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Abstract

Recently, deep learning techniques based on Convolutional Neural Networks (CNN)
have started to be used for the classification of hyperspectral images. These techniques
present high computational cost when preprocessing stages are applied. In this paper, a
GPU (Graphical Processor Unit) implementation of a spatial-spectral supervised clas-
sification scheme based on CNNs and applied to remote sensing datasets is presented.
The scheme comprises convolution filters for processing the spectral information and a
patch around each pixel to take the spatial information into account. To reduce the
size of the filters, the dimensionality of the dataset is previously reduced using Principal
Component Analysis (PCA). In order to achieve an efficient GPU projection, different
techniques and optimizations have been applied such as the use of the deep learning
framework Caffe. Speedups of up to 38.66x over the Pavia University dataset are
obtained together with competitive classification accuracies.

Key words: Hyperspectral, Classification, Convolutional neural network, Deep learn-

ing, Caffe, GPU.

1 Introduction

Hyperspectral images contain a large amount of information that can be exploited during
the processing. This information is not only spectral but there is also a lot of spatial
information in the neighborhood of each pixel. Hyperspectral techniques that can exploit

©CMMSE Page 912 of 2288 ISBN: 978-84-617-8694-7



GPU CLASSIFICATION FOR HYPERSPECTRAL IMAGES BASED ON CNNSs

both types of information are known by the name of spectral-spatial techniques [1]. When
these techniques are introduced in the classification of hyperspectral images, experimental
results show great improvements in the accuracy results.

Recently, deep-learning techniques have started to be introduced in the field of classi-
fication of hyperspectral datasets (2, 3, 4, 5, 6]. These classifiers consist of several layers
with nonlinear processing units to extract and transform different features. Each layer uses
the output of the previous layer as input and the network can be trained in a supervised
or unsupervised manner. Applications include pattern recognition and statistical classifica-
tion. The proposed methods extract spatial information using structures such as Multilayer
Perceptrons (MLP) or Convolutional Neural Networks (CNN). Usually before the extrac-
tion of spatial information, a dimensionality reduction is performed using techniques such as
Principal Component Analysis (PCA), Independent Component Analysis (ICA) or wavelets
in order to obtain moderately small vectors.

A CNN contains convolutional layers that can be used to perform spatial convolutions
on the hyperspectral image bands. Usually pooling layers are also included in order to apply
some kind of decimation and reduce the number of coefficients. A CNN may have one or
more convolutional layers, but the final classification is performed using one or more fully-
connected layers. Activation functions to introduce non-linearity, usually of sigmoid type,
can be included in convolutional layers. Such functions are similar to those used in MLPs.
Usually the backpropagation algorithm is used to set the coefficients of both, neurons of
fully-connected layers and convolution filters.

Some published deep-learning schemes applied to hyperspectral images use only the
spectral information. Thus, Hu et. al [4] propose a scheme based on CNNs, which does not
consider spatial information since each input is a single pixel-vector. Other schemes incor-
porate the spectral and spatial information separately to the classifier, often constructing a
stack-vector for input to the neural network and using PCA [2, 3, 6, 5.

Remote sensing hyperspectral applications are computationally demanding and, there-
fore, good candidates to be projected in high performance computing infrastructures such
as clusters or specialized hardware devices [7]. GPUs provide a cost-efficient solution to
carry out onboard real-time processing of remote sensing hyperspectral data for performing
hyperspectral unmixing, classification or change detection, among others [8]. In the case of
deep learning techniques, different high-level frameworks optimized for GPU computing are
available, such as Theano, Caffe [9], TensorFlow or Torch. The implementations of deep
learning methods for hyperspectral images are in some cases presented in terms of execution
times but without an analysis of the computational cost [10]. In other cases the use of an
optimized framework such as Caffe [11] is mentioned but without including execution times
or a detailed analysis of the implementations.

In this paper we propose a CUDA GPU spectral-spatial classification scheme for hy-
perspectral images based on CNNs and implemented mainly by using the Caffe analyzing
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Figure 1: HYCNN scheme for the classification of hyperspectral images.

the details of the implementation. In order to reduce the size of the convolution filters, the
image dimensionality is previously reduced using PCA, as it will be explained in the next
section.

The paper is organized as follows: section 2 presents the proposed spectral-spatial
classification scheme in CPU, section 3 presents the GPU code. The evaluation is performed
in section 4, and, finally, section 5 presents the conclusions.

2 Spectral-Spatial CNN-Based Classification

In this section we present a scheme for the classification of hyperspectral images based on
PCA, patch extraction, and CNNs, that we called HYCNN. Fig. 1 shows the operations
performed and the network structure. These are described in more detail in the pseudocode
of Algorithm 1, which also indicates the adjustable parameters in the scheme.

Algorithm 1 Steps of the HYCNN scheme

Input: Hyperspectral image 1. Preprocessing

Output: Classification map 1.1 PCA on the image
Parameters: 2. Patch extraction

Nip: number of principal components 2.1 Patch around each pixel

H x V: patch size 3. Convolutional layer

No: number of convolution filters 3.1 Convolution filtering

Fy x Fy: spatial size of filters 3.2 Pooling (average)

Dy x Dy: decimation factor 3.3 Activation function (sigmoid)
N3: number of neurons in hidden layer 4. Fully-connected layers

n: learning parameter 4.1 Hidden layer (with sigmoid)

4.2 Output layer (with sigmoid)

As a first step, HYCNN performs a reduction of image dimensionality using PCA.
[t extracts the most significant information from the hyperspectral image in the spectral
dimension and reduces the number of components, which progress to the next step of the
algorithm.
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A patch is then extracted around each pixel to be classified. This step aims at getting
the spatial information in the neighborhood of a pixel in addition to the spectral information.
Accordingly, the patch has the same number of components as those retained from the PCA,
and comprises a window around the pixel. The window size is an adjustable parameter of
the classification. Each patch is considered a sample and used as the unit of information
during the training and classification phases by the CNN.

The next step is the processing of each patch by the CNN. This consists of three parts:
convolutional filters, pooling layer and activation function. A convolutional layer is a locally
connected structure which is convolved with the image to produce several feature maps, one
for each filter. Each filter consists of a rectangular grid of neurons. Unlike a fully-connected
layer, the filter coefficients used in all the nodes are the same.

The convolutional layer of our scheme processes several components (spectral bands).
The inputs to the filters are the patches, which we assume to have in this sequential algo-
rithm a size of H x V' x Ny, being H and V the size of the spatial dimensions, and Ny the
number of bands. In order to extract multiple features, the convolutional layer comprises
N filters, so we will have this same number of maps (planes) at the output. Regarding the
size of the filters, if F'| x F5 is the size of the spatial grid, each filter will have F; x F5 x N
coefficients.

The pooling layer takes small rectangular blocks from the convolutional layer and sub-
samples them to produce a single output from each block. For the pooling layers each map
is subsampled with mean pooling over blocks of size D x Dy. After the subsampling, a
sigmoidal nonlinearity is applied to each feature map.

The last part of the scheme consists of fully-connected layers, which perform the high-
level reasoning of the CNN. A fully connected layer takes all the outputs in the previous
layer and connects then to every single neuron it has. This type of layer is arranged in
one dimension, so they are not spatially located operations anymore. In this paper we use
the typical two-layer MLP, with hidden and output layers. The number of neurons in the
hidden layer is the adjustable parameter N3, while the output layer has a number of neurons
equal to the number of classes in the hyperspectral image. The activation function in both,
convolutional and fully-connected layers, is of sigmoid type.

The learning of all the layers of the CNN in this scheme is conducted using a backprop-
agation algorithm. The error is computed at the output of the network using the training
samples and comparing the results to the reference data. Then, the error is propagated
backwards through the network. The backpropagation is used in conjunction with an op-
timization method, in this case a gradient descent. It calculates the gradient of a cost
function with respect to all the weights of the network, and then updates the weights in
an attempt to minimize the cost function. The learning parameter, usually denoted as 7,
indicates how much the weights are adjusted at each update.
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3 Spectral-Spatial CNN-Based Classification in GPU

In this section we introduce some Compute Unified Device Architecture (CUDA) program-
ming fundamentals as well as the CUDA GPU implementation of the scheme proposed in
Sect. 2.

3.1 CUDA GPU programming fundamentals

CUDA is a parallel computing platform and programming model that enables NVIDIA
GPUs to execute programs invoking parallel functions called kernels [12]. Each kernel
launches a user-defined number of threads that are organized into blocks. The blocks are
arranged in a grid that is mapped to a hierarchy of CUDA cores in the GPU. Threads can
access data from multiple memory spaces. Each block has a shared memory that is visible
exclusively to the threads within this block and whose lifetime is equal to the block lifetime.
The shared memory lifetime makes it difficult to share data among thread blocks. This
implies the use of global memory whose access is slower than shared memory access. The
new Pascal architecture has introduced changes regarding the memory hierarchy [13].
Different performance optimization strategies have been applied in this work. The
most important is to reduce the data transfers between the CPU and the GPU memories.
Another key is to improve the efficiency in the use of the memory hierarchy by performing
the maximum number of computations on the data already stored in shared memory. The
search for the best kernel configurations is also fundamental. To get the highest possible
occupancy is the only way to hide latencies and keep the hardware busy. To achieve this,
the maximum block size for each kernel is selected with the requirement that the number
of registers and the shared memory usage do not act as occupancy limiters. Finally, the
existing CUDA optimized libraries must be used. CULA [14], MAGMA [15], and CUBLAS
[16] are used for algebra operations. For the deep learning calculations the Caffe framework
is used. It performs calls to CuDNN [17], CUBLAS and MAGMA. CuDNN is a GPU-

accelerated library for deep neural networks.

3.2 CUDA implementation

In this section the GPU implementation of the HYCNN algorithm described in section 2 is
detailed. The pseudocode in Algorithm 2 shows a detailed description of the classification
scheme. The kernels executed in GPU are placed between <> symbols. The pseudocodes
also include the GM and SM acronyms to indicate kernels executed only in global memory
and kernels that only use shared memory, respectively. The whole forward-backward process
for the training phase of the algorithm is detailed. The CNN is implemented using Caffe.
Since the calls to Caffe functions produce a high number of calls to libraries, these are
grouped in the pseudocode by steps of the scheme and only the most repeated kernels are
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included pointing out the call sequence.

Algorithm 2 HYCNN classifier for hyperspectral images (GPU) — Training step

10:
11:
12:
13:
14:
15:
16:
17:

18:

20:
21:

23:
24:
25:
26:

27:
28:

Input: Hyperspectral image
GPU EVD-PCA algorithm

for each epoch do

Forward

Convolution filtering
for each training sample do
im2col_gpu() — <im2col_gpu>

caffe_gpu_gemm() — cublasSgemm() — <gemmSN_NN>, <gemmK1>

end for
Average Pooling

> GM
> SM + GM

PoolingLayer::Forward_gpu() — <AvePoolForward> > GM
Convolution Activation
CuDNNSigmoidLayer::Forward_gpu() — cudnnActivationForward() — <activation_fw_4d> > GM

First Inner

InnerProductLayer::Forward_gpu() — caffe_gpu_gemm() — <sgemm_largeK>, <gemmkl> > SM + GM

First Inner activation

First Inner

CuDNNSigmoidLayer::Forward_gpu() — cudnnActivationForward() — <activation_fw_4d> > GM
Second Inner

InnerProductLayer::Forward_gpu() — caffe_gpu_gemm() — <sgemm>, <gemmk1> > SM + GM
Second Inner Activation

CuDNNSigmoidLayer::Forward_gpu() — cudnnActivationForward() — <activation_fw_4d> > GM
SoftMax with Loss

CuDNNSoftmaxLayer::Forward_gpu() — cudnnSoftmaxForward() — <softmax_fw> > SM + GM

SoftmaxLossForwardGPU() — <SoftmaxLossForwardGPU>, <cublasSasum> > GM
Backward

SoftmaxLossBackwardGPU() — <SoftmaxLossBackwardGPU>, <cublasSscal> > GM
Second Inner Activation

CuDNNSigmoidLayer::Backward_gpu() — cudnnActivationBackward() — <activation_bw_4d> > GM
Second Inner

InnerProductLayer:: Backward_gpu() — <sgemmNT2>, <gemmv2N>, <sgemm_128x64> > SM + GM
First Inner Activation

CuDNNSigmoidLayer::Backward_gpu() — cudnnActivationBackward() — <activation_bw_4d> > GM

InnerProductLayer::Backward_gpu() — <sgemm_128x64>, <gemmv2N>, <sgemm_128x64> © SM + GM

Convolution Activation

CuDNNSigmoidLayer::Backward_gpu() — cudnnActivationBackward() — <activation_bw_4d> > GM

Pooling
PoolingLayer::Backward_gpu() — <AvePoolBackward>
Convolution filtering
for cach training sample do
ConvolutionLayer::Backward_gpu():
backward_gpu_bias() — <gemv2T>
weight_gpu_gemm() — <im2col_gpu>
backward _gpu_gemm() — <gemmSN_TN>
end for
Weights update
caffe::SGDSolver() — <SGDUpdate>
end for

> GM

> SM + GM
> GM
> SM + GM

> GM
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As a first step, the PCA algorithm using EVD (EVD-PCA) is applied to reduce the
dimensionality of the dataset. For details of the GPU implementation see [18].

A patch is then extracted around each pixel and stored into a two different Lightning
Memory-Mapped Databases (LMDBs) to be accessed from the Caffe framework. The first
database stores the training patches whereas the second one stores the test patches. As
shown in the pseudocode, both, the CNN steps and the fully-connected layers steps are
applied to each patch N times (epochs).

The training phase is divided into two main steps: forward and backward. The forward
step computes all the training patches through the full network to obtain a classification re-
sult and the backward step updates the network weights to adjust the obtained classification
result.

The forward step starts applying the convolution filters to each training patch. Unlike in
the CPU version where the H x V' pixels of the patch are computed through the convolution
filters sequentially, in the GPU version the patch is converted first into a matrix using
the im2col_gpu function (line 3 in the pseudocode 2). Then, it is multiplied by a matrix
containing the convolutional values using the cublasSgemm function (line 4).

Next, a pooling substep is performed using a Caffe kernel called AvePoolForward. This
function computes the pooling over all the training patches at the same time. The last
substep of the CNN is the activation. The CuDNNSigmoidLayer::Forward _gpu() calls the
CuDNN funtion to perform the sigmoid activation (line 7).

Once the CNN has finished, two fully-connected layers perform the classification. First,
an inner product function (line 8) that uses CuBLAS multiplies the CNN output matrix by
a matrix of learned weights. Next, a sigmoid activation function (line 9) is applied over the
previous result using a CuDNN function. The previous two operations are repeated over
the last fully-connected layer (lines 10 and 11).

At this point, the output of the full network contains the classification of each training
patch. Then, a softmax function (line 12) is applied to get a probability distribution over
classes. This function takes a vector of arbitrary real-valued scores and converts it to a
vector of values between zero and one that sum one. The last substep of the forward is to
compute the loss of the network using the function SoftmaxLossForwardGPU (line 13).

Regarding the backward step, it includes all the substeps of the forward step but applied
in reverse order (lines 14-26). This allows to update the values of all the neurons in the full
network based on the results of the loss function computed in the forward step. At the end
of the loop, the update of all the weights of the full network is performed (line 27). This
task is carried out by a Caffe function.
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4 Results

This section shows the experimental results obtained for the GPU HYCNN scheme com-
paring to the CPU scheme in terms of computation time and classification accuracy.

The proposed algorithms have been evaluated on a PC with a quad-core Intel i5-6600 at
3.3GHz and 32 GB of RAM. The codes have been compiled using the gce 4.8.4 version with
OpenMP (OMP) 3.0 support under Linux using four threads. The OPENBLAS library has
been used to accelerate the algebra operations included in the algorithms. Regarding the
GPU implementation, CUDA codes run on an Pascal NVIDIA GeForce GTX 1070 with 15
Streaming Multiprocesors (SMs) and 128 CUDA cores each. The CUDA codes have been
compiled under Linux using the nvee version 8.0.26 of the toolkit. Asusual in remote sensing
[19], measures of classification accuracy are given in terms of overall accuracy (OA), which
is the percentage of correctly classified pixels comparing to the reference data information
available. The computational performance results are expressed in terms of execution times
and speedups. The results are the average of 10 independent executions.

The algorithms have been used over two remote sensing datasets: a 103-band ROSIS
image of the University of Pavia (Pavia Univ.) and a 220-band AVIRIS image taken over
Northwest Indiana (Indian Pines). The images and the corresponding reference data are
shown in Fig. 2.

For each dataset the samples are randomly distributed between the training [18] and
testing sets. During the testing stage all pixels of the image are classified, but the samples
used in the training stage are excluded for the calculation of the accuracy results (see Table
1).

Datasets Sensor  classes  Dimensions  samples training samples
Pavia Univ.  ROSIS 9 610x340x103 42776 3921 (9.17%)
Indian Pines AVIRIS 16 145x145%220 10249 695 (6.78%)

Table 1: Information for the test remote sensing datasets.

The configuration parameters were determined by performing experiments varying the
number of principal components, the batch size and the filter size for the code executed
in CPU. These parameters are also used for the GPU implementation when both codes
are compared from the computational point of view. The base parameters considered for
the comparison are H = V = 28 (patch size), N1 = 4 (number of principal components),
Ny = 16 (number of filters), N3 = 100 (neurons in the hidden layer), F} = F» = 5 (filter
size), and Dy = Dy = 2 (decimation factor). The backpropagation algorithm was performed
with learning parameter n = 0.2, batch size equal to the number of training samples, and
a total of 200 epochs. The Caffe framework using a block size of 512 is used to execute the
GPU version of the HYCNN scheme except for the initial PCA algorithm.
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Figure 2: Hyperspectral datasets: (a) Pavia Univ., (b) Indian Pines.

Table 2 shows the comparison between the CPU and the GPU implementations of the
scheme when it is applied to the Pavia Univ. image. For a better understanding of the
results, different parts of the code have been grouped into higher abstraction level functions.
The times are split following the functions of the pseudocode in Algorithm 2 but aggregating
the results for the backward step. The speedups are calculated as the number of times that
the GPU code is faster than the CPU code. The biggest speedup is observed for the First
Inner function that comprises the update of the hidden layer neurons in the fully-connected
network. The speedup for the Second Inner is lower because the size of the matrix by
matrix multiplication is smaller as it corresponds to layers with fewer neurons. The most
time consuming function is the Convolution in the Forward step. Its speedup is only 47.41x
because this function includes a group of kernels with low occupancy.

Table 3 shows the execution times and speedups for the whole classification scheme for
the two test datasets (including the training and testing steps and also the PCA step) as well
as the classification accuracies for both implementations. It is important to enhance that
the same configuration parameters were used for both implementations in order to compare
the computational time in the same conditions. Nevertheless, for the GPU accuracies the
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Step Lines CPU GPU Speedup
Forward step
Convolution 2-5 2.06537s  0.04356s 47.41x

Average Pooling 6 0.03557s  0.00556s 6.40 x
Convolution Act. 7 0.26165s  0.01389s 18.83x
First Inner 8 1.92316s  0.00225s  854.74 x

First Inner Act. 9 0.01281s  0.00063s 20.33 x
Second Inner 10 0.00621s  0.00006s  103.50x
Second Inner Act. 11 0.00126s  0.00005s 25.20 x
Loss 12-13  0.00023s  0.00015s 1.53 %
Backward step

Second Inner 14-16  0.00350s  0.00007s 50.00 x
First Inner 17-18  0.95480s  0.00537s  177.80x
Convolution 19-26  1.61309s  0.04792s 33.66x
Total 6.87742s  0.11939s 57.60x

Table 2: CPU and GPU execution times and speedups for the training step of the HYCNN
scheme for Pavia Univ. dataset. The column Lines shows the lines in Algorithm 2

CPU GPU Speedup
Dataset Time  Accuracy (%) Time Accuracy (%)
Pavia Univ.  1404.26s 98.50 36.32s 97.15 38.66 %
Indian Pines  252.33s 97.14 7.60s 84.84 33.20x

Table 3: Execution times,speedups and classification accuracies for the HYCNN scheme.

parameters were optimized for the GPU code separately. The patch size was reduced to 256.
In addition, the number of epochs was set to 1300 and 3683 for the Pavia Univ. and the
Indian Pines images respectively. The differences in classification accuracy among the CPU
and the GPU schemes are produced by the weights update during the backpropagation. For
the CPU case the update is carried out for each sample separately, on the contrary for the
GPU case the updates are performed by blocks of samples.

5 Conclusions

In this paper we propose a spectral-spatial scheme in GPU based on convolutional neural
networks for the classification of hyperspectral images and evaluate its results on several
public datasets used in remote sensing for land-cover applications. The scheme consists
of principal component analysis, patch extraction, convolution filters and fully-connected
layers. The learning is performed using the standard backpropagation algorithm.
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The CUDA GPU implementation is based on the use of the Caffe optimized framework
for deep learning and other optimization strategies including calls to optimized libraries
such as CULA, CUBLAS and MAGMA. Details on the Caffe implementation are given. The
experiments obtain speedups of up to 38.66% for the Pavia Univ. dataset with accuracies
of up to 97.15%.
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