
This is a preprint of an article published in Multimedia Tools and Applications. The final

authenticated version is available at: http: // dx. doi. org/ 10. 1007/ s11042-021-11219-x

Concept drift detection and adaptation
for federated and continual learning

Fernando E. Casado · Dylan Lema ·
Marcos F. Criado · Roberto Iglesias ·
Carlos V. Regueiro · Senén Barro

Abstract Smart devices, such as smartphones, wearables, robots, and others,
can collect vast amounts of data from their environment. This data is suitable
for training machine learning models, which can significantly improve their
behavior, and therefore, the user experience. Federated learning is a young
and popular framework that allows multiple distributed devices to train deep
learning models collaboratively while preserving data privacy. Nevertheless,
this approach may not be optimal for scenarios where data distribution is non-
identical among the participants or changes over time, causing what is known
as concept drift. Little research has yet been done in this field, but this kind of
situation is quite frequent in real life and poses new challenges to both contin-
ual and federated learning. Therefore, in this work, we present a new method,
called Concept-Drift-Aware Federated Averaging (CDA-FedAvg). Our pro-
posal is an extension of the most popular federated algorithm, Federated Av-
eraging (FedAvg), enhancing it for continual adaptation under concept drift.
We empirically demonstrate the weaknesses of regular FedAvg and prove that
CDA-FedAvg outperforms it in this type of scenario.

Keywords Federated learning · Continual learning · Nonstationarity ·
Concept drift · Federated Averaging · Catastrophic forgetting · Rehearsal

Fernando E. Casado, Dylan Lema, Marcos F. Criado, Roberto Iglesias, and Senén Barro
CiTIUS (Centro Singular de Investigación en Tecnolox́ıas Intelixentes), Universidade de San-
tiago de Compostela, 15782 Santiago de Compostela, Spain
E-mail: {fernando.estevez.casado, dylan.lema, marcos.criado, roberto.iglesias.rodriguez,
senen.barro}@usc.es

Carlos V. Regueiro
CITIC, Computer Architecture Group,
Universidade da Coruña, 15071 A Coruña, Spain
E-mail: carlos.vazquez.regueiro@udc.es

ar
X

iv
:2

10
5.

13
30

9v
2

 [
cs

.L
G

]
 1

5
Ju

l 2
02

1

http://dx.doi.org/10.1007/s11042-021-11219-x

2 Fernando E. Casado et al.

1 Introduction

Over the last few decades, our society has experienced a technological ex-
plosion which, among other things, has gradually surrounded us with smart
devices that are part of our daily lives. We are talking about smartphones, of
course, but also wearables, “things” from the Internet of Things (IoT), service
robots, etc. In short, multifunctional devices with cutting-edge technology that
allows a great number of applications from all human domains: health, sport,
education, banking, etc. The growing amount of data that these devices can
collect, together with a good intercommunication between them, enables the
possibility of integrating machine learning models that evolve and adapt to
improve their behaviour.

A good way to learn from the data collected on the devices would be by
consensus, in which a global model is built from the partial data provided by
each participant. This learning process can be addressed either in a centralized
manner, employing traditional and offline server-based architectures, or in a
decentralized way, following approaches such as federated learning (FL) [1,2,
3]. Centralized methods involve collecting and uploading data from all the
participants, also known as clients or agents, to a cloud-based server or data
center, where it is processed. Decentralized methods, instead, aim to solve
local sub-problems on the devices in a distributed and parallel way, and then
usually combine the local solutions in the cloud.

Centralized solutions are undoubtedly still the most common option nowa-
days. Nevertheless, applying cloud-centric approaches to learn from the data
collected on the devices involves important issues:

– Scalability. This concerns both storage and communication costs, but
also computing speeds. By having a central node acting as a server, there
is always a risk that this will be a bottleneck. The more responsibilities the
server has, the higher the risk. Transferring large amounts of data over the
network take a long time, and communication may be a continuous over-
head. Similarly, central processing can take much more time than parallel
computing in the clients.

– Data privacy and sensitivity. Central data collection also puts user
privacy at risk. The information collected on the devices may be sensi-
tive. Therefore, over the last few years, several governments around the
world have implemented new legislation to protect the data privacy, lim-
iting data sending and storage only to what is consented by the consumer
and absolutely necessary for processing. Examples of this are the Euro-
pean Commission’s General Data Protection Regulation (GDPR) [4] or
the Consumer Privacy Bill of Rights in the US [5].

– Adaptability. In machine learning, it is common to assume that data is
stationary and IID (independent and identically distributed). However, in
most real-world situations, the underlying distribution of data changes be-
tween the different participants and also evolves over time. Heterogeneity
among participants cannot be solved by learning a single centralized model.
On the other hand, changes in data over time have been extensively stud-

Concept drift detection and adaptation for federated and continual learning 3

ied in the literature and are commonly referred to as concept drift [6,7]. If
a concept drift happens, the patterns learned so far may not be relevant
anymore, leading to poor model performance. Therefore, in this kind of
situation, it is desirable to detect when these drifts occur in order to adapt
to them. Although several solutions have been proposed for handling con-
cept drift, none of them has been specifically designed for a multi-device
setting. In this scenario, centralized management of concept drift could
increase bandwidth, storage, and computational costs in the server, which
brings us back to the first issue, scalability.

Due to these problems, decentralized solutions are best suited for learn-
ing from distributed devices. In this way, federated learning (FL) [1,2,3] has
been positioned in recent years as the reference for distributed and collabora-
tive machine learning, dealing with user privacy and scalability. Nevertheless,
literature on FL has paid little attention to adaptability, particularly in the
temporal dimension. In this regard, continual learning (CL) [7,8], is the state-
of-the-art paradigm for addressing this problem of data nonstationarity and
adaptability over time. In order to achieve adaptive models, CL deals with
two conflicting objectives: retaining previously learned knowledge that is still
relevant, and replacing any obsolete knowledge with current information. This
is usually known as the stability-plasticity dilemma [9].

In this work, we introduce an extension of the most widely used FL al-
gorithm, Federated Averaging (FedAvg) [2], adapting it for learning under
concept drift. In particular, we extend the algorithm to deal with continual
single-task problems. That is, we focus on the scenario where all the client de-
vices share the same goal, but the underlying joint distribution of data might
be non-IID (independent and identically distributed) among them, and can
also change in unforeseen ways over time (concept drift). We call our new
method Concept-Drift-Aware Federated Averaging (CDA-FedAvg). In this ar-
ticle we also describe the performance of our method when it has been tested
for the task of human activity recognition (HAR) using smartphones. In this
case, we have used a dataset created from the data collected by the mobile
devices of 10 different users. Our experimental results show the weaknesses of
regular FedAvg in this kind of continual setting and a remarkable improvement
in the learning ability of CDA-FedAvg over FedAvg. We also prove a reduc-
tion in storage, communication, and computational costs in the devices. This
paper is an extension of the work originally presented in the 21st International
Workshop of Physical Agents (WAF 2020) [10].

The rest of this paper is organized as follows: Section 2 reviews the state
of the art on continual and multi-device learning. Section 3 provides a formal
definition of concept drift and outlines the fundamentals of federated learning.
In Section 4, CDA-FedAvg is introduced. Section 5 presents the experimental
results. Finally, Section 6 draws our main conclusions and future work.

4 Fernando E. Casado et al.

2 Related Work

Continual learning [7,8] is a machine learning paradigm focused on building
adaptive models over time. This approach seeks to smoothly update the pre-
dictor to take into account different data distributions and tasks but still being
able to re-use and retain useful knowledge during the time. It is highly inspired
by the human learning process, as people learn to perform numerous tasks over
their lifespan, making use of past knowledge to learn about new concepts with-
out forgetting the previous ones. CL deals with high and realistic time scales
where data becomes available only during the time, and past information is
not always accessible.

Concept drift is one of the two main challenges —together with catas-
trophic forgetting [11]— currently being addressed by CL literature [7]. When
the distribution is not stationary, a shift into the data stream is observed. If
no external information regarding this shift is available, we must employ some
other strategy to detect it, and also fix it. An undetected shift in the data
distribution will lead to a downgrade in the model performance. These un-
predictable changes in the data distribution over time are what is commonly
known as concept drift. Handling concept drift also involves managing mem-
ories of past concepts, which can be saved in different manners: as raw data,
as representations, as model weights, etc. An efficient memory management
strategy should only save important information, as well as be able to transfer
knowledge and skills to future tasks.

Federated learning [1,2,3] is a distributed machine learning framework un-
der differential privacy. Basically, it consists of a local learning stage in the
devices, and a global parameter aggregation in a central server in the cloud.
Usually, there is a shared model, which is a Deep Neural Network (DNN).
The learnable parameters of this model are initialized on the server. In each
federated round, the clients receive the current parameter set from the server,
perform stochastic gradient descent (SGD) on their local datasets, and send
back the gradients. Guarantees about the lack of sensitive information of the
gradient have been widely studied to preserve client privacy [12]. After that,
the contributions of each device are aggregated on the server, thus updating the
model. The most popular FL algorithm is Federated Averaging (FedAvg) [2].
The different challenges this framework faces, such as the communication costs
and data statistical heterogeneity, have also been given significant attention
in the literature [13]. FL has been widely applied to solve complex classifica-
tion and regression tasks, such as object recognition and movement detection
in images, predictive text on the smartphone keyboard, or patient mortality
prediction and hospital stay time [3,14].

As we exposed in Section 1, three main challenges must be addressed for
multi-device learning : (1) scalability, (2) data privacy, and (3) adaptability.
Federated learning seems, at present, the most suitable approach for this con-
text, since it successfully tackles the first 2 challenges. However, continual
learning is undoubtedly the paradigm by reference as far as adaptability is
concerned. Addressing both FL and CL in an orthogonal way can be the best

Concept drift detection and adaptation for federated and continual learning 5

way to tackle at the same time all the three challenges. Nevertheless, little
work has yet been done in this regard.

Some authors have evaluated Federated Averaging on non-IID scenarios,
analyzing the impact of non-identical client data partitions. It is the case of
McMahan et al. [2], that synthesize pathological non-identical user splits from
the MNIST dataset, or Zhao et al. [15], that does the equivalent using the
CIFAR-10 dataset. They demonstrate that FedAvg on non-identical clients
still converges to high accuracies, though taking more rounds than identical
clients. Other authors study more realistic client data distributions. For in-
stance, Caldas et al. [16] use the Extended MNIST dataset with partitions
over writers of the digits, rather than simply partitioning over digit class. Fi-
nally, there are some authors that, instead of assuming that the global model
should be identical for all clients, have proposed a local personalization for
each participant. In this way, Li et al. [17] allow certain variation between the
model of each client and the model obtained with FedAvg. On the other hand,
Deng et al. [18] keep track of each clients’ local model and take in into account
for adaptation.

All the aforementioned works focus on analyzing the impact of non-identical
client data partitions in FedAvg performance. However, little effort has been
made to evaluate the effect of nonstationary, time-shifting data streams. Yoon
et al. [19] propose a method called Federated Continual Learning with Weighted
Inter-client Transfer, FedWeIt, which additively decomposes the weights of
the network into two separated sets: globally shared parameters and sparse
task-specific parameters. Hence, they are capable of performing inter-client
knowledge transfer and prevent inter-client interference. They validate their
approach on several settings, including continual multi-incremental-task sce-
narios. When comparing their method with existing federated baselines, they
show significantly higher accuracy and reduced communication costs. However,
this work still does not explicitly detect changes in data distribution.

In the present paper, the original FedAvg algorithm is redesigned in order
to face concept drift and continual learning. As will be discussed below, there
are significant benefits from drift detection. In short, we can say that it helps
us answering two key questions [20]: what to learn and when to learn it. In this
article, we tackle the implications of these unpredictable changes, focusing on
a single-task scenario in which different changes occur over time.

3 Concept Drift in Federated Settings: Problem Definition

In standard federated settings, the learning process involves multiple rounds
of local learning and global aggregation. At each round r, each client j ∈
{1, . . . , C} and the server s perform two different learning stages: local param-
eter update and global parameter aggregation.

The learnable parameters of the model (weights and biases) are initialized
on the server. At the beginning of each round, a random subset of clients,
Cr ⊆ {1, 2, . . . , C}, of size m = |Cr|, is selected. The server sends the current

6 Fernando E. Casado et al.

global algorithm state to each of these clients, i.e., the current model param-
eters. In the local parameter update step, each client j performs stochastic
gradient descent (SGD) on its local dataset and sends the updated parame-
ters wj

r to the server. Then, the server aggregates the parameters wj
r sent from

all the clients in Cr into a single parameter. The way in which this aggregation
is carried out is usually the average, although there are variations depending
on the aggregation method used. In the particular case of Federated Averaging
(FedAvg) [2], the local parameters from each client are aggregated applying a
weighted average:

wG
r ←

m∑
j=1

nj

N
wj
r,

where N is the total number of data instances at each round, and nj is the
number of instances from client j. Then, the updated model is sent back
to the devices, a new random subset of clients is selected, and a new train-
ing round starts. Algorithms 1 and 2 show the pseudocode of FedAvg.

Algorithm 1: Federated Averaging, server aggregation.
Input : Number of learning rounds R, number of participants m per round,

local minibatch size B, number of local epochs E, and learning rate η.
Output : Global model wG.

1 Initialize wG
0

2 for r ← 1 to R do
3 Randomly choose a subset Cr of m participants from {1, 2, . . . , C}
4 for each participant j ∈ Cr parallely do

5 wj
r ← localTraining[j](wG

r−1, B,E, η) // Local update (Algorithm 2)

6 end

7 wG
r ←

∑m
j=1

nj

N
wj
r // Averaging aggregation

8 end

Algorithm 2: Federated Averaging, local update (localTraining).

Input : Last global model wG
r−1, local minibatch size B, number of local epochs

E, and learning rate η.
Output : Local update wr.

1 Split the local dataset into a set B of batches of size B
2 for e← 1 to E do
3 for batch b ∈ B do
4 wr ← wG

r−1 − η∇l(wG
r−1; b) // ∇l is the gradient of l on b

5 end

6 end

That is the original FedAvg procedure proposed by McMahan et al. in
2016 [2]. Nevertheless, as we will show in Section 5, naive training of FedAvg
in real-world situations can lead to catastrophic forgetting, because local data
is by nature nonstationary and non-IID. When data distribution is not station-
ary, a concept drift is observed in the data stream. In the absence of external

Concept drift detection and adaptation for federated and continual learning 7

information about this drift, the model will have to detect and adapt to it on
its own to avoid decreasing its performance.

Concept drift is a continual learning challenge [7]. Formally, we can define
it as follows: Given a time period [0, t], a set of samples which we will denote
as S0,t = {(X0, y0) . . . , (Xt, yt)}, where (Xi, yi) is one observation or data
sample. Xi is the feature vector, yi is the label, and S0,t has a certain joint
probability distribution Pt(X, y). A concept drift can be defined as a change
in the joint probability at timestamp t, i.e., ∃t : Pt(X, y) 6= Pt+1(X, y).

We can categorize concept drift according to different criteria. Notice that
the joint probability can be factorized as follows: P (X, y) = P (X) · P (y | X).
Thus, we can make a first categorization of concept drift based on which factor
from the previous equation is altered. In this way, we distinguish between two
types of change [21,22]: (1) virtual, and (2) real. Virtual concept drift just
refers to shifts in the input distribution, P (X), and can easily occur (e.g., due
to imbalanced classes over time), whereas real concept drift is caused by novelty
on data, which has an effect on posterior class probabilities, P (y | X). Apart
from this two cases, concept drift can also happen when the task changes.
In this case, the change does not take place in the data distribution, but in
the goal pursued. We focus on the single-incremental-task scenario [7], that
is, the task remains unchanged all along. Besides, the drifts considered in this
work are provoked by changes on input data (P (X)), that is, virtual concept
drifts. The reason for this decision is that we want our drift detection method
(Section 4.1) to be completely unsupervised, i.e., to work without needing the
pattern labels.

Furthermore, it is also interesting to classify concept drift considering how
the new joint distribution is different from the previous one. In this case we
can discern four types of concept drift: (i) sudden, (ii) recurring, (iii) gradual,
and (iv) incremental. We say a concept drift is sudden if there is a timestamp
that separates the old concept from the new one. In particular, this process
can happen repeatedly and even go back to the original concept, and in that
case we say it is a recurring concept drift. On the contrary, if the data from
the new concept arises intertwined with the old concept at first, we name it
gradual concept drift. Incremental concept drift takes place when data shifts
smoothly between the concepts, and therefore the drift cannot be detected in
a single instant but within a window of consecutive timestamps. As we will
see afterwards, the method we propose deals both with gradual and sudden
drifts, and hence with recurring ones too. The case of incremental drift is more
subtle, as our method could detect it in certain situations depending on some
hyperparameters of the algorithm (see Section 4.1).

We now extend the conventional concept drift definition to the federated
learning setting, with multiple clients and a global server. In this case, the
purpose is to train a shared model in a distributed and parallel manner using
the local data of the C available clients. Each client will have a different bias
because of the conditions of its local environment. Likewise, its data stream
may change in different ways over time. Therefore, there may occur concept
drifts affecting all clients, some of them, or just one. Thus, we can generalize

8 Fernando E. Casado et al.

the problem in the following way: Given a time period [0, t], a set of clients
{1, . . . , C} , and a set of local samples for each client, which we will denote
as Sj0,t = {(Xj

0 , y
j
0), . . . , (Xj

t , y
j
t)}, where each (Xj

i , y
j
i) is one data instance

from client j. Xj
i is the feature vector, yji is the label, and each local dataset

Sj0,t has a certain joint probability distribution P jt (X, y). A local concept drift

occurs at timestamp t for client j if ∃t, j : P jt (X, y) 6= P jt+1(X, y).
Nevertheless, note that a local concept drift does not necessarily have a

direct impact on the global federated model. It may be the case that a local
drift on device j will result in a change in the distribution of j, but not in the
joint distribution of all clients, PGt (X, y). In that case, the federated model
will not be affected by the local change, and it can be disregarded. Thus, we
can define a global concept drift as a distribution change at timestamp t in
one or more clients J ⊆ {1, . . . , C} such that ∃t : PGt (X, y) 6= PGt+1(X, y).
As opposed to the previous reasoning, detecting a global concept drift implies
that at least one client has detected a local concept drift.

Although we define both local concept drift and global concept drift as a
change in the data distribution, we should emphasize that we cannot actually
know the real distribution of the data based on the different samples we get.
What we do is to deduce how distributions look like based on the samples,
so in reality we are measuring the changes in the empirical joint probability
distributions, P̂ jt (X, y) and P̂Gt (X, y).

We already discussed the possible existence of a change in the joint dis-
tribution of a client or a small subset of clients that do not affect the global
joint distribution. This could happen mainly for two different reasons: That
client’s data is the only one that is changing, or the rest of the clients have not
detected that change yet. If that is the case, while that client is getting data
that differs from that of other clients, the global model may perform poorly on
it. Therefore, it could be necessary to consider some adaptive strategy to im-
prove the results on that client [18]. However, in our case scenario, we assume
that the drift is the same and simultaneously occurs for all the clients. Under
these assumptions, local and global concept drifts are indistinguishable.

When a global concept drift happens, the model will probably lower its
performance. Hence, as we will illustrate in Section 4, we require to extend
the FedAvg algorithm by giving it the ability to detect these global changes
and adapt to them on its own.

4 Concept-Drift-Aware Federated Averaging (CDA-FedAvg)

Algorithms 3 and 4 detail our proposal. Algorithm 3 shows the pseudocode of
the method on the server side, whilst Algorithm 4 exposes the client side. Un-
like FedAvg, our approach is asynchronous, so there is no predefined sequence
in the order of events and communications between the server and each of the
participants. Thanks to concept drift detection and adaptation, each device
has enough autonomy to decide when to train and what data to use for that
purpose, so that the server will simply orchestrate the process.

Concept drift detection and adaptation for federated and continual learning 9

As we can see in Algorithm 3, the server starts by initializing the global
model and communicating it to all the participants (lines 1–2). Then, it will
periodically check if there has been any local update on one or more devices
(lines 4–5), which will involve performing a global aggregation in order to
update the global model too (line 6). Each time the model is globally con-
sensuated, the server will have to broadcast it to all the clients so that they
always have the latest version of the model (line 7).

Algorithm 3: Concept-Drift-Aware Federated Averaging, server side.

Input : List of participant clients C = {1, 2, . . . , C}
Output : Global model wG.

1 Initialize wG
0

2 broadcast(wG
0 , C) // Send the model to all clients

3 while true* do
4 Listen for client updates ∀j ∈ C
5 if ∃j ∈ C : new update wj

t is received then

6 wG
t ←

∑C
j=1

n
j
t
N

wj
t // Averaging aggregation

7 broadcast(wG
t , C)

8 end

9 end

* Given the continual nature, we leave the choice of the stop criteria as a matter of implementation.

Notice that, using this framework, it is possible for one or more clients to
send updates at any time, giving room to different participation rates among
them. Hence, the global model could be better fitted to the particularities of
the most active participants. In order to prevent overfitting of the model to
some clients, it could be interesting to consider bounds on the participation
rates to control the number of updates per client.

Clients are responsible for learning the task locally, managing, if necessary,
the concept drift. Research on learning under concept drift is usually divided
into three main stages [6]: (1) drift detection (whether or not a drift occurs),
(2) drift understanding (exactly when, how, where and why it occurs) and (3)
drift adaptation (response to that drift). Our method focuses on global drift
detection and adaptation. To that end, each client (Algorithm 4) will contin-
ually acquire new data from its environment. This data will be processed to
identify new concepts (drift detection) and learn from them (drift adaptation).
The issue of drift understanding is beyond the scope of this article. We are
just concerned about detecting a difference between two timestamps, without
analyzing the drift nature, or what causes it.

Regarding the detection and adaptation, we propose that each client han-
dles two different data storages: a short-term memory and a long-term mem-
ory. The short-term memory, Q, is used to store the data instances the device
has acquired in the last time interval. This recent data is kept for a limited
amount of time and is processed to check whether a drift occurs. The long-
term memory, L, will store data samples from each of the concepts seen so

10 Fernando E. Casado et al.

Algorithm 4: Concept-Drift-Aware Federated Averaging, client side.
Input : Minimum amount of data to train L, local minibatch size B, number of

rounds R per change, number of local epochs E per round, learning
rate η, sensitivity to change λ, padding ∆, and maximum size Nmax for
the sliding window.

Output : None.
1 Q← {∅} // Initialize the sliding window (short-term memory)

2 L← {∅} // Initialize the long-term memory

3 L←driftAdaptation(L, L,B,R,E, η) // Learn first concept (Algorithm 6)

4 while true* do
5 if new data instance, Xi, is observed then
6 [ŷi, qi]← predict(wG

t , Xi) // Classify the pattern

7 Q← Q ∪ qi // Add the confidence into Q
8 if |Q| >= Nmax then
9 Q← Q \ {q1} // Remove the oldest element in Q

10 end
11 r ← random(0, 1) // Generate random number in the interval [0,1]

12 if e−2qi ≥ r then
13 d← driftDetection(Q, λ,∆,Nmax) // Check for drift (Algorithm 5)

14 if d is true then
15 Q← {∅}
16 L←driftAdaptation(L, L,B,R,E, η) // Update (Alg. 6)

17 end

18 end

19 end

20 end

* Given the continual nature, we leave the choice of the stop criteria as a matter of implementation.

far. This information will be kept for a long time and will be used to train and
retrain the model locally, so that all concepts are learned.

Basically, each client operates as follows (Algorithm 4): At the beginning
of the process, both short-term and long-term memories are empty (lines 1–2),
and the model has never been trained locally. Thus, the first data acquired
by each client will automatically belong to the initial concept. This data will
be stored in the long-term memory and used to perform the first local up-
date (line 3). After that, each client continues to acquire new data, saving it
in the short-term memory and processing it to check whether a drift is de-
tected (lines 5–13). Only when the drift detection algorithm confirms the drift
(line 14), new data related to the new concept will be stored in the long-term
memory and further training rounds will be carried out (line 16). In the fol-
lowing two subsections, we will discuss in more detail the two fundamental
parts of our method on the client side: drift detection (Section 4.1) and drift
adaptation (Section 4.2).

4.1 Drift Detection

Drift detection encompasses the range of procedures and techniques that rec-
ognize and quantify concept drift via identifying change points or change inter-
vals in the underlying distribution of data. In our context, detecting concept

Concept drift detection and adaptation for federated and continual learning 11

drift implies that the federated model is no longer a good predictor for all
the clients and must be adapted. Drift detection algorithms generally fall into
three categories [6]: (1) error rate-based methods, (2) data distribution-based
methods and (3) multiple hypothesis test methods. The algorithms of the first
group focus on tracking changes in the online error rate of the model. The
second class uses a distance function or metric to quantify the dissimilarity
between the distribution of historical data and that of new data. The third
category combines techniques from the two previous ones in several ways. In
this work we decided to use a data distribution-based algorithm. Our choice
is based on being able to detect virtual concept drift without needing pattern
labels as input.

We propose a CUSUM-type detection method based on beta distribu-
tion [23], which is inspired in the original work of Haque et al. [24]. It is
executed on each of the devices as soon as a new data instance (Xi, yi) is
available (line 5, Alg. 4). As this method does not require instance labels to
detect the drift, we actually only need to get the new feature vector Xi. For
each new Xi, we will estimate a metric that will help us to quantify the dissim-
ilarity between the old and the new data distributions. Any of the metrics that
have been proposed in the literature can be used [6]. We chose the confidence
of the classifier as metric because our experimental evaluation is carried out
on a classification task (Section 5). We define the confidence of the model on a
sample (X, y) as the classifier maximal conditional posterior probability. That
means that we use the federated model to predict the class of the pattern X,
and we get the maximal probability P(ck|X), where ck is one of the M pos-
sible classes Y = {c1, c2, . . . , cM}. This corresponds to line 6 in Algorithm 4.
The confidence qi of the current model on the new data instance Xi is then
stored in the short-term memory of the client (line 7, Alg. 4). This short-term
memory is a sliding window Q of length N = |Q|.

We aim to identify changes in the distribution of the confidences stored
in Q. In the original method proposed in [24], the authors do not use a slid-
ing window, but a dynamic window. They suggest reinitializing this dynamic
window each time a concept drift is detected, but they do not establish any
limits on its size. This is quite unrealistic, because it could grow to infinity if
no drifts are detected. Therefore, we use a sliding window instead, and we set
its maximum size Nmax. Once this maximum size is reached, adding a new
element to Q implies deleting the oldest one (lines 8–10, Alg. 4). Following
this approach, we are able to detect sudden, recurring and gradual drifts, and
even incremental ones if the sliding window is big enough to cover data suf-
ficiently distinct. Therefore, the value of Nmax will be strongly dependent on
the task to be solved. In our experiments (Section 5), we are interested in
sudden concept drifts, and we set Nmax = 1000.

The core of our detection method is detailed in Algorithm 5, which is called
by Algorithm 4 in line 13. Algorithm 5 can be a bottleneck in the system if we
have to run it after inserting each confidence value inQ. Consequently, we limit
the number of executions, so that Algorithm 5 will be run with a probability
of e−2qi , for any confidence value qi (line 12 in Algorithm 4). Hence, the higher

12 Fernando E. Casado et al.

the confidence, the lower the likelihood of executing the drift detection, and
vice versa.

During drift detection (Algorithm 5), Q is split into two sub-windows for
every pattern k between ∆ and N−∆, where N is the length of Q (lines 4–6).
Let Qa and Qb be the two sub-windows, where Qa contains the most recent
confidences. Each sub-window is required to contain at least ∆ elements to
maintain the statistical properties of a distribution. When a concept drift
occurs, it is expected that confidence scores will decrease. Therefore, we only
need to detect changes in the negative direction. Namely, if ma and mb are
the mean values of the confidences in Qa and Qb respectively, a change point
is searched only if ma ≤ (1 − λ) × mb, where λ is the sensitivity to change
(line 7). Same as in [24], we use λ = 0.05 and ∆ = 100 in our experiments,
which are also widely used in the literature.

Algorithm 5: Drift detection method (driftDetection).

Input : Sliding window Q, sensitivity to change λ, and padding ∆ and
maximum size Nmax for the sliding window.

Output : Boolean indicating whether a drift is detected or not.
1 sf ← 0
2 Th ← − log(λ)
3 N ← |Q|
4 for k ← ∆ to N −∆ do
5 mb ← mean(q1 : qk ∈ Q)
6 ma ← mean(qk+1 : qN ∈ Q)
7 if ma ≤ (1− λ) ·mb then
8 sk ← 0

9 [α̂b, β̂b]← estimateParams(q1 : qk) // Get parameters of beta distribution

10 [α̂a, β̂a]← estimateParams(qk+1 : qN)
11 for i← k + 1 to N do

12 sk ← sk + log

(
f(qi | α̂a, β̂a)
f(qi | α̂b, β̂b)

)
13 end
14 sf ← max(sf , sk)

15 end

16 end
17 if sf > Th then
18 return true
19 else
20 return false
21 end

The confidence values in each sub-window (Qa and Qb) are expected to
follow two different beta distributions. However, the actual parameters for each
one are unknown. Algorithm 5 estimates these parameters at lines 9 and 10,
given the mean and the variance of each sub-window, by using the method of
moments [25]. Next, the sum of the log likelihood ratios sk is calculated in

the inner loop between lines 11 and 13, where f
(
qi | α̂, β̂

)
is the probability

density function (PDF) of the beta distribution, having estimated parameters

Concept drift detection and adaptation for federated and continual learning 13(
α̂, β̂

)
, applied on the confidence qi ∈ Q. This PDF describes the relative

likelihood for a random variable, in this case qi, to take on a given value, and
it is defined as:

f (qi | α, β) =

{
qα−1
i (1−qi)β−1

B(α,β) , if 0 < qi < 1

0, otherwise,

where

B (α, β) =

∫ 1

0

qα−1
i (1− qi)β−1dqi.

The variable sk is a dissimilarity score for each iteration k of the outer
loop between lines 4 and 16. The larger the difference between the PDFs in
Qa and Qb, the higher the value of sk (line 12). Let kmax is the value of k for
which the algorithm calculated the maximum sk value where ∆ ≤ k ≤ N −∆.
Finally, a change is detected at point kmax if skmax ≡ sf is greater than a
prefixed threshold Th (line 17). As in the original work, we use Th = − log(λ).

In case a drift is detected, the sliding window Q is reinitialized and the
drift adaptation method is called (lines 14–17 in Algorithm 4). We will discuss
the adaptation strategy in the next subsection.

4.2 Drift Adaptation

Once a concept drift is detected, the model should continue to be trained
being aware of that drift. Otherwise, catastrophic forgetting may occur. When
dealing with neural networks, as is the case here, the most common methods
to avoid this are (1) regularization methods, (2) rehearsal approaches, and (3)
generative replay [7]. In continual learning, regularization consists of protecting
the important weights of previous concepts from modification. Rehearsal or
replay approaches are based on saving raw samples as a memory of past tasks.
Generative replay techniques train generative models on the data distribution,
thus being able to sample data from past experiences when learning on the
new one.

Rehearsal methods have been shown to provide the best results, as they
ensure that the memories do not degrade over time [26]. When working in
a cloud-centric setting, the main drawback of these techniques is the need
for a separate memory of raw data. This is a vanilla way of saving knowledge
that does not respect data privacy and may involve high storage requirements.
Nonetheless, in the federated (and therefore distributed) setting, this is not a
problem since small pieces of old memories can be stored locally by each of the
clients. Thus, we propose to use a simple rehearsal method, which is detailed
in Algorithm 6.

Algorithm 6 is called if a new drift is detected (using the detection method
from Section 4.1). This method is responsible for managing the long-term
memory of the client and using this data to update the model locally. Formally,
the long-term memory of a client j at time t is a dataset Lj = {Lj0 ∪ Ljm ∪

14 Fernando E. Casado et al.

... ∪ Ljl }, which gathers representative data of each concept {κj0, κjm, . . . , κ
j
l }

detected so far by j, where 0,m, . . . , l are the timestamps where each drift was
detected, being 0 < m < · · · < l ≤ t.

Algorithm 6: Drift adaptation method (driftAdaptation).

Input : Long-term memory L, minimum amount of data to train L, minibatch
size B, number of rounds R per change, number of local epochs E per
round, and learning rate η.

Output : Updated long-term memory L.
1 Lnew ← collectData() // Collect enough new data on the new concept

2 L← L ∪ Lnew // Expand the long-term memory with the new data

/* Perform local training just in this client */

3 for r ← 1 to R do
4 Split L into a set B of batches of size B
5 for e← 1 to E do
6 for batch b ∈ B do
7 wt+1 ← wG

t − η∇l(wG
t ; b) // ∇l is the gradient of l on b

8 end

9 end
10 Send wt+1 to server to perform global aggregation

11 end

At the beginning of Algorithm 6, the long term memory does not contain
any data instance related to the new concept κjnew. Therefore, the first thing
we do is to collect enough data Ljnew ⊂ Lj belonging to κjnew (line 1). All data
that was obtained after the cut-off point kmax where the last drift was detected
(Algorithm 5) can be immediately included in Ljnew. In continual classification
tasks, the data from each of the classes can be collected in any order. Thus,
to guarantee a minimally balanced rehearsal dataset with the representation
of all classes, we define a heuristic rule to control the data which is saved in
the long-term memory. We establish a minimum amount of data, L, so that
there must be at least L

2M examples from each class c ∈ Y in the long-term
memory representing each concept, where M is the number of possible classes.
Formally, client j keeps collecting data until the following condition is met:

∀c ∈ Y : |{(X, y) ∈ Ljl : y = c}| ≥ L

2M
.

In our experiments, we have set L = 1400, which is quite a significant amount
of data, but it ensures that the memories do not degrade over time. We also
assume that we can keep data for an unlimited number of concepts.

Once enough data on the new concept is gathered, local training can be
carried out (lines 3–11). Local training is conducted during a limited number
of rounds R. In our experiments we have used R = 5, although this value will
depend on the problem. Between rounds, each local update wj

t+1 is communi-
cated to the server, where the global aggregation is done (line 15).

Concept drift detection and adaptation for federated and continual learning 15

4.3 Analysis of computational complexity

We will now give some insights into the complexity of CDA-FedAvg, com-
pared to regular FedAvg. We will analyze three different aspects: (1) time, (2)
communications, and (3) memory requirements.

Before comparing the costs of both methods, we need to set some assump-
tions to get upper bounds on the number of operations required.

1. Firstly, we assume that our loss functions lj ’s, which are the same for
all clients, are H-smooth. This means that they are differentiable, so we
can calculate their gradients, and at the same time their gradients are
H-Lipschitz functions [27], which can be expressed as follows:

∃H ∈ R+ : || ∇lj(u; b)−∇lj(v; b) || 6 H || u− v || ∀ u, v ∈W , u 6= v,

whereW denotes the set of all possible weights, and b is the selected batch
of data. This equation has a geometrical interpretation:

|| ∇lj(u; b)−∇lj(v; b) || 6 H || u− v || ⇔ || ∇lj(u; b)−∇lj(v; b) ||
|| u− v ||

6 H.

This last equation, when u tends to v, is the definition of the derivative
function, so this inequality says the derivative of ∇lj is upperly bounded
by a constant value H.

2. Secondly, we also assume that the expectation of the difference between
the variations of the local loss functions for each client lj(u; b) and the
variation of the global loss function `(u) is upperly bounded. We define
this global loss function as the expected error in all clients when using the
weights u:

`(u) = E
bj∼P tj

 C∑
j=1

lj(u; bj)

 .
Given this global loss function, our assumption of proximity could be ex-
pressed as follows:

∃σ ∈ R+ : E [|| ∇ulj(u; b)−∇`(u) ||] 6 σ2 ∀j ∈ {1, . . . , C}.

3. Lastly, we assume the global loss function we try to minimize is convex:

`(µu+ (1− µ)v) ≤ µ`(u) + (1− µ)`(v) ∀ u, v ∈W ,∀µ ∈ [0, 1].

This guarantees the global loss minimization problem has a unique solution,
and there are no local minimums except for the global minimum.

Taking into account the above assumptions, we can give an upper bound
for the time complexity (number of elementary operations) of both FedAvg
and CDA-FedAvg. Kairouz et al.[12] states that the complexity of FedAvg in

16 Fernando E. Casado et al.

terms of the number of training rounds R, the number of local epochs E, and
the number of clients selected to train on each round m, is:

O
(
H

R2
+

σ√
REm

)
. (1)

In our case, under the same assumptions, we carry out the same operations,
but we also check whether or not concept drift occurs using Algorithm 5.
All of those further calculations depend linearly on the maximum size of the
sliding window, Nmax, which depends linearly on the minimum number of
data needed, 2∆, so our upper bound is shortly bigger:

O
(
H

R2
+

σ√
REm

+∆

)
. (2)

However, note that in CDA-FedAvg the number of training rounds R is typ-
ically fewer than in FedAvg since, after detecting and adapting to a drift, we
stop training until a new concept is detected.

In the case of the second aspect we want to consider, communications,
CDA-FedAvg is expected to make fewer exchanges of data than FedAvg. In
the original method, the communications are bounded by

O(Rm). (3)

Nevertheless, in our case, if a drift is detected, the next data communication
takes place after adapting the local model to that drift. If we set ν as the
number of times a drift is detected divided by the total number of times
Algorithm 5 is executed, then the number of communications our method
performs is

O
(
Rm(1− ν) +Rm

Mν

L

)
= O (Rm(1− ν)) , (4)

where M is the number of possible classes, and L is a minimum amount of
data needed in the long-term memory from each concept. Therefore, if there
are no drifts (ν = 0), and assuming the number or rounds R is the same as in
FedAvg (although CDA-FedAvg typically uses a lower R), we get the same cost
of Equation (3). However, in any other case, the communication cost of CDA-
FedAvg gets reduced proportionally to the total number of communications
expected. In order to compare both cost differences, we can express ν in terms
of ∆. Each time a drift is detected, we set the short-term memory Q = ∅. To
detect subsequent drifts, the sliding window needs to be at least of size 2∆,
which implies ν 6 1

2∆ . Thus, we can rewrite

O (Rm(1− ν)) = O (Rm−Rmν) 6 O
(
Rm− Rm

2∆

)
. (5)

Finally, regarding the last aspect we want to compare, memory costs, we
must be aware of the fact that, in FedAvg, each client needs to storage all
the data obtained locally. Nevertheless, in our case, each client keeps data just
until there are enough samples of the current concept. After that, no more
storage is needed until detecting a new drift.

Concept drift detection and adaptation for federated and continual learning 17

4.4 Benefits of Explicit Drift Detection: Saving Resources on Devices

CDA-FedAvg not only allows continual learning that avoids catastrophic for-
getting, but also answers two fundamental questions that are often overlooked
in the literature on federated learning: what to learn and when to learn it.

As we already mentioned, in a naive implementation of FedAvg there is no
given criterion on what data to store and what to discard. By default, unless
there are task-dependent or implementation restrictions, devices will save all
the data they collect. Besides, FedAvg does not set any limits on the number
of training rounds to be performed, which could be infinite. It is true that only
a random subset of devices is selected in each round, so they are not training
all the time. In addition, it is possible to limit training even further based
on conditions such as whether the device has access to WiFi or is connected
to a power supply (this is specially intended for smartphones) [28,29]. How-
ever, these criteria do not take into account whether there is a real need for
further training. Finally, training constantly and without proper criteria also
implies an increase in the required bandwidth. In fact, in many works in the
literature of federated learning authors state that the main bottleneck is the
communication cost [2,19].

Following our approach, it is possible to determine which data is relevant
and which is not anymore thanks to the integration of the concept drift de-
tector and a long-term memory. We do not quantify the difference of storage
explicitly, but in the FedAvg approach, storage grows linearly with the num-
ber of training rounds R, whereas in our case it stops at some point, when
we reach a sufficient number of samples. Besides, it can be assumed that it is
only necessary to continue training when a new drift is detected, so that the
model can be adapted to it. As shown in Equations (1) and (2), our approach
needs to perform more calculations for the same number of training rounds, at
most O(∆). However, if there are no drifts, we can pause the training process
at some point, reducing this cost. In addition, Equations (3) and (5) show
that we save at least O

(
Rm
2∆

)
communications. Thus, we prove it is possible to

significantly reduce the number of communications between clients and server,
as well as the computational burden on clients.

5 Experimental Results

To test CDA-FedAvg, we have chosen a complex real-world task: Human Ac-
tivity Recognition (HAR) on smartphones. More specifically, we have used the
dataset from Shoaib et al. [30], which includes data of seven physical activities:
walking, going upstairs, going downstairs, sitting, standing, jogging, and bik-
ing. This dataset is characterized by having, for each activity, data recorded
with the smartphone placed in 5 different locations (Figure 1): (1) on the belt
position using a belt clip, (2) in the left jeans pocket, (3) in the right jeans
pocket, (4) on the right upper arm using a sports armband, and (5) on the
right wrist. This last element is essential for us because, as we will see later,

18 Fernando E. Casado et al.

it will allow us to analyze the performance of CDA-FedAvg in response to
changes.

1
23

4

5

Fig. 1: Overview of the phone positions on a participant.

The dataset gathers data from 10 different people. Everyone performed
each of the 7 activities for about 20 minutes (4 minutes for each phone po-
sition). The ten participants were male, aged between 25 and 30 years. All
experiments were conducted indoors in the same building, except for the bik-
ing ones, which took place outside. The smartphones were oriented vertically
for the upper arm, wrist, and two pockets, and horizontally for the belt po-
sition. The data that was collected includes the readings from the inertial
sensors of the smartphone, comprising the tri-axis accelerometer, gyroscope,
and magnetometer. The data acquisition rate was limited to 50 samples per
second because it is enough to recognize human physical activities.

We pose the problem as a multiclass classification task where the goal is to
correctly predict which of the 7 activities is being performed by the user. The
information about the position of the smartphone will be used later to simulate
concept drifts. In order to create a federated learning setting, we choose 9 of
the 10 phone users as clients, in which both FedAvg and CDA-FedAvg will
be running. Data from the remaining participant is used for testing. In the
experiments that we will show below, we performed cross-validation. Thus, in
the 9–1 split between training and testing, the test user was permuted a total
of 10 times, so that each experiment was repeated 10 times. Since there are
relatively few devices, at each federated round of each execution, all 9 clients
participated in the local training, instead of selecting a random subset.

We split the original raw data into windows of 124 samples, which is equiv-
alent to about 2.5 seconds. We decided to use just the accelerometer and gyro-
scope signals. Thus, the input shape is a 6-dimensional time window consisting
of 124 values for each of the axes of the accelerometer (ax, ay, az) and the gy-
roscope (ωx, ωy, ωz). Each user has a total of 5000 time windows or instances,

Concept drift detection and adaptation for federated and continual learning 19

1000 for each phone location. In total, in each execution we used 45000 samples
for training (distributed among the 9 clients) and 5000 for testing.

For the model, we used a Convolutional Neural Network (CNN), given the
performance this type of network has shown for inertial signal processing [31,
32]. However, there is nothing preventing CDA-FedAvg algorithm from being
applied using a different type of network, like any other feed-forward archi-
tecture; recurrent neural networks (RNNs) such as long short-term memory
(LSTM); or even a hybrid approach. The architecture we propose has 6 input
channels and consists of two 1D convolutional layers, one max-pooling layer,
one flattening layer, two dropout layers and two fully connected layers. The to-
tal number of learnable parameters is 764399. Table 1 shows the details of the
architecture. A dropout rate of 0.2 was used in both dropout layers. We used
a batch size of 100 instances. On each local training round, 10 epochs were
performed by each client. For simplicity in presenting the results, we assume
all clients begin to acquire data at the same time and at the same frequency.

Table 1: Details of the CNN architecture used in the experiments.

Layer name Kernel size # kernels Stride Feature map. # params

conv1 1x10 100 1 115x100 6100
conv2 1x10 100 1 106x100 100100
max pool 1x2 - 1 53x100 0
dropout1 - - - 53x100 0
flattening - - - 1x5300 0
fully con1 - - - 1x124 657324
dropout2 - - - 1x124 0
fully con2 - - - 1x7 875

To provide a baseline, we first carried out federated learning under the
unrealistic assumption that data is acquired in an identically distributed man-
ner over time and for all users. Thus, we simply shuffled all the data of each
user (5000 samples) randomly, without taking into account the position of the
phone, thus forcing a stationary situation (IID in the temporal domain). We
applied regular FedAvg algorithm during a total of 25 rounds of local train-
ing and server aggregation. We repeated the experiment 10 times, each time
leaving a different client for testing. On average, at the end of the process, we
achieve over 85% accuracy on test. Figure 2 shows the average evolution over
time. This plot does not show any of the individual executions, but the average
values of the 10 executions. The thick black line is the overall accuracy, whilst
each of the thin coloured lines represent how well the model performs when
evaluated on the test data specific to each phone position. Table 2 shows the
final results, when all clients have collected their 5000 samples, for each phone
position and for each of the 10 executions and the average.

Although the results in Figure 2 are quite good, in real life the data is often
non-IID and evolves over time. Hence, in our second experiment, we sorted the
data of all the users by phone position. In this way, we force a nonstationary

20 Fernando E. Casado et al.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of samples obtained so far on each device

A
cc

ur
ac

y

0 1000 2000 3000 4000 5000

belt
left pocket
right pocket
upper arm
wrist
overall
max = 0.851

Fig. 2: Average test results for standard FedAvg in an IID setting. The thick
black line is the overall test accuracy.

Table 2: Final results for all the executions of standard FedAvg in an IID
setting, after all clients have collected 5000 instances.

Test set Belt Left pocket Right pocket Upper arm Wrist Overall

User 1 0.878 0.911 0.862 0.909 0.802 0.872
User 2 0.726 0.981 0.982 0.720 0.803 0.842
User 3 0.891 0.951 0.898 0.741 0.898 0.876
User 4 0.906 0.982 0.984 0.555 0.909 0.867
User 5 0.925 0.981 0.984 0.753 0.919 0.912
User 6 0.672 0.981 0.970 0.709 0.824 0.831
User 7 0.606 0.834 0.977 0.915 0.776 0.822
User 8 0.881 0.993 0.992 0.673 0.924 0.893
User 9 0.445 0.992 0.989 0.635 0.819 0.776
User 10 0.744 0.711 0.907 0.791 0.910 0.813
Average 0.767 0.932 0.955 0.740 0.858 0.850

distribution that changes a total of 4 times. Each change in the placement
of the device implies a change in the underlying distribution of the data, i.e.,
a concept drift. Data is sorted according to the phone position in the same
way for all users: 1st belt, 2nd left pocket, 3rd right pocket, 4th upper arm,
and 5th wrist. For each location, the corresponding 1000 data observations are
randomly sorted. This is not a totally realistic scenario since in real life each
user would acquire data in a particular manner, but it is helpful to constrain
the changes and check their impact during training. Again, we applied regular
FedAvg algorithm with exactly the same configuration as before, training a
total of 25 rounds. Figure 3 shows the average results of the 10 executions.

Concept drift detection and adaptation for federated and continual learning 21

The vertical dashed lines indicate where a distribution change occurs, which is
every 1000 patterns for all the users. It can be seen that, although the general
tendency of the model is to improve, it forgets concepts as it learns others. For
example, from iteration 1000 it begins to learn about the left pocket position,
which causes a drop in accuracy for data related to the previous concept, the
belt. The final average accuracy of the model is around 63%. Table 3 shows
the results of the 10 executions when all clients have collected 5000 samples.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of samples obtained so far on each device

A
cc

ur
ac

y

0 1000 2000 3000 4000 5000

belt
left pocket
right pocket
upper arm
wrist
overall
max = 0.698
drift happen

Fig. 3: Average test results for FedAvg in a non-IID and nonstationary setting.
The vertical dashed lines indicate when a distribution change occurs.

Table 3: Final results for all the executions of FedAvg in a non-IID and non-
stationary setting, after all clients have collected 5000 instances.

Test set Belt Left pocket Right pocket Upper arm Wrist Overall

User 1 0.349 0.725 0.626 0.586 0.776 0.612
User 2 0.358 0.598 0.735 0.633 0.773 0.619
User 3 0.498 0.375 0.780 0.610 0.758 0.604
User 4 0.359 0.659 0.642 0.404 0.873 0.587
User 5 0.349 0.666 0.807 0.706 0.978 0.701
User 6 0.352 0.531 0.758 0.460 0.936 0.607
User 7 0.329 0.547 0.921 0.644 0.926 0.673
User 8 0.375 0.531 0.873 0.525 0.934 0.648
User 9 0.144 0.642 0.799 0.567 0.950 0.620
User 10 0.505 0.415 0.913 0.634 0.830 0.659
Average 0.362 0.569 0.785 0.577 0.873 0.632

22 Fernando E. Casado et al.

Finally, we repeated the last experiment but using our method, CDA-
FedAvg, instead of regular FedAvg. This time, the training process is aware
of the existence of the concept drifts. Unlike in the previous experiments, we
cannot represent in a single plot the average evolution of the accuracy for the
10 executions, since in this case in each execution the drifts will be detected at
slightly different times. Therefore, Figures 4 and 5 show two particular execu-
tions to serve as examples. Table 4 shows the results of all the 10 executions
at the end of the process.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of samples obtained so far on each device

A
cc

ur
ac

y

0 1000 2000 3000 4000 5000

belt
left pocket
right pocket
upper arm
wrist
overall
max = 0.878
drift detected

Fig. 4: Results for CDA-FedAvg in a non-IID and nonstationary setting, train-
ing with all users except user 8, whose data is reserved for testing. The vertical
dashed lines indicate when a drift is detected by our algorithm.

In this case, training does not start at the very beginning. Instead, the
first round is not performed until every client has a representative amount
of data from the first concept (here, belt position) in its long-term memory.
We fix the number of training rounds per concept to 5. Thus, as there are 5
different changes, the model is trained for a total of 25 rounds. This has been
intentionally designed to be on a par with the previous setting. Drifts occur
at the same time points as in the previous case (iterations 1000, 2000, 3000,
and 4000). Nevertheless, now the vertical dashed lines indicate where a drift is
actually detected by at least one of the clients applying our detection method.
We can notice that all drifts are detected shortly after they theoretically occur.
In some of the executions, such as the one shown in Figure 5, the second drift is
not detected at all. This makes sense, since this change is between the concepts
of left pocket and right pocket, which are very similar. In case it was necessary
to be more sensitive to change, it would be sufficient to vary the λ parameter
of Algorithm 5.

Concept drift detection and adaptation for federated and continual learning 23

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of samples obtained so far on each device

A
cc

ur
ac

y

0 1000 2000 3000 4000 5000

belt
left pocket
right pocket
upper arm
wrist
overall
max = 0.829
drift detected

Fig. 5: Results for CDA-FedAvg in a non-IID and nonstationary setting, train-
ing with all users except user 3, whose data is reserved for testing. The vertical
dashed lines indicate when a drift is detected by our algorithm.

Table 4: Final results for all the executions of CDA-FedAvg in a non-IID and
nonstationary setting, after all clients have seen 5000 instances.

Test set Belt Left pocket Right pocket Upper arm Wrist Overall

User 1 0.832 0.950 0.777 0.771 0.864 0.839
User 2 0.786 0.955 0.669 0.691 0.797 0.780
User 3 0.834 0.894 0.838 0.771 0.809 0.829
User 4 0.936 0.983 0.971 0.613 0.908 0.884
User 5 0.972 0.990 0.992 0.855 0.676 0.897
User 6 0.776 0.941 0.722 0.712 0.908 0.812
User 7 0.585 0.668 0.969 0.864 0.909 0.799
User 8 0.821 0.980 0.987 0.698 0.912 0.878
User 9 0.294 0.964 0.982 0.591 0.884 0.743
User 10 0.748 0.749 0.561 0.684 0.883 0.725
Average 0.759 0.908 0.847 0.726 0.855 0.819

As shown in Table 4, using our method, the overall accuracy at the end of
the learning process on the test set is around 82%. This is much closer to the
result obtained with the baseline model (Table 2). Therefore, we can confirm
that CDA-FedAvg is able to adapt to changes in nonstationary situations,
while retaining previously learned concepts.

24 Fernando E. Casado et al.

6 Conclusions

In this paper, we have tackled the problem of federated and continual learning
under concept drift. We have started by discussing the issues that need to
be addressed to achieve real multi-device learning. We have also reviewed the
state of the art of continual and federated frameworks. We have shown the
shortcomings of regular federated algorithms, such as FedAvg, when data is
nonstationary over time, which is a common real-world situation. Therefore,
we have developed a new method, Concept-Drift-Aware Federated Averaging
(CDA-FedAvg).

Our proposal is an extension of the original FedAvg, but capable of detect-
ing concept drifts and adapting to them. For drift detection, we introduce a
distribution-based algorithm, which uses a confidence metric to quantify the
dissimilarity between the distribution of historical and new data. We define a
short-term and a long-term memory for each client. When a drift happens, we
adapt the federated model applying rehearsal using the data in the long-term
memory. In this way, we avoid catastrophic forgetting. Furthermore, we answer
two fundamental questions: what to learn and when to learn it. This allows us
to save storage, communication and computational resources. We have evalu-
ated CDA-FedAvg in a real multiclass classification problem, human activity
recognition, and we have shown that our method outperforms regular FedAvg
in this kind of scenario.

Regarding our future work, we would like to continue to pursue this line of
research. We want to further extend our framework for federated and continual
learning, focusing on adaptability. Therefore, we will work in parallel in two
dimensions: the temporal and the spatial. The temporal dimension is the one
we have explored the most so far. However, we can still make progress on issues
such as tackling not only the virtual but also the real concept drift. When we
talk about the spatial dimension, we refer to the heterogeneity among clients
and the adaptation to the local particularities of each one. There are already
some proposals in this context, but they are still limited by certain assumptions
that make them unsuitable for real-world applications. For instance, it is not
considered that different clients may have different behaviors and therefore
could label the same pattern in a distinct way. Nevertheless, we believe that
the real challenge lies in addressing these two axes, temporal and spatial, at
the same time. This is something that has not yet been done and opens up a
much richer and more complex range of possibilities. Finally, we also want to
gradually expand our experimental analysis, applying our algorithms to other
applications in different fields, not only for smartphones. We are particularly
interested in service robotics.

Acknowledgements This research has received financial support from AEI/FEDER (EU)
grant number TIN2017-90135-R, as well as the Conselleŕıa de Cultura, Educación e Orde-
nación Universitaria of Galicia (accreditation 2016–2019, ED431G/01 and ED431G/08,
reference competitive group ED431C2018/29, and grant ED431F2018/02), and the Euro-
pean Regional Development Fund (ERDF). It has also been supported by the Ministerio de
Universidades of Spain in the FPU 2017 program (FPU17/04154).

Concept drift detection and adaptation for federated and continual learning 25

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Konečnỳ, J., McMahan, B., Ramage, D.: Federated optimization: Distributed optimiza-
tion beyond the datacenter. arXiv preprint arXiv:1511.03575 (2015)

2. McMahan, H.B., Moore, E., Ramage, D., Aguera-Arcas, B.: Federated learning of deep
networks using model averaging. arXiv preprint arXiv:1602.05629v1 (2016)

3. Li, Q., Wen, Z., He, B.: Federated learning systems: Vision, hype and reality for data
privacy and protection. arXiv preprint arXiv:1907.09693 (2019)

4. Custers, B., Sears, A.M., Dechesne, F., Georgieva, I., Tani, T., van der Hof, S.: EU
Personal Data Protection in Policy and Practice. Springer (2019)

5. Gaff, B.M., Sussman, H.E., Geetter, J.: Privacy and big data. Computer 47(6), 7–9
(2014)

6. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift:
A review. IEEE Transactions on Knowledge and Data Engineering (2018)

7. Lesort, T., Lomonaco, V., Stoian, A., Maltoni, D., Filliat, D., Dı́az-Rodŕıguez, N.: Con-
tinual learning for robotics: Definition, framework, learning strategies, opportunities
and challenges. Information Fusion 58, 52–68 (2020)

8. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning
with neural networks: A review. Neural Networks (2019)

9. Grossberg, S.: Nonlinear neural networks: Principles, mechanisms, and architectures.
Neural networks 1(1), 17–61 (1988)

10. Casado, F.E., Lema, D., Iglesias, R., Regueiro, C.V., Barro, S.: Concept drift detection
and adaptation for robotics and mobile devices in federated and continual settings. In:
Workshop of Physical Agents, pp. 79–93. Springer (2020)

11. French, R.M.: Catastrophic forgetting in connectionist networks. Trends in cognitive
sciences 3(4), 128–135 (1999)

12. Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N., Bonawitz,
K., Charles, Z., Cormode, G., Cummings, R., et al.: Advances and open problems in
federated learning. arXiv preprint arXiv:1912.04977 (2019)

13. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: Challenges, methods,
and future directions. IEEE Signal Processing Magazine 37(3), 50–60 (2020)

14. Aledhari, M., Razzak, R., Parizi, R.M., Saeed, F.: Federated learning: A survey on
enabling technologies, protocols, and applications. IEEE Access 8, 140,699–140,725
(2020)

15. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with
non-iid data. arXiv preprint arXiv:1806.00582 (2018)

16. Caldas, S., Wu, P., Li, T., Konečnỳ, J., McMahan, H.B., Smith, V., Talwalkar, A.: Leaf:
A benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018)

17. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated opti-
mization in heterogeneous networks. arXiv preprint arXiv:1812.06127 (2018)

18. Deng, Y., Kamani, M.M., Mahdavi, M.: Adaptive personalized federated learning. arXiv
preprint arXiv:2003.13461 (2020)

19. Yoon, J., Jeong, W., Lee, G., Yang, E., Hwang, S.J.: Federated continual learning with
weighted inter-client transfer. arXiv preprint arXiv:2003.03196v4 (2020)

20. Casado, F.E., Lema, D., Iglesias, R., Regueiro, C.V., Barro, S.: Collaborative and
continual learning for classification tasks in a society of devices. arXiv preprint
arXiv:2006.07129v2 (2020)

21. Webb, G.I., Hyde, R., Cao, H., Nguyen, H.L., Petitjean, F.: Characterizing concept
drift. Data Mining and Knowledge Discovery 30(4), 964–994 (2016)

22. Gepperth, A., Hammer, B.: Incremental learning algorithms and applications. In: Pro-
ceedings of the European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN), pp. 357–368. i6doc (2016)

26 Fernando E. Casado et al.

23. Baron, M.: Convergence rates of change-point estimators and tail probabilities of the
first-passage-time process. Canadian Journal of Statistics 27(1), 183–197 (1999)

24. Haque, A., Khan, L., Baron, M.: Sand: Semi-supervised adaptive novel class detection
and classification over data stream. In: Thirtieth AAAI Conference on Artificial Intel-
ligence, pp. 1652–1658 (2016)

25. Bowman, K., Shenton, L.: Estimation: Method of moments. Wiley StatsRef: Statistics
Reference Online (2014)

26. van de Ven, G.M., Tolias, A.S.: Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734 (2019)

27. Armijo, L.: Minimization of functions having lipschitz continuous first partial deriva-
tives. Pacific Journal of mathematics 16(1), 1–3 (1966)

28. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Fed-
erated learning: Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492 (2016)

29. Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F., Augenstein, S., Eichner,
H., Kiddon, C., Ramage, D.: Federated learning for mobile keyboard prediction. arXiv
preprint arXiv:1811.03604 (2018)

30. Shoaib, M., Bosch, S., Incel, O.D., Scholten, H., Havinga, P.J.: Fusion of smartphone
motion sensors for physical activity recognition. Sensors 14(6), 10,146–10,176 (2014)

31. Casado, F.E., Rodŕıguez, G., Iglesias, R., Regueiro, C.V., Barro, S., Canedo-Rodŕıguez,
A.: Walking recognition in mobile devices. Sensors 20(4) (2020)

32. Tong, L.N., He, J.J., Peng, L.: CNN-based PD hand tremor detection using inertial
sensor. IEEE Sensors Letters (2021)

	1 Introduction
	2 Related Work
	3 Concept Drift in Federated Settings: Problem Definition
	4 Concept-Drift-Aware Federated Averaging (CDA-FedAvg)
	5 Experimental Results
	6 Conclusions

