering out most of the points that
do not belong to electric conductors. Then, the Hough transform
is used to detect straight lines. Its output is then used to cluster
the electric conductors. Also, we propose a solution to bypass a
common issue regarding the nonmaxima suppression often used
in object detection algorithms. Furthermore, a robust method for
clustering conductors sharing the same vertical plane is presented,
being able to return good results even in the absence of parts of
any electrical conductor. The algorithm is tested in several datasets
containing high-voltage powerlines and others, comprising mid-
and low-voltage electric conductors. Finally, a study of the compu-
tational performance shows that the algorithm can efficiently take
advantage of manycore systems, which is essential to determine the
feasibility of our approach on massive LiDAR point clouds.
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I. INTRODUCTION

E LECTRICITY is crucial for most people today. Power
outages can cause major issues for individuals and busi-

nesses, especially with the increasing trend of remote work.
Therefore, it is essential to maintain the proper functioning of
high-voltage and low-voltage powerlines to ensure a reliable
electricity supply.

Regular powerline inspections are necessary to maintain a safe
and efficient electrical network. This includes clearing vegeta-
tion and obstacles around high- and low-voltage lines. Manual
inspections are costly, time-consuming, and risky, leading to
the rapid adoption of automated or remote sensing techniques.
One of the first remote sensing techniques used for powerline
inspection is synthetic aperture radars (SARs). In particular,
the use of data obtained from SARs for identifying powerline
towers is proposed in [1]. Another possibility for powerline
inspection is the use of optical satellite imagery. This solution is
used for coarse-grained inspections, i.e., detection of potentially
hazardous vegetation around a known powerline [2]. There are
also techniques based on optical imaging to detect potentially
hazardous vegetation around powerlines. For example, there are
image-based inspection methods [3], where powerline structures
(usually high-voltage) are extracted from aerial images. More
specifically, most image-based techniques focus on the use of
photogrammetry since the 3-D information it provides is of
great importance when detecting and characterizing obstacles.
In this line, different proposals exist to compute distances in 3
dimensions using images [4], [5]. Additionally, the study of the
feasibility of using hyperspectral imagery together with light
detection and ranging (LiDAR) data has been carried out in [6],
where it is shown that the inclusion of LiDAR data significantly
increases the accuracy of obstacle classification.

With the decreasing costs of both UAVs and sensors and
the high accuracy that LiDAR offers over other remote sensing
techniques, LiDAR solutions have been the most widely adopted
over other alternatives in recent years [7], [8], [9], [10].

In this article, we present an algorithm for classifying and
modeling powerlines that addresses several issues not managed
by state-of-the-art work. Thus, our algorithm can be applied to
any general-purpose airborne LiDAR point cloud, and it can
detect, classify, and model powerlines present in a single point
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cloud. There is no need to perform a specific flight along the
powerline to be analyzed or to have prior knowledge of their
presence or their shape in a given point cloud. The advantages
are manyfold. By using airborne LiDAR data, the inspected area
may be much larger, which allows the inspection of multiple
powerlines in the same scene at once, even when they cross
each other. Also, since the density of airborne LiDAR data is
smaller than UAV-based data, the time needed to process the
same powerline is much lower, which directly implies either a
reduction in scanning or computational costs. Note that this con-
text can be particularly crucial in emergency situations. Finally,
depending on the region in which the powerline is inspected, the
use of airborne LiDAR data may be the only option available, as
the use of UAV-based LiDAR data may be forbidden or strongly
restricted by local regulations. Furthermore, and to the best of
our knowledge, the proposed algorithm is the only one that can
be applied to point clouds whose density is as low as 5 pts/m2.
As the size of the 3-D point clouds can be huge, there is a need
for different algorithms that can solve this problem in affordable
times. Therefore, a significant effort was made to improve the
algorithm’s computational efficiency in manycore systems. Fi-
nally, we developed a nonmaxima suppression (NMS) method
related to the object detection algorithm that does not depend on
heuristics to work properly.

The primary purpose of this work was to determine the pow-
erlines’ position in a given area without any prior knowledge
to assist the aircraft pilots in avoiding collision risks near the
powerlines in an emergency situation.

The rest of this article is organized as follows. First, some
of the latest works regarding the powerline characterization are
described and analyzed in Section II. The algorithm is described
in detail in Section III. The results of the powerline detection and
characterization are shown in Section IV. The computational
performance of the algorithm is analyzed in Section V. In
Section VI, some insights about the algorithm are presented.
Finally, Section VII concludes this article.

II. RELATED WORK

In the last few years, different proposals have been presented
for the automation of the process of detection and characteriza-
tion of powerlines using LiDAR. These proposals mainly focus
on two aspects: the detection of problems that may appear in a
given powerline, such as broken conductors or dangerous nearby
vegetation, and the reconstruction and characterization of the
powerlines themselves.

Some of the proposals rely on clustering or rasterization
techniques, sacrificing precision. For example, Chen et al. [11]
proposed an automatic clearance anomaly detection method
utilizing LiDAR point clouds collected by UAVs. The method
starts by filtering the ground points and detecting the pylons
in the nonterrain points following a feature map method. Then,
several clustering techniques are applied between two detected
pylons to extract and model the individual conductors, which
allows for carrying out the computation of distances to the clos-
est obstacles to find the anomalies exceeding the safe distance
thresholds defined in the regulations. Similarly, Nardinocchi

et al. [12] presented a fully automated approach to extract
lines and detect obstacles. This method relies solely on simple
geometric assumptions and operates under the assumption that
points representing the electrical line are sparse and separated
from other data points. Thus, after locating several powerline
points, the wires are identified through a simple line following
over a condensed dataset derived from raw data interpolation
onto a 2-D square grid. Clustering is also used by Huang
et al. [13], which proposed an automatic method for classifica-
tion and safety distance calculation for UAV LiDAR point clouds
of high-voltage powerline corridors. The powerline extraction
is carried out using a grid-based local analysis to convert the
3-D point cloud into a set of organized small-scale cells. The
height distribution in each cell is then analyzed to determine the
existence of a pylon or a wire. Dihkan and Mus [14] introduced
a different approach that uses voxelization to automatically
detect wires and pylons using UAV LiDAR data. The algorithm
starts filtering ground points using the cloth simulation filtering
method. Then, the remaining points are organized in voxels of
5×5×5 m and, over these, a geometrical analysis is performed
for detecting wires, pylons, and high object positions that may
pose a risk. All these works base their methods on rasterization
and clustering techniques, which introduce simplifications that
allow addressing the problem with less computational effort but
imply loss of precision.

Most state-of-the-art algorithms, including the abovemen-
tioned, work with LiDAR data obtained from flights along
existing powerlines. Thus, the point cloud only comprises the
corridor where the powerline is located. These clouds have high
density and require significant storage and processing capacity.
For example, Ortega et al. [15] introduced a technique aimed
at categorizing conductors, pylons, insulators, and shield wires
within point clouds with a recommended point density of more
than 25 pts/m2 along the power corridor. Also, Awrangjeb [16]
introduced an approach that involves converting the input points
at different height levels into binary masks, extracting straight
lines, and generating hulls around them. These hulls are pro-
jected onto a horizontal plane to form individual corridors.
Height gaps between vegetation and wires are then used to locate
pylons within corridors, and points between pylons are used
to find individual wires. Finally, an algorithm based on height
histograms is used in [17] to classify high-quality powerline
corridor point clouds. In that work, they use a height threshold to
remove ground points below powerlines. Then, the eigenvalues
of the remaining points are used to determine whether they
belong to a powerline or any other structure, such as a building or
different types of vegetation. Since most of the existing methods
rely on specific flights, only a single span of powerlines is
analyzed, disregarding the possibility of multiple powerlines
crossing or multiple conductors coming out from a single pylon
in different directions. Furthermore, the proposals assume very
dense, high-quality point clouds to work with.

The abovementioned literature is focused on high-voltage
powerline detection and characterization using aerial LiDAR.
However, some works use mobile terrestrial LiDAR data, like
Shokri et al. [18], for automatically extracting utility poles and
cables from low-voltage distribution powerlines. The method
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Fig. 1. Flowchart of the powerline detection algorithm.

converts the point cloud into a binary image, where the Hough
transform is applied to detect the conductors. After that, the
pylons are detected using height histograms along the detected
lines. In the work [19], a height filter was used to distinguish
between ground and wire points. Euclidean distance clustering
is applied to cluster the power transmission lines. The distance
parameter used in this clustering is fixed, so a lack of data
in the conductor could cause a single wire to be detected as
two or more conductors. Finally, the automatic extraction of
powerlines in railroad tunnels is proposed in [20], where they
use a multistep algorithm to denoise the data and remove both
the ground and lining of the tunnel. After that, the powerlines are
extracted with a 3-D cluster-based algorithm using 3-D annuli.
Point clouds obtained with terrestrial LiDAR usually have very
high densities compared to those from aerial LiDAR. Also, their
specific characteristics prevent the methods for processing both
types of point clouds from being interchangeable.

The proposal presented in this article does not use the cloud’s
rasterization, allowing it to obtain high-accuracy results, even in
low-density point clouds. Also, our proposal detects high- and
low-voltage powerlines in general-purpose aerial point clouds
without prior knowledge of their presence, being more useful
for studying large areas, which could lead to subsequent more
specific studies. Regarding the computational cost, the presented
algorithms have been parallelized and optimized to obtain the
highest performance on multicore processors.

III. METHODS

Our powerline detection algorithm consists of four parts, as
shown in Fig. 1. The transmission line point height-based filter
algorithm (TPF) carries out the selection of points suitable to be
part of a powerline, the Hough transform is used for detecting
straight lines, which later will be grouped in the clustering con-
ductor stage. Finally, the powerline characterization is carried
out to all the detected electrical conductors.

The following subsections explain the algorithm in detail.

A. Identifying Transmission Line Points via a Height-Based
Filter

The TPF identifies potential powerline conductor points in 3-
D point clouds both from LiDAR and photogrammetry. It detects
elevated points with no points immediately below, making them
candidates for powerline inclusion.

The different steps of the algorithm are depicted in Fig. 2.
The TPF implies computing the neighborhood of every point
available in the dataset, which is widely used when processing
point clouds [21]. We store the whole point cloud in an Octree,

a data structure that allows a fast and efficient computation
of points’ neighborhoods. Specifically, an implementation of
the method described in [22] is used. Among the different
neighborhood-defining kernels that could be used, we selected
the circular kernel since it’s invariant against rotations. So, the
neighborhood Ni of a given point is defined as

Ni := {pj : ||pj − pi|| ≤ R ∀ i �= j} (1)

where pi is the point whose neighborhood is being computed,
pj any other point, R the kernel radius, and || · || the L2 norm
of the point projections onto the XOY plane.

The algorithm analyzes the neighborhood of every point to
identify isolated points by computing the percentage of points
Ci with a vertical distance greater than a height threshold Hth.
If this percentage exceeds a given threshold, Cth, the point is
labeled as a powerline candidate. This method avoids the need
for a DTM, preserving accuracy.

The analysis involves computing two subsets within the
neighborhood of a given point. The first subset, denoted Wi,
includes all points in the neighborhood that do not belong to the
same conductor as the analyzed point. This subset is necessary to
address false negatives caused by neighboring points belonging
to the same conductor below the analyzed point. To mitigate this,
the wire thickness (Wth) is introduced as an estimated conductor
thickness. So, for the ith point, Wi subset is defined as

Wi := {nj ∈ Ni : |njz − piz| > Wth} (2)

where nj and njz are the jth neighbor and its height, respec-
tively, piz the height of the analyzed point, and Wth the wire
thickness.

The second subset Hi is defined from Wi via

Hi := {wj ∈ Wi : wjz +Hth < piz} (3)

where wjz is the height of the jth point belonging to Wi. Thus,
Hi is populated with points that are lower than Hth with respect
to the analyzed point.

Finally, a point is labeled as a powerline candidate if the
following condition is met:

Ci =
|Hi|
|Wi| ≥ Cth (4)

where |Hi| and |Wi| are the cardinalities of their respective sets
corresponding to the ith point, Cth the ratio threshold, and Ci

the computed ratio of the ith point.
The procedure to label a point as a candidate is illustrated

in Fig. 3. The blue point is the one being analyzed. Ni is formed
by all the points contained in the depicted cylinder. The yellow
points are inside the limits of the Wth parameter, so they are
excluded from Ni, forming the Wi set. The red points are inside
the limit imposed by Hth, so they are excluded from Wi to form
Hi. These two sets are then used to compute Ci and compare its
value against Cth.

In point clouds with high-voltage powerlines, multiple con-
ductors often lie in the same vertical plane. Thus, points of upper
conductors are typically not labeled as powerline candidates
due to the presence of points from other conductors below
them. To address this, our TPF algorithm is executed iteratively,
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Fig. 2. TPF flowchart.

Fig. 3. Example of TPF applied to a single LiDAR point.

excluding already labeled points. As the remaining points in
subsequent iterations are close to labeled points, neighboring
points of labeled points in the first iteration are stored, and the
process repeats using these points as seeds. This approach avoids
analyzing areas where no points were labeled initially, reducing
unnecessary overhead and focusing on areas more likely to
contain powerlines.

B. Powerline Detection: Hough Transform Adapted to 3-D
Point Clouds

Once the electric line candidate points are selected, we pro-
ceed to identify collinear points constituting lines long enough
to be considered an electric conductor. For this purpose, the
Hough transform is applied to them [23]. The Hough transform
is a widely used technique in image processing to detect straight
lines [24], [25], [26] or in point clouds to detect 3-D struc-
tures [27]. In these scenarios, the transform considers pixels
in an image that have a fixed size and a regular distribution. In
this article, we propose an adaptation of the Hough transform to
work directly with a 2-D projection of point clouds where, unlike
images, the distribution of points is irregular. The flowchart of
the proposed Hough transform algorithm is shown in Fig. 4.

In the Hough space H, each LiDAR point is represented by a
curve, given by the following:

x cos θ + y sin θ = ρ (5)

where (x, y) are the XOY projected spatial coordinates of the
LiDAR point, and (θ, ρ) the coordinates of a given point in H.
The transformation of a Euclidean space onto Hough space is
illustrated in Fig. 5. Each curve in Hough space corresponds
to a single point in Euclidean space. Curve intersections in

Hough space correspond to collinear points in Euclidean space,
so detecting highly populated bins in Hough space is equivalent
to detecting straight lines in Euclidean space.

To populate H, �180
As

� lines containing the analyzed point

are built in the interval [0◦, 180◦) with an angle step of As.
Distance to the origin (ρ) is calculated via (5). Therefore, given
an angle θ, each (x, y) is mapped into H as (θ, ρ). The number
of occurrences (votes) of each (θ, ρ) is stored in a matrix named
accumulator. The resolution of the Hough transform as the mini-
mum separation between two possible electrical conductors to be
detected separately is controlled by the grid spacing parameter,
Gs, which defines the vertical resolution of H.

The introduction of theAs andGs parameters is the first of the
two contributions of our work to the Hough transform so that it
can be used on nonrastered point clouds. The definition of these
parameters is much simpler with images because the dimensions
of the transform space match the original image space, so the
resolution is limited and fixed to the size of the image.

Two issues commonly arise when searching for the highest-
valued bins in an accumulator. First, surrounding bins of a
local maximum often have equally high values, causing the
detection of multiple lines for a single real line if not suppressed.
Second, the local maxima may have a neighboring cell with a
matching number of votes when the angle step value is very
low. This occurs due to contiguous values returning the same
discrete distance. Fig. 6 illustrates both issues, where the two
yellow central cells represent local maxima with the same value.
Additionally, the local maxima are surrounded by cells with
high values, potentially causing multiple detections of the same
line.

The second contribution of this work is the accurate sup-
pression of local maxima in Hough space by eliminating these
maxima without using heuristics.

In object-detection algorithms, NMS heuristics are common
but require parameter tuning. The standard NMS method selects
the highest values in the transform space and removes neighbor-
ing detections, which may also have high values and represent
the same object. The suppression radius is a key parameter:
low values cause multiple detections of the same object, while
high values may not differentiate closely spaced objects. Hence,
conventional NMS methods detect close objects like powerlines
in 3-D LiDAR point clouds. Barinova et al. [28] proposed a
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Fig. 4. Hough transform flowchart.

Fig. 5. Hough transform applied to a line formed by several discrete points.

Fig. 6. Zoomed-in local maxima in Hough space. The scale bar shows the
number of votes in each Hough space cell.

probabilistic framework for object detection related to the Hough
transform to avoid this issue. Another approach was presented
in [29], where a convolutional neural network was developed
as an alternative to the greedy NMS algorithms. Yu et al. [30]
proposed a size-adaptive clustering method to group the votes
that were likely to belong to the same object.

In our work, NMS is achieved as follows. The highest value in
the accumulator corresponds to the longest detected line in the
Euclidean space, whose votes are then removed from the accu-
mulator. This nonparametric attenuation correctly suppresses the
neighborhoods of the current maximum. The process continues
until the current maximum falls below a threshold (nmin). The
method is illustrated in Fig. 7, where Fig. 7(a) shows the original
Hough space, and Fig. 7(b) shows the result after removing
the curves of the first three detected lines. Note that, with our
approach, no parameters are required to carry out each iteration
of the NMS, but one parameter is needed (nmin) to stop iterating.
Additionally, we implemented the Hough transform for parallel
execution on manycore systems, whose performance is analyzed
in Section V.

C. Clustering Vertical Conductors

The 2-D Hough transform cannot distinguish several con-
ductors sharing a vertical plane. Previous works combining
the Hough transform with LiDAR data faced challenges in
distinguishing vertically spread conductors using 2-D projec-
tions [13], [31], [32]. A clustering approach for vertically spread
conductors was attempted in [19], utilizing Euclidean distance
clustering on terrestrial LiDAR data. However, this method fails
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Fig. 7. Application of our NMS method to a given Hough space. (a) Hough space before applying our NMS algorithm. (b) Hough space after detecting the first
three straight lines.

Fig. 8. Powerline to be used as an example in the clustering algorithm.

to handle missing data in lower conductors typically encountered
when scanning powerlines with airborne LiDAR.

We developed a robust algorithm capable of identifying mul-
tiple parallel conductors in the same vertical plane, even when
segments of conductors have missing data. It accomplishes two
tasks: determining the number of catenaries in the vertical plane
and segmenting each conductor individually. Having separate
conductors is essential for detecting objects near powerlines and
analyzing the powerline characteristics through mathematical
shape analysis.

To illustrate the algorithm, we will use a triple conductor
configuration, shown in Fig. 8, and extracted using the Hough
transform on the Diablo Canyon dataset [33]. Note the difference
in height between the conductors’ ends. It is crucial to consider
this height difference when correctly characterizing catenary
properties in later steps.

Let P be the points of a conductor detected with the Hough
transform. The applied Hough transform preserves the dimen-
sionality of the points. The orientation of the vertical plane
containing one or more conductors is arbitrary. Since it is
simpler to work with univariate functions, the transformation

Fig. 9. Powerline to be used as an example in the clustering algorithm.

D : R3 → R2 is applied to the set P , where

D (px, py, pz) :=

(√
(px − ox)2 + (py − oy)2, pz

)
. (6)

Here, the point o is defined as

o = (ox, oy) := (min {px : p ∈ P} ,min {py : p ∈ P}) . (7)

After the transformation, point coordinates are normalized
to the (0, 1) interval to improve the numerical stability of sub-
sequent steps. An example of the transformed and normalized
points is shown in Fig. 9.

The clustering algorithm exploits the fact that clusters consist
of quasi-parallel curves, which can be modeled using k-order
polynomials or the general catenary equation. Using the latter
requires a nonlinear fitting method with an unknown number
of iterations and initial parameter estimation. Polynomial fit-
ting does not require initial parameter estimation and can be
done at once using the Moore–Penrose inverse [34], making
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Fig. 10. Flowchart of the clusterization algorithm.

Fig. 11. Sampling intervals. In red, the lowest point belonging to each interval.

it computationally more efficient. With this, it is reasonable
to perform the fitting using a k order polynomial. Since the
actual catenary equation is an even function, only even degree
best-fitting polynomials are relevant. Let �x = (x1, . . . , xm) and
�y = (y1, . . . , ym) be the two sets of coordinates in the normal-
ized space. The algorithm objective is to get n polynomials
with coefficients �wn = (wn

0 , . . . , w
n
k ) that fit every curve in the

dataset. Therefore, the number of polynomials n will match
the number of conductors sharing the same vertical plane. A
flowchart of the clustering algorithm is shown in Fig. 10.

To compute the best-fitting polynomials, an algorithm based
on the Moore–Penrose inverse and RANSAC [35] is proposed.
The former is used to compute the vector of coefficients �w that
defines the best-fitting polynomial while the RANSAC algo-
rithm takes care of undesired outliers, varying point densities,
and lack of data points.

The RANSAC algorithm needs appropriate points belonging
to a curve as input. To choose the samples, the x-axis is equally
divided intonbin intervals, wherenbin =

√
N , beingN = |P |. In

each interval Si, the point p = min{py : p ∈ Si} is selected as
a suitable sample, as shown in Fig. 11. Note that if point density
is not uniform, or there is a lack of data, upper curve points
could be selected in this step. Once the samples are selected,
the RANSAC algorithm is executed. The maximum number of

polynomial fittings in each RANSAC execution is defined by
the variable ntrials, given by

ntrials =

(
nbin

nsamples

)
. (8)

This choice ensures that every combination of nsamples = k +
1 is used to compute the best-fitting polynomial. Finally, the �wn

polynomial is used to compute �̂y = (ŷ1, . . . , ŷn), i.e., the vector
containing predictions for every point in the subset. Therefore,
the points belonging to the lowest catenary are those satisfying

|ŷi − yi| ≤ ε (9)

where ε is the maximum difference in the y coordinate for a
point to be included in the catenary.

The selected points, as shown in Fig. 12(a), are removed from
the subset, and the process is repeated until all points in the
subsets are associated with exactly one catenary, leading to the
result shown in the example of Fig. 12(b).

To test the robustness of the method, synthetic parallel cate-
naries were used with different point densities and introduced
holes. A steep slope was also included to observe its impact on
point selection. Random noise following a Gaussian distribution
N(1.0, 0.02) was added to mimic real LiDAR data behavior.
The intermediate steps and final results are shown in Fig. 13.
The middle row displays the curve sampling results, with cir-
cles representing points used for the best-fitting curve in the
RANSAC algorithm and crosses representing outliers.

D. Powerline Characterization

Based on the clustering results, we can calculate catenary-
defining parameters, such as conductor length and linear density-
to-tension ratio. These help assess compliance with powerline
regulations, and unusual values may indicate issues that require
further inspection.

A catenary curve is shown in Fig. 14. Two reference systems
are defined: one whose origin is at the left anchor point, and
another at a distanceabelow the lowest point of the catenary. The
former is known as reduced axis reference system. A symmetric
catenary in the reduced axis reference system is defined by

y(x) = a cosh (
x

a
) [36], [37]. Nevertheless, it is common for

the conductor anchor points to be at different heights, causing
the position of the lowest catenary point to be unknown. Here,
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Fig. 12. Clusterization of the points using the curve fit with the lowest points in the subset.

Fig. 13. Clusterization using the curve fit with the lowest points in the subset on a synthetically generated set of catenaries. All subplots share axes.
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Fig. 14. Diagram of a catenary curve. (Xr, Yr) are the reduced axis, and
(X,Y ) are the general axis.

the catenary is asymmetric and defined with respect to one of its
anchor points. The general catenary equation is given by

y(x) = y0 + a cosh

(
x− x0

a

)
(10)

where (xo, yo) are the translation parameters from the catenary
axis with respect to the reduced one. To compute the three
unknown parameters of (10), we use the known position of the
anchor points and the length of the curve between them. The
three conditions lead to the equation system⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

l = a sinh
(x0

a

)
+ a sinh

(
xB − x0

a

)

yA − y0 = a cosh

(
xA − x0

a

)

yB − y0 = a cosh

(
xB − x0

a

) (11)

where l is the length of the catenary, yB the vertical distance
between anchor points, and xB the horizontal distance between
anchor points. This system can be reduced to√

l2 − y2B = 2a sinh
(xB

2a

)
. (12)

Here, (xB , yB) are known, and l can be computed by the
integral

l =

∫ xB

xA

√
1 +

(
d�wn

dx

)2

dx. (13)

Equation (12) can be expressed as

f(λ) = sinh λ − kλ (14)

where λ = xB

2a and k =

√
l2−y2

B

xB
. In order to compute the roots

of (14), Brent’s method [38] was used due to its superior
convergence ratio when compared to traditional root-finding
algorithms, such as the secant, bisection, or Newton’s. Brent’s
method requires an initial interval containing the root. The graph
of (14) is shown in Fig. 15. For values k ∈ R : k ≤ 1 or k ∈ iR,
the equation only has the solution λ = 0, which corresponds

Fig. 15. Graph of f(λ) for several k values.

to the case where the existence of a conductor is physically
impossible. When k > 1, there are always three roots, and two of
them (x < 0 and x = 0) are physically meaningless. Therefore,
Brent’s algorithm allows us to find the positive root of (14). The
initial search interval is defined as (ε, b), being ε a tiny positive
value such as f(ε) < 0, and b the first encountered value such
as b > 0, f(b) > 0 and f(ε) · f(b) < 0. Once λ is computed, a
parameter is easily calculated as a = xB

2λ
.

After computing a, solving another transcendental equation
to compute the x0 parameter is necessary. By subtracting the
equations of the catenary passing through points A and B, the
following function is obtained:

f(x0) = a cosh (εA)− a cosh (εB) + yB − yA (15)

where εA =
xA − x0

a
and εB =

xB − x0

a
. As shown in Fig. 14,

x0 must be between both anchor points, so to obtain the roots of
(15), the Newton–Raphson [39], [40] method is chosen, which
only requires an approximate value of the function root as input.
In this case, the midpoint between both anchor points is chosen.

Finally, oncex0 is computed, the computation ofy0 is straight-
forward using the catenary equation at any known catenary point.

E. Validation of the Characterization Procedure

Numerical estimation of catenary coefficients gives off an
error term since none of the methods is exact. Using a polynomial
fitting, the main error source is controlled by the polynomial
degree, whereas using the catenary equation directly, the chosen
nonlinear algorithm is the main source of error.

Let x0 = 1.0 m, y0 = 2.0 m, and a = 5.0 m define a catenary
in the interval x ∈ [−2.5, 10] m. Its length, computed using the
analytical formula in (11), is l = 18.5037 m. Table I shows the
errors in parameter estimation, which decrease as the polynomial
degree increases. While the error is minimal with the actual
catenary equation, the disadvantages outweigh the slight im-
provement compared to the 8th-degree polynomial fitting, which
justifies its use.
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Fig. 16. Orthomosaics of the areas used in the different tests. (a) Corresponds to the area of Diablo Canyon, USA. (b) Corresponds to the surroundings of Lugo,
Spain.

Fig. 17. Point clouds of the areas used in the different tests. (a) Diablo Canyon. (b) Surroundings of Lugo.

TABLE I
COMPARISON OF THE ERROR (%) IN THE CATENARY PARAMETERS

NUMERICALLY COMPUTED WHEN USING DIFFERENT POLYNOMIALS AND THE

ACTUAL CATENARY EQUATION

IV. EXPERIMENTS AND RESULTS

Three datasets were used to validate the proposed method.
The first point cloud, Fig. 16(a), corresponds to a subset of
the Diablo Canyon dataset provided by OpenTopography [33].
With 8 097 766 points, being 5 154 540 ground points, and a
density of 8.93 pts/m2, it includes some power transformers and
several high-voltage powerlines. The second dataset, privately
provided by Babcock International [41], contains medium and

low-voltage powerlines and corresponds to the surroundings of
the city of Lugo (Spain). Its average density is 15 pts/m2 for a
total of 2 520 403 points, being 1 774 792 ground points. The
orthomosaics of these two datasets are shown in Fig. 16, and
the corresponding point clouds in Fig. 17. The third dataset is
the well-known DALES benchmark [42]. The average density
of this dataset is 50 pts/m2, for a total of 505 311 573 points. The
dataset is divided into 40 disjoint tiles, containing on average 12
million points each. Not every tile contains powerlines, so we
have selected four tiles to carry out the experiments: 5105_54460
(dales10), 5130_54355 (dales17), 5135_54435 (dales19), and
5180_54485 (dales36), according to the dataset naming conven-
tion. The number of points of the combined tiles is 51 249 744,
of which 19 381 307 are ground points.

The datasets were chosen to fill three gaps found in state-
of-the-art works. First, and to the best of our knowledge, few
works show high-voltage electrical towers at very different
heights above ground level [17]. Second, tests in those works
are only carried out on point clouds where a single powerline
appears. Third, mid- and low-voltage powerlines are not usually
considered.
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Fig. 18. Results of the TPF applied to the Diablo Canyon dataset.

A. Results on the Diablo Canyon Dataset

The results of the TPF on Diablo Canyon dataset are shown in
Fig. 18, with parameters R = 1.0 m, Hth = 3.5 m, Cth = 0.90,
and Wth = 0.15 m. Note a cut in the northern conductors due
to the lack of data in the original dataset. The TPF successfully
removes all nonconductor points, except for a few isolated points
at the bottom and around the catenaries. The algorithm detects
top catenaries of multilevel powerlines by running the filter
multiple times in the initial filter areas. Overall, all conductors
in the scene are correctly preserved for further processing.

The TPF-generated point cloud underwent the adapted Hough
transform on its 2-D projection over the XOY plane. The Hough
transform parameters are As = 0.1◦, Gs = 0.1 m, and nmin =
25. Fig. 19(a) shows each detected line colored differently.
The Hough transform successfully removes spurious points,
leaving mostly those associated with electric conductors. An
interesting situation not observed in any reviewed work occurs
in the bottom left of Fig. 19(a): a pair of conductors anchored in
a horizontal plane at one end and in a vertical plane at the other.
A closer look is depicted in Fig. 19(b). While the conductors
are well differentiated, there are slight discrepancies where the
conductor plane rotates along its axis. This behavior is expected
as the Hough transform may struggle with such geometries. The
conductors from the electrical transformer are correctly detected
as well.

In the Hough transform results, an interesting effect is ob-
served where a few points are distributed among parallel con-
ductors belonging to another detected conductor. This occurs
because the algorithm detects straight lines based on the number
of points, without considering their proximity. Hence, points
aligned with a previously detected line are misclassified. This
effect, evident throughout the entire point cloud in Fig. 19(a),
was not addressed in previous papers as they focused on de-
tecting independent powerlines separately. However, it will be
addressed in a postprocessing stage.

B. Results on the Lugo Dataset

The experiment used the same parameters as the previous one
to demonstrate the algorithm’s applicability to various datasets,
ranging from mid- to low-voltage powerlines, without multiple

conductors sharing the same vertical plane. The results [see
Fig. 20(a)] show accurate preservation of all conductors after the
initial filter, but some spurious points are present. The Hough
transform [see Fig. 20(b)] also labels some points incorrectly
due to alignment with longer conductors. However, these issues
can be easily corrected by analyzing each point local neigh-
borhood. A detailed view of a low-voltage powerline crossing
below a mid-voltage powerline is shown in Fig. 20, highlighting
the algorithm capability to detect crossing wires, which is not
covered by existing research.

C. Results on the DALES Dataset

The same parameters used with Diablo Canyon were used
in this experiment. High-, mid-, and low-voltage powerlines
are present across the selected tiles. The algorithm correctly
detected all of them without altering the initial parameters.
Nevertheless, in dales19, there are parts of a powerline that are
filtered by the first stage of the algorithm [see Fig. 21(a)]. Since
most typical LiDAR scanners do not typically use wavelengths
compatible with water detection, there are no points below those
powerline slices. Therefore, in the candidate search, the value
of Ci does not exceed the required threshold, since the set Hi

is empty. In dales10, a low-voltage powerline in an urban zone
is correctly detected [see Fig. 21(b)]. This powerline is very
close to nearby higher vegetation. Despite the proximity, the
algorithm is able to detect the powerline without any issues.
In dales17, both high- and low-voltage powerlines are present
in the scene. Furthermore, the low-voltage powerline crosses
below the high-voltage powerline. The algorithm can detect
both powerlines correctly. The results of the algorithm on the
DALES dataset are shown in Fig. 21(c). Finally, dales10 is a
demonstration of the algorithm’s capability to detect powerlines
of any voltage in urban areas. In this tile, three powerlines with
different voltages run in parallel [see Fig. 21(d)], being the
low-voltage a multilevel powerline. The algorithm is able to
detect all powerlines accurately. Nevertheless, the distribution
powerlines that carry the electricity to the houses are not detected
in this case, because their distance to the ground is lower than
the Hth parameter used in the experiment.

D. Quantitative Evaluation

In order to evaluate the performance of the proposed algo-
rithm, the results were compared with the ground truth cor-
responding to each dataset. Diablo Canyon and Lugo datasets
were labeled by hand using CloudCompare [43]. In the DALES
dataset, the labels corresponding to powerlines’ conductors were
changed from 5 to 14 to comply with the LAS specification
v1.4 [44] and to unify the evaluation method with the rest of the
datasets.

To evaluate the classification of the powerlines, precision,
recall, specificity, accuracy, and F1-score are computed for each
dataset [45].

The root-mean-squared error (RMSE), mean absolute error
(MAE), and the goodness of fit (R2) metrics are also com-
puted for each dataset to evaluate the characterization of the
powerlines. The shown values are the mean and the standard
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Fig. 19. Results of the Hough transform applied on the Diablo Canyon dataset. (a) Detected powerlines in the entire dataset. (b) Detail of a pair of powerlines
anchored in a horizontal plane at one end and in a vertical plane at the other.

Fig. 20. Different stages of the powerline detection algorithm applied to the Lugo dataset. (a) Results of the TPF algorithm. (b) Hough transform results.
(c) Detail of crossing powerlines.
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Fig. 21. Results on Dales dataset. (a) Detail of not detected parts of a powerline due to the water presence in the dales10 dataset. The points in gray in the central
powerlines are not classified. (b) Detected powerline is very close to the nearby vegetation. (c) Low-voltage powerline crossing below a high-voltage powerline.
(d) Powerlines with different voltages run in parallel in an urban environment.

TABLE II
PERFORMANCE METRICS

deviation of the metrics obtained for every powerline in the
dataset.

The results are shown in Table II. The Diablo Canyon dataset
shows an extremely high specificity and accuracy. This is due
to the relation between the number of points belonging to pow-
erlines’ conductors and the total number of points in the dataset
since only 0.493% of the existing points belong to wires. The

values for the recall and precision are explained with the number
of false negatives (FN) and false positives (FP), respectively.
The vast majority of FP correspond to the structure located at
the bottom of the scene, which belong to a power transformer
[see Fig. 22(a)]. There are several hanging structures that are
detected by the algorithm that were not considered powerlines
since their nature was not known when labeling. On the other
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Fig. 22. Detailed view of the Diablo Canyon dataset. (a) Power transformer. The detected low lines across the power transformer were not labeled as powerlines.
(b) Pylons. The upper parts of the pylons are sparse enough to pass the first stage of the algorithm.

Fig. 23. Detail of false negatives in the Lugo dataset.

hand, the FN are caused, indirectly, by the low density of the
dataset. The FN mainly belong to the pylons, which usually, in
this dataset, are composed of sparse points that are not filtered in
the first stage of the algorithm [see Fig. 22(b)]. Since the points
are aligned with the conductors themselves, they are included
as part of the detected catenaries.

Regarding the powerline characterization, the model demon-
strates strong performance, as indicated by the low RMSE and
MAE values of 0.080 and 0.066 m, respectively. This suggests
that the model’s predictions are close to the actual values on
average, with little deviation. Additionally, the high R2 value of
0.999 indicates that the model explains nearly all the variance
in the data, reflecting an excellent fit.

As for the results in Lugo, the specificity and accuracy are
the highest (they are rounded to the third decimal), since the

values of FP and FN are negligible with respect to true negatives
(TN). Compared with Diablo Canyon, the recall and precision
are higher in this case, since the dataset contains only mid-
and low-voltage powerlines. This kind of powerlines typically
have simpler pylons, whose points are correctly managed by
our algorithm. Also, the density in this point cloud doubles the
density of the Diablo Canyon dataset, which helps to detect the
powerlines more accurately. In this dataset, the FN are mostly
embedded in the correctly detected catenaries, as shown in
Fig. 23. This is a direct consequence of the parameters used
in the Hough transform. The line detection is fine enough to
add the points marked in Fig. 23 as part of an independent line.
Since each of those lines contains fewer points than nmin, they
are not detected as a straight line, and therefore, not labeled as
such. Reducing the fineness of the parameters leads to those
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Fig. 24. Detail of mislabeled conductors as pylons in the DALES dataset.

points being correctly detected, at the expense of increasing the
number of false positives. The catenary modeling algorithm is
able to deal with missing points in a given catenary, but not with
points incorrectly classified as such, so these false negatives are
assumable.

The performance for Lugo dataset depicts outstanding model
accuracy, with the lowest RMSE and MAE values among the
analyzed sites, at 0.024 and 0.019 m, respectively. These values
indicate minimal errors in the model’s predictions, showcasing
its precision in estimating the target variable. Furthermore,
the R2 value of 0.996 suggests that the model accounts for
a significant portion of the variance in the data, indicating a
robust fit. Lugo stands out as a site where the model performs
exceptionally well, demonstrating its reliability in predicting
outcomes accurately.

Our algorithm exhibited competitive performance on vari-
ous tiles of the DALES dataset for powerline detection. The
recall scores ranged from 0.827 to 0.891, indicating the model
consistently identified a substantial portion of true powerline
points across different tiles. Precision remained consistently
high, with values between 0.978 and 0.997, demonstrating a low
rate of false positives. This suggests the algorithm effectively
distinguished powerlines from other objects in most cases. Some
of the detected conductors are labeled as pylons in the ground
truth, as shown in Fig. 24. Note that this slightly reduces the
precision value of this dataset.

The model fitting in dales10 and dales19 exhibit relatively low
RMSE and MAE values, indicating precise predictions, dales17
and dales36 show higher values, suggesting greater prediction
errors. Notably, dales17 exhibits a notably lower R2 value of
0.808, indicating that the model explains a smaller proportion
of the variance in the data compared to other sites. Despite this,
all DALES datasets display overall high accuracy, with R2 values
ranging from 0.958 to 0.991, highlighting the model’s capability
to capture the underlying trends in the datasets. These lower
values can be explained by the nature of our algorithm, which

uses the lower points in each catenary to perform the fit. In dales
dataset, the wires could be as thick as 0.5 m, which explains the
relatively high values for RMSE and MAE.

The specificity remained perfect for all subsets, signifying a
flawless ability to differentiate powerlines from other elements
within the scene. However, it is essential to acknowledge that a
perfect specificity is due to the class imbalance in the dataset,
where powerlines are a small proportion compared to other
elements, as discussed in the previous datasets.

Overall accuracy scores were very high, ranging from 0.999
to 1.000. However, it is important to consider the F1-score,
which balances precision and recall. Scores ranged from 0.896 to
0.941, demonstrating a good tradeoff between these metrics. The
variation is due to the wide range of different powerlines present
across all tiles, that were detected using the same parameters for
the algorithm.

To reduce the class imbalance when computing the specificity
and accuracy metrics, we have additionally computed them
without considering the ground points. Since no ground points
are classified as powerline, recall, precision, andF1-score are not
affected by this experiment. The results are included in Table II.
The variation in the accuracy and specificity is minimal, which
indicates that neither the ground nor other elements in the point
cloud are misclassified as powerlines.

The comparison of the results with other state-of-the-art meth-
ods is shown in Table III. The values of our method correspond to
the average of the scores across all the tested datasets. The total-
ity of the reviewed algorithms work with point clouds acquired
specifically to detect and characterize powerlines, usually with
flights parallel to the powerlines themselves, so their presence
and position are known beforehand. Most methods achieve a
precision higher than 0.9, which indicates that the state-of-the-
art methods have a low rate of miss-classifying nonpowerline
points as powerlines. Our method achieves a precision of 0.972,
which is slightly lower than the best value in the table. Second, all
methods have a recall higher than 0.85 while our value is slightly
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TABLE III
COMPARISON OF SEVERAL POWERLINE CLASSIFICATION METHODS

Fig. 25. Sensitivity analysis of the algorithm parameters. The study was carried out on the Diablo Canyon dataset.

lower. In any case, a direct comparison between methods is not
possible due to the different characteristics of the acquisition
methods and the datasets. As far as we know, this work is the
first to use such a variety of datasets and types of powerlines to
test the algorithm. The results show that our proposal is able to
detect powerlines of any voltage, with less dense datasets, with
any kind of pylon, and with a high degree of precision.

Regarding the RMSE, we achieve a better value than the only
work found that uses ALS for reconstructing the powerlines. The
other found values were taken using MLS, implying a higher
degree of precision in the point cloud, so a direct comparison is
impossible.

Another work that used ALS for powerline classification was
proposed by Roussel et al. [46]. In this work, the quantification
of the results is carried out in terms of correctly classified
conductor length and the number of correctly detected pylons.
Based on this, they extrapolate the results assuming a constant
density across all datasets to a point level classification in order
to calculate the precision and recall metrics, obtaining values
of 0.997 and 0.989, respectively. For this reason, we have not
included this work in the comparison table. Furthermore, the
presented method relies on having a detailed map of the position

of the powerlines available, when our proposal does not need
such information, in addition to being agnostic with respect to
the presence of powerlines in the analyzed point cloud.

E. Parameters Sensitivity Analysis

The sensitivity of the algorithm to the parameters was tested
using the Diablo Canyon dataset. The parameters tested were
R, Hth, Wth, Cth, and nmin. Several values for each parameter
were chosen to perform the analysis and the combination of all
parameters was tested, which yielded 1024 experiments. The
representation of each parameter is done by fixing the rest of
the parameters to its control value. Both the control values and
the chosen study range are shown in Table IV. The ranges were
chosen for reasonable parameter values based on regulations and
on the authors’ experience. The sensitivity analysis results are
shown in Fig. 25. For each subplot, the precision, recall, and
F1-score are shown as a function of the corresponding variable
while fixing the other four variables to the default value.

For R, the precision sightly drops with increasing values of
R, while the recall does the opposite. This compensates for the
F1-score, which remains almost constant. In the case of Hth,
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TABLE IV
PARAMETERS RANGE FOR THE SENSITIVITY ANALYSIS

Fig. 26. Influence of the point density on the algorithm. The study was carried
out on the Diablo Canyon dataset.

the recall value remains practically constant across executions,
while the precision slightly improves, reaching the maximum for
3.5 m, which supports the choice of the default parameter. In the
case of Wth, the value of the precision quickly drops from 0.5 m.
The reason is that when increasing theWth, the number of points
of the Wi subset is reduced, so the value of Ci is greater. Thus,
more points pass the first stage of the algorithm, yielding more
false positives. The recall also increases for the same reason,
since more true positives are detected in the first stage. As for
theCth, the recall rapidly drops from 0.9. This is due to the strong
restriction the parameter imposes on the points to pass the TPF,
so a lot of points belonging to electric wires do not reach the
second stage of the algorithm. Regarding the nmin, the precision
increases with the parameter value, reaching a perfect value for
the higher values of nmin, at the cost of not detecting most of
the wires, which causes the recall, and therefore, the F1-score,
to drop significantly.

The maximum obtained F1-score is 0.874 for the values R =
2.0, Hth = 3.0, Wth = 0.5, Cth = 0.95, and nmin = 10.

F. Influence of the Point Density

The influence of the point density was analyzed using the
Diablo Canyon dataset. The point cloud was downsampled 20
times, in evenly spaced steps, from the original density of 8.93 to
0.89 pts/m2. The classification results in terms of the density of
the point cloud are shown in Fig. 26. The curve nmin = 25 shows

Fig. 27. Execution times for Diablo Canyon dataset.

an almost constant F1-score over 5 pts/m2. The quality of the
classification drops exponentially for low densities. Note that the
algorithm parameters were unchanged for every density test. The
drop in theF1-score is mainly due to the fact that, below a certain
density, the catenaries are made up of fewer points than nmin,
and therefore are not detected by the Hough transform. When
setting nmin = 10, the F1-score remains constant until 3 pts/m2.

V. COMPUTATIONAL PERFORMANCE

To test the performance and scaling of the algorithm in many-
core systems, a parallel C++20 implementation of the algorithm
was developed and executed on the Diablo Canyon dataset.

Tests were carried out on the supercomputer FinisTerrae 3
(FT3) [52]. Since the parallelization is based on a shared-
memory model, only one node of the FT3 is used in the tests.
The node is composed of two sockets, each with 128 GiB of
DRAM, and an Intel Xeon Platinum 8352Y processor with 32
physical cores. Each processor is split into two logical NUMA
nodes of 16 cores each. Thread affinity was set so that threads are
located in the fewest NUMA nodes while still using one thread
per core.

The stages of the method to be analyzed are the TPF and
the Hough transform, see Fig. 1, since the execution time of
the postprocessing is negligible compared to those. To measure
the quality of the parallelization, besides execution times, we
use the efficiency ε = S

N , which is the ratio between the speedup
S and the number of threads used N . Theoretically, ε ∈ [0, 1],
unless other phenomena like super-linearity occur [53].

Fig. 27 shows the execution times of the different phases
of the algorithm, while Fig. 28 shows the obtained speedup
and efficiency. In the sequential implementation, powerlines are
detected and processed in 37 s. When exploiting parallelism, the
execution time is reduced to about 1.4 s each phase, and less than
3 s in total.

The TPF algorithm scales particularly well, with efficiency
above 80% up to 16 threads. With more cores, efficiency de-
creases because of the use of two NUMA nodes, making memory
operations slower for remote threads. Similarly, the speedup of
the Hough transform grows up to 16 threads and stalls from
then on. Since the overhead of launching and synchronizing
a pool of threads grows with the number of threads, there is
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Fig. 28. Speedup and efficiency for Diablo Canyon dataset.

a point where the benefits are not enough to compensate for
that overhead. That affects the different stages of the Hough
transform, such as maxima suppression, which already implies
very small execution times for each call in sequential execution.

VI. DISCUSSION

Some important aspects that can be analyzed in applying
our proposal are the use of preprocessing stages to reduce the
number of input data, the influence of the parameters that rule the
method, and the achievements obtained with different datasets,
particularly DALES.

The TPF was designed not to rely on the use of a DTM, as it is
not always available, and its generation may be computationally
expensive depending on the generating algorithm chosen and
the resolution used. In case the DTM is provided together with
the dataset, it is possible to reduce the number of points to
be checked as powerline candidates in the first stage of the
algorithm by filtering out the ground points classified by using
the information provided by the DTM. This would avoid the
computational burden of applying the TPF to points belonging
to the ground. Nevertheless, reducing the number of points to
be checked in the TPF is not only applicable to DTMs but to
any algorithm that can filter out other point classes, such as
vegetation, which often are the most abundant in airborne point
clouds in forested areas, or buildings. The classification errors
any of these algorithms may produce will be propagated to the
TPF and, therefore, to the rest of the stages of the algorithm.

Regarding the TPF parameters, the default values for R, Hth,
Wth, andCth are shown in Section IV-A. The values were chosen
so the algorithm is valid for detecting powerlines of any voltage,
but they can be adapted to the user’s need. The value of Hth can
be thought of as the minimum height an electric conductor must
have to be detected in this stage of the algorithm. Thus, this pa-
rameter can be set taking into account the local legislation of the
analyzed area. The inclusion of the Wth parameter was needed
for improving the algorithm’s performance in those cases where
two or more conductors run in parallel so close to each other that
they cannot be distinguished in an airborne point cloud. Also, for
those powerlines with the highest voltages, the wires are thicker
than usual. This, added to the fact that the greatest error in the
LiDAR measurement occurs along the beam, can result in the
cylinder created under the point being analyzed being populated
by points of the conductor itself. TheWth parameter prevents this

situation. This parameter’s ideal value is the wire’s expected
width, added to the average error of the sensor used. Since the
algorithm must operate in areas where both the presence and
the characteristics of a powerline are unknown, the value of
this parameter has been chosen by excess. Finally, the Cth were
chosen to be a ratio to make the algorithm independent of the
point cloud density. A value of 1 would mean that the cylinder
under the analyzed point must be empty to consider the point as
a powerline candidate. The value of 0.9 gives some tolerance
and allows the presence of a few points inside the cylinder,
which yields to the correct detection of powerlines very close to
obstacles. None of these parameters has a direct impact on the
computational performance of the algorithm.

Considering the parameters of the Hough transform (As,
Gs, nmin), they control the resolution and the stop condition
of the algorithm. While As is used for controlling the angular
resolution of the Hough transform, in combination with Gs

it determines the length of the longest single line that can be
detected. When the distance between two voting points in the
Hough transform is greater than Gs · sin(As), they will have
different bins in the accumulator for the same value of θ, so
the points will be part of different lines. The variation of As

deeply impacts the computational cost of the algorithm, as it
directly controls the number of votes each point will cast. The
nmin parameter is used to remove the lines with a low number of
votes, which are likely to be spurious. This parameter does not
have an impact on the computational performance.

Our study represents the first application, to the best of our
knowledge, of a powerline detector on the well-known DALES
dataset. Since its publication, this dataset has been the reference
benchmark for airborne LiDAR data. The dataset is diverse
enough to demonstrate the algorithm’s effectiveness across a
varied set of powerlines. The scarcity of publicly classified
datasets for airborne LiDAR research is a common issue within
the scientific community. This shortage hampers the validation
and evaluation of algorithms in this field, often leading to manual
labeling of datasets. Regarding the comparison of results with
other works, a direct comparison has been challenging due to the
lack of publicly available datasets typically utilized in previous
studies. By utilizing DALES, we hope that future researchers
directly compare their findings with our method under the same
scenarios. The utilization of a widely accessible dataset like
DALES serves to promote transparency, reproducibility, and
facilitates benchmarking efforts within the field. As more studies
adopt standardized datasets, more meaningful comparisons and
advancements in algorithmic approaches for airborne LiDAR
analysis will be enabled.

VII. CONCLUSION

This work presents a method to detect and characterize pow-
erlines. The main contribution is that the method was designed to
be able to detect several ensembles of powerlines in an airborne
point cloud not acquired specifically for this goal. Also, we have
proven that the method is valid for detecting both high and low-
voltage powerlines, even in the presence of overlapping, and the
methods could be applied both to LiDAR and photogrammetric
3-D point clouds.
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Furthermore, when developing the Hough transform, we had
to deal with the NMS casuistic. Several authors have addressed
NMS in the field of image-based object detection. We developed
a nonparametric method that removes only the exact needed
amount of votes in the accumulator, and we proved that its
parallel implementation is not only fast but very efficient in
terms of taking advantage of all the physical available cores.
Thus, the detection algorithm requires only a few parameters
related to the approximate dimensions of the powerlines. These
parameters could be tuned to adapt the algorithm to the detection
of powerlines in different places since their geometry could
vary from one region to another. An exhaustive analysis of their
influence was performed, and default values were identified.

Since the 2-D version of the Hough transform for point clouds
was proposed, a method to determine whether a powerline is
composed of several stacked vertical conductors was developed.
With this method, not only are we able to determine the number
of individual conductors that belong to a given powerline, but
also to compute the catenary curve parameters even in conduc-
tors with point densities as low as 5 pts/m2, or lack of points
along their span.

Finally, a detailed study of the computational performance of
the algorithm was carried out, demonstrating that the execution
of the method is very efficient in a manycore machine and its
scalability is very high.
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