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Notation

General Math Notation

We use x(t) and x(t) to denote a continuous scalar and multivariate time series, respectively;
and x[n] and x[n] to denote a discrete scalar and multivariate time series, respectively. We also
use x and x1:N to denote the N samples of the finite discrete time series x[n]. Occasionally we
use X(t) or X[n] to denote stochastic time series (see below the probability notation). When
denoting a collection of data that is not a time series, we prefer the notation {xi}Ni=1.

Symbol Meaning
Ûy(t) or y′(t) Derivative of y(t) with respect to the independent variable t

x ∗ y or x[n] ∗ y[n] Convolution of x (x[n]) and y (y[n])
x � y Hadamard product of x and y (element-wise product)
∝ Proportional to (e.g., y = ax can be written as y ∝ x)
, Defined as
O(·) Big-O notation: limiting behavior of a function at infinity
#{χ} Cardinality of the set χ
1 : n Equivalent to 1, 2, ..., n (R/Matlab-like notation)
δ(x) Dirac delta function



Linear Algebra Notation

Vectors will be denoted with a lowercase bold letter (e.g., x), whereas that uppercase bold
letters will be reserved for matrices (X). Vectors are assumed to be column vectors.

Symbol Meaning
tr(X) Trace of matrix X

|X | Determinant of matrix X

X−1 Inverse of matrix X

XT Transpose of matrix X

X−T Transpose of the inverse matrix of X
xT Transpose of vector x
diag(x) Diagonal matrix made from vector x
diag(X) Diagonal vector extracted from matrix X

I or Id Identity matrix of size d × d

0 or 0d Vector of zeros of size d

xi i-th element of vector x
Xi j Element (i, j) of matrix X

Xi,. i-th row of matrix X

X.,i i-th column of matrix X (a column vector)
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Notation

Probability Notation

We denote random and constant scalars with lowercase, random and constant vectors with
bold lowercase and random and fixed matrices by bold uppercase. Occasionally, we may use
non-bold uppercase to denote scalar random variables for clarity purposes. We use p() for
both discrete and continuous random variables.

Symbol Meaning
X | Y Conditional random variable X given Y

X ∼ p X is distributed according to distribution p

Var(X) Variance of X

Cov(X,Y ) Covariance of X and Y

E[X] The expected value of X

Eq[X] The expected value of X with respect to distribution q

H(X), H(p) or Hp(·) The entropy of distribution p(X). Hp(y) highlights that the
entropy depends on y

KL(p | q) Kullback-Leibler distribution from p to q

N (µ,Σ) or N (x | µ,Σ) (x has a) multivariate Normal distribution with mean µ and
covariance matrix Σ

N (µ, σ2) or N (x | µ, σ2) (x has a) univariate Normal distribution with mean µ and
variance σ2

T f (µ, σ
2) or T f (x | µ, σ2) (x has a) non-standardized-Student’s t distribution with f de-

grees of freedom, location parameter µ and scale parameter
σ through the relation X = µ + σ · T , being X the non-
standardized-Student’s t and T a Student’s t random variable

B(p) or B(x | p) (x has a) Bernoulli distribution with probability of success p

U(a, b) or U(x | a, b) (x has a) uniform distribution with a as minimum value and b

as maximum value
Γ(α, β) or Γ(x | α, β) (x has a) Gamma distribution with shape α and rate β
NG(x, λ | µ,Σ, α, β) x has a Gaussian-Gamma distribution with parameters µ, Σ,

α and β
GP(y(ξ) | m(ξ), k(ξ, ξ ′)) y(ξ) is a Gaussian Process with mean function m(ξ) and co-

variance function k(ξ, ξ ′)

3



Symbol Meaning
GP-Gamma(y(ξ), λ | m(ξ), k(ξ, ξ ′), α, β) y(ξ) and λ follow a Gaussian-Gamma process

with parameters m(ξ), k(ξ, ξ ′), α and β (see
Section 4.2 for details)
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Resumen de la tesis

El estudio de fenómenos dinámicos, aquellos cuyo estado evoluciona con el tiempo, siempre ha
ocupado un lugar central en todas las disciplinas científicas: desde los trabajos fundacionales
de Newton sobre mecánica y astronomía, pasando por la química y la economía, hasta campos
más recientes como la bioinformática y la robótica. En el estudio de cualquier sistema,
determinar un modelo matemático adecuado de su dinámica es una tarea fundamental. No
solo porque la construcción de dicho modelo es imprescindible para poder predecir el futuro,
sino también porque a veces, ésta es la única forma de comprobar si nuestro conocimiento
sobre las leyes que rigen la evolución del sistema es certero.

La construcción de un modelo dinámico es un proceso tedioso que generalmente requiere
de múltiples iteraciones. Para acelerar el proceso, pueden hacerse diversas hipótesis que
simplifiquen el tratamiento matemático del sistema en estudio. Una de las más habituales,
es la de asumir que dicho sistema puede describirse mediante un modelo lineal. Si esta
hipótesis es válida, es posible descomponer el sistema en partes más pequeñas, seguramente
más sencillas, y estudiar cada una de estas partes por separado. Una vez comprendido el
funcionamiento de cada uno de estos subsistemas, se recupera el comportamiento del sistema
original superponiendo las contribuciones de sus partes. Se dice que los sistemas lineales
cumplen el principio de superposición.

El hecho de que un sistema lineal pueda ser descompuesto para su estudio da lugar a
modelos matemáticos manejables, para los cuales es incluso posible encontrar soluciones
cerradas. A pesar de lo conveniente que es un modelo lineal en términos matemáticos, su
aplicabilidad en la práctica es muy limitada. Es evidente que la mayor parte de los sistemas
observados en la naturaleza no cumplen el principio de superposición. La mayoría de los
fenómenos naturales muestran algún tipo de interacción no-lineal que no puede ignorarse
en su modelado. A pesar de la dificultad de manejar términos no-lineales, se ha dado la



circunstancia de que la constatación de su importancia en el modelado de los fenómenos
naturales ha allanado la adopción de la teoría de sistemas dinámicos en las ciencias de la
vida. Ciertamente, nadie esperaría comprender de forma precisa el sistema cardiovascular sin
considerar las interacciones entre los pulmones y el corazón.

Otra dificultad habitual es que, en la mayoría de los sistemas con cierta complejidad, como
gases, líquidos u organismosmicroscópicos, las interacciones no-lineales ocurren entre un gran
número de subsistemas. De hecho, incluso contando con un conocimiento exacto de las leyes
que rigen la evolución de estos sistemas, es común que su resolución sea imposible (tanto en
términos matemáticos como computacionales). El enfoque más frecuente para poder abordar
sumodelado es recurrir a aproximaciones probabilísticas, en el mismo espíritu que la mecánica
estadística. En este tipo de aproximaciones el ruido, representando aquellos grados de libertad
que no podemos modelar, se convierte en parte integral de la dinámica. Existe otro tipo de
sistemas en los cuales el ruido es parte fundamental de su dinámica; en este caso, el ruido no
aparece como consecuencia de una aproximación, sino porque su propia interpretación física
requiere del concepto de probabilidad. La mecánica cuántica es el ejemplo arquetípico de una
teoría que requiere del concepto de probabilidad.

La creciente evidencia de la naturaleza estocástica de la mayor parte de los fenómenos
naturales terminó con el paradigma científico predominante en el siglo XIX, que podría
resumirse en el intento de modelar la naturaleza a través de ecuaciones diferenciales. Con la
llegada del siglo XX, los métodos estadísticos y los modelos probabilísticos ganaron más y
más peso en la ciencia.

No solo la física se benefició de los avances en modelos estocásticos, sino también campos
como la biología, la medicina o la economía. Estas disciplinas se ocupan de fenómenos
macroscópicos y, por tanto, siempre han tenido la necesidad de manejar una gran cantidad de
subsistemas. A diferencia de la física, los fenómenos estudiados por estas disciplinas tienen tal
complejidad que a menudo se basan en un conjunto de reglas que, al menos desde un punto de
vista matemático, no están tan bien definidas. En este contexto, la construcción de un modelo
a partir de los principios básicos sigue siendo un reto.

En aquellos casos en los que (1) la no-linealidad, (2) la estocasticidad o (3) la falta
de conocimiento impide la creación de modelos usando principios básicos, una alternativa
efectiva para el desarrollo de los mismos es su construcción en base a datos experimentales.
No se puede sino suponer que esta estrategia será cada vez más habitual. Con la llegada del
“Big Data”, la cantidad de datos disponibles en cualquier campo de la ciencia y la tecnología
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Resumen de la tesis

se ha incrementado exponencialmente. El desafío es doble: por una parte son necesarias
técnicas de análisis que escalen de forma efectiva con el tamaño y la dimensionalidad de los
datos, pero por otra parte éstas no deben apoyarse en modelos puramente deterministas o en
métodos lineales, para los cuales existe una extensa literatura.

En esta tesis se desarrollan métodos para construir modelos dinámicos a partir de la
observación de series temporales en las que se asume que concurren tanto mecanismos de
carácter determinista como de carácter estocástico. Para ello, se ha adoptado un enfoque basado
en la interpretación Bayesiana de la probabilidad. En el enfoque Bayesiano, la probabilidad
se usa para cuantificar la incertidumbre sobre algo, en lugar de describir la frecuencia de
un evento en ensayos repetidos (interpretación frecuentista). Esta concepción aparentemente
sencilla de la probabilidad ha dado lugar a todo un conjunto de métodos que permiten hacer
deducciones acerca de hechos sobre los que se desea aprender a partir de la observación de
datos; y de cuantificar la incertidumbre acerca de dicho conocimiento mediante distribuciones
de probabilidad.

Asimismo, vale la pena señalar que, aunque en este trabajo se exploran modelos flexibles
del campo del aprendizaje automático capaces de capturar características dinámicas complejas,
estos modelos están firmemente basados en conceptos físicos bien conocidos. El principal
motivo para adoptar esta aproximación es que, en nuestra opinión, es solo a través de la
construcción explícita de modelos por la que se obtiene una comprensión más profunda acerca
de cómo se comporta un sistema. Por lo tanto, un modelo creado a partir de datos no solo
debe proporcionar predicciones precisas, sino que también debe ayudar al investigador a tomar
decisiones de modelado, y esto es más fácil si tanto el investigador como el modelo comparten
el mismo vocabulario, el vocabulario de la física.

Dentro del enfoque Bayesiano, esta tesis considera dos aproximaciones principales para
caracterizar una serie temporal en la que el ruido forma parte integral de la dinámica. En una
primera aproximación, se desarrolla un modelo sencillo que descompone una serie temporal
en una componente estocástica y una componente determinista que no interaccionan entre
sí. En este modelo, la parte determinista representa la componente del sistema que se desea
caracterizar de forma precisa, mientras que la componente estocástica representa aquellos
grados de libertad que los métodos experimentales no pueden precisar o aquellos fenómenos
que sólo se desean caracterizar de forma aproximada. La segunda de las aproximaciones de
esta tesis se ocupa de desarrollar modelos en los que sí existe cierto tipo de interacción entre
la componente estocástica y la determinista.
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De forma más específica, el trabajo recogido en este documento se organiza tal y como se
detalla a continuación. Además de la estructura de la tesis, se resumen las aportaciones más
importantes de cada uno de los capítulos:

- En el Capítulo 1 se hace un breve recorrido histórico acerca de cómo ha evolucionado
la búsqueda de modelos dinámicos capaces de caracterizar los fenómenos naturales
observados. En esta exposición, se introducen de forma intuitiva los conceptos más
importantes de la tesis y se discute la necesidad de (1) tener en cuenta las interacciones
no-lineales, (2) la inclusión de términos estocásticos para el modelado preciso de sis-
temas complejos y (3) la necesidad de escalar las técnicas de análisis para afrontar la
era del “Big Data”.

- En el Capítulo 2 se propone un modelo estocástico-determinista que proporciona una
base útil para el estudio de sistemas complejos con correlaciones a largo plazo. Para
ello, se asume que las interacciones entre las componentes estocásticas y deterministas
son despreciables. La hipótesis de no-interacción plantea un desafío interesante, dado
que el modelo debe ser capaz de generar dinámicas complejas sin depender de las
interacciones entre las componentes deterministas y estocásticas y, al mismo tiempo,
debe ser lo suficientemente realista como para explicar fenómenos naturales. Estos
requisitos nos han llevado a considerar los procesos 1/ f como el bloque de modelado
básico del Capítulo 2. En las últimas décadas, se ha hecho evidente que las fluctuaciones
de tipo 1/ f son muy comunes en la naturaleza, apareciendo en campos tan diversos
como la física, la biología, la astrofísica, la economía, el lenguaje e incluso lamúsica. La
presencia del ruido 1/ f en sistemas tan distintos ha llevado a los investigadores a plantear
la hipótesis de que debe de haber alguna ley fundamental de la naturaleza que explique
su ubicuidad. La extensa investigación derivada de esta apreciación ha proporcionado
descripciones matemáticas precisas que son capaces de reproducir las propiedades de
memoria a largo plazo del ruido 1/ f , la mayoría de ellas basadas en modelos fractales
estocásticos como, por ejemplo, el movimiento fraccional Browniano. Por tanto, en el
Capítulo 2 se asume que la componente estocástica del modelo de superposición es un
movimiento fraccional Browniano. Por otra parte, se hipotetiza que la otra componente
del sistema es de banda limitada. Dado que es razonable asumir que es posible predecir
con precisión una señal de banda limitada, nos referimos a dicha componente como
determinista. Bajo los supuestos de este modelo, se proporciona un método que es capaz
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Resumen de la tesis

de caracterizar la componente estocástica fractal y de proporcionar una estimación de las
componentes deterministas presentes en una serie temporal dada. Más concretamente,
las contribuciones más importantes de este capítulo son: (1) la observación clave de
que la presencia de la componente determinista produce una desviación medible en
la energía por escala que cabría esperar si el sistema fuese un movimiento fraccional
Browniano puro; y (2) explotar dicha observación mediante técnicas de estimación
Bayesianas y la transformadaWavelet para reconstruir aproximadamente la componente
determinista y, al mismo tiempo, caracterizar la componente estocástica fractal. El
método se valida sobre señales simuladas y sobre una señal real de origen económico.
Estos ejemplos ilustran el potencial del modelo para explorar la dualidad estocástico-
determinista de sistemas complejos, así como para descubrir patrones ocultos en series
temporales. Además, para facilitar la reproducibilidad de los resultados, los métodos de
este capítulo se han implementado, bajo una licencia de código abierto, en el paquete
de R fracdet. Cabe destacar que liberar el código como un paquete de R garantiza
que éste se puede instalar fácilmente en cualquier sistema operativo y que sus funciones
están bien documentadas. Los resultados recogidos en este capítulo fueron publicados
en [48].

- En el Capítulo 3 se aborda la principal limitación del método presentado en el Capí-
tulo 2: no contempla las posibles interacciones entre la componente estocástica y la
componente determinista. Para explorar dichas interacciones, se hace uso de ecua-
ciones diferenciales estocásticas. La aplicación de ecuaciones diferenciales estocásticas
al análisis de series temporales recibe cada vez mayor atención debido a su capacidad
de describir dinámicas complejas con ecuaciones físicamente interpretables. Las ecua-
ciones diferenciales estocásticas se han empleado con éxito en la caracterización de
fenómenos tan diversos como: difusión de granos en un líquido, turbulencias, fluctua-
ciones de un plasma, reacciones químicas, atascos de tráfico, fluctuaciones económicas,
electroencefalogramas o la expresión de los genes. Intuitivamente, las ecuaciones dife-
renciales estocásticas combinan una ecuación de evolución determinista junto con un
término adicional de ruido. Para simplificar el análisis matemático de las ecuaciones
diferenciales estocásticas, generalmente se usa un proceso de Wiener como la fuente
de aleatoriedad del sistema. Dicho de otra forma, las capacidades de modelado a largo
plazo del movimiento fraccional Browniano se sacrifican para introducir un modelo
de interacción. De hecho, nuestras suposiciones acerca de las ecuaciones diferenciales
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estocásticas requieren que la serie temporal sea Markoviana. Bajo estas hipótesis, el
Capítulo 3 presenta un método no-paramétrico para estimar los términos deterministas
y de ruido de una ecuación diferencial estocástica a partir de la observación de una serie
temporal discreta. Para introducir el marco Bayesiano en el problema, el método desa-
rrollado hace uso de procesos Gaussianos, los cuales nos permiten definir distribuciones
de probabilidad sobre funciones (en este caso, los términos a estimar de la ecuación
diferencial estocástica). El uso de procesos Gaussianos como distribuciones a priori per-
mite trabajar directamente en el espacio de las funciones. De esta forma, el aprendizaje
de los términos de la ecuación diferencial estocástica tiene lugar de forma natural en este
espacio. En este contexto, el aprendizaje consiste en la actualización de las distribu-
ciones a priori (especificadas por los procesos Gaussianos) tras la observación de una
realización de la serie temporal. El cálculo de estas distribuciones a posteriori se hace
mediante técnicas de inferencia variacional. Las contribuciones más importantes de
este capítulo son: (1) proporcionar estimaciones de cualquier componente de ruido, lo
que requiere el uso de una aproximación de Laplace; y (2) desarrollar una aproximación
de la distribución a posteriori para hacer frente a la complejidad computacional que
requiere el uso de procesos Gaussianos; de esta forma es posible realizar predicciones
de forma eficiente en series temporales de tamaño medio (con tamaños N ≈ 103 − 105).
Debe resaltarse que, aunque esta aproximación permite trabajar con una gran cantidad
de conjuntos de datos, estos están aumentando rápidamente en tamaño, lo que puede
limitar la aplicabilidad del método en el futuro. El problema está relacionado con el
uso de técnicas de inferencia variacional, que requieren trabajar con todo el conjunto
de datos en cada iteración. El método se valida tanto con datos simulados como con
datos reales de economía y paleoclimatología. La aplicación del método a datos reales
demuestra su capacidad para captar el comportamiento de sistemas complejos. Además,
se ha liberado una implementación del método en el paquete de R de código abierto
voila. Los resultados más importantes de este capítulo dieron lugar a [47].

- El Capítulo 4 intenta superar la principal restricción que impone el uso de ecuaciones
diferenciales estocásticas: el supuesto de Markovianidad. Para ello, proponemos un
nuevo auto-codificador variacional estructurado con un espacio de fases descrito por
ecuaciones diferenciales estocásticas. Este auto-codificador es capaz de descubrir una
función, parametrizada como una red neuronal, que transforma una serie temporal ar-
bitraria en una serie temporal Markoviana. Gracias a esta transformación, cualquier
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Resumen de la tesis

serie temporal es susceptible de ser analizada por medio de los métodos desarrollados
en el Capítulo 3. Para evitar que la transformación satisfaga la propiedad Marko-
viana mediante la creación de un espacio de fases demasiado simple, también se busca
una transformación inversa. Esto evita que se descarte información valiosa a la hora
de crear el espacio de fases. La transformación inversa también se parametriza con
una red neuronal y, por lo tanto, el par de transformaciones actúa como una red neu-
ronal codificador-decodificador. Siguiendo la arquitectura de los auto-codificadores
variacionales estructurados, se fuerza a que el espacio de fases siga una dinámica des-
crita por ecuaciones diferenciales estocásticas mediante el uso de modelos gráficos.
Para lograr una mejor optimización, el aprendizaje de las transformaciones y de la
dinámica del espacio de fases se realiza simultáneamente. Finalmente, se aborda la
otra desventaja principal del método del Capítulo 3: el procedimiento de inferencia se
adapta para soportar conjuntos de datos que no caben en la memoria principal. Para
ello, se combinan técnicas de optimización estocástica con la inferencia variacional, lo
que generalmente se conoce como inferencia variacional estocástica. Las principales
aportaciones de este capítulo son: (1) combinar los auto-codificadores variacionales
estructurados con los métodos del Capítulo 3, lo que permite modelar de forma efectiva
dinámicas no-lineales; (2) encontrar una transformación de series temporales en series
Markovianas con significado físico, ya que la nueva representación de los datos puede
ser interpretada como un espacio de fases; y (3) explotar avances recientes en sistemas
dinámicos basados en procesos Gaussianos para muestrear de manera eficiente el espa-
cio de fases, tal y como requiere el algoritmo de entrenamiento de los auto-codificadores
variacionales estructurados. El método se valida utilizando datos de modelos físicos
conocidos, demostrando que es capaz de aprender espacios de fases plausibles y de
sintetizar nuevas series temporales con características dinámicas similares a las de las
series originales. Los resultados de este capítulo son un claro ejemplo de los esfuerzos
realizados para aprovechar las capacidades predictivas de los métodos de aprendizaje
automático Bayesianos y, al mismo tiempo, mantener la interpretabilidad física de los
modelos. La interpretabilidad del espacio de fases del auto-codificador variacional
estructurado no solo puede ayudar al investigador a dilucidar modelos físicamente plau-
sibles, sino que también puede inspirar nuevos métodos de análisis tomados de otros
campos. Por ejemplo, el espacio de fases proporciona por sí mismo una gran cantidad de
información valiosa y, al mismo tiempo, puede ser objeto de nuevas investigaciones por
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medio de métodos de análisis de sistemas dinámicos o el estudio de atractores. También
cabe destacar que se ha liberado código implementando los métodos principales de este
capítulo.

- En el Capítulo 5 se sintetizan los principales resultados y conclusiones obtenidas en esta
tesis. Finalmente, se discuten posibles líneas de trabajo futuro.

- En los Apéndices A y B se describe brevemente cómo puede emplearse el software
desarrollado en esta tesis. El Apéndice A introduce fracdet, un paquete de R

que implementa el modelo estocástico-determinista propuesto en el Capítulo 2. El
Apéndice B resume cómo puede usarse voila, un paquete de R para la estimación de
ecuaciones diferenciales estocásticas mediante el método descrito en el Capítulo 3.

- Finalmente, el Apéndice C detalla la deducción de lamatriz de Fisher de una distribución
Gaussiana-Gamma, necesaria en la exposición del Capítulo 4.
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CHAPTER 1

INTRODUCTION AND AIMS

The study of dynamical phenomena is an important aspect in a wide variety of disciplines,
comprising both classical fields, such as astronomy, chemistry and fluid mechanics; and
modern fields, such as econophysics, bioinformatics, robotics and drone control. Although
nowadays it is an interdisciplinary subject, dynamics was originally a small branch of physics,
whose origin can be tracked back to the works of Newton in the mid 1660s. Newton invented
differential equations, formulated the laws of motion and applied them to solve the so-called
two-body problem: calculating the motion of a planet around the sun. The key to Newton’s
success was building an accurate model of the celestial bodies from first physical principles
(which, of course, he discovered). Determining a proper model of the system’s dynamics still
remains a fundamental task in the study of any dynamical system. Not only because building
a model is necessary for predicting the future, but also because sometimes, this is the only
way to gain insight about the laws governing the evolution of the system.

Systems that can be accurately described by a reduced set of principles are indeed a
rare exception. Yet, even when this is the case, an accurate model does not imply complete
understanding. After the resolution of the two-body problem, mathematicians and physicists
devoted considerable efforts to extend Newton’s methods to the three-body problem (i.e., the
study of the movement of three celestial bodies) [56, Section 3.12]. It turned out that the
problem was unsolvable, in the sense of not having an analytical solution. Therefore, the
frustrating truth is that, despite having an accurate model of the laws governing the three-
body problem, we still lack complete knowledge about its future states. This situation is
not specific to the three-body problem. Even a simple mechanical system such as an ideal



pendulum without friction is governed by an equation that is difficult to solve. The swinging
of a pendulum is described by

d2θ

dt2 +
g

L
sin θ = 0, (1.1)

where θ is the angle of the pendulum from vertical, g is the gravitational acceleration and L is
the length of the pendulum.

The reason why both the three-body problem and the pendulum equation are so hard is
that they are described by nonlinear equations. Consider, for example, the nonlinear sin θ term
from Equation (1.1). Using the small angle approximation sin θ ≈ θ for θ << 1, the problem
converts into a linear one, which can be easily solved. This leads us to another question.
What’s the key difference between a nonlinear equation and a linear one, that makes the latter
somuch easier to solve? The answer lies at the very definition of a linear system: linear systems
fulfil the superposition principle and, therefore, can be decomposed into simpler parts [38,
Chapter 25]. Since they can be decoupled and decomposed in subsystems, a high-dimensional
linear system is essentially the same as a large set of one-dimensional systems whose different
variables do not interact.

Most systems observed in nature do not fulfil the superposition principle. Therefore,
whenever parts of a system interact, we must resort to nonlinear terms to model them. The
development of nonlinear dynamical theory was largely influenced by the work of Poincaré
(which tackled the three-body problem), and later benefited from the widespread adoption of
computers, which permitted experimenting with, until that moment, unsolvable equations.

An additional difficulty is that, in most systems showing some degree of complexity,
the nonlinear interactions usually involve a large number of subsystems. Typical systems
encountered in our daily life like gases, liquids or biological organisms consist of, at least,
1023 interacting subsystems. From our previous discussion about the pendulum or the three-
body problem, it is clear that complete knowledge of the microscopic laws governing these
systems provides very little for understanding their macroscopic behavior. Indeed, solving
these problems with such a large quantity of interacting particles is still beyond the capabilities
of modern computers.

Statistical mechanics emerged due to the need of studying systems with a large number
of interacting units. Its development required the formulation of new concepts based on
probabilistic and statistical approximations able to handle the large amount of degrees of
freedom of macroscopic systems [13, 112]. In these approximations, noise representing those
degrees of freedom that we cannot model accurately becomes an intrinsic part of the dynamics.
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Chapter 1. Introduction and aims

There is also another type of systems inwhich noise cannot be disentangled from the description
of their dynamics. In this case, noise does not appear as a consequence of an approximation,
but because its own physical interpretation requires the concept of probability. Quantum
mechanics is the archetypal example of a theory requiring an intrinsic probability [58].

The increasing evidence of the stochastic features of natural phenomena ended with the
trend of the nineteenth century science, which could be summarized as the attempt to model
nature through differential equations. Instead, emphasis changed towards statistics and prob-
abilistic models, and the study of fluctuating phenomena gained importance.

The observation, in 1827 by the botanist Robert Brown, of the random motion of pollen
particles floating in water under the microscope was of special importance for the study
of stochastic phenomena. Since then, this phenomenon has been called Brownian motion.
Important efforts were made to explain it, but a satisfactory solution had to wait until the
independent works of Einstein [35] and Smoluchowski [133], who was also responsible for
the development of the mathematical theory of random walks. These works were based on the
assumption that the Brownian motion was caused by impacts of the molecules of the liquid in
which the pollen was suspended, and they used a statistical description of the force exerted by
those molecules.

Langevin further developed these ideas, presenting a newmethodwhich eventually resulted
in a new field of mathematics now known as Stochastic Differential Equations (SDEs) or
Langevin equations [84]. His key idea was to directly include the effect of random forces in
the equations of motion, transforming these deterministic differential equations into SDEs.
Intuitively, a SDE is a deterministic equation ofmotionwith some noisy fluctuations interfering
in its dynamical evolution.

Not only physics benefited from the advances in stochastic models but also fields such
as biology, medicine or economics. While physics has been endowed with models backed
by rigorous experimental methods, other scientific disciplines exhibit a complexity whose
formal description only began to be approachable through the new statistical paradigms, which
have permitted the characterization of the order that underlies the complexity of the natural
phenomena. The major reasons for this are that these disciplines, that refer to macroscopic
phenomena, are specially concerned by the need of handling a large number of interacting
subsystems; and because they often rely on a set of rules that are less well understood. In this
context, building a model from first principles still remains a challenge.

In those cases where (1) nonlinearity, (2) stochasticity or (3) lack of knowledge prevents
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building a model from first principles, an alternative and effective strategy is building it
based on observed data from the system. We take for granted that this strategy will become
increasingly common due to the explosion of data of complex phenomena that has occurred
within all fields of science and technology. The advances in technological trends that have
open the door to this massive amounts of information are usually referred to as big data
technologies. The challenge is twofold: there is a need to create analysis techniques that scale
effectively with the size and dimensionality of the data, but we cannot rely on deterministic
dynamical models or linear state space models, for which a large body of research exists.

In this thesis, we consider methods for building dynamical models from complex time
series in which noise is an intrinsic part of the dynamics. Furthermore, we would like to be
able to effectively model nonlinear dynamics. To this end, we adopt a Bayesian approach. In
the Bayesian framework, probability is used to quantify uncertainty about something, rather
than describing repeated trials [68]. This deceptively simple interpretation of probability
provides the Bayesian framework with a great flexibility, and enables the incorporation of
prior knowledge or the combination of information from several sources.

More specifically, we consider two main approaches to characterize complex time series.
In Chapter 2 we consider a simple yet realistic model in which there is an stochastic and a
deterministic component of the dynamicswhich barely interact. In thismodel, the deterministic
part represents the component which we would like to study, whereas the stochastic part
represents those degrees of freedom that our experiment cannot resolve or we are not interested
in. The other approach, presented in Chapters 3 and 4, deals with models in which there is
some kind of interaction between the two parts.

In our first approach, the non-interaction hypothesis poses an interesting challenge: the
model should be able to simulate complex dynamics without relying on the interaction of
the stochastic and the deterministic parts but, at the same time it should be realistic enough
to be useful in explaining natural phenomena. These requirements lead us to consider 1/ f

processes as the basic modeling block in Chapter 2. In the past few decades, it has been
recognized that 1/ f fluctuations are common in nature, covering fields as diverse as physics,
biology, astrophysics, economics, language and even music [36]. The presence of 1/ f noise
in such a diverse group of systems has led researchers to hypothesize that there must be
some profound law of nature that explains its ubiquity. Although several models have been
proposed, no single mechanism is nowadays suitable for all the systems. This extensive
research has provided accurate mathematical descriptions that are able to capture the long-
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Chapter 1. Introduction and aims

term memory properties of 1/ f fluctuations, most of them based on stochastic fractal models.
In Chapter 2 we provide a method that is able to characterize the fractal component and to
provide an estimation of the deterministic components present in a given time series. Since
both components do not interact, the successful achievement of this objective will greatly
simplify the subsequent study of the system, expediting explicit model building. Given that
we do not try to characterize the dynamic evolution of the deterministic component, in this
chapter we permit the signals to be non-stationary, which greatly broadens the applicability of
the method.

The main drawback of the fractal-deterministic approach is that it ignores the very likely
interactions between the stochastic and the deterministic components. To address this issue,
we turn our attention to systems driven by a SDE. In Chapter 3 a non-parametric method
for estimating the terms of a SDE from a densely observed time series is proposed. To
enable a flexible modeling of the SDE terms, Gaussian Processes (GPs) are employed. A
GP is a non-parametric Bayesian technique that can be interpreted as a prior over functions.
Unfortunately, GPs do not scale well with the size of the data. To overcome this issue, a
sparse approximation to the GP is employed, which scales linearly with the size of the dataset.
Although an improvement with respect to the full GP, the proposed method would still not be
able to scale to massive datasets, since the inference procedure requires a full pass over the
dataset to compute an update. Furthermore, there is another drawback that may prevent the
application of the method to many complex time series. The use of a SDE to describe a system
implies that its dynamics can be effectively approximated by a Markov model. In a Markov
model, the probability density for the future states of the system is uniquely determined by the
current state. However, as argued in Chapter 2, many natural systems show long-term memory
and therefore, we cannot expect to model them accurately by using a SDE.

Chapter 4 is mainly devoted to developing a method that is able to discover a Markovian
representation of a time series so that the methods of Chapter 3 can be applied. Furthermore,
since a deterministic differential equation is just a special case of a SDE, the resulting method
can also infer representations of the phase space of a deterministic dynamical model from its
observations. It must be stressed that the application of the SDE inference procedure is not
conceived to be used on top of the discovered Markovian representation, but that both the
Markovian representation and its dynamics (described by a SDE) are discovered simultane-
ously. This permits a better optimization since both methods can share information. Finally,
the other major drawback of the method of Chapter 3 is addressed: the inference procedure is
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scaled up to handle massive datasets by means of stochastic optimization techniques.
Finally, Chapter 5 summarises the main results and conclusions obtained in this thesis, and

also provides possible directions for future work.
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CHAPTER 2

COMPLEX DYNAMICS WITHOUT

INTERACTION: DETERMINISTIC AND

FRACTAL STOCHASTIC COMPONENTS IN

NON-STATIONARY DYNAMICS

In many physical systems, when measuring a quantity along time, we often obtain a time series
which seems to fluctuate in a non-periodic, apparently random manner, with complex corre-
lations that extend over all measured time scales. These long-term dependencies are specially
evident in the frequency domain and they regularly appear over wide ranges of frequencies as
a 1/ f process, that is, a random process with a power spectral density S( f ) = constant/| f |γ,
where γ receives the name of spectral index [36]. Figure 2.1 shows an example, represented
in both time and frequency domains, of a 1/ f process. A large number of physical and infor-
mational systems from biology, chemistry, geology, meteorology, economics or engineering,
among others, exhibit such behavior [6], which has fascinated multiple researchers. A 1/ f

process has a long and dynamic memory; the effects of an event persists in time, and the
influence of recent events is added to and gradually supersedes the influence of distant events
[74]. This long-memory property also accounts for the behavior of informational systems,
which exhibit an evolving increase in structure and complexity by accumulating information,
combining the strong influence of past events with the influence of current events. Another
important feature of 1/ f processes is the lack of a characteristic time scale, exhibiting sta-



tistical self-similar properties. This permits the explanation of the thermodynamic behavior
of a large number of physical systems, based on the concurrence of multiple processes with
relaxation times comparable to all time scales of interest. Moreover, this feature is particularly
expected in biological systems, since the existence of a preferred frequency of operation would
seriously limit the reaction capability of a living system [55, 59]. Figure 2.2 illustrates the
self-similar properties of a 1/ f process by plotting it at different time scales.
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Figure 2.1: 1/ f process in time (a) and frequency (b). Note that the Power Spectral Density
(PSD) in log-log scale can be accurately modeled using a straight line.
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Figure 2.2: A 1/ f process plotted at different time scales exhibits self-similarity.

Despite the existence of effective mathematical tools for studying such 1/ f processes,
modeling systems with long-term dependencies remains a challenge. This is mainly because
real systems do not usually consist of merely stochastic or deterministic components, but
they often manifest both random and predictable features. The need to integrate stochastic
and deterministic approaches has already been considered by means of a wide variety of
techniques. Explicit modeling and non-stationary approaches like [18, 116, 123] are only
possible when the mechanisms that underlie the generation of the signal are, at least to some
extent, understood. Thismakes possible building precisemathematical models that account for
the behavior of the observed time series. In our opinion, it is through explicit model building
that we learn about how a system behaves. However, model building is a complicated task
which usually requires many iterations. An accurate characterization of the main stochastic
and deterministic features can help in taking modeling decisions.

One of the most successful analysis tools among those that, without relying on explicit
modeling, exploit the main properties of the signals, is the Coarse Graining Spectral Analysis
(CGSA) [136]. CGSA assumes that the physical quantity under study is a sum of a fractal
stochastic model (a fractional Brownian motion) and a sum of stationary sinusoids, and aims
to isolate the fractal stochastic spectrum in order to calculate more precisely the parameters
that characterize it. Its main drawbacks are that it does not provide any temporal estimation
of the harmonic or the fractal stochastic signals, and that it assumes an stationary harmonic
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signal.

The success of theCGSA technique is suggestive because it implies that valuable knowledge
can be obtained by simply assuming that the system is a superposition of a deterministic and
a fractal stochastic component that they do not interact. This approach is far more simple than
other methods that model the dynamics of the system by integrating the deterministic and long-
memory stochastic contributions. SDEs driven by a fractional noise are the most widely used
models taking this approach [10]. However, the mathematical basis of fractional-driven-SDEs
is complex and difficult to grasp, which prevents them from becoming more popular.

Therefore, in this chapter we adopt the view of the CGSA model. Our aim is to expedite
model building by providing reliable simultaneous estimates of the deterministic and stochastic
components present in a systemwhere the deterministic-stochastic interactionsmay be ignored.
We expect these estimates to be useful for exploring the deterministic-stochastic duality in
complex systems with long-term correlations, providing a valuable starting point towards the
development of interpretable models. To this end, we first propose a realistic, yet simple
model, that is able to capture key features of these sort of complex systems. From this model
we have developed a method that enables us to characterize the fractal stochastic component
and to provide an estimate of the deterministic components of the system. As it will become
apparent below, our model may be seen as a generalization of the CGSA that provides temporal
estimations and addresses the issue of non-stationarity in the deterministic component.

The proposedmodel and the signal estimationmethod have been implemented infracdet,
an open-source package for the R environment that is freely available at github [44]. A brief
overview of the fracdet package is provided in Appendix A.

The remainder of the chapter is organized as follows. In Section 2.1, we describe the
specific model in which we are going to focus and its statistical properties. We also propose
a Bayesian method that exploits these statistical properties to estimate the deterministic and
fractal stochastic parts of a signal. In Sections 2.2 and 2.3, we apply our method on simulated
data and real data. Finally, the results of this chapter are discussed and some conclusions are
given in Section 2.4.

The results presented in this chapter are an adaptation of the material already published
in [48].
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2.1 Time series with stochastic and deterministic contributions

Let us consider a complex physical system characterized by the temporal series Y . We
assume that Y is the result of the superposition of a stochastic series B and some band-limited
deterministic signal x:

Y [n] = x[n] + B[n] n = 1, 2, . . . , N .

Note that, for clarity, we denote the stochastic time series using uppercase letters.
For the moment, we will focus on the stochastic part and we will assume that our signal

Y [n] can be approximated by Y [n] = B[n], where B[n] is an evolutionary random process
with long-term dependencies. Therefore, its present behavior is strongly influenced by its
entire history. According to a convenient modeling approach [36], long-memory signals are
treated as realizations of one of two processes: either a fractional Gaussian noise (fGn), or a
fractional Brownian motion (fBm). Since the increments of a non-stationary fBm signal yield
a stationary fGn signal, we will focus on the fBm model without any loss of generality. We
shall denote a fBm model using B(t) and a discrete fractional Brownian motion (dfBm) by
B[k] = B(k · Ts), being Ts the sampling period of the signal [90]. Figure 2.3 highlights the
relation between dfBms and discrete fractional Gaussian noises (dfGns).

The dfBm is a stochastic non-stationary process with zero mean that is fully characterized
by its variance σ2 and the so-called Hurst exponent 0 < H < 1. Due to the relationship
between dfGn and dfBm, dfGn models are also fully specified by these two parameters.
Figure 2.3 shows both fGn and fBm processes for different values of H. The non-stationary
behavior of the dfBm signals is apparent when considering its covariance [39]:

Cov(B[k], B[l]) =
σ2T2H

s

2
(|k |2H + |l |2H − |k − l |2H ). (2.1)

Although non-stationary, dfBm does have stationary increments B[k + d] − B[k], and its
probability properties only depend on the lag d, the exponent H and σ2. This increment
process follows a dfGn distribution [90] (see Figure 2.3), and it is self-similar in the sense that,
for any a > 0, B fulfills

(B[k + a · d] − B[k]) ∼ aH (B[k + d] − B[k]).

In summary, two important features appear as relevant when analyzing dfBm signals: non-
stationarity, which demands for a time-dependent analysis; and self-similarity, which demands
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H=0.2
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Figure 2.3: Several dfBms (left) and dfGns (right) for different values of the Hurst exponent.
Note that the differentiation of a dfBm yields a dfGn.

for a scale-dependent analysis. Wavelet analysis seems to be a proper framework for studying
this kind of time series, providing their description in terms of an elementary waveform by
means of shifts and dilations, resulting in a time and scale dependent method. Furthermore,
they have proved its usefulness in many applications [8, 33, 37, 49, 88]. The next section
summarizes the most important statistical properties of the dfBm wavelet coefficients.

2.1.1 Exploring self-similarity with wavelets

Let us assume that B is an infinite signal, so that we can ignore border effects on the wavelet
transform. The wavelet transform of B decomposes the signal in terms of a set of oscillating
functions {ψj,l}, each of which is well localized in time around l and it is related with a
resolution level j. In the notation of this chapter, the j-th resolution level is associated with
the scale 2−j and thus, larger j correspond to finer scales. Since the set of functions {ψj,l} are
generated by parametrizing the function ψ, the latter is called mother wavelet. The wavelet
decomposition of B is

B[n] =
∞∑
j=J

∑
l∈Z

wBj,l[n]ψj,l[n] +
∑
l∈Z

aBJ [n]φJ,l[n],
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where φJ,l[n] is the so-called scaling function (closely related to the mother wavelet), wBj are
the wavelet coefficients of the j-th resolution level, and aBJ are the approximation coefficients
associated with some J-th resolution level taken as reference level.

Usually, the wavelet coefficients are computed by using the so-called wavelet filter g, which
is uniquely determined by the mother wavelet ψ. Specifically, the wavelet coefficients in the
j-th resolution level can be expressed as

wBj[n] =
∞∑

p=−∞

gj[p − 2n]B[p],

being gj the band-pass filter associated with the j-th resolution level and the wavelet filter g.
Using mother wavelets with a large number of vanishing moments leads to almost uncorrelated
wavelet coefficients wBj [126]. The wavelet coefficients of a dfBm form a random discrete
sequence which is a stationary Gaussian process with zero mean [39]. Following the reasoning
exposed in [39] for the variance:

Var(wBj[n]) = E(wB2
j [n])

= E

(
∞∑

p=−∞

gj[p − 2n]B[p] ·
∞∑

q=−∞

gj[q − 2n]B[q]

)
=

∞∑
p=−∞

∞∑
q=−∞

gj[p − 2n]gj[q − 2n]E (B[p] · B[q]) .

UsingEquation (2.1) and given that the dfBmhas zeromean andCov (B[p], B[q]) = E (B[p] · B[q]),
we obtain

Var(wBj[n]) =
∞∑

p=−∞

∞∑
q=−∞

gj[p − 2n]gj[q − 2n] ·
σ2T2H

s

2
(|p|2H + |q |2H − |p − q |2H ). (2.2)

Rearranging the summation indexes and since gj filters have zero mean [105], Equa-
tion (2.2) can be written as

Var(wBj[n]) = −
σ2T2H

s

2

∞∑
p=−∞

∞∑
q=−∞

|p|2Hgj[q]gj[q + p].

Finally, using the convolution operator and defining ḡ[n] = g[−n] yields

Var(wBj[n]) = −
σ2T2H

s

2

∞∑
p=−∞

|p|2H (gj ∗ ḡj)[−p], (2.3)
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2.1. Time series with stochastic and deterministic contributions

Thus, after selecting a wavelet filter g, Var(wBj[n]) only depends on j. Although it is not
apparent from Equation (2.3), the variance of the wavelet coefficients has a power-law behavior
[39]. Note that there is no dependence on the time index n due to the stationarity of the wavelet
coefficients of the dfBm. This enables the estimation of Var(wBj) from the wBj sequence.
Therefore, after performing the estimation of the variance for the wavelet coefficients in each
resolution level, the Hurst exponent and the variance of the dfBm process can be estimated by
fitting Equation (2.3) to the data. Figure 2.4 illustrates this procedure.
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Figure 2.4: H and σ2 estimation by fitting Equation (2.3) to the experimental wavelet co-
efficients’ variance of a dfBm process. Real parameters of the process are H = 0.300 and
σ2 = 1.00. The resulting estimates are Ĥ = 0.302 and σ̂2 = 0.996.

It should be noted that, the smaller j is, the larger the uncertainty in the estimation of
Var(wBj). This is a consequence of the dependence of the length of wBj on j: length(wBj) =

2j . Thus, we have fewer samples for estimating Var(wBj) in the smallest resolution levels,
and hence the greater uncertainty in the estimation of their wavelet’s variance. Due to this
dependence of the estimate’s uncertainty on j, the fitting procedure illustrated in Figure 2.4
would benefit from a weighted regression scheme. However, we shall not consider it in
the following sections for the sake of simplicity. Instead, we shall just ignore the estimates
performed in resolution levels 0-3.

In a more realistic situation, our physical system will not just behave as a dfBm or a
dfGn process. Let us return to our initial model for the time series: Y [n] = x[n] + B[n].
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Chapter 2. Deterministic and fractal stochastic dynamics
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Figure 2.5: H and σ2 estimation by fitting Equation (2.3) to the experimental wavelet coeffi-
cients’ variance of a mix of a dfBm and a sine. Real parameters of the process are H = 0.300
and σ2 = 1.00. Note the deterministic contribution to the 12th and 13th wavelet resolution
levels. The resulting estimates are Ĥ = 0.303 and σ̂2 = 0.998.

When working with a time series Y [n] involving both dfBm and deterministic contributions,
we obtain wYj = wxj + wBj for each wavelet resolution level, being wxj the deterministic
wavelet coefficients. Due to the presence of the deterministic contribution, the variance of
the observed wavelet coefficients, Var(wY j[n]), does not fulfill Equation (2.3). However, let
us assume that the deterministic contributions present in Y are band-limited and that they
have negligible low-frequency energy in comparison with the 1/ f power spectrum of the
dfBm/dfGn process. Under this assumption, Equation (2.3) will be approximately fulfilled in
somewavelet resolution levels, most of themassociatedwith low resolutions (low-frequencies).
Thus, the dfBm parameters can be estimated by fitting Equation (2.3) to the wavelet levels
free from deterministic contributions. Assuming that B[n] and x[n] interact weakly, the
resulting fitted curve enables the estimation of the variance (the energy) of wx in each wavelet
resolution level. The present method thus becomes a generalization of CGSA [136], coping
with non-stationarity and involving a wider family of deterministic contributions.

It is worth briefly discussing a key implication of the hypothesis that x[n] is band-limited.
So far, we have referred to x[n] as the deterministic component, but nothing in our model
prevented x[n] to be another stochastic signal. However, if we work under the assumption that
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2.1. Time series with stochastic and deterministic contributions

x[n] is band-limited, it is reasonable to expect x[n] to be predictable. Hence, we may refer to
this component as deterministic.

Figure 2.5 shows a dfBm mixed with a sine. Since the sine is well located in frequency,
its energy is also well located in scale (resolution levels 12 and 13). The fit was performed
by using the wavelet resolution levels ranging from 4 to 11. Note that the fit permits the
estimation of the cosine energy in levels 13 and 14. The next section explains how to use this
information about the deterministic signal to estimate it.

2.1.2 The deterministic contribution

By fitting Equation (2.3) we have not only characterized the dfBm process, but we have
also gained information about the deterministic contributions in each wavelet resolution level,
information that can be used to obtain an estimate of the deterministic components. A
selective wavelet reconstruction has been proven successful for adaptive estimation of signals
contaminated with Gaussian background noise [30]. Let us assume that we are given data
Y [n] = x[n]+B[n], where x is a potentially complex, temporarily inhomogeneous function; that
is, its larger wavelet coefficients occur exclusively near the areas of major activity. Therefore
the wavelet coefficients wY would consist of a few large coefficients attributable to the signal
x, and many small ones attributable to the noise B. Thus, it is possible to find an estimate x̂ (to
denoise the data) by shrinking the noisy wavelet coefficients towards 0, and then inverting the
wavelet transform of the denoised coefficients. To quantify what is a large wavelet coefficient
we need to estimate the size of the noise through its variance. When the noise is not white, as
with dfBm, noisy coefficients have a variance that depends on each wavelet resolution level.
Thus, the shrinkage procedure should be level dependent. One natural way to do so is via
a Bayesian formulation, by placing a prior distribution on each coefficient [1, 20, 131]. A
Bayesian approach enables the exploitation of previous knowledge about the properties of the
unknown deterministic component x, as that provided by Equation (2.3).

Bayesian statistical properties of the model

Wavelet-based denoising exploits the fact that the wavelet transform enables a sparse rep-
resentation of a great variety of signals. This means that only a few wavelet coefficients
(those with the largest energy) summarize the important features of the signal. Following
this reasoning, we propose as prior model for the deterministic coefficients a mixture of a
non-standardized-Student’s t with f degrees of freedom T f (·) and a Gaussian distribution
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Chapter 2. Deterministic and fractal stochastic dynamics

N (·):

wxj[n] | φ j ∼ φ jT f (0, µ2
j ) + (1 − φ j)N (0, τ2

j ), (2.4)

The Student’s t distribution was selected to permit wxj having a heavy-tailed distribution.
Assuming that τj < µj , our model is a mixture of a non-standardized-Student’s t with squared
scale parameter µ2

j and f degrees of freedom and a narrowGaussian centered in 0with variance
τ2
j . The Student’s t characterizes the high-energy coefficients whereas that the Gaussian
characterizes the low-energy coefficients. The mixing parameter φ j follows a Bernoulli
distribution φ j ∼ B(pj).

The parameters H andσ2 do not only characterize the dfBm signal, but they also determine
the statistical properties of its wavelet coefficients wBj[n]. Taking into account that these
coefficients will be approximately uncorrelated, we can write

wBj[n] | σ̂2
j ∼ N (0, σ̂2

j),

where σ̂2
j is the fitted wavelet variance for the j-th level. Since our knowledge on σ̂2

j is not
exact, we can introduce an informative distribution on σ̂2

j . The dispersion of this distribution
will depend on our confidence on the dfBm’s parameters estimation. For the sake of simplicity
we work with the precision parameter λj = 1/σ̂2

j . The conjugate prior for a Gaussian with
known mean is a Gamma distribution with shape α and rate (or inverse scale) β [51]. Thus,
the precision in each wavelet level will be modeled as follows:

λj ∼ Γ(αj, βj).

Conditioned to the values of wxj and λj , the distribution of the observed wavelet coeffi-
cients is

wYj[n] | wxj[n], λj ∼ N (wxj[n], λ−1
j ).

Once we have selected proper values for the hyperparameters of the model (see Section 2.1.2),
our aim is to obtain the best estimator ŵx j . The marginal distribution over wYj given wxj is a
non-standardized-Student’s t:

wYj | wxj ∼ T2αj (wYj | wxj, (αj/βj)
−1)
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2.1. Time series with stochastic and deterministic contributions

On the other hand, Equation (2.4) yields wxj ∼ p · T f (0, µ2
j )+ (1− p) ·N (0, τ2

j ), and thus:

fwx j (wxj | wYj) =
fwYj (wYj | wxj) fwx j (wxj)∫ ∞

−∞
fwYj (wYj | wxj) fwx j (wxj) dwxj

=

=

[
p · T f (wxj |0, µ2

j ) + (1 − p) ·N (wxj |0, τ2
j )

]
· T2αj

(
wYj |wxj, βj/αj

)
pΠj,1(wYj) + (1 − p)Πj,0(wYj)

(2.5)

being fX the probability density function of the random variable X and

Πj,0(wYj) =

∫ ∞

−∞

N (x |0, τ2
j ) · T2αj (wYj |x, βj/αj)dx,

Πj,1(wYj) =

∫ ∞

−∞

T f (x |0, µ2
j ) · T2αj (wYj |x, βj/αj)dx.

The best estimator under squared loss function is δ(wYj) = E(wxj |wYj), which receives
the name of Bayes’s decision rule [7]. Applying the expectation operator to Equation (2.5) we
obtain the Bayes’s rule for our model in the j-th resolution level:

δj(wYj[n]) =
pΛj,1(wYj[n]) + (1 − p)Λj,0(wYj[n])
pΠj,1(wYj[n]) + (1 − p)Πj,0(wYj[n])

(2.6)

being

Λj,0(wYj[n]) =
∫ ∞

−∞

x ·N (x |0, τ2
j ) · T2αj (wYj[n]|x, βj/αj)dx,

Πj,0(wYj[n]) =
∫ ∞

−∞

N (x |0, τ2
j ) · T2αj (wYj[n]|x, βj/αj)dx,

Λj,1(wYj[n]) =
∫ ∞

−∞

x · T f (x |0, µ2
j ) · T2αj (wYj[n]|x, βj/αj)dx,

Πj,1(wYj[n]) =
∫ ∞

−∞

T f (x |0, µ2
j ) · T2αj (wYj[n]|x, βj/αj)dx.

Figure 2.6 shows an illustrative representation of the Bayes rule that results from Equa-
tion (2.6). Note that the Bayes rule shrinks the smaller coefficients towards 0 while it keeps
the largest ones almost unaltered.

The final estimate x̂ is obtained by performing the inverse wavelet transform of the resulting
wavelet coefficients ŵx j .
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Figure 2.6: An illustrative example of the Bayes decision rule that results from Equation (2.6)

Parametrization of the model through hyperparameters

To complete the description of the estimation algorithm it is necessary to provide some
guidelines on the selection of the hyperparameters and its impact on the performance of the
method. Note that the election of these hyperparameters is independent for each wavelet
resolution level. The prior distribution for the precision is Γ(αj, βj) so that its mean is αj/βj

and its variance is αj/β
2
j . For a fixed level j we may choose αj and βj , therefore βj/αj = σ̂

2
j

and αj/β
2
j = (∆σ

2
j )

2/(σ̂2
j )

4, where ∆σ2
j is the estimated regression error in the j-th wavelet

resolution level.
The parameter τj characterizes the dispersion of the smaller deterministic wavelet coeffi-

cients. The contribution of any wavelet coefficient wj[n] to the final reconstructed signal is
wj[n] ·ψj , being ψj the wavelet of the j-th resolution level. This contribution should be negli-
gible when compared to the mean amplitude of the deterministic signal Ax . Given the shape of
the Gaussian distribution, 3τj can be interpreted as a soft bound of the negligible coefficients.
Thus we require 3τj · Aψ j ≈ k j · Ax , being Aψ j the amplitude of the j-th wavelet and k j a
small number [20]. As a practical rule for estimating Ax we propose detrending the Y series
(since we associate the long-term fluctuations with the dfBm) and setting Ax = MAD(dY ),
being MAD the Median Absolute Deviation and dY the detrended series. An appropriate
value for k j could be k j = k = 0.01, meaning that the contributions of the largest negligible
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2.1. Time series with stochastic and deterministic contributions

deterministic coefficients at a given scale j should not exceed 1% of the amplitude of the
deterministic signal.

Since φ j ∼ B(pj), pj is the probability of finding a non-negligible deterministic wavelet
coefficient in the j-th resolution level. Therefore, finding a proper value of pj first requires
defining what is negligible. To that end, we resort to the “universal threshold” of Donoho
et al. [31], which can be understood as an upper bound on the size of the noise. The
universal threshold was derived under the assumption that some signal was contaminated with
independent and identically distributed (iid) Gaussian noise O[n] ∼ N (0, σ2). The form of
the universal threshold when observing N coefficients of the contaminated signal is

t =
√

2 log(N)σ.

The rationale for this threshold is that, as N →∞,

p(max
n
{|O[n]|} < t) → 1,

and therefore, the original signal could be estimated by removing (thresholding) the coefficients
smaller than t, since asymptotically the vast majority of noise would be eliminated. Note
that the threshold is biased towards overestimating the magnitude of the noise, since σ is
multiplied by

√
2 log(N). That’s the reason why, as previously stated, the universal threshold

can be interpreted as an upper bound on the size of the noise.
Following [20], we use the universal threshold to define a boundary between the negligible

and non-negligible signal coefficients. We propose as follows:

pj =
#{wYj[n] : |wYj[n]| >

√
2 · log(2j)(σ̂2

j + τ
2
j )}

2j
,

where # denotes the cardinality of a set.
Finally, the variance of the observed wavelet coefficients is

Var(wYj) = pj µ
2
j

f
f − 2

+ (1 − pj)τ
2
j + σ̂

2
j . (2.7)

For a fixed f , it is possible to estimate µ2
j from Equation (2.7). Increasing the value of f yields

more conservative Bayes’ rules. To exploit the heavy tails of the Student’s t distribution, we
suggest the use of f ranging from 3 to 10, since for moderately large values of f the Student’s
t approaches a Gaussian distribution.
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Chapter 2. Deterministic and fractal stochastic dynamics

Effects of the observational noise

Typically, most experimental time series are affected by observational noise. For the sake
of completeness, we briefly review how it would affect the method proposed in the previous
sections. Suppose now that, to account for the effect of the observational noise, we model our
time series as

Y [n] = x[n] + B[n] +O[n],

where O[n] ∼ N (0, v2) represents the effect of the undesired observational noise. Although
simple, this assumption is accurate enough for most applications. We assume that the strength
of the noise does not completely mask the main features of both x[n] and B[n]. An important
property of an orthonormal transform (like the wavelet transform) of identically independently
distributed Gaussian noise is that the transformed noise has the same statistical properties as
the original one. Therefore, all the stochastic contributions can be modeled in wavelet domain
as follows:

wBj[n] + wO j[n] | σ̂2
j, v

2 ∼ N (0, σ̂2
j) +N (0, v2) ∼ N (0, σ̂2

j + v
2).

Thus, Equation (2.6) can still be applied as decision rule provided that the precision
parameters are used to model λj = 1/(σ̂2

j + v2) and that we have a reasonable estimate (or
prior value) of v2.

We also propose another approach which tries to exploit the fact that, in most experimental
time series, the contribution of the dfBm will predominate over the observational noise in the
low frequencies. Intuitively, this is due to the fact that observational noise is modeled as an
stochastic term without drift. Therefore, the proposed estimation method can be used as if the
observational noise did not exist to obtain an estimate of x[n] +O[n], x[n] +O[n]

∧
. Then, any

thresholding or shrinkage algorithm such as [1, 20, 31, 131] could be applied on x[n] +O[n]
∧

to
obtain the final estimate of x[n] and an estimate of v2. The estimate of v2 can be subsequently
used to tune the estimate of the dfBm parameter σ2.

2.2 Validation over synthetic data

In this section, we compare the performance of our proposal with the universal thresholding
rule of Donoho et al. [31] using synthetic data. In addition to being one of the most widely
used thresholding methods, its selection for the comparison was also due to the availability of
an open-source implementation of the algorithm [99]. The fitted variances for each resolution
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level σ̂2
j were provided to Donoho’s algorithm for a more fair comparison. Note that the

use of synthetic data allows us to know the exact mathematical model that generated the
data, and therefore which is the correct answer the model should provide, unlike real data.
The synthetic signals consist of a mixture of a dfBm with either H = 0.3 or H = 0.8
and some deterministic series. For each case, simulations were conducted using different
Signal-to-Noise Ratios (SNRs). We employed a set of complex, band-limited time series as
deterministic components, so that the resulting signals met the assumptions of our model. All
the synthetic signals had a length of 215 points.

The “Rossler” signal from Table 2.1 was generated by sampling rx · ry + rz every second,
where rx , ry and rz are the cartesian components of the Rossler system:

Ûrx = −(ry + rz)

Ûry = rx + 0.2 · ry
Ûrz = 0.2 + rz · (rx − 5.7)

The “Lorenz” signal data was obtained by studying the z component of the Lorenz system
(lz) in steps of 0.01 seconds:

Ûlx = 10 · (ly − lx)

Ûly = lx · (28 − lz) − ly

Ûlz = −
8
3

lz + lx · ly

The “Chirp” signal was generated using a linear chirp whose frequencies ranged from
0.025 to 0.2 Hz, and sampling it every second. Finally, the “Henon” signal was obtained from
the y component of the Henon map (hy):

hx[n] = 1 − 1.4 · h2
x[n − 1] + hy[n − 1]

hy[n] = 0.3 · hx[n − 1].

Table 2.1 shows the mean square error of the estimates obtained with our Bayesian algo-
rithm and with Donoho’s universal threshold for the different values of H and SNRs. As shown
in Table 2.1, our model shows a slightly better performance than [31]. This is not surprising,
since we developed our model for this particular problem and it was inspired by the pioneering
work of [1, 20, 131]. In this sense, we are not trying to establish a new denoising-algorithm

34



Chapter 2. Deterministic and fractal stochastic dynamics

Signal SNR H=0.3 H=0.8
Proposal [31] Proposal [31]

Rossler 3 0.248 (0.169) 0.684 (0.179) 0.253 (0.112) 0.431 (0.141)
5 0.188 (0.149) 0.558 (0.196) 0.134 (0.032) 0.320 (0.094)
7 0.149 (0.134) 0.467 (0.182) 0.101 (0.020) 0.267 (0.078)

Lorenz 3 0.578 (0.027) 0.974 (0.012) 1.161 (0.416) 1.006 (0.010)
5 0.438 (0.022) 0.935 (0.022) 1.024 (0.241) 1.002 (0.007)
7 0.355 (0.017) 0.889 (0.027) 0.959 (0.154) 1.001 (0.005)

Chirp 3 0.431 (0.075) 0.827 (0.095) 0.536 (0.090) 0.877 (0.069)
5 0.361 (0.058) 0.681 (0.117) 0.460 (0.081) 0.779 (0.087)
7 0.316 (0.041) 0.562 (0.099) 0.414 (0.077) 0.703 (0.095)

Henon 3 0.380 (0.207) 0.886 (0.144) 0.235 (0.019) 0.567 (0.059)
5 0.249 (0.075) 0.786 (0.094) 0.190 (0.022) 0.484 (0.060)
7 0.231 (0.055) 0.741 (0.066) 0.161 (0.020) 0.424 (0.054)

Table 2.1: Mean square error of our Bayesian estimation algorithm and the algorithm from
Donoho et al. [31] using different test functions, and for different levels of SNRs. Here, the
“Signal” is the deterministic component and “Noise” is the dfBm component. The hyper-
parameters for our model were selected following the rules exposed in Section 2.1.2 with
f = 5. Standard errors are given in parentheses. The best result for each test is marked in bold
(smaller is better).

standard, but we are only testing that our model performs well enough when used to character-
ize a system where deterministic and stochastic phenomena concur. Figures 2.7-2.10 show the
results obtained with our model on different test signals. The upper panels show the original
signals consisting of a band limited deterministic signal and a dfBm. The lower panels show
the deterministic component and its estimate obtained using our method. The SNR was set to
3 in all the examples.

Table 2.1 and Figures 2.7-2.10 illustrate the ability of our proposal for separating the
deterministic component from the stochastic contributions. To completely characterize the
observed signalY [n], the H andσ2 parameters of the dfBm should also be estimated. Table 2.2
shows the estimates obtained for both parameters using the same synthetic data employed in
Table 2.1. Since the estimates are quite accurate and these parameters fully specify the
properties of the dfBm, we could reproduce the 1/ f statistical features of the observed signal
Y [n]. In this sense, we could generate new surrogates of Y [n] using x̂[n] and synthesizing a
new dfBm characterized by Ĥ and σ̂2. For example, a wavelet-based simulation method of
dfBm can be found in [39].
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Figure 2.7: Deterministic estimation from the “Rossler” signal (sampled at 20 Hz for a
smoother visualization) and a dfBm with H = 0.3.
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Figure 2.8: Deterministic estimation from the “Lorenz” signal and a dfBm with H = 0.3.

2.3 Application to economic data

Wehave tested themethod presented in this chapter by applying it to the study of themean daily
prices of the 95 RON (Research Octane Number) unleaded petrol in the fuel stations of Spain
(from 2011-02-13 to 2016-05-02, see Figure 2.11). Since many financial models incorporate
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Figure 2.9: Deterministic estimation from the “Chirp” signal and a dfBm with H = 0.8.
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Figure 2.10: Deterministic estimation from the “Henon” signal and a dfBm with H = 0.8.

Brownian motion (a fBm with H = 0.5), our model provides a reasonable framework for
studying the unleaded petrol data. Figure 2.12 shows the fitted variance for each wavelet
resolution level. As expected, the variance-resolution curve is compatiblewith a 1/ f spectrum,
and the estimated Hurst exponent is close to the theoretical exponent of the Brownian motion,
Ĥ ≈ 0.56. The most interesting deviations from the theoretical variance distribution occur
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Signal SNR H=0.3 H=0.8
H estimate σ2 estimate H estimate σ2 estimate

Rossler 3 0.321 (0.043) 0.297 (0.138) 0.820 (0.050) 0.324 (0.095)
5 0.325 (0.043) 0.173 (0.083) 0.812 (0.047) 0.204 (0.061)
7 0.324 (0.043) 0.123 (0.059) 0.810 (0.049) 0.148 (0.047)

Lorenz 3 0.300 (0.022) 0.334 (0.020) 0.802 (0.018) 0.335 (0.015)
5 0.303 (0.016) 0.199 (0.009) 0.799 (0.023) 0.201 (0.010)
7 0.301 (0.022) 0.143 (0.009) 0.799 (0.023) 0.144 (0.007)

Chirp 3 0.315 (0.035) 0.306 (0.108) 0.807 (0.043) 0.342 (0.076)
5 0.314 (0.035) 0.186 (0.064) 0.807 (0.043) 0.205 (0.046)
7 0.314 (0.035) 0.133 (0.046) 0.807 (0.043) 0.146 (0.033)

Henon 3 0.313 (0.053) 0.325 (0.177) 0.827 (0.030) 0.305 (0.044)
5 0.288 (0.022) 0.226 (0.051) 0.818 (0.036) 0.192 (0.034)
7 0.276 (0.016) 0.188 (0.028) 0.815 (0.037) 0.139 (0.024)

Table 2.2: H and σ2 estimates of our Bayesian estimation algorithm using different test
functions, and for different levels of SNRs. To simplify the table, the deterministic test
functions were normalized to unit energy. Therefore, the theoretical σ2 is 1/SNR for all rows.

in levels 9 and 10, which correspond to fluctuations occurring on a 2-8 daily basis. The
deviations occurring in levels ranging from 3 to 4 also seem to be important. However, the
variance estimates of these resolution levels have great uncertainty and hence, the resulting
deterministic estimates would also be subject to strong uncertainties. Since the main aim of
this section is to validate our proposal with a real application, they will not be considered. In
the remainder of this section, we will focus on the deterministic component extracted from
resolution levels 9-10.

Both the distribution of the original data and its deterministic component against the week-
day are shown in Figure 2.13. Even though they spread over different scales, the deterministic
component shows a more clear pattern. On average, the prices on Mondays tend to decrease
whereas that they slightly increase during the weekends. The increase in prices during the
weekends is likely driven by increased demand. On the weekends people tend to travel longer
distances with their cars, and they also often take advantage of their free time to refuel. The
fall of the petrol prices on Mondays is a very well-documented effect in Europe that is referred
to as the “Monday effect” [25]. The explanation of this effect is that the member states of
the European Union must report their fuel prices (petrol, diesel and biofuel) to the European
Commission every Monday for the “European Commission Oil Bulletin”. By lowering their
prices on the measurement day, petrol stations distort the official statistics. Table 2.3 sum-
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Figure 2.11: Mean daily prices of the 95 RON unleaded petrol in the fuel stations of Spain.
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Figure 2.12: Variance depending on the wavelet resolution level for the 95 RON unleaded
petrol data. The resulting Hurst estimate is Ĥ ≈ 0.56. Note the deviation from the theoretical
variance in resolution levels 9 and 10.

marizes the mean price differences between Sunday-Monday and Tuesday-Monday obtained
from the original data and from the deterministic component estimated through our method.
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Figure 2.13: Upper panel: Boxplot showing the distribution of the original petrol price versus
the weekday. Lower panel: Boxplot showing the distribution of the deterministic component
of the petrol price versus the weekday. Note the decrease of the prices on Monday and the
slight increase during the weekend.

Table 2.3 illustrates that the price differences in the deterministic component are smaller than
the price differences obtained directly with the original data. This is a consequence of the
assumptions of our model and the resulting shrinkage algorithm. Our model assumes that
the petrol prices result from a linear superposition of a dfBm and a deterministic signal, and
this last contribution is estimated after a shrinkage operation of the original time series. The
shrinkage operation can be intuitively understood by considering that the algorithm distributes
the original signal’s energy between the two components assumed by our method.

Figure 2.13 and Table 2.3 illustrate how our proposal can be used for unveiling interesting
patterns buried in complex time series even when starting with a very limited knowledge of
the phenomena under study. Table 2.3 also illustrates that as a result of the assumptions of our
model, the resulting deterministic estimates will always be smaller than the original data.
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Mean ecents price difference 2011 2012
Det. Mon-Sun -0.087 (0.325) -0.260 (0.312)

Mon-sun -0.189 (0.482) -0.483 (0.626)
Det.Tue-Mon 0.223 (0.332) 0.420 (0.341)
Tue-Mon 0.413 (0.670) 0.868 (0.883)

Table 2.3: Mean differences between Sunday-Monday prices and Tuesday-Monday prices
of the 95 RON unleaded petrol in Spain (“Mon-Sun” and “Tue-Mon”, respectively) and its
deterministic component (“Det. Mon-Sun” and “Det. Tue-Mon”). Standard errors are given
in parentheses.

2.4 Discussion

We have presented an algorithm that, under the assumption that a simple superposition model
holds, is able to characterize the fractal stochastic component and estimate the deterministic
components present in a time series with long-term correlations. In this model, the fractal
stochastic component is assumed to be a dfBm/dfGn and the deterministic signal is assumed
to be band-limited. We further hypothesized that both components do not interact. The main
contribution of our proposal is the observation that, since the energy of self-similar processes
changes with the scale following a power-law relation, deviations from this behavior permit
the estimation of the energy distribution across scales of a deterministic signal superimposed
on 1/ f noise, which at the same time enables its approximate reconstruction using well-
known Bayesian estimation techniques. We tested the method on simulated time series and
we compared its performance with Donoho’s universal threshold, showing that our method is
able to reconstruct the deterministic series with great accuracy.

It must be noted that the model proposed in this chapter is a generalization of the CGSA
[136]. The CGSA model assumes stationary harmonic components for the deterministic
signal, whereas we just require it to be band-limited, without any assumption about its sta-
tionarity. CGSA focuses on estimating the fractal spectrum, whereas our proposal focuses
on providing an estimate of the deterministic signal in time. In stationary conditions and
when the deterministic signal can be approximated by a sum of sinusoidal terms (when CGSA
model holds), both algorithms can complement each other. One of the flaws of our method is
the need of selecting the wavelet resolution levels to use in the regression procedure (Equa-
tion (2.3)), which is a subjective step that depends on the experience of the researcher. When
CGSA assumptions hold, the selection of these levels may be avoided by means of the CGSA
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algorithm. If those assumptions are not fulfilled, to the best of our knowledge, there is a lack
of tools for objectively estimating the fractal properties of a time series that does not uniquely
contain fractal stochastic components. The design of some mechanism to automatically select
the wavelet resolution levels free from deterministic contributions should be considered in
future improvements.

We have studied the evolution of the mean daily prices of the 95 RON unleaded petrol
in the fuel stations of Spain as an example of the application of our method to real data,
demonstrating its usefulness for discovering deterministic patterns and gaining insights about
the system under study.

Although this example is suggestive, we should be aware of the main limitation of our
model: it ignores the possible interactions between the deterministic and stochastic com-
ponents. In relation with this topic, it would be interesting to consider the inclusion of
some flexible interaction mechanism in our model to take into account the possible weak
reinforcement-inhibition phenomena. However, note that with strong interactions our model
Y [n] = x[n] + B[n] will not be a valid approximation anymore, and thus the study of strong
interactions will probably require a different approach. The most natural one would be con-
sidering the evolution of the system at each step: dY (t) = dx(t) + dB(t), where we have
used continuous notation for clarity in the following exposition. This equation suggests that,
at each time step, the system evolves following some deterministic forcing dx(t) but it is
also subject to random perturbations dB(t). The problem is now much more general and
hence, it is usually simplified by assuming that the deterministic forcing depends on Y (t):
dx(t) ∆= f (Y (t))dt. Furthermore, to permit richer interactions between the deterministic driv-
ing force and the noise perturbations, a multiplicative noise term can be used, which yields:
dY (t) = f (Y (t))dt +

√
g(Y (t))dB(t), which may remind us of the expression for a SDE.

Build on top of this informal discussion, the following chapter deals with the use of SDEs
to model time series with deterministic-stochastic interactions. Although it is possible to use
SDEs driven by fBms, we shall focus on another kind of noise (a Wiener process), which is
more widely used and greatly simplifies the discussion of what the differential of a noise dB(t)

is.
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CHAPTER 3

MODELING DETERMINISTIC-STOCHASTIC

INTERACTIONS IN MARKOVIAN DYNAMICS

SDEs, also referred to as Langevin equations, provide an effective framework for modeling
complex systems comprising a large number of subsystemswhich show irregular fast dynamics
that can be treated as fluctuations or noise. Intuitively, SDEs couple a deterministic equation of
motion with noisy fluctuations interfering in its dynamical evolution. They have demonstrated
their usefulness in a wide range of applications: diffusion of grains in a liquid [84], drift
of particles without flux [83], turbulence [40, 41], fluctuations in plasma [94], variations in
quasar’s optical flux [72], chemical reactions [54], traffic flow dynamics [91], quantitative
finance [52], gene expression [102], electroencephalography analysis [5], etc. (see [42] for
a complete review with applications). The only specific requirements that modeling through
SDEs imposes are stationarity andMarkovianity. Recent advances have enabled the application
of SDEs to time series that do not meet some of these requirements. For example, SDE-
modeling has been successfully applied to non-stationary conditions by means of additional
measurable properties [86, 95] or by assuming a parametric model in which the parameters
themselves evolve according to stationary stochastic processes [115]. On the other hand and
concerning Markovianity, consider for example [119], in which Langevin-like equations have
been properly estimated in the presence of observational noise spoiling the Markov properties
of the experimental time series. We shall not exploit these advances, and we shall assume that
the stationarity and Markovianity assumptions hold.

In this chapter, we consider a system that may be represented by a continuous-time uni-



variate Markov process x(t) described by the SDE:

dx(t) = f
(
x(t)

)
dt +

√
g
(
x(t)

)
dW(t), (3.1)

where W(t) denotes a Wiener process. The Wiener process has independent Gaussian incre-
mentsW(t+τ)−W(t)with zero mean and variance τ. Thus, we may intuitively think of dW(t)

as white noise, which is the source of randomness of the system. Note that the stationarity and
Markovianity assumptions follow from the properties of the Wiener process. The function f

defines a deterministic drift and g modulates the strength of the noise term. If the function
g is constant, the resulting noise term

√
g
(
x(t)

)
dW(t) is said to be additive. Otherwise, the

noise is said to be multiplicative. The functions f and g are usually referred to as the drift
and diffusion coefficients. Note that, although we could have denoted x(t) with uppercase to
highlight its stochastic nature, we decided not to do it to keep the notation uncluttered.

When studying complex dynamical systems, the large number of degrees of freedom and
the nonlinear interactions between the subsystems involved in the dynamics usually hinders
obtaining an exact knowledge of the functional forms of both the drift and diffusion coeffi-
cients. This leads to the problem of its non-parametric estimation from the observation of an
experimental time series x, which is usually a sampled version of the underlying continuous
process x(t) (the reason for using N + 1 as the number of samples will be apparent at the
beginning of Section 3.1).

The most widely used non-parametric estimation methods exploit the theoretical expres-
sions for both the drift and diffusion terms [42]:

f (ξ) = lim
τ→0

1
τ
Ex(t+τ) [x(t + τ) − x(t) | x(t) = ξ] ,

g(ξ) = lim
τ→0

1
τ
Ex(t+τ)

[ (
x(t + τ) − x(t)

)2
| x(t) = ξ

]
,

(3.2)

where E denotes the expectation operator. Equation (3.2) suggests the possibility of estimating
the dynamical coefficients f (ξ) and g(ξ) by computing “local” means in a small neighborhood
of ξ [42]. Typically, the local means are computed after binning the domain of x using bins
of size ε , like in a histogram:

f̂ (ξ) =
1

Nξ

∑
x[i]∈B(ξ,ε )

[x[i + 1] − x[i]] ,

ĝ(ξ) =
1

Nξ

∑
x[i]∈B(ξ,ε )

[x[i + 1] − x[i]]2 ,
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Chapter 3. Modeling deterministic-stochastic interactions in Markovian dynamics

where f̂ and ĝ represent the estimates, B(ξ, ε) denotes the bin in which ξ falls and Nξ is the
number of points from x falling in that bin.

Themost obvious limitation of this histogram-based approach is that the estimations highly
depend on the choice of ε . Furthermore, it is not obvious how we should select the size of the
bin. More sophisticated approaches rely on replacing the mean of the bins with the mean of
the k-nearest neighbors [60]. However, the free parameter of this approach, k, must still be
heuristically selected.

Another refinement of those methods grounded in Equation (3.2) is achieved by [82],
which introduces a kernel-based (instead of an histogram-based) regression for the coefficients.
Furthermore, they propose a method for the selection of the bandwidth of the kernel.

Recently, the use of orthogonal Legendre polynomials for approximating the functional
form of the dynamical coefficients [110] was proposed. The weights of the polynomials are
learned by minimizing the squared regression error that results after discretizing the SDE
with the Euler-Maruyama scheme. Although this method is proposed as non-parametric we
actually find that it is closer to a parametric method than to a non-parametric one, since the
use of a small subset of any polynomial basis restricts the possible functional shapes of the
estimates.

An alternative way for performing non-parametric regression that has become very popular
among the machine learning community is based on the concept of Gaussian Process (GP)
[111]. Instead of working in the weight-space that arises when using a set of basis functions
(e.g., when using the Legendre polynomials), GPs permit working directly in the function
space by placing a distribution over the functions. This enables a Bayesian treatment of
the estimation process. The main advantage of this approach is that it yields probabilistic
estimates, which permits the computation of robust confidence intervals. Furthermore, prior
distributions modeling our prior beliefs about functions could also be included in the model.
In this chapter, a GP-based method to reconstruct the SDE terms is proposed, with a focus
on the computational challenges that common dataset sizes, N ≈ 103 − 105, impose. A brief
overview of the theory of GPs, as well as how they could be used for SDEs estimation is given
in Section 3.1.

GPs have already been considered in the context of SDEs in the pioneering work of Ruttor
et al. [117]. This work proposes a non-parametric estimation method of the drift function in
systems of SDEs based on GP priors. It focuses on time series whose samples are separated
by large time intervals. The authors develop an Expectation Maximization (EM) algorithm to
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cope with the unobserved dynamics (i.e. latent) between observed samples. There are two
main differences between [117] and our proposal: (1) we attempt to provide estimations in the
case where we have a densely sampled time series (resulting in large series) whereas [117]
focuses on the case of sparsely observed time series; and (2) we apply the GP approach to the
estimation of both the drift and diffusion functions whereas [117] only deals with the drift.

The use of densely observed time series poses a challenge related with the demanding
computations that GPs usually require. This is the main drawback that prevents GPs to
be more widely utilized as non-parametric regression tool. In our proposal, we tackle the
problem by providing a Sparse Gaussian Process (SGP) approximation (see [109] for an
excellent overview of the subject), which is one of the main contributions of this chapter. The
sparse approximation is developed in Section 3.2.

Section 3.3 details how to handle the mathematical difficulties that arise in the Sparse
Gaussian Process (SGP) approximation due to the inclusion of the diffusion in the inference
procedure. The estimation of non-constant diffusions has indeed become a major concern.
Non-constant diffusions can be found in many physical systems (see, for example, [5, 40,
41, 52, 83, 91, 94]). Furthermore, it is well established that multiplicative noise can have
surprising effects in the dynamics of the system. Some well-known examples of these effects
are stochastic resonance [43], coherence resonance [107] and noise-induced transitions [65].

Section 3.4 discusses how to select the free parameters of the SGP and how to tune them for
a better performance of the estimates. The resulting SGP method is validated in Sections 3.5
and 3.6-3.7 on simulated data and real data, respectively. In case of the simulated data,
we compare our method with the kernel-based regression [82] and the polynomial method
of [110]. In case of the real data, we apply our method to the study of financial data and climate
transitions during the last glacial age. Finally, we discuss the main results of the chapter in
Section 3.8.

It is worth noting that the main contributions of this chapter were published in [47].
Furthermore, with the aim of supporting reproducible research, we have also released the
open-source R package voila. This package not only implements the SGP method, but
also the methods proposed in [82] and [110]. A brief overview of voila is provided in
Appendix B.

46



Chapter 3. Modeling deterministic-stochastic interactions in Markovian dynamics

3.1 Gaussian Processes for SDE estimation

We consider the discrete-time signal x obtained from sampling the continuousMarkov process
x(t). If the coefficients of the SDE are approximately constant over small time intervals
[t, t + ∆t), the Euler-Maruyama discretization scheme yields [66, Chapter 2]

x(t + ∆t) − x(t) ≈ f (x(t))∆t +
√
g(x(t))(W(t + ∆t) −W(t)),

which in discrete notation can be written as

∆x[i] = fi∆t +
√
gi(W[i + 1] −W[i]), (3.3)

where we have denoted ∆x[i] = x[i + 1] − x[i], fi = f (x[i]) and gi = g(x[i]). Since the
increments of the Wiener process W[i + 1] −W[i] follow a Gaussian distribution N (0,∆t),
Equation (3.3) can be used to approximate the discrete transition probabilities as follows:

p(x[i + 1] | x[i], fi, gi) =
1√

2πgi∆t
exp

(
−

1
2
(∆x[i] − fi∆t)2

gi∆t

)
.

Thus, when the stochastic process takes a value close to x[i], it changes by an amount that
is normally distributed, with expectation f (x[i])∆t and variance g(x[i])∆t. Since the Wiener
increments are independent between them, the log-likelihood of the path can be written as
follows [66, Chapter 3]:

log p(x | f , g) = −
1
2

N∑
i=1

[
(∆x[i] − fi∆t)2

gi∆t
+ log

(
gi

) ]
−

N
2

log
(
2π∆t

)
+ log p(x[1]). (3.4)

It must be noted that this approximation is only valid if ∆t is small. Concretely, since the
Euler-Maruyama scheme has a strong order of convergence of 1/2, the expected error between
a real continuous path and the numerical approximation scales as ∆t1/2 [77]. Furthermore,
we may only expect very accurate estimations for both f and g if the number of samples N is
large. The time series’ length used for SDE estimation depends on the study, but usual length
requirements range from N ≈ 103 [87, 110, 117] to N ≈ 105 [60, 81, 108].

We would like to obtain estimates of f and g given a realization of the process x(t)without
any assumption on their form (non-parametric regression). GPs provide a powerful method
for non-parametric regression and other machine learning tasks [111].

A GP is a collection of random variables indexed by some continuous set (e.g., time or
space), which can be used to define a prior over a function y(ξ), where ξ denotes a generic
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Figure 3.1: Four samples drawn from a GP distribution. The shaded region denotes the 95 %
confidence interval at each input value x.

vector variable belonging to some multidimensional real space RD . A GP assumes that any
finite number of function points [y(ξ1), y(ξ2), . . . , y(ξn)]

T have a joint Gaussian distribution.
Thus, y(ξ) ∼ GP(m(ξ), k(ξ, ξ ′)) is fully specified by a mean function m(ξ) and a covariance
function k(ξ, ξ ′), defined as follows:

m(ξ) = E[y(ξ)] and k(ξ, ξ ′) = E
[ (
y(ξ) − m(ξ)

) (
y(ξ ′) − m(ξ ′)

) ]
.

By selecting a smooth covariance function k(ξ, ξ ′) we can model smooth functions. Further-
more, the kernel determines almost all the properties of the resulting GP. For example, we
can produce periodic processes by using a periodic kernel. Figure 3.1 illustrates the kind of
functions that can be drawn from a GP distribution with a smooth kernel.

Since we are interested in non-parametric regression we shall avoid those kernels that
impose any predetermined form on the final predictor, e.g., linear kernels or polynomial
kernels. When using flexible kernels, GPs do not make strong assumptions about the nature
of the function and, hence, they build their estimates from information derived from the data.
Furthermore, even when lots of observations are used, there may still be some flexibility in
the estimates. Thus, GPs are regarded as non-parametric methods [111, Chapter 1]. It should
also be noted that the number of parameters of a GP model grows with the amount of training
data, which is another feature of non-parametric methods [98, Section 1.4.1].
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Figure 3.2: Four samples drawn from the posterior GP distribution, after several data points
have been observed (dark blue dots). The shaded region denotes the 95 % confidence interval
at each input value x.

In the SDE estimation problem, we shall use two different GPs for modeling our prior
beliefs about the properties of the drift and diffusion terms. After observing the data x,
we shall update our knowledge about them. This updated knowledge is represented by the
posterior distributions p( f ∗ |x) and p(s∗ |x), where f ∗ and s∗ represent the sets that result from
evaluating f (x) and g(x) over a set of inputs, i.e., f ∗ = { f (x) : x ∈ x∗} (a similar expression
applies to g(x)). Figure 3.2 illustrates the result of updating the knowledge about the functions
from Figure 3.1 after observing some data (that we consider as noiseless for simplicity). After
observing the data, we would like to consider only those functions consistent with the acquired
knowledge, i.e., we want to discard all the functions that do not pass through the observed
points. Note that the uncertainty is lower near the observations. The combination of a prior
GP distribution and the data results in a new posterior distribution over the functions. This
intuitive inference procedure lies at the core of our approximation to the SDE estimation
problem.

For modeling the drift function f , we shall use a GP with zero mean as prior. The zero
mean arises from symmetry considerations and our lack of prior knowledge about f (there is
no reason to assume positive values instead of negative ones, and vice versa). On the other
hand, we must ensure that g > 0 (since it plays the role of a variance in Equation (3.4)). Thus,
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3.1. Gaussian Processes for SDE estimation

we assume that g(x) = exp
(
s(x)

)
, where s(x) is a Gaussian process with a constant mean

function m(x) = v. The v parameter is useful to control the scale of the noise process and
possible numerical issues arising from the explosiveness of the exponential transformation.
We shall use general covariance functions k f and ks for both processes, parametrized with the
hyperparameters θ f and θs , respectively. Hence, our complete model is

log p(x | f , s, v) ≈ −
1
2

N∑
i=1

[
(∆x[i] − fi∆t)2

exp
(
si
)
∆t

+ si

]
−

N
2

log(2π∆t), (3.5)

f (x)|θ f ∼ GP
(
0, k f (x, x ′, θ f )

)
,

s(x)|θs ∼ GP
(
v, ks(x, x ′, θs)

)
,

where we have ignored the distribution of p(x[1]) from Equation (3.4) (this is reasonable
when N >> 1). Since f (x) and g(x) are GPs, the discrete vectors f = [ f1, f2, . . . , fN ]T and
s = [s1, s2, . . . , sN ]T must follow multivariate Gaussian distributions:

f | θ f ∼ N (0N, KNN ) s | θs ∼ N (vN, JNN ),

where the entries of the covariance matrices are defined using

[KNN ]i j = k f (x[i], x[ j], θ f ), [JNN ]i j = ks(x[i], x[ j], θs), (3.6)

and where 0N and vN denote vectors of length N with all their entries set to 0 and v,
respectively.

Although in Equations (3.5) and (3.6) we have explicitly written the dependencies on the
hyperparameters (v, θ f and θs) for the sake of completeness, we shall assume, for the moment,
that they are known and fixed. Hence, we shall remove them from the equations in the next
sections to keep the notation uncluttered.

As stated before, our aim is to compute the posteriors of any new set of new function
points f ∗ (from f (x)) and s∗ (from s(x)): p( f ∗ |x) and p(s∗ |x). However, computing the
posterior distribution of a model that involves GPs requires the calculation of inverse matrices,
which usually scales asO(N3) operations [111]. For large N , such as those used in the SDEs’
literature, this approach is prohibitive. In the next section we discuss how to approximate
the GP problem using only m points (m << N), which yields the so-called Sparse Gaussian
Processes (SGP) [109, 111].
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3.2 Approximation with Sparse Gaussian Processes

To overcome the intractable computations that a large dataset requires, many sparse methods
construct an approximation to the GP using a small set of m inducing variables (m << N).
Our inducing variables shall be the function points that result from evaluating f (x) and s(x)

at m pseudo-inputs x̃ = { x̃i}mi=1, i.e., f̃ = { f (x) : x ∈ x̃} and s̃ = {s(x) : x ∈ x̃}. Note
that, although we could have used a set of pseudo-inputs for f (x) and another one for s(x), we
have opted for a single set for the sake of simplicity. The key idea is that, instead of using the
N-dimensional posterior distribution p( f | x) to compute the predictions of the new function
points f ∗, we could “summarize” the information that wemay learn from the data about f (x) in
am-dimensional distribution q f̃ ( f̃ ), and then use it tomake the predictions (a similar reasoning
also applies to s(x)). Since f̃ and s̃ represent the “reference points” that we shall use to make
new predictions, it seems reasonable that x̃ should be spread across the range of values of x.
Hence, in our problem, we shall require any pseudo-input to be contained in [min x,max x]. It
must be noted that the pseudo-inputs x̃ may be seen as hyperparameters of the complete model
subject to optimization. However, for the moment we shall assume that they are known and
fixed. To determine how the pseudo-inputs can be used to make predictions, we shall follow a
similar approach to that introduced in [128], which used a variational formulation for learning
the inducing variables of the SGP. The advantage of this approach is that variational inference
naturally arises in our problem when trying to approximate the posterior distributions p( f |x)

and p(s |x), as it will be discussed later.
Since f̃ (or s̃) and the N points that result from evaluating f (x) (or s(x)) at {x[i]}N

i=1 both
sample the same GP, we assume:[

f

f̃

]
∼ N

([
0N

0m

]
,

[
KNN KNm

KmN Kmm

])
,

[
s

s̃

]
∼ N

([
vN

vm

]
,

[
JNN JNm

JmN Jmm

])
,

where all the submatrices are computed analogously as done in Equation (3.6).
Since they will be used throughout the document, it is useful to write the expressions for

the conditional distributions as follows:

f | f̃ ∼ N (A f̃ , P),

s | s̃ ∼ N (vN + B( s̃ − vm), Q),
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3.2. Approximation with Sparse Gaussian Processes

with

A = KNmK
−1
mm, P = KNN − KNmK

−1
mmKmN,

B = JNmJ
−1
mm, Q = JNN − JNmJ

−1
mmJmN .

(3.7)

Using this augmented model, the posterior distribution of the new function points f ∗, from
f (x), and s∗, from s(x), would be

p( f ∗, s∗ |x) =
∫

p( f ∗, s∗ | f , f̃ , s, s̃)p( f , f̃ , s, s̃ |x)d f d f̃ d sd s̃

=

∫
p( f ∗ | f , f̃ )p(s∗ |s, s̃)p( f , f̃ , s, s̃ |x)d f d f̃ d sd s̃,

(3.8)

Following [128], we assume that f̃ provides complete information for f ∗ in the sense
that p( f ∗ | f̃ , f ) = p( f ∗ | f̃ ). Similarly, we assume p(s∗ | s̃, s) = p(s∗ | s̃). However, these
assumptions do not prevent the computation of the GPs’ posterior p( f , f̃ , s, s̃ |x). To make
the model computationally efficient we shall approximate this distribution by factorizing it in
groups of ( f , f̃ ) and (s, s̃), as it is usually done in the variational inference approach [11, 128]:

p( f , f̃ , s, s̃ |x) ≈ q( f , f̃ , s, s̃) = p( f | f̃ )q f̃ ( f̃ )p(s | s̃)qs̃( s̃), (3.9)

where q f̃ ( f̃ ) and qs̃( s̃) denote unconstrained variational distributions over f̃ and s̃. Under this
assumption, Equation (3.8) becomes

p( f ∗ | x) ≈
∫

p( f ∗ | f̃ )q f̃ ( f̃ )d f̃ ,

p(s∗ | x) ≈
∫

p(s∗ | s̃)qs̃( s̃)d s̃.

Given Equation (3.9), we may try to minimize the following Kullback-Leibler divergence
to calculate the q( f , f̃ , s, s̃) distribution:

KL(q | p) =
∫

q( f , f̃ , s, s̃) log
q( f , f̃ , s, s̃)

p( f , f̃ , s, s̃ |x)
d f d f̃ d sd s̃.

Taking into account the identity

log p(x) = L(q) +KL(q | p),

where we have defined

L(q) =
∫

q( f , f̃ , s, s̃) log
p(x, f , f̃ , s, s̃)

q( f , f̃ , s, s̃)
d f d f̃ d sd s̃,
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we notice that minimizing the Kullback-Leibler divergence with respect to q is equivalent to
maximizing the lower bound of the marginal log-likelihood L(q). Setting ∂L(q)/∂q = 0 we
obtain the optimal solutions [11]:

log q f̃ ( f̃ ) = Eq- f̃

[
log

(
p(x | f , s)p( s̃)p( f̃ )

)]
, (3.10a)

log qs̃( s̃) = Eq-s̃
[
log

(
p(x | f , s)p( s̃)p( f̃ )

)]
, (3.10b)

where we have denoted:

q- f̃ ( f , s, s̃) = p( f | f̃ )p(s | s̃)qs̃( s̃),

q-s̃( f , f̃ , s) = p( f | f̃ )q f̃ ( f̃ )p(s | s̃),

to the density functions that result from ignoring the distributions q f̃ ( f̃ ) and qs̃( s̃) from
q( f , f̃ , s, s̃) (see Equation (3.9)), respectively.

Note that Equations (3.10) are not a closed-form solution of the variational inference
problem, since both equations are coupled. However, they naturally suggest the use of a
coordinate ascent algorithm to find a solution. The coordinate ascent algorithm iterates
between holding q f̃ ( f̃ ) to update qs̃( s̃) using Equation (3.10a) and holding qs̃( s̃) to update
q f̃ ( f̃ ) through Equation (3.10b).

To find the variational distribution for the drift, we start by expanding the expression inside
the expectation operator from Equation (3.10a):

log q f̃ ( f̃ ) =Eq- f̃

[
log

(
p(x | f , s)p( s̃)p( f̃ )

)]
=Eq- f̃ [log p(x | f , s)] + Eq- f̃ [log p( s̃)] + Eq- f̃

[
log p( f̃ )

]
.

Given that the expectation operator does not affect log p( f̃ ) and that when applied to log p( s̃)

results in an expression that does not depend on f̃ , we may write:

log q f̃ ( f̃ ) =Eq- f̃ [log p(x | f , s)] −
1
2
f̃ TK−1

mm f̃ + constant, (3.11)

where we have denoted all terms that do not depend on f̃ as constant. It is convenient to work
with the term constant, given that we can infer its value after identifying the distribution of q f̃ .
In that case, constant corresponds to the normalizing constant required by the distribution q f̃ .
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Expanding the expression inside the expectation operator from Equation (3.11) and joining
the new constants yields

log q f̃ ( f̃ ) = −
1

2∆t

N∑
i=1
Eqs̃ (s̃)p(s |s̃) [exp(−si)]Ep(f | f̃ )

[
(∆xi − ∆t fi)2

]
−

1
2
f̃ TK−1

mm f̃ + constant.

(3.12)

Using Fubini’s rule of integration we may write the first expectation from Equation (3.12) as
follows:

Eqs̃ (s̃)p(s |s̃) [exp(−si)] = Eqs̃
[
Ep(s |s̃) [exp(−si)]

]
. (3.13)

It is possible to demonstrate that if X ∼ N (µ, σ2), then E [exp(−X)] = exp(−µ + σ2/2).
Hence, Equation (3.13) becomes

Eqs̃
[
Ep(s |s̃) [exp(−si)]

]
= Eqs̃

[
exp

(
−[vN + B( s̃ − vm)]i +

Qii

2

)]
= ζi, (3.14)

where we have introduced the new variable ζi and where we have used the definitions of B and
Q from Equation (3.7). Introducing back Equations (3.13) and (3.14) into Equation (3.12) we
finally arrive to

log q f̃ ( f̃ ) = −
1

2∆t

N∑
i=1

ζi · Ep(f | f̃ )
[
(∆xi)2 − 2∆t∆xi fi − (∆t)2 f 2

i

]
−

1
2
f̃ TK−1

mm f̃ + constant

= −
1

2∆t

N∑
i=1

ζi ·
[
(∆xi)2 − 2∆t∆xi[A f̃ ]i − (∆t)2([A f̃ ]2i + Pii)

]
−

1
2
f̃ TK−1

mm f̃ + constant (3.15)

Reordering Equation (3.15) and expressing it in vector form, we finally arrive to

log q f̃ ( f̃ ) = −
1
2
f̃ T

[
K−1
mm + ∆tATdiag(ζ )A

]
f̃ + [ζ � ∆x]T A f̃ + constant, (3.16)

where � denotes the element-by-element multiplication of two vectors and diag(ζ ) is the
diagonal matrix constructed using the values of the vector ζ as main diagonal.
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Equation (3.16) implies that q f̃ ( f̃ ) follows a Gaussian distribution, that we shall write as
follows:

q f̃ ( f̃ ) = N (µ f , F), where

F =
[
K−1
mm + ∆tATdiag(ζ )A

]−1
,

µ f = FAT (ζ � ∆x).

(3.17)

On the other hand, to find the variational distribution for the diffusion we start from
Equation (3.10b). Proceeding similarly as before it is possible to arrive to

log qs̃( s̃) = −
1
2
( s̃ − vm)T J−1

mm( s̃ − vm)

−
1

2∆t

N∑
i=1
Ep(s |s̃) [exp(−si)]Eq f̃ ( f̃ )p(f | f̃ )

[
(∆xi − ∆t fi)2

]
−

1
2

N∑
i=1
Ep(s |s̃) [si] + constant.

The expectation of exp(−si) can be computed as in Equation (3.13), which results in

logqs̃( s̃) =

−
1
2
( s̃ − vm)T J−1

mm( s̃ − vm)

−
1

2∆t

N∑
i=1

exp
(
− [vN + B( s̃ − vm)]i +

Qii

2

)
Eq f̃ ( f̃ )p(f | f̃ )

[
(∆xi − ∆t fi)2

]
−

1
2

N∑
i=1
[B( s̃ − vm)]i + constant.

(3.18)

Using again Fubini’s law, we may write:

Eq f̃ ( f̃ )p(f | f̃ )

[
(∆xi − ∆t fi)2

]
= Eq f̃

[
Ep(f | f̃ )

[
(∆xi − ∆t fi)2

] ]
= Eq f̃

[
∆x2

i − 2∆t∆xi[A f̃ ]i +(∆t)2
(
[A f̃ ]2i + Pii

)]
= ψi,

where we have introduced the definition of the new variable ψi . Introducing ψi into Equa-
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tion (3.18), we finally arrive to

log qs̃( s̃) = −
1

2∆t

N∑
i=1

ψi exp
(
−[vN + B( s̃ − vm)]i +

Qii

2

)
−

1
2
( s̃ − vm)T J−1

mm( s̃ − vm) −
1
2

N∑
i=1
[B( s̃ − vm)]i + constant.

(3.19)

Unlike the distribution for q f̃ ( f̃ ), we cannot identify the distribution that appears in
Equation (3.19). This is not surprising, since the updates in a variational inference problem
are only available in closed-form when using conditionally conjugate distributions. As a
consequence, we are forced to use approximate variational inference.

3.3 Laplace Variational Inference for the Estimation of the Diffu-
sion

Laplace approximations use a Gaussian to approximate intractable density functions. In the
context of variational inference, it has already been considered in [134], in order to handle
non-conjugate models. We shall use this approach to handle Equation (3.19). Let ŝm be the
maximum of the right hand side from Equation (3.19), which may be found using numerical
optimization techniques. In our implementation of the method, we have used the L-BFGS-B
algorithm [17], although any other method could have been used. A Taylor expansion around
ŝm gives

log qs̃( s̃) ≈
1
2
( s̃ − ŝm)

THlog q( ŝm)( s̃ − ŝm) + constant,

where Hlog q( ŝm) is the Hessian matrix of log qs̃( s̃) evaluated at ŝm. In our case, we find that

[Hlog q( ŝm)]kq = −
1

2∆t

N∑
i=1

ψi · exp
(
−v +

Qii

2

)
BikBiq exp (−[B( ŝm − vm)]i) − [J

−1
mm]kq .

Thus, the approximate update for qs̃( s̃) to be used in the coordinate ascent algorithm is a
Gaussian distribution:

qs̃( s̃) ≈ N (µs, S), where

µs = ŝm, S = −[Hlog q( ŝm)]
−1.

(3.20)
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Taking into account that both the distributions of f̃ and s̃ are Gaussians, we can write ψi
and ζi as follows:

ζi = exp
[
−[v + B(µs − vm)]i +

1
2
(Qii + BT

i,.SBi,.)

]
,

ψi =(∆x[i])2 − 2∆t∆x[i][Aµ f ]i + (∆t)2[P + A(µ f µ
T
f + F)AT ]ii,

where Bi,. denotes the i-th row of the B matrix. It must be noted that the values of ψ and
ζ should be updated with each step of the coordinate ascent algorithm. After each step, the
convergence of the algorithm must be assessed by computing the lower bound L(q):

L(q) =Eq [log p(x | f , s)] + Eq f̃

[
log p( f̃ )

]
+ Eqs̃ [log p( s̃)]

− Eq f̃

[
log q f̃ ( f̃ )

]
− Eqs̃ [log qs̃( s̃)]

= −
1
2

N∑
i=1
Eq

[
(∆x[i] − ∆t fi)2

∆t exp (si)
+ si

]
−

N
2

log(2π∆t)

−
1
2
Eq f̃

[
f̃ TK−1

mm f̃
]
−

1
2

log |Kmm | −
m
2

log 2π

−
1
2
Eqs̃

[
( s̃ − vm)T J−1

mm( s̃ − vm)
]
−

1
2

log |Jmm | −
m
2

log 2π

+ Hq f̃

[
f̃
]
+ Hqs̃ [ s̃] ,

(3.21)

where H is the entropy of a distribution. Taking the expectations in Equation (3.21) yields

L(q) = − 1
2∆t

N∑
i=1

ψiζi −
1
2

N∑
i=1
[vN + B(µs − vm)]i −

N
2

log(2π∆t)

−
1
2

[
tr(K−1

mmF) + µ
T
f K
−1
mmµ f

]
−

1
2

log |Kmm | −
m
2

log 2π

−
1
2

[
tr(J−1

mmS) + (µs − vm)T J−1
mm(µs − vm)

]
−

1
2

log |Jmm | −
m
2

log 2π

+
1
2

log
(
(2πe)m |F |

)
+

1
2

log
(
(2πe)m |S |

)
+ constant,

(3.22)

where tr(·) denotes the trace of a matrix. In addition to checking the convergence, computing
the lower bound permits checking the correctness of the implementation since it should always
increase monotonically; and since it is an approximation to the marginal likelihood, it can
be used for Bayesian model selection. For example, we can use the lower bound to select
the best kernel among a set of possible ones or to select the number of inducing points m.
However, there is a subtle detail that must be addressed. Although the variational inference
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framework approximates the posterior distribution, it only does it around one of the local
modes. With m pseudo-inputs, there are m! equivalent modes due to the lack of identifiability
of the pseudo-inputs (the different modes only differ through a relabeling of the x̃ vector). A
simple approximate solution that takes into account the multi-modality is using

L′ ≈ L + log(m!), (3.23)

for model selection [11].

3.4 Hyperparameter Optimization

So far, we have assumed that the “variance” parameter v, the hyperparameters of the covariance
functions, θ f and θs , and the pseudo-inputs x̃ were known and fixed. However, Equation (3.22)
does depend on all these hyperparameters, i.e., L(q) , L(q, v, θ f , θs, x̃) , L(q, θall), with
θall = [v, θ f , θs, x̃]

T . Hence, further maximization of the lower bound could be achieved.
Note that this optimization permits the automatic selection of the inducing-inputs x̃ and the
kernel hyperparameters starting from some reasonable initial values. In our implementation,
we have interleaved the updates of the variational distributions with the numerical optimization
of the lower bound with respect to the hyperparameters (since the analytical optimization is
intractable). This permits the slow adaptation of the hyperparameters to the variational
distributions. The resulting algorithm may be compared with a Generalized Expectation
Maximization (GEM) algorithm [93]. In what we may identify as the E step, the variational
distributions are updated. First, the distribution parameters µ f and F are modified according
to Equation (3.17) using the last values obtained for µs and S to compute any expectation
involving the random variable s̃. These new values are then used to compute the expectations
involving f̃ and updating µs and S through Equation (3.20). In the M step, the lower bound
given by Equation (3.22) is further optimized with respect to the hyperparameters while
keeping the distribution parameters (µ f , F, µs, and S) fixed. Given that finding a maximum
may have a slow convergence, instead of aiming to maximize the lower bound we sought
to change the hyperparameters in a way that increases: L(q, θn+1

all ) > L(q, θnall). This may
be interpreted as a “partial” M step. In our implementation, we just limited the number of
iterations of a L-BFGS-B algorithm [17], although any other numerical method could have
been used. Changing from the maximization of the objective to simply searching for an
increase of it is what makes our method similar to the GEM algorithm instead of the standard
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EM algorithm. The E and M steps are then repeated until the convergence of the lower bound
L.

3.4.1 Hyperparameter Initialization and Kernel Selection

The lower bound in a variational problem is usually a non-convex function and hence, the
proposed GEM-like algorithm is only guaranteed to converge to a local maximum, which can
be sensitive to initialization [12]. Thus, several trials with randomly selected initial values of
the hyperparameters should be run. The final estimate can be selected using Equation (3.23).
However, it should be noted that, experimentally, solutions stacked in a clearly suboptimal
local maxima happen infrequently.

Given that SGPs provide a Bayesian framework, the kernels and the initial values for
their hyperparameters should be selected to model the prior beliefs about the behavior of the
drift and diffusion functions. Choosing a proper kernel requires some knowledge about the
properties of covariance functions [111, Chapter 4] and experience to combine them to model
functions with different kinds of structure [34, Chapter 2]. Reasonable choices commonly used
in the GP literature when no prior information is available are the squared exponential kernel
(or Gaussian kernel) and the rational quadratic kernel [111], although any kernel could be used
within our method. The squared exponential kernel is one of the most widely used covariance
functions in the field of GP regression since it is infinitely differentiable and hence it yields
very smooth processes [111, Chapter 2]. Its main hyperparameter is the length-scale l, i.e., the
variation necessary in the input variable for the function values to appreciably change. On the
other hand, the rational quadratic kernel can be seen as an infinite sum of squared exponential
covariance functions with different length-scales. It has two main hyperparameters, a mean
length-scale l and a parameter controlling the mixing of the different squared exponential
kernels (derived from a Gamma distribution) [111, Chapter 4].

The amplitude of a kernel function can be interpreted as the prior belief about the variance
of the drift/diffusion term. Hence, large amplitudes can be used when no prior information
is available. The selection of the amplitude hyperparameter for the diffusion requires further
discussion since we have to link the amplitude of the kernel modeling s(x), As , with our prior
belief about the variance of g(x) = exp

(
s(x)

)
, Ag. Furthermore, it also requires selecting an

initial value for v. Since a lognormal random variable Z ∼ logN (µ = v, σ2 = As) fulfills

E [Z] = ev+
As
2 , Var [Z] = (eAs − 1)e(2v+As ),
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we find the proper parameters v and As from the prior belief Ag and the data itself, x, using

As = log
(
1 +

Ag

(Var [∆x] /∆t)2

)
,

v = log
(
Var [∆x]
∆t

)
−

As

2
.

(3.24)

As argued in Section 3.2, f̃ and s̃ may be interpreted as “reference points” used to infer
the shape of f (x) and s(x). Hence, we may expect x̃ to be spread across the range of values
of x so that the function shapes can be properly modeled in the whole range of x. It is
also reasonable to assume that the inducing points should be more concentrated in those
regions where f (x) or s(x) change their curvature. However, in our non-parametric approach,
we cannot presume any prior knowledge about these regions. Thus, a simply strategy for
selecting the initial values of the pseudo-inputs would be to uniformly spread x̃ between
min x and max x. It is possible to design another approach based on the inducing points
concentrating in the regions with low uncertainty about the function shape. This is due to the
fact that the inducing points permit reducing the variance around their “region of influence”,
which enables accurately modeling the low-uncertainty true posterior and hence reducing the
Kullback-Leibler divergence. Further evidence about this will be given in Section 3.5. Thus,
we propose to initialize the inducing points with the result of applying the quantile function
to the values {0/(m − 1), 1/(m − 1), ..., (m − 1)/(m − 1)}, since this approach concentrates
the inducing points in the region where more evidence for inferring confident estimates is
available. We will later refer to this approach as the “percentile initialization”. It must be
noted that, when performing several runs of the estimation algorithm, random noise can be
added to each value of x̃ to obtain slightly different starting points. In practical applications,
we also add the restriction that, after adding the noise, the x̃ vector should remain ordered and
that min x̃ ≥ min x and max x̃ ≤ max x.

The selection of the number of inducing points m is the most challenging, since SGP
usually get better approximations to the full GP posterior when using more points (larger L′),
at the cost of greater computational time [111]. When taking into account both factors, there is
not an unique way of defining which is the optimum value of m and hence, the final choice can
be subjective. Rasmussen et al. suggest to perform runs with small values of m and compare
the resulting estimates between them while getting a feeling on how the running time scales
[111]. Since most kernels use a length-scale parameter l we suggest using

m = b(max x −min x)/lc (3.25)
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Table 3.1: Models used for the validation with synthetic data.

Model f (x)
√
g(x)

M1 −(x − 3)
√

2
M2 −(x3 − x) 1
M3 −x3 0.2 + x2

M4 −0.7(x − 0.5)
√

0.7x(1 − x)
M5 −(x − 0.225) 0.5

√
x

M6 −x + sin(3.5x) exp(−x2) 0.431

as a rule of thumb for obtaining an estimate of a proper number of inducing points. This rule
uses only a few inducing points when the function varies very smoothly (large l) and a large
number of them when the function wiggles quickly (small l).

3.5 Validation on synthetic data

To assess the validity of the SGP method, we shall compare its performance with the kernel-
based method [82] and with a version of the orthonormal polynomials method [110] using a
set of simulated SDEs. From now on, we shall refer to these methods as the Kernel Based
Regression (KBR) and the POLY method (since it is based on orthonormal polynomials),
respectively. We have also used these tests to further investigate the impact of the number of
pseudo-inputs m on the estimates.

For the validation, we consider the generic SDE described by Equation (3.1) parametrized
with the drift and diffusion functions summarized in Table 3.1. It must be noted that some
of these tests have been inspired by some well-known models. M1 is the celebrated Ornstein-
Uhlenbeck model, which describes the motion of a Brownian particle in velocity space [84].
M4 is the Jacobi diffusion process, which has an invariant distribution that is uniform on (0, 1)
[66]. A Jacobi-based model was used in [85] to model exchange rates in target zone. M5

is the Cox-Ingersoll-Ross model. Despite it was introduced to model population growth, it
has become popular after its proposal for studying short-term interest rates in finance [23].
Although M2 and M6 do not receive any particular name, they are interesting models since
they are able to generate time series with a bimodal density. Finally, M3 was used to test
dynamical systems with nonlinear drift and diffusion functions and just a single stable point.

For each of these models, 100 time series with a length of 104 samples were generated. The
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Euler-Maruyama scheme with an integration step ∆t = 0.001 was used for the simulations.
The quality of the estimations obtained for the i-th simulation of Model Mj was assessed by
the weighted integrated absolute error:

E(Mj, i) =
∫ ∞

−∞

|Fj(x) − F̂j(x)| · pi j(x)dx,

where Fj can be either fj or gj , F̂j denotes its estimate and pi j(x) is the probability density
function of the i-th simulation of the Mj model. In practice, pi j(x) is approximated using a
kernel density estimate with a Gaussian kernel. The bandwidth of the kernel is selected using
Silverman’s rule of thumb [121, Page 48, Equation 3.31].

To select a proper bandwidth for the KBR method, the selection algorithm described
in [82] was implemented. Regarding the POLY method, the parameter estimation was per-
formed with polynomials of orders R = 1, 2, . . . , 5 and L = 0, 1, . . . , 3 for the drift and the
diffusion terms, respectively. Instead of using the Legendre polynomials as in [110], the
orthonormal polynomials described in [73] were employed for easiness of implementation.
Our tests indicate that the use of these polynomials instead of the Legendre polynomials do
not undermine the expressive power of the method. Three different model selection methods
were tested within the POLY framework: the simulation-based method proposed in [110], a
cross-validation method and a stepwise regression method. Since the latter yielded the best
results, we shall focus on it. The stepwise regression method that we have implemented uses a
bidirectional elimination approach. It starts with no predictors for the drift function. Then, at
each step until convergence, it adds or removes an orthonormal polynomial term by comparing
the Akaike Information Criterion (AIC) improvement that results from each possible decision.
The procedure stops when no more predictors can be added or removed from the model. The
method is then repeated for the diffusion term.

Regarding the SGP method, the same kernel was selected for estimating both the drift and
diffusion terms:

k(ξ, ξ ′, A, θ) = θ0 exp
[
−
θ1
2
‖ξ − ξ ′‖2

]
+ (A − θ0). (3.26)

The kernel k is a linear combination of a squared exponential kernel (first term in the Right-
hand side (RHS)) and a constant kernel (second term in the RHS). Note that the hyperparameter
θ1 determines the characteristic length-scale of the GP (l2 = 1/θ1). The constant covariance
function was included since a constant diffusion term is often used in the literature. It must be
noted that we have not treated the parameter A as an hyperparameter subject to optimization
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(we have not included it into the hyperparameter vector θ). We prefer to keep it fixed so that the
total amplitude of the diagonal of the covariance matrices that result from k always sum up to
A. In this way, A can be interpreted as the prior belief about the variance of the drift/diffusion
term. This eases the comparison between several optimization runs using Equation (3.23),
since all the estimates share the same prior belief about the range in which the dynamic terms
may lie. Note that in order to fulfill k(ξ, ξ ′, A, θ) ∈ [0, A] we must perform a box-constrained
optimization of θ0 (θ0 ∈ [0, A]), which originally motivated the use of L-BFGS-B as the
optimization algorithm.

Since it is usual to get ill-conditioned covariance matrices when working with GPs we
slightly modified Equation (3.26). To regularize the covariance matrices a small value on the
principal diagonals was added. In general, any type of kernel Q can be modified to improve
stability as follows:

Q′(x, x ′, θ, ε) = Q(x, x ′, θ) + εδ(x − x ′), (3.27)

where we did not state the dependencies of Q that are not treated as hyperparameters (e.g.,
A in Equation (3.26)). When using the modified squared exponential kernel k ′, we did not
optimize on the ε parameter to avoid creating large discontinuities in the covariance function.

Since all the models used for testing have very smooth functions and they generate time
series with a range of the order of 1, we may expect good estimates with only a few inducing-
points. For example, the drift function of M2 has three roots at −1, 0 and 1 and, therefore,
a reasonable estimate for its length-scale would belong to [0.5, 1]. A typical trajectory of
M2 would probably lie in the interval x(t) ∈ [−2, 2] and hence, an estimate of the m based
on Equation (3.26) would yield m = 4/0.5 = 8. To verify our intuitions, we have followed
Rasmussen’s approach [111] (see Section 3.4.1). We have calculated the integrated error of
the drift function for M6 on a small subset of simulations while testing how the computation
time scales with m. For this exploratory analysis we used m = 5, 10, 15, 20 and 30. The drift
function for M6 was selected for the test since it is probably the most complex one. Figure 3.3
shows that there are not big differences in the integrated errors for m ≥ 10, whereas the time
per iteration quickly increases.

Based on these exploratory results, we finally run our SGP method on the whole experi-
mental dataset using m = 2, 5, 10 and 15. It should be noted that m << N and hence, we could
have used larger m without compromising the computational tractability of the problem. Also
note that although Figure 3.3 suggests that we could stop searching at m = 10, we have also
included m = 15. This was done to compare both estimates and further investigate the impact
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Figure 3.3: Drift’s integrated error and computational time per iteration depending on m for a
small subset of M6 simulations.

of m in the lower bound. Furthermore, Figure 3.3 was obtained using a small subset of the
data from a single model and, therefore, there may be simulations for which the use of m = 15
may yield much better estimates.

For each value of m, several trials with randomly selected initial values of the hyperpa-
rameters were run. The length-scales of both drift and diffusion kernels were restricted to the
interval l ∈ [0.25, 2], based again on the fact that all the time series have a range of the order
of 1. The value Af was set to 25 (equivalent to a standard deviation of 5) and the initial value
of θ f ,0 was randomly initialized into the interval [0, Af ]. The selection of v and the amplitude
hyperparameter for the diffusion process was made using Equation (3.24) and Ag = 25 for
all the models present in the simulated set. The starting values for the pseudo-inputs were
selected using the percentile initialization. The final model for each of the time series was
selected by using the modified lower bound (Equation (3.23)).

Table 3.2 summarizes the mean values of the integrated errors for all the models from
Table 3.1. The best result for each model is marked in bold (smaller is better). Additionally,
a star (*) points those best-results with statistically significant differences with respect to the
other two methods. The differences between methods were tested using the Nemenyi post-hoc
test [100]. The results in Table 3.2 show that our proposal has a good performance, specially
in the drift estimates, where it performs better than KBR and POLY for all the models but one.
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Table 3.2: Integrated absolute errors of themethodsKBR and POLY and our proposal (denoted
as SGP), using different test models with length N = 104.

Drift estimates Diffusion Estimates
Model KBR POLY SGP KBR POLY SGP

M1 0.6863 0.7896 0.4992* 0.03963 0.03426 0.02684*
M2 0.5073* 0.6267 0.5760 0.01915 0.01878 0.01511*
M3 0.1501 0.2731 0.1232* 0.05293 0.02711 0.007465*
M4 0.1244 0.1519 0.1128* 0.02585 0.002054* 0.0045
M5 0.09035 0.1613 0.08256* 0.001338* 0.001771 0.002667
M6 0.2289 0.2618 0.2256 0.002751 0.002972 0.002323*
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Figure 3.4: Drift and diffusion estimates obtained from a single trajectory of M1.

The results for the diffusions are also good, but the SGP method has the largest mean error for
the M5 model. The reason for this shall be discussed later in this section.

Figures 3.4-3.9 illustrate the kind of estimates that the SGP method yields for the drift and
diffusion terms from a single realization of the simulated models. The shaded area represents
the 95% confidence region. Note that these confidence intervals usually increase when x takes
extreme values. This is due to the fact that the regions where x takes extreme values are only
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Figure 3.5: Drift and diffusion estimates obtained from a single trajectory of M2.
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Figure 3.6: Drift and diffusion estimates obtained from a single trajectory of M3.
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Figure 3.7: Drift and diffusion estimates obtained from a single trajectory of M4.
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Figure 3.8: Drift and diffusion estimates obtained from a single trajectory of M5.
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Figure 3.9: Drift and diffusion estimates obtained from a single trajectory of M6.

visited a few times during any simulated trajectory and hence only a few points are available
for the estimation. Since there is little data at these regions, the priors have strong influence
and the estimates tend to curve towards the prior means. This effect is particularly remarkable
for the drift estimates, which curve towards zero, and the diffusion for M5. This is probably
the reason why the SGP method does not perform as well as expected for the diffusion for M5

and the drift for M2.

Concerning the selected number of pseudo-inputs m, the general trend is that L′ (see
Equation (3.23)) increases with m, as we might have expected (see Section 3.4.1). Hence, all
the selected models use m = 15 inducing points. However, it is not always worth to increase m

in terms of the integrated error versus the running time, which scales asO(2m) due to the use of
the L-BFGS-B algorithm (see Figure 3.3). This can be understood by looking at Figure 3.10.
The figure shows two estimates of the M5’s diffusion term obtained using a different number
of inducing-points, which are also represented in the plot. As noted with Figure 3.10 the width
of the confidence intervals (gray regions), depends on the number of points available for the
estimation, illustrated with the point cloud. The similarity between both estimates over the
high-density region results in an almost identical weighted integrated error. However, the L′
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Figure 3.10: Diffusion estimates obtained using (a) m = 10 and (b) m = 15 inducing points.
The density of the point cloud at the bottom of the figure represents the number of points
available for the estimation at each x.

is larger for m = 15 than for m = 10, mostly because the confidence interval significantly
increases in the low-density region for m = 10. The use of additional inducing-points in the
case m = 15 permits a better control of the estimates and the confidence interval, which results
in a larger L′ although the weighted integrated error is very similar. Hence, the L′-based
selection criteria is not optimal for the purpose of minimizing the weighted integrated error
without wasting computational resources. From these experimental results about the impact
of m in L′ we conclude that the selection of m should not be based solely on the lower bound,
since it monotonically increases with m at a cost of greater computation times. Therefore,
we suggest adopting Rasmussen’s heuristic (Section 3.4.1) in combination with L′, using
Equation (3.25) as an initial guess for the value of m.

3.6 Application to financial data

In this section, we show the application of our method to a real dataset from econophysics
with the aim of illustrating the applicability of SDEs to non-stationary problems and the role
that non-constant diffusions play in complex dynamics. We study the daily fluctuations in the
oil price in the period 1982/01/02-2017/05/30, which results in a time series p[n] of length
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Figure 3.11: Drift and diffusion estimates obtained with the SGP method on the oil price
log-returns.

N ≈ 104 [130]. Following [52], we constructed the daily logarithmic increments of the oil
price x[n] = log p[n + 1]/p[n], where p[n] is the price of the day n, to obtain a stationary
time series. The SGP method was then applied using m = 10 inducing points (randomly
started using the percentile initialization) and two squared exponential kernels. The numerical
stability of the kernels was improved using Equation (3.27). The amplitudes of the kernels
were selected to match a standard deviation of 5 for both the drift and diffusion functions.
The method was run several times with random initial values for the length-scales. The final
estimates selected using the lower bound are shown in Figure 3.11. These estimates are in
good agreement with those reported in [52] (although this work focused in a smaller period).
Similar estimates are also obtained using the KBR and POLY methods.

The drift and diffusion functions shown in Figure 3.11 can be approximated by f̂ (x) ≈ −x

and ĝ(x) ≈ D + γx2, which yields the SDE of a quadratic-noise Ornstein-Uhlenbeck process
[53, Chapter 3]. This process is an illustrative example of the effects that multiplicative
noise may have in the dynamics of a system. The stationary distribution of a quadratic-
noise Ornstein-Uhlenbeck process is a non-standardized Student’s distribution, which is a
heavy-tailed distribution that permits the occurrence of large values in the log-returns series.
Furthermore, this stationary distribution is more closely confined to the origin in comparison
with the standard Ornstein-Uhlenbeck noise, which implies that the stable state is narrower
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in the quadratic case. This is an example of noise-enhanced stability [53, Chapter 3] and
illustrates the importance that the non-parametric estimation of the diffusion may have in the
study of complex dynamics.

3.7 Application to paleoclimatology data

In this Section, we apply our estimation method to a dataset related to paleoclimatology.
Climate records from the Greenland ice cores have played a central role in the study of the
Earth’s past climate in the Northern hemisphere. Among other interesting phenomena, these
records show abrupt rapid climate fluctuations that occurred during the last glacial period,
which ranges from approximately 110 Ky (1 Ky = 1000 years) to 12 Ky before present. These
abrupt climate changes are usually referred to as Dansgaard-Oeschger (DO) events. Although
there seems to be a general agreement that DO events are transitions between two quasi-
stationary states (the glacial or stadial and the interstadial states), the nature of the phenomena
triggering the transitions is still actively debated. It has been argued that the DO events occur
quasi-periodically with a recurrence time of approximately 1.47 Ky [120]. However, recent
studies support that the DO events are probably noise induced [28, 29, 79].

We applied our method to the δ18O record during the last glacial period obtained from
the North Greenland Ice Core Project (NGRIP) [3]. The δ18O is a measure of the ratio of the
stable isotopes oxygen-18 and oxygen-16 which is commonly used to estimate the temperature
at the time that each small section of the ice core was formed. It is measured in “permil” (h,
parts per thousand) and its formula is:

δ18O =
©«

[
18O
16O

]
sample[

18O
16O

]
reference

− 1
ª®®¬ · 1000 h,

where reference defines a well-known isotopic composition.
Figure 3.12 shows the oxygen isotopic composition from the NGRIP ice core. We consid-

ered the period ranging from 70 Ky to 20 Ky before present as in [79], since it is dominated
by the DO events, as it can be clearly observed.

We applied our method using different kernels to illustrate that different covariance func-
tions can be used and combined to create different models, and that Equation (3.23) can be
used to select the best among them. Within our method, testing different kernels is important
because we usually do not have enough information about the drift and diffusion terms to
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Figure 3.12: DO transitions during the last glacial period.

decide among them. Furthermore, the performance of GPs depends almost exclusively on
the suitability of the chosen kernel to capture the features of the modeled function. Consider
the following illustrative example: a function with fast quasi-periodic oscillations superim-
posed on a linear trend. A squared exponential kernel with a large length-scale can capture
the behavior of the linear slope and make reasonable predictions of the trend for unobserved
values, but it won’t be able to model the quick wiggles. On the other hand, a squared expo-
nential kernel with a small length-scale will be able to accurately fit all the data but, since
the distance from the training points rapidly increases, it won’t be able to make good pre-
dictions for unobserved values, not even for the trend. Furthermore, the uncertainty of the
unobserved values will also scale fast. A better covariance choice could make use of a sum
of exponential kernels with different length-scales, which would permit to accurately fit the
data and make good predictions for the trend. More complex kernel choices are also possible.
For a complete example on the impact of the kernel in the modeling capabilities of a GP, see
[111, Chapter 5]. For our illustrative example on the paleoclimate data, we used the kernel
specified in Equation (3.26), a sum of two exponential kernels with different length-scales,
and a rational quadratic kernel. All these kernels were modified adding a small value to their
main diagonals as in Equation (3.27).

For each possible kernel, the method was started with random values for the hyperparam-
eters. The number of the pseudo-inputs was set to m = 15, based on the good results achieved
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Figure 3.13: Best drift and diffusion estimates using the KBR method.

in Section 3.5. The amplitudes of the kernels were selected so that they were compatible with
a standard deviation of 30 for both the drift and diffusion functions. The estimates selected
based on the value of the modified lower bound (Equation (3.23)) are illustrated in Figure 3.14.
The drift term was obtained using a rational squared kernel whereas the diffusion term was
estimated using the kernel from Equation (3.26). Note that, as expected, the drift function
presents two stable points: one corresponding to the stadial state and the other corresponding
to the interstadial state. Integrating the drift function yields the potential function, which
indicates that the stadial state corresponds to a stable state of the system since it has the lowest
energy. On the other hand, the interstadial state corresponds to a metastable state.

The SGP estimate supports the use of a state-dependent diffusion rather than the widely-
used constant term. The use of a state-dependent diffusion for the DO events was first proposed
in [79], who suggested

f (x, θ) =
3∑
i=0

θ j x j ; g(x, θ) =

θ4 if x < θ6

θ5 if x ≥ θ6
, (3.28)

while testing their framework for parametric inference and model selection for SDEs [79].
The authors discussed the model from Equation (3.28) since it is able to accurately predict
the histogram of the DO events, although the final parametrization that results from their
model selection criteria proposes a constant diffusion term. However, our non-parametric
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Figure 3.14: Best drift and diffusion estimates using the SGP method.
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Figure 3.15: Best drift and diffusion estimates using the POLY method.
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methodology suggests that the state dependent diffusion is indeed preferable. Despite it
is possible to approximate the SGP diffusion’s estimate using a step function (as can be
appreciated in Figure 3.14), there exists a linear increasing region for x > −40 that does not
match Krumscheid’s model. To compare the diffusion model in Ref. [79] with the SGP’s
diffusion model, a Lasso estimate [24] was applied to the diffusion term while keeping the
drift term fixed. Lasso penalties are very useful in regression analysis since they are able to set
coefficients to zero, eliminating unnecessary variables. Hence, by using the diffusion term:

g(x, ζ ) =


ζ1 if x < −42

ζ2 if − 42 ≤ x < −40

ζ2 + ζ3(x + 40) if x ≥ −40

,

we can compare the model proposed in [79] (which corresponds with setting ζ3 = 0) and our
estimate. The Lasso estimate provides evidence in favor of the model obtained through our
method, since the ζ3 is not eliminated. Note, however, that this evidence it is not conclusive
since the time series used for the estimates is quite short (N ≈ 103) and there is a lack of points
for x > −39.

We have also used the SGP estimates to compute the distribution of the time between DO
events. 1000 new time series were generated using the Euler-Maruyama scheme. The initial
points were sampled with replacement from the real paleoclimate series. To robustly identify
the DO states, we fitted a Hidden Markov Model (HMM) with three states and Gaussian
response to the real data. The aim of the three states is to clearly identify the stadial state, the
interstadial state and a “transition state”. We identified the states of each of the simulated time
series using this HMM by means of the Viterbi algorithm [132]. The resulting mean time
between DO events was 1.50 Ky, in good agreement with the generally accepted value of 1.47
Ky [120]. However, it must be noted that this value was obtained on basis of a quasi-periodical
model, whereas our value is based on a stochastic model.

Using the KBR (Figure 3.13) and POLY (Figure 3.15) methods result in similar drift
estimates, compared with the SGP one. Furthermore, both diffusion estimates also support
the use of a state-dependent model. However, the SGP estimate provides confidence intervals
based on the Bayesian formalism while the others methods do not. Also, the KBR method
presents an unlikely increment in the diffusion for x < −44. The POLY method approximates
the shape of the state-dependent diffusion using a high order polynomial, which cannot properly
capture the plateau for x < −44. Additionally, the polynomial fit results in negative values for
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x < −45 which make no sense for a diffusion term.

3.8 Discussion

In this chapter, we have presented a non-parametric estimation method for SDEs from densely
observed time series based on GPs. The only assumptions made on the data are stationarity,
Markovianity, and that the sampling period is small enough so that the Euler-Maruyama
discretization holds. From the point of view of the adoption of GPs to the estimation of SDEs,
the main contributions of this chapter are: (1) providing estimates for any type of diffusion
function and (2) proposing a sparse approximation to the true GP posterior that permits to
handle efficiently the typical experimental time series size of N ≈ 103 − 105.

To cope with the computational complexity of calculating the posterior distribution of
the GPs (which scales as O(N3)), we approximate the GPs using the evidence provided
by the data in only a small set of function points: the inducing variables. The inducing
variables are learned byminimizing theKullback-Leibler divergence between the true posterior
GP distribution and the approximated one. The minimization problem is approached using
the standard techniques from the variational inference framework, which usually yields a
coordinate-ascent optimization to approximate the posterior. However, our approach makes
use of a non conjugate model due to the inclusion of the diffusion function, which prevents the
direct use of variational inference methods. To tackle the problem, a Laplace approximation
was used to compute the distribution modeling the diffusion. It must be noted that, although
we have developed our estimation approach bearing in mind the computational challenges
that a large N imposes, our proposal can also handle small time series without any further
adjustment. Also, although the SGP approximation permits handling large experimental time
series, N cannot increase without limit. Variational inference algorithms require a full pass
through the whole dataset for updating the distributions (once each iteration). Thus, the
larger the dataset, the slower our algorithm updates the parameters, and the longer it may take
until convergence (even when using sparse techniques like the proposed one). Furthermore,
variational inference may be unfeasible if the whole dataset does not fit in main memory.
Scaling up variational inference can be done using stochastic gradient optimization, which
yields stochastic variational inference [64]. In stochastic gradient optimization, the parameters
are frequently updated using small batches of data, which usually results in a faster convergence.
This enables the use of variational inference with large datasets, even those that do not fit in
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memory. Since large datasets are increasingly common, the use of this kind of techniques is
considered in Chapter 4.

The performance of the SGP estimates was evaluated using simulated data from different
SDE models and compared with the kernel-based method [82] and the polynomial-based
method [110]. The results show that the SGP approach is able to provide very accurate
estimates, specially for the drift term. The main advantage of the SGP method with respect to
[82] and [110] is that it permits a Bayesian treatment of the estimation problem; this enables
obtaining probabilistic predictions and computing robust confidence intervals. Furthermore,
the prior information about the drift/diffusion is expressed in a function-space view, i.e., the
SGP method permits specifying the prior directly over functions instead of working with
weights of some basis expansion. In our view, this is a more natural way of working with
functions. Another major advantage of the proposed method is its versatility. Although we
have focused on very flexible kernels, any type of kernel (or even combinations of them)
can be used, which may completely change the properties of the posterior estimates. For
example, using polynomial kernels would yield similar estimates to those of [110], but with
the aforementioned advantages of the Bayesian framework and without the possibility of
obtaining negative values for the diffusion (see Section 3.7).

We applied the SGP method to a real problem in econophysics with the aim of illustrating
the importance of non-constant diffusions in the behavior of a system and, hence, the impor-
tance of its non-parametric estimation. This example also emphasizes the applicability of the
SDE framework to non-stationary time series by means of transformations commonly used in
time series analysis (e.g., the log transformation).

The proposed method was also applied to a real paleoclimate time series: the NGRIP
core data showing the DO events occurring during the last glacial period. The SGP method
accurately captures the relevant physical states of the time series (the stadial and interstadial
states) and yields amean transition time betweenDO events that it is close to the accepted value
in the literature (which is calculated under the assumption of a deterministic periodic model).
This demonstrates its ability to capture the behavior of real data with complex dynamics.
Furthermore, the SGP estimates provide evidence supporting a novel state dependent diffusion
model for the DO events. This diffusion model is similar to the step-like function proposed in
[79] for a wide range of the diffusion’s support, but it also adds a linear term for the region
corresponding to the most extreme values of the DO events. These results should be viewed
with caution, since the estimates were made using small amounts of data. Further research to
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assess the physical meaning of the model should be made.
An interesting line of future work would be to generalize the kind of noises driving the

SDE so that fBm could be used as stochastic force. Although it is very appealing since it
would directly connect the present chapter and Chapter 2, we shall not consider it in the present
thesis. On the one hand, the mathematical foundations required to formalize the meaning of
the differential of a dfBm dWH (t) are quite sophisticated [80]. On the other hand, if we
take an intuitive approach and we interpret dWH (t) as a fGn, then the methods developed in
this chapter would not significantly change and therefore, we would not add any meaningful
contribution to the framework already developed.

The following chapter tries to overcome the main restriction that the use of SDEs imposes:
the Markovianity assumption (see the introduction of this chapter). As discussed in Chapter 2,
many natural occurring systems have long-term correlations and therefore, they cannot be
accurately described by a SDE. If the time series under study y[n] only had significant
dependencies with a few temporal lags, say y[n−1] and y[n−2], we could easily overcome the
issue by constructing a new multidimensional time series y[n] = [y[n − 2], y[n − 1], y[n]] and
then proceeding with the method presented in the current chapter. The method developed on
Chapter 4 builds on this intuition that we can transform a non-Markovian time series in a high-
dimensional Markovian representation. However, instead of concatenating lagged samples
and then applying some SDE estimation method, we integrate novel deep learning techniques
with the SGP method of this chapter to simultaneously learn a Markovian representation of
the data and its dynamics.
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CHAPTER 4

ADDRESSING NON-MARKOVIANITY

THROUGH VARIATIONAL AUTOENCODERS

The modeling of complex dynamical systems often relies on the concept of state space or
phase space. In a deterministic system, the phase space consists of all the possible states
of a dynamical system, with each state of the system corresponding to a unique point in
the phase space. The system state at time t contains all the information that is needed to
determine the future system states for any instant > t. For a system that can be mathematically
modeled, the phase space is known from the dynamic equations. However, as discussed
in Chapter 1, the mathematical description of many complex natural systems is usually not
accurate. Furthermore, what we observe in an experimental setting is not a phase space but
a set of time series representing the temporal evolution of different measurable aspects of
the system. This is true for both simple and complex systems. An added difficulty is that,
in some cases, some information may be missing. For example, for very complex systems,
which we may think of as requiring an infinite set of equations for its description, many state
variables cannot be measured directly. An illustrative example of this kind of systems is the
cardiovascular system, which is usually characterized through indirect measurements such as
heart rate variability [50]. Even for simpler dynamical systems, some signals may not be
measured due to limitations in the available instrumentation. These considerations lead to the
important problem of phase space reconstruction from a set of measurements y(t). A simple
idea, following the principles of classical dynamics, would be to use the time series itself and
its derivatives Ûy(t), Üy(t), ..., to build a phase space. This idea is not usually feasible due to the



fact that the measurement noise gets amplified with each derivative and hence even second
order derivatives will look like noise.

The phase space reconstruction problem was theoretically solved by the Takens’ theorem
[124]. Takens’ theorem states that if we are able to observe a single scalar quantity y(t) that
depends on the current state of the system x(t),

y(t) , y(x(t)), (4.1)

then, under quite general conditions, the structure of the multivariate phase space can be
unfolded from this set of scalar measurements by means of the so-called delay embedding. A
delay embedding in d dimensions is formed by using delay coordinates:

y(t) = [y(t), y(t − τ), y(t − 2τ), . . . , y(t − (d − 1)τ)]T ,

where the time distance τ between adjacent coordinates is usually referred to as the time lag
or time delay. Takens’ theorem guarantees that the new geometrical object formed by y(t) is
topologically equivalent to the original phase space if the embedding dimension d is sufficient
large. Specifically, the delay map should use d > 2DF + 1 dimensions, being DF the number
of the active degrees of freedom of the system [118]. According to the Takens’ theorem, the
value of the lag τ is arbitrary. However, in practice the proper choice of τ is important. If τ is
too small the delay vectors will be very similar between them, and therefore they will tend to
cluster around the bisectrix of the phase space. On the other hand, if τ is too large, the delay
vectors will be almost uncorrelated, resulting in a very complex phase space. Several methods
have been proposed to select the time lag τ. A simple yet effective strategy is to select τ as
the first minimum of the autocorrelation function or the average mutual information [71].

Takens’ theorem only guarantees the preservation of the attractor’s topology, i.e., there is
a unique mapping between the original phase space and its reconstruction which is given by a
unique invertible smoothmap. The geometry of the attractor is not necessarily preserved, since
bending and stretching are allowed mappings. Therefore close points on the original attractor
may end up far in the reconstructed phase space. This makes Takens’ theorem sensible to
noise, since small fluctuations could have large effects on the delay reconstruction [137].

Furthermore, although the noise may be small enough so that it can be ignored, the
assumption that the experimental data can be described by a deterministic differential equation
is often unrealistic, as mentioned in Chapter 1. Complex systems usually involve a number of
degrees of freedommuch larger than what an experiment can resolve. In this case, considering
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a dual deterministic-stochastic model in which noise represents the unresolved deterministic
dynamics may be more appropriate than a pure deterministic one.

The stochastic version of an equation of motion is the SDE or Langevin equation, presented
in Chapter 3. The SDE for a d-dimensional state vector x(t) reads

dxi(t) = fi
(
x(t)

)
dt +

d∑
j=1

√
gi j

(
x(t)

)
dWj(t), i = 1, 2, . . . , d (4.2)

where {Wj(t)}dj=1 denote d independent Wiener processes (see Section 3.1). Equation (4.2) is
also concerned with the same issues previously discussed when analyzing experimental data.
That is, the SDE approach only works if the full state vector x(t) can be measured. However,
this is an unrealistic assumption in most experimental settings, where only a few scalar time
series are available.

To cope with the complexity of analyzing time series arising from stochastic systems
Markov process are often used, which naturally incorporate the concept of phase space. In
a Markov process, each state determines the probability of the transitions to the next state.
Indeed, a deterministic system driven by a differential equation may be seen as a special
Markov process in which the future distributions follow a Dirac’s delta distribution. More
generally, a Markov process of order n uniquely determines the transition probabilities given
the n previous states of the Markov process.

Since a SDE generates a Markov process, we could expect that a time series from a single
observable could be described by a Markov process of some order, probably larger than the
order of the complete SDEMarkov process but somewhat related, in analogy with the Takens’
theorem. Unfortunately, this assumption is wrong and no stochastic-embedding theorem exists
[71, Chapter 12]. The reason for this is that scalar time series originated from a continuous
Markov process is not longer Markovian since it has infinite memory [114]. However, in
most cases the memory decays exponentially fast and hence a Markov process can effectively
approximate the time series under study. When using aMarkov process of order n for analyzing
the scalar time series y[k] = y(k · ∆t) the dynamics of the time series are determined by the
transition probabilities p (y[k] | y[k − 1], y[k − 2], . . . , y[k − n]). This may be interpreted as
a embedding where d = n and τ = ∆t, although there is no theorem that guarantees that it will
have nice properties for the analysis of the underlying dynamical system. Note that, in this
context, the new embedding space may be seen as the result of a transformation that is able
to represent a scalar time series as a vector Markov process. Having such a transformation
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will overcome the need of the Markovian property to be able to use the SDE-based techniques
developed in Chapter 3.

In this chapter, we propose a unifying framework to find a proper embedding for both
deterministic and deterministic-stochastic time series and, at the same time, learn a SDE-like
equation describing the dynamics in the embedding space. Although we have introduced the
problem with scalar signals, for the sake of generality, we shall consider vector time series
y[n]. This permits us to study the issue of incomplete experimental data, where only a few of
the time series that define the systems are available (including the case of a single scalar time
series); or, in general, any non-Markovian vector signal.

The method should be able to cope with the possible infinite memory of the original time
series by finding a robust transformation into a new vector space. The new vectors should
comprise all the dynamical information to determine the evolution of the system in a Markov
space, enabling its description by a SDE, which also needs to be discovered. Finally, a new
transformation should permit recovering the original time series. In this way, the resulting
embedding description could also be used as a generative model. That is, it would be possible
to generate new synthetic data by sampling from the probability distribution induced by the
method.

To tackle the problem, we shall use of a Structured Variational Autoencoder (SVAE) [69]
with the SGP-based estimation method presented in Chapter 3. SVAEs enable the combination
of graphical models, which permit to express the Markovian probability distributions of the
dynamics, with deep learning methods able to learn encoding and decoding transformations.

To get an intuitive understanding of SVAEs, we shall first start from a simple pair of neural
networks, and we shall add parts to them step by step. The two networks work as a pair of
encoding and decoding mechanisms. Ideally, the encoding network is able to disentangle the
state vector x(t) from the observed scalar time series y(t) (see Equation (4.1)). In practice,
the true state vector x(t) cannot be exactly recovered from y(t), but the “code” generated
by the encoding network should hold all the relevant dynamic information. To keep things
simple, we will also refer to this code as x(t) (the state vector). From our assumptions, the
original observations y(t) can be recovered from x(t). The decoding network is responsible
for translating x(t) to y(t). The cascade of the encoding and decoding networks is analogous
to the structure of an autoencoding neural network or autoencoder [14, 62]. An autoencoder
is a neural network able to compress the data from the input layer into a short code, and then
reconstruct the input from this representation. This is illustrated in Figure 4.1 using images as
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Encoder

CodeInput Reconstruction

Decoder

Figure 4.1: An image autoencoder. The code acts as a compressed representation of the
input image, from which it is possible to obtain an approximate reconstruction. Note that the
reconstructed image misses some of the details from the input.

data. This short code is usually referred to as latent vector. When applied to time series, this
latent vector will play the role of a phase space vector and therefore, we shall use both terms
interchangeably.

The main limitation of autoencoders is that they cannot generate (at least in a simple way),
new data from what they have learned, since we do not know how to create the codes other
than encoding them from already seen inputs. Furthermore, the encoded vectors may lie in
a non-continuous space, which prevents extrapolation from the learned codes. Variational
Autoencoders (VAEs) solve this issue by forcing the latent vectors to approximately follow
a standardized Gaussian distribution [76, 113]. This simple trick makes creating generative
models easy: all what we have to do is sampling from a standardized Gaussian distribution
and passing the resulting latent vector to the decoder. Note that this procedure highlights a
strong assumption made by VAEs: each observation entering the VAE is independent from
the others.

SVAEs generalize VAEs by permitting the latent space to have a richer structure, usually
described by structured graphical models (hence, its name). In our case, a VAE would permit
forcing the phase space to approximately have Markovian dynamics described by a SDE.
However, we formulate a SVAEs geared for describing SDE-like dynamics in Sections 4.2
and 4.3, with the aim of simplifying the discussion and future extensions of the model.

Both VAEs and SVAEs permit leveraging graphical models (either simple or structured)
with deep learning methods. However, using probabilistic models with highly nonlinear
methods such as neural networks comes with a cost. Inference cannot be done exactly and,
therefore, variational approximations must be used (which motivates the “variational” part of
their name). Section 4.4 describes the variational approximation derived for our model.

The parameters of the model should then be tuned to accurately describe the dynamics
of the data. This learning procedure is complex. The model should not only learn the terms

83



4.1. Background

of a SDE, but it should also learn a encoding transformation able to summarize the relevant
dynamics, and a decoding transformation able to translate the codes from the encoder. Hence,
it is reasonable to assume that we shall need a large amount of data. As noted in Section 3.8,
variational inference requires a full-pass through the whole dataset at each iteration, which
quickly becomes quite inefficient or even intractable for datasets that do not fit in main
memory. A key advantage of the SVAE framework is that it naturally makes use of stochastic
optimization methods to perform variational inference. This technique, known as Stochastic
Variational Inference (SVI) [64], permits effectively scaling up variational inference to large
datasets, since there is no need to keep the whole data in memory and because the updates of
the parameters are more frequent. Section 4.5 describes the learning procedure used to tune
the SVAE.

Finally, the derived SVAE is tested on synthetic data in Section 4.6, and some conclusions
are given in Section 4.7.

Code implementing the methods discussed in this chapter is available at [46]. In this case,
the code is not as mature as in other chapters and therefore it is not distributed as a package,
but as a collection of scripts.

4.1 Background

Although we prefer to introduce concepts and tools as needed, this section provides a brief
overview of the key ideas on which SVAEs are built. Albeit not directly used, an intuitive
understanding of these concepts may help the reader to follow the exposition.

4.1.1 Variational autoencoders

As discussed in the introduction, the Variational Autoencoder (VAE) is a recent model that
leverages generative graphical models and neural network autoencoders through approximate
inference and gradient-based learning methods. Given a dataset {yn}Nn=1, which may consist
on pictures or text, the VAE models each observation yn as if it was generated by some
stochastic latent variable xn. To generate a sample from the model, the VAE draws a sample
x∗ from some prior distribution p(x). Then, a new value y∗ is generated from the conditional
distribution p(y | x = x∗, θ) parametrized by θ. To easily generate samples, p(x) is usually
selected as a standardized Gaussian. On the other hand, to permit rich expressivity, the
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conditional distribution p(y | x, θ) is parametrized through a neural network:

xn ∼ N (xn | 0, I ), for n = 1, 2, . . . , N

yn | xn, θ ∼ N
(
yn | µ(xn, θ),Σ(xn, θ)

)
,

where µ(xn, θ) and Σ(xn, θ) are the outputs of a neural network with weights θ and input xn.
For a shorthand notation, we shall use

µ(xn, θ),Σ(xn, θ) , NNet(xn, θ).

The resulting generative model is shown in Figure 4.2a. Figure 4.2a follows the usual con-
ventions of graphical models. Nodes correspond to random variables whereas edges represent
statistical dependencies between these variables. Figure 4.2a is a directed graphical model (or
Bayesian network) since all the edges are directed. In directed graphical models, an arrow
represents a conditional distribution. The arrow starts at the conditioning variables and ends
at the random variable of the distribution. Therefore, the arrows pointing from xn and θ to
yn are representing the distribution p(yn | xn, θ). The box labelled with N in Figure 4.2a is
called a plate, and indicates that the nodes within the box are repeated N times. Therefore, the
graphical model is representing the distribution

p(y, x, θ) = p(θ)
N∏
n=1

p(xn)p(yn | xn, θ),

where we have noted y = {yn}
N
n=1 and x = {xn}

N
n=1.

Finally, observed variables are noted with a colored gray node (see yn) and deterministic
variables will be denoted with small solid circles (not shown in Figure 4.2a). In an undirected
graphical model, the edges have a slightly different meaning, which will be summarized when
necessary.

Regarding the distribution induced by Figure 4.2a, we would like to approximate the pos-
terior distribution p(x, θ | y) after observing the data. However, exact inference is intractable
and therefore, a variational approximation must be used

p(x, θ | y) ≈ q(θ)q(x | y) = q(θ)
N∏
n=1

q(xn | yn),

where q(·) denotes the variational approximations to the posterior distributions and therefore
q(x | y) ≈ p(x | y) and q(θ) ≈ p(θ | y). This is illustrated in Figure 4.2b. Note that in
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xn
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N
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yn
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(b)

Figure 4.2: (a) VAE generative model and (b) VAE variational approximation.

variational inference q(x | y) is usually noted as q(x), since the information provided by the
data y = {yn}

N
n=1 is absorbed by the parameters of the distribution. However, a key insight

in the VAE is to permit the parameters of the conditional variational distribution q(xn | yn)

to depend on the corresponding data point yn. Note that, with this dependence, there are
only local latent variables, i.e., each datapoint yn has its own latent variable xn. This permits
expressing the variational lower bound as a sumwhere each term depends on a single datapoint.
As before, we can model q(xn | yn) as a Gaussian distribution depending on a neural network
with parameters η,

q(xn | yn) = N
(
xn | µ(yn, η),Σ(yn, η)

)
,

µ(yn, η),Σ(yn, η) = NNet(yn, η).

Note that the variational distribution q(xn | yn) takes on the role of a stochastic encoder,
whereas the p(yn | xn, θ) distribution introduced by the generative model acts as a stochastic
decoder.

4.1.2 Stochastic variational inference and natural gradients

Stochastic Variational Inference (SVI) [64] scales up variational inference for large datasets by
using stochastic natural gradient ascent on a mean field variational approximation. Therefore,
we first review natural gradients before summarizing the key aspects of SVI. We finally review
how to use GP models within the SVI framework.
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Figure 4.3: Two different settings where the Euclidean distance between p0 and p1 is 1. While
the distributions from (a) (left panel) are very different, the distributions from (b) (right panel)
are similar. To assess this, consider how difficult would it be to distinguish if some sample
was drawn from p0 or p1. The distributions have the parameters (a) p0 ∼ N (−0.5, 0.22) and
p1 ∼ N (0.5, 0.22), and (b) p0 ∼ N (−0.5, 1.52) and p1 ∼ N (0.5, 1.52).

Natural gradients

Optimization using gradient descent methods is straightforward. First, we compute the gra-
dients of the objective function with respect to the optimizable parameters. These gradients
represent the direction in which we should update the parameters to obtain the biggest change
in the objective function. Hence, the parameters can be tuned by performing small updates
in the direction of the gradient. However, the definition of small is problem dependent and
the standard metric used by most algorithms, the Euclidean metric, may not be the most
appropriate for measuring the distances between parameters. To illustrate this, let’s consider
two Gaussian distributions p0 and p1 with parameters (µ0, σ

2
0 ) and (µ1, σ

2
1 ). Intuitively, if the

distance between both distributions is small, they should be quite similar. In our example, this
intuition is not always correct when using the Euclidean distance, as illustrated in Figure 4.3.

From Figure 4.3, it is clear that the Euclidean distance between [µ0, σ
2
0 ]

T and [µ1, σ
2
1 ]

T

fails to capture the structure of the objects that underlie these parameters. Therefore, to
compare statistical objects, we must define some sort of statistical distance. For example, one
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of the simplest ones is the symmetrized Kullback-Leibler divergence:

KLsymm(p0 | p1) =
1
2

(
KL(p0 | p1) +KL(p1 | p0)

)
.

The use of the Kullback-Leibler divergence as a distance defines a “distribution space”
with special geometrical properties. To study this properties, the mathematics of Riemannian
geometry must be employed. In Riemannian geometry, the distance between two points x and
x + dx is defined in terms of the Riemannian metric tensor G(x):

‖dx‖2 =
∑
i j

Gi j(x)dxidxj .

The Riemannian metric tensor defines the intrinsic curvature of a particular manifold in the
geometrical space. In our distribution space, a manifold is a family of density functions
p(x | θ) parametrized by θ. The Riemannian metric of this manifold is given by the Fisher
information matrix

Fθ = Ex

[(
∇ log p(x | θ)

) (
∇ log p(x | θ)

)T ]
.

Given a cost function depending on θ, L(θ), the natural gradient tries to move along the
manifold of the distributions p(x | θ) by correcting the gradient of L(θ) according to the
curvature of the manifold itself [2],

∇̃L(θ) , F−1
θ ∇L(θ),

where we have noted the natural gradient with ∇̃L(θ).
As practical corollary, for gradient-based optimization of functions depending on statistical

parameters, we can replace standard gradients with natural gradients. Furthermore, the natural
gradient can be obtained from the standard gradient by multiplying it by the inverse of the
Fisher information matrix.

Stochastic variational inference

SVI permits scaling up variational inference in graphical models of the form

p(θ, x, y) = p(θ)
N∏
n=1

p(yn | xn, θ)p(xn | θ),
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xn yn

θ

N

Figure 4.4: Probabilistic graphical model suited for SVI.

which includes global latent variables θ, local latent variables x = {xn}Nn=1, and the observed
data y = {yn}Nn=1. The graphical representation of the model is given in Figure 4.4. Again, we
would like to approximate the posterior distribution p(θ, x | y)with amean field approximation

p(θ, x | y) ≈ q(θ)q(x) = q(θ)
N∏
n=1

q(xn).

As discussed in Section 3.2, the variational approximation can be found by maximizing
the marginal likelihood lower bound

L = Eq

[
log

p(θ, x, y)
q(θ)q(x)

]
. (4.3)

SVI optimizes Equation (4.3) using stochastic natural gradients with respect to the global
parameters θ. Furthermore, the natural gradients can be computed without calculating the
Fisher matrix if p(xn, yn | θ) is a member of the exponential family and p(θ) is its natural
conjugate pair, also belonging to the exponential family [61, 64, 69]. Any variable z belonging
to the exponential family may be written as

log p(z) = ηT t(z) − log Z(η),

where t(·) and log Z(·) are two functions whose expressions depend on the specific distribution
being considered (for example, whether it is a Gaussian or a Gamma distribution), and η is a
vector of free variables parametrizing the distribution. These terms may seem arbitrary, but
they play a fundamental role in determining the final form of the distribution. The variables
from η are usually referred to as the natural parameters. The function t(·) defines the sufficient
statistics of the distribution. Therefore, for any dataset X , it is possible to estimate the natural
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parameters from t(X ). log Z(·) is referred to as the log-partition function since it is the
logarithm of the normalization factor of the distribution. Furthermore, the moments of the
sufficient statistics can be derived by differentiating the log-partition function [9].

Hence, if we assume that p(xn, yn | θ) and p(θ) are members of the exponential family,
we may write them as

log p(θ) = ηTθ tθ (θ) − log Zθ (ηθ )

log p(xn, yn | θ) = ηTxy txy(xn, yn) − log Zxy(ηxy),

where we have used the subscripts (θ or xy) to distinguish the natural parameters, sufficient
statistics and log-partition functions of both distributions. From the conjugacy assumption it
follows that [9]

tθ (θ) = [ηxy(θ),− log Zxy(ηxy(θ))]
T .

Furthermore, the conjugate exponential family structure implies that the optimal variational
distribution has the same form as the prior, and therefore

log q(θ) = η̃Tθ tθ (θ) − log Zθ (η̃θ ),

for some variational parameter η̃θ .
With these assumptions, the natural gradient of the lower bound L with respect to the

natural parameters can be written in terms of local expected sufficient statistics, without the
need of computing the Fisher matrix [64]:

∇̃η̃θL = ηθ − η̃θ +
N∑
n=1
Eq∗(xn)

[
[txy(xn, yn), 1]T

]
,

where q∗(xn) is a locally optimal mean field factor computed using standard variational
inference given η̃θ .

Stochastic variational inference for GPs

SVI can only be applied to probabilistic models that factorize as illustrated in Figure 4.4.
However, not all graphical models follow the structure imposed by Figure 4.4. For example,
consider the case of a GP regression problem: given {yn}Nn=1 and {xn}Nn=1, determine f (x)

according to the model
yn = f (xn) + εn, n = 1, 2, . . . , N
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fn ynxn

N

Figure 4.5: Graphicalmodel of aGP regression problem. The loop represents the dependencies
between the values of fn = f (xn) induced by the kernel of the GP. The {xn}Nn=1 variables have
been noted with a small solid circle since they are deterministic and known.

with
f (x) ∼ GP(0, k f (x, x

′)) and εn ∼ N (0, σ2).

The resulting graphical model is shown in Figure 4.5. Due to the covariance structure imposed
by the kernel of the GP, all the values of fn = f (xn) depend on each other. This prevents
using the GP regression model within the SVI framework.

Fortunately, by introducing a set of inducing variables to approximate the GPs an appro-
priate model for using SVI can be obtained [61]. The key idea is that the inducing variables
work as the global variables of the SVAE. The resulting graphical model, which is compatible
with the use of SVI, is shown in Figure 4.6.

ynxn

f~

N

Figure 4.6: SGP graphical model with the inducing points f̃ acting as global variables. This
enables the use of SVI in the GP regression problem.

4.2 A generative model based on SDEs

In this section we develop a SVAE based on SDEs and the techniques presented in Chapter 3.
We consider a collection of discrete-time signals obtained from sampling different realizations
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of a continuous process with

y(r)t = y(r)(t · ∆t), r = 1, 2, . . . , R,

t = 1, 2, . . . , N,

being ∆t the sampling period, R the number of different realizations of the process, and
N the total number of samples. To keep the notation uncluttered, we shall eliminate the
superscript (r) from the formulas, as if R = 1, unless necessary. On the other hand, the
different realizations will be represented in the graphical models for completeness. Note
that we have preferred the “vector-like” notation yt instead of y[t]. This is because, in
our exposition, we shall use distributions conditioned on several past values, which can
be easily noted using the vector-like notation. For example, the conditional distribution
p(yt | yt−1, yt−2, · · · y1) = p(y[t] | y[t − 1], y[t − 2], · · · y[1]) will be noted as p(yt | y1:t−1),
which is significantly shorter. Following this notation, we will note the whole time series as
y1:N .

We assume that the observations y1:N are generated from a d-dimensional latent phase
space x1:N . Furthermore, we also assume that this phase space can be modelled as the sampled
version of a process x(t) described by a SDE (see Equation (4.2)). To simplify the phase space,
we assume that the diffusion matrix from Equation (4.2) is diagonal and constant, i.e., gii does
not depend on x(t):

dxi(t) = fi
(
x(t)

)
dt +
√
gii dWi(t) i = 1, 2, . . . , d (4.4)

The constant diffusion assumption may be unexpected given the attention paid to the non-
constant diffusions in Chapter 3. This premise is guided by the existence of a transformation
that is able to leave the diffusion term independent of the state x(t): the so called Lamperti
transformation [96]. The general applicability of the Lamperti transformation is limited by the
fact that it is constructed using the diffusion term. Consider, for example, a one-dimensional
stochastic process given by

dx(t) = f
(
x(t)

)
dt +

√
g
(
x(t)

)
dW(t).

The Lamperti transformation is

z(t) =
∫

1√
g(x)

dx,

which yields a new stochastic process with unit diffusion:

dz(t) = f̃ (z(t))dt + dW(t).
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When the diffusion term is not known, the Lamperti transformation cannot be applied.
However, in our current approach we are building a new phase space x1:N from scratch. Since,
under quite general conditions, the Lamperti transformation guarantees that a representation
with a state independent diffusion exists, we can select this representation as our phase space
without loss of generality.

Equation (4.4) implies that the Euler-Maruyama discretization scheme (see Section 3.1)
results in d equations for each sample xt :

∆xi,t = fi
(
xt

)
∆t +

√
gii(W i

t+1 −W i
t ), i = 1, 2, . . . , d (4.5)

where xi,t denotes the i-th dimension of the t-th sample and therefore ∆xi,t = xi,t+1 − xi,t .
Assuming again that ∆t is small enough (see Section 3.1), the discrete transition probabilities
can be approximated with a single multivariate Gaussian with diagonal covariance matrix:

p(xt+1 |xt, f , g) = N (xt+1 | xt + f (xt )∆t, diag(g)∆t) , (4.6)

where f (x) = [ f1(x), f2(x), . . . , fd(x)]T and g = [g11, g22, . . . , gdd]
T .

Note that, since the phase space is not observed, both f (·) and g are not known and must
be learned. To enable rich dynamics, we parametrize both f (·) and g with a flexible model,
following Chapter 3. However, the assumption of constant diffusion does not only simplify
the probability distribution of the transition probabilities (Equation (4.6)), but it also permits a
simpler model for the diffusion term compared to the GP model developed in Chapter 3. Note
that gii plays the role of the variance in Equation (4.6). Since the Normal-Gamma distribution
is the conjugate prior of a Gaussian distribution with unknownmean and precision, we propose
the use of a GP-Gamma distribution for modeling the drift and diffusion terms. We note

f (x), λ | θ ∼ GP-Gamma( f (x), λ | m(x), k(x, x ′), α, β; θ)

implying that

λ ∼ Γ(λ | shape = α, rate = β),

f (x)|θ, λ ∼ GP
(
m(x),

1
λ

k(x, x ′, θ)
)
.

Therefore, we model the drift and diffusion terms as

gii =
1
λi
, i = 1, 2, . . . , d, (4.7)

fi(x), λi | θi ∼ GP-Gamma( fi(x), λi | 0, ki(x, x ′), αi, βi; θi),
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where we have used a zero prior for the mean of fi for the same symmetry reasons why we
chose it in Section 3.1. For convenience, we shall denote λ = [λ1, λ2, . . . , λd]

T .
Although in principle we could use any kernel ki , some choices are better suited for

deriving the learning procedure of the SVAE, since they permit to exactly integrate some
expressions (see Section 4.5.2). Thus, in this chapter we use squared exponential covariance
functions

ki(x, x ′, θi) = Ai exp
(
−

1
2
(x − x ′)TΛ−1

i (x − x ′)
)
, (4.8)

where Λi = diag([(li1)
2, (li2)

2, . . . , (li
d
)2]) is a diagonal matrix of squared length-scales and

θi = [Ai, diag(Λi)]
T .

It should be noted that the drift and diffusion terms appearing in Equation (4.6) include
the ∆t factor. However, this term can be easily absorbed by the parameters of the GP-Gamma
distribution since

f (x)∆t, λ/∆t ∼ GP-Gamma
(
f (x)∆t, λ/∆t | m(x)∆t, k(x, x ′)∆t, α, β∆t; θ

)
if

f (x), λ ∼ GP-Gamma
(
f (x), λ | m(x), k(x, x ′), α, β; θ

)
.

Therefore, to simplify the notation we shall let the parameters of the GP-Gamma distribution
absorb ∆t, which shall subsequently be ignored in our exposition.

Each sample from the phase space xt generates an observation yt . To enable an accurate
modeling of complex time series, a Gaussian emission model parametrized by a feed-forward
neural network can be used:

yt | xt,D ∼ N (yt | µ(xt,D),Σ(xt,D)) ,

µ(xt,D),Σ(xt,D) = NNet(xt,D). (4.9)

The parameters of the network, D, have been noted with a mnemonic for Decoder. The
generative model that results from these assumptions is shown in Figure 4.7.

SVAEs make use of SVI to handle large datasets and therefore, they can only be applied
to graphical models which have a set of global variables. Figure 4.8 shows an example of a
simple model consistent with the expected SVAE factorization.

Comparing Figures 4.7 and 4.8, it is immediately clear that our graphical model within
the SVAE framework suffers from the same issue as the GP-regression model within the SVI
framework: GPs do not have global variables and do not exhibit the expected factorization.
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Figure 4.7: Generative graphical model for a phase space with SDE-dynamics.

Following [61], the key to tackle this issue is to introduce a set of inducing points in our model
to act as global variables, as introduced in Section 4.1.2. This is convenient since it not only
solves the SVI factorization problem, but it also connects with our formulation in Chapter 3.

4.3 Global variables for SVAE

As in Chapter 3, our inducing variables shall be the function points that result from evaluating
f (x) at m pseudo-inputs X̃ =

{
x̃ j : x̃ j ∈ R

d
}m
j=1. We have noted the inducing points with

uppercase to highlight that they are a collection of points in Rd , and because we can arrange
them as a matrix with m rows and d columns. Although a more general treatment is possible,
for the sake of simplicity we assume that the d GPs modeling the vector function f (·) share
the same set of pseudo-inputs. Since Equation (4.5) decomposes the equations of motion
in d independent equations, we shall study each component of f (·) independently. The i-th
component of the inducing points shall be noted as f̃i = { fi(x̃ j) : x̃ j ∈ X̃

}
, and it is a

vector of length m. From our previous assumptions, it follows that the i-th component of the
inducing-points only depends on the values of the i-th GP. Furthermore, since f̃i is derived
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Figure 4.8: A simple model consistent with the expected SVAE factorization. The dynamics
of the hidden space is parametrized with θ, whereas the observation model is defined by D.

from the same GP as fi(·), the following conditional distribution holds:[
fi(x)

f̃i

]
|λi ∼ N

([
0
0

]
,

1
λi

[
Ki(x, x) Ki(x, X̃)

Ki(X̃, x) Ki(X̃, X̃)

])
i = 1, 2, · · · , d,

where x ∈ Rd , Ki(x, x) is a 1 × 1 matrix, and the matrices Ki(x, X̃), Ki(X̃, x) and Ki(X̃, X̃)

should be read as the 1 × m, m × 1 and m × m matrices that result from using Equation (3.6)
on each of the points belonging to X̃ . Note that fi(·) is a scalar function and it should not be
confused with the i-th dimension of the inducing-points f̃i . The latter is the result of evaluating
fi(·) on a fixed set of points (the pseudo-inputs X̃) and hence, it is possible to interpret it as
a multivariate Gaussian random variable. The distribution of fi(x) conditioned on f̃i and λi
can be written as

fi(x) | f̃i, λi ∼ N
(

fi(x) | Ai(x) f̃i, Pi(x)/λi

)
with

Ai(x) = Ki(x, X̃) · K
−1
i (X̃, X̃),

Pi(x) = Ki(x, x) − Ki(x, X̃) · K
−1
i (X̃, X̃) · Ki(X̃, x). (4.10)

Note that we have used a bold notation for Pi(x) because we compute its value through
multiplications of matrices. However, the final Pi(x) from Equation (4.10) is a 1 × 1 matrix
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and should be read as a scalar.
To “eliminate” theGP from themodel shown in Figure 4.7, we need to replace the role of the

conditional distribution involving the GP, p(x1:N | f (·), λ, θ), by the conditional distribution
involving the inducing-points, p(x1:N | f̃ , λ, θ). Theoretically, the latter distribution could
be obtained by marginalizing f (·). However, in our setting x1:N is latent, which hinders this
option. Even in those cases where the marginalization is possible, the resulting expression
has an unfeasible computational complexity [61]. Instead of computing the exact conditional
distribution, we lower bound it by using Jensen’s inequality:

log p(x1:N | f̃ , λ, θ) = logEp(f | f̃ ,λ,θ) [p(x1:N | f , λ, θ)]

≥ Ep(f | f̃ ,λ,θ) log [p(x1:N | f , λ, θ)]

, log p̃(x1:N | f̃ , λ, θ)

It is possible to calculate log p̃(x1:N | f̃ , λ, θ) using calculations similar to those from
Chapter 3, which yield

log p̃(x1:N | f̃ , λ, θ) = log p(x1) +

N−1∑
t=1

d∑
i=1

N
(
xi,t+1 | xi,t + Ai(xt ) f̃i, λ

−1
i

)
−

1
2

N−1∑
t=1

d∑
i=1

Pi(xt ),

where, just like in Equation (4.10), Pi(xt ) should be read as a scalar. Just like in Chapter 3,
we shall ignore the distribution of the initial point p(x1), since its effect is negligible when N

is large:

log p̃(x1:N | f̃ , λ, θ) ≈
N−1∑
t=1

d∑
i=1

N
(
xi,t+1 | xi,t + Ai(xt ) f̃i, λ

−1
i

)
−

1
2

N−1∑
t=1

d∑
i=1

Pi(xt ).

Following [61], we can use this lower bound in the SGP version of our original generative
model as if it was log p(x1:N | f̃ , λ, θ), resulting in the graphical model shown in Figure 4.9.
Note that the inducing variables work now as the global variables required by the SVAE
approximation. Therefore, we shall consider the graphical model from Figure 4.9 as our
complete generative model, instead of the one shown in Figure 4.7.
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Figure 4.9: Generative model with inducing points.

4.4 Variational approximation of the SDE-based model

As usual with mean field variational inference, we start by breaking the posterior dependencies
of the latent variables to achieve a tractable distribution:

p(x1:N, f̃ , λ, θ,D | y1:N ) ≈ q(x1:N, f̃ , λ, θ,D) = q(x1:N )q( f̃ , λ, θ)q(D). (4.11)

We consider a simple mean field approximation that just factorizes the distributions dis-
tinguishing between the terms directly modeling the drift and diffusion, f̃ and λ, and other
global variables θ:

q( f̃ , λ, θ) = q( f̃ , λ | θ)q(θ) ≈ p( f̃ , λ, θ | y1:N ). (4.12)

Note that the variational distributions of f̃ and λ may be affected by θ. Think for example, in
the length-scale parameters of theGaussian kernels. To simplify the variational approximation,
we take the variational factor q(θ) to be a Dirac distribution q(θ) = δθ∗ (θ). Equation (4.12)
becomes

q( f̃ , λ, θ) = q( f̃ , λ | θ∗)δθ∗ (θ). (4.13)

Since p( f , λ | θ∗)was chosen as a conjugate prior in Equation (4.7), the optimal q( f̃ , λ | θ∗) is
also in the same exponential family and therefore, it is the product of d multivariate Gaussian-
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Gamma distributions:

q( f̃ , λ | θ∗) =
d∏
i=1

NG( f̃i, λi | µi,Σi, αi, βi), where

NG( f̃i, λi | µi,Σi, αi, βi) ,N ( f̃i | µi, λ−1
i Σi) · Γ(λi | shape = αi, rate = βi).

Therefore, to find the variational approximation q( f̃ , λ | θ∗) we only need to deter-
mine which are the optimal parameters of the Gaussian-Gamma distributions. The spe-
cific parametrization used for the Gaussian-Gamma distributions is further discussed in Sec-
tion 4.5.3. For the moment, let us assume that each f̃i has well-defined variational parameters
[µi,Σi, αi, βi]

T .
After studying the variational approach to the SDE model, we can plug in Equation (4.13)

into Equation (4.11) to find the complete variational approximation:

p(x1:N, f̃ , λ, θ,D | y1:N ) ≈ q(x1:N, f̃ , λ, θ,D)

= q(x1:N )q( f̃ , λ, θ)q(D)

= q(x1:N )q( f̃ , λ | θ∗)δθ∗ (θ)q(D).

We can further simplify the variational approximation by assuming that the decoding param-
eters are singular q(D) = δD∗ (D) and therefore:

p(x1:N, f̃ , λ, θ,D | y1:N ) ≈ q(x1:N )q( f̃ , λ | θ∗)δθ∗ (θ)δD∗ (D). (4.14)

A key insight of the SVAE is that Equation (4.14) does not break the dependencies of
x1:N across time, which is intended to permit an accurate and flexible representation of
the dynamics of phase space, whatever it may be [69]. In our case, since the phase space
is modeled through a SDE, the optimal factor graph x1:N is a Markov chain. In order to
capture the relevant dynamical information from y1:N an encoding network is used. This
permits obtaining probabilistic guesses of the latent vector xt from the observation yt . For
the moment, we shall assume that such an encoding network exists, and we postpone the
discussion of the details until Section 4.4.1.

To incorporate both the Markovian dynamics and the encoding information into the vari-
ational distribution q(x1:N ), [69] proposes to parametrize it as a conditional random field. A
conditional random field is a special undirected graphical model. The edges of a undirected
graphical model represent statistical dependencies between the nodes (the random variables).
However, unlike a directed graphical model, they do not represent a conditional distribution,
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but rather the affinity between two variables. This affinity can be quantified by using a factor
ψ(·), which is a non-negative function of the variables connected by an edge. That is, if we
have an edge connecting variables A and B, these variables show some affinity; and this affinity
can be measured using ψ(A, B). Furthermore, in a conditional random field these factors can
be conditioned on input (observed) features. Note that a factor is only a contribution to the
overall joint distribution. Factors can also be associated with complete subgraphs, i.e., a subset
of the graph such that there exist an edge between all pairs of nodes belonging to the subset.
A complete subgraph is also referred to as clique. A maximal clique is a clique such that it is
not possible to include any other node without it ceasing to be a clique. The joint distribution
induced by the Markov field is written in term of the maximal cliques

p(x) =
1
Z

∏
C

ψC(xC),

being xC the set of variables that belong to the clique C.

In our case, the conditional Markov field can be written as

q(x1:N ) , q(x1:N, E) ∝
N−1∏
t=1

ψ(xt, xt+1)

N∏
t=1

ψ(xt, yt, E), (4.15)

where the encoding potentials ψ(xt, yt, E) are Gaussian factors whose means and covariances
depend on yt through an encoder neural network:

ψ(xt, yt, E) ∝ N (xt | µ(yt, E),Σ(yt, E)) ,

µ(yt, E),Σ(yt, E) = NNet(yt, E).

Note that the global variational distribution has been rewritten as q(x1:N, E) to take into
account the dependency on the encoder parameters. The resulting variational approximation
is shown in Figure 4.10.

After selecting an approximation to the true posterior from some tractable family, varia-
tional inference tries to make this approximation as good as possible by reducing the inference
procedure to an optimization problem in which the lower bound of the marginal log-likelihood
L is maximized. Hence, the description of the variational approximation cannot be complete
without giving the lower bound L. Furthermore, to explicitly write the lower bound permits
us to highlight the role of p̃(x1:N | f̃ , λ, θ) in our approximation (see Figure 4.9). We write L
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Figure 4.10: Variational approximation to the generative model.

as follows:

L = Eq(x1:N ,E)q( f̃ ,λ |θ∗)

[
log

(
p̃(y1:N, x1:N, f̃ , λ, θ

∗,D∗)

q(x1:N, E)q( f̃ , λ | θ∗)

)]
= Eq(x1:N ,E)q( f̃ ,λ |θ∗)

[
log

(
p(y1:N | x1:N,D∗)p̃(x1:N | f̃ , λ, θ

∗)p( f̃ , λ | θ∗)

q(x1:N, E)q( f̃ , λ | θ∗)

)]
,
(4.16)

Note that the lower bound L makes use of the approximate conditional distribution p̃(x1:N |

f̃ , λ, θ∗) to follow the graphical model shown in Figure 4.9.
Equation (4.16) can be expanded as follows:

L =Eq(x1:N ,E) [log p(y1:N | x1:N,D∗)] + Eq(x1:N ,E)

[
Eq( f̃ ,λ |θ∗)

[
log p̃(x1:N | f̃ , λ, θ

∗)
] ]

− Eq(x1:N ,E) [log q(x1:N, E)] + Eq( f̃ ,λ |θ∗)

[
log

p( f̃ , λ | θ∗)

q( f̃ , λ | θ∗)

]
=Eq(x1:N ,E) [log p(y1:N | x1:N,D∗)] + Eq(x1:N ,E)

[
Eq( f̃ ,λ |θ∗)

[
log p̃(x1:N | f̃ , λ, θ

∗)
] ]

+ H
(
q(x1:N, E)

)
−KL

(
q( f̃ , λ | θ∗) | p( f̃ , λ | θ∗)

)
. (4.17)

For a better understanding of how the lower bound leads to a proper reconstruction of y1:N ,
we briefly discuss each of the terms of L from Equation (4.17). Using Equation (4.9), the first
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term is just

Eq(x1:N ,E) [log p(y1:N | x1:N,D∗)] = Eq(x1:N ,E)

[
N∑
t=1

logN (yt | µ(xt,D∗),Σ(xt,D∗))
]
,

which is basically measuring the expected reconstruction error (using a squared error) when
decoding the phase space to predict y1:N . Therefore, the first term from Equation (4.17) is
encouraging the decoder to fit as close as possible y1:N , given a variational distribution of the
phase space, x1:N . This term may also influence the phase space itself. For instance, it may
induce the separation of two points that lie close in the phase space, say xt1 and xt2 , if they are
decoded into two samples yt1 and yt2 with very different values.

To gain a deeper insight of the second term from Equation (4.17) we expand the expression
inside the first expectation as follows:

Eq( f̃ ,λ |θ∗)
[
log p̃(x1:N | f̃ , λ, θ

∗)
]
=

N−1∑
t=1

d∑
i=1

logN
(
xi,t+1 | xi,t + Ai(xt )µi, βi/αi

)
−

1
2

N−1∑
t=1

d∑
i=1

[
Pi(xt ) + tr

(
Ai(xt )ΣiA

T
i (xt )

)]
+

N − 1
2

d∑
i=1

[
ψ0(αi) − log(αi)

]
, (4.18)

where ψ0(·) is the digamma function.
The first term from Equation (4.18) is responsible for adjusting {Ai(xt )}

d
i=1 and {µi}di=1

so that xi,t+1 can be accurately predicted using xt . Furthermore, it also fits {βi/αi}di=1
to the variance of the residuals that result from these predictions. The second term from
Equation (4.18) ismore difficult to interpret. The terms {Pi(xt )}

d
i=1 come fromEquation (4.10),

and represent the uncertainty about the predictions of fi(xt ) using the inducing-points f̃ .
Hence, Equation (4.18) encourages the minimization of these predictive uncertainties, which
can be achieved by either tuning the hyperparameters of the kernel or changing the phase
space (Note that {Pi(xt )}

d
i=1 depends on xt ). The term involving

{
tr
(
Ai(xt )ΣiA

T
i (xt )

)}d
i=1

cannot be interpreted in isolation, since it would yield Σi → 0. This does not occur due to
the Kullback-Leibler divergence from Equation (4.17), which tries to keep each of the Σi as
close as possible to its prior value, say Σ(0)i . Therefore, the maximization of L requires a
compromise, which (usually) results in values of Σi comprised between 0 and Σ(0)i . The third
term from Equation (4.18) favours large values of α, since ψ(αi)− log(αi) is strictly increasing
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for αi > 0. This is consistent with the update rule of the Gaussian-Gamma posterior for
Gaussians [97], where the α parameter is increased by n/2 after the observation of n samples.
In our setting, this could be problematic, since we shall repeatedly update the parameters
while learning the distributions. Again, the solution αi → ∞ is avoided by means of the
Kullback-Leibler divergence from Equation (4.17).

Wehave highlighted the key influence of theKullback-Leibler divergence for the parameters
{Σi}

d
i=1 and {αi}

d
i=1, but it also has an effect on the parameters {µi}di=1 and {βi}

d
i=1, forcing a

compromise between fitting the data and the prior distribution.
The last term from Equation (4.17) to be discussed is the entropy term (third term). This

term helps preventing the optimization of L from simply collapsing the whole phase space to
a random walk with small variance. In this case, the second term from Equation (4.17) can
be maximized by letting µi → 0 and βi/αi → 0 in Equation (4.18), although the Kullback-
Leibler term does not permit the latter to be arbitrary small. Note that µi → 0 matches the
drift’s prior, and implies that xt does not provide information for predicting xt+1, i.e., a random
walk. The entropy term precludes the collapse, since it favours a phase space that is as spread
as possible. Furthermore, the first term from Equation (4.17) also penalizes the random walk
collapse, since it would result in a low log-likelihood due to the inability of the phase space
to provide valuable information to reproduce y1:N . Therefore, this term favours phase spaces
having some structure (µi , 0), which enables the prediction of y1:N from its trajectories.

4.4.1 The encoding network

We would like to obtain an encoding network able to discover the state vector xt from yt .
However, it is unrealistic to assume that this encoder will be able to output a good latent vector
from a single measurement yt . What yt lacks is the “context” of the time series (i.e., its
previous samples), from which it would be possible to extract the relevant dynamics.

Since we assume that y1:N has been generated by some high-dimensional stationary
dynamical system, we could build a delay embedding:

Yt =
[
yTt , y

T
t−τ, , . . . , y

T
t−(l−1)τ

]T
for t = 1 + (l − 1)τ, 2 + (l − 1)τ, . . . , N,

where the vectors yt , yt−τ , ..., are concatenated together in a single vector, and where τ and l

should be selected in such a way that the embedding contains all the information required for
determining the future of the time series. In an ideal scenario, we could set τ = 1 and l →∞.
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Figure 4.11: Schematic representation of a Recurrent Neural Network (RNN) (left) and its
unrolled version for N timesteps (right).

What this embedding implies is that, for predicting the next sample of the sequences, all the
past samples of the time series should be used. Hence, this new phase space is redundant and
provides no insight about the dynamics of the system, although it does contain the information
required for predicting the next step of the original time series. Therefore, we could feed a
Multilayer Perceptron (MLP) with Yt (instead of yt ) to calculate the phase state at time t.

A more elegant solution to this issue, that we shall adopt for our proposal, is using a Recur-
rent Neural Network (RNN) as encoder [57]. RNNs are a family of neural networks specialized
in processing sequential data. They are called recurrent because they have feedback loops
that permit each output to depend on all previous computations. A schematic representation
of a RNN is shown in Figure 4.11. In theory, these loops enable RNNs to connect previous
relevant information with the present task, therefore implementing some sort of memory. In
our case, this would permit sequentially processing yt , outputting a new latent state xt after
reading each sample while still taking into account the previous relevant dynamic information
from the previous time steps. Note that the hidden state ht , as named in the RNN literature,
should not be confused with our latent state vector xt , which is the one that will be forced to
follow SDE-like dynamics.

In practice, RNNs may struggle with learning long-term dependencies, when the gap
between the past relevant information and the point where it is needed becomes large [103].
For an intuitive understanding of this fact, consider a simple RNN whose hidden state ht+1

just depends on the previous hidden state ht , completely ignoring the input yt+1:

ht+1 = F(ht, yt,W ) = Wht .
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After k time steps, the resulting state ht+k depends on ht through the matrix W k . If W
has the eigendecompositionW = Vdiag(λ)V−1, it follows that

W k = Vdiag(λ)kV−1.

When k is large, the eigenvalue λi will either explode if its absolute value is greater than
1, or vanish if its absolute value is smaller than 1. The exploding and vanishing gradient
problems are due to the fact that gradients scale according to diag(λ)k when backpropagating.
Vanishing gradients hamper optimizing the RNN through gradient descent, since they are so
small that it is difficult to know in which direction the network weights should move. On
the other hand, exploding gradients result in large updates of the parameters, which can make
learning unstable.

There are several approaches that may help with vanishing and exploding gradients ranging
from simple tricks to fundamental architectural changes in the RNN design. Among the
latter, the Long Short-Term Memory (LSTM) [63] and the Gated Recurrent Unit (GRU) [21]
architectures have become widely used. Although we shall adopt the GRU architecture for
our experiments, the method proposed in this chapter is independent of the specific RNN
architecture. Therefore any other RNN design could be used.

Among the tricks that facilitate learning long-term correlations, gradient clipping and
Truncated Backpropagation Through Time (TBPTT) stand out. Gradient clipping prevents
gradients from blowing up by thresholding them before applying gradient descent. TBPTT
refers to the truncation of the backpropagation of errors to a maximum of N time steps. It is
worth noting that the problem of backpropagating gradients through time will also appear in
our model due to the Markovian dynamics imposed in the latent space.

In practice, TBPTT is usually implemented by splitting the original sequence into sub-
sequences, and only backpropagating on the latter. We briefly review how this affects the
organization of our data, which in Section 4.2 was assumed to consist of R realizations of a
time series of a specific length which we now note as N ′, to discuss the case where the length
of the data does not match the length of TBPTT, N . That is, our data is {y(r)1:N ′}

R
r=1. However,

we can illustrate how TBPTT affects the organization of data considering the case R = 1.
We shall organize the time series y1:N ′ in shorter ones, which are then subsequently split

in segments and grouped to form several batches. Figure 4.12 illustrates how we could arrange
a single time series of length 36: y1:36. The original time series is split in three shorter ones of
length 12, which are identified by a superscript. These time series are then split in segments
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Figure 4.12: Organization of the training data for a time series y1:36. The original samples of
the time series are noted over the circles whereas the final training data is noted inside them.
The time series y1:36 is split into three shorter time series so that the batch size is R = 3. The
length of the shorter time series should be large enough so that they are almost uncorrelated.
TBPTT is then implemented by studying the series in small windows of length N = 3. A batch
size R > 1 provides diversity in the examples for the learning procedure.

of length N = 3, which truncate the backpropagation of errors. During training, a single batch
of data consisting of R = 3 segments of length N = 3 is used to update the weights of the
model. An epoch of the training procedure comprises a full pass over the data, which in the
example from Figure 4.12 consists of 4 batches. Note that the use of a batch size larger than
one (splitting the original time series rather than using it as a whole) provides more diversity
in examples in a single step of the training procedure. A similar arrangement could be used if
we had three time series of length 12 (R = 3) instead of a single time series of length 36.

Having stressed the importance of the data organization to implement TBPTT, we now
focus on the actual learning phase. Althoughwebriefly recovered the notation fromSection 4.2,
in the following sections we shall drop again the superscript from the formulas to keep the
notation uncluttered. Therefore, we will work with the time series y1:N , as if we were using
R = 1 and N = N ′.

4.5 Learning phase

In this section, we explain the learning procedure and derive the stochastic gradients required
to learn the dynamics of our graphical model and the encoding-decoding transformations.
These stochastic gradients can be used to learn the variational distributions by means of a
stochastic optimization routine such as gradient descent, Adam [75] or Adadelta [138].
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The computation of the gradients require to derive the lower bounds from Equation (4.17).
However, the expectation from the term Eq(x1:N ,E) [log p(y1:N | x1:N,D∗)] is impossible to
compute. The dependency on x1:N comes from the fact that the mean and covariance of
p(y1:N | x1:N,D∗) are the output of the decoding network, whose inputs are precisely x1:N .
Computing the expectation through the neural network is unfeasible. Furthermore, although
theoretically possible, the computation of other terms involving expectations with respect to
x1:N are also difficult.

To tackle this issue, a Monte Carlo approximation shall be used. This requires being able
to generate samples from the phase space x(s)1:N where x(s)1:N ∼ q(x1:N, E) ≈ p(x1:N | y1:N ).
The superscript (s) is a number that identifies one of the S samples used for the Monte Carlo
approximation. Note that to be able to differentiate through the Monte Carlo approximation,
the samples should keep the dependencies with the parameters of q(x1:N, E), i.e., E . This can
be achieved through the reparametrization trick [76]. Hence, we shall use the notation for the
samples as x(s)1:N (E). The Monte Carlo approximation reads

L ≈1
S

S∑
s=1

log p
(
y1:N | x

(s)
1:N (E),D

∗
)

+
1
S

S∑
s=1
Eq( f̃ ,λ |θ∗)

[
log p̃

(
x(s)1:N (E) | f̃ , λ, θ

∗
) ]

+ H
(
q(x1:N, E)

)
−KL

(
q( f̃ , λ | θ∗) | p( f̃ , λ | θ∗)

)
.

(4.19)

Having stressed the need of generating samples from the phase space, a complete overview
of the algorithm can be provided. The algorithm for computing the necessary gradients is
summarized, for the case where R = 1, in Algorithm 1 [69]. The algorithm receives as main
argument the input data y1:N . The SVAE tries to transform this time series into a phase
space representation that captures the main dynamical features of the signal. To do that, it
combines information from the encoder, represented with {ψ(xt, yt, E)}Nt=1 in Algorithm 1,
with the “constraints” {ψ(xt, xt+1)}

N−1
t=1 imposed by the fact that the phase space should

be consistent with a system of SDEs. These constraints have to be updated each time the
compute_gradients function is called, since they depend on the variational distribution of
the SDE, q( f̃ , λ | θ∗), which is subject of optimization through the variational parameters η̃. It
must be noted that the η̃ parameters are not selected to be natural parameters of q( f̃ , λ | θ∗) (see
Section 4.5.3). Once the information from the encoder {ψ(xt, yt, E)}Nt=1 and the dynamical
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information {ψ(xt, xt+1)}
N−1
t=1 are available, they are used to draw samples from the phase

space. This can be efficiently done using the so called forward-backward algorithm, grounded
on the Kalman filtering literature [70] (see Section 4.5.2). In a nutshell, the forward-backward
algorithm performs a forward pass through the Markov chain defining the embedding space
to collect all the information from {ψ(xt, yt, E)}Nt=1 and {ψ(xt, xt+1)}

N−1
t=1 . Then, it uses this

information in a backward pass to generate samples of x(s)1:N . Furthermore, it is also possible
to use the backward pass to compute the entropy of x1:N , H

(
q(x1:N, E)

)
. The samples are

used to feed the decoder, which outputs several estimates of the original time series (one for
each sample). The quality of the reconstructions and how well the SDEs describe the phase
space are evaluated with the lower bound term L. To improve it through stochastic gradient
ascent, its gradients with respect to the parameters D∗, E and θ∗, and its natural gradient with
respect to η̃ are computed. Note that, since the η̃ are not natural parameters of the variational
distribution q( f̃ , λ | θ∗), Algorithm 1 has to explicitly compute the Fisher information matrix
to calculate the natural gradients. The reasons for this are detailed in Section 4.5.3.

The remainder of the section provides detailed information about the steps of Algorithm 1
that we have just sketched.

4.5.1 Inference of the variational factors

To compute the variational objectives from Equation (4.19) and to draw samples from the
phase space, we should first infer the optimal variational factors q(x1:N, E). As introduced in
Section 3.2, the optimal variational distribution q(·) in a local mean field approximation can be
found solving ∂L(q)/∂q = 0. The general expression for the solution of this equation requires
taking expectations with respect to the other variational factors [11]. In our case, finding the
variational factor q(x1:N, E) requires fixing the SDE parameters f̃ and λ, the hyperparameters
θ and the encoding potentials {ψ(xt, yt, E)}Nt=1 to compute the expectation:

log q(x1:N, E) ∝ Eq( f̃ ,λ |θ∗)
[
log p(y1:N | x1:N,D∗) + log p̃(x1:N | f̃ , λ, θ

∗)
]
,

which, as a result of our hypothesis about q(x1:N, E) in Equation (4.15), implies that

log q(x1:N, E) ∝ Eq( f̃ ,λ |θ∗)
[
log p̃(x1:N | f̃ , λ, θ

∗)
]
. (4.20)

The expectation in Equation (4.20) results in the conditional Gaussian factors

ψ(xt, xt+1) = N
(
xt+1 | xt + µ̂(xt ), diag(β/α)

)
with

µ̂(xt ) = [A1(xt )µ1, A2(xt )µ2, . . . , Ad(xt )µd]
T ,

(4.21)
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Algorithm 1 SVAE algorithm for SDE-based dynamics.
INPUT: A time series of observations y1:N ; the current variational parameters η̃ and the

hyperparameters θ characterizing the distribution q( f̃ , λ, θ∗); and the current weights of
the encoder and the decoder, E and D∗.

1: function compute_gradients( y1:N , η̃, θ∗, D∗, E)
2: . Get the encoding potentials using the encoding network
3: {ψ(xt, yt, E)}Nt=1 ← NNet(y1:N, E)
4: ({µi,Σi, αi, βi})

d
i=1 = unpack_Gaussian_Gamma_params(η̃)

5: . Update the dynamic potentials
6: for t in 1, 2, . . . , N − 1 do
7: µ̂(xt ) ← [A1(xt )µ1, A2(xt )µ2, . . . , Ad(xt )µd]

T

8: ψ(xt, xt+1) ← N
(
xt+1 | xt + µ̂(xt ), diag(β/α)

)
. Equation (4.21)

9: end for
10: . Draw S samples from q(x1:N, E) and compute its entropy H

(
q(x1:N, E)

)
11: . Use Equations (4.36) and (4.37).
12: (x̂(1)1:N, . . . , x̂

(S)
1:N ), H

(
q(x1:N, E)

)
←

(
forward_backward( {ψ(xt, xt+1)}

N−1
t=1 , {ψ(xt, yt, E)}

N
t=1 ))

13: . The likelihood of the real observations y1:N is determined by the decoding network
14: for s in 1, 2, . . . , S do
15: log p

(
y1:N | x̂

(s)
1:N,D

∗
)
← logN (y1:N | NNet(x̂(s)1:N,D

∗) )
16: end for
17: . Use Equation (4.19)
18: L← 1

S

∑S
s=1 log p

(
y1:N | x

(s)
1:N,D

∗
)
+ 1

S

∑S
s=1 Eq( f̃ ,λ |θ∗)

[
log p̃

(
x(s)1:N | f̃ , λ, θ

∗
) ]

+H
(
q(x1:N, E)

)
−KL

(
q( f̃ , λ | θ∗) | p( f̃ , λ | θ∗)

)
19: . The Fisher matrix is necessary to compute the natural gradients of η̃
20: F(η̃) ← fisher_matrix(η̃) . Equation (4.39)
21: return ∇D∗,E,θ∗L, F(η̃)−1∇η̃L,
22: end function

where the Ai has been defined in Equation (4.10), µi is the i-th mean of the i-th Gaussian-
Gamma distribution from q( f̃ , λ | θ∗), and α and β are the result of stacking the {αi}di=1 and
{βi}

d
i=1 parameters from this same distribution. According to Equation (4.21), we approximate

the dynamics of the system as if it evolved following

xt+1 = xt + µ̂(xt ) + wt,

wt ∼ N
(
0, diag(β/α)

)
,

(4.22)

where wt plays the role of a random noise.
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Next section details how we can draw samples from the variational distribution x1:N .

4.5.2 Sampling from the phase space

Our variational model is almost analogous tomany state spacemodels. Therefore, it is possible
to reuse common methodologies from the dynamical systems literature to try to address the
problem of drawing samples of x1:N . Tomake the exposition clearer and closer to the literature,
during this section we will explicitly note the variational distribution q(xt ) as q(xt | y1:N ),
highlighting the fact that q(xt ) ≈ p(xt | y1:N ).

Filtering and smoothing are key concepts in state space models. Filtering refers to the
computation of the belief state q(xt | y1:t ), i.e., computing the distribution of xt given all the
evidence available until that moment. Smoothing means to compute q(xt | y1:N ), given all the
evidence. Using these concepts, it is also possible to draw samples from our phase space. The
key insight to efficiently draw samples from the Markov chain is to perform a forward filtering
pass collecting information about the observations from the past; and then perform sampling
in the backward pass, using at each node the conditional node potentials and combining them
with the information from the past of the node [98, Section 17.4.3].

However, closed form solutions of the filtering and smoothing problems are only available
for a few special cases. For example, the well-known Kalman filter provides the exact
distributions for linear Gaussian systems [70].

Many different approximate methods have been suggested for nonlinear cases without
exact solutions. In GP dynamical systems, where the transition dynamics are governed by
Gaussian Processes (GPs), several approximations based on moment matching have been
proposed [19, 26, 27]. The key idea is to approximate the predictive distributions of the
dynamic model with a Gaussian distribution which has the very same mean and covariance
matrix as the true predictive distribution.

To perform filtering and sampling in our graphical model we resort to message passing
algorithms. In this sort of algorithms, inference is expressed in terms of the propagation of
local messages throughout the graph [11]. Specifically, if we convert our graphical model
into an undirected graph (by dropping the direction of the arrows in Figure 4.10), we see that
the resulting graph is a tree. Therefore, we will use the generalization of message passing
algorithms to trees, the so-called sum-product algorithm [11]. Figure 4.13 illustrates the
messages that node x2 needs to receive in order to compute itsmarginal distribution. Intuitively,
messages m1→2(x2) and m3→2(x2) summarize the relevant information about the past and the
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...

...

y1 y2 y3 yN 

x1 x2 x3 xN 

m1→2(x2) m3→2(x2)

 ψ(x2, y2, E)

Figure 4.13: A fragment of the message passing in the graphical model illustrating the
messages that involve the node x2. The information from the nodes is combined with the node
potential ψ(x2, y2, E) to yield the marginal posterior distribution of x2.

future, respectively. This information is combined with the node potential ψ(x2, y2, E) to
compute the proper posterior. Note that the node potential ψ(x2, y2, E) provides the code
learned by the encoding network.

The messages are defined as follows:

mi→j(x j) =

∫
ψ(xi, x j)ψ(xi, yi, E)mk→i(xi)dxi,

where k denotes the other neighbor of node i (apart from j).

Forward pass

In this section, we focus on the forward pass and therefore the messages can be written as

mt→t+1(xt+1) =

∫
ψ(xt, xt+1)ψ(xt, yt, E)mt−1→t (xt )dxt .

Instead of focusing in the message mt→t+1(xt+1), we study a slightly different type of
message,

α(xt ) = mt−1→t (xt )ψ(xt, yt, E), (4.23)

since it allows to connect our presentation with the forward pass of HMMs and Kalman filters.
The new messages can also be computed recursively:

α(xt+1) = ψ(xt+1, yt+1, E)
∫

ψ(xt, xt+1)α(xt )dxt . (4.24)
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The formulation of the message passing algorithm in terms of α(xt ) is advantageous due
to its interpretation. From its definition in Equation (4.23), it is clear that α(xt ) combines the
information from the past with the code from the encoding network, and therefore

α(xt ) ∝ q(xt | y1:t ).

Taking this into account, we can interpret Equation (4.24) as follows. First, we predict the
following step using the current available information:

q(xt+1 | y1:t ) ∝

∫
ψ(xt, xt+1)α(xt )dxt . (4.25)

Then, we measure the observed yt+1 and we consequently update the belief state

q(xt+1 | y1:t+1) ∝ α(xt+1) = ψ(xt+1, yt+1, E)
∫

ψ(xt, xt+1)α(xt )dxt︸                        ︷︷                        ︸
Predict︸                                              ︷︷                                              ︸

Update

(4.26)

This process is known as the predict-update cycle in the literature of HMMs and Kalman
filters, which permits to compute the messages in closed form. However, the integral from
Equation (4.26) cannot be computed exactly, due to the nonlinear terms from ψ(xt, xt+1)

(see Equation (4.20)). To tackle the issue, we use moment matching to compute a Gaussian
approximation to the predicted distribution q(xt+1 | y1:t ) [19, 26, 27]. We proceed by
induction, assuming that the message α(xt ) is Gaussian. That is:

q(xt | y1:t ) ∝ α(xt ) = N (xt | µx
t |t,Σ

x
t |t ), (4.27)

where we have used the standard notation of Kalman filters to denote the parameters of the
Gaussian. In general, µx

t |τ
denotes the mean of xt conditioned on the observation of y1:τ . In

Equation (4.27) we have the particular case τ = t. This notation also applies to the covariance
parameter.

The mean of Equation (4.25) is

Ext+1

[
xt+1 | y1:t

]
= Ext,wt

[
xt + µ̂(xt ) + wt | y1:t

]
= Ext

[
xt + µ̂(xt ) | y1:t

]
= µt |t + Ext

[
µ̂(xt ) | y1:t

]
,

(4.28)
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where we have plugged in the variational dynamics described by Equation (4.22), we have used
thatwt has zeromean, andwe have substitutedExt [xt | y1:t ] by its definition in Equation (4.27).
The a-th component of the remaining expectation can be expanded as follows:

Ext
[
µ̂(xt ) | y1:t

]
a
=

∫
Ka(xt, X̃)K

−1
a (X̃, X̃)µaα(xt )dxt

=

∫ ∑
i

Ka(xt, x̃i)β
a
i (X̃)α(xt )dxt

=
∑
i

βa
i (X̃)

∫
Ka(xt, x̃i)α(xt )dxt,

(4.29)

where βa(X̃) = K−1
a (X̃, X̃)µa. For the squared exponential kernel, the integral has a closed

form solution [26]. Therefore, Equation (4.29) can be written as

Ext
[
µ̂(xt ) | y1:t

]
a
= βa(X̃)Tγa(X̃),

with γa(X̃) = [γa1 (X̃), γ
a
2 (X̃), . . . γ

a
m(X̃)]

T , where

γai (X̃) =

∫
Ka(xt, x̃i)α(xt )dxt =Aa | Σ

x
t |tΛ

−1
a + I |−1/2 ×

exp
(
−

1
2
(µt |t − x̃i)

T (Σx
t |t + Λa)

−1(µt |t − x̃i)
)
,

and where Λa and Aa are parameters of the squared exponential kernel, as defined in Equa-
tion (4.8).

We also have to match the other moment defining a Gaussian distribution: the covariance.
Using the law of total covariance, the required covariance can be expressed as

Cov
[
(xt+1)a, (xt+1)b | y1:t

]
=Ext−1

[
Cov[(xt+1)a, (xt+1)b | xt ]

��� y1:t

]
+ Cov

[
E[(xt+1)a | xt ],E[(xt+1)b | xt ]

��� y1:t

]
.

(4.30)

Substituting the variational dynamics (Equation (4.22)) into Equation (4.30) and rearranging
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results in

Cov
[
(xt+1)a, (xt+1)b | y1:t

]
=δab

βa
αa
+ Cov

[
(xt )a, (xt )b

��� y1:t

]
+ Cov

[
(xt )a, µ̂b(xt )

��� y1:t

]
+ Cov

[
µ̂a(xt ), (xt )b

��� y1:t

]
+ Cov

[
µ̂a(xt ), µ̂b(xt )

��� y1:t

]
=δab

βa
αa
+ (Σx

t |t )a,b

+ Cov
[
(xt )a, µ̂b(xt )

��� y1:t

]
+ Cov

[
µ̂a(xt ), (xt )b

��� y1:t

]
+ Cov

[
µ̂a(xt ), µ̂b(xt )

��� y1:t

]
,

(4.31)

where we have used that Cov[(wt )a, (wt )b] = δab
βa
αa

. Solving Equation (4.31) requires finding
E

[
(xt )a, µ̂b(xt )

�� y1:t
]
and E

[
µ̂a(xt ), µ̂b(xt )

�� y1:t
]
.

Using similar manipulations to those used in Equation (4.28), we find that

E
[
(xt )a, µ̂b(xt )

��� y1:t

]
=

∑
i

βb
i (X̃)γ

b
i (X̃)Γ

i,b,t
a , (4.32)

being

Γi,b,t =
(
Λ−1

b + (Σ
x
t |t )
−1

)−1 (
Λ−1

b x̃i + (Σ
x
t |t )
−1µt |t )

)
.

Finally, and following [27], we find

E
[
µ̂a(xt ), µ̂b(xt )

��� y1:t

]
= βa(X̃)Qa,bβb(X̃), (4.33)

where the entries of Qa,b are given by

Qa,b
ij =AaAb | (Λ

−1
a + Λ

−1
b )(Σ

x
t |t )
−1 + I |−1/2

× exp
(
−

1
2
(x̃i − x̃ j)

T (Λa + Λb)
−1(x̃i − x̃ j)

)
× exp

(
−

1
2
( z̃i j − µ

x
t |t )

T ((Λ−1
a + Λ

−1
b )
−1 + Σx

t |t )
−1( z̃i j − µ

x
t |t )

)
with

z̃i j = Λb(Λa + Λb)
−1 x̃i + Λa(Λa + Λb)

−1 x̃ j .

Using Equations (4.32) and (4.33), the covariance given by Equation (4.31) is completely
determined. Therefore, the moment matching step required to approximate the predicted
distribution q(xt+1 | y1:t ) (Equation (4.25)) with a Gaussian is complete.
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y1 y2 y3 yN 

x1 x2 x3 ˆ

ˆ

xN 

m1→2(x2) 

 ψ(x2, y2, E)

ψ(x2, x3)

Figure 4.14: Backward sampling in our graphical model. We have noted x̂3 to highlight that
it has been observed. Note that the measurement of xN (or any other node xt , with t > 3)
does not affect the situation, since the observation of x̂3 makes the graphs on its left and right
conditionally independent [11, Chapter 8].

The update step from Equation (4.26) is straightforward, since ψ(xt+1, yt+1, E) is Gaussian
and the integral has been approximated by another Gaussian factor as a result of the moment
matching. Therefore, we can use the multiplication of Gaussians formula (see, for example,
[106, Equation (371)]) to compute the final message α(xt+1):

N
(
x | µ1,Σ1

)
N

(
x | µ2,Σ2

)
= N

(
µ1 | µ2,Σ1 + Σ2

)
N

(
x | µc,Σc

)
with

Σc =
(
Σ
−1
1 + Σ

−1
2

)−1

µc = Σc
(
Σ
−1
1 µ1 + Σ

−1
2 µ2

)
.

Backward sampling

After computing the filtered distributions q(xt | y1:t ) in the forward pass, we can sample
from q(xt | y1:N ) in a backward pass. We can start by sampling xN , since q(xN | y1:N ) ∝

α(xN ), and then proceed to sample xN−1 given that its neighbor from the future is known.
Figure 4.14 illustrates themessages and node potentials involved in determining the distribution
q(xt |xt+1, y1:N ) (for the case t = 2, although the context is generic). Note that the product
of mt−1→t (xt ) and ψ(xt, yt, E) is the message α(xt ), which can be calculated as described in
Section 4.5.2. The node potential ψ(xt, x̂t+1) is also known, but it is not a valid Gaussian term
on xt , which prevents us to directly compute q(xt |xt+1, y1:N ) as

q(xt |xt+1, y1:N ) ∝ α(xt )ψ(xt, x̂t+1).
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AGaussian approximation to theψ(xt, x̂t+1) node potential could be obtained by linearizing
Equation (4.22) and solving for xt . Another approach which does not require linearization was
proposed in [27]. The key insight is to compute a Gaussian approximation to the conditional
q(xt | xt+1, yt ) using the moment matching techniques from Section 4.5.2. This conditional
distribution is computed in two steps. First, a Gaussian approximation to the joint distribution
q(xt, xt+1 | yt ) is computed. Second, the well-known rules of computing conditionals from a
joint Gaussian distribution are applied.

The approximate joint distribution reads

q(xt, xt+1 | yt ) = N
([

µx
t |t

µx
t+1 |t

]
,

[
Σx
t |t

Σx
t,t+1 |t

(Σx
t,t+1 |t )

T Σx
t+1 |t

])
. (4.34)

The components µx
t |t

and Σx
t |t

are the mean and covariance of the Gaussian approximation
to α(xt ) and therefore are known from the forward pass. On the other hand, the components
µx
t+1 |t and Σ

x
t+1 |t are also known, since they are computed during the prediction step. Hence,

the only unknown component from Equation (4.34) is Σx
t,t+1 |t . The cross-covariance can be

determined in term of expectations:

Σx
t,t+1 |t = E

[
xt xt+1 | y1:t

]
− µx

t |t (µ
x
t+1 |t )

T . (4.35)

Substituting Equation (4.22) into Equation (4.35), we find that

Σx
t,t+1 |t = E

[
xt (xt + µ̂(xt ) + wt ) | y1:t

]
− µx

t |tµ
x
t+1 |t

= Σx
t |t + µ

x
t |t (µ

x
t |t )

T + E
[
xt µ̂(xt ) | y1:t

]
− µx

t |t (µ
x
t+1 |t )

T ,

which concludes the calculation, since the expression for E
[
xt µ̂(xt ) | y1:t

]
is given by

Equation (4.32).
From the joint distribution, it is straightforward to compute the conditional distribution

q(xt | xt+1, yt ) = N (xt | mt,Ct ), with

mt = µ
x
t |t + Σ

x
t,t+1 |t

(
Σx
t+1 |t

)−1 (
xt+1 − µ

x
t+1 |t

)
Ct = Σ

x
t |t − Σ

x
t,t+1 |t

(
Σx
t+1 |t

)−1 (
Σx
t,t+1 |t

)T
,

(4.36)

from which we can sample xt given xt+1. By chaining these samples in the backward pass, a
path in the embedding space x̂(s)1:N is obtained.
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It must be noted that the backward and forward passes can also be used to compute an
approximation to the entropy of q(x1:N, E), that appears in the lower bound expression in
Equation (4.17). The entropy of a d-dimensional multivariate Gaussian distribution is

H
(
N (m,C)

)
=

d
2

log(2πe) +
1
2

log | C |=
d
2
+ log Z(C),

where log Z(C) is the partition function ofN (m,C). It can be demonstrated that the partition
function of the Markov chain log Z is just the sum of the partition functions {Zt }

N
t=1 that

normalize q(x1 | y1:N ) and the conditional distributions {q(xt | x̂t+1, y1:N )}
T
t=2 in each node:

log Z(C) =
N∑
t=1

log Zt (Ct ), (4.37)

where Ct denotes the covariance matrix of either q(x1 | y1:N ) or some conditional Gaussian
distribution q(xt | x̂t+1, y1:N ) from Equation (4.36). Therefore, the global log Z partition
function can be easily computed during the backward pass of the message passing algorithm.

4.5.3 Parameter optimization

After sampling the phase space, a Monte Carlo approximation to the lower bound L (see
Equation (4.19)) can be computed. The gradients of the neural networks and the hyperpa-
rameters θ can be calculated using automatic differentiation tools, such as Theano [127],
TensorFlow [125] or PyTorch [104]. In our implementation, we have used TensorFlow.

Instead of using standard gradients, the SVAE algorithm exploits the exponential family
conjugacy structure to efficiently compute natural gradients with respect to the variational
parameters without the need to calculate the Fisher matrix. Regarding the Gaussian-Gamma
distributions q( f̃ , λ | θ∗), the natural parameters of the i-th Gaussian-Gamma are

η(i) =
[
η
(i)
0 , η

(i)
1 , η

(i)
2 , η

(i)
3

]T
=

[
αi −

1
2
,−βi −

µTi Σ
−1
i µi

2
,Σ−1

i µi,Vec

(
−
Σ−1
i

2

)]T
,

where Vec(·) vectorizes the matrix −Σ
−1
i

2 so that the natural parameters can be expressed as a
vector. We note with η the result of concatenating, element-wise, all the {η(i)}d

i=1 into a single
vector. Similarly, we may use α, β, µ and Σ to refer to all the parameters modeling the d drift
and diffusion terms.

Although theoretically the trajectories following the natural gradient are independent of
the parametrization, this property does not always hold in practical applications [92]. In our
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case, we empirically found that using the natural parameters for parametrizing the Gaussian-
Gamma distributions resulted in a slow convergence. We interpret this observation as follows.
The SVAE must learn a phase space which summarizes all the relevant information of the
dynamics of y1:N , according to a description consistent with a system of SDEs. To do so,
the encoder needs to shape the phase space so that the dynamics can be easily described by
means of this set of SDEs. At the beginning of the inference, the encoder and the SDEs will
be quite inaccurate, resulting in changes in both the neural network and the SDE distribution
parameters. We noticed that the changes on the distribution parameters decrease the squared
error (between∆x1:N−1 and the drift estimate) at a very slow pace, whichwe attribute to the fact
that both η2 and η3 affect the means µ and that both parameters are changed at once. The issue
is specially severe if the length-scales of the kernels are large because the covariance matrix
strongly correlates all the inducing-points, which therefore cannot evolve independently.

To avoid this convergence issue we sought a parametrization which permitted each param-
eter to evolve independently from the others. This also applied to the α and β parameters. As
detailed below, our parametrization uses the terms {αi/βi}di=1, which appear at Equation (4.21)
determining the variance of the phase space. We parametrize the q( f̃ , λ | θ∗) distribution
using the parameters

η̃
(i)
0 = logαi η̃

(i)
1 = log

αi
βi
,

η̃(i)2 = µi, η̃(i)3 = Σ
−1
i

(4.38)

with

η̃(i) =
[
η̃
(i)
0 , η̃

(i)
1 , η̃

(i)
2 ,Vec

(
η̃(i)3

)]T
,

where we have vectorized η̃(i)3 (a matrix) so that the final parameter η̃(i) is a vector. Finally, we
note with η̃ the vector that results from concatenating, element-wise, all the {η̃(i)}d

i=1. Note
that, from the definition of the parameters, it follows that q( f̃ , λ | θ∗) only depends on η̃.
Therefore, we shall write

q( f̃ , λ | θ∗) , q( f̃ , λ | η̃).

Since the computation of the Fisher matrix that results from this parametrization of η̃ is
quite tedious, we left the details to Appendix C. However, we show here the final matrix for
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completeness:

F
(
η̃(i)

)
=


α2
i ψ
(1)(αi) − αi 0 0 0

0 αi 0 0
0 0 αi

βi
Σ−1
i 0

0 0 0 F
η̃(i)3 ,η̃

(i)
3


, (4.39)

where ψ(1)(·) is the trigamma function and F
η̃(i)3 ,η̃

(i)
3

is the Fisher submatrix for the vectorized

parameter Vec
(
η̃(i)3

)
. Instead of dealing with the vectorized version of η̃(i)3 , it is easier to

express F
η̃(i)3 ,η̃

(i)
3

as relating the entries from the matrix itself. The element from F
η̃(i)3 ,η̃

(i)
3

relating
[
η̃(i)3

]
jk
= Σ−1

jk
with

[
η̃(i)3

]
lm
= Σ−1

lm
can be written as

F
[η̃(i)3 ] jk,[η̃

(i)
3 ]lm

=
1
4

[
ΣjlΣkm + ΣjmΣkl

]
.

The main advantage of our parametrization is that we can directly update αi/βi and µi ,
avoiding the convergence problem described in the previous paragraphs. The main disadvan-
tage is that this parametrization requires the calculation of the Fisher matrix (Equation (4.39))
in each update of the SVAE. Therefore, each individual iteration of the algorithmwill be slower
than the natural parameters version. However, we find that our version usually converges to
better representations. A second option that we did not test is briefly mentioned in [61]. This
work introduces SVI for GP models, and derives the required natural gradients in terms of the
natural parameters. They empirically found that holding the variational covariance parameters
fixed in the first iterations of the inference improved the convergence, although they did not
try to discuss the causes. We suppose that an interpretation similar to that given for our
observations may also apply here, although further research is needed to verify this.

4.5.4 Inducing points initialization

The initialization of the pseudo-inputs can be problematic. The strategy used in Chapter 3
(creating a uniform grid using the minimum and maximum values of x1:N , see Section 3.4.1)
cannot be directly used since x1:N is a latent space. Furthermore, the boundaries of x1:N

change at a rapid pace during the first epochs of training, preventing the pseudo-inputs to keep
track of the changes in the phase space structure. This may cause the pseudo-inputs to get
stuck in positions far from x1:N , precluding the proper learning of the dynamics.
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The issue of the fast evolution of the phase space can be alleviated by removing the bias
nodes from the latest layers of the encoder. However, it does not guarantee that the problem is
completely avoided.

A practical approach to tackle the issue consists on running a few epochs of the training
algorithm, letting the encoder and the decoder change their weights, but without optimizing
neither the inducing-points nor the η̃ parameters of the SDE. We empirically found that 1-
5 epochs are usually enough to overcome the “quick evolution” stage of the encoder. After
finding some representative sample of the phase space, the inducing-points can be subsequently
safely initialized.

Let us assume that some representative trajectory of the phase space is available: x̃1:N ′ .
Note that the length of this trajectory is not necessarily N . We consider two simple approaches
for the initialization of the pseudo-inputs: a grid based approach and a K-means-based ap-
proach. In the grid based approach a uniformly spaced grid defined by the most extreme values
of each dimension of the phase space is created. For example, it is possible to use(

min(x̃i,1:N ′),max(x̃i,1:N ′)
)

for i = 1, 2, . . . , d

to define the grid limits, although more complex selection criteria can be employed to take into
account possible fast expansions of the phase space. Although simple, the main disadvantage
of the grid based approach is that some inducing points may be placed in areas of the phase
space that are not frequently visited. This issue is particularly important if the phase space is
structured as a low-dimensional manifold. An alternative approach that takes greater account
of the phase space structure is to select the inducing points as the centroids that result from
applying the K-means algorithm on x̃1:N ′ [89].

To make both approximations work, some representative trajectory x̃1:N ′ must be found.
Since the pseudo-inputs initialization is only done once, it is possible to use all the available
data {y(r)1:N }

R
r=1 for building x̃1:N ′ without compromising the efficiency of the algorithm. In

principle, there seem to be two options. Either using the outputs of the encoder to build x̃1:N ′ ,
or using the forward-backward algorithm to draw samples with the same aim. However, at
this point the η̃ parameters have not been optimized (see the beginning of this section), and
sampling from the phase space does not make sense since the dynamics have not yet been
learned. Therefore, the encoder outputs must be used to find some representative sample of
the phase space. To do so, the data {y(r)1:N }

R
r=1 feeds the encoder, and the resulting outputs

serve as building blocks for x̃1:N ′ . For the K-means-based approach, the encoder’s mean can
act as x̃1:N ′ . Alternatively, and to prevent against future expansions of the phase space, some
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Chapter 4. Addressing non-Markovianity through variational autoencoders

dilation operations can also be applied to x̃1:N ′ before using the K-means algorithm. Note that
the encoded mean will be organized in batches (just like, {y(r)1:N }

R
r=1), but it is straightforward

to arrange them as a single trajectory.

For the grid based approach, the encoder’s covariance must be taken into account to
compute proper extreme values. However, the covariances can be approximated as being
diagonal, since the pseudo-inputs are just being initialized, and there is no point in performing
detailed calculations. Then, a lower bound and an upper bound for each dimension are
computed using the three-sigma rule for Gaussian distributions:(

min(mi,1:N ′ − 3si,1:N ′),max(mi,1:N ′ + 3si,1:N ′)
)

for i = 1, 2, . . . , d,

being m1:N ′ and s1:N ′ the means and standard deviations that can be derived from arranging
the encoder’s outputs as a single trajectory and treating the covariances as diagonal matrices.

4.6 Validation on synthetic data

In this section, we apply our model to a variety of experiments, to illustrate its potential to
capture salient features of experimental time series. The experiments scale in complexity, and
each of them tries to illustrate different aspects of the algorithm.

The experiments were run sharing a similar experimental setup. The encoder consisted of
two stacked RNNs with GRUs of size 50, followed by a MLP. The MLP used 50 hidden units
with Exponential Linear Unit (ELU) activations [22], and a linear output layer without bias (to
help with the fast evolution of the phase space issue, see Section 4.5.4). Another MLP with
a similar configuration was used as decoder, although bias units where included in its output
layer. Despite the decoder being quite small, we also applied dropout with rate 0.25 to prevent
it from “memorizing” the phase space [122]. This was key to prevent the phase space from
collapsing to a random-walk-like phase space. In this case, the phase space closely matches
the prior and there is no incentive to learn more detailed dynamics since the encoder-decoder
pair can overfit the data.

The lower boundwas optimized using stochastic gradient descentwithNesterovmomentum
[101]. The learning rate was set to 10−4, whereas the momentum term was set to 0.9.
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4.6. Validation on synthetic data

4.6.1 Excited oscillator

We begin with a simple example in which a deterministic one-dimensional time series y1:N

oscillates while slowly increasing its amplitude. Specifically, we generated several realizations
of the model using

y
(r)
t =

√
2 exp (0.002 · t) cos

(
2π
100

t + φ(r)
)
, r = 1, 2, . . . , 120

t = 1, 2, . . . , 500

where φ(r) is a random sample generated from a uniform distribution U(0, 2π). Note that this is
the only source of randomness of the system. Although our first experiment, this time series is
quite challenging for our model since the diffusion term should vanish to fit the deterministic
equation generating the data (β/α → 0). However, the smoothness of the signal makes it
easier to interpret the figures from the SVAE algorithm, making it a good illustrative example.

Besides the SVAE architecture described at the beginning of the section, the following
parameters were selected. We used d = 2 as dimension of the phase space; the size of
the graph was set to N = 150, effectively limiting the TBPTT to 150 steps; the Monte Carlo
approximations were calculated using S = 10 samples; and 16 inducing points were employed,
initializing them after 5 epochs of training with the grid based approach (see below for more
details).

Figures 4.15 and 4.16 show a small segment of the phase space and the reconstructed
time series at several stages of the training procedure. Note that the phase space shows
the representation generated by the encoding network and the dynamics fitted by the SDE
(Figure 4.15). A single illustrative sample of x1:N is also shown. On the other hand, the
reconstructed time series shown in Figure 4.16 is the output of the decoding network when fed
with the same sample shown in the phase space.

It is illustrative to briefly discuss the training evolution, for a better understanding of the
algorithm. We run 5 epochs without optimizing the inducing points and the SDE parameters,
as described in Section 4.5.4. After these 5 epochs, the inducing points are initialized using
the grid based approach, taking also into consideration the possible expansion of the phase
space. This is shown in Figure 4.15a, with the inducing-points represented as reddish dots.
At this point, the encoding network has already found a nice phase space that captures the
key features of the time series y1:N : the oscillatory pattern and the slow change in amplitude.
This results in the spiral pattern shown in Figure 4.15a. However, this representation has large
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Figure 4.15: Evolution of the phase space after (a) 35 iterations, (b) 131 iterations, (c)
323 iterations, (d) 1163 iterations, (e) 1847 iterations, and (f) 4247 iterations. The mean
and covariances of the encoding network are represented by orange lines and gray ellipses,
respectively. A single illustrative sample of the phase space is shown with a dashed blue
line. Finally, the inducing-inputs are represented with reddish points, whereas the drift is
represented by arrows.
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Figure 4.16: Reconstructed time series for the excited oscillator model output by the decoding
network after (a) 35 iterations, (b) 131 iterations, (c) 323 iterations, (d) 1163 iterations, (e)
1847 iterations, and (f) 4247 iterations. The shaded areas represent the 95% confidence
interval of the reconstructed time series.
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uncertainty, as shown by the large gray ellipses, which represent the covariances fitted by the
encoder. The dynamics of the phase space, represented with arrows, have not yet been fitted.
The large uncertainty in the encoding and the poor fit of the drift results in samples of x1:N

that, although following the mean trajectory generated by the encoding network, are quite
noisy (dashed blue line). The fact that the node potentials ψ(xt, yt, E) “force” these samples
to follow the mean of the encoding network permits the dynamics of the phase space to be
slowly learned (Figures 4.15a-4.15d).

The samples from the phase space feed the decoding network, which estimates the original
time series y1:N . Since the inputs are noisy, the outputs are also noisy, resulting in a large
error term (see Figure 4.16a). However, they approximately follow the changes on y1:N .

Driven by the feedback of the decoding network, the encoding network quickly decreases
the covariances, generating smoother samples (Figures 4.15b-4.15d). The decoding network
encourages these smooth samples since the smoother its inputs are, the smoother its outputs
will be; which permits the network to better fit the observed signal y1:N (Figures 4.16b-4.16d).
At the end of the training (Figures 4.15e-4.15f), the samples are very smooth, following closely
the mean generated by the encoding network. At the same time, this permits the decoding
network to generate an accurate representation of the original signal (Figures 4.16e and 4.16f).
Note that the confidence intervals generated by the decoding network decrease around the
linear regions of y1:N , while increasing around the extreme values of the signal. This is
reasonable, since the linear regions can be easily fitted, whereas the extreme values are subject
to a larger uncertainty, due to the fact that the signal slowly changes its amplitude.

At the same time the dynamics are learned, the inducing-inputs move around the phase
space, clustering around the mean generated by the encoding network.

Note that, even at the beginning of the training, when the dynamics are poorly fitted, the
reconstructed series shown in Figure 4.16 are quite accurate. Therefore, Figure 4.16 should
not be interpreted as a definitive proof of the ability of the SVAE to capture the dynamics of the
input time series, but as demonstration that the encoder and decoder networks work properly.
To confirm that the dynamics have been properly learned, we generate predictions from the
SDE SVAE given some small segment of data as input. This is illustrated in Figure 4.17. To
generate a new prediction, the encoder creates a trajectory in phase space for the given time
series (colored in black, up to the vertical line). When the encoder runs out of input data,
the last state of the encoded trajectory is used as the initial state of the fitted SDE. The SDE
generates a new trajectory without the intervention of the encoder. Finally, the decoder maps

125



4.6. Validation on synthetic data

the new phase space trajectories to the original space, generating new synthetic time series.
Note that, since the SDE is a stochastic model, different trajectories may result from the same
initial state. In Figure 4.17, two different synthetic time series are shown (in dashed-orange
and solid-blue). Since the original time series is deterministic, the differences between both
samples are small, although noticeable. Despite this, the synthetic time series accurately
reproduce the input signal.
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Figure 4.17: Predictions from a SDE SVAE for the excited oscillator. The top panel shows the
real data. The bottom panel shows two different predictions (in dashed-orange and solid-blue)
generated by the SVAE given the data up to the vertical line, which is colored in black.

Figure 4.17 proves the ability of the SDE SVAE to effectively model the excited oscillator
time series, despite the fact of using a SDE to fit a purely deterministic pattern. Nevertheless,
it is worth illustrating some limitations of the SDE SVAE. Figure 4.18 illustrates a case where
the SDE SVAE fails to reproduce the input series, despite it seems similar to Figure 4.17. The
key difference is the amplitude of the series (see the range of the y-axis in Figure 4.17 and
in Figure 4.18). The encoder has not been exposed to anything similar before (in terms of
amplitude) and therefore, it outputs a code that falls into an unexplored region of the phase
space. In this region, the predictions for the drift function are equal to the prior since no data
has changed our prior beliefs. Therefore, the drift is zero and there is no evolution in phase
space, which results in the decoder outputting a constant value. It is worth noting that there
might be some evolution in phase space if the diffusion term was not negligible, in which case
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the dynamics in phase space would follow a random walk. However, we have assumed the
diffusion term to be constant, as noted in Equation (4.4). Since the diffusion term is close to
zero to fit the deterministic input series, it follows that it must be close to zero in all the phase
space, preventing the random walk to occur.
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Figure 4.18: Predictions from a SDE SVAE for an unseen series from an excited oscillator.

4.6.2 Lotka-Volterra

In this section, we apply our SDE-based SVAE to a nonlinear stochastic model inspired by
the Lotka-Volterra equations. These equations are used in the study of biological ecosystems
to describe the interactions between a predator and its prey. The Lotka-Volterra differential
equations are usually written as

dx1(t)
dt

= αx1(t) − βx1(t)x2(t),

dx2(t)
dt

= −γx2(t) + δx1(t)x2(t), (4.40)

where x1 and x2 are the prey and predator populations, respectively. In the absence of predators,
the rate of change of the prey population is proportional to the current population. This is
represented by the αx1(t) term in Equation (4.40) and results in an exponential growth. In
the presence of predators, the prey is killed at a rate that is proportional to the rate at which
predators and prey encounter each other, represented by the term βx1(t)x2(t) in Equation (4.40).
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Therefore, the equation for the prey population indicates that the rate of change of the prey’s
population depends on its reproduction rate minus the rate at which it is hunted. Note that, in
this model, the prey does not die of natural causes.

On the other hand, the rate of change of the predator population also depends on the
interactions between the predator and the prey δx1(t)x2(t). Note that this term is similar to the
predation rate βx1(t)x2(t). However, the term now contributes to the growth of the predator
population (positive sign), and a different constant δ is used since the rate of growth of the
predator population does not necessarily match the rate at which it hunts the prey. Finally,
γx2(t) represents the rate of population decrease due to natural death. The assumption is that
the greater the population size is, the greater the number of deaths (per unit time). This leads to
an exponential decay in absence of prey. Therefore, the growth rate of the predator population
is determined by the rate at which it hunts the prey minus its death rate.

Equation (4.40) is a deterministic model, but it is possible to modify it to take into account
stochastic events. The diffusion approximation of the Lotka-Volterra model, described in
[4, 15], is given by[

dx1(t)

dx2(t)

]
=

[
αx1(t) − βx1(t)x2(t)

βx1(t)x2(t) − γx2(t)

]
dt

+

[
αx1(t) + βx1(t)x2(t) −βx1(t)x2(t)

−βx1(t)x2(t) βx1(t)x2(t) + γx2(t)

]1/2 [
dW1(t)

dW2(t)

]
.

(4.41)

Note that, in this limit, δ becomes β, in contrast with Equation (4.40). Furthermore, the
diffusion matrix is diagonal and non-constant, which appears to contradict our SDE model.
In Section 4.1.2 we argued for the generality of the proposal on the basis of the existence of
the Lamperti transformation, which is able to diagonalize diffusion matrices under relatively
wide conditions. Since a representation with a state independent diffusion is guaranteed to
exist, what we are implicitly assuming is that the encoder network will be able to discover such
representation. In this experiment we test this assumption.

We analyse the case α = 30, β = 0.2 and γ = 18. An illustrative portion of the real phase
space of the system is shown in Figure 4.19. The SVAE was fed with 10 different realizations
of the x1(t) signal, sampled at 1000 Hz. Each of the resulting input signals, y(r)t = x(r)1 (t/1000)
had a length of 600 samples.

We used d = 2 for the phase space dimension, N = 150 for the size of the graphical model,
S = 10 for the number of Monte Carlo samples, and m = 10 for the number of inducing points.
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Figure 4.19: Lotka-Volterra phase space.

As in Section 4.6.1, Figures 4.20 and 4.21 show a small segment of the phase space and
the corresponding reconstruction at different stages of the training. Figure 4.20a shows the
phase space at the very beginning of the procedure, illustrating the need for the pseudo-inputs
initialization methods discussed in Section 4.5.4. At this point, the positions of the inducing
points were not initialized and therefore they are randomly distributed around (0, 0). Although
it might appear that their positions are reasonably good, the encoder’s mean quickly expands
(compare the magnitudes of the axes in Figures 4.20a and 4.20b), leaving the inducing points
behind. To address this, the pseudo-inputs are initialized after 5 epochs, as discussed in
Section 4.5.4. In this example, we used the K-means approach, illustrated in Figure 4.20b. To
prevent against possible expansions of the phase space, the K-means algorithm was applied
to dilated versions of the illustrative trajectory. The later evolution of the inducing points in
phase space is purely due to gradient descent optimization.

Note that, in Figure 4.20a, the mean output by the encoder captures the oscillatory nature
of the Lotka-Volterra model. However, the samples cannot reproduce this pattern since the
dynamics have not been learned yet. At the same time, the SDE is fitted using the phase
space samples. This seems like a vicious circle preventing the model to learn any dynamics
or drawing plausible phase space samples. The mechanism whereby it is indeed possible
to learn the SDE was already sketched in Section 4.6.1, but it is worth emphasizing it due
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Figure 4.20: Evolution of the Lotka-Volterra phase space after (a) 1 iteration, (b) 5 iterations,
(c) 10 iterations, (d) 25 iterations, (e) 55 iterations, and (f) 450 iterations. The mean and
covariances of the encoding network are represented by orange lines and gray ellipses, respec-
tively. A single illustrative sample of the phase space is shown with a dashed blue line. Finally,
the inducing-inputs are represented with reddish points, whereas the drift is represented by
arrows.
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Figure 4.21: Reconstructed Lotka-Volterra time series output by the decoding network after
(a) 1 iteration, (b) 5 iterations, (c) 10 iterations, (d) 25 iterations, (e) 55 iterations, and (f) 450
iterations. The shaded areas represent the 95% confidence interval of the reconstructed time
series.
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to its importance. The encoder-decoder pair quickly discovers that the lower bound can be
increased by reducing the mean squared error of the reconstructed time series. To do so, it
can increase the accuracy of the reconstructions, or it can also reduce the variability of the
samples being drawn, which reduces the variance of the mean squared error. To reduce the
variability of the samples, the encoder just decreases the encoder’s covariances (compare the
ellipses from Figures 4.20a and 4.20b). When the covariances of the encoder have a small
magnitude, the forwards-backward algorithm forces the samples to tightly follow the encoder’s
mean resulting in more accurate reconstructions. Besides increasing the lower bound, there
is another important side effect: the dynamics of the phase space can be learned. Note the
improvement in the learned dynamics from Figure 4.20b to Figure 4.20c. When the dynamics
are accurate enough, the samples are able to complete a full cycle in the phase space, which
results in accurate reconstructions of the time series, as shown in Figures 4.20d and 4.21d. The
optimization continues polishing the phase space and reducing the variance of the predictions,
as illustrated in Figures 4.20e-4.20f and Figures 4.21e-4.21f, respectively.

Figure 4.22 shows predictions generated by a trained SDE SVAE, illustrating its capability
to generate credible synthetic signals with similar dynamical properties to those of the training
data.

4.6.3 Stochastic Lorenz system

In this section, we study a simple stochastic version of the Lorenz system, a simplified model
for the study of atmospheric convection:

dx1 =
(
σ(x2 − x)

)
dt + dW1(t),

dx2 =
(
x1(ρ − x3) − x2

)
dt + dW2(t),

dx3 = (x1x2 − βx3)dt + dW3(t).

We focused on the values σ = 10, β = 8/3, ρ = 28 which, in the case of the deterministic
model, are known to produce chaotic behavior. A representative portion of the real phase
space of the system is shown in Figure 4.23. The SVAE was fed with 7 different realizations of
the x1(t) signal, sampled at 1000 Hz. Each of the resulting input signals, y(r)t = x(r)1 (t/1000)
had a length of 5000 samples.

We used d = 3 for the phase space dimension, N = 150 for the size of the graphical model,
S = 10 for the number of Monte Carlo samples, and m = 10 for the number of inducing points.
The inducing points were initialized after 5 epochs of training using the K-means approach.
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Figure 4.22: Predictions from a SDE SVAE for the Lotka-Volterra model. The top panel
shows real data generated from Equation (4.41). Since the model is stochastic, two different
realizations are shown. The bottom panel shows two synthetic time series generated by the
SVAE given the data up to the vertical line, colored in black.
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Figure 4.23: Stochastic Lorenz phase space.
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Figures 4.24 and 4.25 show a small segment of the phase space and the corresponding
reconstruction at various points of training. Note that, since the phase space is tridimensional,
we do not show the vector field representing the drift. Figure 4.24 shows that the SDE SVAE
is able to construct a phase space that resembles the original one (see Figure 4.23). Moreover,
Figure 4.24 illustrates how the decoder is able to accurately reconstruct the input time series
from the codes output by the encoder.

Finally, Figure 4.26 shows predictions generated by a trained SDE SVAE. In this case,
the synthetic signals can be easily differentiated from the original ones. Although the main
dynamical features have been captured, the generated time series seem like smoothed versions
of true realizations of the stochastic Lorenz process.

4.7 Discussion

In this chapter, we have introduced a SVAE that is able to simultaneously learn a Markovian
representation of the data and its dynamics, that are assumed to be described by a SDE.
To this end, the SDE SVAE combines graphical models, which impose the restriction of
having SDE-like dynamics, with deep learning methods, which enable the rich modeling of
complex dynamics. There are no strict assumptions on the data and therefore almost any
time series is susceptible to be analyzed by means of the methods presented in Chapter 3.
Furthermore, SVAE takes advantage of SVI and natural gradients to implement an efficient
inference algorithm, which permits the application of the method to large datasets that do not
fit in main memory.

Since this chapter exploits previous work, it is important to briefly highlight the main
differences between our proposal and related works, with special reference to [69], which
inspired many of our ideas.

Asmentioned previously, our proposal fits nicely in the general SVAE framework proposed
in [69]. Indeed, after the introduction of the inducing points as global variables, the resulting
graphical model (see Figure 4.10) is a particular case within SVAEs since the model is not
really structured. At first, this appears to suggest that the modeling capabilities of our proposal
are limited in comparison with those of a generic SVAE. This is only partially true. Our SDE-
based model permits the rich modeling of complex dynamics because the drift term, through a
GP,may be a nonlinear function. By contrast, [69] illustrates the use of SVAEs using Switching
Linear Dynamical System (SLDS), i.e., a model with conditional linear dynamics; the model
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Figure 4.24: Evolution of the Lorenz phase space after (a) 1 iteration, (b) 2 iterations, (c) 4
iterations, (d) 8 iterations, (e) 17 iterations, and (f) 52 iterations. The mean of the encoding
network are represented by orange lines. A single illustrative sample of the phase space is
shown with a dashed blue line. Finally, the inducing-inputs are represented with reddish
points.
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Figure 4.25: Reconstructed time series output by the decoding network after (a) 1 iteration,
(b) 2 iterations, (c) 4 iterations, (d) 8 iterations, (e) 17 iterations, and (f) 52 iterations. The
shaded areas represent the 95% confidence interval of the reconstructed time series.
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Figure 4.26: Predictions from a SDE SVAE for the Lorenz model. The top panel shows the
real data. The bottom panel shows two different predictions (in dashed-orange and solid-blue)
generated by the SVAE given the data up to the vertical line, which is colored in black.

is still very expressive because the latent dynamics of x1:N are controlled by another set of
local latent variables z1:N . The sequence z1:N is usually referred to as the mode sequence,
since it permits the system to switch the dynamical mode. The switching modes of SLDS
would permit to effectively approximate nonlinear or even non-stationary dynamics.

If there is a single nonlinear dynamic mode in the data, both SDE-based and SLDS-based
SVAEs can be regarded as equally expressive, although different in meaning. In this case,
the SDE SVAE provides a physically meaningful phase space, whereas the phase space of
the SLDS SVAE would be difficult to interpret due to the switching dynamics. Therefore,
the SDE SVAE may be better suited for building physically plausible models, which can be
subsequently refined or used for taking modeling decisions, expediting model building.

On the other hand, a single SDE cannot accurately describe data driven by nonlinear non-
stationary dynamics, whereas that the SLDS can still try to model it by adding more modes.
It must be noted, however, that our proposal could be extended by adding a mode sequence to
the SDE SVAE.

There is also another key difference between the two works which can be understood by
comparing the application domain in which they are considered. [69] illustrates SVAEs using
high dimensional video recordings. In this context, the encoder is a MLP that aims to reduce
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the dimensionality of the input data. In our proposal, we focused on finding a proper phase
space for experimental input data, which usually requires increasing the dimensionality of
the input space. To that end, we consider the use of a RNN as encoder, since its ability to
contextualize each input yt is key to build a proper phase space.

In this sense, our work can be compared with [78], which proposed a generalization of
Kalman filters by extensively using deep neural networks. In [78] the encoder, the decoder and
the dynamical model are parametrized through neural networks, and they explicitly consider
RNNs as a possible recognition network. The resulting model subsumes a large family of
linear and nonlinear space models as particular cases. However, this approach can not be
extended to general graphical models, and it does not exploit SVI nor natural gradients.

In summary, we find that the main contributions of this chapter are: (1) leveraging SVAEs
with the methods from Chapter 3, which enables the modeling of nonlinear dynamics without
switching modes; (2) providing a physically meaningful representation of the data, since it can
be interpreted as a phase space described by a SDE; and (3) exploiting recent advances in GP
dynamical systems to efficiently sample from the nonlinear SDE phase space, as required by
the SVAE training algorithm.

The ability of the SDE SVAE to capture the main dynamical features of the data and
summarize them in the phase space was demonstrated using synthetic data. Although the
results proved that the SDE SVAE is a powerful modeling tool, some drawbacks were also
revealed.

Figure 4.18 illustrates an example in which the SDE SVAE fails to generate convincing
samples from an input signal, despite it resembles those time series used for the training.
However, the signal from Figure 4.18 is, in fact, quite different from the training data in terms
of amplitude. It may be argued that Figure 4.18 does not illustrate a drawback of our framework
since we are asking the SVAE to reproduce something that has not seen before or, at least,
that it shares this limitation with any VAE. However, any human could easily extrapolate the
results from Figure 4.17 to Figure 4.18 and it would be desirable for the SDE SVAE to be
able to do so. The inability of the SDE SVAE to properly extrapolate may be due to the use
of the squared exponential kernel function. This kernel was conveniently chosen to model the
drift since it permits computing the integrals from Section 4.5.2 in closed form. However, the
squared exponential kernels are only able to extrapolate around “small” regions around the
inducing-points, where “small” is defined in terms of the length-scale hyperparameter. Hence
the inability of our technique to predict the evolution of the system when there has been a
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significant change in the amplitude.
Figure 4.26 illustrates the other drawback of the SDE SVAE. In this example, the synthetic

signals seem like smoothed versions of true realizations of the stochastic Lorenz process. It is
known that image-generating VAEs that use Gaussian likelihoods as loss functions yield blurry
images [32]. This is usually attributed to the fact that the Gaussian likelihood does not permit
to capture the true distribution of the images, which it is usually multimodal. In this sense, it
can be argued that our lower bound is also failing to capture the diffusion-like properties of
the input series. Although suggestive, this is an speculative hypothesis that requires further
validation.

Finally, it must be noted that the model proposed in this chapter has still room for improve-
ment within the SVAE framework. As previously introduced, the inclusion of latent modes
would permit describing the data in terms of switching SDEs, enabling the application of
the method to virtually any time series, including those with highly nonlinear non-stationary
dynamics.
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CHAPTER 5

CONCLUSIONS

Nowadays, there is a great interest in the scientific community on the dynamical behavior of
complex systems in biology, physics, chemistry, economy, psychology or sociology, among
many others. As a consequence of the complexity of these dynamical phenomena, there is a
trend towards devising more sophisticated time series models. These models should be able
to account for nonlinear behavior, the interaction of a large number of subsystems, or even
the presence of stochastic features in the laws governing the evolution of the system. In this
context, developing a model from first principles is a challenge. An alternative strategy is to
build a model based on observed data from the system. It seems reasonable to assume that,
with the big data revolution, this strategy will become increasingly common. This also poses
an enormous challenge to time series analysis, since new techniques should scale effectively
with the size of the data.

The present work provides a Bayesian approach to learning plausible models capable of
characterizing complex time series in which deterministic and stochastic phenomena concur.
It is worth noting that, although we explore flexible models from the machine learning setting
able to capture rich dynamical features, these models are firmly grounded on well-known
physical concepts. We kept our models deeply rooted in physics because, in our opinion, it is
through explicit model building that we gain a truly deeper understanding about how a system
behaves. Therefore, a model built from data should not only give accurate predictions, but
also help the researcher in taking modeling decisions, and this is easier if both the researcher
and the model share the same vocabulary, the vocabulary of physics.

Two main approaches were actually developed. In the first approach, we focused on a



simple superposition model, grounded on the hypothesis that the interactions between the
stochastic and deterministic phenomena are negligible. The second main approach relied on
SDEs to model systems where the stochastic and deterministic part interact.

The first approach is discussed in Chapter 2. To enable the superposition model to capture
complex dynamics without relying on the deterministic-stochastic interactions, the stochastic
part is assumed to be a fBm. fBm is a non-stationary model frequently used to describe
long-term correlations. A large number of physical and informational systems exhibit such a
behavior, which supports the applicability of the model. The other component of the system
is assumed to be a band-limited signal. It is likely for a band-limited signal to be accurately
predictable and, therefore, we refer to it as the deterministic component. Under the assumptions
of this model, we devised a method that is able to characterize the fractal stochastic component
and to estimate the deterministic part. The main contributions of this Chapter are: (1) the key
observation that the presence of the deterministic component causes a measurable deviation
from the energy’s power-law that we expect in pure fBm processes; and (2) the exploitation of
this observation by means of Bayesian estimation techniques, which enable the approximate
reconstruction of the deterministic part of an observed signal while characterizing its stochastic
part. The method was tested on both synthetic and real signals, demonstrating its ability to
capture interesting features from the data. With the aim of facilitating the reproducibility of
the results, the proposed method was implemented and released under an Open Source License
in the R package fracdet. The package is briefly overviewed in Appendix A. It must be
noted that releasing the code as an R package guarantees that it can be easily installed in any
operating system, and that its functions are well-documented.

Chapter 3 starts the study of systems where deterministic and stochastic components
interact with each other, by exploiting the modeling capabilities of SDEs. To simplify the
mathematical analysis of SDEs, the Wiener process is used as the source of the randomness
of the system. Stated another way, the long-term modeling capabilities of fBms are sacrificed
to introduce a simple interaction model. Indeed, our assumptions about the SDE require the
time series to be Markovian. Under these hypothesis, Chapter 3 develops a non-parametric
estimation method for SDEs based on GPs. The main contributions of the Chapter are: (1)
providing estimates for any type of diffusion function (which required the development of a
Laplace approximation) and (2) proposing a sparse approximation to the true GP posterior that
permits to efficiently handle middle-sized experimental time series (size of N ≈ 103 − 105).
It must be noted that although these sizes include most typical experimental datasets, these
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are rapidly increasing in size, which may limit the applicability of the method in the future.
The issue is related to the use of variational inference, which requires a full pass through the
entire dataset at each iteration. The proposed algorithm was validated using both simulated
data and real data from economy and paleoclimatology. The application of the method to real
data demonstrates its ability to capture the behavior of complex systems. We also released an
open-source implementation of the method in the R package voila. A brief overview of the
package is provided in Appendix B.

Chapter 4 tries to overcome the main constraint that the use of SDEs driven by a Wiener
process imposes: the Markovianity assumption. To that end, we propose a new SVAE with
latent SDE dynamics. The SVAE is capable of discovering a map, parametrized as a neural
network, from an arbitrary time series to a Markovian representation. Through this transfor-
mation, any time series is susceptible to be analyzed by means of the methods of Chapter 3.
To prevent the transformation from enforcing the fulfillment of the Markovian property by
creating an overly simple representation, an inverse transformation is also sought. This pre-
vents the forward transformation to dismiss valuable information. The inverse transformation
is also parametrized with a neural network and, therefore, the pair of transformations acts
as a encoder-decoder neural network. Following the SVAE architecture, the latent space is
constrained to follow a SDE through the use of graphical models. To permit a better optimiza-
tion, the learning of both the transformations and the dynamics is performed simultaneously.
Finally, the other major drawback of the method of Chapter 3 is addressed: the inference
procedure is scaled up to handle large datasets that do not fit in main memory by applying
stochastic optimization techniques to variational inference, which is usually known as SVI.
The main contributions of this chapter are: (1) leveraging SVAEs with the methods from
Chapter 3, which permits modeling nonlinear dynamics without switching modes and also
(2) finding a physically meaningful representation of the data that can be interpreted as a
phase space; and (3) exploiting recent advances in GP dynamical systems to efficiently sample
from the nonlinear SDE phase space, as required by the SVAE training algorithm. The SDE
SVAE was tested using data from well-known physical models, showing that it is able to learn
plausible phase spaces and to synthesise new time series with dynamical features similar to
those of the original ones. We have also released code implementing the main methods of this
chapter at [46].

Although the use of SDE for data-driven modeling had already been considered (see, for
example, [42]), we have made some contributions to leverage the predictive performance of

143



Bayesian machine learning methods while keeping the physical interpretability of the models.
This is particularly true in Chapter 4, in which we managed to extend the applicability of
SDEs to non-Markovian time series while maintaining the model close to the physical domain
by means of the phase space. The interpretability of the SDE SVAE does not only help the
researcher in the elucidation of plausible models, but it may also inspire new analysis methods
borrowed from other fields. For example, the phase space itself provides valuable information
from a modeling perspective, and it may be subject to further research by means of phase
space analysis methods or the study of attractors [71].

Still, the present work barely scratches the surface of the possible approaches for modeling
complex time series with deterministic and stochastic components. During the development
of this thesis, a number of important issues were left open. The main research directions that
may be worth exploring are outlined below:

- An important drawback of the method introduced in Chapter 2 is that, to get an estimate
of the energy of the deterministic component, the researcher must select the wavelet
resolution levels to use in the regression procedure. This is a subjective step that
depends on the experience of the researcher, hindering reproducibility. When CGSA
assumptions hold, the selection of these levels could be avoided by using the CGSA
algorithm. However, if those assumptions are not met, there is a lack of tools for
objectively estimating those features of a fractal time series that does not uniquely
contain fractal components. Therefore, the design of some mechanism to automatically
select the wavelet resolution levels free from deterministic contributions should be
addressed in future improvements. To that end, simple methods such as segmented
regression combined with model selection criteria may serve as a good starting point.

- A number of works have tried to analyze SDEs driven by richer types of noise, including
fBm. See, for example, [80]. Therefore, an interesting line of work would be to
generalize the SGP estimation method from Chapter 3 to permit arbitrary noises to act
as the stochastic force driving the SDE. This is very suggestive, since it would permit
relating the model fromChapter 2 with the SDEmodel fromChapter 3, and it would also
address the main limitation from the model from Chapter 2: it ignores the interactions
between the deterministic and stochastic components.

- Regarding the methods from Chapter 3, we would like to design some criteria to
automatically estimate an appropriate number of pseudo-inputs m taking into account
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both the modified lower bound (Equation (3.23)) and the additional computational time
required when m increases. The substitution of the exponential transformation used
to ensure the positiveness of g in favor of other less-explosive transformation should
also be considered in future improvements. The numerical stability of the method
would certainly improve with the use of smoother transformations, but the formal
expressions required for the variational inference problem would be more complicated.
An alternative to avoid the complicated mathematical expressions would be to use
black-box variational inference frameworks [129]. Since black-box methods are based
in stochastic variational inference, its application would also permit scaling the method
to datasets much bigger than those studied in Chapter 3.

- With the aim of supporting reproducible research, the source code of the SDE SVAE
from Chapter 4 has been published in [46]. However, this implementation is not as
mature as in the case of fracdet or voila. More effort should be made in order to
provide an easy-to-use package that helps in the adoption of the SDE SVAE model.

- In Chapter 4 we have argued that the incapacity of the SDE SVAE to extrapolate the
learned dynamicswere due to the constraints that the squared exponential kernels impose
to the GP modeling of the drift function. It follows that, to improve the generalization
properties of the drift estimates, we should endow the SDE SVAE with the possibility
of using different kernels, or even a combination of them. Indeed, sophisticated kernels
are usually hand-crafted to enable pattern discovery and extrapolation in specialized
applications [135]. The extension of the methods presented in Chapter 4 to handle richer
covariance functions should be simple for those kernels consisting on combinations of
squared exponentials, trigonometric functions, and polynomials; since the integrals
from Section 4.5.2 can still be calculated analytically [27]. However, other kernels may
require the development of new approximation methods for preserving the efficiency of
the filtering and sampling steps from Section 4.5.2.

- We have also speculated that the reason for the smoothness of the synthetic samples
of the Lorenz system could be due to the lower bound failing to capture the diffusion-
like properties of the input series. This hypothesis should be confirmed through and
exhaustive study. If confirmed, a modification of the lower bound to alleviate the
problem should be sought.
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- The inclusion of latent mode sequences in the SDE SVAE should be considered (see
Section 4.7). The inclusion of latent modes would permit the description of the data in
terms of switching SDEs, enabling the application of the method to virtually any time
series, including those with highly nonlinear non-stationary dynamics. Furthermore,
the successful consecution of this work would entail a substantial enhancement of the
SLDS SVAE. Although the modeling capabilities would probably be quite similar, in
a switching SDE model the different modes would have a very precise meaning, i.e.,
a change of the dynamics due to non-stationarity. On the other hand, a change in the
mode of a SLDS may be due to the non-stationary conditions or due to the need to
approximate nonlinear dynamics through switching linear dynamics.

- Finally, we have argued that the phase space of the SDE SVAE could be used for
characterizing the dynamics of the system by means of phase space analysis methods.
These techniques have been successfully applied to many different nonlinear determin-
istic systems from a wide variety of fields. However, a key to their widespread use
is the existence of the Takens’ theorem. The Takens’ theorem guarantees that some
well-defined quantities (invariants) yield the same result when measured on the true
phase space and in the reconstructed one. This result forms a bridge between nonlinear
theory and the analysis of experimental data. Therefore, it is necessary to explore under
which circumstances we may expect the SDE SVAE to yield a phase space topologically
equivalent to the original one (at least, in the deterministic case).
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APPENDIX A

THE FRACDET PACKAGE

fracdet is an R package implementing the deterministic-stochastic model proposed in
Chapter 2 and available at [44]. The package also implements the estimation method that,
under the assumptions of the model, is able to characterize the fractal stochastic component
and to provide an estimation of the deterministic component present in a given time series.
In this Appendix, we provide a brief overview of how to use fracdet, motivated by a few
simple examples.

A.1 Installation

Running fracdet requires R version 3.0.0 or higher. The source code for fracdet is
hosted on GitHub at http://github.com/citiususc/fracdet, distributed under
the free software license GPL-3. fracdet can be installed directly from this repository using
the tools provided by the devtools package, as detailed in Listing A.1.

Listing A.1: Installation of fracdet from github.

library("devtools")

install_version("FGN", "2.0-12")

install_github("citiususc/fracdet")

fracdet depends on several R packages which are automatically installed, with the
exception of the FGN package, which is no longer maintained at the Comprehensive R Archive
Network (CRAN). That’s why we need to explicitly install it in Listing A.1. The remaining
dependencies are: wavethresh, MASS, Rcpp, RcppArmadillo and RcppGSL. The

http://github.com/citiususc/fracdet


A.2. The waveletVar class

RcppGSL links against the GNU Scientific Library (GSL) and, therefore, requires the GSL
library to be installed in the system. In a Debian-based system, the GSL library can be easily
installed using the command listed in Listing A.2.

Listing A.2: Installation of the GSL library in a Debian system.

sudo apt-get install gsl-bin libgsl0-dev

A.2 The waveletVar class

To introduce the basics of fracdetwe first consider a simple stochastic series with long-term
dependencies:

Y [n] = B[n].

According to the convenient modeling approach proposed in [36], long-memory signals can be
studied as realizations of one of two classes of processes: dfGn or dfBm. Since the increments
of a dfBm signal yield a stationary dfGn signal, we may focus on the dfBm model. Thus, we
assume that B[n] can be approximated by a dfBm.

As discussed in Chapter 2, wavelet analysis provides a proper framework for studying
dfBm signals. Furthermore, it is possible to estimate the dfBm parameters by studying how
the wavelet coefficients’ variance depend on the resolution level. fracdet provides the
waveletVar class to represent and manipulate the wavelet coefficients’ variances. List-
ing A.3 illustrates its use by computing the wavelet coefficients’ variance of a simulated dfBm
with parameters H = 0.3 and σ2 = 1. Note that the resulting plot of Listing A.3 is not shown.

Listing A.3: Computation of the wavelet coefficient’s variance using fracdet.

library("fracdet")

# Simulate a fBm with Hurst exponent H = 0.3 and 2 ^ 14 samples

b = fbmSim(n = 2 ^ 14, H = 0.3)

# Compute the wavelet decomposition (wd) of the B[n] time series.

# We use the symmetric boundary conditions (bc)

wb = wd(b, bc = "symmetric")

# Compute the wavelet coefficients’ variances and plot them

vpr = waveletVar(wb)

plot(vpr)
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A.3 dfBm parameter estimation

The shape and slope of the wavelet coefficients’ variance depends on the Hurst exponent of
the dfBm. To estimate it, fracdet provides the estimateFbmPars function, which is
based on the R implementation of the (weighted) Nonlinear Least Squares (NLS) method.
Listing A.4 applies this function to the signal generated in Listing A.3. Note that the resulting
estimates of the dfBm parameters are close to the real ones.

Listing A.4: H and σ2 estimation of a dfBm process using the fracdet package.

# We can easily estimate the parameters of a dfBm using

# a waveletVar object

model = estimateFbmPars(vpr, use_resolution_levels = c(5:13))

# model is a nls object, which represents a nonlinear least

# squares regression in R. Therefore, we can obtain the

# parameter estimations with the usual R commands

print(coef(model))

## ==> H sigma2

## ==> 0.2954949 1.0121385

A.4 The fracdet class

Let us now assume that the observed signalY [n] is the result of the superposition of a stochastic
series B[n] and some band-limited deterministic signal x[n], as assumed in Chapter 2:

Y [n] = x[n] + B[n].

The first step when analyzing any observed time series with the method proposed in
Chapter 2 should be testing if the wavelet variances are compatible with the assumptions of
the model. Listing A.5 simulates a time series consisting of a dfBm (with H = 0.3 and σ2 = 1)
and a sinusoidal signal, and then computes the wavelet coefficients’ variance to ensure that they
approximately follow the expected power law behavior. The resulting wavelet coefficient’s
variance should be similar to the black points shown in Figure A.1.

Listing A.5: H and σ2 estimation of a dfBm process using the fracdet package.

# Simulate a signal consisting of a dfBm and a sinusoidal term

n = 2 ^ 14 # length of the signal

x = 2 * sin(2 * pi * 1:n / 10)
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y = fbmSim(n = n, H = 0.3) + x

# Compute the wavelet coefficients variances and plot them

wy = wd(y, bc = "symmetric")

vpr = waveletVar(wy)

plot(vpr)
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Figure A.1: Wavelet coefficients’ variance of a signal consisting of a dfBm and a sine obtained
with fracdet. Note the deviation from the expected behavior on levels 11 and 12.

Figure A.1 clearly shows that there is a deviation from the power law behavior that we
could expect ifY [n]was a pure dfBm. Therefore, we may conclude that this is likely due to the
presence of some deterministic component. Figure A.1 also manifests that this deterministic
component has its energy well concentrated around the wavelet resolution levels 11 and 12.
Hence, it should be possible to obtain accurate estimates of the dfBm parameters. Listing A.6
uses the estimateFbmPars function to perform this estimation, taking into account that
the resolution levels 11 and 12 should be ignored.

The fracdet class can now be used to ease the procedure of working with a signal that
fulfils the assumptions of our deterministic-stochastic model. The parameters required for the
fracdet constructor are the wavelet transform of the observed signal, and the fitted-model
object used for estimating the dfBm parameters. Listing A.6 uses this class and its associated
methods to check that the dfBm parameter estimates are still accurate, and to generate a plot
with the experimental and fitted wavelet variances. This plot should be similar to Figure A.1.
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Listing A.6: H and σ2 estimation of a dfBm process using the fracdet package.

# Ignore resolution levels 11 and 12 to obtain the

# fBm parameters estimates.

model = estimateFbmPars(vpr, use_resolution_levels = c(5:10,13))

# Create a fracdet object...

fd = fracdet(wy, model)

# ... and check the fbm parameters estimates.

print(coef(fd))

## ==> H sigma2

## ==> 0.3051759 1.0353774

# A plot of the fitted variances may also be useful.

plot(getWaveletVar(fd))

points(getFittedWaveletVar(fd), col = 2, pch = 2)

legend("topright", c("Experimental variance", "Fitted variance"),

col = 1:2, pch = 1:2, bty="n")

By fitting the wavelet variances we have not only characterized the dfBm process, but we
have also gained information about the deterministic contributions in each wavelet resolution
level. We shall use this information to obtain an estimation of the deterministic signal.

A.5 Estimation of the deterministic signal

Using all the available information about the observed signal, a Bayesian model of the distribu-
tion of the deterministic and stochastic wavelet coefficients is built. The available information
consists of:

• The estimates of the dfBm parameters (which completely characterize the statistical
properties of the dfBm signal).

• The well-known statistical properties of the dfBm signals in the wavelet domain.

• The deviations from the theoretical wavelet coefficients’ variance permit the estimation
of the energy distribution across the resolution levels of the deterministic signal.

Using this information, the wavelet transform of the deterministic signal is estimated by
calculating the decision rule that minimizes the posterior expected value of a squared loss
function (see Section 2.1.2). The estimateDetSignal implements all these steps and
returns the estimate of the wavelet transform of the deterministic signal, as illustrated in
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Listing A.7. Note that estimateDetSignal expects as input an object of the fracdet
class.

Listing A.7: H and σ2 estimation of a dfBm process using the fracdet package.

# Estimate the deterministic signal (this may take a while) taking

# into account the deviations in level 11, 12.

wx = estimateDetSignal(fd, estimate_from = 11:12)

x_est = wr(wx)

Figure A.2 compares the real x[n] with the estimate obtained in Listing A.7.
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Figure A.2: Deterministic estimation obtained with fracdet. Top panel: simulated signal
consisting of a dfBm and a sine. Bottom panel: real deterministic signal x[n] and the estimate
obtained using the fracdet package.
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APPENDIX B

THE VOILA PACKAGE

voila is anR package for the non-parametric estimation of Langevin equations from a densely
observed time series [45]. This package not only implements the SGP method proposed in
Chapter 3, but also the KBR and POLY methods. In this Appendix, we focus on the functions
included in voila to perform the SGP-based estimation of SDE terms. We use a simple
example to guide the discussion: the estimation of the drift and diffusion functions of an
Ornstein-Uhlenbeck process.

B.1 Installation

Running voila requires R version 3.0.0 or higher. The source code for voila is hosted
on GitHub at https://github.com/citiususc/voila, distributed under the free
software license GPL-3. voila can be installed directly from this repository using the tools
provided by the devtools package, as detailed in Listing B.1.

Listing B.1: Installation of voila from github.

library("devtools")

install_github("citiususc/voila")

voila depends on several R packages which are automatically installed when using List-
ing B.1. The required dependencies are: yuima, methods, KernSmooth, doParallel,
foreach, zoo, Rcpp and RcppArmadillo.

https://github.com/citiususc/voila


B.2. An usage example

B.2 An usage example

In this Section, we use voila to estimate the drift and diffusion terms of an unidimensional
Ornstein-Uhlenbeck model from a single realization of the process. Listing B.2 shows how
to simulate a SDE using the voila simulate_sde function. This function provides a
simplified interface to the excellent SDE simulation tools included in the Yuima package [16].
The simulated Ornstein-Uhlenbeck process is shown in Figure B.1.

Listing B.2: Simulation of an Ornstein-Uhlenbeck process using voila.

library("voila")

# Simulate a Ornstein-Uhlenbeck time series using voila

drift = "-x"

diffusion = "sqrt(1.5)"

x = simulate_sde(drift, diffusion, samplingPeriod = 0.001, tsLength = 20000)

plot(seq(0, len = length(x), by = samplingPeriod), x, type = "l",

ylab = "x(t)", xlab = "Time t", main = "Ornstein-Uhlenbeck process")

0 5 10 15 20

−
2

−
1

0
1

2

x

y

Time t

O
rn

st
ei

n−
U

hl
en

be
ck

 p
ro

ce
ss

: x
(t

)

Figure B.1: Ornstein-Uhlenbeck process simulated with the voila package.

B.2.1 Selection of the GPs’ kernels

The first step before running the variational inference routine is to define the covariance
kernels we want to use for the drift and diffusion models. For our example, we choose a
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rational quadratic kernel for the drift, and a linear combination of a constant kernel and a
squared exponential kernel for the diffusion. The amplitudes of the diffusion kernels are
constrained to sum to a constant, as described by Equation (3.26). Although the kernels
determine the most important properties of the resulting GPs, our selection is not guided by
any objective reason, but it is intended to illustrate some of the possible kernels available in
the package.

All kernels are created using the sde_kernel function, as illustrated in Listing B.3.
Besides the type of the kernel, the input dimension, its hyperparameters and a regularization
constant are mandatory parameters. The regularization constant is a small value that can
be added to the diagonal of the kernel covariance matrix to improve the stability of the
computations, as described in Equation (3.27).

As discussed in Section 3.4.1, the selection of some of the hyperparameters of the diffusion
kernel is not straightforward. This is due to the fact that the GP related to the diffusion is not
directlymodeling it, but its logarithm, i.e., g(x) = exp

(
s(x)

)
. To facilitate the selection of these

hyperparameters, some heuristics were derived in Section 3.4.1 (see Equation (3.24)). The
select_diffusion_parameters function implements such heuristics. This function
receives as arguments the time series, its sampling frequency and a prior belief about the
variance of g(x); and returns proper values for the kernel hyperparameters. See Listing B.3
for an example.

Listing B.3: Definition of the GPs’ kernels using voila.

# The dimensionality of the data

inputDim = ncol(x)

# Our prior belief about the amplitude of the drift and diffusion functions

functionsUncertainty = 5

# A small value to be added to the diagonal of the covariance matrix for

# stability purposes

epsilon = 1e-5

# Create the kernels defining the behavior of the gaussian processes.

# Create a Rational Quadratic Kernel for the drift with some initial values

# for the hyperparameters. These hyperparameters will be optimized during

# the inference process.

driftKer = sde_kernel("rq_kernel",

list("amplitude" = functionsUncertainty,

"alpha" = 1,

"lengthScales" = 1.5),

inputDim, epsilon)
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# Create an Exponential kernel + constant term for the diffusion:

# Voila uses a lognormal prior to ensure the positiveness of the diffusion.

# The "select_diffusion_parameters" function permits selecting a proper

# amplitude for the kernel from our prior belief about the amplitude of

# the diffusion function. It also selects a mean value for the lognormal

# distribution (denoted with v in the theoretical exposition)

diffParams = select_diffusion_parameters(x, samplingPeriod,

priorOnSd = functionsUncertainty)

diffKer = sde_kernel("exp_const_kernel",

list("maxAmplitude" = diffParams$kernelAmplitude,

"expAmplitude" = diffParams$kernelAmplitude * 1e-3,

"lengthScales" = 1.5),

inputDim, epsilon)

B.2.2 Running variational inference and checking the results

After defining the kernels for the drift and diffusion models, we should also specify the number
of inducing points to be used for the SGP approximation. To do that, we only have to initialize
a variable representing the initial positions of the pseudo-inputs. In Listing B.4, we initialize
them on a uniform grid between the minimum and the maximum values of the time series.

After completing the definition of our model, we can run the variational inference routine
using the sde_vi function, as shown in Listing B.4.

Listing B.4: Running variational inference with voila to estimate the SDE parameters.

## Some parameters for the algorithm:

# The number of inducing points

noInducingPoints = 10

# Since the data is 1D, we shall infer the equations for the 1st

# (and unique) dimension:

targetIndex = 1

# Select some initial pseudo-inputs. The positions of the pseudo-inputs

# are optimized during the inference

pseudoInputs = matrix(seq(min(x), max(x), len = noInducingPoints), ncol = 1)

# Perform the variational inference (VI)

inference = sde_vi(targetIndex, x, samplingPeriod, pseudoInputs,

driftKer, diffKer, diffParams$v)

## ==> Starting Variational Inference

## ==> Initial Lower Bound L = -59222.9

## ==> Iteration 1| Distributions update | L = 36691.347
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## ==> Iteration 1| Hyperparameter optimization | L = 36691.904

## ==>

## ==> Iteration 2| Distributions update | L = 36698.412

## ==> Iteration 2| Hyperparameter optimization | L = 36698.44

## ==>

## ==> Iteration 3| Distributions update | L = 36698.455

## ==> Iteration 3| Hyperparameter optimization | L = 36698.475

## ==>

## ==> CONVERGENCE

The results of the inference routine are stored in the inference variable, which contains
all the information required to assess the convergence of the variational inference, or generating
predictions for the drift and diffusion terms. This is illustrated in Listing B.5. The resulting
plot of the lower bound is shown in Figure B.2. It is worth noting that the predictions of both
the drift and diffusion terms are obtained from their posterior distributions. These posterior
distributions are represented with the voila class sgp_sde, which permits generating
the predictions with the generic R function predict. Both inference$drift and
inference$diffusion are instances of this class.

Listing B.5: Prediction of the drift and diffusion functions based on the posterior distributions.

# Check convergence

plot(inference$likelihoodLowerBound[-1], type = "o",

main = "Likelihood Lower Bound",

ylab = "Lower Bound", xlab = "Iteration")

# Get the estimations for the drift

predictionSupport = matrix(

seq(quantile(x,0.05), quantile(x,0.95), len = 100),

ncol = 1)

driftPred = predict(inference$drift, predictionSupport)

# Get the estimations for the diffusion

# The diffusion uses a lognormal gaussian process,

# so we must specify log = TRUE

diffPred = predict(inference$diffusion, predictionSupport, log = TRUE)

The driftPred and diffPred variables obtained from predict in Listing B.5 are
also instances of another voila class: sde_prediction. This class facilitates working
with the predictions of the SDE terms. For example, Listing B.6 illustrates how to obtain nice
representations of the drift and diffusion estimates by simply using the generic plot function.

157



B.2. An usage example

2 3 4 5 6 7

36
69

2
36

69
4

36
69

6
36

69
8

x

y

Iteration

Lo
w

er
 B

ou
nd

Figure B.2: The lower bound optimized by the variational inference routine.

The resulting plot of the estimates is shown in Figure B.3, which highlights the accuracy of
the SGP estimation procedure.

Listing B.6: Plotting the probabilistic predictions of the drift and diffusion terms with voila.

# Plot drift

plot(driftPred, xlab = "x", ylab = "Drift f(x)")

lines(predictionSupport,

eval(parse(text = drift), list(x = predictionSupport)),

col = 2)

legend("topright", c("Estimate", "Real"),

lty = 1, col = 1:2, bty = "n")

# Plot diffusion

plot(diffPred, ylim = c(1, 2), xlab = "x", ylab = "Diffusion g(x)")

abline(h = eval(parse(text = diffusion), list(x = predictionSupport)) ^ 2,

col = 2)

legend("topright", c("Estimate", "Real"),

lty = 1, col = 1:2, bty = "n")
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Figure B.3: Estimates of the (a) drift and (b) diffusion terms of the Ornstein-Uhlenbeck system
obtained with the voila package.
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APPENDIX C

CALCULATION OF THE FISHER MATRIX FOR

THE GAUSSIAN-GAMMA DISTRIBUTION

In this appendix, we refer to the variational distribution modeling the drift and diffusion of a
single dimension from the phase space, i.e., f̃i, λi . However, to keep the notation uncluttered,
we drop the index i from the equations. With the parametrization given by Equation (4.38),
the logarithm of the Gaussian-Gamma distribution q( f̃ , λ, | η̃) can be written as

log q( f̃ , λ, | η̃) =


exp (η̃0) −

1
2

− exp (η̃0 − η̃1) −
η̃T2 η̃3η̃2

2
η̃3η̃2

−Vec
(η3

2
)



T 
log λ
λ

λ f̃

λVec( f̃ f̃ T )


+

−

(
log Γ

(
exp (η̃0)

)
− (η̃0 − η̃1) exp (η̃0) −

1
2

log | η̃3 |

)
,

and the Fisher information matrix is given by

F(η̃) = E f̃ ,λ

[(
∇η̃ log q( f̃ , λ, | η̃)

) (
∇η̃ log q( f̃ , λ, | η̃)

)T ]
. (C.1)

The calculation of the gradients is straightforward although tedious. For example, the deriva-
tive with respect to η̃0 can be computed as follows:

∂ log q( f̃ , λ, | η̃)
∂η̃0

= exp (η̃0)
[
log λ −

(
ψ0 ( exp(η̃0)

)
− (η̃0 − η̃1)

) ]
− [λ exp(η̃0 − η̃1) − exp(η̃0)] ,

(C.2)



where ψ0(·) denotes the digamma function. To ease the mathematical manipulation of Equa-
tion (C.2) we introduce α , α(η̃) = exp(η̃0) and β , β(η̃) = exp(η̃0 − η̃1). This does not
affect the expression of the Fisher matrix, since α and β should be read as functions of η̃.
Furthermore, to simplify the computation of the expectations required by Equation (C.1), we
introduce

E f̃ ,λ [log λ] = ψ0(α) − log β

and

E f̃ ,λ [λ] =
α

β

into Equation (C.2). This yields

∂ log q( f̃ , λ, | η̃)
∂η̃0

= α [log λ − E log λ] − β [λ − Eλ] , (C.3)

where we have written E f̃ ,λ [·] as E [·] to keep the notation uncluttered.

We proceed similarly to compute the other derivatives required to compute the gradients
from Equation (C.1), obtaining

∂ log q( f̃ , λ, | η̃)
∂η̃1

= β [λ − Eλ] ,

∂ log q( f̃ , λ, | η̃)
∂η̃2

= λ · Σ−1( f̃ − µ),

∂ log q( f̃ , λ, | η̃)
∂(η̃3)i j

= −
λ

2
[
( f̃i − µi)( f̃j − µj)

]
+

1
2
Σi j .

(C.4)

To compute the Fisher matrix, we take expectations on the derivatives fromEquations (C.3)
and (C.4). We use subindices to denote the different entries of the matrix, depending on which
derivatives are being used. For example, Fη̃0,η̃3 denotes the 1 × d matrix (being d the phase
space dimension) that results from calculating

Fη̃0,η̃3 = E

[(
∇η̃0 log q( f̃ , λ, | η̃)

) (
∇η̃3 log q( f̃ , λ, | η̃)

)T ]
.

162



Appendix C. Calculation of the Fisher matrix for the Gaussian-Gamma distribution

The calculations involving η̃0 are straightforward:

Fη̃0,η̃0 = E

[
∂ log q( f̃ , λ, | η̃)

∂η̃0

∂ log q( f̃ , λ, | η̃)
∂η̃0

]
= E

[(
α
(
log λ − E log λ

)
− β

(
λ − Eλ

) )2
]

= α2E
[ (

log λ − E log λ
)2

]
− 2αβ · E [(log λ − E log λ)(λ − Eλ)] + β2E

[ (
λ − Eλ

)2
]

= α2Var [log λ] − 2αβ
(
E [λ log λ] − E log λEλ

)
+ β2Var [λ] .

(C.5)

Using the relations

E [log λ] = ψ0(α) − log β,

Var [log λ] = ψ1(α),

E [λ] =
α

β
,

Var [λ] =
α

β2 ,

E [λ log λ] =
α

β
(ψ0(α + 1) − log β)

where ψ1(·) denotes the trigamma function, it is possible to write Equation (C.5) as

Fη̃0,η̃0 = α
2ψ1(α) − 2αβ

(α
β
(ψ0(α + 1) − log β) −

α

β
(ψ0(α) − log β)

)
+ β2 α

β2

= α2ψ1(α) − 2α2
(
ψ0(α + 1) − ψ0(α)

)
+ α.

Using the recurrence relation ψ0(α + 1) = ψ0(α) + 1
α finally yields

Fη̃0,η̃0 = α
2ψ1(α) − α.

A similar computation for Fη̃0,η̃1 yields

Fη̃0,η̃1 = E
[ (
α(log λ − E log λ) − β(λ − Eλ)

) (
β(λ − Eλ)

) ]
=

= αβ E [(log λ − E log λ)(λ − Eλ)] − β2E
[
(λ − Eλ)2

]
= αβ

1
β
− β2 α

β2

= 0.
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The term Fη̃0,η̃2 can be computed as

Fη̃0,η̃2 = E
[ (
α(log λ − E log λ) − β(λ − Eλ)

) (
λη̃3( f̃ − E f̃ )

) ]
= Eλ

[ (
α(log λ − E log λ) − β(λ − Eλ)

)
λη̃3E f̃ |λ

[
f̃ − E f̃

] ]
= 0,

where we have exploited the factorization of q( f̃ , λ | η̃) to write the expectation required by
the Fisher term as iterated expectations, and the fact that the expectation involving f̃ cancels.

Proceeding in an analogous way, Fη̃0,η̃3 can be written as

Fη̃0,[η̃3]i j = −
1
2
Eλ

[ (
α(log λ − E log λ) − β(λ − Eλ)

)
E f̃ |λ

[
λ( f̃i − E f̃i)( f̃j − E f̃j)

] ]
= −

1
2
Eλ

[ (
α(log λ − E log λ) − β(λ − Eλ)

)
λ

1
λ
Σi j

]
= −
Σi j

2
Eλ [α(log λ − E log λ) − β(λ − Eλ)]

= 0.

We shall start now the calculations involving η̃1. The term Fη̃1,η̃1 can be written as

Fη̃1,η̃1 = β
2E

[
(λ − Eλ)2

]
=

= β2Var [λ]

= β2 α

β2

= α.

The term Fη̃1,η̃0 is just Fη̃0,η̃1 due to the symmetry of the Fisher matrix. On the other hand,
it can be easily demonstrated that the terms Fη̃1,η̃2 Fη̃1,η̃3 are zero (matrices with all their terms
equal to 0) if they are calculated in a manner similar to how it was done for Fη̃0,η̃2 and Fη̃0,η̃3 .

The term Fη̃2,η̃2 can be computed as

Fη̃2,η̃2 = E
[
λ2Σ−1( f̃ − E f̃ )( f̃ − E f̃ )TΣ−1]

= Σ−1Eλ

[
λ2E f̃ |λ

[
( f̃ − E f̃ )( f̃ − E f̃ )T

] ]
Σ−1

= Σ−1Eλ

[
λ2 1
λ
Σ

]
Σ−1

=
α

β
Σ−1.
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The only unknown term involving η̃2 that remains to be computed is Fη̃2,η̃3 , which can be
expressed as

Fη̃2,[η̃3]i j = E

[(
λ2Σ−1( f̃ − E f̃ )

) (
−
λ

2
( f̃i − E f̃i)( f̃j − E f̃j) +

1
2
Σi j

)]
= −

1
2
Σ−1Eλ

[
λ3E f̃ |λ

[
( f̃ − E f̃ )( f̃i − E f̃i)( f̃j − E f̃j)

] ]
.

(C.6)

The Isserlis’ theorem [67] states that, if (X1, X2, X3, X4) is a zero-mean Gaussian vector,then

E [X1X2X3X4] = E[X1X2]E[X3X4] + E[X1X3]E[X2X4] + E[X1X4]E[X2X3], (C.7a)

E [X1X2X3] = 0. (C.7b)

Therefore, invoking Equation (C.7b) in Equation (C.6) yields

Fη̃2,[η̃3]i j = 0.

Finally, the term Fη̃2,η̃3 can be written as

F[η̃3]i j,[η̃3]kl =E

[(
−
λ

2
( f̃i − E f̃i)( f̃j − E f̃j) +

1
2
Σi j

) (
−
λ

2
( f̃k − E f̃k)( f̃l − E f̃l) +

1
2
Σkl

)]
= +

1
4
E

[(
λ2( f̃i − E f̃i)( f̃j − E f̃j)( f̃k − E f̃k)( f̃l − E f̃l)

)]
−

1
4
E

[ (
λ( f̃i − E f̃i)( f̃j − E f̃j)Σkl

) ]
−

1
4
E

[ (
λΣi j( f̃k − E f̃k)( f̃l − E f̃l)

) ]
+

1
4
Σi jΣkl

= +
1
4
E

[(
λ2( f̃i − E f̃i)( f̃j − E f̃j)( f̃k − E f̃k)( f̃l − E f̃l)

)]
−

1
4
Σi jΣkl .

Using Equation (C.7a) from the Isserlis’ theorem to expand the first term of the right hand side
finally yields

F[η̃3]i j,[η̃3]kl =
1
4

[
ΣikΣjl + ΣilΣjk

]
.

Therefore, the final Fisher matrix can be written as

F(η̃) =


α2ψ(1)(α) − α 0 0 0

0 α 0 0
0 0 α

βΣ
−1 0

0 0 0 Fη̃3,η̃3


,

165



where Fη̃3,η̃3 should be read as the submatrix that results from arranging the entries from
F[η̃3]i j,[η̃3]kl to match the ordering of the vectorized parameter Vec(η̃3).
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