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ABSTRACT

The classification of remote sensing hyperspectral images for land cover applications is a very intensive topic.
In the case of supervised classification, Support Vector Machines (SVMs) play a dominant role. Recently, the
Extreme Learning Machine algorithm (ELM) has been extensively used. The classification scheme previously
published by the authors, and called WT-EMP, introduces spatial information in the classification process by
means of an Extended Morphological Profile (EMP) that is created from features extracted by wavelets. In
addition, the hyperspectral image is denoised in the 2-D spatial domain, also using wavelets and it is joined to
the EMP via a stacked vector. In this paper, the scheme is improved achieving two goals. The first one is to
reduce the classification time while preserving the accuracy of the classification by using ELM instead of SVM.
The second one is to improve the accuracy results by performing not only a 2-D denoising for every spectral
band, but also a previous additional 1-D spectral signature denoising applied to each pixel vector of the image.
For each denoising the image is transformed by applying a 1-D or 2-D wavelet transform, and then a NeighShrink
thresholding is applied. Improvements in terms of classification accuracy are obtained, especially for images with
close regions in the classification reference map, because in these cases the accuracy of the classification in the
edges between classes is more relevant.

Keywords: Remote sensing, Land cover classification, Hyperspectral analysis, Wavelet transform, Feature
extraction, Morphological profiles, Denoising, Spectral-Spatial processing.

1. INTRODUCTION

Hyperspectral sensors have the ability to sense electromagnetic signals in a very detailed spectral resolution.
The availability of hundreds of spectral bands at different wavelength channels offers possibilities for extracting
information that can be useful for different applications. In the case of remote sensing, the problems that are
typically addressed for such hyperspectral data include anomaly detection, target recognition, and background
characterization, including land-cover classification,1 which is the aim of this work.

Although many methods have been applied to different problems associated with the classification of multi-
spectral and hyperspectral data,2–5 Support Vector Machines2 (SVMs) are generally recognized as the supervised
classification method that offers the best results in terms of accuracy of the classification.6 Also considering su-
pervised classification, in the field of neural networks, Extreme Learning Machines (ELMs) have been recently
used in remote sensing7–9 and slightly improve SVM results. ELM is the name for a class of single-hidden layer
feedforward neural networks with random weights.10 It is important to note that the computational requirements
of the classification of hyperspectral datasets are high, so the computational efficiency in terms of execution time
of the methods must be considered when they are designed. In this sense ELM and ELM-based classification
techniques for remote sensing hyperspectral images have been compared to similar SVM-based techniques11

showing much lower execution time.

The accuracy of the results obtained with a pixel-wise classifier such as SVM or ELM when only spectral
information is considered is limited.4 In general, the accuracy of the classification of hyperspectral data is
improved when information corresponding to the spatial structures present in the image is also introduced.5 The
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methods for extracting spatial information include those based on segmentation,12,13 on partitional clustering
techniques,14 on minimum spanning forest,15 or on local filtering16 among others.

Another common approach in order to extract the spatial information is to consider Mathematical Morphol-
ogy17 (MM). Using the morphological operators known as erosion and dilation a Morphological Profile (MP) can
be built18 from hyperspectral data. These profiles contain information on the spatial structures on the image
at different resolutions. The MPs could be computed over each band of the hyperspectral image but this would
generate a huge amount of data with redundancy. For this reason different feature extraction (FE) techniques
are applied before calculating the MP. For example, Principal Component Analysis (PCA) is used for building
MPs19,20 and, if several components are retained, then a so-called Extended Morphological Profile21,22 (EMP)
is obtained. Other FE methods can be used. For example, independent component analysis as in Ref. 18, De-
cision Boundary Feature Extraction (DBFE) and Non-parametric Weighted Feature Extraction (NWFE) as in
Refs. 19 and 21, or wavelets as proposed in Ref. 23, have been used for building extended morphological profiles.
If attribute operators related, for example, to the size or geometry of the spatial structures in the image are
considered instead of morphological operations, then the profile is called Attribute Profile24 (AP). The profile is
called EMAP25 if multiple attributes and several components are used for extracting the spatial information.

In order to combine the spatial and the spectral information different methods have been used being majority
voting12,15 and regularization26 two common approaches. Marker selection is also used in combination with SVM
in different techniques.5 In other cases a simpler method consisting in concatenating the spectral and spatial
features via stacked vectors27 is used. The data fusion process can also be performed via kernel methods.28,29

Data fusion can also be implicitly performed by concatenating different methods. For example, Empirical Mode
Decomposition (EMD) has been proposed to spatially decompose hyperspectral bands,30 and in this scheme 1-D
discrete wavelet transforms (DWTs) are used to enhance spectral information from the EMD intrinsic functions.31

So, data fusion is implicitly performed by applying the spectral wavelet transform along the data found by the
2-D EMD.

Hyperspectral data suffers from atmospheric haze or instrument noise.32 Noise in remote sensing is identified
as additive, multiplicative or impulsive noise33 (or a mixture of them). Gaussian additive noise in hyperspectral
images is considered in this paper. Different noise reduction techniques have been presented of which wavelets
are commonly used as a common pre-processing stage. For example, a hyperspectral image band by band de-
noising23,34 improves the classification accuracy as compared to the original noisy image. BM4D35 is a denoising
technique based on block-matching filtering applied to volumetric datasets. The idea is to extract similar patches
from 3-D data and stack them into a volume that is filtered using a discrete cosine transform. A discrete Fourier
transform and 2-D discrete wavelet transform (2-D DWT) are proposed in Ref. 36 for spectral and spatial denois-
ing, respectively. In general, if the spectral and the spatial information are considered by the denoising method,
better results in terms of peak signal-to-noise ratio (PSNR) and classification accuracy are expected.

A 3-D denoising method (SarUWT)37 based on sparse regularization with 3-D undecimated wavelet transform
outperformed in the literature other 2-D and 3-D wavelet-based denoising schemes, such as BiShri2D/3D.38,39 A
wavelet-based denoising method on components extracted by PCA (PCABiShr)40 applies 2-D bivariate shrinkage
(BiShri2D) in the spatial domain and 1-D dual-tree complex wavelet denoising41 in the spectral domain for each
principal component. First order roughness penalty based on enforcing smoothness on spectra has been also used
for denoising (FORPDN)42 hyperspectral data. The proposed cost function is formulated in the wavelet domain
to exploit the multiresolution property of wavelets. Whatever the wavelet-based denoising method used, the
noisy coefficients in the wavelet domain are shrunk based on a threshold, while the noisy free wavelet coefficients
remain unchanged (hard-thresholding) or are attenuated43 (soft-thresholding). Several algorithms can be used
to estimate threshold values, such as the universal threshold or VisuShrink,43 the BayesShrink,44 or Stein’s
Unbiased Risk Estimator (SURE) shrinkage method.45 In addition, wavelet coefficients at different scales can
be used in the thresholding formula, such as the BiShri2D scheme. Cai and Silverman46 proposed a wavelet
shrinkage method that incorporates neighbour wavelet coefficients into the thresholding formula. As the wavelet
transform produces correlated coefficients, large wavelet coefficients will probably have large wavelet coefficients
at their neighbours. This approach was extended to the 2-D case in Ref. 47 using a two dimensional window and
the method was named NeighShrink.
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Figure 1. Flow-chart of the WTSS-EMP spectral-spatial classification scheme based on feature extraction and denoising
by wavelets, and mathematical morphology.

In this paper the spectral-spatial classification scheme called WT-EMP presented in Ref. 23 is extended
mainly by changing the classification method and modifying its denoising stage. The original scheme is based
on EMPs and classification by SVM. The EMP is built from features extracted by wavelets and it is combined
with the denoised image via stacked vectors. The denoising is performed band by band using 2-D wavelet-based
denoising, with the objective of removing undesirable artifacts introduced in the acquisition of the data collected
by the hyperspectral sensor. In this paper two goals are achieved reducing the computational cost of the method
and improving its accuracy. In order to reduce the computational cost of the method an ELM classifier is
introduced. In order to improve the accuracy a new denoising stage operating also on the spectral dimension
is applied producing a new scheme called WTSS-EMP. Neighbour wavelet coefficients are used in 1-D and 2-D
with an universal threshold for denoising the hyperspectral image.

The rest of the paper is organized as follows. Section 2 describes the spectral-spatial classification scheme
based on wavelet and morphological profiles and presents the improvements proposed in this work. Section 3
discusses the results over different hyperspectral datasets and compares the classification to other classification
schemes. Finally, Section 4 presents the conclusions and future works.

2. SPECTRAL-SPATIAL CLASSIFICATION SCHEME BASED ON WAVELETS AND
EXTENDED MORPHOLOGICAL PROFILES

In this section we present the proposed classification scheme, named WTSS-EMP and based on WT-EMP. The
main changes regarding WT-EMP are first that ELM is used instead of SVM and that a new denoising stage is
applied. Figure 1 shows the proposed classification scheme. The upper branch in Fig. 1 illustrates the spatial
processing. A 1-D DWT is applied in the spectral domain to reduce the dimensionality of the hyperspectral
image and the EMP is built from the remaining coefficient bands. The wavelet-based denoising stage is illustrated
in the lower branch in Fig. 1. A 1-D spectral denoising to each pixel vector and a 2-D spatial denoising to each
hyperspectral band are applied using neighbour coefficients for wavelet shrinkage. The two branches are combined
via stacked vectors prior to the supervised classification by ELM. The following sections explain in detail the
different steps of this scheme.

2.1 Wavelet-based denoising

Denoising by wavelets plays a key role in the proposed scheme. Wavelet-based denoising applied band by band,
as in the WT-EMP scheme, improves the accuracy on hyperspectral image classification. In this work, this stage
is improved by a spectral denoising to each pixel vector on the hyperspectral image. By exploiting spectral and
spatial denoising better results in terms of classification accuracy are expected, as it will be shown in Section 3.

Wavelets are mathematical tools for signal processing analysis at different scales.48 The discrete wavelet
transform (DWT) of a signal x can be computed as the convolution of x with low-pass and high-pass filters. The
low-pass filters generate an approximation of the signal (a), whereas the high-pass filters highlight its details (d).
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This wavelet decomposition can be recursively applied to the approximation signal that is decomposed into a
new pair (a, d) of approximation and detail coefficients. Both wavelet coefficients, a and d, are down-sampled to
produce half the coefficients at each new level of decomposition j. This multi-resolution analysis using filters is
known as the Mallat-tree decomposition.49

Signal denoising by wavelets is a common task known as wavelet thresholding or wavelet shrinkage. The
smallest high frequency coefficients are usually considered as noise and might be reduced without substantially
affecting the original signal. A general wavelet-based denoising scheme can be summarized as follows:43

1. Transform the image x into an orthogonal domain by a discrete wavelet transform.

2. Apply a thresholding formula to the detail wavelet coefficients d using a threshold λ.

3. Performs an inverse discrete wavelet transform to reconstruct the original image with lower amount of
noise.

In addition, the thresholding of step 2 can be applied remaining unchanged the noisy free wavelet coefficients
or attenuating them by hard-thresholding or soft-thresholding, respectively. The following nonlinear transform
is used for soft-thresholding:43

ηλ(dj,k) = sgn(dj,k)(|dj,k| − λ)+ , (1)

where λ is the threshold and dj,k the kth detail wavelet coefficient at level j to be denoised. The subscript + in
Eq. (1) indicates that the coefficients |dj,k| > λ are attenuated, whereas the rest are set to zero.

Donoho43 proposed an universal threshold

λ = σ
√

2 logN (2)

for situations where the noise level is unknown. In Eq. (2), N is the length of the signal and σ is the noise

standard deviation estimated by σ = median(|d1|)
0.6745 , with d1 the detail wavelet coefficients obtained at the first

level of decomposition. Other approaches can be used to estimate threshold values, such as the BayesShrink44

or the SURE shrinkage method.45 In this work, soft-thresholding is applied and the universal threshold λ of
Eq. (2) is used for 1-D and 2-D wavelet denoising.

A 1-D wavelet shrinkage method that incorporates neighbour wavelet coefficients was proposed in Ref. 46 and
it was extended to the 2-D case in the work presented in Ref. 47. As mentioned above, the wavelet transform
produces correlated coefficients. So, by considering the neighbourhood of each detail coefficient centered on dj,k,
each coefficient is influenced by its neighbour to be (or not) shrunk by soft-thresholding. In the WTSS-EMP
scheme, a 1-D spectral and a 2-D spatial denoising using neighbour coefficients are applied to the hyperspectral
image.

For 1-D denoising, the hyperspectral image is first transformed into an orthogonal domain by a 1-D DWT.
If dj is the set of detail wavelet coefficients of the transformed image at level j,

S2
j,k = d2j,k−1 + d2j,k + d2j,k+1 (3)

defines a 1 × 3 neighbourhood window for each coefficient k, with the magnitude of the square sum of all the
wavelet coefficients centered on dj,k. The following thresholding formula proposed in Ref. 46 is applied to shrink
the noisy coefficients:

dj,k = dj,k(1− λ2/S2
j,k)+ (4)

where λ is the universal threshold and k indicates the kth detail wavelet coefficient at level j. The subscript +
in Eq. (4) indicates to keep the value if positive or set it to zero otherwise. After thresholding by Eq. (4), the
inverse wavelet transform is applied to reconstruct the hyperspectral image.

For 2-D denoising, a separable 2-D DWT is applied to each hyperspectral band. The high frequency subbands
created by this wavelet decomposition are thresholded by Eq. (4) but using a two dimensional window:

S2
j,k =

x=1,y=1∑
x=−1,y=−1

d2x,y (5)
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with dx,y the set of neighbour wavelet coefficients centered on the 3×3 neighbourhood window defined by Eq. (5).
Finally, each hyperspectral band is reconstructed by an inverse 2-D wavelet transform.

2.2 Supervised classification by ELM

As we have mentioned in the introduction, ELM is a classification technique that has been introduced in the
classification scheme for classification of hyperspectral images9,50 offering good results (as it will be shown in
the results section). It is a supervised learning technique for a class of Single-hidden Layer Feedforward Neural
Networks (SLFN) with random weights.10 Figure 2 shows the structure of an SLFN. Given an input x, the
output function of an SLFN with L hidden nodes can be written as:

f(x) =

L∑
i=1

βiG(ai, bi,x), x ∈ Rd, βi ∈ Rm, (6)

where G(ai, bi,x) denotes the output function of the ith hidden node and βi, ai, and bi are the weights and
biases which must be generated in the training phase. The output function G of the hidden node in Eq. (6) can
be expressed with an activation function g (usually a sigmoidal function) as

G(ai, bi,x) = g(ai · x+ bi), ai ∈ Rd, bi ∈ R. (7)

An SLFN with L hidden nodes can approximate N arbitrary distinct samples and targets (xi, ti) ∈ Rd ×Rm, if
the following equation system can be solved:

Hβ = T, (8)

where H is called the hidden layer output matrix of the neural network

H =


h(x1)

...

h(xN )

 =


G(ai, bi,x1) · · · G(aL, bL,x1)

...
. . .

...

G(ai, bi,xN ) · · · G(aL, bL,xN )


N×L

(9)

and β = [ βT
1 ··· β

T
N ]

T
, and T = [ tT1 ··· t

T
N ]

T
the training data target matrix. The hidden node parameters (ai, bi)

remain fixed after being randomly generated and training an SLFN is equivalent to finding a least-squares solution
β̂ of the linear system Hβ = T, i.e.,

β̂ = H†T, (10)

where H† is the Moore-Penrose generalized inverse51 of matrix H. For further details on ELM, we refer the
reader to Refs. 6 and 10.

The parameter configuration of the ELM requires only setting the number of nodes in the hidden layer. The
accuracy of the ELM classifiers, as in any other supervised classification method, depends on the number of the
training samples.

Figure 2. A single-hidden layer feedforward network (SLFN).
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2.3 Spatial processing

In the proposed WTSS-EMP scheme, the spatial information is introduced by the EMP that is built from the
main characteristics of the spectral signature. As in WT-EMP introduced in Ref. 23, the main features are
retained by a 1-D wavelet transform applied to the spectral dimension of the hyperspectral data.

Wavelet transform methods have been proposed for dimensionality reduction in the spectral domain. As
described in Section 2.1, a multi-resolution wavelet analysis recursively decomposes a signal in approximation
and detail coefficients. Figure 3 shows an example of a 2-level decomposition of a pixel vector of 103 spectral
bands. Only the approximation coefficients are shown in the figure. As can be observed in Fig. 3, increasing the
level of decomposition implies halving the number of coefficient bands and smoothing the original pixel vector.
The feature reduction technique of the WTSS-EMP scheme uses a 1-D DWT applied to the hyperspectral image
m times, being m = log2(N) − 2, with N the number of spectral bands, reducing the dimensionality in the
spectral domain up to 4 coefficient bands.

Mathematical Morphology (MM) allows extracting spatial structures from images combining morphological
transformations52 based on two basic operators: erosion and dilation. Objects that are brighter than their
surrounding can be shrunk by an erosion or can be expanded by a dilation. The opening operator (erosion
followed by dilation) flattens the bright objects of the image, while the closing operator (dilation followed by
erosion) has the opposite effect. These operators are applied to an image I at pixel level using a structuring
element (SE) of a known shape (usually a r × r square or a disk of radius r). Opening and closing do not
preserve edges between objects. Therefore, opening by reconstruction and closing by reconstruction are used
to completely preserve or remove the spatial structures of the image. These operators are based on geodesic
reconstruction53 and preserve the spatial structures of an image if the SE fits within the objects, otherwise, the
structures are removed.

The EMP is defined as a set of Morphological Profiles (MPs) created with n openings by reconstruction (γr)
and n closings by reconstruction (φr) using a SE of growing size on the different principal components extracted
from the original hyperspectral image. Be W the transformed data and be Wi the set of wavelet coefficients in
the ith coefficient band, the wavelet-based MP is built as:

MP(n)(Wi) = {γ(n)r (Wi), . . . , γ
(1)
r (Wi),Wi, φ

(1)
r (Wi), . . . , φ

(n)
r (Wi)}.

The EMP is built with all the MPs as follows

EMP(n)(W ) = {MP(n)(W1),MP(n)(W2), . . . ,MP(n)(W4)}

considering, for example, four coefficient bands, as is the case of this scheme.

Figure 3. Example of 2 levels of 1-D wavelet decomposition of a signal representing a pixel vector of 103 spectral bands
(a) and the remaining m = 1 (b) and m = 2 (c) coefficient bands.
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3. RESULTS

This section presents the results in terms of classification accuracy and execution times. The accuracy of the
classification scheme proposed in this work has been evaluated in terms of Overall Accuracy (OA), Average
Accuracy (AA), Kappa coefficient of agreement54 (κ) and McNemar’s test55 . The OA is the percentage of
correctly classified pixels in the whole image and the AA is the mean of the class-specific accuracy for all the
classes. κ is the percentage of agreement corrected by the amount of agreement that could be expected due to
chance alone. The McNemar’s test is used to analyze whether the new proposal produces statistically significant
results as compared with the previous scheme. The McNemar’s test is based upon the standardized normal test
statistic55 , i.e.:

Z =
f12 − f21√
f12 + f21

in which f12 indicates the samples correctly classified by the first scheme, and wrongly by the second one.
The difference in accuracy between each pair of schemes is said to be statistically significant at 95% confidence
level if |Z| > 1.96.

Section 3.1 describes the datasets used in the experiments and the configuration parameters of the WT-EMP
and WTSS-EMP schemes. In Section 3.2, the analysis is focused on the accuracy produced by the schemes, and
the execution time required for the classification (including the processing time involved by the scheme itself)
when the ELM is incorporated as the classifier. This section also studies the improvements in the accuracy results
obtained by the new proposal (WTSS-EMP scheme) by performing also an additional 1-D spectral denoising.
Section 3.3 presents the robustness of the classification results in the presence of noise. Finally, in Section 3.4,
the new WTSS-EMP scheme is compared to other published spectral-spatial classification schemes.

3.1 Datasets and experimental setup

The hyperspectral datasets used in the experiments are two urban areas taken by the Reflective Optics System
Imaging Spectrometer (ROSIS-03) hyperspectral sensor, named Pavia Univ. and Pavia City, and two hyperspec-
tral images of crop areas taken by the Airborne Visible-infrared Imaging Spectrometer (AVIRIS) sensor, named
Indian Pines and Salinas.

The ROSIS-03 sensor provides a nominative spectral coverage ranging from 0.43 to 0.86 µm with a very high
(1.3 m) spatial resolution per pixel. The spatial dimension of the Pavia Univ. hyperspectral image is 610× 340
pixels with 103 spectral bands. The nine classes of interest available for this dataset are shown in Fig. 4(a). The
second dataset from this sensor is the dense urban area of Pavia City, with spatial dimensions of 1096 × 715
pixels, and 102 spectral bands. The reference map in Fig. 4(b) contains nine classes of interest.

Figure 4. Reference maps for the hyperspectral datasets used in the experiments. Pavia Univ. (a), Pavia City (b), Indian
Pines (c) and Salinas (d).
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The AVIRIS sensor operates in the visible to mid infrared wavelength range, from 0.4 to 2.4 µm, collecting
224 spectral bands. The Indian Pines dataset consists of 145×145 pixels and 220 spectral bands (the four bands
covering the region of water absorption were removed). It was acquired over a mixed agricultural/forested region
with a moderate spatial resolution of 20 m/pixel. The Salinas dataset has 512× 217 pixels with a higher spatial
resolution (3.7 m) and none of the hyperspectral bands was removed. The reference maps for these last two
images display sixteen classes as shown in Figs. 4(c) and 4(d).

The number of training samples used in the experiments are presented in Table 1 for these four datasets.
These are chosen as in Refs. 5 and 20 to compare our scheme on equal terms. The accuracies are calculated
excluding the samples used for training. Each result is obtained by executing the classification 50 times with
different sets of randomly chosen training samples each time. The results were calculated as the average of the
50 executions.

Table 2 shows the configuration parameters used in the WT-EMP and WTSS-EMP schemes. The feature
reduction by wavelets uses the low-pass and high-pass filters from the Cohen-Daubechies-Feauveau 9/7 (CDF97)
wavelet.48 The number of levels of 1-D CDF97 wavelet decomposition applied in the spectral domain (m), is
calculated as dlog2(N) − 2e, with N the number of spectral bands. The EMP is built from 4 morphological
profiles and each MP is created with 4 opening and 4 closing by reconstruction processes using a disk of radius
of increasing size r = {1, 3, 5, 7}, as described in Section 2.

In the WTSS-EMP scheme, the 1-D CDF97 filters are used for the 1-D wavelet denoising and a 1×3 window
is used to shrink the wavelet coefficients using the universal threshold λ. For the 2-D wavelet denoising, the
set of filters for perfect reconstruction from Ref. 56 are used and a 3 × 3 window is considered along with the
universal threshold that is automatically calculated for each hyperspectral band, unlike the WT-EMP scheme23

Table 1. Number of training and test samples for the hyperspectral datasets used in the experiments.

Pavia Univ.

# Classes Train Test

1. Asphalt 548 6083

2. Meadows 540 18109

3. Gravel 392 1707

4. Trees 524 2540

5. Metal 265 1080

6. Bare Soil 532 4497

7. Bitumen 375 955

8. Bricks 514 3168

9. Shadows 231 716

Indian Pines

# Classes Train Test # Classes Train Test

1. Alfalfa 15 39 10. Soybean-notill 50 918

2. Corn-notill 50 1384 11. Soybean-mintill 50 2418

3. Corn-mintill 50 784 12. Soybean-clean 50 564

4. Corn 50 184 13. Wheat 50 162

5. Grass-pasture 50 447 14. Woods 50 1244

6. Grass-trees 50 697 15. Bld-Grass-Trees 50 330

7. Grass-mowed 15 11 16. Stone-Steel 50 45

8. Hay-windrowed 50 439

9. Oats 15 5

Pavia City

# Classes Train Test

1. Asphalt 548 6083

2. Meadows 540 18109

3. Gravel 392 1707

4. Trees 524 2540

5. Metal 265 1080

6. Bare Soil 532 4497

7. Bitumen 375 955

8. Bricks 514 3168

9. Shadows 231 716

Salinas

# Classes Train Test # Classes Train Test

1. Brocoli gr. weeds 1 40 1969 10. Corn gr. weeds 65 3213

2. Brocoli gr. weeds 1 74 3652 11. Lettuce rom 4wk 21 1047

3. Fallow 39 1937 12. Lettuce rom 5wk 38 1889

4. Fallow rough plow 27 1367 13. Lettuce rom 6wk 18 898

5. Fallow smooth 53 2625 14. Lettuce rom 7wk 21 1049

6. Stubble 79 3880 15. Vinyard untrain 145 7123

7. Celery 71 3508 16. Vinyard ver trelli 36 1771

8. Grapes untrain 225 11046

9. Soil vinyard dev. 124 6079
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Table 2. Configuration parameters used in the WT-EMP and the WTSS-EMP schemes: number of wavelet decomposition
levels applied for feature reduction (m), threshold applied for 2-D denoising (λ), best parameters for SVM (C, γ), and
number of neurons in the hidden layer for ELM (L).

Dataset m λ∗ C γ L

Pavia Univ. 5 4 128 0.125 500

Pavia City 5 4 128 0.125 500

Indian Pines 6 0.01 1024 0.5 350

Pavia City 6 0.01 256 0.125 350

∗ Only for the WT-EMP scheme.

where it was set manually with the values shown in Table 2. If the window is too large, a lot of noise will remain,
so small windows are recommended47 for neighbouring shrinkage.

The classification is carried out using the LIBSVM library and the ELM algorithm. In the case of SVM
the Gaussian radial basis function (RBF) is used as the activation function. For ELM the sigmoidal activation
function g(x) = 1

1+ε−x is used. Table 2 also includes the two parameters (C, γ) corresponding to the penalty
term and the width of the radius of the Gaussian function for the SVM classifier, and the number neurons in the
hidden layer (L) for the ELM classifier. The best parameters (C, γ) for training the SVM are determined in the
range C = [1, 4, 16, 64, 128], γ = [0.5, 0.25, 0.125, 0.0625] by 5-fold cross-validation for each dataset. The number
of neurons in the hidden layer for the ELM classifier was selected in the range L = [300, 800] with an increasing
step of 50 neurons.

The computer platform used was an Intel Core i7 860 CPU at 2.80 GHz with 8 GB of RAM using a 64-bit
Linux operating system and the experiments are computed in MATLAB∗.

3.2 Accuracy and execution time assessment

In order to study the effect of introducing the ELM classifier instead of the SVM in the WT-EMP scheme,
Table 3 summarizes the classification results with the two classifiers in terms of OA, κ, McNemar’s test (Z)
and execution times obtained for the four hyperspectral images used in this work. This execution time includes
the training time required for the supervised classification. It can be observed that the OA improves in all the
cases by using the ELM. Although the differences in κ between the classifiers is only 0.5 percentage points in
the closest case, see the Pavia City column in Table 3, the differences are statistically significant according to

∗The underlying research materials for this article can be accessed at https://wiki.citius.usc.es/hiperespectral:
wtss-emp.

Table 3. Classification results obtained by the WT-EMP scheme in terms of OA indicating the standard deviation (std),
Kappa coefficient of agreement (κ), McNemar’s test (Z) and execution times in seconds. The Z value compares the results
produced by the scheme using the SVM and the ELM classifiers.

Pavia Univ.

SVM ELM

OA (%) 98.65 99.79

std (±) 0.168 0.054

κ (%) 98.20 99.70

Z -18.95

Time (seconds) 59.009 20.366

Pavia City

SVM ELM

99.54 99.85

0.034 0.026

99.30 99.80

-17.42

184.100 64.293

Indian Pines

SVM ELM

88.93 90.45

1.138 0.953

87.40 89.10

-4.97

7.785 5.258

Salinas

SVM ELM

91.67 97.14

0.453 0.208

90.70 96.80

-45.79

34.550 15.162
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Table 4. Classification results obtained by the schemes (using the ELM classifier in all cases) in terms of OA indicating
the standard deviation (std), Kappa coefficient of agreement (κ) and McNemar’s test (Z). The Z value compares the
results produced by the first and the new scheme.

Pavia Univ.

WT- WTSS-

EMP EMP

OA (%) 99.79 99.78

std (±) 0.054 0.056

κ (%) 99.70 99.70

Z 0.44

Pavia City

WT- WTSS-

EMP EMP

99.85 99.86

0.026 0.022

99.80 99.80

-0.84

Indian Pines

WT- WTSS-

EMP EMP

90.45 93.62

0.953 0.979

89.10 92.70

-10.46

Salinas

WT- WTSS-

EMP EMP

97.14 98.44

0.208 0.200

96.80 98.30

-16.93

McNemar’s test. The negative sign of Z shown in Table 3 (Z < 0) indicates that using the ELM classifier is
more accurate than using the SVM classifier.

It can be observed in Table 3 that the highest difference in OA between the WT-EMP scheme using SVM
and ELM is obtained for the Salinas image, with 5.47 percentage points in favour of the ELM. The lowest values
of OA and κ are obtained for the Indian Pines image, taken from the AVIRIS sensor. In general, worse results
are usually reported for this dataset, mainly owing to the low spatial resolution (20 m/pixel unlike the 3.7m of
Salinas2).

Regarding the execution time, it can be observed in Table 3 that the smallest times are required for classifying
the hyperspectral images with the ELM classifier. The classification time is reduced between 1.4× and 2.9× for
the Indian Pines and Pavia Univ. scenes, respectively. The ELM is considered computationally more efficient.
So, the results obtained by our schemes are presented from now on only for this classifier.

When an additional 1-D denoising is added to the WT-EMP scheme, we obtain the WTSS-EMP one. As
described in Section 2, this scheme incorporates neighbouring wavelet coefficients in the threshold formula,
indicated by Eq. (4). See the parameters used for the scheme in Table 2 for more details.

The classification results obtained by the WTSS-EMP scheme are presented in Table 4. Although the results
for Pavia Univ. and Pavia City are similar for both schemes, the OA and κ obtained by the WTSS-EMP
significantly improve for the images of Indian Pines and Salinas, as indicated by McNemar’s test (see the last
row in Table 4). The results for Indian Pines are 3.17 percentage points better reaching an OA of 93.62%.
Figure 5 shows the reference map for this scene, and the classification maps for the pixel-wise ELM classifier, the
WT-EMP and the WTSS-EMP schemes. It can be observed that the classification map is more homogeneous
for the last scheme. In particular, two dashed boxes have been introduced in Fig. 5(a) enclosing two areas with

Figure 5. Reference map for the Indian Pines image with two dashed boxes highlighting areas with very close and small
regions (a), and classification maps for ELM (b), WT-EMP (c) and WTSS-EMP (d).
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Table 5. OA values (%) in presence of additive white gaussian noise with PSNR of 16, 20 and 25 dB for the hyperspectral
images of Pavia Univ. and Indian Pines.

Pavia Univ.

PSNR ELM WT-EMP WTSS-EMP

16 dB 47.96 99.62 99.40

20 dB 56.22 99.77 99.62

25 dB 62.76 99.82 99.75

Indian Pines

ELM WT-EMP WTSS-EMP

14.27 15.38 85.70

17.31 20.51 89.42

22.62 31.56 92.04

very close and small regions. For these regions the proposed scheme, WTSS-EMP, improves the classification
results illustrating that the new 1-D denoising stage is especially efficient for close regions in the reference map.

3.3 Experimental results in the presence of noise

The following section presents an experiment performed in presence of additive noise that was carried out with
the same configuration as described in the previous section. The hyperspectral images of Pavia Univ. and Indian
Pines are corrupted by AWGN with a peak signal-to-noise ratio (PSNR) of 16, 20 and 25 dB.

Table 5 compares the results obtained by the WT-EMP and the WTSS-EMP spatial-spectral schemes to the
SVM and the ELM pixel-wise classifiers. WT-EMP and WTSS-EMP for the case of the Pavia Univ. image
improve the OA from 56.22% achieved by the ELM to 99.77% achieved by the WT-EMP and 99.62% for WTSS-
EMP, for a PSNR of 20dB. These results are close to the accuracies obtained over Pavia Univ. without noise as
shown in Table 4, indicating the effectiveness of the filters used for denoising and the quality of the developed
schemes.

The results over Indian Pines show the low accuracy obtained by the WT-EMP in the presence of additive
noise. Only 20.51% of OA is reached in the case of a PSNR of 20 dB. The WTSS-EMP scheme outperforms
those results by using a 1-D spectral and 2-D spatial wavelet-based denoising, achieving a higher overall accuracy,
89.42%, as indicated in Table 5. The same behavior is observed for the case of a PSNR of 16 and 25 dB.

3.4 Comparison with other schemes

The classification results are compared in this section to those obtained by other classification schemes available
in the literature. The comparisons have been made with those schemes that perform a supervised classification
on two well-known datasets used in remote sensing classification: Pavia Univ. and Indian Pines. In particular,
the following schemes haven been used for the comparison: Hseg+MV,5 EMP-KPCA,5 DB-DB,20 NW-NW,20

WIMF131 and FORPDN.42 A brief description of these schemes is given below. Hseg+MV5 is a scheme based
on hierarchical image segmentation and majority vote. The segmented regions created by the HSEG algorithm
are combined with the classes obtained by the pixel-wise SVM classification via majority vote. EMP-KPCA5

is a spectral-spatial scheme that incorporates the spatial information with morphological profiles built from the
first principal components extracted by kernel PCA. DB-DB20 is based on Extended Multi-Attributes Profiles
(EMAPs), in particular, the attributes of area and standard deviation. The profiles are created from features
extracted by DBFE and concatenated via stacked vectors to create the EMAP, which is reduced a second time by
the same technique. NW-NW20 is based on area and standard deviation profiles. The profiles are created from
features extracted by NWFE and concatenated via stacked vectors, which are reduced once again by the same
feature extraction technique. WIMF131 is a scheme that uses 2-D Empirical Mode Decomposition (EMD) and
1-D wavelets for spatial and spectral processing, respectively. Data fusion is implicitly performed by applying
the wavelet transform along each intrinsic mode function (IMF) found by the 2D-EMD. FORPDN42 is a scheme
based on first order roughness penalty applied in the wavelet domain for hyperspectral image denoising. This
scheme, which only applies denoising, outperforms other denoising methods, such as BiShri2D,38 BiShri3D,39

PCABiShr40 and BM4D35 in terms of SNR and classification accuracy.

Unfortunately, there are no published results of all the aforementioned methods for the two datasets, so we
will include for each dataset the available results. The first comparison is conducted on the urban area taken
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Table 6. Classification results (accuracies in %) obtained by the pixel-wise ELM classifier, EMP-KPCA,5 DB-DB,20

WIMF1,31 and WTSS-EMP schemes for the Pavia Univ. dataset.

# ELM EMP-KPCA5 DB-DB20 WIMF131 WTSS-EMP

1. 82.56 96.0 95.43 – 99.67

2. 90.58 97.5 95.88 – 99.83

3. 76.49 81.1 100 – 99.79

4. 96.61 99.3 90.94 – 99.43

5. 99.55 99.4 100 – 99.45

6. 92.89 99.2 98.41 – 99.94

7. 91.96 98.8 99.18 – 99.96

8. 89.56 99.4 98.65 – 99.79

9. 99.65 98.0 99.96 – 99.55

OA 89.73 96.3 97.89 99.04 99.78

AA 91.08 95.7 97.60 — 99.71

κ 86.20 95.0 97.20 97.0 99.70

by the ROSIS-03 sensor: Pavia Univ. Table 6 shows the classification results obtained by the pixel-wise ELM
classifier, EMP-KPCA,5 DB-DB,20 WIMF1,31 as well as the proposed WTSS-EMP scheme. The best results are
indicated in bold. As expected, all the schemes improve the OA as compared to the pixel-wise ELM classifier.
The scheme based on EMP created from KPCA reaches 96.3% but better results are obtained by the DB-DB
scheme with 97.89% in overall accuracy. DB-DB is based on two attribute profiles which usually produce better

Table 7. Classification results (accuracies in %) obtained by the pixel-wise SVM classifier, Hseg+MV,5 NW-NW,20 FOR-
PDN42 and WTSS-EMP schemes for the Indian Pines dataset.

SVM Hseg+MV5 FORPDN42 NW-NW20 WTSS-EMP

1. 85.23 92.3 97.44 94.87 98.26

2. 74.75 90.5 83.31 90.20 89.49

3. 75.56 83.0 92.73 98.85 92.89

4. 90.75 97.5 94.02 97.28 99.18

5. 92.89 94.4 96.42 95.52 95.75

6. 94.13 97.6 95.12 99.56 98.41

7. 90.18 100 100 100 96.91

8. 97.60 99.5 98.18 99.54 99.92

9. 98.40 100 100 100 100

10. 79.41 92.1 89.87 86.27 93.88

11. 66.05 84.1 77.79 94.58 89.20

12. 85.16 95.4 87.06 93.61 94.22

13. 99.28 98.2 98.77 99.38 99.53

14. 88.38 98.6 94.94 92.76 98.01

15. 71.41 82.1 98.18 99.09 97.76

16. 97.51 100 97.78 100 99.33

OA 79.49 90.8 88.28 94.17 93.62

AA 86.67 94.0 93.85 96.35 96.42

κ 76.80 90.0 86.60 93.30 92.70
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results than morphological profiles. In addition DB-DB is built from DBFE components, a feature reduction
method that is effective with a sufficient set of available training samples, as it is the case for this dataset. The
OA obtained by WIMF1 reaches 99.04%. The advantage of this method stems from the ability to represent
further detailed information and more features of the image by using IMFs and wavelets. The WTSS-EMP
scheme produces the best classification in terms of OA (99.78%), AA (99.71%) and κ (99.70%) with a high
regularity among classes.

The second comparison is performed on a dataset taken by the AVIRIS sensor: Indian Pines. For this
image, the pixel-wise SVM classifier produces better results than the ELM, so it is included as the base for the
comparison. The results published for the schemes Hseg+MV,5 NW-NW,20 FORPDN,42 as well as the pixel-
wise SVM classifier are shown in Table 7. The Hseg+MV scheme improves by 11.31 percentage points the OA
as compared to the pixel-wise SVM. The results obtained by FORPDN, a scheme performing only denoising
without any additional spatial processing, shows the relevance of a denoising stage. For this image, the results
are greatly improved reaching an OA of 88.28%, as indicated in Table 7 for the aforementioned scheme. The
combination of the 1-D spectral and the 2-D spatial denoising with the data fusion of the EMP (last column in
Table 7) outperforms the other two methods. In particular, the OA is improved by 14.13 percentage points. The
best OA (94.17%) is obtained by the NW-NW scheme, that is bases on standard deviation and area attribute
profiles and classification by SVM, but the proposed WTSS-EMP scheme has a higher AA (96.42%). As for the
previous dataset the WTSS-EMP scheme presents a good regularity among classes.

4. CONCLUSIONS

This paper analyzes the effect of wavelet denoising of remote sensing hyperspectral images when a spatial-spectral
classification scheme is applied. The study is performed over the classification scheme called WT-EMP that was
previously presented by the authors. The scheme extracts the features of the image by wavelets and then an
EMP is built. In addition, the hyperspectral image is denoised also by wavelets in the 2-D spatial domain, band
by band. The EMP is combined with the denoised hyperspectral image in a new vector of features, and the
classification is carried out by an SVM classifier. In this paper the SVM classifier is replaced by ELM achieving
a relevant reduction in execution time, that reaches 2.8 times for the Pavia City image, while preserving the
classification accuracy. After that, a new 1-D denoising stage is applied to each pixel vector before the 2-D
spatial denoising. The resulting classification scheme including ELM and the new wavelet-based denoising stage
is called WTSS-EMP.

The proposed scheme has been tested over four hyperspectral images from the ROSIS-03 and the AVIRIS
sensors over urban and agriculture areas showing an increase in accuracy for the images that present close
regions in the classification reference map. In these cases, increases of 3.17 and 1.30 percentage points in OA are
achieved, in particular, for the Indian Pines and Salinas images respectively. The robustness of the WTSS-EMP
scheme in the presence of additive white Gaussian noise has also been shown. Finally, the scheme has proven
to be competitive compared to other schemes in the classification of the Pavia Univ. and Indian Pines images,
with the best regularity among classes in both cases.
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