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A B S T R A C T

In this work, we present a machine learning neural network model to predict the impact of realistic metal
grain granularity (MGG) variability on the threshold voltage 𝑉𝑇ℎ and on the 𝐼𝐷−𝑉𝐺 characteristics of a silicon-
based 12 nm gate length nanosheet FET. This model is based on the multi-layer perceptron (MLP) machine
learning architecture. As realistic MGG maps consist of the distribution of grains on the gate with different
work-function values, it is relevant to apply algorithms such as the principal component analysis to reduce
these features to the most representative ones. Once the realistic MGG features are correctly reduced without
losing information, we train two different neural networks with the neurons in the output layer as the only
difference, to predict the 𝑉𝑇ℎ and the 𝐼𝐷 − 𝑉𝐺 characteristics, respectively. The comparison between TCAD
results and the model, shows excellent agreement for the mean and standard deviation of 𝑉𝑇ℎ distributions for
different average grain sizes values (from 3 nm to 10 nm) demonstrating the accuracy of the machine learning
model. Also, we study the amount of data needed to accurately train the MLPs, leading to results that allow
us to drastically reduce the computational time required to perform variability studies for state-of-art nano
FET devices.
1. Motivation

Nanosheet FETs are currently considered one of the preferred ar-
chitectures for the next technology nodes [1]. Due to the expensive
manufacture of new devices, other solutions, such as technology-aided
computer design (TCAD), are needed to evaluate the reliability of
future transistors, being the metal grain granularity (MGG) one of the
most harmful sources of variability [2]. As the realistic simulation of
these variability studies is computationally demanding, it is essential to
explore new techniques such as the Pelgrom-based predictive model [3]
or the application of machine learning methodologies [4]. Previous
works, combined machine learning models with the application of
synthetic MGG profiles with fixed-size rectangular grains [5] or square
grains [6]. However, since the average metallic grain size (𝐺𝑆) depends
on the annealing temperature and duration of the gate deposition
process [7], it is crucial to evaluate a variety of 𝐺𝑆s while capturing
the realistic random shapes of the grains deposited on the gate.
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In this context, we present a multi-layer perceptron (MLP) neural
network to estimate the impact of MGG on a 12 nm gate length
nanosheet (NS) FET. Also, by modifying the output layer of the same
MLP, we can accurately predict the threshold voltage (𝑉𝑇ℎ) or the
𝐼𝐷 − 𝑉𝐺 characteristics of the studied transistors. In order to correctly
describe the impact of MGG on nanosized transistor, we use random
realistic MGG profiles based on Poisson–Voronoi diagrams for several
𝐺𝑆s (from 3 nm to 10 nm) to feed the MLP model.

The contents of this paper are distributed as follows. Section 2
shows the methodology, from the description of the simulation process
to the MLP structure. Then, Section 3 presents the MLP performance,
and its comparison with TCAD data. Finally, Section 4 summarizes the
main conclusions of this work.

2. Methodology: From TCAD to MLP

This study is based on a Si NSFET (see Fig. 1) previously calibrated
in [8] against the experimental device reported in [9] at high drain
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Fig. 1. 12 nm gate length (Lg) nanosheet FET affected by MGG. Regions: source (S),
gate (G), and drain (D). Lsd and Nsd are the length and doping of S and D. w and h
are the channel width and height. 𝑡𝑜𝑥 is the effective oxide thickness. The TiN work
functions (WF) are 4.4 eV (40%) and 4.6 eV (60%).

bias (𝑉𝐷 = 0.7𝑉 ). The simulations were carried out using the in-
house built three-dimensional semiconductor device simulator toolbox
VENDES [10]. This software allows us to reproduce the physics inside
the device by applying the drift-diffusion (DD) transport method, cou-
pled with density-gradient quantum corrections. The chosen criteria to
extract the 𝑉𝑇ℎ is the linear extrapolation (LE) method [11].

MGG consists of the appearance of different metallic grain orien-
tations with different work functions (WF) during the gate deposition
process. To implement this source of variability in a realistic way, we
have generated random MGG profiles where the grains are created
with Poisson–Voronoi diagrams, depending on the 𝐺𝑆 [12] (see an
example of a realistic MGG profile in Fig. 1). The TiN metal gate
has two grain orientations with WF of 4.4/4.6 eV, and occurrence
probabilities of 40/60%, respectively. To have statistical significance,
we generate around 900 profiles for each of the 𝐺𝑆s studied in this
work (3, 5, 7, 10 nm).

The MLP was developed using Python 3.9, the Scikit-learn 1.0.2
[13], and the PyTorch Lightning 1.9.0 library. Several hyperparame-
ters, such as the batch size (𝑏𝑠 = 64), the initial learning rate (𝑙𝑟 = 0.1),
or the number of neurons and hidden layers, were calibrated to opti-
mize the MLP performance using the Ray Tune 2.2.0 library [14]. Fig. 2
shows the structure of the MLP, with an input layer corresponding to
the number of features of the realistic MGG profile (𝑁𝑥𝑖 ), two hidden
layers with 234 and 44 neurons, and an output layer with 1 neuron
corresponding to the 𝑉𝑇ℎ. Furthermore, an identical structure with 21
number of neurons in the output layer is used to predict the 𝐼𝐷 − 𝑉𝐺
characteristics. ReLU is used as the activation function, the mean square
error (MSE) as the loss function, and an adaptative 𝑙𝑟 scheduler to avoid
divergence in the MSE minimization. The stochastic gradient descent
(SGD) optimization algorithm with a momentum = 0.9 is implemented.
Also, the initialization of the neural network layers and nodes weights
is implemented with a normal distribution with mean 0 and standard
deviation 0.01, which were also optimized with Ray Tune.

The main issue of using a realistic MGG profile (368 × 41 discretiza-
tion points) is its huge amount of features in each MGG profile. The
number of features (𝑁𝑥𝑖 = 15088), which is greater than the sample
size (𝑁𝑠𝑎𝑚𝑝𝑙𝑒 = 3604), can produce problems of overfitting of the neural
network, limiting its generalization and prediction capacity [15]. To
deal with this issue, the principal component analysis technique (PCA)
is applied with a 95% threshold cut-off of the cumulative variance [16],
to determine the representative 𝑁𝑥𝑖 value. With this methodology (see
Fig. 3) the train dataset features are reduced from 𝑁 = 15088 to
2

𝑥𝑖
Fig. 2. A multi-layer perceptron neural network with an input layer, two hidden layers
and an output layer. 𝑥1 to 𝑥𝑛 (input) are the MGG features. 𝑉𝑇ℎ (output) is the threshold
voltage.

Fig. 3. Cumulative variance against the number of features (𝑁𝑥𝑖 ). The data reduction
process is explained in the box, first the split of the dataset for the training process
and after the PCA reduction for the 95% cut-off of the cumulative variance.

𝑁𝑥𝑖 = 750 making 𝑁𝑥𝑖 < 𝑁𝑡𝑟𝑎𝑖𝑛. The sample is split into three subsets
(train, validation, test), being their size 𝑁𝑡𝑟𝑎𝑖𝑛 = 2520, 𝑁𝑡𝑒𝑠𝑡 = 540, and
𝑁𝑣𝑎𝑙 = 544. Once this procedure is applied, the MGG data is ready to
feed the MLP.

3. Numerical results: Performance and prediction

With the conditions previously mentioned, the MLP was trained
to predict the 𝑉𝑇𝐻 MGG-induced variability on a NSFET. The com-
putational time (𝑡𝑐𝑜𝑚𝑝) to reduce the features with PCA and train the
MLP network is 6 min, with the advantage of being usable for future
predictions without any extra computational cost. Fig. 4 shows the
comparison between the MLP predicted and the VENDES simulated 𝑉𝑇ℎ
values for the test dataset. The metrics used to evaluate the training
process are the coefficient of determination (𝑅2) and the mean absolute
percentage error (𝑀𝐴𝑃𝐸), obtaining for the test values a 𝑅2 = 0.975
and a 𝑀𝐴𝑃𝐸 = 1.5%.

Based on an identical MLP structure used for 𝑉𝑇ℎ, the 𝐼𝐷−𝑉𝐺 charac-
teristics of each device impacted by realistic MGG can be predicted only
by varying the number of neurons in the output layer. In this case, to
train the MLP network the output neurons were modified from 1 (𝑉𝑇ℎ)
to 21 (number of points of the simulated 𝐼𝐷 − 𝑉𝐺 characteristics). The
main advantage of predicting the 𝐼𝐷 − 𝑉𝐺 characteristics is to have all
the information about the performance of the devices, being able to
extract not only the 𝑉 but also other relevant figures of merit as the
𝑇ℎ
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Fig. 4. Comparison between simulated TCAD threshold voltage (𝑉𝑇ℎ) and MLP
predictions for the test dataset. The coefficient of determination (𝑅2) is also shown.

Fig. 5. Comparison of 𝐼𝐷−𝑉𝐺 characteristics simulated using VENDES versus predicted
alues using the MLP for the test dataset.

ff current, the subthreshold slope, or the on current. Fig. 5 displays
he comparison between the MLP 𝐼𝐷−𝑉𝐺 predictions (blue points) and
he TCAD 𝐼𝐷 − 𝑉𝐺 values (dashed gray lines). The metrics for the test
f the 𝐼𝐷 − 𝑉𝐺 characteristics are 𝑅2 = 0.967 and 𝑀𝐴𝑃𝐸 = 1.8%. In
his case, the performance metrics for the test are slightly lower than
hose of the MLP 𝑉𝑇ℎ but for this second application of the model, the
yperparameters have not been optimized.

To compare the predictive power for the two MLPs and their accu-
acy with the TCAD simulation results, we evaluate the statistics for the
𝑇ℎ distributions as a function of the 𝐺𝑆. For this purpose, the same
raining dataset is used to feed both MLPs, and also the comparison is
ade with the same testing dataset. For consistency, the criteria chosen

o extract the 𝑉𝑇ℎ from the predicted 𝐼𝐷 − 𝑉𝐺 values is the same as in
he TCAD, the LE method [11]. Fig. 6 shows the mean threshold voltage
𝜇𝑉𝑇ℎ, top figure) and the standard deviation threshold voltage (𝜎𝑉𝑇𝐻 ,
ottom figure) of the 𝑉𝑇ℎ distributions for each 𝐺𝑆 due to the three
ompared methodologies (TCAD, MLP 𝑉𝑇ℎ, and MLP 𝐼𝐷 − 𝑉𝐺). It can
e seen that the deviations in the 𝜇𝑉𝑇ℎ values is lower than 3.5 mV,
ogether with a perfect matching of the 𝜎𝑉𝑇ℎ values, demonstrating the
ccuracy of the model presented in this work.

Considering that in an Intel Core i9-10850K CPU 3.60 GHz pro-
essor each quantum corrected DD simulation takes 7.5 h, decreasing
𝑡𝑟𝑎𝑖𝑛 will lead to a massive reduction in 𝑡𝑐𝑜𝑚𝑝. Fig. 7 shows the effect

fter PCA features reduction, of decreasing the fraction of the training
ataset from 1 (𝑁𝑡𝑟𝑎𝑖𝑛 = 2520) to 0.2 (𝑁𝑡𝑟𝑎𝑖𝑛 = 504). The performance
etrics for the lower fraction of the training dataset (0.2) for MLP
𝑇ℎ are 𝑅2 = 0.942, 𝑀𝐴𝑃𝐸 = 2.05%, and for MLP 𝐼𝐷 − 𝑉𝐺 are 𝑅2 =
.940, 𝑀𝐴𝑃𝐸 = 2.10%. These results demonstrate the feasibility of
3

educing an 80% the number of simulations required to train the MLPs,
Fig. 6. Impact of the average metal grain size (𝐺𝑆) on the 𝑉𝑇ℎ statistics for the three
ethodologies presented (TCAD, MLP 𝑉𝑇ℎ, and MLP 𝐼𝐷 − 𝑉𝐺). The top/bottom figure

hows the mean threshold voltage/threshold voltage standard deviation (𝜇𝑉𝑇ℎ/𝜎𝑉𝑇ℎ).

Fig. 7. Coefficient of determination (𝑅2, top) and mean absolute percentage error
(𝑀𝐴𝑃𝐸, bottom) versus the fraction of dataset used to train the two different MLPs
of this work.

lowering 5× the 𝑡𝑐𝑜𝑚𝑝, without a significant loss of accuracy. The metric
variations between training with the whole dataset and its 20% are
𝛥𝑅2 ∼ 0.02, and 𝛥𝑀𝐴𝑃𝐸 ∼ 0.5%.

4. Conclusions

We have presented two strategies based on a machine learning
model to accurately estimate the MGG-induced variability on a 12 nm
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NSFET. The first strategy consists of directly predicting the 𝑉𝑇ℎ from
ealistic MGG maps, whereas the second strategy predicts the complete
𝐷−𝑉𝐺 characteristics of the devices impacted by MGG. The comparison
etween TCAD simulations and the MLP neural networks shows an
ccurate prediction of the 𝑉𝑇ℎ distributions as their deflections for the
ean and standard deviation are almost negligible.

We demonstrated that the presented model could obtain coefficients
f determination of 𝑅2 ∼ 0.94 and mean absolute percentage errors

of 𝑀𝐴𝑃𝐸 ∼ 2% when using only the 20% of the training dataset,
reducing 5.0× the computational time with respect to the total train
ataset. Moreover, once the MLP model is trained, it can accurately
redict the impact of realistic MGG variability on 𝑉𝑇ℎ and on the 𝐼𝐷−𝑉𝐺
haracteristics, with no further simulations.
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