
Natural Language Engineering (2022), 1–00
doi:10.1017/xxxxx

ARTICLE

An Unsupervised Perplexity-Based Method for
Boilerplate Removal
Marcos Fernández-Pichel ∗, Manuel Prada-Corral ∗, David E. Losada, Juan C. Pichel and Pablo
Gamallo

Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela, 15782
Santiago de Compostela, Galicia (Spain)
marcosfernandez.pichel@usc.es

(Received xx xxx xxx; revised xx xxx xxx; accepted xx xxx xxx)

Abstract
The availability of large web-based corpora has led to significant advances in a wide range of technologies,
including massive retrieval systems or deep neural networks. However, leveraging this data is challenging,
since web content is plagued by the so-called boilerplate: ads, incomplete or noisy text, and rests of the
navigation structure, such as menus or navigation bars. In this work, we present a novel and efficient ap-
proach to extract useful and well-formed content from web-scraped data. Our approach takes advantage of
Language Models and their implicit knowledge about correctly formed text, and we demonstrate here that
perplexity is a valuable artifact that can contribute in terms of effectiveness and efficiency. As a matter of
fact, the removal of noisy parts leads to lighter AI or search solutions that are effective and entail important
reductions in resources spent. We exemplify here the usefulness of our method with two downstream tasks,
search and classification, and a cleaning task. We also provide a Python package with pre-trained models
and a web demo demonstrating the capabilities of our approach.

1. Introduction
Web crawling is a widely used technique to obtain textual collections for multiple purposes in the
fields of Natural Language Processing (NLP) and Information Retrieval (IR). However, isolating
relevant content from web pages is far from trivial. Noisy links, menus, navigation bars, and
other extraneous elements –the so-called boilerplate– impoverish the performance of downstream
applications (Kohlschütter 2009; Yi et al. 2003) and impose a substantial load on the systems (e.g.,
leading to higher storage requirements or larger search and classification times).

Traditional approaches to this problem follow rule-based or supervised learning approaches
(Vogels et al. 2018; Vieira et al. 2006). In this paper, we propose a novel unsupervised strategy
to perform the removal of boilerplate content. A Language Model (LM) is used to compute a
perplexity value, which computes the logarithm of the probability for a given sentence according
to the model distribution. This score can be seen as the “unlikeliness” of the sentence, which can,
in turn, be employed as a way to identify boilerplate and other non-language noise.

Our proposal also addresses efficiency issues by reducing execution times and storage require-
ments. As a non-supervised method, no specific training process is required and the resulting
systems are lighter, computationally efficient, but still effective. This is intimately related to the
current trend on Green AI solutions. Some authors (Schwartz et al. 2020; Duhart et al. 2019;

*These authors contributed equally to this work
© Cambridge University Press 2022

2 Natural Language Engineering

Henderson et al. 2020) have begun to warn about the problem of focusing only on the performance
metrics of algorithms and ignoring other economic, environmental and social costs. Schwartz et al.
(2020) also underlined the need to guarantee access to state-of-the-art technologies without huge
investments being made. They propose to increase the importance of efficiency criteria when eval-
uating AI algorithms and studies. We believe that perplexity can become a valuable pre-processing
element with potential to support multiple text mining applications and, more specifically, it can
act as a formal pruning device that leads to energy efficient solutions.

The main contributions of this paper can be summarised as follows:

• A novel unsupervised method for boilerplate removal based on Language Models and
perplexity estimation is proposed.

• In terms of effectiveness, we show that this perplexity-based technique leads to improve-
ments in an information retrieval search task and in a classification task. To that end, we have
experimented with different datasets and evaluation metrics. In addition, we also demonstrate
the potential of perplexity for a well-established webpage cleaning task.

• Efficiency criteria have been carefully considered, and we show that removing boilerplate
following a perplexity approach produces substantial reductions in storage space and yields
low execution times. The offline (pre-processing) requirements of the boilerplate removal
stage are quickly compensated for the computational advantages associated to the resulting
noise-free web contents when they are used in search or classification tasks

• A Python package named PYPLEXITY has been built and it is freely available to usea. It
offers all the functionalities developed for this experimentation: removing HTML tags from
a web document and computing perplexity for a given sentence, file or dataset. An online
demob is also available to test our models.

The rest of the paper is organised as follows. Section 2 reviews some papers related to our
research. In Section 3 we explain our unsupervised method for boilerplate removal. Section 4
reviews the experimental settings utilised to conduct the study. Performance and efficiency results
for all tasks are reported in Section 5. Section 6 discusses the main findings and Section 7 presents
the Python package and web application. The paper ends with some conclusions.

2. Related work
Seminal approaches to boilerplate removal were rule-based. For example, Finn et al. (2001)
utilised the position of HTML tags in web pages to determine a series of heuristics for extracting
the main content. However, this method is rather rigid and cannot handle web documents that
follow new structural patterns.

Later, some research teams considered DOM trees and HTML pages divided into blocks and
employed supervised learning methods to discern between useful and non-useful blocks. Bauer
et al. (2007) used Support Vector Machines (SVMs) to classify blocks based on linguistic, visual
and structural features. Spousta et al. (2008) proposed a cleaning tool that follows a sequence-
labelling approach based on Conditional Random Fields. Kohlschütter et al. (2010) performed
a comparison between shallow textual features and more sophisticated approaches. This com-
parative study was run with SVMs and under a block-oriented strategy. Pomikálek (2011) also
presented an unsupervised approach (named jusText) to deal with boilerplate based on hyperpa-
rameter exploration. This was the first algorithm that took context into account when identifying
blocks of text.

ahttps://github.com/citiususc/pyplexity
bhttps://tec.citius.usc.es/pyplexity/

https://github.com/citiususc/pyplexity
https://tec.citius.usc.es/pyplexity/

LATEX Supplement 3

A recent proposal is Web2Text (Vogels et al. 2018), which introduces a set of features from
adjacent neighbours in the DOM tree and utilises deep learning techniques to predict each block’s
category. Leonhardt and colleagues (Leonhardt et al. 2020) noticed that these models require a
large number of hand-crafted features and annotated training data. For this reason, they offered
an alternative model that does not require pre-processing and directly classifies sequences of raw
HTML from few training examples.

Most of these studies have shown the usefulness of their methods in tasks such as IR search,
where pre-processing had been classically confined to simple strategies such as stemming or stop-
word removal (Kannan et al. 2014). In this study, we try to go one step further by evaluating the
effectiveness and efficiency of our boilerplate removal method not only for a search task but also
for document classification and cleaning tasks.

The main novelty of our study lies in the utilisation of perplexity as an indicator of well-formed
text. Thus, our method can not only remove unnecessary scraped HTML blocks, but also mal-
formed content. Instead of block segmentation, we propose a more general sentence segmentation
technique. We build a Language Model and employ perplexity to estimate sentence likelihood (see
Section 3 for more details). Related to our work, Wenzek et al. (Wenzek et al. 2019) employed
perplexity as a proxy of quality of documents and scored documents to create curated monolingual
corpora. We are not interested in removing documents from the collections but, rather, we define
a document pre-processing technique able to remove noisy parts of the original texts.

Other uses of perplexity-based metrics have been suggested for some language-related tasks,
such as tweet classification (González 2015), language distance (Gamallo et al. 2017; Pichel et al.
2019) or misinformation identification (Lee et al. 2020). Wu et al. (2020) also employed perplexity
scoring as an evaluation measure to estimate the quality of their entity extraction model. Solorio
et al. (2011) used NLP techniques to determine linguistic profiles in children, also using an LM
background and the role of perplexity as an assessment metric.

As a final note, observe that we adopted in our study perplexity as our main indicator device, but
other language metrics could have been considered. For example, multiple language divergence
measures, such as Kullback-Leibler divergence (KLD) (Csiszár 1975), could be applied to this
task. The exploration of other divergence-based metrics and the study of their connection with the
perplexity-based approach reported here is left for future work.

3. Methodology
Perplexity is a measure that has been mainly employed to evaluate LMs without targeting a spe-
cific downstream task (Sennrich 2012) (i.e., as an intrinsic evaluation of models of language). A
perplexity model indicates how well the data fits into the model distribution. If we assume that the
model distribution is correct and unbiased, perplexity allows us to identify noisy data and outliers.
In our case, we adopt perplexity as an indicator of potential boilerplate within a webpage.

The perplexity scores represents a metric about how well a language model fits a text sample,
for instance a word or a sentence. Low perplexity suggests that the language model is good at pre-
dicting a given word, sentence or textual extract, while high perplexity indicates that the language
model is not good for that prediction. More formally, the perplexity (called Perpl for short) of a
language model on a text sample (e.g., a sentence) is the exponential of the cross entropy of the
given text. Given a sentence S = w1, w2, ..., wn and a language model LM with n-gram probabili-
ties, P(·), estimated on a large corpus, the Perpl of S given the n-gram model LM is computed as
follows:

Perpl(S, LM) = 2−
1
n ·∑

n
i log2 P(wi|wi−1

1) (1)

where n-gram probabilities P(·) of a word in position i given the immediate sequence to the
left are defined as:

4 Natural Language Engineering

Language corpus

Language model
(bigrams or trigrams)

s3:"The 0,95% effect on observed..."

s2:"BODY SECTION News Login..."

s1:"A good treatment for croup is..."

Perpl(s3)=786.3 < 1000.0

Perpl(s2)=1689.2 > 1000.0

Perpl(s1)=683.9 < 1000.0

Figure 1. Perplexity model for boilerplate removal.

P(wi|wi−1
1) =

C(wi−1
1 wi)

C(wi−1
1)

(2)

Equation 2 estimates the n-gram probability by dividing the observed frequency (C) of a
particular sequence of words by the observed frequency of the same sequence without the last
word.

The use of perplexity for cleaning and pruning a corpus is illustrated in Figure 1. In our method,
perplexity is computed on all input sentences and those with Perpl scores above a certain threshold
(e.g., > 1000) are removed. This represents a simple but potentially effective way to remove noisy
parts of webpages. Traditional pruning mechanisms (e.g., word-level techniques such as stopword
removal, frequency-based word pruning, or stemming and lemmatization) are also rather straight-
forward but, over the years, have become standard elements in multiple text mining and retrieval
tools. Note also that the removal of noisy and non-relevant contents can be beneficial not only in
terms of effectiveness but also in terms of efficiency (e.g., lighter indexes or data structures, faster
access times).

3.1 Perplexity models
Two different datasets were selected to build the Language Models: the CORD-19 dataset (Wang
et al. 2020) and the British National Corpus (BNC) (Consortium et al. 2007). The first is a lan-
guage corpus associated to a specific topic, while the second represents a more general use of
language. CORD-19 contains 50K papers with over 41K full texts about COVID-19 and related
historical coronaviruses such as MERS or SARS. We employed the abstracts of the papers to build
the LM since abstracts are well-formed and contain succinct sentences. These abstracts add up 510
MB of text. BNC is a 100 million word collection of written and spoken British English collected
from several sources and created by Oxford University. Work on the corpus began in 1991 and the
written part, which is the one that interests us the most here, represents 90% of the total, including
extracts from newspapers, specialist journals, academic books, popular fiction, etc. In total, we
worked with 620 MB of data to build the LM.

We preferred highly curated texts to create the LMs and we opted for two collections from
different domains and genres, one more specific and another more general. This helps to study the
influence of specificity vs generality on perplexity-based pruning of webpages. For this task, there
was no need for an intricate model, since the objective is to just discern between well-formed
sentences and notorious boilerplate. We chose simple bigrams and trigrams probabilistic models,
which are both fast and adequate for perplexity computation.

LATEX Supplement 5

Table 1. General statistics of search collections.

task
number

of
queries

query
ids

avg rel
per

query
used for doc collection number

of docs
type of

docs

TREC 2019
Decision Track

51 1–51 82
Hyperparameter

selection
ClueWeb12-

B13
50M webpages

TREC 2013 Web
Track

50 201–250 88 Test
ClueWeb12-

B13
50M webpages

4. Experimental settings
4.1 Datasets
The perplexity models built from CORD-19 and BNC were evaluated with two test collections de-
signed for specific tasks (see Table 1 for details). The ClueWeb12-B13c collection was employed
to perform experiments of indexing and search. This collection contains approximately 50 million
pages. We ran tests with two different sets of queries and relevance assessments (one set of search
topics –from the medical domain– obtained from the TREC 2019 Decision Track (Abualsaud et al.
2019) and another set of general topics from the TREC 2013 Web Track (Collins-Thompson et al.
2013)). The first set was used to determine the only parameter that our method requires: the max-
imum admissible value of perplexity per sentence. This parameter selection was then validated
with the second set of test queries. The results are reported in Section 5.

A second class of experiments was executed to assess the effectiveness of the perplexity-based
approach within a text classification task (webpage classification). To that end, the WebKB col-
lectiond was chosen. It contains 8,282 web pages from four different universities classified into
seven different categories (courses, departments, faculty, projects, staff, students and other).

Finally, a third set of experiments was conducted to test the ability of our solution to clean up
web content in the context of a well-known competition for cleaning webpages. More specifically,
the shared-task CleanEval (Baroni et al. 2008) provided the ideal framework for these last exper-
iments. The CleanEval dataset contains a random sample of web corpora which was collected by
making queries to Google (only html pages were collected). We employed 625 CleanEval web-
pages written in English. The collection contains the original webpages and webpages cleaned by
recruiting human annotators who read the webpages and removed noisy content.

4.2 Metrics
For testing retrieval performance, the following metrics were used:

• Precision at n (P@n): represents the fraction of the top n documents of the ranking that are
relevant to the user’s information need (Croft et al. 2010):.

P@n =
∑

n
p=1 rel(p)

n
(3)

where rel(p) equals 1 if the item at position p is a relevant document, and 0 otherwise.
• Average Precision (AP): it summarises the ranking by averaging the precision scores at the

rank positions where a relevant document is founde (Croft et al. 2010). In Equation 4, rels
is the total number of relevant documents and P@n is the precision at a cutoff n. The mean

chttp://lemurproject.org/clueweb12/
dhttp://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
eand relevant documents that were not retrieved contribute with a 0 to the AP score (i.e. their P@n is set to 0).

http://lemurproject.org/clueweb12/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/

6 Natural Language Engineering

AP (MAP) for a set of queries is the mean of average precision scores for each query. It is a
popular method to assess the effectiveness of a ranked set of results.

AP =
1

rels
·

rels

∑
n=1

P@n · rel(n) (4)

• Normalised Discounted Cumulative Gain at n (NDCG@n): NDCG measures the quality of
search results taking into account different grades or levels of relevance (Croft et al. 2010):

NDCG =
DCG
IDCG

(5)

DCG =
n

∑
p=1

2relp − 1
log2(p + 1)

(6)

DCG, Discounted Cumulative Gain (Equation 6), defines the user’s gain as a measure that
grows as he/she goes from the top of the ranking to lower positions. Under NDCG, the gain
produced by each ranked document depends on its position. Gains obtained by relevant doc-
uments at higher positions are greater than those from relevant documents at lower ones.
For example, a highly relevant document at a low-rank position is substantially penalised.
To that end, each gain is penalised by a discounting factor (log2(p + 1)). The DCG values
are normalised by dividing the DCG scores by the ideal DCG (IDCG, which represents the
gains obtained by an oracle system that ranks documents by decreasing order of their actual
relevance). The NDCG@n score represents the accumulated gain that the user obtained from
examining the top n results.

All these metrics are computed for each available query and the reported figures represent the
mean value across all queries. To analyse the statistical significance of the performance difference
between two results, we employ the Wilcoxon test on the paired values (one from each query).
Parapar et al. (2021 2020) showed that the Wilcoxon test is a highly reliable test to compare
retrieval systems (yields more statistical power and fewer type I errors). The significance tests
help to determine whether or not each observed difference is anecdotal.

For evaluating classification performance, the F1 score (harmonic mean between precision and
recall) for each class and macro average F1 (unweighted mean of F1 per class) are reported.

In this study, we also aim at improving computational efficiency and, thus, we report here some
time measures, storage improvements, and an estimate of carbon savings (Lacoste et al. 2019). The
elimination of noisy document’s parts has a potential to reduce time or space complexity, and it is
important to quantify these improvements.

For the CleanEval shared-task, the effectiveness metric measures the similarity between a
cleaned version of the file (produced by a given cleaning algorithm, e.g. our perplexity-based
method) and the gold standard (produced from human annotators). To that end, the task consid-
ers Levenshtein edit distance as the main scoring method. It computes the distance between two
strings given the fewest operations required to transform one into the other. The final measure is
the percentage of misalignment between files (in our case, considering only text; HTML labels
are skipped).

4.3 Search and Classification Models
For the retrieval experiments, the collection was indexed using the Anserini search engine (Yang
et al. 2018), and the retrieval model utilised was the query likelihood model (QL) (Ponte and

LATEX Supplement 7

Croft 2017). This is a well-known probabilistic retrieval approach that assumes that the query
is generated by sampling words from the document and that each query term is independent,
meaning that the probability of the query is a product of the probability of each term. Equation 7
presents the QL document relevance score, where p(q|d) is the conditional probability of the query
q given the document d. To account for query terms that do not appear in the document, probability
values need to be smoothed using a reference language model or corpus. In our experiments, we
utilised Dirichlet Smoothing (Equation 8). A full description of probabilistic language models for
IR, which shows the advantages of QL with Dirichlet smoothing and its solid length normalisation
abilities, is available at Losada and Azzopardi (2008).

QL_score(q, d) = log p(q|d) (7)

QL_scoreDIR(q, d) = ∑
w∈q,d

c(w, q) · log
(

1 +
c(w, d)

µ · p(w|C)

)
+ |q| · log

µ

µ + |d|
(8)

c(w, q) (c(w, d)) is the number of occurrences of word w in the query (document). p(w|C) is the
probability of the word in the background corpus and |q| and |d| are the lengths of the query and
document, respectively. µ is the smoothing parameter, which was set to 2000 in our experiments.

For document classification, state-of-the-art Transformers models were used (Vaswani et al.
2017). More specifically, we evaluated and compared BERT (Devlin et al. 2018) and RoBERTa
(Liu et al. 2019) models. These models consist only of an encoder architecture and have
proven ability in outperforming traditional classifiers. We experimented with the base and large
configurations of both models. To that end, Ernief, the open-source library, was utilised.

Following Sun et al. (2002), we did cross-validation by always leaving the webpages from one
of the universities out. The classification collection is highly imbalanced and, thus, we followed
standard practise to set the error weights from the proportion of cases in each class.

4.4 Hardware platform
Different hardware configurations were used, depending on the task. The tag removal and per-
plexity computation for the ClueWeb dataset (which corresponds to TREC 2019 Decision Track
and TREC 2013 Web Track tasks) was carried out in a Big Data computing cluster. This cluster is
formed by 15 nodes, each one with two Intel Xeon E5-2630 v4 and 384GB of RAM, for a total
of 20 cores per node. The computing load for these tasks was distributed across the 300 available
cores using data parallelism. Once the tag removal and perplexity computation for the dataset was
completed, indexing and search (supported by Anserini) were run in one node of the cluster.

The classification task required a GPU-powered server. For this reason, experiments were con-
ducted in a single server with two Intel Xeon Gold 5220, 192GB of RAM and two Nvidia Tesla
V100S. These GPUs efficiently support the training processes required by BERT and RoBERTa
classification models.

Finally, the cleaning task was computed on a single node with an Intel i7-9700K CPU @
3.60GHz, 32GB of RAM and no GPU capabilities.

fhttps://github.com/labteral/ernie

https://github.com/labteral/ernie

8 Natural Language Engineering

5. Results
5.1 Search experiments
5.1.1 TREC 2019 Decision Track
The first part of the experiments was conducted with queries and relevance assessments from the
TREC 2019 Decision Track (DT19). This test collection consists of search topics related to the
medical domain and documents crawled from the web (ClueWeb dataset).

The DT19 collection was used for optimising the only hyperparameter of the boilerplate re-
moval method: the perplexity cutoff value. The higher the perplexity cutoff the fewer sentences
are removed. We experimented with the following perplexity cutoff values: 1K, 2K, 4K, 6K, 8K,
10K, 12K and 14K.

Table 2 shows the results by comparing the effectiveness of different levels of removal against
the retrieval baseline, which does not remove any sentence. Most of the tested models and thresh-
olds outperform the baseline and in some cases the improvements are statistically significant. The
improvements are solid for high-precision metrics (P@5 and P@10) but also for AP and NDCG,
which take into account the entire ranking of documents. Only a couple of instances lead to perfor-
mance decreases that are statistically significant (and this only happens for AP). This is reasonable
since AP is a recall-oriented measure. Our cleaning technique eliminates malformed text but the
method is not perfect and, thus, some pruned sentences might be actually relevant. This affects
AP in some of the tested configurations. In contrast, the removal method proves to be powerful
for the three precision-oriented metrics (P@5, P@10 and NDCG@10).

This exploration of the perplexity cutoff suggests that we can safely find a cutoff configuration
that is robust and works well for precision-oriented and recall-oriented metrics. The reader should
also bear in mind that it is important to keep (or even improve) retrieval effectiveness, but space
savings and other efficiency-oriented factors are other important aspects associated to perplexity-
based removal (this will be further discussed in Section 5.1.3).

Not surprisingly, BNC-based models outperform CORD-19 ones. This confirms that the BNC-
based approach, which removes noisy sentences based on a general model of language, is more
apt to determine which sentences should remain. The DT19 search topics are medical queries
and, thus, somehow close to CORD-19 but, still, this more focused language data does not give
any added value. Observe that it is convenient that the approach does not require a topic-specific
corpus to build the perplexity models. A general language corpus suffices to filter out noisy and
off-topic contents and the BNC-based method would be applicable across general-purpose search
tasks and collections.

Regarding bigrams vs trigrams, the latter models yielded slightly better effectiveness. Taking
these results into account, we adopted the following models, which constitute a good balance
among all the performance metrics: BNC trigram models (8K and 10K), and BNC bigram models
(8K and 10K). These variants, which are marked in light grey color in the table, are not always the
best performers but they represent a solid configuration that often leads to statistical significant
improvements.

5.1.2 TREC 2013 Web Track
Next, the selected models were evaluated with another test collection, the TREC 2013 Web Track
(WT2013). This dataset has also a large corpus of webpages crawled from the web (ClueWeb12
dataset) and includes search topics that represent general information needs (informational or
navigational queries).

The results of this experimentation are shown in Table 3. In most of the cases, the perplexity-
based variants lead to higher effectiveness and the method only yields minor decreases in AP.
Note also that AP is not a crucial metric for most web retrieval tasks, where high recall is rarely
pursued. This outcome further reinforces the potential of the approach not only to produce lighter
and less noisy indexed data, but also to maintain and even improve retrieval performance.

LATEX Supplement 9

Table 2. TREC 2019 Decision Track. Effect of different perplexity cutoff values (reported in brackets) on retrieval
performance. The ↑/↓ symbols indicate whether the method significantly improves or not (Wilcoxon test, α = 0.05)
over the baseline (no perplexity-based removal).

P@5 P@10 AP NDCG@10 Size (GB)

BASELINE 0.564 0.546 0.328 0.458 382

Bigrams model

CORD-19 (1K) 0.592 0.540 0.321 0.484 51

CORD-19 (2K) 0.592 0.550 0.332 0.479 61

CORD-19 (4K) 0.608 0.564 0.335 0.489 72

CORD-19 (6K) 0.596 0.566 0.335 0.489 78

CORD-19 (8K) 0.584 0.556 0.326 0.477 82

CORD-19 (10K) 0.584 0.552 0.325 0.468 85

CORD-19 (12K) 0.580 0.562 0.323 0.473 88

CORD-19 (14K) 0.588 0.568 0.326 0.477 90

BNC (1K) 0.620 0.554 0.314 0.484 60

BNC (2K) 0.608 0.580 0.333 0.492 69

BNC (4K) 0.604 0.578 0.338 0.487 78

BNC (6K) 0.620 0.578 0.337 0.487↑ 89

BNC (8K) 0.600 0.568 0.334 0.481 93

BNC (10K) 0.600 0.576 0.333 0.486↑ 96

BNC (12K) 0.604 0.576 0.333 0.486 99

BNC (14K) 0.600 0.566 0.335 0.481 101

Trigrams model

CORD-19 (1K) 0.564 0.526 0.293↓ 0.455 43

CORD-19 (2K) 0.612 0.552 0.328 0.485 55

CORD-19 (4K) 0.604 0.576 0.336 0.493 66

CORD-19 (6K) 0.604↑ 0.564 0.334 0.488 72

CORD-19 (8K) 0.608↑ 0.564 0.338 0.487 77

CORD-19 (10K) 0.608 0.572 0.336 0.490↑ 80

CORD-19 (12K) 0.592 0.572 0.332 0.485 83

CORD-19 (14K) 0.596 0.566 0.330 0.480 86

BNC (1K) 0.584 0.546 0.293↓ 0.455 52

BNC (2K) 0.628 ↑ 0.560 0.324 0.490 63

BNC (4K) 0.620↑ 0.582 0.335 0.494 72

BNC (6K) 0.620↑ 0.580 0.338 0.491 77

BNC (8K) 0.624↑ 0.576 0.341 0.486 81

BNC (10K) 0.620↑ 0.578 0.340 0.490↑ 84

BNC (12K) 0.604 0.580 0.339 0.491↑ 87

BNC (14K) 0.596 0.578 0.335 0.486↑ 89

Additionally, there is not a noticeable difference between bigram and trigram models. Both
alternatives perform roughly the same. This is another interesting outcome since bigram models
are simpler and thus less costly.

10 Natural Language Engineering

Table 3. TREC 2013 Web Track. The ↑/↓ symbols indicate whether the method significantly improves or not (Wilcoxon
test, α = 0.05) over the baseline (no perplexity-based removal).

P@5 P@10 AP NDCG@10 Size (GB)

BASELINE 0.236 0.230 0.039 0.154 382

Bigrams model

BNC (8K) 0.268 0.230 0.037 0.163 93

BNC (10K) 0.264 0.248 0.037 0.165 96

Trigrams model

BNC (8K) 0.264 0.238 0.037 0.171 81

BNC (10K) 0.268 0.230 0.037 0.165 84

0 1 2 4 6 8 10 12 14
Perplexity Threshold (x10³)

0

200

400

Da
ta

se
t s

ize
 (G

B)

CORD-19

0 1 2 4 6 8 10 12 14
Perplexity Threshold (x10³)

0

200

400
BNC

0 1 2 4 6 8 10 12 14
Perplexity Threshold (x10³)

0

200

400

Da
ta

se
t s

ize
 (G

B)

CORD-19

0 1 2 4 6 8 10 12 14
Perplexity Threshold (x10³)

0

200

400
BNC

Bigrams

Trigrams

Figure 2. Space savings derived from using our model in the IR search task.

5.1.3 Efficiency
Improving effectiveness is an attractive feature of the perplexity-based removal but efficiency is
also a major dimension that needs to be taken into account. The first notable advantage of our
method is space saving. The sizes of the corresponding indexes are reported in Tables 2 and 3
(last column), while Figure 2 plots the sizes in a graphical way (the leftmost bar represents the
baseline situation with no perplexity-based removal). Compared with the original collection, we
can save up more than 75% of the storage cost of the indexing structures (e.g., 96 GB vs 382 GB
for the BNC-10k model).

This space saving also translates into several time improvements. The reduced size of the
collection results in a substantial decrease of the computing time required to index and search
(see Table 4). Our method requires two cleaning phases before indexing: the removal of HTML

LATEX Supplement 11

Table 4. Time measurements (HH:MM:SS) for the baseline and some perplexity-based variants.

Tag cleaning Perplexity
computing

Index
building

Search
(50 queries)

Search
(10K queries)

BASELINE - - 03:24:23 00:00:45 125:25:00

Bigrams model

BNC (8K) 00:45:00 00:45:00 01:01:42 00:00:23 64:11:40

BNC (10K) 00:45:00 00:45:00 01:07:48 00:00:25 70:03:20

Trigrams model

BNC (8K) 00:45:00 00:45:00 01:00:08 00:00:24 65:31:40

BNC (10K) 00:45:00 00:45:00 01:04:04 00:00:25 68:56:40

tags from the entire collection and the actual computation and removal of perplexity at sentence
level. As stated in Section 4.4, both operations were carried out in parallel in a Big Data cluster.
However, with multiple users doing search online, a crucial measure for an IR engine is search
time and that is where our method stands out. For example, for the BNC bigrams model with a
threshold set at 8K, the search of 10,000 queries is approximately 1.95 times faster than the same
search against the original index. Indexing and searching were executed on a single node because
of the restrictions of the retrieval library utilised. Nonetheless, these results can generalise to an
entire cluster.

Consequently, this translates into important carbon emission reductions. This reduction grows
with the number of searches done against the collection. In Table 5, we show the estimated carbon
emissions for our system. Carbon emission were estimated following the methodology presented
in Lacoste et al. (2019), while carbon intensity data for our region and energy provider was
taken from Moro and Lonza (2018). We first calculated the equivalent CPU-hours required for
the computation in each step and then derived the estimated carbon emissions with the following
relation:

eq. kg of CO2 =
t ·Ce ·Wcpu

1000
(9)

where t is the equivalent CPU-hours of computation (taking parallelization into account), Ce =
0, 341 is the carbon efficiency coefficient of the grid (measured in kg CO2eq/kWh) and Wcpu is the
Thermal Design Power of the CPU in watts.

With the 8K BNC-bigrams model, the answer to 10,000 searches requires approximately half
carbon emissions of the baseline. Consider, for example, the case of a real-world IR system.
Google reported more than 2 million searches per minute in 2012, its latest statistics availableg.
Taking all the perplexity computing, indexing and inference emissions into account, our method
reduces on average 5.58kg of CO2 per million queries, which translates into more than 22 tons of
CO2 saved each day.

5.2 Classification experiments: WebKB
Let us evaluate now the performance of the perplexity-based models for another text-related chal-
lenge, a document classification task. To that goal, we adopted the experimental methodology and
collection utilized in Sun et al. (2002), but we worked with newer classifiers based on transformers
(instead of traditional SVMs).

The results are shown in Table 6. The first row corresponds with the baseline that, in this
case, takes the webpages and only removes the HTML tags. This is a standard pre-processing
approach in web classification. Our cleaning methods allowed the classifier to perform better in

ghttps://archive.google.com/zeitgeist/2012/#the-world

https://archive.google.com/zeitgeist/2012/#the-world

12 Natural Language Engineering

Table 5. Carbon emissions in kg of CO2 for the baseline and some perplexity-based variants.

Tag cleaning Perplexity
computing

Index
building

Search
(10K queries)

Search
(1M queries)

BASELINE – – 0.20 0.15 14.54

Bigrams model

BNC (8K) 0.65 0.65 0.06 0.07 7.44

BNC (10K) 0.65 0.65 0.07 0.08 8.12

Trigrams model

BNC (8K) 0.65 0.65 0.06 0.08 7.60

BNC (10K) 0.65 0.65 0.06 0.08 7.99

Table 6. Classification results for WebKB dataset. For each block, the top performer (F1 macro) is bolded.

F1
Macro

F1
Course

F1
Department

F1
Faculty

F1
Project

F1
Staff

F1
Student

F1
Other

BERT base

BASE. CLEAN 0.5818 0.6765 0.0942 0.7676 0.3914 0.4594 0.8160 0.8678

Bigr. BNC (8K) 0.5832 0.6407 0.1083 0.7555 0.4327 0.5425 0.7492 0.8534

Bigr. BNC (10K) 0.5667 0.5592 0.1278 0.7538 0.4123 0.4806 0.7943 0.8391

Trigr. BNC (8K) 0.5128 0.5217 0.0294 0.7064 0.4201 0.3564 0.7221 0.8332

Trigr. BNC (10K) 0.5280 0.5358 0.1377 0.7001 0.3881 0.4058 0.7098 0.8188

RoBERTa base

BASE. CLEAN 0.6109 0.6948 0.2190 0.7589 0.4183 0.4753 0.8230 0.8875

Bigr. BNC (8K) 0.6350 0.6980 0.2917 0.7553 0.5444 0.5425 0.7957 0.8911

Bigr. BNC (10K) 0.6137 0.6781 0.1881 0.7681 0.4422 0.5497 0.7871 0.8828

Trigr. BNC (8K) 0.5928 0.6293 0.2399 0.7523 0.4301 0.4739 0.7493 0.8805

Trigr. BNC (10K) 0.5544 0.5928 0.1210 0.7571 0.4182 0.4555 0.7203 0.8232

BERT large

BASE. CLEAN 0.4309 0.4749 0.2131 0.5979 0.2332 0.2623 0.6194 0.6155

Bigr. BNC (8K) 0.5815 0.6454 0.1372 0.7806 0.4568 0.4111 0.7564 0.8831

Bigr. BNC (10K) 0.5211 0.5313 0.1165 0.7368 0.3600 0.3978 0.7555 0.7502

Trigr. BNC (8K) 0.5419 0.5387 0.1061 0.7444 0.4837 0.3339 0.7445 0.8418

Trigr. BNC (10K) 0.5320 0.5576 0.0583 0.7244 0.3916 0.4340 0.7469 0.8108

RoBERTa large

BASE. CLEAN 0.6255 0.7406 0.1929 0.7809 0.4148 0.5357 0.8157 0.8980

Bigr. BNC (8K) 0.6169 0.6632 0.1387 0.7490 0.4964 0.5476 0.8227 0.9013

Bigr. BNC (10K) 0.6282 0.7198 0.2137 0.7955 0.4478 0.4701 0.8416 0.9050

Trigr. BNC (8K) 0.5297 0.6355 0.0888 0.7315 0.3422 0.3588 0.7433 0.8082

Trigr. BNC (10K) 0.6289 0.6053 0.4125 0.7961 0.4150 0.5468 0.7592 0.8677

many cases. The bigrams models (and, particularly, the ones with the threshold set to 8K) are
the best performers. Another interesting outcome is the low performance obtained by the baseline
with the BERT large model. A plausible explanation for this is that BERT large is a model with
a huge number of parameters, and it would need a larger amount of training data to generalise
better. In any case, the BERT large model also benefits from our pre-processing methods, which
only keep useful information and remove boilerplate. This difference is not as noticeable with
RoBERTa large, as it is an improved and robust model to avoid such problems.

Overall, these results suggest that a base model with perplexity-based removal of noisy sen-
tences is comparable to (or better than) more sophisticated (and more inefficient) models based

LATEX Supplement 13

Table 7. CleanEval shared-task results for two perplexity-based methods and the jusText algorithm. The percentage
scores represent the average similarity between the webpages cleaned automatically and the ground truth webpages.

Effectiveness (%)

jusText 76.20

Bigrams model

wBNC (8K) 79.76

BNC (10K) 79.80

on a larger set of parameters. As a matter of fact, the highest F1 macro (0.6350) is obtained
by combining the RoBERTa base model with perplexity-based pre-processing (bigrams, 8k
threshold).

5.2.1 Efficiency
In terms of efficiency, there is again a saving in space by reducing the size of the dataset. However,
for this task the space reduction is less significant as it is a collection of a few megabytes. As
stated before, our boilerplate removal method permits the utilisation of less expensive models,
such as RoBERTa base which, together with the perplexity-based pre-processing, overcomes more
complex models. This results in direct savings in training time. For instance, in our experiments
the RoBERTa base model was more than 3 times faster than RoBERTa large.

On the other hand, perplexity-based pruning leads to smaller representations of the webpages
and, potentially, to lower prediction times. However, the state-of-the-art classification models de-
scribed above, based on transformer technologies, do not analyse the entire input documents but
are limited to a 512 token limit. In practice, even after removal of noisy sentences, most documents
are above the 512 token limit and, thus, the improvement in prediction time was not noticeable.
However, the decrease in prediction time would be observable under other classification models
that make predictions based on the whole page.

5.3 Cleaning experiments: CleanEval
As stated before, our method goes one step further than simply removing boilerplate. Its main
goal is to identify useful and well-formed text to enhance the performance of downstream tasks.
However, we also wanted to demonstrate its validity for cleaning webpages. To this end, we se-
lected the best performers for the previous tasks (both BNC-based models with thresholds set to
8k and 10k) and compared them with the jusText algorithm. As can be seen in Table 7, our models
outperform jusText for the CleanEval shared-task.

6. Discussion
Our unsupervised cleaning method improved performance for most of the evaluation measures
under the search task. However, it should be noticed that the perplexity-based removal works
as a precision-oriented technique, and it was less effective in terms of recall (particularly in
terms of AP). This occurs because our cleaning technique eliminates not only boilerplate, but
also malformed or noisy sentences and some of them might be actually relevant.

Another important outcome is that for both tasks BNC-based models outperformed their
CORD-19 counterparts. We wanted to test how the topicality of the background corpus influ-
ences performance. The results suggest that the most general model, in terms of content, yields
the best results. This happened for both tasks (search and classification).

The proposed perplexity models consisted of simple bigrams and trigrams under a probabilistic
approach. Experiments demonstrate that the bigram variants, which are less complex and thus

14 Natural Language Engineering

more efficient, are also the top performers for most of the evaluated metrics. This saving was also
one of the main objectives of the study, as stated at the beginning.

Therefore, not only effectiveness but also efficiency was taken into account in our study. As
detailed in Section 5.1.3, our models substantially reduce carbon emissions, when a sufficient
number of searches are performed over the collection (Lacoste et al. 2019). We estimate that
our method could reduce in average 5.58kg of CO2 per million queries. To put this result in
perspective, this CO2 weight is equivalent to 24.13 km driven by an average carh, 3.09 kg of coal
burned i or 0.1 tree seedlings consuming carbon for 10 yearsj.

Finally, we have done a special effort to make the perplexity-based technology available to
the community. We anticipate multiple uses of perplexity as a pre-processing mechanism in a
wide range of text mining projects. To facilitate new applications of perplexity, we have created a
Python package and a web demo that implement the boilerplate removal methods detailed in this
study. This is described in the next section.

7. Python package and Web demo
Along with this publication, we provide PYPLEXITYa, a Python package available at the PyPik

repository. We also release with the package the source code required to train and utilise the
models. This library serves two purposes: on one hand, allows end-users to utilise our models from
any python program, with just a single line of code. On the other hand, it offers a command-line
interface that provides straightforward perplexity computation.

There are three main commands that can be run from console. The simplest one is perplexity,
which calculates the perplexity score for a sentence and a given model. The tag-remover command
processes a raw HTML file or input directory of files and removes any tags and other non-text
components. Finally, the bulk-perplexity processor computes perplexity for a batch of files and
removes any sentence above the perplexity limit provided by the user (set by default to 8K). These
two latter commands also have distributed computing capabilities, allowing efficient processing
of large collections of documents in a computing clusterl.

The Python interface allows integrating these computations into Python code. To demonstrate
some of these capabilities, Figure 3 is provided, in which we utilise our tool to compute the
perplexity score of a sentence and clean a line of text from Python code. Please refer to the
documentationm for further details.

Additionally, we are publishing a web appb to make some small tests on how to directly clean
raw and html texts or cleaning directly from an URL. A screenshot of the demo is shown in Figure
4.

8. Conclusion and Future Work
In this paper, we have proposed an unsupervised method for extracting useful content from scraped
webpages. To the best of our knowledge, this is the first perplexity-based approach adopted for
this kind of text pre-preprocessing.

hhttps://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references#miles
ihttps://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references#lbscoal
jhttps://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references#

seedlings
khttps://pypi.org/project/pyplexity/
lhttps://github.com/citiususc/pyplexity#parallel-mode-cluster

mhttps://github.com/citiususc/pyplexity#interfacing-from-python

https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references#miles
https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references#lbscoal
https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references#seedlings
https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references#seedlings
https://pypi.org/project/pyplexity/
https://github.com/citiususc/pyplexity#parallel-mode-cluster
https://github.com/citiususc/pyplexity#interfacing-from-python

LATEX Supplement 15

Figure 3. Some of the PYPLEXITY capabilities shown up and running in a Jupyter Notebook.

Figure 4. Demo webpage that showcases the capabilities of the methodology presented in this study.

A thorough experimentation process has been performed. This included evaluation with differ-
ent test collections and tasks. With perplexity-based removal of sentences, we have managed to
improve performance under several web-related tasks, in some cases even significantly.

In addition, our models also follow Green AI principles and seek to maximise energy efficiency.
The pre-processing requirements of our method are compensated for the advantages associated
with the resulting noise-free web contents when they are used in the test tasks.

Furthermore, we provide an easy-to-use library and web tool, which facilitate the adoption of
this technology to support the removal of noisy textual extracts. We are convinced that perplexity-
based removal might play a role in multiple application domains and text mining tasks.

As future work, we intend to explore other tokenisation techniques and work with different tex-
tual granularities (besides sentence level) to see the impact on recall-oriented measures. Moreover,
we also plan to test the helpfulness of these cleaning techniques in other areas, such as health
misinformation detection, and continue expanding the open-source tools which accompany this
study.

16 Natural Language Engineering

Acknowledgments
The authors thank the support obtained from: i) project PLEC2021-007662
(MCIN/AEI/10.13039/501100011033, Ministerio de Ciencia e Innovación, Agencia Estatal
de Investigación, Plan de Recuperación, Transformación y Resiliencia, Unión Europea-Next
GenerationEU), and ii) Consellería de Educación, Universidade e Formación Profesional (accred-
itation 2019-2022 ED431G-2019/04, ED431C 2022/19) and the European Regional Development
Fund, which acknowledges the CiTIUS-Research Center in Intelligent Technologies of the
University of Santiago de Compostela as a Research Center of the Galician University System.

Competing interests declaration
The author(s) declare none.

References
Abualsaud, M., Lioma, C., Maistro, M., Smucker, M. D., Guido, and Zuccon 2019. Overview of the TREC 2019 decision

track. In Proceedings of the 28th Text REtrieval Conference, (TREC ’19). National Institute of Standards and Technology
(NIST).

Baroni, M., Chantree, F., Kilgarriff, A., and Sharoff, S. 2008. Cleaneval: a competition for cleaning web pages. In Lrec.
Bauer, D., Degen, J., Deng, X., Herger, P., Gasthaus, J., Giesbrecht, E., Jansen, L., Kalina, C., Kräger, T., Märtin, R.,

and others 2007. Fiasco: Filtering the internet by automatic subtree classification, osnabruck. In Building and Exploring
Web Corpora: Proceedings of the 3rd Web as Corpus Workshop, incorporating CleanEval, volume 4, pp. 111–121.

Collins-Thompson, K., Bennett, P. N., Diaz, F., Clarke, C., and Voorhees, E. M. 2013. Overview of the TREC 2013 web
track. In Proceedings of the 22nd Text REtrieval Conference, (TREC ’13). National Institute of Standards and Technology
(NIST).

Consortium, B. and others 2007. British national corpus. Oxford Text Archive Core Collection.
Croft, W. B., Metzler, D., and Strohman, T. 2010. Search engines: Information retrieval in practice, volume 520. Addison-

Wesley Reading.
Csiszár, I. 1975. I-divergence geometry of probability distributions and minimization problems. The annals of probability,

pp. 146–158.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. 2018. Bert: Pre-training of deep bidirectional transformers for

language understanding. arXiv preprint arXiv:1810.04805.
Duhart, C., Dublon, G., Mayton, B., Davenport, G., and Paradiso, J. A. 2019. Deep learning for wildlife conservation

and restoration efforts. In 36th International Conference on Machine Learning, Long Beach, volume 5.
Finn, A., Kushmerick, N., and Smyth, B. 2001. Fact or fiction: Content classification for digital libraries. In DELOS.
Gamallo, P., Pichel, J. R., and Alegria, I. 2017. From Language Identification to Language Distance. Physica A, 484:162–

172.
González, M. 2015. An analysis of twitter corpora and the differences between formal and colloquial tweets. In Proceedings

of the Tweet Translation Workshop 2015, pp. 1–7.
Henderson, P., Hu, J., Romoff, J., Brunskill, E., Jurafsky, D., and Pineau, J. 2020. Towards the systematic reporting of

the energy and carbon footprints of machine learning. Journal of Machine Learning Research, 21(248):1–43.
Kannan, S., Gurusamy, V., Vijayarani, S., Ilamathi, J., Nithya, M., Kannan, S., and Gurusamy, V. 2014. Preprocessing

techniques for text mining. International Journal of Computer Science & Communication Networks, 5(1):7–16.
Kohlschütter, C. 2009. A densitometric analysis of web template content. In Proceedings of the 18th international conference

on World wide web, pp. 1165–1166.
Kohlschütter, C., Fankhauser, P., and Nejdl, W. 2010. Boilerplate detection using shallow text features. In Proceedings of

the third ACM international conference on Web search and data mining, pp. 441–450.
Lacoste, A., Luccioni, A., Schmidt, V., and Dandres, T. 2019. Quantifying the carbon emissions of machine learning. arXiv

preprint arXiv:1910.09700.
Lee, N., Bang, Y., Madotto, A., and Fung, P. 2020. Misinformation has high perplexity. arXiv preprint arXiv:2006.04666.
Leonhardt, J., Anand, A., and Khosla, M. 2020. Boilerplate removal using a neural sequence labeling model. In Companion

Proceedings of the Web Conference 2020, pp. 226–229.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. 2019.

RoBERTa: A robustly optimized BERT pretraining approach. CoRR, abs/1907.11692.
Losada, D. and Azzopardi, L. 2008. An analysis on document length retrieval trends in language modeling smoothing.

Information Retrieval, 11:109–138.

LATEX Supplement 17

Moro, A. and Lonza, L. 2018. Electricity carbon intensity in european member states: Impacts on ghg emissions of electric
vehicles. Transportation Research Part D: Transport and Environment, 64:5–14. The contribution of electric vehicles to
environmental challenges in transport. WCTRS conference in summer.

Parapar, J., Losada, D. E., and Barreiro, Á. 2021. Testing the tests: simulation of rankings to compare statistical signifi-
cance tests in information retrieval evaluation. In Proceedings of the 36th Annual ACM Symposium on Applied Computing,
pp. 655–664.

Parapar, J., Losada, D. E., Presedo-Quindimil, M. A., and Barreiro, A. 2020. Using score distributions to compare
statistical significance tests for information retrieval evaluation. Journal of the Association for Information Science and
Technology, 71(1):98–113.

Pichel, J. R., Gamallo, P., and Alegria, I. 2019. Measuring diachronic language distance using perplexity: Application to
english, portuguese, and spanish. Natural Language Engineering.

Pomikálek, J. 2011. Removing boilerplate and duplicate content from web corpora.
Ponte, J. M. and Croft, W. B. 2017. A language modeling approach to information retrieval. In ACM SIGIR Forum,

volume 51, pp. 202–208. ACM New York, NY, USA.
Schwartz, R., Dodge, J., Smith, N. A., and Etzioni, O. 2020. Green ai. Communications of the ACM, 63(12):54–63.
Sennrich, R. 2012. Perplexity minimization for translation model domain adaptation in statistical machine translation. In

Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, EACL ’12,
pp. 539–549, Stroudsburg, PA, USA. Association for Computational Linguistics.

Solorio, T., Sherman, M., Liu, Y., Bedore, L. M., Peña, E. D., and Iglesias, A. 2011. Analyzing language samples of
spanish–english bilingual children for the automated prediction of language dominance. Natural Language Engineering,
17(3):367–395.

Spousta, M., Marek, M., and Pecina, P. 2008. Victor: the web-page cleaning tool. In 4th Web as Corpus Workshop (WAC4)-
Can we beat Google, pp. 12–17.

Sun, A., Lim, E.-P., and Ng, W.-K. 2002. Web classification using support vector machine. In Proceedings of the 4th
international workshop on Web information and data management, pp. 96–99.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. 2017.
Attention is all you need. Advances in neural information processing systems, 30.

Vieira, K., Da Silva, A. S., Pinto, N., De Moura, E. S., Cavalcanti, J. M., and Freire, J. 2006. A fast and robust method
for web page template detection and removal. In Proceedings of the 15th ACM international conference on Information
and knowledge management, pp. 258–267.

Vogels, T., Ganea, O.-E., and Eickhoff, C. 2018. Web2text: Deep structured boilerplate removal. In European Conference
on Information Retrieval, pp. 167–179. Springer.

Wang, L. L., Lo, K., Chandrasekhar, Y., Reas, R., Yang, J., Burdick, D., Eide, D., Funk, K., Katsis, Y., Kinney, R. M.,
Li, Y., Liu, Z., Merrill, W., Mooney, P., Murdick, D. A., Rishi, D., Sheehan, J., Shen, Z., Stilson, B., Wade, A. D.,
Wang, K., Wang, N. X. R., Wilhelm, C., Xie, B., Raymond, D. M., Weld, D. S., Etzioni, O., and Kohlmeier, S. 2020.
CORD-19: The COVID-19 open research dataset. In Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020,
Online. Association for Computational Linguistics.

Wenzek, G., Lachaux, M.-A., Conneau, A., Chaudhary, V., Guzmán, F., Joulin, A., and Grave, E. 2019. Ccnet:
Extracting high quality monolingual datasets from web crawl data. arXiv preprint arXiv:1911.00359.

Wu, C., Kanoulas, E., and de Rijke, M. 2020. It all starts with entities: A salient entity topic model. Natural Language
Engineering, 26(5):531–549.

Yang, P., Fang, H., and Lin, J. 2018. Anserini: Reproducible ranking baselines using lucene. Journal of Data and
Information Quality (JDIQ), 10(4):1–20.

Yi, L., Liu, B., and Li, X. 2003. Eliminating noisy information in web pages for data mining. In Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 296–305.

	Introduction
	Related work
	Methodology
	Experimental settings
	Results
	Discussion
	Python package and Web demo
	Conclusion and Future Work

