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Resumen

La tecnologı́a electrónica tiene un profundo impacto en la sociedad y en la ciencia, aportando
cada dı́a nuevas soluciones tanto a nivel personal como profesional. En el caso particular de
la ciencia, estas mejoras tecnológicas ofrecen la posibilidad de avanzar en nuevos campos y
además a un ritmo mas rápido, mediante herramientas de todo tipo. La mayor parte de las
mejoras están relacionadas con los transistores, que son el componente principal de cualquier
dispositivo electrónico, como por ejemplo los procesadores (CPU), los procesadores gráficos
(GPU) o la memoria volátil (RAM). Estos elementos se diseñan, fabrican y venden utilizando
transistores cada vez más avanzados, lo que permite ofrecer en general un producto más rápi-
do, con menos consumo de energı́a, más pequeño, o más barato. Los expertos de esta industria
publican periódicamente el ITRS (International Technology Roadmap of Semiconductor), una
hoja de ruta que trata de caracterizar la evolución que debe realizarse en los materiales y pro-
cesos para poder mantener el ritmo de avance de la industria de transistores. El ITRS también
analiza los problemas que surgen de la miniaturización de los mismos. Utilizando este docu-
mento, los investigadores deben hacer frente a los problemas de manera anticipada, para que
estos no obstaculicen el avance de las soluciones tecnológicas. Una herramienta poderosa para
afrontar estos problemas son las simulaciones, que permiten ahorrar mucho tiempo y dinero,
al proporcionar una estimación de cómo se comportará un dispositivo sin necesidad de crearlo
en la cadena de producción.

Para analizar correctamente un dispositivo mediante técnicas de simulación, éstas tienen
que ser lo más precisas posible. El modelo de arrastre-difusión, que calcula las corrientes de
arrastre y la de difusión usando diversas aproximaciones, es una solución rápida y simple. Si
se acopla con correcciones para el confinamiento cuántico, como el modelo de gradiente de
densidad, puede simular correctamente las caracterı́sticas sub-umbral del dispositivo, incluso
con tamaños de puerta del orden de nanómetros. Existen otros modelos más precisos como el
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método Monte Carlo que considera las partı́culas de manera individual o como meta-partı́cu-
las, y tiene en cuenta los procesos de dispersión que sufren a través del dispositivo. Con este
modelo, se obtiene buena precisión especialmente en el régimen on, a costa de ser bastan-
te más costosa computacionalmente que la solución de arrastre-difusión. Finalmente, utilizar
funciones de Green fuera de equilibrio para resolver el transporte cuántico con la ecuación
de Schrödinger, da lugar a uno de los métodos con más precisión de los simuladores disponi-
bles. Como era de esperar, este método es todavı́a más costoso computacionalmente que los
anteriores.

En nuestro caso particular, mediante la simulación de transistores queremos analizar el
problema de las fuentes de variabilidad que surgen en el proceso de fabricación de los mis-
mos, porque tienen un gran impacto en el rendimiento del dispositivo, dando lugar incluso a
fallos de funcionamiento. Para realizar un análisis fiable necesitamos seleccionar una técnica
de simulación que nos permita desplegar tantas simulaciones como sea posible, pero que por
otra parte sea lo suficientemente precisa como para extraer información significativa. Selec-
cionamos el simulador basado en el modelo de arrastre-difusión con correcciones cuánticas
como el candidato adecuado para empezar este análisis.

Teniendo en cuenta lo anterior, vamos a centrar nuestro trabajo en dos frentes diferentes:
por un lado, estudiar las fuentes de variabilidad que se presentan en las arquitecturas modernas
de dispositivos electrónicos y caracterizar su efecto. Por otra parte, desarrollar las herramien-
tas computacionales que necesitamos con el fin de poder gestionar miles de simulaciones y
procesar los resultados.

Las fuentes de variabilidad surgen como diferencias respecto de la definición del disposi-
tivo que se quiere fabricar y el resultado final. Estas desviaciones aleatorias son de dos tipos:
inherentes al material, o relacionadas con etapas del proceso de fabricación. Es prioritario
comprender el efecto que tienen estas desviaciones en el comportamiento del dispositivo,
porque normalmente su efecto se agrava con la miniaturización del mismo. Puesto que estas
fuentes de variabilidad son diferencias respecto de la definición del dispositivo ideal, se ha de-
cidido que las modificaciones que se realicen del simulador no afecten al núcleo del mismo,
sino que sólo alteren la estructura del dispositivo. De esta manera, se han podido aplicar las
fuentes de variabilidad tanto a un simulador de Monte Carlo como a uno de arrastre-difusión.
Por otro lado nuestro enfoque es modelar de la manera más realista posible las fuentes de
variabilidad, para que estas alteraciones de la estructura del dispositivo sean fiables. Debido a
la naturaleza aleatoria de las fuentes de variabilidad, es necesario dar soporte a la realización
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de cientos o miles de simulaciones para tener unos resultados estadı́sticamente sólidos, y por
tanto una buena caracterización de los parámetros en juego.

La metodologı́a desarrollada utiliza un proceso de perturbación que consta de tres com-
ponentes:

• El perfil de perturbación es cualquier fichero o recurso que indica cómo se debe modi-
ficar el dispositivo. Este fichero permite abstraer la fuente de variabilidad del simulador
y representa una perturbación única del dispositivo. Para analizar una fuente de varia-
bilidad, se generan tantos perfiles como simulaciones se deseen.

• El generador de perfiles es un código externo que se encarga de crear los perfiles aten-
diendo al tipo de variabilidad que se quiera estudiar, y también a los parámetros que la
caracterizan. En nuestro caso, este generador suele estar programado en Matlab.

• El lector de perfiles es una modificación en el código del simulador que se encarga
de cargar y aplicar el perfil de perturbación, independientemente de la naturaleza del
mismo. Esta modificación del código del simulador es muy simple dado que solamente
debe encargarse de leer un único perfil de perturbación y modificar el dispositivo como
sea necesario.

Hemos aplicado esta metodologı́a basada en perturbaciones a dos fuentes de variabilidad di-
ferentes: Line Edge Roughness (LER) y Metal Gate Granularity (MGG). En los artı́culos
presentados hemos aplicado estas fuentes de variabilidad exitosamente en una amplia va-
riedad de escenarios: distintas arquitecturas como nanohilos y FinFETs, distintas aleaciones
como InGaAs o Silicio, varios materiales de puerta como TiN, TaN o WN, y dos métodos de
simulación, arrastre-difusión con correcciones cuánticas, y Monte Carlo.

La naturaleza de LER son las irregularidades que aparecen en el lı́neas de un dispositivo
respecto a la forma recta ideal. En general, cualquier interfaz entre los materiales del dispo-
sitivo es un candidato a padecer este tipo de variabilidad, debido a que su origen es el propio
proceso litográfico. Este efecto aumenta según se reducen las dimensiones del dispositivo si
no se mejora el proceso litográfico, por tanto es muy importante caracterizarlo adecuadamen-
te.

Nuestra aproximación fue utilizar una transformada inversa de Fourier con un espectro de
ruido con distribución gausiana o exponencial. El espectro de ruido caracteriza las deforma-
ciones que sufre la lı́nea original del dispositivo, pero en el espacio de frecuencias. Medidas
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experimentales sobre imágenes TEM avalan las dos distribuciones seleccionadas. Esta trans-
formada inversa recupera la información del espacio de frecuencias al espacio real, y por tanto
genera un perfil de deformación que indica en qué cantidad se va a deformar una lı́nea con-
creta del dispositivo. El lector de perfiles debe encargarse de la modificación de la malla que
define al dispositivo de manera que no se generen tetraedros degenerados, y el resto de la
simulación puede realizarse como si no hubiese fuente de variabilidad alguna.

Hemos analizado el efecto que tiene sobre el comportamiento del dispositivo los paráme-
tros que definen el espectro de ruido, que son la altura cuadrática media (∆), y la longitud
de correlación (Λ). En todos los casos se ha aplicado en la dirección de transporte de carga,
puesto que es la contribución más importante que genera esta fuente de variabilidad. Usando
esta técnica se ha estudiado el efecto del LER en varios dispositivos, y se ha comparado el
efecto cruzado de cambiar la aleación del semiconductor y el tamaño del mismo.

Además de LER, también hemos aplicado nuestra metodologı́a a MGG. En este caso, la
naturaleza de la variabilidad son los dominios, o granos, que surgen en el metal con el que se
fabrica el contacto de la puerta del dispositivo. Entre otras tecnologı́as que se han desarrollado
para aumentar la capacitancia del contacto de puerta, se encuentra el conjunto de dieléctrico
con high-κ y puerta metálica. Esta solución está siendo aplicada ampliamente, pero tiene la
contrapartida de que en el contacto metálico surgen dominios que tienen distinta orientación
cristalográfica. Estos dominios, que tienen formas y orientaciones aleatorias, dependen del
material depositado, y además presentan distintos valores de función de trabajo, lo que tiene
un efecto perjudicial sobre la variabilidad del dispositivo.

Para modelar esta fuente de variabilidad, una de las opciones es dividir la puerta del dis-
positivo como si estuviera compuesta por varias puertas en paralelo, y aplicar un modelo
analı́tico para tener en cuenta el efecto de esta partición. Este método es sólo aplicable para
los MOSFETs, y es una primera aproximación, pero carece de la precisión necesaria para
abordar el problema cuando el tamaño del dispositivo se reduce por debajo de un cierto um-
bral, que es precisamente el rango que nos interesa estudiar. Otro enfoque es modelar la puerta
mediante granos cuadrados que cubran el área de la puerta, y aplicarle a cada uno de estos
granos un valor distinto de función de trabajo, para luego simular el dispositivo. Estos cuadra-
dos pueden tener diferentes tamaños, y orientaciones, según el material que se quiera simular.
El principal inconveniente de esta técnica es que los granos reales tienen una forma artifi-
ciosa, no cuadrada, y aunque hay otros enfoques donde se intenta ajustar la distribución de
granos para contrarrestar esta carencia, unos granos de forma cuadrada no van a representar
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adecuadamente los resultados experimentales. El enfoque más costoso y preciso es el uso de
imágenes de TEM del material con el fin de tener un patrón que pueda ser aplicado a la simu-
lación. Este enfoque requiere imágenes TEM como datos de entrada, por lo que se ve limitado
por la disponibilidad de los mismos.

Nuestra aportación es el algoritmo de Voronoi. Esta técnica se ha diseñado para imitar el
proceso de deposición de metal, en la que puntos de nucleación se definen por los primeros
átomos que llegan a la superficie, y los siguientes átomos se concentran alrededor de ellos.
Los dominios surgen de la concentración de átomos alrededor de puntos de nucleación, y
un diagrama de Voronoi reproduce exactamente esa estructura. La ubicación aleatoria de los
puntos de nucleación, junto con la orientación aleatoria que cada dominio recibe acorde con
el material en estudio, permite crear varios perfiles de perturbación para cada conjunto de
parámetros. Para el caso de MGG, la parámetros involucrados son el tamaño medio de los
granos, que es controlado en nuestro caso a través del número de puntos de nucleación, las
posibles orientaciones, su probabilidades y la función de trabajo que tiene cada orientación.

Utilizando este método, es decir simulando la partición del contacto de puerta en domi-
nios, la distribución de tamaños de los mismos sigue de manera natural una distribución Gam-
ma. Hemos demostrado esta afirmación por medio de datos experimentales, comparando la
distribución de tamaños visible en imágenes TEM de distintos materiales con la distribución
que surge de nuestro modelo, Gamma. Los resultados apoyan nuestra aproximación sobre
otras soluciones como el modelo de Rayleigh propuesto por otros investigadores, que tam-
bién analizamos con el mismo mecanismo y resultados experimentales, pero que resultó ser
inadecuado para representar esta fuente de variabilidad. Este enfoque ha sido probado con
diferentes materiales de compuerta, como el TiN, TaN y WN. También ha sido verificado en
dispositivos y materiales semiconductores diferentes, y los resultados publicados en diversas
revistas.

Con el fin de tener más información sobre el comportamiento intrı́nseco del dispositivo
en virtud de las fuentes de variabilidad, hemos desarrollado una herramienta matemática,
el mapa de sensibilidad de fluctuaciones (FSM). Utilizando el FSM es posible determinar
qué partes del dispositivo son más sensibles a una cierta fuente de variabilidad, pudiendo saber
de qué manera se ve afectada una figura de mérito ante un perfil de perturbación concreto.
Esta sensibilidad espacial se puede calcular para diferentes figuras de mérito, como tensión
umbral o corriente en las zonas on y off, y también para diversas fuentes de variabilidad.
El FSM es una caracterı́stica única de cada dispositivo una vez fijada la figura de mérito
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y la fuente de variabilidad, de tal manera que comparando el FSM de varios dispositivos
obtenemos una relación entre los propios dispositivos. Finalmente, es posible utilizar el FSM
para realizar predicciones sobre el comportamiento del dispositivo ante un conjunto de perfiles
de perturbación. Esto permite obtener una estimación de los parámetros del dispositivo sin
tener que llegar a simularlo, lo que la convierte en una primera aproximación de muy bajo
coste computacional y con una precisión adecuada.

Cuando se estudia la variabilidad de dispositivos semiconductores a través de la simula-
ción numérica, nos introducimos en el campo de los estudios estadı́sticos, en el sentido de
que tendremos una mayor precisión en los resultados a medida que aumentemos el número
de simulaciones , es decir la carga computacional de trabajo que estamos utilizando. Esta si-
tuación se da en otros campos de investigación, como oceanografı́a, biologı́a, ingenierı́a civil,
y normalmente se resuelve creando una infraestructura adaptada al problema concreto, lo que
conlleva que la solución esté ligada al problema resuelto, no siendo ası́ aplicable en otros
campos, y generalmente tampoco se puede adaptar a recursos computacionales distintos. Se
han desarrollado también soluciones genéricas que actúan como un middleware o como una
plataforma cientı́fica, pero igualmente presentan dificultades para abordar problemas nuevos,
o para ser adaptadas a recursos computaciones distintos de los inicialmente previstos.

Nuestro objetivo es reducir el tiempo de simulación, con el fin de obtener los resulta-
dos tan pronto como sea posible, pudiendo ası́ realizar más simulaciones. En nuestro caso de
análisis de variabilidad, aumentar el número de simulaciones nos va a permitir caracterizar
más adecuadamente el efecto de la misma en el dispositivo. La principal dificultad es que,
normalmente, los recursos computacionales disponibles son incompatibles entre sı́, y por tan-
to no se pueden lanzar simulaciones en todos ellos de una forma totalmente inmediata. Para
resolver este problema, hemos creado cuatro herramientas que permiten procesar eficiente-
mente cientos o miles de simulaciones: el TaskManager as a Service, el General Workload
Manager, el Auto-calibrador, y la reescritura del núcleo del simulador para utilizar OpenCL.

Para caracterizar el TaskManager as a Service, hemos utilizado el enfoque que se adopta en
computación en la nube, es decir, una taxonomı́a de modelos de computación que comúnmen-
te consiste en la Infraestructura como Servicio (IaaS), Plataforma como servicio (PaaS) y
Software como Servicio (SaaS). En todos estos modelos de computación en la nube se pre-
senta una interfaz al usuario, y se abstrae el contenido de las capas inferiores, definiendo
ası́ un servicio nuevo. Por ejemplo, el IaaS abstrae el hardware de varios equipos a través de
las máquinas virtuales, y le ofrece al usuario la posibilidad de poner en marcha y administrar



xi

máquinas virtuales. Hemos presentado por tanto un modelo de computación que se adapta a
esta taxonomı́a para mantener un lenguaje común con otros investigadores.

La idea detrás de la TMaaS es aislar el acceso a los recursos informáticos, y ofrecer al
usuario la posibilidad de definir y gestionar tareas computacionales. En cada tarea compu-
tacional hay que definir un conjunto de componentes: el entorno de ejecución, la aplicación
que se desea lanzar y el conjunto de recursos de entrada y de salida. Estos componentes de-
ben ser proporcionados por el usuario para que el TMaaS pueda gestionar la tarea de manera
transparente en los recursos computacionales disponibles, sean estos o no homogéneos. Por
un lado el TMaaS se encarga de la comunicación con el sistema de colas o sistema operativo
que esté instalado en cada recurso computacional, al igual que del despliegue de máquinas si
se trata de un recurso de computación en la nube, y de la gestión y monitorización de la tarea
concreta. Por otro lado, el TMaaS ofrece al usuario el control de las tareas, para que pueda
gestionarlas, independientemente de la naturaleza de las mismas. De esta manera resolvemos
el problema de que la solución quede ligada a un campo concreto.

Para implementar y probar el TMaaS hemos desarrollado el General Workload Manager
(GWM). Esta herramienta cumple con los requisitos antes mencionados, y permite al usuario
utilizar los recursos informáticos heterogéneos de una manera transparente. El GWM tie-
ne una arquitectura cliente-servidor, y utiliza REST para comunicar ambos actores, lo cual
permite descubrir las caracterı́sticas de la herramienta con facilidad. Como cliente, hemos
desarrollado dos versiones: un cliente de lı́nea de comandos que permite gestionar el sistema
completo desde un terminal UNIX, y un cliente habilitado para web que permite al usuario
controlar el comportamiento del servidor desde un navegador web. Esta aplicación web se ha
construido con tecnologı́as modernas para que la comunicación con el servidor sea mı́nima,
proporcionando una experiencia sólida y rápida para el usuario.

La estructura del GWM ha sido diseñada para que sea expansible, de tal modo que pue-
da proporcionar soporte a distintos recursos computacionales de manera transparente. Me-
diante esta estructura, se han implementado módulos para el GWM de comunicación con
varios shells, como bash, sh o ksh, y para comunicarse con varios sistemas de colas, como
PBS/Torque o SGE. Para aprovechar las soluciones modernas de cloud computing de IaaS,
también hemos implementado el soporte con varios proveedores de cloud computing, inclu-
yendo CloudStack, OpenStack, y Amazon EC2, de tal manera que un usuario puede solicitar
la instanciación de nuevos recursos computacionales en cualquiera de estas plataformas, y el
GWM los muestra de manera transparente para la ejecución de las tareas definidas.
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Utilizando el GWM hemos sido capaces de realizar la mayorı́a de las simulaciones que se
presentan en esta tesis en tres clústeres de HPC, que tienen tanto el hardware como el sistema
de colas incompatible entre si. En cualquier caso, el usuario sólo tuvo que definir la tarea que
querı́a que se ejecutase, y el GWM se encargó del lanzamiento y monitorización de la tarea
en los recursos computacionales disponibles.

Otra de las soluciones desarrolladas para abordar el problema de cálculo es un auto-
calibrador. Todas las simulaciones de dispositivos electrónicos presentados en esta tesis nece-
sitan ser calibradas con alguna fuente externa. Por lo general, se utilizan datos experimentales
cuando están disponibles, pero también se puede calibrar contra datos de simulaciones más
precisas, como NEGF o Monte Carlo. En ambos casos, la calibración requiere que el usuario
averigüe los parámetros de entrada del simulador mediante ensayo y error. Este proceso es
costoso y lento. Para mejorarlo hemos desarrollado un auto-calibrador que utiliza un algo-
ritmo genético para encontrar los valores de los parámetros que ajustan el comportamiento
del dispositivo a la curva de calibración deseada. Esta herramienta utiliza el GWM como in-
fraestructura para desplegar los cientos o miles de tareas que serán necesarios hasta alcanzar
un calibrado suficientemente preciso. Los resultados obtenidos con este auto-calibrador han
sido muy satisfactorios, con curvas de calibración más ajustadas que cuando se calibra ma-
nualmente, y sin interacción del usuario alguna, más allá de definir el dispositivo, la curva de
calibración deseada y los valores iniciales de los parámetros.

El simulador que estamos utilizando está implementado en C, utilizando MPI para comu-
nicar los nodos de computación de memoria distribuida que se quieren utilizar. Esta imple-
mentación está muy bien probada y optimizada, ası́ que no hay mucho margen de mejora posi-
ble. No obstante, nuevas arquitecturas como unidades de procesamiento gráfico de propósito
general (GPGPU) o aceleradores como el Intel Xeon Phi, están surgiendo como una buena
alternativa para alcanzar rendimientos muy elevados. Estas arquitecturas están más orientadas
a sistemas con matrices densas, puesto que el modelo de computación de hilos que presentan
favorece una carga de trabajo homogénea entre ellos. En nuestro caso, dado que utilizamos
elementos finitos en los simuladores que ejecutamos, nuestras matrices son dispersas, lo que
da lugar a un problema más complicado y no tan explorado. Para utilizar estas nuevas arqui-
tecturas, hemos implementado las operaciones del núcleo de los simuladores, que es la parte
más costosa computacionalmente, en OpenCL, un lenguaje que permite ejecutar código en
paralelo en arquitecturas GPGPU o Xeon Phi, entre otras. Este trabajo es preliminar, pero
ya hemos realizado algunas publicaciones con los resultados obtenidos y se presentan en la
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bibliografı́a.
En conclusión, el autor empezó esta tesis con el objetivo de avanzar el conocimiento exis-

tente en dispositivos semiconductores nanométricos. Concretamente seleccionó el análisis de
variabilidad como un problema que exige una combinación interesante de diversas habili-
dades. Por una parte, requiere conocimiento de los mecanismos fı́sicos que afectan al com-
portamiento de los semiconductores, y también de los procesos de fabricación, debido a su
impacto en la variabilidad bajo estudio. Por otra parte, requiere herramientas potentes para si-
mular miles de simulaciones y ası́ comprender el efecto de las fuentes de variabilidad. Durante
el desarrollo de esta tesis se han estudiado dos fuentes de variabilidad distintas, utilizando un
simulador de arrastre-difusión y otro de tipo Monte Carlo. Estas fuentes de variabilidad se han
estudiado en distintos tipos de dispositivos electrónicos, con distintas aleaciones y con varios
tamaños de puerta diferentes. Finalmente, se han desarrollado herramientas novedosas con las
que poder desplegar las simulaciones en recursos computacionales heterogéneos y optimizar
el tiempo de simulación.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Electronic technology has a deep impact in today’s society, as well as in science. Society has
introduced new several solutions in both personal and professional environments. Similarly,
scientific research of all kinds take advantage of the possibilities that technology provides.
Modern improvements had provided science the tools it needs to advance at a faster pace.
A representation of how important this factor is in modern society and science, is the high
economical impact that several technological corporations have in the worldwide market.

Most of these improvements are backed up by transistors, which are the main component
of any digital electronic device, specifically of central processing units (CPUs), graphic pro-
cessing units (GPUs), and volatile memory (RAM). Foundries design, manufacture and sell
transistors as a component for digital devices. These foundries rely on cutting edge knowl-
edge to provide faster, less power consuming, smaller or cheaper solutions. To achieve these
improvements, there has to be advance in the many steps of the fabrication process [1].

In order to foresee the evolution of transistors, hence technology, a group of semiconduc-
tor industry experts publish the ITRS [2, 3], a road map that characterizes the evolution that
transistors have to follow in order to maintain the desired rhythm of advance. Problems that
may arise due to the continuous miniaturization of the transistors are also explained in this
document. Using the ITRS, researchers can try to tackle the foreseen problems before they
actually occur, so they do not hinder the advance of technology.

Semiconductor device simulations are a powerful tool that allow scientists to save time
and money, by being able to predict how a device will behave without the need to create
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the manufacturing pipeline [4–6]. In order to understand the behavior of the real device,
the simulation process has to be as precise as possible. The drift-diffusion approach, which
calculates only the current and moment conservation of the carriers, is a simple but fast solu-
tion. When coupled with corrections for the quantum confinement like density gradient [7],
this method, once calibrated, is able to accurately simulate the subthreshold characteristics of
state-of-the-art semiconductor devices in the nanometre regime. The next step in complexity
could be the hydrodynamic approximation. This model is similar to the previous one, but
includes out of equilibrium effects that improve the simulation in certain situations. A more
complex simulation methodology is to use Monte Carlo, which considers the particles indi-
vidually or as meta-particles, and the scattering processes along the device, to obtain a very
good precision, specially in the on regime [8–10]. The downside of this approach is that each
simulation is very costly in comparison with drift-diffusion. An even more precise simulation
method is based on Non-Equilibrium Green Functions and it solves the quantum transport
with the Schrödinger equation [11]. As expected, this simulator is the most costly of the ones
presented.

One of the problems that we want to simulate, and hence give information back to the
scientific community and foundries, is the variability sources that appear in the process of
manufacturing the nanodevice [12]. This has a very big impact on the devices behavior,
decreasing their performance or some times generating operational failures [12–15].

In order to characterize the variability as well as possible, we have to run thousands of
simulations, to obtain a more reliable statistical insight on the nature and effect of the vari-
ability sources [16]. Therefore, the selected simulation technique has to be simple enough
to allow us to deploy as many simulations as possible while keeping an accuracy level that
grants us meaningful information. In our case that will be the drift-diffusion simulator with
quantum corrections, calibrated against experimental data when possible.

Another problem that we also want to tackle is the lack of general solutions that allow a
scientist to easily manipulate the computing capabilities needed in order to launch thousands
of simulations, or any other large workload. The existing solutions are too complex, or tailored
to certain problems and limited by their infrastructure.

In summary, we want to focus our work in two different fronts: i) to study the variability
sources that arise in modern nanodevice architectures, characterizing them and their effect
on the devices, and ii) to develop the computational tools that we need in order to be able to
manage thousands of simulations and post process the results.
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1.2 Variability sources

Once the semiconductor nanodevice is defined and ready to be produced, certain deviations
from the blueprints are to be expected. These deviations are random, and can be of two types:
related to different stages of the building process, or inherent to the semiconductor material
and physics. The effect of these deviations on the behavior of the device is called variability,
and the nature of the deviation is the variability source. These intrinsic fluctuations [17],
increase when the device is scaled down, which aggravates its importance.

We want to study different variability sources, and how are they related to the scaling of
the device. Each variability source under study will have an impact on the device character-
istics, that will depend on the parameters that characterize the variability source. Studying
the relation between those parameters and the impact on the device characteristics, we can
conclude which steps had to be taken in order to minimize the negative effect of the variabil-
ity source on the device behavior. Similarly, this allows us to compare the variability sources
between themselves.

To apply the variability source, considering that their nature is the deviation from the ideal
device, we modified the source code of the numerical simulator to account for the difference.
Our approach has to be as much realistic as possible, without modifying the simulator more
than necessary. All the modifications in the code have to be possible to deactivate, in order
to restore the original behavior. Also, because the variability is a statistical process, we need
more than one simulation to account for the effect of the variability source. More concretely,
considering that some parameters that characterize the variability are not fixed but also are
variables, we may want to deploy hundreds or thousands of simulations to have good statistics
and a proper characterization of the variability source.

The methodology chosen is common to all the variability sources under study: we ana-
lyze the effect of the variability via a perturbation process. This perturbation methodology is
composed of:

1. The perturbation profile is any kind of file or set of files that represent how the de-
vice has to be perturbed. This allows to take the actual variability source out of the
simulator, so a single compilation of the simulation can deal with different instances
of perturbations. This perturbation profile is generated offset, and deployed with the
simulator and the corresponding device characteristics, like the mesh, in order to have
a full simulation of the source under variability.
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2. The profile generator is an external code, that using the variability parameters is able
to generate a profile that represents how the device has to be perturbed. This profile
generator usually creates not one, but hundreds or thousands of profiles. The variability
parameters and the nature of this specific source of variability is treated in this stage,
so the simulator does not have to account for the details of the variability that is being
studied. In our case, this profile generator has been programmed in Matlab.

3. The profile loader in the simulator is an addition to the code base of the simulator that
will load the perturbation profile and modify the device accordingly. This profile loader
is oblivious to the characteristics of the perturbation that is being applied. Also, even if
the user wants to simulate hundreds of perturbations in order to get statistics, the profile
loader only has to deal with one at the time. This allows the modification in the code
base to be as small as possible, to be of little intrusion to the other developers that work
with the same code.

We have applied this methodology to two different variability sources: Metal Gate Gran-
ularity (MGG) and Line Edge Roughness (LER). The same methodology is valid for different
device structures. For instance, it has been applied to InGaAs and Silicon nanowires [18, 19],
and InGaAs and Silicon FinFETs [20, 21]. Since this perturbation is not an integral part of
the simulation, the application to different simulation engines is straightforward, like drift-
diffusion [19] or Monte Carlo [22]. Detaching the profile from the simulator allows for a
single compilation of the code, less maintenance of the source, and also allows for the com-
bination of variability sources. Next we present these variability sources and their main char-
acteristics.

1.2.1 Line Edge Roughness

The nature of the Line Edge Roughness is the irregularities that appear in the lines of a device
from the ideal straight shape. In general, any interface between materials created via spacers
in the lithography process is a candidate to suffer this variability. If the patterning is resist-
defined, the result is a random uncorrelated deformation in the line, and for spacer-defined
patterning, the shape of the deformation get transferred first to a dummy spacer, and from
there to the Fin, generating a correlated deformation [15, 23, 24]. This variability is found in
the several lines of FinFET devices [25], in MOSFET devices [26], and in other devices [27].
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Figure 1.1: Representation of uncorrelated LER applied for a FinFET device. A cross section of the device body is
shown.

LER is a source of variability that will worsen as the device is scaled down, so it has to
be studied and mitigated [28]. This shape has been observed via TEM images and can be
characterized with an inverse Fourier transformation of a noise profile. This characterization
of the TEM images also allows to generate [26, 29] the required deformation profiles to be
used in our simulator.

Considering a power spectra S(k), the deformation height can be calculated from a set of
random phases φ(k), such that:

H(x) = F−1S(k)φ(k),

being F−1 the inverse Fourier transformation from the wavelength space to the real space.
This transformation will depend on the random phases, which will give us different possi-
ble perturbations for a given power spectra. Also, the power spectra will depend on some
parameters, and will also have a certain functional dependency.

We have analyzed two different power spectra: Gaussian and exponential, as suggested by
[26]. In both cases, we are using two parameters to account for the variability. The root mean
square height of the deformation, ∆, represents how much the line is deformed in average.
The correlation length of the spectra, Λ, represents the spatial frequency of the deformation.
Small values of Λ represent elongated deformations, where big values of Λ will correspond
to shorter ones. In Figure 1.1, an example a LER deformation applied to a device is shown to
clarify this parameters.

The expressions for the Gaussian and Exponential spectra are:

SG(k) =
√

π∆
2
Λe−(k

2Λ2/4)

and

SE(k) =
2∆2Λ

1+ k2Λ2 .
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We applied the LER deformation along the body of the device, which is called Fin Edge
Roughness (FER), because is the most important contribution to the variability. Another
applications of LER are to be explored in future work, especially when changing the shape of
the device, which could unbalance the relative effect of each LER option.

The perturbation profile for this variability source is a file representing how much the
device has to be deformed. Fixing the ∆ and Λ values, we can generate several perturbation
devices by introducing different random phases φ(k). The profile loader has to be able to
deform the device and keep the mesh quality, which means no degenerated tetrahedra or close
to degeneration should be created. This is achieved by doing a gradual deformation of the
device and monitoring the tetrahedra, so if the deformation is not possible, the user is warned.

1.2.2 Metal Gate Granularity

A technology that has been used in production and is still projected to smaller device sizes,
is the metal/high-κ gate stack. This metal contact in the gate exhibits a problem that gains
importance in deca nanometre devices: the metal has domains with different orientations [30].
These domains will depend on the material, and each domain has a different work function.
The difference in work function implies that the behavior of the device will depend on the
grains that compose the gate and their orientation. The impact of this variability in SRAM
cells was studied [12], and it was confirmed that it is comparable or worse than the effect of
LER. Similar studies for single transistors [31–33] present the same conclusion.

This metal grain pattern and its effect on the device behavior is the nature of the MGG
variability source. Several approaches model this variability source. One of the options is to
partition the gate of the device as if it was composed of several gates in parallel, and apply
an analytic model to account for the effect of this partition. This approach is only applicable
for MOSFETs, and it is a first approach to this variability, but lacks the precision necessary to
tackle the problem for smaller devices [12, 33, 34].

Another widely used approach is to model the grains of the gate as squares that span the
area of the gate. These squares can have different sizes, and so they can take into account the
fact that the metal grains have not only random placement and orientation, but also random
sizes around a given mean value [31]. The main downside of this technique is that the grains
are always presented as squares, and this is not the observed behavior in nature. Other ap-
proaches [35] try to use an artificial distribution of grain sizes to better describe the behavior
of the device.
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Figure 1.2: Example of Metal Gate Granularity perturbation profiles for different materials and grain sizes.

The most costly approach is to use TEM images of the material in order to have a pattern
that can be applied to the simulation. This approach requires TEM images as input data, so it
is limited by the availability of that data [32].

We base our approach in trying to model the experimental data in the most realistic pos-
sible way, like the TEM images, but allowing for thousands of simulations without much
overhead. Because of that, we have developed the Voronoi model [36,37] of perturbations for
the gate. This algorithm consists on the definition of a random set of points in the surface of
the gate contact, randomly placed, ri. Once the points have been located, we define the grains
as the regions of the gate surface r such that:

Gi =
{

r|d(r,ri)< d(r,r j)∀ j
}
,

with d being the distance between two points measured along the gate surface. This is the
definition of a Voronoi diagram, which divides the surface in regions such that the points in
each region are closer to the related randomly placed point that to the other points.

We show several perturbation profiles in Figure 1.2, with different mean grain sizes and
two different materials, using our Voronoi approach. Once the material is chosen, the number
of orientations, their relative probability and the work function of each one changes.

This algorithm mimics the behavior of the metal deposition stage, in which nucleation
points are defined by the first atoms that reach the surface, and the next atoms gather around
them and define a single orientation. The random location of the nucleation points, along with
the random orientation that each grain receives after the grain boundary is defined, allows to
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generate several perturbation profiles from a single set of parameters. For the case of MGG,
the parameters involved are the mean grain size, that is controlled in our case with the number
of nucleation points, the possible orientations, their probabilities and the work function that
each orientation has.

Using this method to generate the grains, their area distribution arises naturally as a
Gamma distribution. We have checked with experimental data to compare the actual grain
area distribution visible in TEM images with the grain area distribution that arises from our
model [38]. The results support our model over other solutions like the Rayleigh model
[39, 40].

This approach has been tested with different gate materials, like TiN, TaN and WN. Also,
with different devices and semiconductor materials, and several publications present the ob-
tained data [19–21, 36, 38, 41, 42].

1.2.3 FSM, a tool for variability analysis

In order to have more information about the intrinsic behavior of the device under variability
sources, we have developed a mathematical tool which creates a fluctuation sensitivity map
(FSM) that registers how sensitive certain parts of the device are under the perturbation that
they suffer when a given variability source is being applied. The sensitivity can be calculated
for different figures of merit, like threshold voltage or off current. For a given figure of merit,
and a variability source, the FSM will be unique to the device under study, so comparisons
between FSMs of different devices provide interesting information about how they react to the
variability source. In certain cases, because the FSM represents the sensitivity of the device,
a prediction can also be carried out, in which the variability of the figure of merit can be
calculated by using the FSM and the perturbation profiles that are going to be used.

We have applied the FSM to analyze the MGG variability. In this case, the FSM takes
the shape of a matrix that represents each of the points of the discrete gate contact. After
simulating an ensemble of perturbation profiles, we can calculate the FSM with the follow-
ing procedure, which we present particularized to the MGG variability and its effect in the
threshold voltage:

Let Vi be the threshold voltage that results for each of the perturbation profile. Let f :
(u,v)→ (x,y,z) a continuous function that maps the elements from the FSM matrix to the
points in the gate surface, and let WFi(x,y,z) be the work function that is present in the given
coordinates of the gate. For each point of the matrix, (u,v), we can do the following least
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Figure 1.3: FSM applied to three different devices over the threshold voltage figure of merit.

squares linear fit:
Vi ∼WFi( f (u,v)),

which will return a different slope m(u,v,V,WF) for each of the matrix elements, so we define
FSMu,v(V,WF) = m(u,v,V,WF).

We present in Figure 1.3 the result of applying this algorithm to the threshold voltage
in three similar devices, all of them a representing a 10.4 nm gate length InGaAs FinFET
transistor. The image from the left corresponds to a triangular body shape, the center image
is a rectangular body shape with a big buffer of oxide at the top of the gate, under the contact,
and the last image is a rounded Fin. The figures represent the gate sensitivity, such that the
center of the figure corresponds to the top of the gate, and the extremes of the figure with
those of the gate. Usually the most sensitive part of the gate (light color in the figure) is in the
sides close to the top of the gate. Both in the TRI and REC devices, this sensitivity is reduced
in the apex of the contact. In the first case, due to the narrowing of the body, and in the second
one, because of the buffer of oxide. More details are shown in the published article [43].

1.3 Computational problem

When studying the variability of semiconductor devices via numerical simulation, we are
stepping in the field of the statistical studies, in the sense that we are going to have more
precision in our results as we increase the computational workload that we are deploying. This
kind of problem is also present in other areas of science, in which upgrading the computational
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capabilities available will return a better solution to their problem. Similar problems raised in
other fields like oceanography or biology, has been solved via creating solutions tailored to a
particular problem [44–46]. Because of this, the solutions are only valid for the correspondent
field of study. Another solution based on science gateways is close to solving that problem
[47], but it only provides a community-specific set of tools, and does not allow a scientist to
deploy his code independently.

Our objective is the optimization of the simulation time, in order to have the results as
soon as possible or to have more simulations that allows for a better result. The problem is
having to use computational resources that are incompatible between themselves. In our case,
deploying a big amount of simulations is a key point in order to properly analyze the effect
of the variability source on the device behavior. Therefore, we have developed four tools to
efficiently process hundreds or thousands of simulations, and we briefly describe them in the
following subsections: the Task Manage as a Service, the General Workload Manager, the
Self-Calibrator, and the OpenCL implementation of the simulator engine.

1.3.1 Task Manager as a Service

The cloud computing environment has defined an approach that we can adopt in order to
tackle the presented computational problem. The taxonomy of cloud computing services [48]
is commonly represented via the Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS). In all these cloud computing models, there is an
abstraction of certain layers of computation, and an interface is offered to the user so he can
deal with them without knowing their internal details. For example, the IaaS abstracts the
hardware of several machines via virtual machines, that can be launched and managed by the
user.

We present the Task Manager as a Service, which solves the aforementioned computa-
tional problem. This computing model has also been implemented in the form of the General
Workload Manager, explained in the next subsection.

The idea behind the TMaaS is to isolate the access to the computing resources, and to
present the user with the ability to define and manage tasks. We define a computational task
as a set of components: the environment, the executable that is to be launched, the possible set
of input and output resources. The TMaaS is a layer that allows a user to define and manage
the life cycle of tasks using the available computing resources transparently.
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Once the TMaaS is up and running, the only interaction of the user with the computational
resources is the task. With this unit, it is very easy to monitor the tasks in several ways. It also
allows to schedule the tasks following different scheduling mechanisms that will adapt to the
time deadlines, the status of the computing resources, or the scientist needs. This computing
model does not depend on the field that the scientist is working on, so its applicable to the
aforementioned cases, and of course to our nanodevice simulator.

1.3.2 General Workload Manager

To implement and test the TMaaS we have developed the General Workload Manager (GWM).
This tool complies with the requirements mentioned before, and allows the user to use hetero-
geneous computing resources in a transparent way.

The tool was developed following a client-server architecture. A server is installed that
monitors some ports for REST petitions. By using REST, the application is easy to extend
and to discover from the user point of view. The client that communicates with the server via
the REST architecture is controlled by the user. We have implemented two different clients
with the same capabilities: one command line client which allows to manage the full system
from a UNIX terminal, and one web enabled client that allows the user to control the behavior
of the server from a web browser. This web browser application is developed using modern
technologies for communicating with the server, and displaying the state, to provide a easy,
fast and modern experience to the user. Using a Model View Controller paradigm, with AJAX
in order to maintain the state of the application in the client, and REST to communicate with
the server, the result is that the management of thousands of tasks is not more difficult for the
user than that of an online mail client.

The GWM is expansible because it has been conceived as a plugin-based architecture.
This allowed up to implement modules for the GWM to communicate with several shells, like
bash, sh, or ksh. The same plugin-based architecture is used to facilitate the access to queu-
ing engines, like PBS/Torque or SGE, so the user does not have to deal with the differences
between them. Also, the GWM is capable of communicating with several cloud computing
providers, like CloudStack, OpenStack, Amazon EC2, and more. So the instantiation of new
computing resources is done transparently. One of the developed schedulers, called intelli-
gent scheduler, allows the user to define a stopping metric that can be calculated from the
simulation results, and the GWM will deploy only the required simulations to obtain that
metric. This is done by calculating the value of the metric after each simulation and using that
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information as feedback.

Using the GWM we were able to deploy most of the simulations that are presented in this
thesis. In most cases, the simulations were run in three different high performance clusters,
with incompatible hardware and different task management enqueuing. In any case, the user
only had to define the computing task and the GWM would take care of the task management.

1.3.3 Self-calibrator

Another of the solutions developed to tackle the computational problem is a self-calibrator.
All the nanodevice simulations presented in this thesis need to be calibrated to some external
source. Usually the source is either experimental data, when available, or results from more
precise simulations, like NEGF or Monte Carlo. In both cases, the calibration requires the user
to guess the right values for the parameters that characterize our drift-diffusion simulator and
that fit the behavior of the device as close as possible. To find these parameters, the original
procedure is to change their values, simulate the device, compare the behavior and repeat.
We developed a self-calibrator that uses the device specifications and the desired behavior
to obtain the values for the parameters that closely match that desired behavior. This self-
calibrator uses a genetic algorithm to decide the values of the parameters for each iteration,
and the GWM to manage the tasks.

1.3.4 OpenCL implementation

The simulator that we are using is implemented in C with MPI to take account of the com-
munication between nodes. This implementation is very well tested and optimized, so no
much margin of improvement is possible. New architectures like General Purpose Graphics
Processing Units (GPGPUs) or accelerators, like the Intel Xeon Phi, are being used nowadays
to obtain faster running times [49], even if they are tailored to dense systems instead of the
sparse we are working with. We have implemented the required operations to transfer the
engine of our simulator from the MPI-enabled to a OpenCL implementation, which can be
run in several different architectures without changing the source code. This is still a work in
progress, but the preliminary articles already published in the topic are listed in section 1.5.
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1.4 Outline

In the following chapters we provide the key articles that represent the main body of work
for this thesis. In all these articles, the author of the thesis has been the main contributor,
or a coauthor that highly contributed to the paper. These articles have been either published
in JCR journals or in high quality international conferences: IEEE Transactions on Electron
Devices, Semiconductor Science and Technology, International Conference on Simulation
of Semiconductor Processes and Devices (SISPAD), and IEEE International Conference on
Communication (CORE A). This selection of articles has been made to delve into the main
points mentioned in the introduction, and to have a more complete representation of the work
carried out doing this thesis, the full reference list in section 1.5 should be considered. In that
section we list a full compendium of the journal publications and conference presentations
related to this thesis, which include journals like IEEE Electron Device Letters and IEEE
Internet Computing.

In chapter 2, we explain the Voronoi method introduced in section 1.2.2, to model the
Metal Gate Granularity. We also analyze the effect of changing the device body shape from
a complete square to a rounded corner shape. The first measures of MGG variability were
presented for a 25 nm gate length Silicon SOI FinFET device. This presentation of the Voronoi
method was well received by the scientific community and the findings of this article where
cited several times. The Voronoi method is being used today by several researchers to model
the MGG variability.

Following a recently published approach to calculate the MGG variability via the Rayleigh
distribution [39], in chapter 3, we compare our Voronoi model with the Rayleigh approach,
using the equivalent Gamma distribution that arises naturally from the grain area distribution
of a Voronoi diagram. We also compare both algorithms with TEM images. We found that our
approach is way more suitable to match the experimental results, and that the Rayleigh distri-
bution overstates the value of the variability. The analysis was done with experimental data
of different materials, provided by Dr. Kenji Ohmori, from the Nanotechnology Laboratory
of Waseda University, Tokyo [30].

Using both the Line Edge Roughness, explained in section 1.2.1, and the Metal Gate
Granularity, we present in chapter 4 an analysis of the effect of both these variability sources
in a 25 nm Silicon SOI FinFET device, the same device that was used in chapter 2. This is the
first article in which we present our methodology to generate LER profiles, as an application
of the same perturbation pipeline. We have found that the MGG has a negative effect in the
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power consumption and the switching speed, decreasing the quality of the device, as the grain
size grows. Similarly for LER, we have found that both the correlation length and the rms
height have a negative effect in the variability of all figures of merit, but more pronounced
in the case of the rms height for the studied parameters. In general, this device shows more
sensitivity for LER than for MGG.

In order to expand the knowledge of both variability sources and device fabrication, we
simulated the same variability sources as in chapter 4, but for two state-of-the-art devices: a
Silicon SOI FinFET, and an InGaAs III-V-OI FinFET with a similar shape. In both cases,
we have also reduced the size of the device from 25 nm to 10.7 and 10.4 nm, respectively.
We used data from Monte Carlo simulations to calibrate the simulator, because there was
no experimental data available at the moment. The results of this comparison are shown
in chapter 5, where we found that in the sub-threshold region, the InGaAs device is more
resilient to MGG variability than the Silicon device, specially for the subthreshold swing,
and produces similar results for the LER variability. Nevertheless, the results for on-current
present the opposite trend.

To obtain the previous results, we have to run several thousands of simulations, to account
for the different devices, variability sources and parameters. The proposed Task Manager as
a Service infrastructure was used to test its validity in real world situations. In chapter 6 we
present the General Workload Manager, our implementation of the TMaaS computing model.
We have applied the GWM to different scenarios to show how it can handle workloads inde-
pendently of the nature of them, and we also present how it can deal with three incompatible
clusters and a cloud provider in order to deploy and manage the computational tasks.

Finally, in chapter 7, we present the conclusions of the thesis and of the articles reproduced
in the following chapters, along with the future work that naturally arises from the articles
written in this thesis.
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information:

International Conference on Simulation of Semiconductor Processes and
Devices, 2012, pp. 149-152

G. Indalecio, A.J. Garcı́a-Loureiro, M. Aldegunde and K.Kalna

2.1 Abstract

A full-scale 3D simulation study of the impact of metal gate granularity (MGG) on the off-
state of a 25 nm length gate SOI FinFET is carried out. The 3D simulations are performed
using a parallel finite-element simulator within the drift-diffusion approximation using density
gradient quantum corrections. The shapes in the device are described by using splines, and
metal grains are modelled using Voronoi diagrams. We study two different grain sizes and
silicon fin corner geometries. While the impact of the geometry is found to be negligible in
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our simulations due to a relatively large size of the device, the grain size has a large impact
on the variability of subthreshold characteristics.

2.2 Introduction

As the ITRS imposes new requirements over the device characteristics for the next genera-
tion of digital circuits, FinFET architectures have became the leading solution to continue the
scaling beyond the 32 nm node [50]. These devices are manufactured using high-κ/metal gate
stack technology, which brings about a reduced EOT without compromising on leakage cur-
rent. However, grains of different orientations in the metal gate of MOSFETs with sub-32 nm
metal gate/high-K gate stacks induce a work-function variability whose impact is compara-
ble with random dopant fluctuations (RDF) and line edge roughness (LER) [12, 51, 52]. The
variability induced by the different metal grain orientation will become a dominating source
of variability over RDF and LER at the 22 nm technology node [12]. Therefore, the work-
function variability is expected to affect also significantly FinFET MOSFETs which use the
similar metal gate/high-K gate stacks. Other sources of fluctuations (e.g., RDF and LER)
have been studied extensively in the past because they were a main concern for scalability
for several technological nodes. However, the metal gate granularity has become a source
of concern in the last technology nodes with the substitution of polysilicon by a metal in the
transistor gate stack.

In this work, we use an in-house developed parallel code to carry out the study of metal
grains induced variability. This code implements a full-scale finite element simulation under
the drift-diffusion approximation with quantum corrections [53], needed to account for the
quantum confinement effects occurring in FinFET architectures [7].

2.3 Device Description and Simulation Approach

The device under study is a 25 nm length silicon FinFET with a 30 nm tall and 12 nm wide
silicon body [54]. The dimensions and shape of the oxide layer are modelled following the
data of the actual high-κ based dielectric shown in [54, 55]. The geometry of the device
is described by using spline functions instead of the more common block-shapes [56, 56–
58], achieving a more realistic simulation. The doping profile was defined analytically to
reproduce experimental sub-threshold characteristics at low and high drain biases.
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Figure 2.1: Details of ’block’ (a) and ’curved’ (b) geometry of the Si Fin, note the difference at the inner top
corners.

The device is modelled using a tetrahedral mesh suitable for finite element simulations.
This modelling was made with Gmsh. This is a generic CAD tool, which allows us to define
the whole device and tag each surface and volume, with arbitrary geometry. In this way, we
can change the geometry of the device and reflect possible differences, like curvatures. An
example is shown in Fig. 2.1, where we changed the geometry of the silicon fin from a squared
to a rounded one, with the objective of analyse the possible effect of the fin curvature.

The simulation code has been parallelised using the MPI communication library. One
of the advantages is lower running time, which allows us to run more samples of the work-
function or geometries. Another is to have more memory because the distributed scheme have
access to available memory at all the nodes, which allows us to run finer meshes and evaluate
fine details, like the curvature on Fig. 2.1 or small patches on the voronoi diagram. This MPI
communication requires to divide the mesh in as many parts as nodes of computation. This
division is made not using a CAD tool, but using Metis, a well known graph partitioner very
suitable for this purpose.

Fig. 2.2 shows the geometry of the device and an example of the distribution of work-
function values on the gate. The work-function granularity is modelled using a grain approx-
imation in which we define two possible orientations for the grains in the metal gate with
work-functions of 4.4 and 4.6 eV as shown in Table 2.1 together with their respective proba-
bility of occurrence [56, 57]. Instead of the usual approximation which employs squares for
the shape of the grains [57, 58], we calculated a Voronoi diagram of a set of randomly gener-
ated points, which results in variations in size and shape as in realistic crystalline structures
such as those used in [56]. Then, each polygon is assigned a certain orientation based on the
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Figure 2.2: Render of a simulated FinFET device, with a gate coloured according to work-function values for 5 nm
metal grains.

experimental probabilities shown in Table 2.1. Examples of such diagrams for two different
grain sizes are shown in Fig. 2.3.

These stripes with randomly assigned work-functions are then mapped onto the metal gate
of the simulation domain using the inverse of the spline-functions which define its shape. The
result of this process for the diagrams in Fig. 2.3 can be seen in Fig. 2.4 for the two different
grain sizes.

The use of Poisson-Voronoi diagrams to simulate the polycrystalline grain structure of ma-
terials, although common in other fields [59–61], has not been used previously for the metal
gates in semiconductor device simulations, where a block-based approach is more common
(probably because of its simplicity of implementation). The use of Poisson-Voronoi diagrams
to simulate polycrystalline materials has some problems associated to its ability to reproduce
certain statistical properties of the grains observed experimentally. This has lead to few stud-
ies of alternative approaches which try to obtain a closer match to experimentally observed
properties [62, 63]. However, the inclusion of these methods can be computationally very de-

Table 2.1: Probability and work-function of the different orientations of the grains for the metal gate used in the
simulations.

Orientation Prob. WF (eV)
<200> 60 % 4.6
<111> 40 % 4.4
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(a)

(b)

Figure 2.3: Example of two Voronoi diagrams used to randomise metal grains, with a mean diameter of (a) 5 nm
and (b) 10 nm. Different colour represents different work-function values, 4.4 eV (white) and 4.6 eV
(grey).

manding and as such is beyond the scope of this work. We feel that the approach selected in
this work represents good compromise and significantly improves on block based generation
methods. Thus more realistic simulations of polycrystalline structures following [62, 63] will
bring small quantitative changes to the results obtained in the present work.

2.4 Grain Induced Variability

For the present study of variability, we have generated 200 different work-function patterns
with two different average grain sizes using the methodology described in the previous sec-
tion. Half of patterns have an average grain size of 10 nm, and the other half of 5 nm. We have
also changed the shape of the Si body, as shown in Fig. 2.1, from a simple block (’block’) to
one with corners of 1.5 nm of radii (’curved’), following a similar approximation as in [64].

All the simulation were carried out on FinisTerrae supercomputer from CESGA super-
computing facilities at Galicia, Spain. The FinisTerrae supercomputer is an integrated system
with shared memory nodes with a NUMA SMP architecture. It is composed of 143 computing
nodes (142 HP Integrity rx7640 nodes with 16 Itanium Montvale cores and 128 GB of mem-
ory each, 1 HP Integrity Superdome node with 128 Itanium Montvale cores and 1,024 GB of
memory). This is a total of 2528 processing cores and 19.670 TB of memory, interconnected
with an INFINIBAND 4xDDR at 20 Gbps.
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Figure 2.4: Example of work-functions for 5 nm (a) and 10 nm (b) grain sizes. These are two of the 200 profiles
used in our simulations showing different colour for different work-function values of 4.4 eV (blue) and
4.6 eV (red).

The simulation results for the four situations, 5 nm and 10 nm average grain sizes and two
geometries, are summarised in Fig. 2.5. This figure shows the distribution of threshold volt-
age, sub-threshold swing and off-current for all the simulated cases. The figure also indicates
the mean for each case (thick line) as a reference.

Comparing the simulations using ’block’ and ’curved’ geometry, only small differences
can be found, which are mainly statistical fluctuations. This is not the case for the average

Table 2.2: Threshold voltage (Vt ), sub-threshold swing (SS), and off-current (Io f f ) for indicated metal grain sizes
and their respective standard deviations.

’Block’ geometry
Grain Vt σ(Vt) SS σ(SS) Io f f σ(Io f f )
[nm] [V] [mv/dec] [A]

5 nm 0.356 0.020 72.752 1.211 -10.734 0.317
10 nm 0.349 0.028 73.220 1.259 -10.610 0.417

’Curved’ geometry
Grain Vt σ(Vt) SS σ(SS) Io f f σ(Io f f )
[nm] [V] [mv/dec] [A]

5 nm 0.355 0.024 72.981 1.199 -10.712 0.366
10 nm 0.356 0.026 73.216 1.362 -10.703 0.390
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Figure 2.5: Histograms for the simulated Io f f (off-current), VT (threshold voltage) and SS (subthreshold swing),
showing the four possible parameter combinations of the curvature (’block’ and ’curved’) and the grain
diameter (10 nm and 5 nm), vertically stacked to have a common x-axis. The mean of the data is shown
by a thick black line in every plot.

diameter of the grains. For every set on 2.5, the mean and variability does not depend on the
gran size, but the shape of the histogram shows some change. Looking at the y-axis range on
the threshold voltage, the data are more centered on the 5 nm grain case, and more spread on
the 10 nm grain case.

2.5 Conclusions

In this work, we have studied the metal grain induced variability in the sub-threshold char-
acteristics of a 25 nm gate length Si SOI FinFET using quantum corrected 3D FE DD simu-
lations. We have introduced a new approach for modelling the metal grain granularity using
Voronoi diagrams instead of the simple square-based approach. This method allows for a
more physical representation of the grain shape and size distribution at very little extra com-
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putational cost. Furthermore, as the size of the gate decreases, this method will demonstrate
its advantages over simpler physical representation of grain shapes. We also conclude that
he study on grain size for the work-function variability produced a similar behaviour to that
found on bulk MOSFETs.

When the grain size is comparable to the gate size, the distribution of Vth becomes wider.
The mean values for the three parameters (Io f f , Vth and SS) are similar, but the dispersion of
Vth is 40 % larger for the 10 nm grain size than for the 5 nm one. Also, the dispersion of Io f f

is about 30 % larger for the bigger size of grains of 10 nm. This increase in the dispersion is
not desired for device characteristics because not only the device figures-of-merit have to be
matched but they have to exhibot also small dispersions.

On the other hand, the impact of corner effects on the metal grain induced variability
are found to be negligible for the simulated device. The mean values for the parameters are
similar in the both ’block’ and ’curved’ geometries deep inside the uncertainty margin. The
dispersion σ shows that the larger grains make the distribution wider thus σ increases. These
differences would call for a more extensive study taking a larger variety in work-function
granularities into consideration.
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3.1 Abstract

We have demonstrated, via validation to experimental data for TiN and Ru, that the grains
which appear in the metal gate stacks of nanoscale CMOS devices can be characterized via a
two-parameter Gamma distribution (p-values 0.17 and 0.42 for TiN and Ru). Conversely, a
previously presented fit which used Rayleigh distribution does not reproduce the experimental
data (p-values 3× 10−14 and 0.0029 for TiN and Ru). Poisson Voronoi Diagrams (PVDs)
are shown as a suitable algorithm to generate grains with Gamma distribution, via fitting of
the distribution of 10000 grains. We have also compared the PVD variability against the



28
Chapter 3. Study of Metal-Gate Work-Function Variation using Voronoi cells: comparison

of Rayleigh and Gamma distributions

Rayleigh model. for both TiN and TaN metal gates, and concluded that Rayleigh approach
overestimates the device variability (by 11.9% for the TiN and by 7.14% for the TaN).

3.2 Introduction

The metal gate granularity (MGG) [65] is one of the most important sources of variability
affecting nano-scaled devices studied both experimentally [30] and in simulations [32, 41].
The metal grains that appear in the gate contact will have different sizes and orientations
depending on the material and the annealing temperature [66, 67]. The orientation of the
metal lattice in each grain will change a work-function (WF) of the metal contact affecting
the channel formation and inducing variability into device characteristics [68]. A physically
based modelling of the MGG variability requires a realistic characterization of the distribution
of the metal grains that accurately reproduces the behaviour found in the experimental devices.
Most of the current simulation approaches use square grains which are unrealistic and lack the
flexibility to correctly represent gates with very large grains or on the nanoscale regime [31].
Recently, a grain size distribution governed by the Rayleigh distribution was proposed [35]
which represented closely simulation results [32]. However, no physical basis has been argued
for choosing that particular distribution.

In this paper, we initially establish, via comparison to experimental data, that the ran-
dom grains arising from the metal gate contacts are characterised via a Gamma distribution.
This distribution, unlike the previously adopted Rayleigh fit [35], has a physical justifica-
tion and will provide a correct description of the metal grain induced device variability. We
have demonstrated that our algorithm generates Voronoi cells that follow the expected theo-
retical Gamma distribution. Finally, we have compared these two distributions, Gamma and
Rayleigh, and their predicted MGG variability.

3.3 Poisson Voronoi Diagrams

The realistic growth of the metal grains over amorphous substrates is determined by the nature
of a deposition process [69]. The first metal atoms that reach the oxide will deposit at random
positions and serve as nucleation points. Next deposited atoms will drift towards their closest
nucleation points creating a domain with a specific lattice orientation. A Poisson Voronoi
Diagram (PVD) [37] reproduces this behaviour being able to generate realistic grains that
account for the shape of domains growing from these randomly placed nucleation points. The
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PVD approach has been previously used [21,36,70] to simulate the impact of the metal grain
WF variability in nanoscale FinFETs. The physical meaning of the PVD makes it a suitable
tool to model the grains of the metal contact. We will demonstrate that the area distribution of
the grains generated in a PVD profile is a Gamma distribution. Analysing the area distribution
of experimental gates, we are able to validate the Gamma distribution. This process provides
the physical basis to use the Gamma distribution that the Rayleigh one lacks.

The PVD is a mathematical structure that consists in seeds of points randomly placed in
any n-dimensional space. In our case, we are working with a surface that represents a metal
gate contact, to generate a profile that can be applied to the device. Once the seeds are located,
all the points from the space are classified taking into consideration the nearest seed, defining
a PVD. In our case, the domains represent the grains of the metal contact. This profile is
generated from material parameters and device dimensions to particularize it for the device
under study.

3.4 Simulation results

3.4.1 Experimental validation

Both Gamma and Raileigh distributions try to account for the grain distribution of metal gates,
so in order to prove which one is more suitable, the best approach is to compare experimental
data [30] against Rayleigh and Gamma distributions. To do this comparison, we are going to
fit the areas from experimental TEM images to the following density functions:

Rayleigh(x;a) =
x
a2 exp

(
−x2/2a2) (3.1)

Gamma(x;a,b) =
1

baΓ(a)
x(a−1) exp(−x/b)) (3.2)

where x is the normalized grain area and a, and b are fitting parameters.
Two metal poly-crystalline films have been compared: TiN, which produces nano-sized

grains with mean diameter of 4.3 nm, and Ru, with larger-sized grains with mean diameter of
18 nm [30]. Figs. 3.1 and 3.2 show the experimental histograms of the distribution of grain
areas (normalised by the mean grain area) for the TiN and Ru metals and their comparison
to Rayleigh and Gamma distributions. For both metals, the Gamma distribution accurately
reproduces the shape of the experimentally observed metal grains. However, Rayleigh distri-
bution underestimates the number of small grains and overestimates the number of large ones.
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Figure 3.1: Experimental distribution of the normalized Ru grain area fitted to Rayleigh and Gamma functions.

Using a χ2 test [71], we can quantify how well these two distributions represent the exper-
imental data. The χ2 test compares the observed histogram measures (Oi) and the expected
statistical distribution (Ei) using the normalized difference for the n measured points:

χ
2 =

n

∑
i

(
Ei−Oi

Oi

)2

(3.3)

Large values of χ2 represent a mismatch between the observed and the expected data. For
any χ2 exists a corresponding p-value (tabulated in standard distribution tables [71]) that rep-
resents the probability that the set of data follows the proposed distribution. If the p-value is
over a lower-bound previously set (typically 0.05) it is considered that the distribution matches
properly the data; if the p-value is below the lower-bound the distribution will excessively dif-
fer from the observed data.

A χ2 analysis of the data presented in Figs. 3.1 and 3.2 shows that the Gamma distribution

Table 3.1: Physical properties of the TiN and TaN metals.

Material Orientation Probability WF (eV)
TiN < 200 > 60 % 4.6
[69] < 111 > 40 % 4.4
TaN < 100 > 50 % 4.0

< 200 > 30 % 4.15
< 220 > 20 % 4.8
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Figure 3.2: Experimental distribution of the normalized TiN grain area fitted to Rayleigh and Gamma functions.

of the grain areas for both metals (p-values 0.17 and 0.42 for TiN and Ru, respectively) fits
much better the experimental data than the results produced by Rayleigh distribution (p-values
3× 10−14 and 0.0029 for TiN and Ru, respectively). Therefore, p-values show that only
Gamma distribution is above the lower-bound of 0.05, reproducing the experimental data.

3.4.2 PVD simulations: comparison with Rayleigh and Gamma

In this section, we model the distribution of metal grains via Voronoi based simulations. This
model will be independent of the metal employed in the gate, since it only depends on the
grain distribution and not on the orientation of the grains. As an example, we show TiN
and TaN as possible metals for the gate. Their physical properties are collected in Table 3.1.
Fig. 3.3 shows an example of Voronoi WF distributions for these two metal gates for four
different grain sizes (10, 7, 5 and 3 nm).

The distribution of grains created via PVD will be now analised to show that Voronoi
approach inherently follows the Gamma distribution. We have generated several hundreds
of metal grain mappings on the gate with an average grain size of 4.3 nm. Fig. 3.4 shows a
histogram of the normalized grain area distribution for metal grains when Voronoi approach
is used together with its fit to Rayleigh and Gamma distributions. The Voronoi distribution
fits accurately to a Gamma distribution with a p-value of 0.38. On the other hand, Rayleigh
distribution is not only ill-fitted (with a p-value of 0.033) but it also does not represent cor-
rectly a position of the mode of the distribution, which is the grain area that has the largest



32
Chapter 3. Study of Metal-Gate Work-Function Variation using Voronoi cells: comparison

of Rayleigh and Gamma distributions

10 nm

7 nm

5 nm

3 nm

TiN TaN

4.6 eV4.4 eV 4.0 eV 4.15 eV 4.8 eV

Figure 3.3: TiN and TaN gates for different grain sizes. Each colour represent one of the possible WF values for the
given material.

frequency. This can be seen in Fig. 3.1, in which modes for both distributions are shifted.
Only the Gamma mode matches the experimental data. The Gamma distribution parameters
a and b (see Eq. (2)) were fitted to a=b−1=3.47 via the least squares method. Those values
are very close to those predicted by [37] (a=b−1=3.50). The Rayleigh distribution parameter
a fitted to 0.92 is giving the best possible fit to experimental data.

3.4.3 Impact on the estimation of the WF variability

Having demonstrated that the experimental grains follow a Gamma distribution, we aim to
analyse the impact of using Rayleigh distribution instead of Gamma distribution to generate
the grains for MGG variability studies. To estimate the impact of the gate length and the
grain size, we initially define the RGG (average grain size divided by the total gate area) as
previously done in Ref. [35]. To obtain an average WF value for all the gates generated via
the Voronoi approach, we use the following expression:

WF(eV ) =
N

∑
i=0

Ai ·WFi

A
, (3.4)

where N is the number of grains present in the gate, Ai (nm2) the area of the grain i, A

(nm2) the total area of the gate, and WFi (eV) the WF value assigned to the grain i. This is
a simplification done in order to compare our results with the Rayleigh approach, because
it uses an average of grain areas instead of simulating the full device. The downside of this
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Figure 3.4: Distribution of metal grains obtained via Voronoi based simulations. Results have been fitted to both
Rayleigh and Gamma distributions.

simplification is an underestimation of the variability that will affect all scenarios, as noted
in [32].

Fig. 3.5 shows the TiN and TaN metal gate WF variability extracted from Voronoi based
simulations and compares it with: our proposed Gamma fit, and the Rayleigh fit (data ex-
tracted from [35]). The number of metal gates which is used to obtain an accurate grain
distribution while minimise statistical error depends on the grain size and ranges between 500
to 1000.

The Rayleigh linear fit consistently overestimates the gate WF variability with respect to
the Gamma fit by 11.9% for the TiN and by 7.14% for the TaN. This overstimation is based
on the fact that Rayleigh distribution is unable to correctly capture the grain size distribution,
as seen in Figures 3.1, 3.2 and 3.4. This inaccuracy does not play a significant role when the
number of grains present in a gate is very large but when there are only a few grains in the
gate as in typical nano-scale multi-gate FETs [41], it may lead to a significant overestimation
of a variability of the threshold voltage (VT ) of devices. As a rough estimation, if we take into
account that the VT of a MOS device depends linearly on its gate WF, the correlation between
the metal gate WF and the VT variabilities [72] is:

σ(WF)/eV = σ(VT )/mV (3.5)

As an example, the overestimation in σ(VT ) is 5 mV when RGG=0.2 if the Rayleigh linear fit
is used and it increases to 12.5 mV when RGG=0.5 for TaN.
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Figure 3.5: TiN and TaN gate WF variability Voronoi simulations compared to [32] and to linear Rayleigh and
Gamma fits.

3.5 Conclusion

We have demonstrated, via validation to experimental data [30], that the metal grains which
appear in the metal gate stacks of state-of-the-art nano-scaled devices can be characterized via
a two-parameter Gamma distribution. We have shown that a previously presented fit which
used Rayleigh distribution [35] is not accurately reproducing the experimental data. However,
the two-parameter Gamma distribution of the grain areas is well fitted (p-values 0.17 and 0.42
for TiN and Ru, respectively) while the Rayleigh distribution of the grains is unsatisfactory
(p-values 3×10−14 and 0.0029 for TiN and Ru, respectively).

Finally, we have compared the Poisson Voronoi Diagram (PVD) variability against the
Rayleigh model for both TiN and TaN metal gates. The PVD is an optimum method [19, 73]
to generate metal grains since this approach represents the shape of domains that grow from
randomly placed nucleation points as observed in a real fabrication [69], and the grain distri-
bution generated matches the experimental results. We have shown that the Rayleigh approach
overestimates the device variability (by 11.9% for the TiN and by 7.14% for the TaN), whereas
the variability provided by the Gamma distribution is much closer to the realistic metal gate
induced device variability.
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4.1 Abstract

A 3D drift-diffusion device simulation tool with quantum corrections has been applied to
study the off-current, threshold voltage and sub-threshold slope variability induced by the
metal gate granularity, using a Voronoi approach, and line edge roughness, using Fourier syn-
thesis, in a 25 nm Si FinFET. The discretisation based on the finite element method allows
for an accurate description of the 3D geometry. We have simulated 4000 variations of the
device to study the metal gate granularity using four different metal grain sizes. The results
for the threshold voltage variability ranged from 8.6 mV, for a 3 nm grain size, to 25.9 mV,
for a 10 nm grain size. The effect of the grain size was studied and found an inverse square
root dependence of the variability for the three figures of merit. The mean threshold voltage
and sub-threshold slope have monotonous decrease with the decrease in metal grain size sug-
gesting that the device power consumption and switching speed can be improved by reducing
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the grain size. The corresponding threshold voltage variability can reach up to 8.2 mV when
RMS=3 nm and the correlation length is 50 nm.

4.2 Introduction

The next generations of digital technology impose new challenges on device solutions which
has to satisfy requirements defined in the ITRS [3]. To meet these requirements, fin field-
effect-transistor (FinFET) architectures arise as the strongest candidates to continue the scal-
ing at and beyond the 22 nm node [50]. These non-planar devices have to use a high-κ/metal
gate stack in order reduce a gate leakage thanks to a thicker physical oxide thickness. The
FinFET architecture also do not require high doped source/drain (S/D) regions resulting in
a decrease in random discrete dopant variability [74]. However, the metal gate technology
brings about a new source of variability, the random orientation of the grains which compose
a gate. The actual size of the metal grains depends on the processing technology and their
associated variability. As it has been shown in other works [58, 75], this size has a serious
impact in the sub-threshold region of the device, causing fluctuations in the threshold voltage
and in other device parameters like the sub-threshold swing and the off current.

In this work, we explore the polycrystalline TiN metal gate work function variability in the
sub-threshold region of a 25 nm gate length SOI FinFET. We use a finite element framework
to properly account for the geometry of the device and we develop a novel Voronoi diagram
approach to provide a realistic representation of the metal grain granularity (MGG), following
the design of an actual FinFET device [54]. We also explore the line edge roughness (LER)
using a method that allows to control the shape of the roughness with two parameters, a
correlation length and a root mean square (RMS) deviation [26]. Due to the existence of
these variability sources, the ITRS [3] suggest that the accurate modelling of the devices is
fundamental for the prediction and optimisation of the device performance. We have used
a distributed-memory 3D finite-element (FE) simulations, that use the drift-diffusion (DD)
transport model and includes quantum corrections via the density gradient (DG) approach
adapted for the FE method [7].

4.3 Model and simulation

The study is carried out with our in-house parallel 3D FE DD simulator [7] which includes
quantum corrections using the DG approach. The device under study is a fully depleted 25 nm
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Figure 4.1: a) A schematic of the simulated 25 nm gate length SOI FinFET showing the S/D and gate contacts.
Apart from the dimensions shown, the oxide has a width of 1.5 nm, the buried-oxide (BOX) has a width
of 30 nm and a height of 7.75 nm. The total height of the device is 51 nm. b) Example of a
LER-modified device, with RMS of 2 and correlation of 20 nm. c) Example of a WFV-modified device,
showing in two colors the possible orientation of the grains.

gate length SOI FinFET with a silicon body height of 30 nm and a width of 12 nm [54, 55].
Thanks to the use of the FE method, we can describe arbitrary geometries and reproduce a
real device design. The silicon body, oxide layer dimensions, and the shape of channel were
accurately modelled following a TEM visualisation of the real devices [54, 55]. In order to
reproduce as closely as possible the experimental data, a spline was used to model the shapes
of the oxide and gate structure, see Figure 4.1.

The doping profile was carefully calibrated to reproduce the experimental sub-threshold
characteristics at low/high drain biases while taking into account all experimentally known
limitations. S/D n-type regions were doped to 1020 cm−3 with a Gaussian decay of σ =

8.07 nm towards the channel, which is nominally undoped with a p-type doping concentration
of 1015 cm−3. The result of this process can be seen in Figure 4.2 which shows the experi-
mental measured ID-VG characteristics at a low drain bias of 0.05 V and a high drain bias of
1.0 V which are the operating polarizations of this device when used in digital applications.

This calibration has been done by changing the parameters that define the DD simulation
and the QC. Macroscopic parameters like saturation velocity and ECN for the high field de-
pendency of the mobility (we are using the Caughey and Thomas expression for high field
mobility corrections), and relative masses for the quantum corrections are used to reproduce
the behaviour of the experimental data. The saturation velocity was finally set at 1.04× 107

cm/s, the normal electric field has a value of 6.49× 104 V/cm. The relative electron mass is
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Figure 4.2: ID-VG characteristics for the 25 nm SOI FinFET at VD=0.05 V and VD=1 V comparing the results from
our 3D FE DD simulation with quantum corrections against the experimental results (full lines) [54].

to calculate the quantum corrections is set to 0.32, for the electrons in the silicon, and 0.4 for
the oxide.

We have obtained a good agreement in the sub-threshold region which is essential for
a study of the device sub-threshold figures of merit. We observe an underestimation of the
on-current at VD = 1.0 V since the mobility model does not reproduce the drain current in
this region. This is consistent with the presence of highly non-equilibrium carrier transport at
these large drain as well as gate voltages [9]. Fortunately, the on-current variability is largely
suppressed in FinFETs thanks to their electrostatic integrity [76].

4.3.1 Voronoi Grains

For the analysis of the MGG, the gate is modified by changing its work-function to match the
values and shapes of different grain orientations observed experimentally [34]. These patterns
were generated using a Voronoi diagram over a plain surface for a fixed amount of random
points [70, 77] providing a set of patches with a given average surface, which represent the
grains. The next step is to assign different work-function values to every patch, following
the parameters shown in Table 4.1. This aims to provide a physical representation of the
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Figure 4.3: Example of Voronoi grains used in the MGG simulation. The edges of the grains are shown with a thick
black line, and the patch colour represents different values of the work-function as defined in Table 4.1
(white: 4.4 eV, grey: 4.6 eV)

grains [56] rather than the usual approximation of using square grains without any differential
shape [57, 75] which is very artificial. Figure 4.3 represents an example of a 5 nm grain
distribution, as used in one of our simulations. These patterns are then mapped onto the metal
gate using the mathematical definition of the shape for the gate. In this way, we can adjust
any pattern to different device simulations, keeping the advantages of the FE approach. This
contrasts with previous FinFET simulations where the shape of the gate was left as a single
rectangle [56] instead of modelling the real shape of the device.

4.3.2 Line Edge Roughness

LER is the geometrical difference between a straight theoretical ideal mask and a real device
shape produced in a lithographic fabrication process which shows roughness in its defining
lines [78], [25]. We can define different planes in a 3D device geometry in which a line
roughness is present. The most significant are Fin Edge Roughness and Gate Edge Rough-
ness. Since the Fin Edge Roughness has a paramount impact on the behaviour of the device
characteristics as reported in [25], we will be focusing on that phenomenon.

The LER is implemented as previously done in other works [15], deforming the mesh
according to the shape of the roughness. To represent the roughness, we generate a set of
profiles, which will define how much each part of the device will be deformed. We use
a Fourier synthesis method, in which we define and adjust the amplitude of the roughness
and also the spatial correlation, using the root mean square (RMS) of the deviations, ∆, and

Table 4.1: Probability and work-functions for a TiN metal gate.

Orientation Prob. WF (eV)
<200> 60 % 4.6
<111> 40 % 4.4
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Figure 4.4: Example of a LER profile used in our simulations applied to a transversal cut of the device, parallel to
the ground, with a 2 nm RMS and a 20 nm correlation length. The interfaces between the silicon body
(inside) and the oxide (outside) are in red colour.

the correlation length Λ [26]. The first represents the average deviation for each line, and
depends on the process used to fabricate the device [25]. We employ in our simulator values
found in experiments ranging from 1 nm to 3 nm [25]. Gaussian spectra (SG) were used for
the generation of the roughness via the equation:

SG =
√

π∆
2
Λe−k2Λ2/4, (4.1)

where k represents the frequency values that are defined by the discretisation in real space.
The spectrum SG is multiplied by an array of complex random numbers, and transformed back
to real space by using an inverse fast Fourier transform. Figure 4.4 shows one example of a
generated profile for Λ = 20 nm and ∆ = 2 nm, which is then used to modify the structure of
the device.

4.4 Simulation results

All the simulations were deployed in a computation cluster, using our in-house developed
scheduler which allows for an easy deployment, monitoring and retrieval of tasks. Using our
scheduler, the computing capabilities of the CESGA SVGD supercomputer [79] and a local
cluster, we were able to deploy 8500 simulations, distributed between the two variability
sources that we want to analyse.

4.4.1 Metal gate granularity

We have generated 1000 different profiles for each average grain size, namely: 3 nm, 5 nm,
8 nm and 10 nm. In each simulation, all the other parameters and variables are kept constant,
and no other variability sources are studied.
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For each grain size, we have obtained three figures of merit: off-current (Ioff), threshold
voltage (Vth), and sub-threshold swing (SS) at low drain bias, VD = 0.05V . For each figure
of merit, we have studied the three main statistical parameters: mean, standard deviation and
skewness. The statistical values obtained for the three figures of merits as a function of the
grain size are shown in Table 4.2.

The threshold voltage variability can be compared with previous studies done on SOI
FinFETs [56, 75] with slightly different gate lengths. For a device with a gate length and a
fin width of 16 nm [75], the observed standard deviation for a threshold voltage distribution
is 19.2 mV and the mean value is 250 mV, for a grain size of 8 nm. In our case, for the same
grain size, the standard deviation is 21.8 mV and the mean threshold voltage is 350 mV. For a
SOI FinFET with a gate length of 20 nm and a fin width of 10 nm [56], the standard deviation
for the threshold voltage around 26 mV and 15 mV for the studied grain sizes of 10 nm and

Table 4.2: Statistical parameters of the studied variables, grouped by figure of merit and sorted by average grain
size.

Sub-threshold Swing (SS [mV/dec])
Grain Mean Stdev Skewness
10 nm 65.939 0.951 -0.657
8 nm 65.881 0.831 -0.784
5 nm 65.816 0.591 -0.720
3 nm 65.809 0.357 -0.460

Threshold Voltage (Vth [V])
Grain Mean Stdev Skewness
10 nm 0.3547 0.0259 -0.276
8 nm 0.3532 0.0218 -0.354
5 nm 0.3496 0.0137 -0.024
3 nm 0.3466 0.0086 0.102

Off-current (log10(Ioff [A]))
Grain Mean Stdev Skewness
10 nm -10.655 0.410 0.166
8 nm -10.660 0.342 0.236
5 nm -10.654 0.216 0.052
3 nm -10.648 0.137 -0.059



42 Chapter 4. Statistical study of the influence of LER and MGG in SOI MOSFET

5 nm, respectively. In our device, the variability results are almost identical, observing Vth

standard deviations of 25.9 mV and 13.7 mV for the grain sizes of 10 nm and 5 nm. The
threshold voltage variability decreases in a factor 3 when the grain size is reduced from 10 nm
to 3 nm. It is important to note that in the simulation study presented in [56, 75], the shape of
the gate was just modelled as a simple rectangle, without considering its real shape.

Figure 4.5 shows a panel of histograms, with each figure of merit in a different column,
and each grain size in a different row. As expected, the standard deviation of all figures of
merit decreases with the reduction of the average grain size due to a better self-averaging of
the work-function when there are more grains in the gate. This behaviour is common to all the
SS, Vth and log(Ioff), but it is more noticeable in the case of Vth as shown earlier. This decrease
is very strong, with a standard deviation ranging from 0.951 mV/dec to 0.357 mV/dec for the
SS, from 0.0259 V to 0.0086 V for the Vth and from 0.410 to 0.137 log(A) for the off-current.

The mean of figures of merit shows a small monotonous decrease for the SS and Vth as the
grain size decreases. For the log(Ioff), it remains almost constant. This is an important result,
because it means an improvement of power consumption and speed with the decrease of grain
size. This can be seen in Table 4.2, but it is almost imperceptible in the histograms.

For large grain sizes, the SS shows a negative skewness, and Ioff a positive one. In both
cases the skewness approaches zero when the grain size decreases. This can be seen in both
the histograms and the numerical table. However, this statistical parameter is very sensitive
to extremal data, so using 1000 simulations is on the limit where this parameter can be anal-
ysed [16]. The skewness has two consequences: on one side, if the skewness is different from
zero, the normality assumption doesn’t hold, which limits the analysis that can be done in the
data; on other side, a non-zero skewness has an impact on the precission of the mean when
only a few samples of the population are used, positive skewness implies that the mean will be
overestimated, negative skewness implies that the mean will be understimated. Populations
with skewness near to zero will be more predictable and easier to analyse.

Figure 4.6 shows the dependence of the normalised standard deviation with the number
of grains in the gate, which is directly related to their average diameter. The normalisation
is obtained by dividing the values by the biggest standard deviation for each figure of merit.
The behaviour is proportional to the inverse square root of the number of grains as predicted
in [74]:

σVt =
σWF√
Ngrain

(4.2)

In equation (4.2), σWF is the standard deviation of the metal grain work function and Ngrain
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Figure 4.5: Panel showing the frequency histograms for the metal gate granularity (MGG). Each column is one of
the three figures of merit studied, namely the threshold voltage (left), the log10(Ioff) (middle) and the
subthreshold-swing (right).

is the number of grains covering the gate. This behaviour is due to the metal grain size
becoming smaller compared to the gate size. The metal gate becomes more uniform and
the work function deviation starts to self-average. In the limiting case of infinite number of
grains, the work function is constant, without any variability, and we can reach a uniformly
distributed work function with σ = 0.

4.4.2 Line Edge Roughness

To analyse the effect of the line edge roughness, we have generated 4500 random profiles,
distributed amongst the values of two parameters: RMS and correlation length. Each param-
eter is given three different values: 1 nm, 2 nm and 3 nm for the RMS, and 10 nm, 20 nm



44 Chapter 4. Statistical study of the influence of LER and MGG in SOI MOSFET

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 50 100 150 200 250 300

No
rm

al
ize

d 
St

an
da

rd
 D

ev
ia

tio
n

Number of grains

Threshold Voltage
Subthreshold Swing

log(Off current)

Figure 4.6: Dependence of the normalised standard deviation of the figures of merit with the average of the number
of grains. A fit to the inverse of the square root (continuous lines) with offset is shown for comparison.

and 50 nm for the correlation length. The cross product of the values defines nine possible
situations.

Figure 4.8 shows the threshold voltage variability for each RMS height and correlation
length combination. The threshold voltage variability increases from 1.47 mV in the best case
(Λ = 10 nm, ∆ = 1 nm) to 8.01 mV in the worst case (Λ = 50 nm, ∆ = 3 nm), this is more than
a five-fold increase. Figure 4.7 shows that the most important contributor to the variability is
the RMS value, for every figure of merit. This behaviour is also found in similar devices and
simulations as in [25].

An increase in the RMS from 1 nm to 3 nm has a huge impact on the deviation figures
which is even more noticeable if the correlation length is large. In the case of the Vth, with
a correlation length of 10 nm, the variability goes from 1.471 mV to 6.500 mV, and with a
correlation of 50 nm, from 2.680 mV to 8.088 mV. In the first case the difference is 5.029 mV
and in the second 5.408 mV. The same behaviour is found for the Ioff and SS. Numerically, a
slightly larger results were found in a 22 nm gate length Si inverse mode (IM) FinFET [80],
in which the threshold voltage variability is around 4 mV for a RMS of 1 nm and a correlation
length of 15 nm.

Figure 4.8 shows the threshold voltage histogram for each combination of RMS and cor-
relation length. The threshold voltage variability becomes smaller when both the RMS and
correlation length are reduced, but clearly the effect of RMS plays a more important role than
the correlation length (on the scales of their respective realistic values), the same behaviour
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Figure 4.7: Standard deviation for the threshold voltage (left), off-current (centre) and sub-threshold swing (right),
showing the change with the RMS value and the correlation length. Results for correlation lengths of 10
nm (blue triangles), 20 nm (green circles) and 50 nm(red squares) are shown. The numerical values are
presented in Table 4.2.

is found in other studies [15, 26]. Both the sub-threshold swing and the off-current show a
similar trend when changing the RMS or correlation length. In the case of the sub-threshold
swing, the variability change is almost sixfold from the worst to the best case (see Figure 4.7).

We are not making an numerical analysis for the skewness values for this variability
source, because the number of samples used (500) doesn’t allow to calculate a valid skew-
ness value.

4.5 Conclusion

Using our 3-D FE DD simulator, quantum corrected via the density gradient approach, we
have studied both the impact of the metal gate granularity and line edge roughness in the off-
current, subthreshold slope and threshold voltage in the 25 nm gate length Si SOI FinFET. The
effect of the grain size is analysed using a Voronoi diagram approach to accurately describe
the real physical shape of the metal grains. We have then run one thousand simulations per
grain size to obtain highly significant statistical results. The statistical distribution of the sub-
threshold figures of merit for the analysed parameters would be incorrectly analysed only if
a small set of samples are taken from the population, specially when the grain size of the
metal gate is bigger, because of the skewness being different from zero, which implies that
the distribution is not Gaussian.

The mean of SS and Vth shows a monotonous decrease as the grain size decreases, and
it remains almost constant for Ioff. These results translate to important message: the power



46 Chapter 4. Statistical study of the influence of LER and MGG in SOI MOSFET

0
20
40
60
80

100
120

0
20
40
60
80

100

0.20 0.22 0.240
20
40
60
80

100
120

0.20 0.22 0.24 0.20 0.22 0.24

Corr. 10 nm Corr 20 nm Corr 50 nm

RMS 
1 nm

RMS 
2 nm

RMS 
3 nm

Fr
eq

ue
nc

y

Figure 4.8: Threshold voltage variability for each considered RMS height (marked as RMS in the figure) and
correlation length (marked as Corr in the figure).

consumption and the switching speed of FinFETs improve with the decrease in the metal gate
grain size. The standard deviation also decreases, from 0.951 mV/dec to 0.357 mV/dec for
the SS, from 0.0259 V to 0.0086 V for the Vth and from 0.410 to 0.137 log(A) for the off-
current, in a monotonous and smooth way, as the mean grain size decreases. In the case of the
threshold voltage, the ratio from the worst case to the best is 3.24.

The effect of LER is analysed generating a set of deformation profiles with a given RMS
deviation amplitude and correlation length. Changing the RMS from 1 nm to 3 nm has a huge
impact on the deviation figures. This impact is even larger if the correlation length is high.
In the case of the Vth, with a correlation length of 10 nm, the variability goes from 1.471 mV
to 6.500 mV, and with a correlation of 50 nm, from 2.680 mV to 8.088 mV. In the first case,
the difference is 5.029 mV and in the second 5.408 mV. The same behaviour is found for the
Ioff and SS. This results also translate in a message: the power consumption and speed of this
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device will degrade if the LER RMS is not keep to a minimum value, being more important
that the correlation.

The LER variability, when the RMS is 3 nm, can be similar to the MGG variability for the
smallest grain size of 3 nm. When the grain size is increased, the LER is considerably lower
than the MGG.
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5.1 Abstract

The fin edge roughness (FER) and the TiN metal grain work-function (MGW) induced vari-
ability affecting off and on device characteristics is studied and compared between a 10.4 nm
gate length In0.53Ga0.47As FinFET and a 10.7 nm gate length Si FinFET. We have analysed
the impact of variability by assessing five figures of merit (VT, SS, IOFF, DIBL and ION) using
two state-of-the-art in-house-build 3-D simulation tools based on the finite element method.
Quantum-corrected 3-D drift-diffusion simulations are employed for variability studies in the
sub-threshold region while, in the on-region, we use quantum-corrected 3-D ensemble Monte
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Carlo simulations. The In0.53Ga0.47As FinFET is more resilient to the FER and MGW vari-
ability in the sub-threshold compared to the Si FinFET due to a stronger quantum carrier con-
finement present in the In0.53Ga0.47As channel. However, the on-current variability is between
1.1-2.2 times larger for the In0.53Ga0.47As FinFET than for the Si counterpart, respectively.

5.2 Introduction

Non-planar multi-gate transistors like FinFETs are leading solutions for the future sub-14 nm
digital technology [81]. To meet the ITRS requirements, the future multi-gate transistors may
use III-V channel materials which are intensively researched as a possible replacement for n-
type Si channels because of their higher electron mobility and saturation velocity [82]. These
further scaled solutions require not only a realistic assessment of their performance, which is
strongly affected by the exact device geometry and design, but also the determination of how
different sources of device variability can affect characteristics and reliability.

Variability of transistor characteristics is not only a problem that mainly affects the device
fabrication process but it has become an universal concern affecting CMOS and SRAM [83]
scaling and perturbing digital logic circuits [84]. New design processes are require to incor-
porate this phenomena at every level [85]. Nowadays, variability is the main factor restricting
the scaling of the supply voltage which, in turn, can lead to unacceptable power dissipation.
Random sources of variability such as random dopant fluctuations, line-edge roughness, and
metal gate work-function variations, have become dominant in both Si and III-V channel-
based nano-MOSFETs [20, 80, 86].

In this work, we have studied and compared the uncorrelated fin-edge roughness (FER)
and TiN metal grain work-function (MGW) induced variability in In0.53Ga0.47As and Si Fin-
FETs (designed following the ITRS specifications [87]) using state-of-the-art in-house-build
3-D simulation tools. We simulate the variability for device threshold voltage, off-current,
sub-threshold slope, drain-induced-barrier-lowering and on-current at both low and high drain
biases.

5.3 FinFET Modelling

The variability study has been performed for a 10.4 nm gate length In0.53Ga0.47As FinFET
and a 10.7 nm gate length Si FinFET. These devices have been designed following the 2013
ITRS targets for high-performance logic multi-gate devices [87] assuming a n-type Gaussian-



5.3. FinFET Modelling 51

Figure 5.1: Schematic structure of the simulated In0.53Ga0.47As and Si FinFETs.

like doping profile in the source/drain regions (with a NSD peak value) and a p-type uniform
doping in the channel (Nch) [9]. The geometry of the simulated devices is shown in Fig. 5.1
and their dimensions, doping concentrations and applied drain biases are listed in Table 5.1.
The work-function of the TiN metal was set to be 4.52 eV. Table 5.2 shows the nominal per-
formance values yield by both FinFET devices. On the one hand, the In0.53Ga0.47As FinFET
delivers a larger on-current than the Si device but for the price of increase in leakage current
when compared to than observed in the Si FinFET. Therefore, the (ION/IOFF) ratio, close to
6x104, is similar for the both devices.

This variability study uses three different simulation tools in a hierarchical workflow from
a quantum-transport through a semi-classical to a classical technique. First, we use a 3-
D parallel finite-element (FE) drift-diffusion (DD) device simulator [19, 88] with integrated
FE density gradient (DG) quantum corrections [7] and Fermi-Dirac statistics [89]. We have
calibrated quantum corrections through the effective masses that characterise the DG solution,
which mimic the source-to-drain tunnelling and quantum confinement effects [20]. After
that, this simulator has been validated at both low and high drain biases against 3-D Non-
Equilibrium Green’s Functions (NEGF) simulations [11, 90] with an excellent agreement as
seen in Figs 5.2 and 5.3.

Finally, for studies in the on-region of In0.53Ga0.47As and Si devices, we use a 3-D
quantum-corrected FE ensemble Monte Carlo (MC) simulation tool. In the MC simulator,
the quantum corrections have been included via the solution of the DG equation for the
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Table 5.1: Dimensions, doping concentrations, and applied drain biases for the simulated In0.53Ga0.47As and Si
FinFETs.

Symbol In0.53Ga0.47As Si

LG(nm) 10.4 10.7

EOT(nm) 0.59 0.62

Wfin(nm) 6.10 5.80

Hfin(nm) 15.2 15.0

LSD(nm) 10.4 10.7

Nch(cm−3) 1017 1015

NSD(cm−3) 5x1019 1020

VDlin(V) 0.05 0.05

VDsat(V) 0.60 0.70

WF(eV ) 4.52 4.52

Table 5.2: Nominal parameters for the simulated In0.53Ga0.47As and Si FinFETs.

Symbol In0.53Ga0.47As Si

VTlin(V) 0.227 0.227

VTsat(V) 0.183 0.178

SS(mV/dec) 78 76

DIBL(mV/V) 80 75

IOFF(µA/µm) 0.031 0.027

ION(mA/µm) 1.77 1.56

(ION/IOFF) ratio 5.7x104 5.8x104

In0.53Ga0.47As device [9], and of the 2-D Schrödinger equation for the Si device [8], respec-
tively. The MC simulation tool uses an analytic non-parabolic anisotropic model [91] and
includes the interface roughness via Ando’s model [92]. Note that the 3-D quantum-corrected
FE Monte Carlo simulations were verified against experimental ID-VG characteristics of a
25 nm gate Si FinFET [9]. The MC considers the following scattering mechanisms: acoustic



5.4. Variability Comparison Between Si and In0.53Ga0.47As FinFETs 53

Figure 5.2: ID-VG characteristics of the 10.4 nm gate length In0.53Ga0.47As FinFET comparing 3-D DD-DG to
ballistic NEGF simulations [90] in the sub-threshold region. Inset: Monte Carlo (MC) simulations of
on-current shown on a linear scale.

phonon, non-polar optical intra-valley, non-polar optical inter-valley and ionized impurities
(using Ridley’s third-body exclusion model [93]). Polar optical phonon, piezoelectric and
alloy scattering have also been included for the In0.53Ga0.47As device simulations [94]. The
ID-VG characteristics of Si and In0.53Ga0.47As FinFETs obtained from the 3-D MC are shown
in the insets of Figs 5.2 and 5.3 on a linear scale. The channel orientation is 〈100〉. The Γ

valley confinement effective mass of 0.083m0, deduced from tight-binding calculations for
III-V ultra-thin body SOI MOSFETs [95], has been used in the InGaAs FinFETs while the
effective masses in the L and X valleys are assumed to be bulk.

5.4 Variability Comparison Between Si and In0.53Ga0.47As FinFETs

We have employed the meticulously calibrated DD-DG simulations to analyse the variability
affecting the sub-threshold region of the device comparing four figures of merit: threshold
voltage (VT), sub-threshold slope (SS), off-current (IOFF) and drain-induced-barrier-lowering
(DIBL). In the on-region, we have studied the on-current (ION) variability with the quantum-
corrected 3-D FE MC simulation tool. Ensembles of 300 and 100 devices have been used in
the analysis of the sub-threshold and on-regions, respectively. To extract the threshold voltage,
we have used the same constant current criterion for both devices (IT = 17.56 A/m). The on-
current has been calculated as the drain current when VG=VDsat+VTsat and the off-current has
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Figure 5.3: ID-VG characteristics of the 10.7 nm gate length Si FinFET comparing 3-D DD-DG to NEGF
simulations with scattering [11] in the sub-threshold region at low and high drain biases. Inset: 3-D
Monte Carlo (MC) simulations of on-current shown on a linear scale.

been extracted at VG = 0.0 V.

5.4.1 FER and MGW Variability Models

The effect of uncorrelated FER is studied using Fourier synthesis with Gaussian autocorre-
lation [26]. The FER is implemented as previously described in [20, 42]. DD simulations
that include DG quantum confinement corrections have been widely used for the analysis of
line-edge-roughness variability [51, 56, 86]. The DG requires calibration which is carried out
for ideal nominal device. Once accurately calibrated, the DG quantum corrections will mimic
very well the position of the lowest bound state [53]. However, the FER will induce a shift
in the ground state, particularly for low mass materials such as InGaAs, which would require
small adjustments of DG fitting parameters for each simulated sample [8]. These adjustments,
computationally prohibitive in variability studies, would introduce small changes in the carrier
density distributions [96].

During the simulations, two values of the correlation length (CL=10 and 20 nm) and three
root mean square values (RMS=1, 0.8 and 0.6 nm) are analysed. These values have been
chosen in order to represent foreseeable trends required by industry and observed in experi-
ments [80]. Fig. 5.4 (left) shows an example of the quantum potential inside the Si FinFET
body for a particular FER profile (CL=20 nm, RMS=1 nm) at VG=0.92 V and VD=0.7 V.
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Figure 5.4: (Left) Iso-surfaces showing the quantum potential inside a Si FinFET body for a particular fin-edge
roughness (FER) profile (CL=20 nm, RMS=1 nm) at VG=0.92 V and VD=0.7 V. (Right) Example of a
work function distribution in the TiN metal gate due to MGWV for a 5 nm average GS.

The TiN MGW variability (MGWV) [33] is obtained via the calculation of Voronoi dia-
grams for a set of randomly generated points which modify the size and shape of the grains.
A full description of the followed methodology can be found in [20, 42]. In this work, we
analyse four different grain sizes (GSs) (10, 7, 5 and 3 nm) and assume that TiN has two
possible grain orientations with MGWs of 4.6 and 4.4 eV and probabilities 60% and 40%,
respectively [33]. Fig. 5.4 (right) shows an example of a particular work-function distribution
in the TiN metal gate due to MGWV for a 5 nm average GS.

5.4.2 FER Impact on FinFET Variability

Fig. 5.5 shows a comparison of the log10(IOFF), SS, DIBL, VT and ION variability due to FER
for the 10.4 nm gate length In0.53Ga0.47As and 10.7 nm Si FinFETs as a function of the drain
bias, the correlation length, and the RMS height.

In the presence of FER, the observed variations for the three figures of merit related to the
off-region of the device (IOFF, SS and DIBL) are smaller in the In0.53Ga0.47As FinFET than in
the Si FinFET. Note here that the standard deviations for all the figures of merit are strongly
affected by the drain bias and the correlation length values in the Si FinFET whereas their
impact on the In0.53Ga0.47As FinFET is smaller as previously seen in [20].

We believe that a smaller variability of the In0.53Ga0.47As FinFET compared to the Si
device can be understood as follows. In the sub-threshold region, where electrostatics dom-
inates, the variability is governed by the strength of the quantum carrier confinement in the
nanoscale channel which is related to the separation of energy levels. The In0.53Ga0.47As,



56
Chapter 5. Comparison of Fin Edge Roughness and Metal Grain Work Function Variability

in InGaAs and Si FinFETs

Figure 5.5: Comparison of the log10(IOFF), SS, DIBL, VT and ION variability due to FER for the studied
In0.53Ga0.47As and Si FinFETs at low (VDlin=0.05 V) and high drain biases (VDsat = 0.6 V and
VDsat = 0.7 V, respectively) as a function of the correlation length, and the RMS height.

being a III-V material, provides a stronger confinement (thanks to a smaller electron effec-
tive mass) of electron density in the channel than that in the Si channel [97]. This stronger
confinement keeps a large number of carriers in the middle of the channel (a strong body in-
version). Thus the carriers in the In0.53Ga0.47As channel will be less affected by disruptions of
electrostatics induced by FER leading to a lower variability than the observed in the Si chan-
nel. The carriers in the Si channel can spread closer to the FER profile because of the weaker
confinement thus interacting with the profile more strongly leading to a larger variability.

On the other hand, we observe that at high drain bias, the FER induced VT variability is
lower for the In0.53Ga0.47As device than for the Si one (same behaviour as in the sub-threshold
region magnitudes), while the VT variability is larger for the In0.53Ga0.47As device than that
for the Si one at low drain bias (same behaviour as we will see in the on-region). This opposite
behaviour at low and high drain biases is due to the change in the transport regime (VT is a
figure of merit measured at the transition between the off- and on-regions of a device).

In the on-current region, the non-equilibrium carrier transport dominates. We think that
the variability will be governed by the efficiency of carrier transport through the channel from
the source to the drain and by the gate control of those carriers during the transport process.
The In0.53Ga0.47As device has a smaller average effective transport mass when compared to
the Si channel providing a faster transport. However, in the on-current regime, the effect of
the strong confinement will be less important than in the sub-threshold region. Therefore,
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Figure 5.6: Scatter plots showing the DIBL variation as a function of the VT, at both low (VDlin=0.05 V) and high
(VDsat=0.6 V and VDsat=0.7 V, respectively) drain biases, due to MGW (GS=5 nm) and FER variations
(CL=20 nm and RMS=0.6 nm) for the 10.4 nm In0.53Ga0.47As and the 10.7 nm Si FinFETs.

these faster III-V carriers with a smaller effective mass interact more strongly with any FER
induced electrostatic potential disruptions than the slower carriers with a larger effective mass
in Si which leads to a larger variability of the In0.53Ga0.47As transistor.

The ION variability (Fig. 5.5) is between 1.1-1.5 times larger for the In0.53Ga0.47As Fin-
FET than for the Si device. Note that for both devices the variability is larger for a smaller
correlation length of 10 nm which is opposite to the behaviour observed in the sub-threshold
region. In the on-region, where the conductivity is large, the device shape variations create
effective paths for electrons to pass through the channel more easily. This behaviour will
happen less frequently for a smaller correlation length since there will be a higher probability
of having an uncorrelated variation (both sides of the device will deform towards opposite
directions) followed by a correlated one (both sides will deform towards the same direction).
For the Si FinFET, when the correlation length is 10 nm, σ ION ranges from 58 µA/µm when
RMS=0.6 nm to 105 µA/µm when RMS=1.0 nm. For the same correlation length, the on-
current variability In0.53Ga0.47As FinFET is ranging from 69 to 151 µA/µm when the RMS
increases from 0.6 to 1.0 nm.

Fig. 5.6 shows the DIBL variability as a function of VT at low and high drain biases due to
FER (CL=20 nm and RMS=0.6 nm) for the Si (top left figure) and the In0.53Ga0.47As (bottom
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left figure) FinFETs. For both devices, the DIBL shows strong negative correlations with
VTlin (correlation coefficient (CC) around −0.7) and VTsat (CC larger than −0.9). In general,
the overall narrowing of the channel of the devices due to FER leads to a higher VT at both
low and high drain biases and a better immunity against the short channel effects. We define
the threshold voltage shift (VT−shift) as the difference between the mean value of statistical
sample, 〈VT 〉 and the threshold voltage for nominal device (see Table 5.2). Thus, the FER-
induced VT−shi f t at both low and high drain biases are around 10 mV for the In0.53Ga0.47As
FinFET and increase to around 45 mV for the Si device. The larger DIBL variability observed
in the Si FinFET indicates a larger penetration of the electric field into the channel region and
therefore a larger loss of gate control at a high drain bias than in the In0.53Ga0.47As device.

5.4.3 MGW Impact on FinFET Variability

Fig. 5.7 shows (from top to bottom) a comparison of the log10(IOFF), SS, DIBL and VT vari-
ability due to MGW for the studied 10.4 nm In0.53Ga0.47As and 10.7 nm Si FinFETs as a
function of the drain bias and the average number of grains present in the gate. Note here that
we have opted to not represent these magnitudes as a function of the grain size because the
results could be misleading since the TiN metal gate area is slightly different for both devices.

The VT and log10(IOFF) MGWV is very similar for the In0.53Ga0.47As and Si FinFETs
when the average number of metal grains in the gate is large (GS small) and slightly smaller
for the In0.53Ga0.47As FinFET when the gate is composed by a few grains. The In0.53Ga0.47As
FinFET is noticeably less resilient to the SS MGWV than the Si device. A major transport
process affecting the drain current in the sub-threshold region is the S/D tunnelling, which
influences the SS. The S/D tunnelling is much larger in the In0.53Ga0.47As device than in the Si
counterpart, mostly due to a smaller average effective transport mass, leading to the observed
larger variability. However, the variability in the DIBL is smaller for the In0.53Ga0.47As device
than that for the Si one because, for this figure of merit, the strength of the quantum carrier
confinement becomes the major factor while the impact of the S/D tunnelling decreases at
the threshold. The carriers are more weakly confined in the Si device leading to a worse
electrostatic integrity and thus to a larger variability.

In the sub-threshold region, the MGWV is the dominant source of VT and log10(IOFF)
fluctuations in both Si and III-V FinFETs when compared to the FER. The FER variability
(for a RMS=1 nm) is only comparable to MGWV when the number of grains present in the
gate is very large (GS 3 nm). The impact of the MGW and the FER (when CL=20 nm) on the
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Figure 5.7: Comparison of the log10(IOFF), SS, DIBL and VT variability due to MGW for the studied
In0.53Ga0.47As and Si FinFETs as a function of the drain bias (at low VDlin=0.05 V, at high VDsat=0.6 V
and VDsat=0.7 V, respectively) and the average number of grains present in the gate.

DIBL variability of both devices is similar. However, the FER becomes the largest source of
variability affecting the SS of Si FinFETs while, conversely, the MGW is the dominant source
influencing the SS of In0.53Ga0.47As FinFETs.

Fig.5.6 also shows scatter plots of the DIBL variability as a function of VT at low and high
drain biases due to MGWV (GS=5 nm) for the Si (top right figure) and the In0.53Ga0.47As
(bottom right figure) FinFETs. For the In0.53Ga0.47As FinFET, the DIBL shows very strong
negative correlations with VT at both low (CC=−0.88) and high drain biases (CC=−0.92).
However, for the Si FinFET, the DIBL is practically uncorrelated with VT at both low (CC
is −0.09) and high drain biases (CC=−0.42). The different behaviour observed in the DIBL
for both devices can be explained through an analysis of the relation between the threshold
voltages at low and high drain biases. Fig. 5.8 shows the scatter plots of VTlin versus VTsat

for the Si (left figure) and In0.53Ga0.47As (right figure) FinFETs. The device with an uniform
gate has been added for comparative purposes (red line). For the In0.53Ga0.47As FinFET, the
threshold voltage at low and high drain biases are very strongly correlated (CC=0.99). On the
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other hand, for the Si FinFET, the correlation between VTlin and VTsat is weaker (CC=0.94).
The larger the CC value, the less sensitive the variability is to a change in the drain bias. As
previously seen in Fig. 5.7, the MGW induced VT variability is independent of VD for the
In0.53Ga0.47As FinFET whereas, for the Si device, it slightly increases with the applied drain
bias.

Fig. 5.9 shows a comparison of the on-current variability due to MGW both for the
In0.53Ga0.47As and Si FinFETs as a function of the grain size. As expected, the standard devi-
ation of the ION decreases with a reduction in the grain size. For the Si FinFET, σ ION ranges
from 59 µA/µm when GS=5 nm to 107 µA/µm when GS=10 nm. For the In0.53Ga0.47As
FinFET, the on-current variability is around 2.2 times larger than that observed for the Si
device, with σ ION ranging from 132 to 237 µA/µm when GS increases from 5 to 10 nm.
This very large on-current variability is related to a lower average electron effective trans-
port mass and thus a higher mobility of III-V materials resulting in a faster carrier transport.
The MGWV is recognised as a major source of variability in multi-gate transistors with high-
K/metal gate stacks [33, 42] due to much stronger disruptions of electrostatic potential in the
channel region controlled by the gate (as compared to the FER or random dopants). The
disruptions of electrostatic potential in the In0.53Ga0.47As channel will affect much more its
faster non-equilibrium transport thus resulting in a larger difference between the MGWV of
the In0.53Ga0.47As and Si devices than that observed for the FER variability. For the Si Fin-
FET, the impact of the FER and MGW variabilities on the on-current is similar. However, for
the In0.53Ga0.47As FinFET, the MGW and FER induced on-current standard deviations are
only similar when GS=5 nm and RMS=1.0 nm. Any other combination of parameters will
lead to a larger MGWV than the variability observed due to the FER.

5.5 Conclusion

A 3-D quantum-corrected FE DD and MC simulation study of two sources of statistical vari-
ability induced by the fin-edge roughness (FER) and the metal gate work-function (MGW)
is performed for the In0.53Ga0.47As with a gate length of 10.4 nm and Si FinFET with a gate
length of 10.7 nm. We have analysed the influence of these two sources of variability on
five figures of merit: 1) threshold voltage, 2) sub-threshold slope, 3) off-current, 4) drain-
induced-barrier-lowering and 5) on-current. This study is done at both low (0.05 V) and high
drain biases (0.6 V for the In0.53Ga0.47As FinFET and 0.7 V for the Si device). The main
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Figure 5.8: Scatter plots showing the threshold voltage at a low drain bias (VTlin) versus the threshold voltage at a
high drain bias (VTsat) due to MGWV for the Si (left) and In0.53Ga0.47As (right) FinFETs. The device
with an uniform gate has been added for comparison (red line).

Figure 5.9: Comparison of the ION variability due to MGW for the In0.53Ga0.47As and Si FinFETs as a function of
the grain size (GS).

conclusions can be summarised as follows; in the sub-threshold region:

• The VT and log10(IOFF) MGWV is very similar for the InGaAs and Si FinFETs when
the GS is small, and slightly smaller for the InGaAs FinFET when the GS is large.

• The InGaAs FinFET is less resilient to the SS MGWV than the Si device but there is a
smaller variability in the DIBL for the InGaAs device than that for the Si counterpart
because of a stronger quantum electron confinement in the III-V channel.

• In the presence of FER, the VT, log10(IOFF), SS and DIBL variations in the InGaAs
FinFET are generally smaller at both low and high drain biases than the ones observed
in the Si FinFET.
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• The MGW variability is the dominant source of VT and log10(IOFF) fluctuations in both
Si and III-V FinFETs when compared to the FER.

In the on-region:

• The on-current variability due to FER is between 1.1-1.5 times larger for the InGaAs
FinFET than for the Si device.

• The on-current variability due to MGW is around 2.2 times larger for the InGaAs Fin-
FET than for the Si device.

• For the Si FinFET, the impact of the FER and MGW variabilities on the on-current is
similar.

• For the InGaAs FinFET, the on-current MGW variability is generally larger than that
observed due to the FER.
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6.1 Abstract

During the recent past, the demand on High Throughput Computing has been increasing be-
cause of the new scientific challenges. Since the access to several computational resources to
manage thousands of simulations can be difficult for scientists, different initiatives have tried
to provide the scientific community with interfaces that are user-friendly for several computa-
tional resources. Usually, these are designed for some specific codes and for a given research
field, such as oceanographic, climate modeling and physics, among others. To overcome this
situation, we have developed the General Workload Manager (GWM), a universal-purpose
very light management system, capable of working with different computing resources with
the least configuration as possible, such as HPC and HTC clusters, standalone worker nodes,
hypervisor-enabled servers, and cloud platforms. The suggested system is able to deploy
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thousands of different simulation tasks using several computing resources, and collecting the
results in an easy way.

6.2 Introduction

During the past years, the demands on High Throughput Computing (HTC) has been in-
creasing, due to the fact that the new scientific challenges require more computational power,
usually to improve the scope or the precision of their results. To provide the scientific com-
munity with the resources they need, several solutions that implement in one way or another
a clusterization of capabilities like commodity-clusters, grid, and Cloud, were created. One
of the most common solution to HTC is the grid technology, which allows the transparent
deployment of tasks in a heterogeneous and decoupled pool of workers. In order to serve
grid capabilities to users, several infrastructures have been built such as EGI for Europe [98],
SEE-GRID for south eastern Europe [99], and EELA in collaboration between Europe and
Latin America [100]. In these infrastructures, gLite is widely used. This middleware has way
more capabilities than just managing the workload between the computing elements, which is
reserved to a component called the Workload Management System.

Over the grid technology, several solutions have been developed tailored to specific re-
search topics. For example: oceanography [101] in which the computational resources are
provided by a grid infrastructure and a virtual database focused on metadata was designed
specifically to store the geospatial information, climate modeling [44] in which the address-
ing challenge is associated with the management, discovery, access and analysis of important
datasets distributed in heterogeneous computational environment that is basically a grid prob-
lem, chemistry [45] in which the harmonization of the scientists work is done by means of
using a web service that can be run on the grid, bioinformatics [46] in which bioinformat-
ics alignment tools are wrapped as web services in grid, physics simulations [102] provid-
ing distributed computing resources to the LHCb, ATLAS, CMS or ALICE experiments, the
largest at CERN. Also generic job submission tools such as science gateways [47] in which
a community-specific set of tools, applications, and data collection are integrated providing
access to grid resources.

This is promising, but there are several problems to the day-to-day use of these technolo-
gies: mostly the huge overhead, not in performance but in deployment time that the users
have to work with. From the authentication to task specification, it also includes the various
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middleware solutions that convert the use of these tools in a very difficult task if the user is
not a computer scientist.

The approach followed in the General Workload Manager (GWM), the tool we have de-
veloped is a simplistic one: a general-purpose very light management system, high efficient,
capable of working with different computing resources with the least configuration as possi-
ble. In our case, only a ssh connection is required. There is no configuration needed in the
workers, providing that the worker is a server capable of developing the task that the user
wants to distribute. As a rule of thumb, if the user can run a task in a given worker, manually,
our system is capable of deploying, monitoring and retrieving the same task. The GWM can
manage and deploy tasks in several computation services such as worker nodes, HPC clusters,
virtualized nodes, and Cloud platforms, and collecting the obtained results.

6.3 Description of the General Workload Manager

We have designed our system structure to be as simple as possible. It does not have any
footprint, this meaning there is no necessity for any configuration in the server in order to be
able to launch and monitor tasks. To do this, it is only necessary that the servers are able to
run the task that the user wants to deploy. This is also true for the user machine: only a python
installation is needed. Next we are going to summarize the main characteristics of the GWM.

• Only ssh connection needed to deploy and manage tasks. Only a valid ssh connection
is required between the user and the worker, which nowadays is a must-have in any
computer. All the communication is carried in that service, taking advantage of the
inherent encryption. Any form of identification that enables the user to log into the
server (password, private key or private key with encryption password) can be assigned,
and our system will login in the same way.

• Multiple computation services supported when interacting with the workers. In our
system, we define a computation service as the logic object used to manage workers, for
example a CloudStack infrastructure, Oracle VM enabled nodes, KVM enabled nodes,
instances of Amazon EC2, or a cluster.

• Multiple engines supported in the workers. In our system we define an engine as the
software used in the worker to manage tasks. For example, the SGE engine in a cluster
is treated as an engine in the GWM.
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Figure 6.1: Local mode of operation. Note the database is stored in the user computer.

• The system run in two modes of operation, which are local and server. The former
(see Fig. 6.1) is a distributed mode, in which each user has the full-control of his own
database and runs the manager locally, deploying tasks and retrieving them to his local
computer. The later (see Fig. 6.2) is a centralized mode, in which the manager runs in a
server which allows users to log-in via a web browser, command line client or just use
the API to deploy tasks. The server manages the tasks between the computers of every
user and the pool of workers, transferring data from one to other.

• Very easy login, as in opposition to grid solutions. The authentication is just a pair
user/password, as used in every UNIX system, storing only a shadow of the password
and using SSL encryption to move every piece of information. This is a very important
point, because it allows a new user to deploy a working system easily.

• Fully featured API, which allows a developer to extend the functionality of the system
from outside. The API is modeled to be as simple and easy to understand as possible,
but giving access to all the features of the workload manager.

• Command line access, which allows the user to define workers, or deploy, update and
retrieve tasks. The command line access is great for advanced users, and for writing
automatization scripts.

• Web interface allows users to access from a web browser, manage both tasks and
workers and change settings. All this is made as user friendly as possible.

From the point of view of the user, two different ways to interact with the system were
provided: via the use of a web service or the command line interface.
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Figure 6.2: Server mode of operation. Note the database is stored in a remote machine.

The web interface is designed as a web application, using AJAX to provide a quick and
smooth experiencie when dealing with the system, enabling encrypted connection, and pro-
viding a user-friendly modern interface. The web service can be deployed in both a running
apache server or in a provided python standalone server that can be run with a non-privileged
account in the port 8080. This standalone server allows each user to deploy it’s own web
service to have easier access to the data and simulations. No configuration is needed by the
user, and is intended to be used when the operation mode is local.

On the other hand, a command line interface is also provided, which allows the user to
login with the same credentials as in the web browser, and works in a similar way, but using
the terminal as an output device instead of a browser. The output is easy to parse, and the
commands are short and comprehensive, so it can be used in an interactive mode and it can
also be used from any script or in remote mode.

6.4 Details of the architecture of the General Workload Man-
ager

The GWM is designed to adapt to the requirements of the user by being as general as possible
with regard to the workload being deployed. The architecture of the system is presented in
the Fig. 6.3 which shows the main components of the system. Most of them can be easily
extended by a developer so as to implement new services or engines. For normal operation
this is not required. In the following subsections we are going to explore an overview of the
GWM architecture, and several details about the corresponding components.
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6.4.1 Architecture Overview

The Web Client provides a user-friendly interface for the API of the system, in both local and
server mode. The same interface can be accessed by the Command Line. Both applications
use a REST API created to comply with the REST requirements, providing JSON objects via
a state-less connection.

The Secure Connection Manager is responsible for establishing connections to workers
or user computers. The Task Engine Manager is capable of managing the tasks at each step:
matching the tasks with workers, deploying them in the matched worker, updating the state
of the tasks, and retrieving them. The Worker Service Manager is similar to the Task En-
gine Manager, but applied to workers. This component interacts with the computation ser-
vices, managing virtual machines and requesting computational resources. The Configurable

Scheduler uses the three managers to control tasks and workers in a transparent way, this is,
independent on the task or worker type. This scheduler operates like a finite state machine,
taking the states of the system as input, and taking decisions. To be able to manage large sets
of tasks instead of individual ones, they are aggregated in labels, which group tasks and allow
the scheduler to take different actions depending on the label and its statistics.

Finally, a SQL Database using SQLite stores all the information, and also the state of the
system. Using this implementation it is very easy to do backups and deploy the GWM in any
user computer, because it doesn’t need a running SQL server.

6.4.2 Schedulers

Using the capabilities provided by the other components of the system, a scheduler is a fairly
simple component of the system. Only the logic of the state machine has to be implemented,
using the information provided by the database. In our case we implemented the following
schedulers:

First-Come-First-Served (FCFS), consists on the deployment of the available tasks at the
order of definition in the system, using the available workers until there are no tasks to
be deployed.

Round-Robin (RR), applied to the labels that group tasks. This distributes the computational
power between the labels, instead of deploying the tasks in definition order as in FCFS.
This allows the user to define a set of labels, and the system will deploy the tasks from



6.4. Details of the architecture of the General Workload Manager 69

Figure 6.3: Internal architecture of the GWM. We present an overview (left), and a more detailed view (right).

the labels in a balanced round-robin fashion. The effect is that the tasks assigned to the
labels will end roughtly at the same time.

Fixed-Priority (FP), useful in giving high priority values to important last-time executions.
This scheduler behaves more like a service to the user than a resource balancer.

6.4.3 Computation Services

A computation service is an external system, which is able to manage workers. This system
will be employed by the GWM, using any kind of connection. An example of computation
service is the CloudStack infrastructure, which allows the user to deploy new virtual machine
instances, destroy them or pool their state. In any case, the GWM will use its API to access
the interface and manage the workers. Amazon EC2 is another example that also has a web
API so the implementation is similar.

It is not necessary to have a web API to access a computational service. For example, just
a pool of KVM instances in a server can be used as a computational service. In that case,
GWM will log into the server and manage the workers by invoking libvirt.



70 Chapter 6. General Workload Manager: a Task Manager as a Service

6.4.4 Engines

In the GWM, an engine is defined as any software available for the worker that is capable to
schedule the execution of the task. The engine is able to start tasks, pool the state of the task,
and stop tasks. There are plenty of engines deployed in clusters and they are not compatible
between themselves, so a tool like GWM has to be aware and able to interact with them in
order to manage tasks in that worker.

Most of the engines are accessed through the ssh connection of the worker. For example,
the SGE running in a computer cluster is an engine. The user has to have authorization to
schedule jobs in the SGE queue, and communicate the credentials to the GWM. Usually, any
kind of engine returns to the user the identification for the job deployed, so the user can query
information using that identification. The GWM calls that a ticket, stores it in the database for
future queries of the condition of the task, and also exposes this ticket to the user, so he can
manually login into the server and ask information about the task.

6.4.5 Database

The database is implemented using SQLite. This is a server-free database, that implements a
subset of the SQL language, but allows very fast access, and the single-user database is perfect
for deploying the GWM as a distributed system, in which each user has his database.

All the important information about workers and tasks is stored in the database, along
with the encrypted credentials to access different workers or machines. We choose the SQLite
database because it is ACID (Atomicity, Consistency, Isolation, Durability) compliant.

Every operation in the system is logged into the database. For each user that has an active
account in the system the database manages its workers and tasks. There is no hierarchy of
users or privileges, so the system is maintained in a simple manner. The only different user is
the administrator, who has privileges to manage all the state of the system.

6.4.6 User Authentication

The user authentication is as easy as possible. Each user has an account in the system, identi-
fied with the username and password. The password is stored with a shadow and each login
attempt is checked using the sha1 encryption. It works similarly to a UNIX account, and
completely different to the GRID authentication schema which is a huge overhead to the de-
ployment and usage of the system.
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6.4.7 Task and Worker Definitions

To set a new task, a task definition file has to be written. This task definition file is inspired
on the Job Description Language of gLite. To define a job, only the executable path, input
and output files, output path for the results and engine is needed. The result of this is a small
file with less than 10 lines for most of the tasks. With this task definition written, it can be
submitted to the server by using the command line interface.

To define a new worker a similar file is needed. In this case, the fields required will
depend on the computation service. For the simplest one, only an IP, username, authentication
and also information about the engine that is configured in the server is necessary. If the
worker belongs to a given computation service, a new set of options is needed, preceded by
an identifier like Oracle VM, KVM or CloudStack. After this file is loaded into the system,
the GWM will be able to communicate with the engine that is running in the worker, using
the private key provided in the configuration file.

The tasks will evolve following a state machine approach controlled by the scheduler, and
it can also be controlled from the command line interface. When the tasks are done, the results
will appear in the folder defined by the user in the task configuration file. The results of each
task will be stored in a unique folder, which its name is the identification number of the task.

6.5 Test production runs

Our full testing suite consists in deploying the system, adding a set of tasks and workers and
iterating the tasks to solve them in the pool of workers. In order to test the main capabil-
ities of the proposed GWM, we have used it in three different cases: Monte Carlo tasks in
heterogeneous systems, image processing and nanoelectronic numerical simulation. So here
we will describe the nature of the tasks and the experience of the execution using different
computational resources.

The section 6.5.1 shows the capability of the system to manage several heterogeneous
infrastructures. We have selected a Monte Carlo [47] code to deploy 100 simulations in several
incompatible architectures, operating systems and queuing mechanisms.

In the section 6.5.2 we will show the adaptability of the system, running a standard linux
tool to do image processing. We have used 100 high resolution images to study the perfor-
mance of the system. This was used as an example of the fact that not only simulations but
any task can be deployed, as long it is compatible with the workers.



72 Chapter 6. General Workload Manager: a Task Manager as a Service

The section 6.5.3 shows an in-house code developed to simulate nano semiconductor de-
vices. Se have created 4000 tasks that represent variability study of the characteristics of a
given semiconductor device. We are using this code in a daily basis and deploying thousands
of simulations, using a big ammount of disk space for the IO, and MPI paralelism. This is rep-
resentative of a general simulation code, with specific paralelism requirements, a big amount
of IO and a particular code that needs to be compiled and deployed.

6.5.1 Monte Carlo on a heterogeneous system

In order to demonstrate that GWM is able to deal with heterogeneous infrastructures and
workers, we have deployed a Monte Carlo simulation in four systems, with different queue
engines, processors with several architectures that force us to deploy different binaries and
different Operating Systems (OS). The computing facilities are provided by systems like cloud
platforms and HPC and HTC clusters, as follows:

CLOUD In this case, the simulations were executed in a Virtual Machine (VM) deployed by
means of Apache CloudStack 4.0.1 under KVM hypervisor. The physical Computer
node have Intel Core i7-2600 at 3.4GHz with 8 GB of memory. This processor has 4
cores and 8 threads. The VM has a 1 Virtual QEMU CPU, 1 GB of memory and 5 GB
of disk, employing CentOS 5.5 64 bits as OS. This VM does not has a queuing system
installed, therefore the simulations will be automatically executed in a shell, and the
queuing mechanism of the Linux kernel will be used to retrieve the state of the task.

FT The Finisterrae supercomputer in the CESGA instalations. This supercomputer is com-
posed of 142 HP Integrity rx7640 nodes, with Itanium Montvale processors and 128
GB of memory per core. This supercomputer use SGE as the queuing system. The OS
is SUSE Linux Enterprise Server 10 (ia64), in both the head and the computing nodes.

SVG The Super Ordenador Virtual Gallego in the CESGA instalations. This supercomputer
is composed of 46 nodes with twin AMD Opteron 6174 processors at 2.2 Ghz with 12
cores, the memory per node varies between 32 and 64 GB. This supercomputer also
uses SGE as queuing mechanism. The OS is Red Hat Enterprise Linux release 4 for the
head, and Scientific Linux 6.4 for the computing nodes.

CTCOMP The CITIUS HPC Cluster, a local cluster used in our organization. This has a
variety of computing nodes, but we are using the Dell PowerEdge M910, that has twin



6.5. Test production runs 73

Figure 6.4: Original image and calculated histogram, for one of the 100 William Bouguereau artworks processed.

Intel Xeon L7555 with 8 nodes, and 64 GB of memory per node. Notice that this worker
is using PBS as a queuing mechanism. The OS in all the nodes is Debian 7.1.

We have defined and deployed 100 Monte Carlo tasks in four different computing systems,
using all of them to run the simulations. The distribution of the tasks between the workers
is done dinamically by the GWM Schedulers. As a result, more tasks are deployed in the
computing facilities that finish the simulations in less time. In our case the distribution of
tasks is shown in Table 6.1, along with the time required to deploy the 100 tasks in each
worker alone.

When using all the workers to deploy the simulations, a total time of 911 seconds was
used to run all the 100 simulations. Compare this with the invidivual times that would be
neccesary in the case of using only one of the available computing resources, in Table 6.1.
Time measurements have been taken from the start of the first task deployment, to the end
of the retrieval of the last task, including file transfers and the execution of the Monte Carlo
simulation.
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Figure 6.5: Histogram of the 4000 nanodevice simulations carried out in a cluster, with four different input
parameter configurations.

6.5.2 Image handling

This example is a batch of image manipulation. This is a very useful task that can be needed
in several areas of work. In our case, we are calculating a histogram of a high-resolution
picture of an art-work. We collected 100 open-domain pictures of William Bouguereau to use
as a benchmark, to represent a possible realistic workload. We are using the common Linux
software Image Magick, which allows us to apply a gaussian blur and calculate the histogram
of the result.

In this case, we are using the shell engine. Also, the input files are the script and all the
pictures. Providing that we have about 100 pictures, this will spawn 100 tasks, and we only

Table 6.1: Distribution of the tasks among the workers when running together, and total time when running the
worker alone.

Worker Shared Task Count Alone time (s)
FT 20 3285

SVGD 35 1746
CTCOMP 37 1469
CLOUD 8 6319
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want the output file with the histograms of each color channel (represented in Fig. 6.4).

This code has been executed in a pool of 8 workers provided by CloudStack. This is
independent of the task definition; any other computational service could be used, provided
that it has the required software. Furthermore, the workers are KVM instances of CentOS
with 512 MB of RAM each, with Image Magick installed.

Using the pool of workers, all the histograms were calculated from the high quality images
in 60 minutes. If instead of the cloud pool, one of the hosts is used in a sequential execution
the wall time needed is around 420 minutes, which is 7 times larger. This gives us a fairly
good efficiency.

6.5.3 Nanodevice simulations

In order to represent a workload of computational intensive tasks, we have defined a big set
of nanodevice simulations, and we used a local cluster to run the tasks and retrieve the data.
The cluster is running SGE, and the user has access to the cluster in order to launch tasks.

The first step was to compile the executable in the cluster. The simulator needs some input
files common to all the simulations except one, which we want to change in every simulation.
What we want in this case is to take all the files in a given directory (work-function), and
spawn a new task for each file in an automatic way.

The important point here is that each simulation will use about 100 MB of storage. The
4000 tasks are going to dry the available storage on the cluster, which is a shared and spare
resource. Our system sends the data to each simulation, ran the program and then retrieved
the data to the local computer of the scientist. The queue of the cluster only allowed 30 tasks
to be run at the same time, which means that only about 3 GB of storage is used in the cluster
during the execution, saving space for the other users of the computer system. If we just
submit the 4000 tasks to the system without the general workload manager, the space needed
would be of 40 GB.

The results are shown on a histogram in the Fig. 6.5. The 4000 simulations are grouped
in 4 sets of 1000 simulations each with four different values to an internal parameter (10 to
3 nm). The histogram shows four histograms overlaped, one for each set.
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6.6 Related Work

Several other software solutions exist that cope with the same problem, but in a different
approach and with other limitations and strong points. For example, the Grid powered appli-
cations homogeneize the deployment of tasks in Grid infrastructures so that the user does not
need to know about the underlying computational resources. It is presented with an easy to
use interface and the scheduling and task deployment is automatic. This is very similar to our
approach, but in our case the application that can be deployed is way generic that the field
specific Grid applications.

Other solution is the Grid middleware. This is probably the most similar, as already ex-
plained in the introduction. The problem with this middleware is that is heavy, difficult to
install and use, and tailored to the existing Grid infrastructure. From this point of view, our
solution can be explained as a Grid middleware but capable of easily work with existing cloud
providers, clusters, even local workstations.

Finally, several cloud computing solutions provide Platform as a Service. This is similar,
but again tailored to programmers and limited to cloud frameworks. This Platform as a Service
presents a set of libraries and storage capabilities so the developer can create an application,
and it will use the underlying cloud infrastructure to run it. In our case, the task orientation
can define our tool as a Task Manager as a Service.

6.7 Conclusion

We have developed a general-purpose very light and high efficient workload manager system
allowing users to manage thousands of simulations in an easy way. It provides API, command-
line, web interface and several deployment schedulers. Compared with the existing solutions
like gLite, GWM provides: an integrated web interface, a simple configuration, and a modular
and expandable codebase, while mantaining a syntax similar to the Job Description Language.
This system allows scientists to work with different computing resources including HPC and
HTC clusters, standalone worker nodes, hypervisor-enabled servers, and cloud platforms, by
means of a ssh connection, without requiring any ad-hoc configuration in these systems.

Three different scenarios have been tested with GWM. The first one is intended to test
the heterogeneous capabilities of our system. In this scenario, we have run the same Monte
Carlo code in several processor architectures with incompatible scheduling engines, and also
in a cloud provided virtual machine. The second one has the purpose of showing the ability
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of this tool to run applications that are not compiled scientific codes. In this case, we have
employed an imaging processing tool to manipulate a collection of high resolution pictures to
get their histogram data. In the last one, we present the ability of GWM to deal with heavy
workloads in a production environment, deploying a set of 4000 heavyweight semiconductor
device simulations.

The suggested general workload manager is capable of deploying, running, monitoring
and retrieving sets of tasks in an automatic way using different infrastructures. It would help
scientists to run hundreds or thousands of simulations using different computational resources
in an easy way. GWM reduces the time necessary to distribute the tasks and collect the results
improving the usage of computer resources.





CHAPTER 7

CONCLUSION

The author started this thesis with the objective of advancing the existing knowledge of semi-
conductor devices in the nanoscale regime. In order to do that, the analysis of variability
sources was selected as an interesting combination that involves several abilities. On the one
hand, it requires knowledge of the physical mechanisms that affect the semiconductors be-
havior, and also of the manufacturing process, because of its impact on the variability to be
studied. On the other hand, it requires powerful tools to be able to simulate thousands of
devices to understand the effect of small changes on the device characteristics.

As a starting point we developed a pipeline based in a perturbation model that allows to
modify the simulation to account for different variability sources, without many changes in the
simulator code. Using this pipeline, we have implemented two variability sources: the Metal
Gate Granularity (MGG) and the Line Edge Roughness (LER). These variability sources have
been applied to several devices: Silicon and InGaAs FinFETs and gate-all-around Nanowires.
These tools are currently being used by other authors in the Universities of Santiago de Com-
postela and in Swansea University, to further study the effect of that variability sources.

The simulator that was used and modified is a drift-diffusion 3D simulator. It uses density
gradient corrections to account for the quantum effects that arise when shrinking the device
under certain sizes. The device is modeled with a tetrahedral mesh, because the simulator uses
finite elements to discretize the problem. Several meshes where generated for this simulator,
with different shape, size or density, to manage the associated convergence problems that can
happen if the density is too low and to explore different architectures.

The Metal Gate Granularity was studied using our own approach which is based on the
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mathematical structure of the Voronoi diagram. To implement the Line Edge Roughness, we
have developed a inverse Fourier transform of a spectra. To obtain comprehensive data of the
effect of this variability sources in semiconductor devices, we need to change the parameters
that define the sources of variability, and also use different devices. We deployed several thou-
sands of simulations in several computing resources thanks to the General Workload Manager,
which was also developed during all the period of this thesis.

The following bullet list summarizes some of the findings presented in the previous chap-
ters that were achieved throughout this thesis:

• We have developed a pipeline based in a perturbation model, that allows to implement
several variability sources in our semiconductor device simulators. This pipeline in-
troduces the variability source as a perturbation, without many changes in the original
source of the simulator. This is currently being used by several scientists from two
different research institutions.

• One of the most important applications of this pipeline, the Voronoi approach for the
Metal Gate Granularity variability, was presented and validated against experimental
data. These values have been provided by Dr. Kenji Ohmori [30], and consisted on
TEM images of different materials: TiN and Ru. In both cases, our Voronoi approach
generates a grain distribution that fits properly the experimental grain distribution, with
p-values of 0.17 and 0.42, for TiN and Ru, respectively. We have also checked with the
same experimental data an option developed by another authors: the Rayleigh approach,
and concluded that is not adequate to account for the grain distribution of MGG sim-
ulations. The same fit to the same experimental data resulted in p-values of 3×10−14

and 0.0029 for TiN and Ru. We have also demonstrated that the variability calculated
with Rayleigh overestimates the real variability by 11.9% and 7.14% for TiN and TaN
materials, which our approach does not.

• Using the presented pipeline, we have analyzed the impact of the MGG and LER
sources of variability in the performance of several state-of-the-art semiconductor de-
vices. This is a key point to understand the process of device fabrication and how it
has an impact on the device characteristics. We have simulated 10.7 and 10.4 nm gate
length Silicon and InGaAs devices modeled according to the ITRS predictions. Those
simulations were calibrated using the data from a more precise but slower simulator,
based on 3-D Non-Equilibrium Green’s Functions, because no experimental data was
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available at the moment. From this comparison we have found that the InGaAs device
is more resilient to the variability sources in the subthreshold regime. The behavior for
the on-current variability is the opposite, having more sensitivity in the InGaAs device.

• Independently of the device, for the MGG we have found and characterized a depen-
dency of the variability on threshold voltage, off current and subthreshold swing with
the inverse of the root square of the grain size. Also, we have found that the device
power consumption and switching speed diminish when the grain size if large. This
means that not only a variation of the parameters is to be expected, but also a net reduc-
tion of the quality of the device.

• Regarding the LER, we have found that the effect of the correlation length is smaller
than the effect of the root mean square of the height, for the parameters that are usually
studied. This result is found to be applicable for both Silicon and InGaAs FinFETs. We
have also studied the impact of correlated versus uncorrelated LER, and we have con-
cluded that the uncorrelated LER has more impact on the variability because it changes
the device width along the current flow direction.

• In order to further understand the effect of the variability sources, we have implemented
and presented a Fluctuation Sensitivity Map (FSM) to study the MGG variability. The
FSM shows us that we can detect the position in the device where the oxide is wider,
because it reduces the sensitivity of the device to the grain orientation. Also, we have
found that a reduction of the width of the device body near the top of the Fin has a
similar effect of a oxide buffer: it reduces the sensitivity.

• Finally, regarding the infrastructure to manage tasks, the GWM, we have tested it us-
ing heterogeneous work loads, computing resources incompatible between themselves,
different queuing engines for the tasks, and cloud infrastructures. We have also bench-
marked the system with a 16 nodes cloud machine, and found that the GWM is capable
of keeping a mean usage of 14.98 nodes during the simulations, leveraging the available
resources. Almost all the simulations of this work have been carried with this tool, and
the results are positive.
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7.1 Future work

We present here a comprehensive list of future tasks that can be carried in order to continue
the work started in this thesis.

• The MGG variability can be further improved by taking into consideration the effect
of the gate-first and gate-last techniques. Doing this, we could generate Voronoi grains
that represent the gate in the two possible implantation techniques and compare them
directly.

• The LER variability source can be applied in different lines of the device. We have
only used the most important, the FER, which is applied in the body of the device in
the direction of the current flow. Applying this variability along the gate, transverse to
the device, may prove useful.

• The FSM can be applied to another variability source other than MGG, and also for
more devices geometry in order to improve our knowledge of the sensitivity of the
device.

• GWM is being expanded right now to implement new mechanisms, like dependency
between tasks that allows the user to define not only a task but a pipeline of data between
tasks. This would allow complex interactions to be carried on automatically.
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