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DECLARACIÓN DO AUTOR DA TESE

Don Audi Issa Albtoush

Presento a miña tese, titulada New neural networks based on Extreme Learning Ma-
chine, seguindo o procedemento adecuado ao Regulamento, e declaro que:

1. A tese abarca os resultados da elaboración do meu traballo.

2. De ser o caso, na tese faise referencia ás colaboracións que tivo este traballo.
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Que a presente tese correspóndese co traballo realizado por Don Audi Issa Albtoush, baixo a
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Resumo en galego

A presente tese de doutoramento pertence ao ámbito da intelixencia artificial, e máis conc-
retamente ao campo das redes neuronais. Un modelo de rede neuronal especialmente estudado
nos últimos anos é a extreme learning machine (ELM). Esta rede despertou particular interese
no ámbito da aprendizaxe automática pola súa simplicidade, xa que a diferencia das redes
neuronais clásicas, e das modernas redes profundas (deep learning), a rede ELM é suma-
mente sinxela tanto na súa estructura como no seu algoritmo de aprendizaxe. A súa estructura
está formada por unha capa de neuronas de entrada, unha soa capa de neuronas ocultas, a
diferencia doutras redes multicapa, e unha capa de neuronas de saı́da. Esta simplicidade está
asociada tamén a unha extrema velocidade no entrenamento, a diferencia dos outros mode-
los neuronais, que usualmente son moito máis lentos. Especı́ficamente, os pesos a entrenar
son somentes os pesos de conexión entre as capas de entrada e oculta, denominados pesos
de entrada, e máis os pesos de conexión entre as capas oculta e de saı́da, denominados pesos
de saı́da. Pola outra banda, as neuronas da capa oculta posúen tamén unhas polarizacións
(offsets en inglés) con valores entrenábeis, e usan unha función de activación, que dota á rede
neuronal da capacidade para aprender funcións non lineares. Esta función pode adopar dis-
tintas formas, entre elas a sigmoide, que é a máis clásica, pero tamén a tanxente hiperbólica,
senoidal, función umbral, base triangular, base radial e cosenoidal, entre outras.

Tanto a simplicidade como a velocidade das redes ELM débense a que os pesos de entrada
se inicializan aleatoriamente, mentres que os pesos de saı́da se calculan usando un simple pro-
ducto matricial e calculando a pseudo-inversa, ou inversa xeralizada, dunha matriz, aı́nda que
este último procedemento non é tan eficiente computacionalmente, sobre todo para matrices
grandes. Deste modo, o entrenamento da ELM ten unha expresión analı́tica pechada, é de-
cir, non require procesos iterativos de cálculo numérico que poden ser lentos ou conducir a
configuracións de aprendizaxe non óptimas. Pola outra banda, demostrouse matemáticamente
que, similarmente ás redes neuronais máis empregadas, a ELM é un aproximador universal, é
decir, que ten capacidade para aprender calquera función cun certo grado de precisión. Dado
que esta rede é un algorimo de aprendizaxe xeral, tense aplicado a todo tipo de problemas
de aprendizaxe automática. A diferencia de outras redes neuronais, nas que a clasificación
constitúe a súa principal aplicación, seguindo á literatura a rede ELM aplı́case principalmente
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a problemas de regresión (máis do 40% das aplicacións), seguida pola clasificación (31%) e
outros como aprendizaxe de caracterı́sticas (13%), compresión de datos (10%) e agrupamento
ou clustering (8%). A literatura desenvolveu tamén distintas variantes desta rede, incluı́ndo
versións incrementais e regularizadas, secuenciais on-line, comités, ELM ponderada e ELM
restrinxida. Ademáis, esta rede combinouse coa lóxica fuzzy, con algoritmos xenéticos, par-

ticle swarm optimization, algoritmos evolucionarios e redes profundas, entre elas o ELM
autoencoder. A literatura inclúe estudos comparativos da ELM coa support vector machine
(SVM), e incluso se desenvolveu unha versión Twin ELM inspirada na popular Twin SVM.
Importantes esforzos se fixeron tamén para aplicar a ELM a datos grandes, aı́nda que limi-
tadas a problemas de clasificación con poucos centenares de miles de datos, e para extendela
a plataformas Big Data como Spark e MapReduce.

A pesar da súa simplicidad e potencia de aprendizaxe, a rede ELM ten dous inconvintes
principais, especialmente con datos grandes, como acontece por exemplo cando hai moitos
datos ou estos son dunha dimensionalidade moi elevada. O primeiro inconvinte está mo-
tivado, similarmente ás outras redes neuronais, pola necesidade de sintonizar o número de
neuronas da capa oculta, en adiante referenciado como H, valor que resulta de grande impor-
tancia porque inflúe enormemente na capacidade de aprendizaxe da rede. Por este motivo,
dependendo da complexidade e do tamano dos datos pode ser necesario un número elevado
de neuronas ocultas. Nembargantes, un número excesivo, aı́nda que permite aprender cunha
precisión moi elevada o conxunto de entrenamento, con frecuencia conduce a problemas de
sobreaprendizaxe de modo que a ELM funciona mal sobre datos de teste, é decir, datos non
usados durante o entrenamento. Resulta, pois, necesario atopar un valor axeitado para H,
e isto consı́guese usualmente probando con distintos valores e seleccionando o que propor-
ciona á rede ELM unha meirande calidade, avaliada usando as medidas correspondente para
clasificación, regresión, etc. O problema é que este procedemento esixe entrenar a rede ELM
moitas veces, ralentizando moito a súa operación. O segundo inconvinte da rede ELM débese
á necesidade de efectuar a pseudo-inversión dunha matriz, xa que esta matriz é con frecuencia
de grande tamano. Concretamente, canto máis grandes son os datos, máis grande é esta ma-
triz. Neste caso en que a matriz é grande, a pseudo-inversión é moi lenta, e incluso pode ser
imposible, é decir, non se pode executar porque conduce a un erro de execución, se a matriz
non cabe na memoria RAM dispoñı́ble. Este inconvinte provoca que a ELM sexa difı́cilmente
aplicable a un problema con moitos datos, e polo tanto reduce moito a escalabilidade destas
redes.
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Ambos problemas foron diagnosticados na literatura, e propuxéronse diversas solucións,
que analizamos nesta tese. Desafortunadamente, estas solucións normalmente non son sat-
isfactorias porque incrementan a complexidade destas redes, desperdiciando a súa principal
vantaxe, que é a súa simplicidade e velocidade, e dificultando aı́nda máis a súa aplicación a
problemas grandes. Outras solucións están orientadas non a aumentar a súa velocidade, senón
a acadar mellores resultados, usualmente a costa novamente dun aumento na súa complexi-
dade coa consecuente ralentización da súa execución (entrenamento e/ou test). A tese actual
presenta novos algoritmos baseados nestas redes ELM, deseñados coa premisa de manter a
súa simplicidade, grazas á inicialización aleatoria dos pesos de entrada e ao uso da matriz
pseudo-inversa para calcular os pesos de saı́da, e a súa velocidade, e co obxectivo de aportar
solucións para as mencionadas deficiencias pensando especialmente nos datos grandes. O
capı́tulo 1 da actual memoria describe estos obxectivos e introduce a teorı́a da ELM, xunto co
estudo das súas principais versións e aplicacións, cun especial énfase nas asociadas a datos
grandes.

A primeira versión proposta, no capı́tulo 2 desta tese, é a quick extreme learning ma-
chine (QELM), unha versión eficiente da ELM para problemas de clasificación de grande
tamano [12]. Esta rede aporta solucións aos dous inconvintes mencionados previamente. Para
seleccionar un valor axeitado do número H de neuronas na capa oculta, evı́tase a necesidade
de repetir o entrenamento da rede para distintos valores, o cal resulta inaceptable con proble-
mas grandes pola súa lentitude. Con este fin, estudouse como se comporta o valor óptimo de
H en función do número N de datos, de modo que se poda predecir H directamente a partir de
N. Para descartar a influencia da compoñente aleatoria na calidade da clasificación, empre-
gouse para tódolos valores de H a mesma inicialización aleatoria dos pesos de entrada da rede
ELM. O estudo considerou unha colección de conxuntos de datos de clasificación, availando
a calidade da rede ELM sobre os conxuntos de entrenamento e teste. O resultado do experi-
mento indica que a calidade da rede aumenta con H/N para valores baixos de H/N, pero se
reduce cando H/N→ 1 como consecuencia da sobre-aprendizaxe, xa que a calidade sobre o
entrenamento aumenta con H/N, pero diminúe a calidade sobre o conxunto de teste. A partir
destos resultados pódese concluir que o valor óptimo de H/N é relativamente constante e non
demasiado elevado, o cal é bo para datos con N grande, nos que o H óptimo non resulta ser
tan elevado. Polo tanto, estos resultados permiten definir unha expresión de H crecente en
función de N. Ademáis, isto permite seleccionar un valor de H sen repetir o entrenamento
da rede, nin tampouco efectuar cálculos complexos sobre os datos, xa que calquera das dúas
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opcións pode ser extremadamente lenta con datos grandes. Dado que o valor óptimo de H

é crecente co número N de datos, débese ter coidado xa que o H óptimo seleccionado pode
ser excesivamente elevado se N é alto, e isto poderı́a imposibilitar a pseudo-inversión por
tratarse de matrices extremadamente grandes. Para evitar este tipo de problemas, o algoritmo
proposto QELM establece que H estea acotado para N grande, de modo que o tamano da
matriz sobre a cal efectuar a pseudo-inversión teña un tamano sempre aceptable para efectuar
a pseudo-inversión por moi elevado que sexa N.

O número N de datos de entrenamento tamén inflúe no tamano da matriz da cal se debe
calcular a pseudo-inversa. Isto é un inconvinte, xa que cando N medra (por exemplo, con
datos grandes) chegará un punto en que a pseudo-inversa xa non se pode calcular por lim-
itacións de potencia de cálculo ou de almacenamento da matriz. Para evitar este problema,
QELM substitúe os datos orixinais por unha colección de prototipos ou promedios calculados
a partir de aqueles. O punto importante aquı́ é que o número de prototipos está acotado, de
modo que o tamano da matriz se manteña en lı́mites manexables para o seu almacenamento
e a pseudo-inversión matricial. Deste modo, a colección de prototipos elabórase como un
“resumo” do conxunto completo de datos, empregando un algoritmo de agrupamento que que
os prototipos representan axeitadamente aos datos. Trátase de substituı́r na matriz a invertir
os datos orixinais polo seu resumo, co obxectivo de que estos últimos permitan á rede ELM
aprender a información fundamental dos datos pero sen procesalos todos, o cal non serı́a
factı́ble computacionalmente. A elaboración dos prototipos efectúase de forma eficiente para
evitar que o seu custe computacional compense as vantaxes que o uso de prototipos no canto
dos datos ten sobre a velocidade de entrenamento.

O traballo experimental avalı́a a calidade de clasificación e o tempo de execución de
QELM comparándoos coas mellores técnicas da literatura, incluı́ndo a rede ELM clásica,
a support vector machine (SVM) con núcleo gausiano, e a SVM linear, sobre conxuntos de
datos pequeños (menos de 15000 datos) e grandes (máis de 15000 datos ata 31 millóns de
datos con dimensionalidades ata 30000), máis que en calquera outro traballo atopado na liter-
atura. Os resultados da rede QELM mostran calidades na clasificación moi similares aos da
ELM, que non están moi alonxados dos acadados pola SVM, con tempos de entrenamento ata
36 e 154 veces inferiores aos da ELM e a SVM nos datos pequenos. Nos conxuntos de datos
grandes, a ELM non se pode executar no 41% dos datos máis grandes, mentres que QELM
pódese executar en todos eles sendo 14 veces máis rápida que a SVM linear, a única que se
pode executar nestes datos porque a SVM gausiana tarda un tempo inaceptable en entrenar.
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Ademáis, QELM acada unha calidade de clasificación moi similar á ELM nos datos nos que
esta se pode executar, e moi superior á calidade da SVM linear. Pola outra banda, a QELM
pode ser executada en datos arbitrariamente grandes sen producirse erros de execución, aı́nda
que o tempo requerido obviamente se incrementa co tamano dos datos porque a creación dos
prototipos require máis tempo cantos máis datos hai. Nembargantes, os tempos requeridos
polo entrenamento (descartando os prototipos) e o test da QELM non medran significativa-
mente a partir de certo tamano de datos, xa que o tamano da matriz a invertir non medra máis
aló dos seus lı́mites pre-definidos. A rede QELM non ten hiper-parámetros que requiran sin-
tonización, xa que os seus valores non afectan significativamente á calidade dos resultados.
Finalmente, hai que destacar que esta proposta mantén a simplicidade da rede ELM clásica
na súa estructura e entrenamento, e tamén a súa velocidade tanto para datos pequenos como
grandes.

O segundo algoritmo, proposto no capı́tulo 3 desta tese e publicado no artigo de con-
greso [13], afecta á xeración dos valores aleatorios para as polarizacións das neuronas ocultas.
Tanto os pesos de entrada como as polarizacións das neuronas ocultas son inicializados na rede
ELM de modo aleatorio. Esta aleatoriedade pode influı́r nos resultados, dependendo do rango
no que se atopen os valores aleatorios usados. De feito, un rango incorrecto poderı́a provocar
resultados pobres. O método proposto, denominado confidence-random-based extreme learn-
ing machine (CDB-ELM), explora o uso de valores aleatorias para estas polarizacións que
teñan en conta os valores especı́ficos dos datos de entrada (D), ou ben dos pesos de entrada
(W), ou ben do producto (WD) dos datos polos pesos, dando lugar a tres versións distintas de
CRB-ELM. O método para a xeración das polarizacións fai uso dos conceptos estatı́sticos de
nivel de confianza e intervalo de confianza. O nivel de confianza, denotado por F , é a prob-
abilidade, en %, de que os valores aleatorios da polarización se atopen fóra do intervalo de
confianza. Este intervalo está definido polos seus lı́mites inferior e superior, que se calculan
mediante unha serie de fórmulas estatı́sticas ben coñecidas na literatura. Estas fórmulas teñen
en conta a media e a desviación tı́pica dos datos, pesos ou datos multiplicados polos pesos,
e empregan tamén a fórmula acumulativa da distribución normal definida pola devandita me-
dia e desviación, xunto coa probabilidade definida por F . Logo de xerar estas polarizacións
aleatorias, execútase o entrenamento da ELM clásica.

A experimentación compara a rede proposta CRB-ELM coa ELM sobre conxuntos de
datos de clasificación e regresión. O método CRB para seleccionar o rango das polarizacións
aleatorias aplı́case tamén á descomposición en valores singulares (singular value decompo-
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sition ou SVD, polas súas siglas en inglés) da matriz de datos, dando lugar á version CRB-
SVD-ELM, que se compara coa base projection machine (BPM), un conocido algoritmo de
aprendizaxe relacionado coa ELM que tamén utiza SVD. A rede CRB-SVD-ELM substitúe
os pesos de entrada aleatorios polos valores dunha das tres matrices resultantes de aplicar a
técnica SVD aos datos de entrada, empregando un número H de neuronas ocultas igual ao
rango de outra das matrices xeradas pola SVD. Os resultados revelan que a CRB-ELM e a
CRB-SVD-ELM melloran sensı́blemente os de ELM, tanto en termos de acerto para clasifi-
cación como de erro cadrático medio en conxuntos de datos de regresión. Comparando as tres
versions de CRB-ELM, que inicializan as polarizacións usando o intervalo de confianza para
datos (D), pesos (W) e datos por pesos (WD), a versión que emprega os datos exclusivamente
acada un acerto claramente superior ás outras dúas, obtendo o acerto máximo en tódolos datos
aı́nda que nalgúns deles algunha das outras dúas versións tamén acadan o mesmo acerto. A
versión de datos tamén é superior á ELM clásica na grande maiorı́a dos conxuntos de datos.
Pola outra banda, comparando a rede proposta CRB-SVD-ELM coa rede BPM a primeira su-
pera á segunda en termos de acerto na grande maiorı́a dos conxuntos de datos de clasificación,
obtendo un acerto promedio sobre tódolos datos lixeiramente superior á BPM. Nos datos de
regresión, a rede CRB-SVD-ELM acada o menor error cadrático medio en tódolos conxuntos
de datos, aı́nda que a BPM tamén acada o mesmo erro en aproximadamente a metade de-
les, cun erro promedio lixeiramente superior a CRB-SVD-ELM. Novamente, hai que destacar
que a modificación algorı́tmica introducida por CRB-ELM, consistente no uso do intervalo
de confianza para a inicialización aleatoria das polarizacións nas neuronas ocultas, non incre-
menta a complexidade da ELM e respeita as súas propiedades de simplicidade e velocidade,
mellorando aı́nda ası́ a súa calidade na aprendizaxe mediante unha elección axeitada do inter-
valo de xeración de valores aleatorios, neste caso para as polarizacións das neuronas da capa
oculta.

O capı́tulo 4 aborda unha terceira modificación algorı́tmica da ELM en problemas de clasi-
ficación, neste caso para acelerar o proceso de selección dun número H axeitado de neuronas
ocultas reducindo o número de valores de H empregados, ou equivalentemente o número
de veces que se executa o entrenamento da ELM, e polo tanto o tempo de entrenamento-
sintonización. Para isto, empréganse os conceptos estatı́sticos de “promedio móvil’ (moving

average ou MA, polas súas siglas en inglés), “promedio móvil exponencial” (EMA) e “divide
e vencerás” (divide-and-conquer ou DC, polas súas siglas en inglés), unha estratexia suma-
mente empregada en moitos campos da intelixencia artificial e da informática en xeral. Estas
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tres estratexias dan lugar ás versións MA-ELM, EMA-ELM and DC-ELM. A técnica de MA
consiste en estimar o acerto do clasificador ELM sobre o conxunto de entrenamento para un
valor novo de H a partir dunha serie de n valores previos do acerto para valores anteriores
de H, sendo n o chamado “ancho da ventá” de cálculo do promedio móvil. Os valores de
H deben estar equiespaciados entre si. O acerto estimado compárase co acerto verdadeiro.
Se ambos valores son suficientemente cercanos, dentro dunha tolerancia pre-definida, a partir
deste momento os valores do acerto calcularanse usando o método MA, evitándose novos en-
trenamentos da ELM e aforrándose o tempo correspondente. Se, polo contrario, a diferencia
entre os valores estimado e verdadeiro supera a tolerancia, o acerto para o seguinte valor de
H será novamente estimado polo MA e calculado entrenando a ELM, sen aforro no tempo.
Isto repı́tese ata que ambos valores son cercanos, momento a partir do cal sempre se usa o
MA, ou ata que se rematan os valores de H, caso no que o método MA non reducirı́a nada o
tempo de sintonización comparado coa ELM. O obxectivo é, obviamente, evitar o meirande
número posible de entrenamentos da ELM para reducir o tempo requerido, e isto require que
o MA prediga axeitadamente o acerto o antes posible. O algoritmo EMA-ELM é similar ao
MA-ELM, pero usando o EMA, que concede ao acerto máis recente un peso meirande que
os acertos anteriores no cálculo do promedio estatı́stico. Tanto MA como EMA reducen de
modo importante o número de entrenamentos, xa que a partir do momento en que os acer-
tos estimado e calculado están cercanos coa tolerancia usada non se volve entrenar a ELM,
porque tódolos acertos se estiman usando MA ou EMA. Non obstante, é posible que esta coin-
cidencia entre acerto estimado e calculado non se produza para ningún valor de H, caso no cal
non se aforrarı́a tempo ningún. O terceiro método, DC-ELM, divide recursivamente o conx-
unto de valores de H en dous subconxuntos, calculando os acertos da ELM usando os valores
máximos de H en ámbolos dous subconxuntos e seleccionando o que proporciona un acerto
meirande. Este subconxunto divı́dese novamente e calcúlanse os acertos correspondentes aos
seus valores máximos, repetı́ndose o proceso recursivamente ata que se acada un subconxunto
cun so valor de H. Este valor é o seleccionado como óptimo, evitando un número importante
de entrenamentos da rede ELM e reducindo substancialmente o tempo de execución en com-
paración coa sintonización clásica grid-search. Os resultados destas tres redes, comparadas
coa ELM clásica e coas variantes da Constrained ELM sobre conxuntos de datos benchmark

de clasificación mostran importantes reduccións no tempo de entrenamento-sintonización de
hiper-parámetros, situadas nos rangos 80-98% no caso de MA-ELM e EMA-ELM, e 82-84%
para DC-ELM, que son entre 5 e 50 veces máis rápidos que a ELM clásica acadando o mesmo
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nivel de acerto.
O traballo futuro inclúe extender as capacidades de QELM a conxuntos de datos cun

número de entradas aı́nda meirande; integrar as tres versións de ELM propostas; e profundizar
na optimización do cálculo da matriz pseudo-inversa de matrices grandes, o cal constitúe
aı́nda o principal inconvinte das redes ELM para extender o seu uso a problemas xerais de
aprendizaxe automática.
Palabras chave: aprendizaxe automática, redes neuronais, extreme learning machine (ELM),
large-scale datasets.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and scope

Due to technological development, new data are created every moment and their size and
dimensions grow day by day. Thus, it is important to develop efficient and effective “machine
learning” methods capable of dealing with this development and diversity in data. These
methods are necessary to mitigate the growing tension between machine learning and data to
extract useful knowledge and insights from this wealth of information.

In 2004, the extreme learning machine (ELM) appeared as a singular tool in machine
learning. The ELM is a type of single-layer feed-forward neural network characterized by: 1)
random input weights and bias of the hidden layer neurons; and 2) output weights computed
by multiplying the Moore Penrose pseudo-inverse, or generalized inverse, of the hidden layer
activation matrix, by the true output matrix. Thus, this network issues a closed-form com-
puting of the output connection weights, that provides high effectiveness, quick training and
ease of implementing. That made it an interest and attract algorithm for artificial intelligence
developers, compared to existing feed-forward networks where the training required an itera-
tive numeric calculation with a heavy computational cost both in terms of time and memory
requirements. Before the ELM, the neural network research community was stucked after
almost two decades of slow iterative training methods proposed to refine the backpropagation
training algorithm (1986) and to avoid its problems, mainly the fall in local sub-optimal error
minima.

However, ELM has left us many inquiries that require to research and improve the per-
formance of the algorithm. From a theoretical point of view, it has proven to be a universal
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approximator. The randomness of input weights and biases of the neurons in the hidden layer,
combined with the pseudo-inverse based closed-form training, should be sufficient to solve
any approximate problem and to deal with large scale datasets. However, from a practical
point of view proper care must be taken using ELM to get the proper performance and good
generalization abilities. The focus of this thesis is on developing effective methods capable of
improving ELM performance to deal with the challenges posed by large scale datasets, while
keeping the ELM contributions: random initialization of the input weights, pseudo-inverse-
based closed-form calculation of the output weights, high simplicity and speed at least for
small datasets. In order to achieve this objective, the contributions of the current thesis are
along three directions:

1. Quick extreme learning machine for large scale classification. The ELM became
popular because it uses a fast closed-form expression for training that minimizes the
training error with good generalization ability to new data. It requires the tuning of
the hidden layer size, that is a hyper-parameter with strong influence on performance,
and the calculation of the pseudo-inverse of the hidden layer activation matrix for the
whole training set. With large scale classification problems, the computational overload
caused by tuning becomes not affordable, and the activation matrix is extremely large,
so the pseudo-inversion is very slow and eventually the matrix will not fit in memory.
This thesis proposes quick extreme learning machine (QELM), that is able to manage
large classification datasets because it: 1) avoids the hyper-parameter tuning by using a
bounded estimation of the hidden layer size from the data population; and 2) replaces
the training patterns in the activation matrix by a reduced set of prototypes in order
to avoid the storage and pseudo-inversion of large matrices. While ELM or even the
linear SVM can not be applied to some of the large datasets considered in this thesis
(up to 31 million data, 30,000 inputs and 131 classes), QELM can be executed on them
spending reasonable times (less than 1 hour) in general purpose computers without
special software nor hardware requirements and achieving performances very similar
to ELM. This work has been published in the journal paper [12].

2. Extreme learning machine with confidence interval based bias initialization. The
random initialization of the input weights and biases of the classical ELM network in-
troduces high sensitivity to input perturbations and results in poor network stability.
In this thesis, we propose the confidence random bias ELM (CRB-ELM), that inherits

10
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the randomness of the ELM for bias tuning but based on confidence interval and con-
fidence level calculated from the training data. The experimental comparison of CRB-
ELM to the classical ELM and the base projection vector machine (BPVM) reports
that our proposal achieves higher performance and is more stable both in classification
and regression benchmark datasets. This proposal has been published in the conference
paper [13].

3. Quick hidden layer size tuning in ELM for classification problems. During hyper-
parameter tuning, the ELM suffers of time-consuming because several values of the hid-
den layer size must be tried. The training speed of ELM critically depends on the hidden
layer size, and to try many size values, that can be large and lead to slow trainings, is
undesirable for real applications and not acceptable for a real-time response. This thesis
proposes three methods, named MA-ELM, EMA-ELM, and DC-ELM, which use sta-
tistical criteria (moving average, exponential moving average and divide-and-conquer
strategy, respectively) to optimize the hidden layer size in ELM so quickly as needed.
Compared with the original ELM and different “constrained extreme learning machine”
versions (CELMs), the MA-ELM, EMA-ELM and DC-ELM achieved a percentage re-
ducing time up to 98% as well as better generalization ability.

1.2 Structure of the thesis

The current memory describes the topics and theory relevant for the ELM framework, high-
lighting the results achieved in the publications. The remainder of the current chapter de-
scribes the ELM and its theoretical foundations, compiles the main ELM versions and those
variants specifically devoted to large scale datasets, alongside with the most relevant applica-
tions of these networks. Afterwards, chapter 2 discusses quick extreme learning machine for
large scale datasets, chapter 3 describes ELM with confidence interval based bias initializa-
tion, and chapter 4 describes MA-ELM, EMA-ELM and DC-ELM, that reduce the computa-
tional time in the ELM by quick optimization of the hidden neurons in classification problems.
Finally, chapter 5 presents the conclusions of the current thesis and the future work.

11
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1.3 Theoretical foundations of ELM

The single-layer feedforward neural network [44] is one of the most popular class of neural
networks. It consists of one hidden layer of neurons that receives stimuli from the external
environment and one output layer that sends the network’s output to the external environ-
ment. These networks are distinguished by their simple structure consisting of one input, one
hidden, and one output layer, and have proven to be effective and have a wide range of appli-
cations [111]. There are three main families of methods used to train feedforward networks:
gradient-descent, e.g. backpropagation [99]; standard optimization [98], e.g. support vector
machine (SVM); and least-square based, e.g. radial basis function (RBF) network learn-
ing [79]. The ELM was originally developed as a type of single-hidden-layer feedforward
neural networks (SLFNs). Opposed to the existing methods to train these networks, that used
iterative training algorithms such as back-propagation, the ELM combines randomization of
input weights and least-squares optimization to calculate the output weights. This network
tends to have the smallest training error and the smallest norm of output weights according
to the neural network theory [15]. The nonlinear activation functions in the hidden layer pro-
vide nonlinearity to the ELM. Over the past decade, a lot of extensive research has been done
on ELM for several purposes: higher performance, less training time and manual interven-
tion [50], and training on large scale datasets [46]. However, there are still some questions
that need further study. What is the relationship between variables and ELM performance?
Does random selection of hidden neuron weights and bias provide optimal performance? To
what extent can ELM be applied with large datasets? Does ELM training achieve the best
training time? Can the ELM performance be guaranteed for any dataset?

The ELM algorithm was invented in 2004 by Huang et al. [55] for training SLFNs and
nowadays it is a popular neural network architecture [14]. This network consists of three
layers: input, hidden and output layers. Fig 1.1 represents a network of this kind1. Symbols
x and v are the input and output vectors, ahi and bch represent the input and output weights,
y is the activation (or output) vector of the hidden layer, dh and fc are the bias for hidden
and output s, and g(x) is the activation function. The SLFN training pursuits to decide the
weights and biases of the connections between input and hidden layers (input weights), and
between hidden and output layers (output weights) in order to reach the optimal performance
in prediction for a given dataset. Liang [74] showed the ability of the SLFN to randomly fix

1Henceforth, lowercase bold symbols denote vectors and uppercase bold symbols denote matrices.
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Figure 1.1: Diagram of a SLFN. See text for details.

the input weights. The same goes for the output weights. However, the algorithm could not
adjust the weights simultaneously since there was no gain provided. The ELM was proposed
to cope with this limitation.

In order to explain the operation of a ELM, let us consider a classification problem with
C classes defined by the training set {xn, tn}N

n=1, with N patterns xn of dimension I, being
tn = {tcn}Cc=1 so that tcn = 1 only when c is the class label of xn, and tcn = 0 otherwise. Let us
consider a ELM network with I input neurons, H hidden and C output neurons, such as in Fig.
1.1. Let {ahi}H,I

hi=1 be the input weights, where ahi connects the i-th input neuron and the h-th
hidden neuron, with h = 1, . . . ,H and i = 1, . . . , I. Let also {dh}H

h=1 be the offsets of the H

hidden neurons, and {bch}C,H
ch=1 be the output weights connecting the h-th hidden neuron and

the c-th output neuron. The ELM training randomly fixes the inputs weights ahi and biases
dh, and analytically determines the output weights bch. For the training pattern xn, the output
function fc(xn) of the c-th output neuron, with c = 1, . . . ,C, is given by:

fc(xn) =
H

∑
h=1

bchg(aT
h xn +dh) (1.1)

where bch is the output weight connecting the h-th hidden and the c-th output neurons, g(·)

13
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is the activation function (see below), and ah = {ahi}I
i=1 is the weight vector connecting the

input layer and the h-th hidden neuron. For N training patterns {xn, tn}N
n=1 ∈ IRI× IRC, it has

been proven that when H→ N, the ELM can approximate the output with zero error, so that:

N

∑
n=1

C

∑
c=1
| fc(xn)− tcn|= 0 (1.2)

i.e., there exist {ah,dh}H
h=1 and {bch}C,H

ch=1 such that:

H

∑
h=1

bchg(aT
h xn +dh) = tcn, n = 1, . . . ,N;c = 1, . . . ,C (1.3)

Denoting yhn = g(aT
h xn +dh), the previous equation remains:

H

∑
h=1

bchyhn = tcn, n = 1, . . . ,N;c = 1, . . . ,C (1.4)

The equality happens when H =N, i.e., when there are so many hidden neurons as training
patterns), in which case Y is square of order N and the number of equations (CN) equals
the number of unknowns (CH values of bch), so the previous system of equations becomes
definite. On the contrary, when H < N the number of unknowns is lower than the number of
equations, so the system is over-determined, i.e., there are infinite solutions. Since N (number
of training patterns) may be high in large-scale datasets, while H can not be large in order
to avoid an excesively slow network training, this case will be the most frequent situation.
Therefore, let us seek for an approximated solution for H < N. Defining B = {bch}C,H

ch=1, a
C×H-order matrix; T = {tcn}C,N

cn=1, a C×N-order matrix; and Y = {yhn}H,N
hn=1, a H×N-order

matrix; the CN eqs. 1.4 can be written compactly as:

BY = T (1.5)

Note that when H = N, if the Y matrix is full-range (i.e., det(Y) 6= 0 and exists Y−1)
the output weights can be calculated as B = TY−1, and in this case the solution is unique.
However, when H < N the order of matrix Y is N×H, so it is non-squared and Y−1 does not
exist. However, its Moore-Penrose pseudo-inverse [100]Y† does exist and is of order H×N.
Thus, the output weight matrix B can be calculated as:

B = TY† (1.6)
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so the output weights {bch}C,H
ch=1 are calculated in a closed-form using a simple matrix product

and matrix pseudo-inversion. The ELM training method is compiled by algorithm 1. The
singular value decomposition (SVD) method is often used to calculate the Moore–Penrose
generalized inverse Y† in most of the ELM implementations.

Algorithm 1: Extreme learning machine for classification, version 1.

1 Algorithm: [A,B]=ELM1(X,T,H,g)

Data: X = {xni}N,I
ni=1: training set; T = {tcn}C,N

cn=1: true output; H: number of hidden
neurons; g: activation function

Result: A = {ahi}H,I
hi=1: input weights; d = {dh}H

h=1: bias; B = {bch}C,H
ch=1: output

weights.
2 Randomly intialize A and d.
3 Calculate hidden layer activity: Y = {yhn}H,N

hn=1←{g(a
T
h xn +dh)}H,N

hn=1.
4 Output weight: B← TY†.

The input data {xn}N
n=1 must be scaled the range [-1,1]. The activation function g(x) is

a critical part because it defines the range of hidden neuron outputs. Several functions are
commonly used (see eqs. 1.7-1.12): sigmoid, sinusoid, hard limit, triangular basis, radial
basis and cosinusoid.

g(x) =
1

1+ e−x (1.7)

g(x) = sin(x) (1.8)

g(x) =

{
1 x≥ 0
0 x < 0

(1.9)

g(x) =

{
1−|x| |x| ≥ 1

0 |x|< 1
(1.10)

g(x) =

{
1−|x| |x| ≤ 1

0 |x|> 1
(1.11)

g(x) = cos(x) (1.12)

Thus, the ELM is a neural network whose input weights and biases are randomly gener-
ated, and whose output weights are determined analytically using a closed-form expression [9]
through the product of the generalized inverse of the hidden layer activity matrix Y and the
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true output matrix T [57]. The ELM has been proved to be a universal approximator, that for
H → N tends to learn correctly, i.e. with zero error, the training set [72, 117]. Besides, these
networks provide an integrated learning platform with a widespread feature mapping and can
be applied directly to classification and regression problems [51, 56].

1.4 Variants of the extreme learning machine

Many algorithms have been used in the last decade to improve ELM performance for real
applications. In this part of the thesis, we will discuss the latest advanced ELM variants. The
randomness of the hidden neurons enables ELM to train quickly, but it leads to fluctuation in
the performance of the classification problem, and calculating the output weights is the last
step in this algorithm. Starting from these two points, the researchers devoted their efforts to
improve the ELM robustness and stability.

One of the iterative methods for ELM is to incrementally add hidden neurons [54] (in-
cremental ELM, I-ELM), that was extended using random search to avoid non-significant
neurons [53]. However, this method is time-consuming, and was improved [52] by recalculat-
ing the output weights of the existing neurons based on a convex optimization method when
a new hidden neuron is added. The incremental regularized extreme learning machine (IR-
ELM) adds hidden neurons one by one, updating recursively the output weights in an efficient
way [120]. The incremental learning schemes allow ELM to automatically adjust the number
of hidden neurons to obtain a better performance for regression and classification compared to
random initialization, but they are more time consuming, that is undesirable for real applica-
tions. The twin ELM [113] is a version proposed for classification that uses two non-parallel
hyperplanes that simultaneously minimize the distance to one class while keeps away from
the other class. The online sequential ELM (OS-ELM) allows to learn pattern-by-pattern or
chunk-by-chunk [75] and has also been combined in ensembles [68]. In [112], an adaptive en-
semble of ELM networks is applied to the prediction of non-stationary time series. In [132],
the augmented OS-ELM is used for classification and regression of noncircular quaternion
signals, that provide a convenient way to represent 3D and 4D signals. Other ensembles of
ELM have been proposed in [92], using negative correlation learning, and [82], a committee
of voting ELMs trained with different bootstrap training samples for road lane landmark de-
tection. Low rank matrix factorization is also used in the ELM autoencoder [91], that learns
optimal low dimensional features for the same application. The weighted ELM [135] is ori-
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ented to classification of imbalanced data, that has been applied in [49] for discriminative
data clustering alongside with linear discriminant analysis and K-means, a clustering method
that was also used with ELM in [80] to forecast sales of computer servers. The constrained
ELM [133,134] for classification selects the input weights randomly replacing a collection of
arbitrary random values, as in ELM, by a set of differences between class samples.

The ELM has been combined with other paradigms like fuzzy logic, used in [41] to find
the optimal ELM hyper-parameters (size of the hidden layer), and particle swarm optimiza-
tion (PSO) for feature selection and hidden layer size estimation in the sleep stage classifi-
cation over electrocardiogram signal [110]. The ELM and PSO are also combined in [69]
with boosting for electric consumption time series forecasting. The evolutionary ELM [131]
uses a differential evolutionary algorithm to set the input weights instead of random weight
initialization in order to achieve compact networks. In [63] the ELM is applied instead of ge-
netic algorithms for symbolic regression in system identification. Deep neural networks have
also been combined with ELM by using the recursive deep arc-cosine kernel [2]. Regarding
hardware implementations, [87] describes a neuromemristive circuit architecture for ELM,
and [71] compares experimentally several implementations on different hardware devices.

Paper [50] compared ELM and support vector machine (SVM) and found out that ELM
was equivalent to SVM in classification problems, being more probably that ELM reach better
generalization performance. The ELM was also extensively compared to SVM in paper [78],
and to SVM and random forest in [3]. In paper [58], ELM has milder optimization constraints
compared to least-square support vector machine (LS-SVM) and proximal support vector ma-
chine (PSVM), yielding better classification performance with fewer optimization constraints.
Bayesian ELM outperformed the classical ELM in six different regression tasks [108]. There
exist also some ELM defficiencies identified by researchers, such as difficulties to estimate
the oscillation bounds on the ELM generalization performance [17, 31].

1.5 Large scale datasets and big data

The ELM has great performance in a wide range of problems, but it is not specially suit-
able for dealing with large scale datasets because it requires very intensive computation, is
time-consuming, and may lead to out-of-memory problems. However, some studies have a
completely different opinion, claiming that ELM is a perfect choice for solving big data prob-
lems [126]. The literature reports several works that use ELM with large scale datasets [16].
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The study [114] uses the bag of little bootstraps technique to reduce the size of the train-
ing datasets and alleviate the computational overhead of a bagging ensemble of ELMs for
large-scale datasets. In [119] the symmetric ELM cluster is evaluated for traffic congestion
prediction, transforming a large-scale problem (up to 5 millions of training patterns) in several
sub-problems of small and medium size datasets. In [35], feature selection is used to reduce
the data size (up to 58,000 patterns and 60 features), identifying the most relevant features
by ranking them with the coefficient obtained through ELM divided by the variation coeffi-
cient. The regularized ELM [60] was applied to large-scale image classification problems up
to 250,000 training patterns, 1,770 inputs and 340 classes, spending 65 s. for training on a
4-core computer with CPU i7–3630, 2.4GHz and 8GB RAM in 2015. In [61], the approxi-
mated kernel ELM was evaluated on middle-sized datasets (up to 14,000 training patterns).
Paper [77] refers that ELM cannot handle effectively high-dimensional data because its gener-
alization performance tends to become worse in these cases. In fact, the original ELM cannot
handle big high dimensional data [48], [127], it requires more hidden neurons than conven-
tional SLFN tuning algorithms, increases the network size and cannot be parallelized due to
the dependence of pseudo-inverse calculation on SVD [90].

The fast singular value decomposition (SVD)-hidden-neurons based ELM (FSVD-H-ELM)
removes the random weight initialization by applying SVD to multiple random subsets sam-
pled from the original dataset [28]. However, SVD is much slower than random generation,
and requires more memory than pseudo-inverse calculation, so it can only be applied to small
matrices. Finally, the matrix pseudo-inverse continues to be calculated, so globally FSVD-
H-ELM is more complex than ELM. The overload introduced by SVD is only compensated
by the random selection of training patterns, that keeps small the matrices to which SVD is
applied. This work uses a fast divide-and-conquer scheme to keep tractable the computational
complexity on high volume data, up to 20 million patterns and 30 million inputs (dataset
KDD2010), spending 1,769 seconds per fold (about 30 minutes) on a poweful computer with
Intel Xeon E5-2650 2 GHz CPU (32 cores), 256GB RAM and Matlab R2013a in 2016. How-
ever, in dataset Webspam, with only 350,000 patterns and 16 million inputs, the training time
is 8,154 s./fold (about 2.5 hours), so the time does not only depend on the dataset size, but
also on other properties of the dataset.

The review [46] reports recent applications of ELM in the big data context. The pa-
pers [42] and [33] describe parallel implementations of ELM based on MapReduce and Spark,
respectively, the latter being able to classify 38 millions of patterns with 8 inputs on a com-
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puter cluster of 10-35 nodes. However, the use of big data tools such as MapReduce is not
effective for ELM because the most time-consuming part is matrix multiplication and pseudo-
inversion. The elastic ELM [118] uses MapReduce to speed up the matrix products through
incremental, decremental and correctional calculations, being applied to synthetic datasets
until 10 millions of patterns but only 50 inputs. Another MapReduce-based approach [125]
uses an ELM ensemble for large-scale imbalanced classification datasets with two classes up
to 300,000 patterns and class imbalance ratios up to 2,000. The work [5] presents a complete
ELM toolbox for big data applications on Matlab and Python using GPU acceleration based
on MapReduce, giving a fresh view about ELM compared to traditional linear algebraic per-
formance. An ELM trained with 19,000 hidden nodes on this toolbox spent 15 days and 5
hours in year 2015 to process a dataset of 500 million patterns with 147 inputs, on a power-
ful workstation of 4-core 4GHz CPU with 256-512GB RAM per core and specific hardware
(GPU acceleration). In [81], a ELM with rank-reduced matrix is proposed to decrease the
size of the hidden layer, speeding the training while raising the performance on datasets up to
29,000 training patterns. The E-OS-ELM [124] avoids the oscillations of OS-ELM in different
trials spending about 1 hour to process large-scale datasets until 4.8 million patterns and 54
inputs. The feature-bagged ELM [62] is another variant that uses a combination of ensembles
and feature bagging to run over computer systems with severe memory constraints.

1.6 Applications of ELM networks

There is a wide range of applications where ELM was used giving suitable solutions to ma-
chine learning problems, that are often the best, with high speed and generalization ability.
It has obtained many honorable achievements over the past period, such as virtual personal
assistants, predictions while commuting, social media services, spam email, malware filter-
ing, autonomous cars, driving, speech recognition and medical imaging [10]. The study [11]
categorizes the ELM applications as in Fig 1.2:

ELM has been employed in many real applications such as e-healthcare systems, chem-
istry, economics, image processing, Internet of Things, and robotics, among others. The col-
laborative ELM with a confidence interval [97] is an enhanced ELM version that eliminates
redundant calculations of the network neurons in e-healthcare institutions. The extensive ex-
perimental analysis shows that the model is efficient and achieves high accuracy (up to 98%)
in diagnosing clinical events by analyzing patients’ medical records. Surantha et al. [110]

19



AUDI ISSA ALBTOUSH

Figure 1.2: Distribution of main application areas of ELM according to [11].

develops an accurate model for classifying sleep stages by features of heart rate variabil-
ity extracted from electrocardiogram by integrating ELM and particle swarm optimization
for selecting features and determining the number of hidden neurons. The weighted ELM
has been applied in chemistry [70] to predict protein-protein interactions using a combina-
tion of scale-invariant feature transformations that improves performance compared to SVM.
In economics, the work [104] uses ELM for credit risk assess, predicting possible loan de-
faulters for credit lending institutions in order to avoid further losses. Other applications
include: food safety [38, 39]; geography and mapping [47, 89]; Internet of Things [73, 129];
robotics [32,102]; transportation [76,115]; recognition of facial expressions [25]; image clas-
sification [26, 93]; taste recognition [128]; video anomaly detection [116]; bacterial foraging
optimization [21]; complex chemical processes [43] and identification of COVID-19 [95].
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CHAPTER 2

QUICK EXTREME LEARNING MACHINE FOR

LARGE-SCALE CLASSIFICATION

The ELM has been applied to several tasks such as classification, regression and time series
prediction, among others. Classification is one of the main problems to which ELM has been
applied, and in this chapter we will focus on it. As commented in chapter 1, the efficiency
of ELM is limited to small and medium-sized datasets, because with large datasets several
major issues affect to its speed and memory requirements. One of them is related to the
number of hidden neurons, that will be denoted as H (see Table 2.2 below for a whole listing
of the nomenclature symbols and their meanings). The input weights of ELM, connecting
the input and hidden layers, are set randomly, while the output weights are calculated by
multiplying the target matrix (class labels in classification problems) by the pseudo-inverse
of the matrix with the activations of the hidden neurons. The number H of hidden neurons is
relevant because the more training patterns, the more hidden neurons are required to achieve
a good performance. This number is a hyper-parameter that must be tuned in order to achieve
a good performance. Often, its value is selected from a collection of pre-defined values as the
one with the best ELM performance (grid-search approach), although alternative strategies
such as fuzzy logic [41] and particle swarm optimization [110] have been also proposed to
select the optimal hidden layer size. All these approaches exhibit a high complexity that
limits its application to small and medium-sized datasets, since the ELM must be trained
and tested many times. One of the purposes of the current research is to propose a method
that automatically selects the network size from the dataset without repetitions of the ELM
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Figure 2.1: Diagram of the ELM neural network for classification during training. During test, TC×N
is removed, while XN×I , VC×N and qn are replaced by SP×I , VC×P and zp, respectively.

training in order to apply the network to large-sized datasets in an efficient manner.

Another issue with the efficiency of ELM for large-scale datasets and big data applications
is the calculation of the pseudo-inverse of the hidden layer activation matrix, that may be very
slow for large-scale datasets and eventually may not fit in the available memory. Although in
the previous chapter we saw several papers that applied ELM for these kind of problems, in
some cases the datasets are not so large, and in others the gain on speed is mainly based on
the use of big data technologies (MapReduce and Spark) or specific hardware (parallelization,
GPU acceleration and powerful computing capabilities), that are thus required for an efficient
processing. In the current chapter, the objective of the research is to proposes a ELM-based
method that can be executed on classification datasets with arbitrarily large populations over
general-purpose computers without any specific hardware nor software, such as big data tech-
nologies.

Our proposal, called quick extreme learning machine (QELM), is designed to allow the
execution of ELM on large datasets while keeping its simplicity and speed [12]. Section 2.1
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Chapter 2. Quick extreme learning machine for large-scale classification

Symbol Meaning
I No. inputs
C No. classes
H No. hidden neurons
N No. training patterns
P No. test patterns
Q = N +P No. total patterns

Training
xn n-th training pattern
AH×I = {ahi}H,I

hi=1 Input weights
UH×N = {uhn}H,N

hn=1 Input to h-th hidden neuron
YH×N = {yhn}H,N

hn=1 Activity (or output) of h-th hidden neuron
BC×H = {bch}C,H

ch=1 Output weights
VC×N = {vcn}C,N

cn=1 Outputs of the output neurons for training patterns
TC×N = {tcn}C,N

cn=1 True outputs for the output neurons
qn = argmax

c=1,...,C
{vcn} Predicted class label for xn

wn = argmax
c=1,...,C

{tcn} True class label of xn

Test
sp p-th test pattern
VC×P = {vcp}C,P

cp=1 Outputs of the output neurons for test patterns
zp = argmax

c=1,...,C
{vcp} Predicted class label for sp

Figure 2.2: List of symbols used in the text and their meaning.

describes ELM network, and section 2.2 discusses the role of the number H of hidden neurons.
The method proposed for the estimation of the hidden layer size in QELM is described in
section 2.3, while section 2.4 explains the output weight calculation and section 2.5 compiles
the whole algorithm. Results are reported and discussed in section 2.6.

2.1 Extreme learning machine

First we introduce the notation associated to the ELM network (refer to Table 2.2 and to
Figure 2.1). Let Q be the total number of patterns, being N and P the numbers of training
and test patters, respectively, so that Q = N +P. Let {xn}N

n=1 be the N training patterns of
dimension I (number of inputs of the ELM network) composing the matrix X, of order N× I.
In this chapter we will not consider the biases dh separated from the input weights, so the
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value I will be 1 plus the original dimensionality of the input pattern. Given the number of
classes C of the classification problem, let wn ∈ {1, . . . ,C}, with n = 1, . . . ,N, be the true class
label of xn, composing the N-dimensional vector w = (w1, . . . ,wN). Let H be the number of
neurons in the hidden layer of the ELM, and {ahi}H,I

hi=1 the weights of the hidden neurons (input
weights)1, composing the matrix AH×I . Note again that this matrix also includes the biases
dh of the classical ELM. Let {uhn}H,N

hn=1 be the inputs of the hidden neurons, composing the
matrix UH×N , and {yhn}H,N

hn=1 their activations (or outputs), composing the matrix YH×N . Let
{bch}C,H

ch=1 be the weights conecting the hidden and output layer (output weights), composing
the matrix BC×H , where the output layer of the ELM has C neurons, one for each class.
The desired outputs for the output neurons are {tcn}C,N

cn=1 given by tcn = δ (c,wn) = 1, where
δ (c,wn) = 1 for c = wn and δ (c,wn) = 0 otherwise, composing the matrix TC×N . The P

test patterns, of dimensionality I, are {sp}P
p=1, and compose the matrix SP×I . Let VC×P be

the output of the last layer, and {zp}P
p=1 the class labels predicted by the ELM, for the test

patterns {sp}P
p=1, composing the P-dimensional vector z = (z1, . . . ,zP).

Let us consider a training pattern xn = (xn1, . . . ,xnI) with inputs xni ∼N (0,1), i.e., stan-
darized with zero mean and standard deviation one, with n = 1, . . . ,N, and i = 1, . . . , I. The
input uhn of a hidden neuron h is uhn = ∑

I
i=1 ahixni. In matrix form for all the hidden neurons

and training patterns, U = AXT , where XT denotes the transposed of matrix X. The output
of this neuron is given by yhn = g(uhn), being g(u) = (1+ e−u)−1 the activation function2.
The matrix A is defined with random numbers, whose values, given the activation function
g(u), should verify |ahi|< 1/I in order to guarantee that uhn is restricted to a symmetric range
around u = 0 for xni ∼N (0,1). The output weight matrix BC×H is calculated as B = TY†,
where Y† is the pseudo-inverse matrix of Y. The trained ELM neural network is defined by
the weight matrices A and B, of sizes H× I and C×H respectively, so the number of weights
is H(I +C). Since I and C are given by the dataset, the network size is completely deter-
mined by the number H of hidden neurons. Algorithm 2 reports the ELM pseudocode for
classification.

1The notation {ahi}H,I
hi=1 means h = 1, . . . ,H and i = 1, . . . , I.

2An exponent α 6= 1 may be used in the exponential, and alternative activation functions listed in eq. 1.7–1.12
of chapter 1 may be also used.
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Chapter 2. Quick extreme learning machine for large-scale classification

Algorithm 2: Extreme learning machine for classification, version 2.

1 Algorithm: [A,B,q,z]=ELM2(X,w,H,g,S)

Data: X: matrix of size N× I with the N I-dimensional train patterns {xn}N
n=1;

w = (w1, . . . , wN): true class labels wn ∈ {1, . . . ,C} of {xn}N
n=1; H: number of

hidden neurons; S: matrix of size P× I with the P I-dimensional test patterns
{sp}P

p=1.
Result: A: matrix with the ELM input weights, of size H× I; B: matrix with the

ELM outputs weights, of size C×H; q (resp. z): vector of length N (resp. P)
with the predicted class labels for the training (resp. test) patterns.

2 T←{δ (c,wn)}C,N
cn=1 ; // δ (c,wn) = 1 when c = wn and 0 otherwise

3 X← [1,X];S← [1,S] ; // paste column vector 1 on the left
4 A← rand([−1/I,1/I],H, I) ; // random values in (−1/I,1/I)
5 U← AXT

6 Y← g(U) B← TY†

7 V← BY
8 q← (q1, . . . ,qN); qn← argmax

c=1,...,C
{vcn},n = 1, . . . ,N

9 V← Bg(AST )
10 z← (z1, . . . ,zP); zp← argmax

c=1,...,C
{vcp}, p = 1, . . . ,P

2.2 Number of hidden neurons

The number H of hidden neurons is often tuned using the grid-search method, i.e., to use
K-fold cross validation with three datasets per fold: training, validation and test sets. For
each fold, the ELM is trained using a value of H and its performance is evaluated on the
corresponding validation set. The performance for this value of H is averaged over the K

folds. The training-test cycle must be repeated for each value of H from a pre-specified
collection, and the one with the best average performance is selected for testing. Then, for
each fold the ELM using this value of H is trained over the training and validation sets, and
tested on the test set. The process is repeated for the K folds, and the final test performance is
the average over the K folds.

Alternative methods for model selection in ELM include [123], that uses pruning of the
less significant hidden neurons from an initially large network, but this approach is relatively
slow, spending about 5 minutes on the largest datasets considered (5,600 patterns and 64 in-
puts). The paper [30], instead of tuning the network size, uses a large fixed value of H, pruning
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those neurons that are non-relevant or similar to other non-relevant neurons using simulated
annealing. The process is stopped when the desired network size is achieved, without adjust-
ing weights nor reducing performance. The complexity of this approach is high, spending
about 300-900 seconds (5-15 minutes) on dataset adult with 39,047 training patterns. The
method U-ELM [85] adds incrementally neurons to the hidden layer using a PSO-based multi-
objective function that minimizes the uncertainty using a Riemann metric in order to select
the optimal input weights. The addition of new neurons stops when a maximum number of
iterations is reached or uncertainty does not change appreciably. This method is also rela-
tively slow, spending about 20 seconds on a small dataset with 350 training patterns. The
study [103] provides a review of methods to set an appropiated H value for the ELM.

2.3 Selection of H in QELM

With large datasets, to use grid-search for hyper-parameter tuning is very slow because the
ELM must be executed several times, depending on K (number of folds) and the number of
H values tried. The literature (see e.g. Tables 2 and 3 in [123] and Table 2 in [85]) has shown
that the optimal H raises with the number N of training patterns. Since H is the number of
rows of the hidden activation matrix Y, large datasets with high N require activation matrices
with many rows, that slows down the pseudo-inverse calculation. On the other hand, this
calculation requires to store in memory the whole matrix Y. However, increasing N, and
consequently H, the activation matrix will eventually not fit in memory. Our proposal is to
calculate H as an increasing function of N with an upper bound to keep limited the number
of rows or matrix Y for large datasets. In order to estimate this function, we evaluated the
behavior of the ELM performance, measured by the Cohen kappa statistic [19], with H over
the small datasets of our collection (see subsection 2.6) varying H from H = 1 to H = N

(100 values). The input weights {ahi}H,I
hi=1 are set to random values, so the classification

performance has a certain degree of randomness. In order to reduce this randomness, we
generated a random weight matrix A0 of size N∗× I, being N∗ the largest N over the small
datasets. For each value of H, the matrix A uses only the first H rows of A0, with H ranging
from H = 1 to H = N, with N ≤ N∗. In this way, the variability due to randomness is almost
removed.

Figure 2.3 plots the best values of H against the number of training patterns and inputs.
The left panel reports a increasing dependence between H and N, in fact their correlation
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Figure 2.3: Value of H (in logarithmic scale) that achieved the best kappa over the small datasets
(Q <15,000 patterns) of the collection described in section 2.6 vs. the number N of
training patterns (left panel) and vs. the number I of inputs (right panel), both in loga-
rithmic scales.

coefficient is 0.71, a value that can be considerated “from moderate to good” according to the
Colton scale [22]. However, the right panel does not reflect a clear dependence of H on I, with
a “bad to moderate” correlation (0.32). Therefore, the best value for H seems to depend more
on N than on I, being increasing with N. Figure 2.4 plots the kappa score for three datasets
with slightly different behaviors for the performance in the upper panels and lower left panel,
and the average over a wide dataset collection (see subsection 2.6) in the lower right panel. In
the four panels, kappa is plotted for 0 < H/N ≤ 1. The training performance raises with H/N

until perfect classification, but the test kappa raises only for H/N below 0.2 and decreases or
keeps relatively constant for larger H/N, suggesting that the highest performance is expected
for 0.1 ≤ H/N ≤ 0.2. We also saw in our experiments that kappa reduced even more for
H > N. Therefore, we propose that QELM uses H = bηNc with η=0.15, because in Figure
2.4 (lower right panel) the highest average test performance is achieved for H/N = η ∼ 0.15.
Since H must be upper bounded, we set a threshold N0 for N so that H = bηNc for N < N0

(datasets that can be considered of small size) and H = bηN0c for N > N0 (large datasets). We
set N0 = 15,000, so the maximum H is ηN0 = 0.15 ·15,000 = 2,250 hidden neurons. Thus,
H is given by:

H = bη min(N,N0)c, η = 0.15,N0 = 15,000 (2.1)

This approach allows to estimate a value for H directly from the number N of training
patterns, which is an intrinsic property of the dataset, without the need to execute the ELM
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Figure 2.4: Training (continuous red line) and test (dashed blue line) Cohen kappa [19] vs. H/N for
three datasets that are illustrative of the behavior of the ELM performance depending
on H/N (upper panels and lower left panel). The lower right panel plots the average
kappa over the small datasets (Q <15,000 patterns) of the collection described in sec-
tion 2.6.

training or test stages, nor to perform complex calculations over the original training set, that
might be slow for large datasets. The value of H proposed by eq. 2.1 is proportional to
N for small datasets with N < N0=15,000 patterns, reaching its highest value H=2,250 for
N0=15,000 patterns and remaining constant for large datasets with higher N. The proposed
value for H, that is the number of rows in matrices Y and A, and the number of columns of B,
does not raise for large N, so that the time spent by the ELM training raises slowly with the
dataset size. Besides, the value of H in eq. 2.1 is not expected to be very far from optimality,
because the ELM performance (see Figure 2.4) achieves its maximum for low values (below
0.2) of H/N. Finally, larger values of H with respect to N, e.g. H =0.9N, are not required
because our experiments report that: 1) performance keeps constant or reduces for H > N or
H >0.4N, see lower right panel of Figure 2.4; and 2) the ELM training, and specifically the
matrix storage and pseudo-inversion, becomes too slow or even not possible for H >15,000
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hidden neurons and medium-size datasets.

2.4 Calculation of the output weights in QELM

The output weights of an ELM network are calculated using the pseudo-inverse of matrix Y,
of order H×N. This is an expensive task either in terms of memory, because it requires to
store a matrix that may be large, and time, due to the computational complexity of the ma-
trix pseudo-inversion, that is similar to matrix inversion. Specifically, the complexity of the
n-order square matrix inversion [64] is O(n3) using the standard Gauss-Jordan elimination,
O(n2.807) using the Strassen algorithm [109], O(n2.376) using the Coppersmith–Winograd al-
gorithm [23], used e.g. in manifold learning ELM (ML-ELM) for matrix inversion [84], and
O(n2.373) using methods inspired on Coppersmith–Winograd. Considering specifically the
matrix pseudo-inversion, given a matrix G of order m× n with m ≥ n, the method geinv

proposed in [24] uses a full rank Cholesky factorization, followed by the inversion of a sym-
metric matrix, to calculate the pseudo-inverse of G. The complexities of the factorization and
inversion methods proposed in the previous paper are of orders O(n3) and O(r), respectively,
being r the rank of GT G, but on parallel architectures with enough processors these com-
plexities can be reduced to O(n) and O(logr), respectively. However, even these optimized
approaches are very slow to calculate the pseudo-inverse of matrix Y, of size H×N, for large
datasets with high N, and consequently high H (numbers of columns and rows of Y, respec-
tively). The previous section proposed to keep H bounded with N. Analogously, the number
M of columns of Y must also be bounded when the size of the training dataset raises, so for
large datasets it must be M ≤ N instead of M = N as in ELM. Note that an acceptable value
for M will be conditioned by N, but not by the number I of inputs. Our proposal is to set an
upper bound M0 ≤ N on M so that M ≤M0. For small datasets M0 = N, but M0 < N for large
datasets, so that a smaller training set is used instead the original N training patterns. In order
to set M0, a threshold N1 = 5,000 patterns is set on N to separate both cases (small and large
datasets). To achieve a reasonable size for matrix Y, the value M0, that defines its maximum
number of columns, is set to:

M0 = min(N,N1), N1 = 5,000 (2.2)

Specifically, we propose to replace the N original training patterns that ELM uses as
columns in Y by M prototypes created from the original training patterns [4]. A set of proto-
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types {pcl} of the different classes is defined, with c = 1, . . . ,C, and l = 1, . . . , lc, being lc the
number of prototypes of class c. Each column of matrix Y is a prototype, so the number M of
columns of matrix Y, that must be lower than M0, is given by:

M =
C

∑
c=1

lc ≤M0 (2.3)

In datasets where N < N1, we have M0 = N and M = M0, so all the training patterns can
be stored by columns in Y as in ELM. In datasets where N > N1, we have M0 = N1 by eq.
2.2, and an upper bound Lc on the number lc of prototypes of each class is set, so that lc ≤ Lc.
This bound Lc is class-dependent because classes may be unbalanced, so the most populated
classes should have Lc higher than the low populated ones. This suggests that Lc ∼ NcM0/N,
where Nc is the number of training patterns of class c. Note that for large datasets, N > N1

and M0 = N1 < N so that it may be NcM0/N < 1 and class c would have zero prototypes.
In order to avoid this, a lower bound L1 is set for Lc, so that a class always has prototypes.
To guarantee an minimum number of prototypes per class for large datasets, an acceptable
value for the maximum number of prototypes per class would be L1 =100. However, in
datasets with high C where Nc > Lc for all the classes, the number M of prototypes would be
M = L1C. The constraint M ≤M0 requires L1 ≤M0/C. When C > M0 we have M0/C < 1, so
L1 would be zero and classes would have no prototypes. In order to avoid this posibility, we
propose to use:

L1 = min
{

L0,max
(

1,
⌊

M0

C

⌋)}
, L0 = 100 (2.4)

so that L1 = L0 = 100 unless M0/C < L0, or equivalently C > M0/L0, in which case L1 is 1 if
bM0/Cc= 0 and bM0/Cc otherwise. Finally, Lc is given by:

Lc = max
(

L1,

⌊
NcM0

N

⌋)
(2.5)

Since lc ≤ Lc, the classes with Nc < Lc training patterns will have lc = Nc < Lc prototypes,
while classes with Nc ≥ Lc will have lc = Lc prototypes. These prototypes pcl , with c =

1, . . . ,C, and l = 1, . . . , lc, are calculated in a simple way in order to be efficient for large
datasets. The first Lc training patterns of class c are selected as initial prototypes {pcl}Lc

l=1.
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Algorithm 3: Quick extreme learning machine (QELM).

1 Algorithm: [A,B,q,z]=QELM(X,w,g,S)

Data: X: matrix with the train patterns, of size N× I; w = (w1, . . . , wN): true class
labels wn ∈ {1, . . . ,C} of the train patterns; S: matrix with test patterns, of size
P× I.

Result: A: matrix with the QELM input weights, of size H× I; B: matrix with the
QELM output weights, of size C×H; q: vector of length N with the
predicted class labels for the training patterns; z: vector of length P with the
predicted class labels for the test patterns.

2 N0←15,000; η ←0.15; N1←5,000; L0← 100 ; // Hyper-parameters

3 M0←min(N,N1); L1←min
{

L0,max
(

1,
⌊

M0

C

⌋)}
4 H← bη min(N,N0)c; {Nc← 0}Cc=1
5 for n← 1,N do
6 c← wn; Nc← Nc +1
7 end
8 {Lc←max(L1,bNcM0/Nc)}Cc=1; {pcl ← 0;Ncl ← 0}C,Lc

cl=1; M← 0
9 for n← 1,N do

10 c← wn
11 if lc < Lc then
12 l← lc; pcl ← xn; Ncl ← 1; lc← lc +1; M←M+1
13 else
14 l← argmin

j=1...,lc

∣∣pc j−xn
∣∣

15 pcl ←
(

1− 1
Ncl

)
pcl +

xn

Ncl
; Ncl ← Ncl +1

16 end
17 end
18 X←{pcl}C,Lc

cl=1
19 [A,B,q,z]←ELM2(X,w,H,g,S) ; // ELM() defined in algorithm 2
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The following training patterns of this class, if they exist, update their nearest prototypes from
pcl(t) to pcl(t +1) according to:

pcl(t +1) =
[

1− 1
Ncl(t)

]
pcl(t)+

xn

Ncl(t)
(2.6)

c = wn, l = argmin
j=1,...,lc

{
|pc j−xn|

}
, Ncl(t +1) = Ncl(t)+1

where pcl(t +1) and pcl(t) are the new and old versions, respectively, of the l-th prototype of
class c=wn, i.e., the class label of training pattern xn. Besides, |x−y|=∑

I
i=1 |xi−yi|, being x

and y two vectors of dimension I. On the other hand, Ncl(t) is the number of training patterns
of class label c for which prototype pcl(t) was the nearest one until now. When class c has
Nc < Lc training patterns, its l-th prototype pcl is the l-th training pattern xn of class c = wn

for l = 1, . . . ,Nc. This updating method, that is an efficient on-line version of the simple
K-means clustering algorithm, allows to create a collection of class prototypes in a fast way
without excessive memory requirements, because the total number of prototypes M = ∑

C
c=1 lc

for large datasets with NcM0/N > L1, using eqs. 2.2 and 2.5, is upper bounded by N1:

M =
C

∑
c=1

lc ≤
C

∑
c=1

Lc =
C

∑
c=1

max
(

L1,

⌊
NcM0

N

⌋)
=

=
C

∑
c=1

⌊
NcM0

N

⌋
≤ M0

N

C

∑
c=1

Nc =
M0

N
N = M0 ≤ N1 (2.7)

2.5 The QELM algorithm

Algorithm 3 reports the pseudocode of QELM, where the number H of hidden neurons is
given by eq. 2.1 and class prototypes are updated according to eq. 2.6. Table 2.1 lists the
names, values and meanings of the hyper-parameters of QELM. With these values, H ≤ 2,250
and M ≤ N1 = 5,000, so the size H×M of the matrix Y to be pseudo-inverted can not over-
come 2,250×5,000, while matrices A and B can not overcome sizes 2,250×I and C×2,250,
being C and I the numbers of classes and inputs, respectively. The values of hyper-parameters
N0,η ,N1 and L0 are selected in order to limit the computational cost of QELM for large
datasets. The value N0 = 15,000 is selected to keep H acceptably low when N is large and
to avoid slow training. The value η = 0.15 is selected to provide a good performance (see
Figure 2.4) while keeping H low. Similarly, the value N1 = 5,000 is selected to avoid an
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Table 2.1: Hyper-parameters of QELM.

Name Value Description

N0 15,000 Maximum N for which H = bηNc
η 0.15 Fraction of N used for H when N < N0

H bη min(N,N0)c Number of hidden neurons

N1 5,000 Maximum number of prototypes (columns of Y)

L0 100 Lower limit to the number of prototypes of a class
when C < M0/L0

excessive number of prototypes that would slow down QELM in large datasets. Finally, the
value L0 = 100 is selected to guarantee a minimum number of prototypes for low populated
classes in unbalanced datasets, but not too high in order to avoid an excessive number of
prototypes when many classes are present. The performance of QELM is expected to be not
very sensitive to these hyper-parameters in order to avoid their tuning, that would hinder its
application to large datasets. Therefore, QELM does not require to perform hyper-parameter
tuning, e.g. using grid-search, a process that would make this method not practical for large-
scale datasets.

The classical ELM has been formally proven to be a universal approximator that can
exactly learn any training dataset provided a H large enough is used. However, in practice
the ELM can not be applied to datasets with high N because it requires to perform pseudo-
inversion of matrix Y of size H ×N. The QELM extends ELM for large datasets with two
key contributions. First: it estimates an adequate number H of rows of matrix Y directly
from the dataset properties, without train nor test the network. Our preliminar exploration of
the ELM behavior depending on H (see subsection 2.3) reports that the best performance is
achieved for low H/N values, specifically 0.1≤ H/N ≤0.2. Thus, we propose to use H =

bηNc with η =0.15, bounded by H = bηN0c for large datasets where N > N0. Second: in
the calculation of matrix Y, the QELM replaces the original training patterns by a set of class
prototypes, whose size is limited for large datasets in order to keep low the number of columns
of Y. An efficient on-line version of the well-known K-means clustering algorithm is used
to create a representative collection of class prototypes. Due to the K-means properties, this
collection is a reduced but significant version of the original training set, that is too large to
be used for the ELM training. Combined together, both contributions are oriented to achieve
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a matrix Y of size large enough to achieve a good performance, but small enough to allow
its storing in memory and the efficient pseudo-inverse calculation. Since the value estimated
for H by QELM is high enough for a good performance on large datasets, and since the class
prototypes are guaranteed to be a small but accurate representation of the original training
set, the mathematical properties of the ELM guarantee that the classification problem will be
learnt with a high level of performance.

Table 2.2: List of small datasets (Q≤15,000 patterns) with the number of total (Q) and training (N)
patterns, inputs (I) and classes (C), sorted by increasing N.

No. Original name Dataset Q N I C

1 Breast tissue tissue 106 58 9 6
2 Hepatitis hepatitis 155 78 19 2
3 Wine quality wine 178 90 13 3
4 Sonar, mines vs. rocks sonar 208 106 60 2
5 Seeds seeds 210 108 7 3
6 Heart (Statlog) heart 270 136 28 2
7 Image segmentation imseg 2,310 140 18 7
8 Ionosphere ionosphere 351 178 33 2
9 Dermatology dermatology 366 186 130 6

10 Congressional voting voting 435 218 16 2
11 Breast cancer Wisc. wdbc 569 286 30 2
12 Synthetic control chart synthetic 600 300 60 6
13 Australian credit australian 690 346 43 2
14 Pima indian diabetes pima 768 384 8 2
15 Energy efficiency energy 768 386 8 3
16 Vehicle silhouettes vehicle 846 426 18 4
17 Annealing annealing 898 450 54 5
18 Tic-tac-toe tic 958 480 27 2
19 Mammographic mass mammograph 961 482 5 2
20 German credit german 1,000 500 65 2
21 Multiple spirals appart msa 1,206 612 2 6
22 Isolet isolet 1,559 780 617 26
23 Abalone abalone 4,177 2,090 8 3
24 Landsat satellite sat 6,435 3,222 36 6
25 Musk (v.2) musk 6,598 3,302 166 2
26 Hand digits USPS usps 9,298 4,650 256 2
27 Electrical Grid grid 10,000 5,000 13 2
28 Nursery nursery 12,958 6,480 27 4
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Table 2.3: List of large datasets (Q >15,000 patterns) sorted by increasing N.

No. Original name Dataset Q N I C

1 Magic gamma magic 19,020 9,510 10 2
2 Letter recognition letter 20,000 10,018 16 26
3 Arabic hand. char. arabic 16,800 12,600 1,024 28
4 Chess (kr. vs. king) chess 28,056 14,044 40 18
5 Adult (census income) adult 48,842 24,422 105 2
6 Poker hand poker 1,025,010 25,010 10 2
7 Shuttle (Statlog) shuttle 58,000 43,483 9 7
8 Wisdm smartphone wisdm 73,803 55,380 92 18
9 Fruits 360 (Kaggle) fruits 90,380 67,692 30,000 131
10 Devanagari character devanagari 92,000 69,000 1,024 46
11 IJCNN 2001 ijcnn1 141,691 70,848 22 2
12 Covertype covtype 581,012 435,768 54 7
13 KDD Cup 1999 kddcup 4,000,000 3,638,724 122 23
14 Record linkage record 5,749,132 4,311,846 11 2
15 Physical unclonable physical 6,000,000 5,000,000 128 2
16 Detection IoT botnet baiot 7,062,606 5,296,869 115 11
17 Hepmass hepmass 10,500,000 7,000,000 28 2
18 Higgs higgs 11,000,000 8,249,997 28 2
19 Kitsune network attack kitsune 21,017,597 8,646,375 115 2
20 Human activ. recog. human 13,956,557 10,467,372 36 42
21 Heter. activ. recogn. har 29,097,887 21,823,410 14 6
22 Wesad wesad 31,470,603 23,602,947 8 4

2.6 Results and discussion

We tested the QELM on a collection of 28 small (Q≤15,000 patterns) and 22 large (Q>15,000
patterns) classification problems (see Tables 2.2 and 2.3), including datasets up to 34 million
patterns, 30,000 inputs and 131 classes. Most of them are selected from the Machine Learning
Repository of the University of California at Irving (UCI)3. Dataset msa is the well-known
artificial dataset with 6 nested spirals, and fruits comes from the Kaggle4 repository. The
tables list, for each dataset, its original name, the short name used in this paper, the total

3https://archive.ics.uci.edu (Visited May, 2021)
4https://www.kaggle.com (Visited May, 2021)
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number of patterns (Q) and the number of training patterns (N), inputs (I) and classes (C).
On the small datasets, QELM is compared to the classical ELM and the support vector ma-
chine with radial basis function (RBF) kernel, henceforth named SVC, implemented by the
Libsvm5 library [20]. On the large datasets, the QELM is compared to ELM and to the lin-
ear kernel support vector machine, henceforth named LSVC, implemented by the Liblinear6

library [36]. The reason of using LSVC instead of SVC for large datasets is that the latter
(i.e., with RBF kernel) is very slow and has two hyper-parameters (see below) whose tuning
is not practical in these cases, while LSVC is designed for large datasets and can be executed
without no hyper-parameter tuning.

The experiments used 4-fold cross validation, excepting the small dataset imseg and the
large datasets shuttle, mnist, fruits, poker, physical and hepmass, that already
provide two separated train and test sets. On the small datasets, both ELM and SVC perform
a grid-search based hyper-parameter tuning, so there is a training set (including 50% of the
patterns of each class, randomly selected), a validation and a test set (each one including 25%
of the patterns of each class, randomly selected) for each trial. The grid-search proceeds by
training the classifier over the four training sets and evaluating its performance over the 4
validation sets, for each combination of hyper-parameter values. The selected combination is
the one with the highest average performance over the 4 validation sets. Then, the classifier is
trained, using this selected combination, over the four train and validation sets, and the final
performance is averaged over the 4 test sets. In the dataset imseg, that has separated original
train and test sets, the original training set is splitted in a training set, including 2/3 of the pat-
terns of each class, randomly selected, and a validation set, including the remaining 1/3 of the
original training patterns of each class. The selected combination of hyper-parameter values
is the one that achieves the best performance over the validation set. The final performance is
the one achieved by the classifier over the test set after training over the train and validation
set with the best combination. The ELM tuned the hyper-parameter H using values from 10
to min(N,500) with step 10. Therefore, H ≤ N because the ELM performance reduces for
H > N (see our previous experiments in section 2.3), and H ≤ 500 to avoid excessively large
values that would slow down ELM. The SVC tuned the hyper-parameters with values in the
range {2i}, with i = −5 to 15 step 2 for the regularization hyper-parameter λ and i = −15
to 3 step 2 for the inverse γ of the RBF kernel spread. On the contrary, no hyper-parameter

5https://www.csie.ntu.edu.tw/∼cjlin/libsvm (Visited May, 2021)
6https://www.csie.ntu.edu.tw/∼cjlin/liblinear (Visited May, 2021)
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Table 2.4: Kappa (in %) and time (in seconds) per fold of QELM, ELM and SVC on the small
datasets. Each value on the right part of the last row is the average ratio between
the times of ELM (or SVC) divided by the times of QELM. A time of 5.23 means 5.23
seconds, while 5:23 means 5 minutes and 23 seconds.

Kappa (%) Time (s/fold)
No. Dataset QELM ELM SVC QELM ELM SVC

1 tissue 60.2 61.3 55.7 0.003 0.01 0.20
2 hepatitis 26.5 23.8 39.3 0.005 0.02 0.29
3 wine 96.6 96.6 98.3 0.005 0.03 0.36
4 sonar 42.3 48.0 77.8 0.01 0.06 1.44
5 seeds 94.3 94.2 90.7 0.005 0.04 0.29
6 heart 69.7 71.2 66.8 0.007 0.08 0.86
7 imseg 83.5 84.3 90.3 0.08 0.16 0.74
8 ionosphere 60.0 65.5 88.3 0.01 0.15 1.48
9 dermatology 92.1 95.2 94.5 0.03 0.21 5.76
10 voting 90.9 90.9 90.9 0.007 0.26 0.76
11 wdbc 88.2 88.8 90.9 0.03 0.60 2.33
12 synthetic 77.6 90.4 99.0 0.05 0.74 6.04
13 australian 67.7 71.2 72.0 0.03 1.09 3.08
14 pima 42.5 47.0 42.5 0.02 1.35 2.52
15 energy 81.7 93.3 95.2 0.02 1.39 1.51
16 vehicle 69.9 72.1 76.8 0.03 2.16 4.16
17 annealing 94.0 96.1 97.2 0.04 2.58 8.25
18 tic 96.3 96.3 99.8 0.03 3.75 4.80
19 mammograph 62.5 63.5 67.1 0.03 2.10 11.70
20 german 39.2 38.3 39.8 0.04 4.19 15.84
21 msa 86.3 90.1 99.3 0.03 3.56 8.68
22 isolet 85.1 87.4 94.5 1.03 6.75 3:03
23 abalone 30.5 32.0 33.1 0.20 7.31 1:57
24 sat 83.2 84.2 90.6 1.32 10.36 1:44
25 musk 83.9 85.9 99.1 1.84 11.14 4:38
26 usps 88.9 88.1 97.4 3.65 3:54 9:45
27 grid 93.4 94.8 99.4 1.29 12.89 1:33
28 nursery 96.1 92.6 100.0 3.99 16.93 6:51

Average 74.4 76.5 81.7 – 36.0 153.8

tuning was performed on the large datasets in order to avoid too slow experiments, so there
is only one training and one test set per fold. The ELM used H = 500, and the LSVC used
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λ = 1. The performance measurement used is the Cohen kappa [19], that takes into account
the class unbalancing. The algorithms were programmed in the Octave scientific programing
language7 and executed on a computer with Intel Core i7-9700K CPU (8 cores) at 3.6GHz
with 64GB RAM under Kubuntu 20.04.

Table 2.4 reports the kappa and time (left and right parts of the table, respectively) achieved
by QELM, ELM and SVC on the small datasets. In the majority of the datasets, SVC achieves
the best kappa, overcoming QELM and ELM, with the highest average value (81.7%), 5.2
points above ELM, which is expectable because SVC is an state-of-the-art classifier. A
Wilcoxon sign ranksum test comparing the kappa of SVC and ELM reports a p-value of
0.085, so the difference which is not statistically significant. Comparing ELM and QELM,
the difference is small (2.1 points) and far from being significant (p-value 0.517), in fact only
in two datasets (synthetic and energy) the difference slightly overcomes 10 points, so
QELM follows adequately the performance of ELM. In the small datasets, the number of
training patterns Nc of each class is lower than the upper bound Lc on the number of proto-
types, so QELM uses all the training patterns as prototypes, and the columns of matrix Y are
the own training patterns, as in ELM. Thus, the only difference between QELM and ELM is
that the former does not perform tuning of the hyper-parameter H, so the difference in per-
formance between them measures the impact of this lack of tuning. Since this difference is
fairly low (2.1 points in average), the strategy used by QELM to estimate H (eq. 2.1) can be
considered quite successful.

Regarding the time required per fold (right part of Table 2.4), QELM is systematically
faster than ELM in the small datasets, being the latter between 2 and 142 times slower than the
former depending on the dataset. Since the average of times has no statistical sense, because
only the larger datasets would contribute to the mean, the right part of the last row reports
the average, over all the datasets, of the time of ELM divided by the time of QELM, and the
analogous for SVC. Thus, the value in the QELM column is empty (—). This average value
reports that ELM is in average 36 times slower than QELM, that performs hyper-parameter
tuning by grid-search and therefore repeats the training and test several times. Comparing
SVC and QELM, the former is about 154 times slower than the latter, ranging from 9 to 580
times slower depending on the dataset. The three classifiers are slower in dataset isolet,
compared to the other datasets, due to its high number of classes. In dataset nursery, QELM
spends 4 s/fold, while ELM spends 17 s/fold and SVC about 7 minutes/fold.

7http://www.octave.org (Visited May, 2021)
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Table 2.5: Kappa (in %) of QELM, QELM with H = 500 (column QELM∗), ELM and LSVC, and time
(in seconds) per fold of QELM, ELM and LSVC, on the large datasets. Symbol ’–’ means
an execution error. The final average is over datasets where ELM and LSVC executed
without errors.

Kappa (%) Time (s/fold)
No. Dataset QELM QELM∗ ELM LSVC QELM ELM LSVC

1 magic 56.6 65.8 67.3 52.5 18.91 1.16 0.24
2 letter 92.7 88.3 88.3 52.9 19.16 1.26 0.60
3 arabic 21.1 23.5 28.0 25.4 1:04 29.91 2:48:09
4 chess 48.0 37.8 39.6 26.9 44.20 2.17 0.69
5 adult 38.0 48.3 50.7 55.6 50.69 9.07 5.31
6 poker 10.6 11.5 16.2 0.1 1:32 30.44 18.67
7 shuttle 98.1 99.0 99.3 46.3 34.00 4.55 0.79
8 wisdm 47.0 42.8 43.5 25.0 1:33 17.25 24.07
9 fruits 32.0 32.0 34.9 – 1:01:51 1:07:14 –
10 devanagari 52.0 39.7 55.6 55.1 2:01 2:20 27:52
11 ijcnn1 62.9 53.9 50.5 22.0 39.35 10.94 3.44
12 covtype 53.1 57.5 59.1 52.7 1:21 1:18 23.84
13 kddcup 87.5 87.5 92.6 92.7 6:33 12:22 3:34
14 record 73.3 – – 1.8 9:27 – 1:21
15 physical -0.1 – – 0.1 11:43 – 7:57
16 baiot 50.0 – – -8.2 17:20 – 2:48:05
17 hepmass 22.9 – – 67.2 15:21 – 5:33
18 higgs 14.7 – – 27.1 16:08 – 5:41
19 human 17.9 – – 23.6 16:13 – 23:11
20 kitsune 84.9 – – – 25:33 – –
21 har 0.5 – – – 17:40 – –
22 wesad 2.9 – – -2.2 19:31 – 5:25

Average 55.6 54.6 57.6 42.3 – 0.5 14.4

Table 2.5 reports the kappa and time of QELM, ELM and LSVC on the large datasets.
The QELM is able to run in all the datasets, because the size of the matrices A, B are H× I

and C×H, respectively, while Y is of size H ×M, with M ≤ N1, so none of them scales
with the number N of training patterns. However, the ELM fails in 9 of 22 datasets (about
41% of them), while LSVC, which is designed for large-scale datasets, fails in 3 of the largest
datasets. Considering performances, QELM also follows ELM in the large datasets, and ELM
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overcomes QELM by more than 10 points in 2 datasets (magic and adult), although QELM
also overcomes ELM by the same margin in datasets chess and ijcnn1. Comparing av-
erage values over the datasets where ELM does not fail, ELM overcomes QELM by only 2
points, and the p-value of the Wilcoxon test is 0.74, so the difference between them is very
far from statistical significance.

The difference between ELM and QELM in large datasets is caused by two reasons. 1)
Following eq. 2.1, QELM uses H = 2,250 neurons on the large datasets, while ELM uses H =

500, so the latter is speeded up compared to the former. 2) The QELM uses prototypes while
ELM uses training patterns, so the latter saves the time spent by prototype calculation, but at
the cost that the former fails in 41% of datasets. In order to evaluate the impact of the second
reason (prototyping) over performance, we developed an experiment comparing QELM with
H = 500 and ELM, that also uses H = 500, so prototyping is the only difference between
them. The column labeled QELM∗ in the left part of Table 2.5 reports the kappa of QELM∗

for the large datasets where ELM did not fail. In the majority of the datasets, excepting
devanagari, QELM∗ performs similarly to ELM and the average kappa of QELM∗ is 3
points below ELM, near to the average difference between QELM and ELM (2 points). Thus,
the use of H=2,250 in QELM with respect to H=500 in QELM∗ increases performance from
54.6% (QELM∗) to 55.6% (QELM).

The performance of LSVC is clearly poorer than QELM and ELM, being 13.3 and 15.3
points below them with p-values (Wilcoxon test) of 0.285 and 0.214, respectively. The results
of LSVC are very irregular, e.g. in dataset record LSVC achieves 1.8% while QELM
achieves 73.3%. Other cases where LSVC performs poorly are letter, chess, shuttle,
wisdm and ijcnn1. However, in hepmass LSVC achieves 67.2% and QELM 22.9%, and
in adult LSVC also outperforms QELM. In the largest datasets (numbers 15-22 in Table
2.5), both LSVC and QELM perform poorly, which suggests that they are really difficult
datasets.

The times in the right part of Table 2.5 report that QELM is twice slower than ELM. This
is caused by: 1) ELM no longer performs hyper-parameter tuning, but uses H = 500, what
speeds it up; and 2) QELM must calculate prototypes, while ELM uses directly the original
training patterns, so it fails in datasets 14-22. On the other hand, the LSVC is about 15
times slower than QELM, because despite of using a fast linear kernel, LSVC still uses the
iterative SVC algorithm to solve the classification process, that is slow for large scale datasets.
Comparing LSVC and QELM by datasets, in some cases LSVC is faster than QELM, but in
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Figure 2.5: Times required by QELM for prototype calculation, train and test in the large datasets
sorted by increasing N.

general LSVC is much slower, e.g. in arabic, devanagari and baiot, with high many
inputs, failing in dataset fruits due to the high I = 30,000 and C = 131. Note also that
times of QELM raise slowly with N from 6 minutes in kddcup (4 million patterns) to 19
minutes in wesad (31 millions). This is caused by the limitation on the matrix sizes, although
increasing on N also raises the time spent by the prototype calculation. There are also some
peaks in kitsune and fruits, due to their high I values (115 and 30,000, respectively).

Figure 2.5 plots the times spent by QELM to calculate prototypes, to perform training
(i.e., to calculate the pseudo-inverse of the Y matrix) and to test, on the large datasets. In the
left part, that corresponds to the smaller datasets, the times are lower, and raise when we shift
to the right because the dataset size increases, with some peaks in datasets with many inputs
(arabic, adult, devanagari and fruits). However, on the right part the three times
are relatively stable thanks to the bounding on the dimensions H ≤ 2,250 and M ≤ 5,000
of the Y matrix. There is a slow increasing in the prototype time (blue line) because more
patterns must be used in the prototype calculation. Once prototypes are created, the train time
(red line) also remain stable over all the large datasets. However, the test time (green line)
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raises because the time required to read the test patterns increases with the size of the test set.
Note also the peaks on the test time in datasets arabic, fruits and devanagari, due to
the high I, and the peak of poker, because this dataset has a reduced training set (N=25,000)
but a large test set (P=1,000,000).
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Figure 2.6: Kappa and time, sorted increasingly, achieved by QELM in large datasets varying N1.

Figure 2.6 plots the kappa and time of QELM on the large datasets with maximum number

42



Chapter 2. Quick extreme learning machine for large-scale classification

Table 2.6: Kappa (in %) of QELM for the large datasets varying the hyper-parameters H, N0, η and
L0, and average values (asterisk labels the results achieved using the default hyper-
parameter values).

H N0 η L0

Dataset Eq. (1) 5,000 7,000 15,000 20,000 30,000 0.1 0.15 0.2 100 300 500

magic 56.6 24.4 22.7 56.6 56.6 56.6 60.5 56.6 52.1 56.6 56.6 56.6
letter 92.7 21.3 63.2 92.7 92.7 92.7 92.3 92.7 92.4 92.7 93.7 94.1
arabic 21.1 1.0 15.6 21.1 21.1 21.1 20.2 21.1 20.9 21.1 25.7 28.2
chess 48.0 11.5 17.9 48.0 48.0 48.0 47.8 48.0 45.6 48.0 49.4 50.5
adult 38.0 9.9 9.5 38.0 30.5 22.0 42.9 38.0 30.5 38.0 38.0 38.0
poker 10.6 1.3 3.9 10.6 10.1 6.9 11.1 10.6 10.1 10.6 10.6 10.6
shuttle 98.1 97.9 98.1 98.1 98.0 97.7 98.5 98.1 98.0 98.1 98.3 98.6
wisdm 47.0 3.6 4.8 47.0 38.1 9.7 50.1 47.0 38.1 47.0 49.0 56.2
fruits 32.0 25.2 9.2 32.0 30.3 24.0 29.9 32.0 30.3 32.0 23.8 —
devanagari 52.0 1.6 38.7 52.0 48.8 16.2 48.3 52.0 48.8 52.0 68.0 71.2
ijcnn1 62.9 22.4 26.5 62.9 49.6 23.2 79.3 62.9 49.6 62.9 62.9 63.1
covtype 53.1 22.8 22.9 53.1 41.8 22.5 58.9 53.1 41.8 53.1 56.4 57.7
kddcup 87.5 88.2 88.8 87.5 88.2 88.3 89.2 87.5 88.2 87.5 87.5 87.5
record 73.3 75.4 76.4 73.3 72.1 74.4 73.9 73.3 72.1 73.3 39.6 34.3
physical -0.1 0.0 0.1 -0.1 0.0 -0.1 0.1 -0.1 0.0 -0.1 -0.1 -0.1
baiot 50.0 56.8 58.4 50.0 52.8 56.2 45.5 50.0 52.8 50.0 49.8 46.7
hepmass 22.9 -0.5 12.8 22.9 15.0 7.9 31.2 22.9 15.0 22.9 22.9 22.9
higgs 14.7 0.9 6.9 14.7 12.5 8.1 18.0 14.7 12.5 14.7 14.7 14.7
human 17.9 16.9 16.9 17.9 15.8 15.8 16.8 17.9 15.8 17.9 7.7 11.3
kitsune 84.9 88.1 90.9 84.9 87.6 88.3 85.6 84.9 87.6 84.9 86.0 86.0
har 0.5 1.0 0.5 0.5 -0.2 0.5 2.1 0.5 -0.2 0.5 1.2 1.2
wesad 2.9 4.2 6.3 2.9 2.1 3.3 8.8 2.9 2.1 2.9 2.9 2.9

Average 43.9∗ 26.1 31.4 43.9∗ 41.4 35.6 46.0 43.9∗ 43.9 43.9∗ 42.9 44.4

of prototypes N1=5,000 (value used in the previous experiments), N1=7,000 and N1=10,000.
The kappa is very similar with the different values of N1, with average values of 43.9%,
46.9% and 48.8% with N1 = 5,000, 7,000 and 10,000, respectively. Since increasing N1 more
prototypes are used, the times increase in average 3.13 and 3.57 times for N1 = 7,000 and
N1 = 10,000, respectively, compared to N1 = 5,000, with some exceptions. The conclusion
is that increasing N1 above 5,000 only slows QELM down without raising kappa too much,
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so no tuning of N1 is required to achieve a good performance.
Table 2.6 reports the kappa achieved by QELM on the large datasets using several values

of the hyper-parameters H (number of hidden neurons), N0 (maximum N for which H =

bηNc), η (fraction of N used for H when N < N0) and L0 (lower limit to the number of
prototypes of a class when C < M0/L0, see subsection 2.4). The missing value for L0 = 500
and dataset fruits is because this large value and the high number of classes (131) of
dataset fruits drive QELM out of memory. The lower row reports the average kappa, and
the asterisks identify the column achieved with the default values in Table 2.1 (H given by eq.
2.1, N0 = 15,000, η = 0.15 and L0 = 100). The influence of H is very high (columns 2-4),
but eq. 2.1 reports the highest kappa, that confirms the performance reduction for H > 0.2, as
in Figure 2.4, while QELM is slower because H is higher (not shown in Table 2.6). Regarding
N0 (columns 5-7), performance reduces when its value is increased (see the average kappa),
while driving QELM also slower. To change the η value between 0.1 and 0.2 (columns 8-10)
has also low influence over performance, although η=0.1 seems to perform slightly better.
Similarly, to increase L0 (columns 11-13) slows down QELM, because more prototypes must
be calculated, but does not raise appreciably performance with respect to L0 = 100 (default
value). Overall, these results show that QELM is not very sensitive to the choice of N1 (see
Figure 2.6), N0, η and L0, so their values do not need to be tuned. The QELM is sensitive to
H, but raising its value compared to the value set by eq. 2.1 only reduces performance.
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CHAPTER 3

EXTREME LEARNING MACHINE WITH

CONFIDENCE INTERVAL BASED BIAS

INITIALIZATION

The randomness of input weights and bias in the ELM algorithm attracted much attention
because its simplicity, accelerated learning and generalization performance compared to pre-
vious iterative training methods. However, despite ELM uses random values for the input
weights and a closed-form expression to calculate the output weights, some researchers have
proposed more complex variants that pursue to select optimal weight values and number of
hidden neurons. For example, Son [107] proposed an improved training method for ELM
with genetic algorithms using selection, crossover and mutation, which randomly selects hid-
den layer weights and biases. Zhou [130] proposed a hybrid grey wolf optimization algorithm
based on fuzzy weights and differential evolution. The projection vector machine [29] uses
singular value decomposition (SVD) to calculate the ELM weights, differently from the ran-
dom weights in ELM, and the rank of the SVD matrix is the number of hidden neurons. A
fast training algorithm is proposed in [1], that uses efficient prediction sum of squares criteria
and SVD to calculate the weights of a regularized ELM ensemble.

There are also works in the literature where ELM uses pruning to select the best hidden
neurons [40, 96]. The bootstrapped least absolute shrinkage and selection operator (LASSO)
ELM [27] also uses pruning, regularization and resampling to select the most representative
hidden neurons. Growing algorithms instead of pruning were also proposed [37], combined
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Figure 3.1: Structure of the proposed method CRB-ELM.

with incremental learning, for the ELM training. Huang [53] also proposed an incremental
ELM that uses random search to add new hidden neurons. To find the parameters in the layers,
Qu [94] proposed a two-hidden-layer ELM to obtaining the parameters between the first and
second hidden layer. The work [121] introduces an algorithm that determines randomly the
input weights and biases based on the Liu regression estimator. This approach handles draw-
backs like instability and poor generalization performance in the presence of perturbations
and multicollinearity. The collaborative ELM [97] enhances the performance and speed by
considering where plausible predictions are wrong, within the desired degree of confidence,
thus avoiding unnecessary calculations in the network neurons. This model was applied to
diagnose of clinical events by analyzing patients’ medical records, achieving high accuracy
(up to 98%). The confidence interval for the ELM weights is proposed in [101] to present
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prediction points, and keeps a multivariate normal distribution over the output weight vector.
To achieve the minimum informative distribution and maintain the forecast confidence inter-
val, Akusok [7] proposed to estimate the input-dependent prediction intervals by a separate
ELM model, and in [6] proposed to use the confidence interval in order to make predictions
for each data sample and to make more interpretable the ELM results. Lai [65] proposed a
regularized ELM using the biased drop connect and biased dropout to set the weights so that
generalization performance is raised and overfitting is reduced.

This chapter proposes the confidence random bias extreme learning machine (CRB-ELM)1,
that enhances the classical ELM by defining a confidence level used to estimate a confidence
interval. Both confidence interval and level are used to calculate the random bias of the hid-
den neurons without computationally intensive computations. The results demonstrate that
calculating the bias in the proposed way, taking into account the training data, enhances per-
formance both in classification and regression task [13]. Section 3.1 introduces the confidence
interval and level, while sections 3.2 and 3.3 describe the proposed models CRB-ELM and
CRB-SVD-ELM. The experimental work is discussed in sections 3.4 and 3.5.

3.1 Confidence interval and confidence level

The confidence interval (CI) is a statistics measurement that estimates the interval where the
sample input data (X = {xn}N

n=1 = {xni}N,I
ni=1) are located [106], being an alternative to stan-

dard deviation of the data (denoted as σ ). In this work, we computed CI for the bias {dh}H
h=1

of the hidden neurons from the input data X. The lower and upper limits Ld and Ud , respec-
tively, of the confidence interval [Ld ,Ud ] for bias dh are defined as:

Ld = µ− σZα√
2
, Ud = µ +

σZα√
2

(3.1)

where µ and σ are the mean and standard deviation of the input data X:

µ =
1

NI

N

∑
n=1

I

∑
i=1

xni, σ =

√
1

NI

N

∑
n=1

I

∑
i=1

(xni−µ)2 (3.2)

while Zα is the z-score:

1Code link: https://github.com/owdaybtoush
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Figure 3.2: The three input data (D,W and WD).

Zα = Φ
−1
(

1− α

2

)
, 0 < α < 1 (3.3)

being Φ(x) the cumulative distribution function of the standard normal distribution:

Φ(x) =
1

σ
√

2

∫ x

−∞

exp
(
− (t−µ)2

2σ2

)
dt (3.4)

In our approach, named confidence random bias extreme learning machine (CRB-ELM),
the biases {dh}H

h=1 are randomly calculated using four different methods to split the data
population (see Fig. 3.1 for a schematic diagram of CRB-ELM and these four methods).
These methods use:

1. Original input data (named as normal confidence interval, NCI).

2. Absolute value input data (absolute confidence interval, ACI).

3. Upper-lower bound of the CI (normal upper-lower confidence interval, NULCI), with
intervals [L,0] and [U ,1].

4. Absolute upper-lower bound of the confidence interval (AULCI), with intervals [Ld ,0]
and [Ud ,1].
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Figure 3.3: Graphical meaning of the confidence level.

Our experiments tested the optimal CRB-ELM with three different input data (see Fig.
3.2):

1. Data only (named D), i.e., matrix X.

2. Input weights only (W), i.e., matrix A.

3. Multiplying the input weights by the data (named WD), i.e., AXT .

The confidence level, denoted as F , is defined as the probability (in %) that the data are
located between the lower and upper intervals (in our case Ld and Ud , respectively) of the
confidence interval. Thus, the probability of data are located outside this interval is 100α ,
assuming a large sample size N. Mathematically, F can be calculated as F = 100(1−α). Fig
3.3 shows the meaning of F . The most commonly used F and z-score values are shown in
Table 3.1. As an example, for F=95.9% the table sets Zα =1.960. The lower and upper bounds
Ld and Ud can be calculated using eq. 3.1. Using these values, only 4.1% of data are allowed
to fall outside the confidence interval [Ld ,Ud ].
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Table 3.1: Critical values commonly used for the confidence level F for µ=0 and σ=1.

F Zα

90.9 1.645
95.9 1.960
97.9 2.750
99.9 3.291

3.2 Confidence random bias extreme learning machine

The proposed method CRB-ELM proceeds as follows. First, the confidence level F is set from
Table 3.1, and the lower and upper bounds Ld and Ud of the confidence interval are calculated
according eq. 3.1. Then, the number H of hidden neurons and the activation function g(x)

are selected (eqs. 1.7-1.11 in chapter 1), and the input weights {ahi}H,I
hi=1 and bias {dh}H

h=1 are
randomly generated within the confidence interval [Ld ,Ud ]. Specifically, we use values for H

from the set {3, 5 ,7, 10, 12 ,15 ,25, 40, 50, 65, 70, 80, 90, 100 ,110, 125, 140, 150, 170, 200},
values for F from Table 3.1, and activation function from eqs. 1.7-1.11. Once the values for
H, F and g are selected, the test stage of ELM is executed and the performance is evaluated.
Algorithm 4 compiles the whole CRB-ELM method.

3.3 Confidence random bias-singular value decomposition ELM

Singular value decomposition (SVD) is a factorization technique that decomposes a rectan-
gular matrix as the product of three matrices. This method is useful for reducing the data
dimensionality, and it has been applied in artificial neural networks and machine learning.
The goal of SVD is to decompose a (m×n)-order matrix A as USVT . Matrices U and V are
squared and orthogonal containing the right and left singular vectors of the original A matrix,
while S is a diagonal matrix with the singular values of A.

In the current research, we propose the confidence random bias-singular value decompo-
sition extreme learning machine (CRB-SVD-ELM), that uses the SVD method to decompose
the matrix X = [1N {xni}N,I

ni=1], where 1N is the column vector of length N with ones. This
augmented data matrix X is of order N× (I +1). Thus:

X = USVT (3.5)
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Algorithm 4: Confidence random bias extreme learning machine.

1 Algorithm: [A,B]=CRB-ELM(X,T,H,g,F)

Data: X = {xni}N,I
ni=1: training set; T = {tcn}C,N

cn=1: true output; H: number of hidden
neurons; g: activation function; F : confidence level

Result: A = {ahi}H,I
hi=1: input weights; d = {dh}H

h=1: bias; B = {bch}C,H
ch=1: output

weights.

2 µ ← 1
NI

N

∑
n=1

I

∑
i=1

xni; σ ←

√
1

NI

N

∑
n=1

I

∑
i=1

(xni−µ)2.

3 Φ(x)← 1
σ
√

2

∫ x

−∞

exp
(
− (t−µ)2

2σ2

)
dt.

4 α ← 1− F
100

; Zα ←Φ
−1
(

1− α

2

)
.

5 Ld ← µ− σZα√
2

; Ud ← µ +
σZα√

2
.

6 Input weight A initialized with random values.
7 Bias d initialized with random values in [Ld ,Ud ].
8 Hidden layer activity: Y = {yhn}H,N

hn=1←{g(a
T
h xn +dh)}H,N

hn=1.
9 Output weight: B← TY†.

The CRB-SVD-ELM proceeds by decomposing X and using the V matrix to calculate the
confidence interval for the random generation of the hidden layer bias {dh}H

h=1. Similarly to
CRB-ELM, the data matrix X can alternatively be replaced by the input weight A or by the
weight-data product AXT (variants W and WD in section 3.1). From this point, CRB-SVD-
ELM follows the same steps as CRB-ELM, as reported in algorithm 5.

The proposed methods CRB-ELM and CRB-SVD-ELM are compared in sections 3.4 and
3.5 to the classical ELM. To enrich this comparison, we will also include the base projection
vector machine (BPVM), that uses SVD as input weights, while bias are random values [29]
and the number H of hidden neurons is set to the rank of matrix S. Fig. 3.4 describes the differ-
ences between BPVM and the proposed method CRB-SVD-ELM, summarized by algorithm
5. In order to make its comparison to BPVM fair, the CRB-SVD-ELM also sets H to the rank
of the matrix S. We used the BPVM implementation [29] and the classical ELM code [57]
publicly available. The BPVM used sigmoid activation function g(x) = 1/(1+ e−αx) with
α=[1 0.5 0.05 0.01]. In the experiments, all the inputs have been normalized into the range
[-1, 1].

51



AUDI ISSA ALBTOUSH

Figure 3.4: Block diagrams of CRB-ELM (upper panel) and BPVM (lower panel [29]).

3.4 Classification results

The experimental work compares CRB-ELM and CRB-SVD-ELM with the classical ELM
and BPVM over a collection of 27 classification datasets selected from the UCI Machine
Learning Repository2, whose specifications (numbers N and I of patterns and inputs, respec-
tively) are listed in Table 3.2. The CRB-ELM and CRB-SVD-ELM were codified under Mat-
Lab R2018. All the experiment were executed under a computer with 8 Intel Core i7-4790k
processors at 4GHz, with 16 GB RAM and operative system Ubuntu 18.04. We splitted the
dataset into training, validation and test sets, and the performance was evaluated using the
standard 4-fold cross-validation in our experiments. The CRB-ELM used the four splitting
methods (NCI, ACI, NULCI, AULCI) and the three input types (WD, W and D) listed in

2https://archive.ics.uci.edu (Visited May, 2021)
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Algorithm 5: Confidence random bias-singular value decomposition ELM.

1 Algorithm: [A,B]=CRB-SVD-ELM(X,T,H,g,F)

Data: X = [1N {xni}N,I
ni=1]: training set; T = {tcn}C,N

cn=1: true output; H: number of
hidden neurons; g: activation function

Result: A = {ahi}H,I
hi=1: input weights; d = {dh}H

h=1; B = {bch}C,H
ch=1: output weights.

2 X = USVT . Let be V = {vni}N,p
ni=1 //Perform SVD of X as USVT

3 // Use V to calculate the CI for the random generation of bias d.

4 µ ← 1
N(I +1)

N

∑
n=1

I+1

∑
i=1

vni; σ ←

√
1

N(I +1)

N

∑
n=1

I+1

∑
i=1

(vni−µ)2.

5 Φ(x)← 1
σ
√

2

∫ x

−∞

exp
(
− (t−µ)2

2σ2

)
dt.

6 α ← 1− F
100

; Zα ←Φ
−1
(

1− α

2

)
.

7 Ld ← µ− σZα√
2

; Ud ← µ +
σZα√

2
.

8 Bias d initialized with random values in [Ld ,Ud ].
9 Hidden layer activity: Y = {yhn}H,N

hn=1←{g(a
T
h vn +dh)}H,N

hn=1.
10 Output weight: B← TY†.

section 3.1. The performance measurement used was accuracy (ACC) in %, defined as:

ACC(%) =
100
N

N

∑
n=1

δ (tn,zn) (3.6)

tn = argmax
c=1,...,C

{tcn}, zn = argmax
c=1,...,C

{vcn}

where tn and zn are the true and predicted output for the n-th test pattern, calculated respec-
tively as the argument that maximizes {tcn} and {vcn}, respectively, for c = 1, . . . ,C (see the
notation in table 2.2 and the figure 2.1 in chapter 2). Besides, δ (tn,zn) = 1 when tn = zn and
δ (tn,zn) = 0 otherwise. In the experiments, the values of the confidence level F in Table 3.1
were used, and the value with the highest average ACC over the training set was selected.

Table 3.3 reports the accuracy of CRB-ELM and ELM on the classification datasets with
the three input types WD, W and D (in bold the best accuracy for each dataset). The re-
sults indicate the superiority of the three methods WD, W and D over ELM in average with
similar deviation. Comparing the three variants of CRB-ELM, the version that uses input
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Table 3.2: Collection of UCI classification datasets (sorted albabetically by dataset name): num-
ber of patterns N, inputs (I) and classes (C).

Original Name Dataset N I C
Abalone abalone 4,177 8 3
Australian Sign Language signs australian 6,650 15 2
Chess(King-Rook vs. King) chess 18,056 6 18
Connect-4 connect-4 67,557 42 3
Energy efficiency energy-heat 768 8 3
South German Credit german 1,000 21 2
SPECT Heart heart 267 22 2
Hepatitis C Virus (HCV) hcv 1,385 29 2
Image Segmentation imseg 2,310 19 7
Ionosphere ionosphere 351 34 2
Letter Recognition letter 20,000 16 26
MAGIC Gamma Telescope magic 19,020 11 2
MammographicMass mammograph 961 6 2
Miniboone particle identification miniboone 130,065 49 2
MONK’s Problems monks2 432 7 2
MicroMass msa 931 1300 20
Nursery nursery 12,960 8 4
Pima Indians Diabetes data pima 768 8 2
Planning Relax planning 182 13 2
Seeds seeds 210 7 3
Shuttle Landing Control shuttle 57,977 6 7
Connectionist Bench sonar 208 60 2
Synthetic Control Chart synthetic 600 60 6
Tic-Tac-Toe Endgame tictac 958 9 2
Statlog (Vehicle Silhouettes) vehicle 946 18 4
Congressional Voting Records voting 435 16 2
Wine wine 178 13 3

data to estimate bias (D) is clearly better, achieving the best accuracy on all the datasets,
while the poorest results are achieved by W (only weights), although differences among the
three methods are not very large. The ELM achieves the best accuracy in 5 of 27 datasets
(ionosphere, letters, shuttle, magic and sonar), but in all of them some variant
of CRB-ELM also achieves the same accuracy.

The BPVM uses SVD to calculate the weights and bias, instead of the random initializa-
tion of ELM, while CRB-SVD-ELM uses the V matrix provided by SVD as input data to
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Table 3.3: Accuracy of ELM and CRB-ELM using input weights multiplied by data (WD), weights
(W) and data (D).

CRB-ELM
Dataset ELM WD W D
abalone 65.33 66.10 66.32 66.32
australian 85.94 86.37 86.23 86.37
chess 34.91 35.08 35.01 35.08
connect-4 72.60 72.89 72.93 72.93
energy-heat 92.19 92.97 93.09 93.09
german 66.39 68.59 69.67 69.67
heart 71.19 71.89 72.27 72.27
hepatitis 78.68 84.46 78.09 84.46
imseg 92.48 93.05 92.76 93.05
ionosphere 83.72 82.56 81.44 83.72
letter 72.05 71.97 71.78 72.05
magic 83.20 83.19 83.12 83.20
mammograph 76.60 76.92 76.93 76.93
miniboone 89.55 89.86 89.66 89.86
monks2 52.96 63.85 68.53 68.53
msa 99.67 99.00 100.00 100.00
nursery 90.08 91.37 90.15 91.37
pima 73.83 73.70 75.78 75.78
planning 53.86 59.63 53.81 59.63
seeds 93.87 94.39 95.25 95.25
shuttle 96.50 96.35 96.35 96.50
sonar 78.98 78.94 78.47 78.98
synthetic 94.83 96.17 96.33 96.33
tictac 97.08 97.91 98.23 98.23
vehicle 79.78 79.40 80.34 80.34
voting 90.88 93.02 93.26 93.26
wine 96.09 98.31 98.31 98.31
Avg. 80.12 81.41 81.26 81.91
Std. 15.68 14.88 15.06 14.71
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Table 3.4: Comparison of BPVM and CRB-SVD-ELM for classification.

Dataset BPVM CRB-SVD-ELM
abalone 60.09 60.95
australian 85.22 85.36
energy-heat 82.81 81.38
german 72.14 73.5
heart 82.6 81.87
hepatitis 87.1 85.78
imseg 81.65 82.69
letter 51.26 51.52
magic 74.32 75.65
monks2 61.63 62.77
msa 33.33 34.35
nursery 88.46 87.38
pima 72.79 71.48
planning 70.51 71.07
seeds 94.68 96.18
sonar 75.71 74.14
synthetic 84.83 90.83
tictac 95.92 92.59
vehicle 71.62 71.73
voting 93.88 93.92
wine 97.75 97.75
Avg. 77.06 77.28
Std. 15.89 15.64

calculate confidence interval for the bias and the weight random initialization. On the other
hand, CRB-SVD-ELM uses the rank of matrix S, also provided by SVD, as value for the
number H of hidden neurons in ELM. Table 3.4 reports the performances of both methods:
CRB-ELM overcomes BPVM in 14 of 21 databases, which represents 67% of the datasets.
In the 5 largest datasets (shuttle, connect-4, letter, chess and magic) the SVD
runs into out-of-memory errors. The CRB-ELM also outperforms BPVM in average accuracy
with lower deviation.

Comparing the ELM and the best CRB-ELM results (considering the variants WD, W,
D, NCI, ACI, NULCI and AULCI, described in section 3.1), Table 3.5 reports an improved
performance of CRB-ELM over ELM, that is outperformed in 24 of 27 classification datasets,
achieving similar performance in the remaining datasets. These tests demonstrate the robust-

56



Chapter 3. Extreme learning machine with confidence interval based bias initialization

Table 3.5: Accuracy of ELM and the best CRB-ELM.

Number Dataset ELM CRB-ELM
1 abalone 65.33 66.32
2 australian 85.94 86.37
3 energy-heat 92.19 93.10
4 german 66.39 69.67
5 heart 71.19 72.27
6 hepatitis 78.68 84.46
7 imseg 92.48 93.05
8 ionosphere 83.72 82.56
9 letter 72.05 72.18
10 magic 83.20 83.19
11 monks2 52.96 73.77
12 msa 99.67 100.0
13 nursery 90.08 91.37
14 pima 73.83 75.78
15 planning 53.86 59.63
16 seeds 93.87 95.72
17 sonar 78.98 78.94
18 synthetic 94.83 96.33
19 tictac 97.08 98.23
20 vehicle 79.78 80.34
21 voting 90.88 93.26
22 wine 96.09 98.31
23 chess 34.91 35.26
24 connect-4 72.60 72.93
25 mammograph 76.60 76.93
26 miniboone 89.55 89.86
27 shuttle 96.50 96.35

Avg. 80.12 82.08
Std. 15.68 14.55

ness of CRB-ELM performance and the overall improvement with respect to ELM.

3.5 Regression results

The CRB-ELM and CRB-SVD-ELM were also tested in the 18 regression datasets listed
in Table 3.6, also selected from the UCI Machine Learning Repository. In this case, the
performance measurement was the root mean squared error (RMSE), defined as:
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Table 3.6: Collection of UCI regression datasets (sorted alphabetically by dataset name): number
of patterns (N) and inputs (I).

Original Name Dataset N I
Airfoil Self-Noise airfoil 1,503 6
Beijing Multi-Site Air-Quality air-quality-NOx 420,768 18
Appliances energy prediction app-energy 19,735 29
Auto MPG auto-mpg 398 8
Bike Sharing Dataset bike-day 17,389 16
Combined Cycle Power Plant combined-cycle 9,568 4
Communities and Crime com-crime 1,994 128
Concrete Compressive Strength compress-stren 1,030 9
Daily Demand Forecasting daily-demand 60 13
Energy efficiency energy-cool 768 8
Facebook metrics fb-metrics 500 19
Geo-Magnetic field and WLAN geo-long 153,540 25
Greenhouse Gas Observing Net housing 2,921 5,232
Servo servo 167 4
Concrete Slump Test slump 103 10
Istanbul stock exchange stock-exchange 536 8
Student Performance student-por 649 33
Yacht Hydrodynamics yacht-hydro 308 7

RMSE =

√
1
N

N

∑
n=1

(tn− zn)2 (3.7)

where tn and zn were already defined in eq. 3.6 of section 3.4. Similarly to classification, we
tried the F values listed in Table 3.1, selecting for testing the value with the lowest average
RMSE over the training set. In order to compare the proposed method CRB-ELM and ELM,
Table 3.7 reports the RMSE achieved by CRB-ELM with the three input methods and ELM
(WD, W and D). The CRB-ELM achieves lower error than ELM excepting 3 of 18 databases,
app-energy, com-crime and student-por, where the four methods achieve the same
error. Considering the average RMSE over all the regression datasets, CRB-ELM achieves
the lowest value (0.60) using weights as input data (W), much below ELM (0.74), with even
lower deviation (0.36 vs. 0.46 with ELM). However, the three variants of CRB-ELM clearly
outperform ELM in terms of average RMSE (0.63, 0.6 and 0.65 vs. 0.74).

Comparing CRB-SVD-ELM to BPVM on the regression datasets, the RMSE values in Ta-
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Table 3.7: Values of RMSE achieved by ELM and CRB-ELM using WD, W and D on the regression
datasets.

CRB-ELM
Dataset ELM WD W D
airfoil 0.53 0.53 0.53 0.52
air-quality-NOx 1.18 0.41 0.44 1.01
app-energy 0.91 0.91 0.91 0.91
auto-mpg 0.61 0.57 0.64 0.68
bike-day 0.20 0.18 0.20 0.19
combined-cycle 0.26 0.25 0.25 0.25
com-crime 0.61 0.61 0.61 0.61
compress-stren 0.48 0.47 0.47 0.46
daily-demand 1.02 0.33 0.31 0.48
energy-cool 0.24 0.24 0.25 0.24
fb-metrics 0.39 0.38 0.32 0.38
geo-long 0.93 0.91 0.91 0.91
housing 0.54 0.46 0.55 0.53
servo 1.68 2.00 1.40 1.40
slump 1.72 1.07 1.15 1.22
stock-exchange 0.84 0.76 0.72 0.70
student-por 0.99 0.99 1.00 0.99
yacht-hydro 0.20 0.18 0.10 0.14
Avg. 0.74 0.63 0.60 0.65
Std. 0.46 0.44 0.36 0.36

ble 3.8 shows that CRB-SVD-ELM overcomes BPVM in 7 of 17 datasets, with similar RMSE
in the other datasets. The superiority is most evident in datasets air-quality-NOx, where
the RMSE of BPVM and CRB-SVD-ELM were 0.73 and 0.64, respectively, and servo, with
0.65 and 0.60, respectively. The average RMSE values over all the regression datasets were
0.64 and 0.62 for BPVM and CRB-SVD-ELM, respectively, with the same deviation (0.21).
The methods BPVM and CRB-SVD-ELM failed on the yatch-hydro dataset due to an
error on the singular value decomposition, so their results are missing in Table 3.8 for this
dataset.

Table 3.9 reports the RMSE achieved by ELM and by the best CRB-ELM (D, W and WD,
and NCI, ACI, NULCI and AULCI) over all the regression datasets. The RMSE is lower
for the CRB-ELM compared to ELM, that is outperformed in 14 of 18 regression problems,
achieving similar performance in the remaining datasets. The average RMSE is also lower for
CRB-ELM.
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Table 3.8: Values of RMSE achieved by BPVM and CRB-SVD-ELM on the regression datasets.

Dataset BPVM CRB-SVD-ELM
airfoil 0.87 0.87
air-quality-NOx 0.73 0.64
app-energy 0.95 0.95
auto-mpg 0.46 0.46
bike-day 0.31 0.31
combined-cycle 0.47 0.47
com-crime 0.61 0.61
compress-stren 0.79 0.75
daily-demand 0.42 0.42
energy-cool 0.35 0.35
fb-metrics 0.38 0.37
geo-long 0.93 0.93
housing 0.67 0.66
servo 0.65 0.60
slump 0.88 0.88
stock-exchange 0.71 0.70
student-por 0.64 0.62
Avg. 0.64 0.62
Std. 0.21 0.21
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Table 3.9: Values of RMSE achieved by ELM and the best CRB-ELM.

Number Dataset ELM CRB-ELM
1 airfoil 0.53 0.52
2 air-quality-NOx 1.18 0.41
3 app-energy 0.91 0.91
4 auto-mpg 0.61 0.57
5 bike-day 0.20 0.18
6 combined-cycle 0.26 0.25
7 com-crime 0.61 0.61
8 compress-stren 0.48 0.46
9 daily-demand 1.02 0.31
10 energy-cool 0.24 0.24
11 fb-metrics 0.39 0.32
12 geo-long 0.93 0.91
13 housing 0.54 0.46
14 servo 1.68 1.40
15 slump 1.72 1.07
16 stock-exchange 0.84 0.70
17 student-por 0.99 0.99
18 yacht-hydro 0.20 0.10

Avg. 0.74 0.58
Std. 0.46 0.35
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CHAPTER 4

QUICK HIDDEN LAYER SIZE TUNING IN

EXTREME LEARNING MACHINE FOR

CLASSIFICATION

Chapter 2 of the current memory already stated that one of the limitations of the extreme
learning machine is the difficulty to set an appropiated value for the number H of hidden
neurons. Very high or low H drives the network into overfitting or underfitting problems [18],
and in the first case the time spent by training may also be too high [65]. In order to set the
number of hidden neurons and the values of the input weights for the ELM, there are basically
three main groups of strategies [134]:

• Random generation. This the usual approach, where the hidden neurons are randomly
generated, at the same time and independently of the training data [52,54,57]. Alterna-
tively, a group of new random neurons is created each time [53], adding to the network
only the most informative neurons of the group.

• Constructive. The random hidden neurons are added incrementally, one by one, to
the network. After each adition, the network is trained again and the best neurons
are choosen [54]. The training stops when a maximum number of hidden neurons is
reached [52, 53]. This method is unsuitable for real applications because it is time-
consuming [66, 134] and does not lead to the optimal network structure [37, 67].
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• Pruning. The network starts with a large number of hidden neurons, removing itera-
tively the ones that are less informative according to some statistical criteria, such as
sparse regression [105], multiple response [88] or relevance to the class label using
chi-squared test and information gain [96].

Alternative approaches include: to update the weights towards the direction that reduces
the squared error [122], although these methods are very similar to gradient descent tech-
niques, that are far from the ELM original spirit; to use genetic algorithms for selecting H,
input weights and biases; to use particle swarm optimization [59] or singular value decom-
position (SVD) parsing [28] to select an appropiate H. Finally, the value of H can also be
fine-tuned as a hyper-parameter using grid-search or similar methods.

The previous works attempt to improve ELM generation but encountered some shortcom-
ings such as time-consuming, overfitting, underfitting, or no specific approach to the objective
function. Besides, they focused too much on iterative or incremental attempts to improve hid-
den the neuron weights, leading to approaches with high computational complexity that are
undesirable in real applications. The current chapter proposes methods that use statistical
criteria such as moving and exponential moving average (MA and EMA), and divide-and-
conquer (DC) strategy, to choose H that optimizes the network performance. The experimen-
tal work compares the proposed methods, named MA-ELM, EMA-ELM and CD-ELM, to
the classical ELM and to the constrained ELM [133], that also provide a solution to make
more efficient the tuning of H. Sections 4.1-4.3 describe the proposed methods, while the
experimental results are reported and discussed in section 4.4.

4.1 Moving average extreme learning machine

The relationship between the number H of hidden layer neurons and the network performance
is one of the more complex problems in ELM, and it is not subject to a specific statistical
distribution or type of non-linearity, so we propose to use moving average with ELM in order
to perform the tuning of H in the training phase. Moving average (MA) is a simple statistical
tool and indicator for technical analysis that makes extensive use of the points to be estimated.
It has wide applications in science, engineering, financial applications, time series analysis
[83], and neural networks [86]. The MA creates an averaging of a set of user-defined and
constantly updated values, in our case the training accuracy of ELM using different values of
H. The objective is to smooth out trends in values by filtering out noise from fluctuations of
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extreme values. The n-width moving average of a value Ak, for k = 1,2, . . ., denoted as Mk+1,
is defined by eq. 4.1:

Mk+1 =
Ak +Ak−1 + . . .+Ak−n+1

n
=

1
n

n

∑
i=1

Ak−i+1, k = n+1, . . . ,M (4.1)

Thus, Mk+1 is the average of the previous n values Ak, . . . ,Ak−n+1, that compose the “data
window” of width n. In the applications of MA, often this width n is randomly selected from
the set {2,3,4}. Now, let us consider that Ak is the accuracy, defined by eq. 3.6 in chapter
3, achieved by ELM on the training set using Hk hidden neurons, for k = 1, . . . ,M, being
{Hk}M

k=1 be a set of M values of the number H of hidden neurons verifying Hk+1−Hk = ∆H

independent on k, so that Hk = H1 +(k− 1)∆H for k = 1, . . . ,M, i.e., the values in {Hk}M
k=1

are equally spaced. The MA-ELM network uses the moving average to estimate the accuracy
An+1 that ELM is expected to achieve with Hn+1 hidden neurons. This estimation of eq.
4.1, denoted as A′n+1, uses the n previous accuracies {Ak−i+1}n

i=1 achieved by ELM with
{Hk−i+1}n

k=1 hidden neurons, so that A′n+1 = Mn+1. The A′n+1 is compared to An+1, that is
the true accuracy calculated by training the ELM using Hn+1. A difference |A′n+1−An+1|
above a threshold τ is considered high, so that MA-ELM uses the true value An+1. In this
case, for n+2 both the true An+2 and estimated A′n+2 accuracies are calculated, what requires
to train again the ELM for Hn+2, and the difference test is repeated. On the contrary, when
|A′n+1−An+1| ≤ τ , the difference is considered to be low and MA-ELM accepts the value
estimated by moving average, so that Ak = A′k = Mk for k = n+2, . . . ,M. In our case, since
Ak are accuracies (in %), the value of the threshold τ is set to a low value τ=0.5. When
all the accuracies {Ak}M

k=1 are available, either estimated using moving average (eq. 4.1) or
calculated by ELM training, the selected value H∗ for the test is the one with the highest
accuracy:

H∗ = Hk∗ , k∗ = argmax
k=1,...,M

{Ak} (4.2)

The operation of MA-ELM is compiled by algorithm 6. In this code, function ELM1 is
defined in algorithm 1 of chapter 1 and δ (x) is defined in eq. 3.6 of chapter 3. The function
ACC calculates the accuracy of ELM trained using the corresponding H argument. The nota-
tion tn,zn← argmax

c=1,...,C
{tcn,vcn}means that tn (resp. zn) is the argument that maximizes tcn (resp.
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vcn) over c= 1, . . . ,C. The notation Mk|Ek in lines 10 and 16 means that function Mk given by
eq. 4.1 (resp. function Ek in eq. 4.3 below) is used for MA-ELM (resp. for EMA-ELM). It is
expected that for many Hk values the Ak is estimated using MA, what saves the corresponding
ELM trainings, and MA-ELM would be faster than ELM. However, if the difference test is
never true all the Ak values will be calculated training ELM instead of using moving average.
In this case, no ELM training would be saved, and MA-ELM would be slightly slower due to
the MA calculation.

Algorithm 6: Algorithm for MA-ELM and EMA-ELM. See text for details.

1 Algorithm: [A,B]=MA|EMA-ELM(X,T,{Hk}M
k=1,g)

Data: X = {xni}N,I
ni=1: training set; T = {tcn}C,N

cn=1: true output; {Hk}M
k=1: set of

numbers of hidden neurons; g: activation function
Result: A = {ahi}H,I

hi=1: input weights; B = {bch}C,H
ch=1: output weights.

2 Select randomly n ∈ {2,3,4}; τ ← 0.5; train←True.
3 def ACC(X,T,H,g):
4 [A,B]←ELM1(X,T,H,g). V = {vcn}C,N

cn=1← Bg(AXT ).

5

{
tn,zn← argmax

c=1,...,C
{tcn,vcn}

}N

n=1

; A← 100
N

N

∑
i=1

δ (tn,zn).

6 return A.
7 for k← 1,M do
8 if train then
9 Ak←ACC(X,T,Hk,g).

10 end
11 if k > n then
12 A′k←Mk|Ek.
13 if train and |Ak−A′k|< τ then
14 Ak← A′k; train←False.
15 end
16 end
17 end
18 k∗← argmax

k=1,...,M
{Ak}; H∗← Hk∗ ; [A,B]←ELM1(X,T,H∗,g).

66



Chapter 4. Quick hidden layer size tuning in extreme learning machine for classification

Table 4.1: Values of γ and the weights of the current and previous samples for each value of n.

n γ 1− γ γ/(n−1)
2 0.67 0.33 0.67
3 0.5 0.5 0.25
4 0.4 0.6 0.13

4.2 Exponential moving average extreme learning machine

Exponential moving average (EMA) is a type of MA that gives more importance to the ex-
pected values, in our case the ELM accuracies, being used to see the direction of the values
with the change of the influencing factor, in our case the number H of hidden neurons. This
technique has wide uses in the field of artificial intelligence and deep learning [34]. The EMA
differs from MA in the mode of calculation, because it gives more weight to the most recent
data Ak using a weighting multiplier γ that modulates the sensitivity with respect to changes
in their values. The n-width exponential moving average of Ak, denoted as {Ek+1, is defined
by eq. 4.3:

Ek = (1− γ)Ak +
γ

n−1

n

∑
i=2

Ak−i+1, γ =
2

1+n
(4.3)

where n ∈ {2,3,4} as in MA. In EMA, the weight γ of Ak is higher than the weights of the
previous samples

γ

n−1
, as shown by Table 4.1.

4.3 Divide-and-conquer extreme learning machine

In artificial intelligence, divide-and-conquer (DC) is a strategy for the design of many al-
gorithms and a good tool for solving problem. This method is characterized by dividing a
problem into two or more related sub-problems that are simple enough to be directly solved.
This strategy is applied for example to solve kernel support vector machine by clustering
data [45] in order to divide them into smaller problems. In the context of ELM, [28] showed a
fast divide-and-conquer approximation for big data, where the dataset is first sliced into mul-
tiple small subsets without overlapping according to a uniform distribution, then each subset
generates one part of the hidden neurons for fast-SVD hidden-neurons ELM.

In this chapter of the current thesis we used the divide-and-conquer strategy to determine
the best number H∗ of hidden neurons in ELM. The proposed method, named divide-and-
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conquer extreme learning machine (DC-ELM), first divides the set H = {Hk}M
k=1 of numbers

of hidden neurons in two disjoint subsets H1 and H2 so that H = H1 ∪H2. Specifically,
if H = {Hk}M

k=1, a number p is randomly selected from {1, . . . ,M} and H is splitted into
subsets H1 = {Hk}p

k=1 and H2 = {Hk}M
k=p+1. Then, CD-ELM proceeds by comparing ac-

curacies achieved by the ELM using the largest H values of H1 and H1. The subset that
provides the best performance is selected to be subjected again to divide-and-conquer, and the
other subset is neglected. The algorithm continues recursively until it reaches a subset with
only one number of hidden neurons, that is the one that provides the best accuracy, but with a
reduced number of executions of the ELM training. Algorithm 7 compiles this method, where
|H | denotes the cardinal of set H and function ACC is already defined in algorithm 6.

Algorithm 7: DC-ELM Algorithm. See text for details.

1 Algorithm: [A,B]=DC-ELM(X,T,{Hk}M
k=1,g)

Data: X = {xni}N,I
ni=1: training set; T = {tcn}C,N

cn=1: true output; {Hk}M
k=1: set of

numbers of hidden neurons; g: activation function
Result: A = {ahi}H,I

hi=1: input weights; B = {bch}C,H
ch=1: output weights.

2 def DC(H ):
3 l← |H |. H ∗←H .
4 if l > 1 then
5 p← l/2. Split H into subsets H1 = {Hk}p

k=1 and H2 = {Hk}l
k=p+1.

6 if ACC(X,T,max{H1},g)>ACC(X,T,max{H2},g) then
7 H ∗←H1.
8 else
9 H ∗←H2.

10 end
11 end
12 return H ∗.
13 H∗←DC({Hk}M

k=1); [A,B]←ELM1(X,T,H∗,g).

Fig. 4.1 shows an example of operation of DC-ELM over a set of M = 10 numbers of
hidden layer sizes H = {Hk}M

k=1 = {10,20,30,40,50,60,70,80,90,100}. A number p=5 is
randomly selected from the set {1, . . . ,10} and H is splitted in two subsets H1={10, 20, 30,
40, 50} and H2={60, 70, 80, 90, 100}. The accuracy of the ELM using the largest value of
each subset is evaluated by function ACC in algorithm 6. The best performing size from both
subsets is selected and accordingly the subset that contains that size. In the example of Fig.
4.1, the ELM performs better for H=100 (the largest value in H2, accuracy=83%) than for
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Figure 4.1: Example of the DC-ELM operation.

H=50 (the largest value in H1, accuracy=70%), so the subset H2 = {60,70,80,90,100} is
selected, and H = H2 for the next iteration. Based on that, the divide-and-conquer method
continues: now M=5, the value p is randomly set to p=3, the new H is splitted into two
new parts H1 = {60,70,80} and H2 = {90,100}, and the accuracies of their largest values
H=80 and H=100 are calculated. Of course, some of the required accuracies may be already
calculated in previous iterations, as for H=100 in this example. The accuracies of the hidden
sizes H=100 and H=80 are compared (see Fig. 4.1), and since the latter provides the highest
accuracy (85% for H=80 and 83% for H=100), the subset H1 = {60,70,80} is now selected.
The method proceeds with repeated trials until a subset of size one is achieved, that in the
example of Fig. 4.1 (lower end) is H∗ = 70. Fig. 4.2 plots the training accuracy of ELM and
DC-ELM, showing one marker for each training execution, where we can see that the final
performance is equal for both methods, but DC-ELM highly reduces the number of trainings
with respect to ELM.

4.4 Experimental methodology

The models MA-ELM, EMA-ELM and DC-ELM were compared with the original ELM
and the constrained extreme learning machine, denoted as CELM [134], whose code was
downloaded from GitHub site 1. We used a collection of 27 classification benchmark datasets

1https://github.com/wentaozhu/constrained-extreme-learning-machine
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Figure 4.2: Accuracy vs. H during ELM and DC-ELM training for several datasets.70
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Table 4.2: Collection of UCI classification datasets.

Original Name Dataset N I
Abalone abalone 4,177 8
Australian Sign Language signs australian 6,650 15
Chess(King-Rook vs. King) chess 18,056 6
Congressional Voting Records voting 435 16
Connect-4 connect-4 67,557 42
Connectionist Bench sonar 208 60
Energy efficiency energy-heat 768 8
Hepatitis C Virus (HCV) hepatitis 1,385 29
Image Segmentation imseg 2,310 19
Ionosphere ionosphere 351 34
Letter Recognition letter 20,000 16
MAGICGamma Telescope magic 19,020 11
MammographicMass mammograph 961 6
MiniBooNE miniboone 130065 50
MicroMass msa 931 1300
MONK’s Problems monks2 432 7
Nursery nursery 12,960 8
Pima Indians Diabetes data pima 768 8
Planning Relax planning 182 13
Seeds seeds 210 7
Shuttle Landing Control shuttle 57,977 6
South German Credit german 1,000 21
SPECT Heart heart 267 22
Statlog (Vehicle Silhouettes) vehicle 946 18
Synthetic Control Chart synthetic 600 60
Tic-Tac-Toe Endgame tictac 958 9
Wine wine 178 13

selected from the UCI Machine Learning Repository 2, whose specifications (numbers N and
I of patterns and inputs, respectively) are listed in Table 4.2.

The experiments were executed with a computer equipped with 8 Intel Core i7-4790k
processors at 4GHz, having 16 GB RAM and Ubuntu 18.04 operative system. The proposed
methods MA-ELM, EMA-ELM and DC-ELM were codified under Matlab R2018. Each

2https://archive.ics.uci.edu (Visited May, 2021)
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dataset was splited into training, validation, and testing sets, using standard 4-fold cross-
validation to evaluate each method. The performance measurement was the accuracy (ACC),
in %, already defined in eq. 3.6 of chapter 3. Furthermore, to comprehensively compare
the resulting performances, each algorithm used in the experiments is uniformly assigned a
number H of hidden neurons varying from H=10 to H=500 with a step of size 10, so that
H = {10(k+1)}50

k=1 and M = 50. Given that the ELM must be trained for all the H-values,
the number of training executions is M=50. With respect to our proposals, the number M′ of
training executions, that is expected to be lower than M, depends on the iterations required to
choose the appropriate size. Thus, the percentage of reduction in the number of hidden sizes
tried, denoted as α (in %), of MA-ELM, EMA-ELM or DC-ELM with respect to the original
ELM is given by eq. 4.4:

α(%) =
100(M−M′)

M
(4.4)

The percentage of reduction in time, denoted as β (also in %) of MA-ELM, EMA-ELM
and DC-ELM with respect to the original ELM and CELM is given by in eq 4.5:

β (%) =
100(T −T ′)

T
(4.5)

where T and T ′, that is expected to be lower than T , are the times spent by ELM or CELM
and by our approaches, respectively.

4.5 Comparison of MA-ELM with ELM and CELM

Table 4.3 reports the accuracies achieved by MA-ELM and ELM. The proposed method EM-
ELM achieves a time reduction β up to 94.4% with respect to the original ELM. The ratio
between the times of ELM and MA-ELM is 9.11 which means that MA-ELM is, on average,
nine times faster than the original ELM achieving the same average accuracy (79.9%). For
instance, in seeds dataset α=94.4% and MA-ELM achieves a higher accuracy (95.3%) than
ELM (93.9%), while the times are 0.12 and 2.15 s., respectively, with a time reduction per-
centage β=96.2%. This means that, in average, MA-ELM performed the H tuning in 3.8% of
the time spent by ELM, with similar or better results as shown by the average accuracy. Note
that, from eq. 4.5:
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T
T ′

=
100

100−β
(4.6)

so that a value β=98%, such as in dataset wine, means that ELM is about 50 times slower
than MA-ELM, because T/T ′ = 100/(100−98) = 100/2 = 50.

We also combined the moving average to the constrained, constrained sum and con-
strained difference ELM (CELM, CSELM and DELM, respectively), that provide alterna-
tives to randomly select numbers of hidden neurons [134]. Table 4.4 reports the results of
CELM, CSELM and DELM compared to their MA- counterparts MA-CELM, MA-DSELM
and MA-DELM, respectively. The average accuracy of MA-CELM (80.8%) outperforms
CELM (80.3%) with average β up to 92.1%. Analogously, MA-CSELM and MA-DELM
achieve 81.1% and 80.5% outperforming CSELM and DELM (81% and 80.4%, respectively),
with average β up to 83.8% and 91.7%. Moreover, in mammograph dataset the CELM
achieved ACC=66.3% with β=93.7%, while EMA-CELM achieved ACC=78.6%. With re-
spect to MA-CSELM, in the australian dataset achieved ACC=84.9%, were CSELM
achieved ACC=76.5% with β=90.4%.

The MA was also combined with mixed, sum and random sum ELM (MELM, RSELM
and SELM, respectively [134]), and the comparison to the original methods (i.e., without MA)
is reported in Table 4.5. The MA-SELM achieved an average ACC=80.5% outperforming
SELM (ACC=79.9%) with a high average β=94.3%. Besides, MA-RSELM achieved avg.
ACC=80.4% while RSELM achieved 80.2% with β up to 94.8%. Moreover, in MA-MELM
the avg. ACC=81.0% while MELM achieved 80.6% with average β=87.5%

4.6 Comparison of EMA-ELM with ELM and CELM

In this subsection the proposed EMA-ELM is compared with original ELM. As in the case
of moving average, the conducted experiments were performed by randomly choosing the
window width n randomly in the set {2,3,4}. The results showed a significant improvement
in the percentage of reduction in the number of hidden sizes tried (α), in the time (T ′) and
in the percentage of reduction in time (β ), while achieving similar or higher accuracy, as
reported in Table 4.6. The EMA-ELM achieved slightly better ACC=80.0% than the original
ELM (79.9%) and with β ranging between 60% and 96%. The time ratio (bottom of the table)
reports that EMA-ELM is in average 7.4 faster than than ELM. In addition, EMA-ELM proved
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Table 4.3: Comparison of MA-ELM and ELM.

ELM MA-ELM

Dataset ACC H T (s) ACC H T ′(s) M α(%) β (%)

abalone 66.2 500 29.27 64.6 60 2.41 6 91.8 88
australian 76.2 500 10.78 84.9 40 0.8 4 92.6 92
chess 42.4 490 304.6 30.7 100 243.75 10 20.0 80
connect-4 75.5 500 1296.25 68.1 30 119.37 3 90.8 94
energy-heat 92.8 390 7.83 88.7 90 0.82 9 89.5 82
german 65.3 240 6.69 71.9 110 1.04 11 84.5 78
heart 76.7 160 3.84 80.1 40 0.4 4 89.6 92
hepatitis 78.7 90 2.27 81.3 70 0.4 7 82.4 86
imseg 94.7 460 19.36 89.9 110 2.85 11 85.3 78
ionosphere 83.7 200 5.66 88.0 120 0.89 12 84.3 76
letter 77.0 490 157.68 71.9 200 51.54 20 67.3 60
magic 84.7 500 130.87 79.3 60 13.8 6 89.5 88
mammograph 68.4 370 6.99 77.2 40 0.51 4 92.7 92
miniboone 90.7 490 1799.25 86.3 60 228.57 6 87.3 88
monks2 52.9 280 5.07 63.4 160 1.34 16 73.6 68
msa 98.8 30 7.41 98.8 30 0.55 3 92.6 94
nursery 92.6 470 108.55 88.3 50 10.8 5 90.1 90
pima 66.8 500 7.53 76.0 50 0.55 5 92.7 90
planning 52.4 130 2.13 52.4 130 0.49 13 77.0 74
seeds 93.9 80 2.15 95.3 20 0.12 2 94.4 96
shuttle 96.8 410 406.30 90.5 80 41.31 8 89.8 84
sonar 72.6 130 4.35 72.2 90 0.66 9 84.8 82
synthetic 94.8 170 11.76 93.2 80 1.73 8 85.3 84
tictac 97.8 320 10.58 95.4 80 1.47 8 86.1 84
vehicle 80.1 480 9.55 79.3 130 1.55 13 83.8 74
voting 90.9 150 5.35 93.3 50 0.51 5 90.5 90
wine 95.0 10 2.34 95.0 10 0.12 2 94.9 98
Avg. 79.9 79.9 9.11 84.6 96.2

that hidden size do not have to be the largest in order to achieve better performance in some
case. For example, in the australian dataset achieved in original ELM best H=500 with
ACC=76.2% and T =10.78 sec., where the EMA-ELM selected H=70 with ACC=85.4% and
T ′=1.19 s., α= 89% and β=86%. In the the synthetic dataset, the original ELM achieved

74



Chapter 4. Quick hidden layer size tuning in extreme learning machine for classification

Table 4.4: Accuracy and β of CELM, CSELM and DELM with and without MA.

CELM MA-CELM CSELM MA-CSELM DELM MA-DELM

Dataset ACC ACC β ACC ACC β ACC ACC β

abalone 66.6 64.7 92.8 67.1 65.4 87.8 66.5 64.3 94.4
australian 78.1 85.4 94.7 76.5 84.9 90.4 77.1 85.5 93.5
chess 43.4 30.7 87.2 49.2 47.8 11.1 43.2 31.2 86.1
connect-4 76.7 73.8 85.9 77.4 73.3 82.1 76.6 73.9 86.1
energy-heat 94.4 88.1 94.6 93.7 92.7 83.1 94.3 88.1 93.4
german 60.3 71.6 91.3 64.8 69.2 84.4 65.9 70.0 92.3
heart 79.0 82.0 94.7 73.4 78.6 89.7 76.3 81.5 92.6
hepatitis 79.3 86.5 94.2 81.3 81.3 85.0 76.1 82.6 91.6
imseg 95.4 87.8 94.3 95.0 90.5 86.9 95.4 88.0 93.2
ionosphere 85.7 83.7 94.6 82.3 86.0 83.6 84.3 84.5 93.1
letter 75.7 65.2 85.8 74.2 69.7 71.3 75.7 65.8 84.3
magic 84.5 80.0 94.8 84.8 80.8 90.1 84.5 80.3 93.5
mammograph 66.3 78.6 93.7 73.3 77.4 84.7 74.1 76.9 94.9
miniboone 90.3 86.8 91.8 90.5 83.1 90.6 90.3 84.9 93.3
monks2 52.2 60.2 92.8 49.8 59.7 89.1 53.9 64.4 94.1
msa 99.4 100 94.9 99.5 99.5 93.7 99.7 100 95.4
nursery 94.3 88.9 94.0 95.5 90.5 86.3 94.3 89.3 93.0
pima 69.3 76.2 95.2 66.8 76.6 94.4 66.4 75.3 94.3
planning 50.5 64.7 88.4 54.5 54.5 78.5 49.3 62.5 84.8
seeds 92.9 93.9 93.9 93.4 93.8 93.1 93.9 94.8 94.6
shuttle 98.6 94.3 94.0 97.9 91.5 88.7 98.3 93.5 95.2
sonar 75.2 75.9 86.8 81.4 81.4 80.3 76.1 75.4 89.5
synthetic 97.2 95.3 88.8 96.7 95.3 88.0 97.5 94.0 90.5
tictac 98.5 97.5 89.9 98.5 97.6 85.0 98.8 97.9 89.2
vehicle 80.0 76.2 87.6 80.8 77.3 85.7 80.5 75.3 87.8
voting 85.8 94.2 94.5 92.7 94.5 90.4 84.5 94.5 94.4
wine 97.9 98.6 95.1 97.2 97.2 93.6 98.6 98.6 94.0
Avg. 80.3 80.8 92.1 81.0 81.1 83.8 80.4 80.5 91.7

ACC=94.8% and T =11.76 s. with H=170 hidden neurons, while EMA-ELM achieved better
ACC=95.3% with H=120, T ′=2.62 s., α=77.7% and β=76%.

Analogously to MA-ELM, Table 4.7 reports the comparison of EMA-CELM, EMA-CSELM
and EMA-DELM with CELM, CSELM and DELM, respectively. These results prove that
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Table 4.5: Accuracy and β of MELM, RSELM and SELM with and without MA.

MELM MA-MELM RSELM MA-RSELM SELM MA-SELM

Dataset ACC ACC β ACC ACC β ACC ACC β

abalone 66.9 65.2 90.6 66.4 64.2 95.4 66.3 66.0 90.8
australian 74.3 85.5 91.2 73.9 85.7 96.2 77.2 85.7 89.4
chess 46.1 36.6 68.4 43.3 30.7 87.7 49.3 48.6 05.2
connect-4 77.2 73.3 80.8 76.9 74.2 86.3 77.5 72.7 82.8
energy-heat 94.1 88.7 86.1 94.9 84.4 94.4 95.2 89.1 82.9
german 62.0 69.4 89.1 58.7 70.5 96.2 62.0 67.2 84.5
heart 74.1 84.1 94.2 77.8 82.6 98.1 71.9 79.7 82.7
hepatitis 85.2 85.2 87.7 80.6 86.5 96.5 83.3 83.3 81.2
imseg 95.4 90.9 84.0 95.5 89.0 94.0 94.9 90.2 82.3
ionosphere 82.5 86.4 89.1 84.6 85.3 95.0 85.1 85.3 76.4
letter 75.4 71.0 69.3 71.9 63.7 86.5 74.0 70.7 62.7
magic 84.6 81.1 90.7 84.0 77.9 93.7 84.8 81.0 88.4
mammograph 71.0 78.6 90.4 68.2 77.1 97.0 69.3 77.1 93.1
miniboone 90.5 87.5 90.7 89.9 83.0 93.5 90.5 88.1 87.3
monks2 46.5 62.0 85.6 53.0 65.1 98.1 49.0 61.1 86.6
msa 98.7 98.7 94.3 99.7 99.8 97.4 100 100 93.1
nursery 95.4 89.7 91.4 94.2 89.2 94.5 95.2 89.3 91.5
pima 68.5 75.5 93.9 68.4 75.7 97.2 67.3 77.3 80.1
planning 48.8 48.8 77.5 59.3 68.1 98.0 56.7 56.7 75.0
seeds 93.9 93.8 91.7 93.8 95.8 98.4 93.8 94.3 91.7
shuttle 98.7 94.2 93.1 99.0 91.1 95.1 97.9 91.6 88.8
sonar 78.0 78.4 78.5 74.6 74.4 97.1 80.4 80.4 78.8
synthetic 97.2 96.0 88.0 94.2 90.0 91.6 96.2 94.5 88.0
tictac 98.6 97.3 86.8 98.5 98.3 96.3 98.3 98.4 83.0
vehicle 79.5 78.2 82.3 79.6 75.3 94.3 80.6 76.4 86.2
voting 94.2 93.9 92.2 86.0 94.2 97.7 — — —
wine 97.8 97.8 93.5 98.6 98.6 98.4 98.6 98.6 93.2
Avg 80.6 81.0 87.5 80.2 80.4 94.8 79.9 80.5 94.3

EMA-CELM achieves average β=95.1% and average ACC=80.4%, while CELM achives
avg. ACC=80.3%. The comparison of EMA-CSELM and CSELM leads to average β=92.6%
and avg. ACC=81.2$ for EMA-CSELM outperforming CSELM (81.0%). Moreover, in the
monks2 dataset the DELM achieves ACC=53.9%, while EMA-DELM achieves ACC=55.3%
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Table 4.6: Comparison of ELM and EMA-ELM.

ELM EMA-ELM

Dataset ACC H T (s) ACC H T ′(s) M α(%) β (%)

abalone 66.2 500 29.27 64.6 70 3.52 7 88.0 86
australian 76.2 500 10.78 85.4 70 1.19 7 89.0 86
chess 42.4 490 304.6 34.9 200 118.69 20 61.0 60
connect-4 75.5 500 1296.25 68.1 30 119.69 3 90.8 94
energy-heat 92.8 390 7.83 88.7 90 0.89 9 88.6 82
german 65.3 240 6.69 68.3 140 1.7 14 74.6 72
heart 76.7 160 3.84 76.7 160 1.06 16 72.4 68
hepatitis 78.7 90 2.27 78.7 90 0.45 9 80.2 82
imseg 94.7 460 19.36 91.8 140 4.29 14 77.8 72
ionosphere 83.7 200 5.66 84.5 110 0.98 11 82.7 78
letter 77.0 490 157.68 68.5 150 40.16 15 74.5 70
magic 84.6 500 130.87 81.2 90 19.01 9 85.5 82
mammograph 68.4 370 6.99 78.5 170 1.73 17 75.3 66
miniboone 90.7 490 1799.25 88.5 100 359.54 10 80.0 80
monks2 52.9 280 5.07 64.1 20 0.21 2 95.9 96
msa 98.8 30 7.41 98.8 30 0.7 3 90.6 94
nursery 92.6 470 108.55 89.2 100 18.55 10 82.9 80
pima 66.8 500 7.53 76.8 90 1.07 9 85.8 82
planning 52.4 130 2.13 52.4 130 0.79 13 62.9 74
seeds 93.9 80 2.15 95.3 20 0.17 2 92.1 96
shuttle 96.8 410 406.30 90.8 90 57.57 9 85.8 82
sonar 72.6 130 4.35 72.6 130 1.26 13 71.0 74
synthetic 94.8 170 11.76 95.3 120 2.62 12 77.7 76
tictac 97.8 320 10.58 97.5 140 2.11 14 80.1 72
vehicle 80.1 480 9.55 79.6 150 2.24 15 76.5 70
voting 90.9 150 5.35 93.3 50 0.47 5 91.2 90
wine 95.0 10 2.34 95.0 10 0.12 1 94.9 98
Avg. 79.9 80.0 7.4 81.8 80.1

with β=79.5%, and EMA-DELM achieves average β=96%. Note that the percentage β of re-
duction in time is very low in dataset chess because the condition |A′k−Ak|< τ on algorithm
6 is rarely fulfilled, so the ELM must be trained for almost all the H values.

The results in Table 4.8 compare SELM, CELM and CSELM to their versions combined
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Table 4.7: Accuracy and β of CELM, CSELM and DELM with and without EMA.

CELM EMA-CELM CSELM EMA-CSELM DELM EMA-DELM

Dataset ACC ACC β ACC ACC β ACC ACC β

abalone 66.6 65.6 84.5 67.1 65.6 82.0 66.5 65.1 88.1
australian 78.1 85.2 78.8 76.5 84.1 71.2 77.1 85.2 79.3
chess 43.4 41.9 9.5 49.2 49.2 1.1 43.2 43.2 1.8
connect-4 76.7 74.4 76.9 77.4 75.2 63.3 76.6 74.2 79.4
energy-heat 94.4 89.7 77.8 93.7 92.7 74.3 94.3 88.5 80.2
german 60.3 64.8 66.4 64.8 64.8 52.3 65.9 67.5 60.8
heart 79.0 79.0 72.1 73.4 73.4 69.5 76.3 76.3 69.5
hepatitis 79.3 79.3 80.8 81.3 81.3 78.5 76.1 76.1 82.8
imseg 95.4 92.2 76.9 95.0 92.5 79.4 95.4 92.0 77.0
ionosphere 85.7 85.4 81.1 82.3 82.3 73.8 84.3 86.0 76.4
letter 75.7 73.6 34.5 74.2 72.9 29.0 75.7 73.1 45.3
magic 84.5 81.4 85.5 84.8 81.8 86.2 84.5 81.1 88.6
mammograph 66.3 78.3 84.2 73.3 75.7 59.8 74.1 76.9 95.6
miniboone 90.3 87.6 85.2 90.5 88.5 79.6 90.3 87.1 86.0
monks2 52.2 49.5 72.2 49.8 56.9 81.0 53.9 55.3 79.5
msa 99.4 99.4 93.0 99.5 99.5 89.4 99.7 99.7 93.8
nursery 94.3 88.9 87.0 95.5 93.5 66.8 94.3 89.4 87.8
pima 69.3 75.8 95.1 66.8 72.9 55.5 66.4 76.8 89.3
planning 50.5 50.5 70.9 54.5 54.5 69.5 49.3 49.3 74.3
seeds 92.9 93.3 90.2 93.4 93.4 86.9 93.9 92.9 90.7
shuttle 98.6 94.8 91.2 97.9 92.1 83.3 98.3 95.6 91.7
sonar 75.2 75.2 73.8 81.4 81.4 73.4 76.1 76.1 73.6
synthetic 97.2 95.3 85.1 96.7 96.0 82.3 97.5 95.8 84.0
tictac 98.5 98.0 84.7 98.5 98.3 75.0 98.8 98.0 85.6
vehicle 80.0 80.5 63.4 80.8 82.0 68.8 80.5 80.5 64.1
voting 85.8 94.2 85.2 92.7 94.5 85.8 84.5 93.9 78.8
wine 97.9 97.9 92.8 97.2 97.2 92.6 98.6 98.6 93.2
Avg. 80.3 80.4 95.1 81.0 81.2 92.6 80.4 80.5 96.0

with EMA. The EMA-SELM achieved average β=93.1% with ACC=80.2% outperforming
SELM (79.9%). As well, in monks2 dataset SELM achieved ACC=49% while EMA-SELM
achieves 54.8% with β=71.7%. With respect to EMA-RSELM and RSELM, the average
beta reaches 96.7% with ACC=80.5% compared to 80.2% with RSELM. In the voting
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Table 4.8: Accuracy and β of MELM, RSELM and SELM with and without EMA.

MELM EMA-MELM RSELM EMA-RSELM SELM EMA-SELM

Dataset ACC ACC β ACC ACC β ACC ACC β

abalone 66.9 65.6 82.3 66.4 65.0 87.4 66.3 65.0 87.2
australian 74.3 84.9 94.5 73.9 83.5 78.4 77.2 85.7 87.0
chess 46.1 46.1 -5.6 43.3 43.3 -0.4 49.3 49.3 -4.1
connect-4 77.2 74.1 77.3 76.9 74.8 74.5 77.5 74.1 75.6
energy-heat 94.1 86.5 95.4 94.9 90.9 86.7 95.2 91.1 76.8
german 62.0 70.8 86.3 58.7 58.7 64.2 62.0 64.8 55.3
heart 74.1 78.2 81.1 77.8 77.8 82.3 71.9 74.5 66.3
hepatitis 85.2 85.2 80.2 80.6 80.6 92.7 83.3 83.9 92.4
imseg 95.4 91.5 77.0 95.5 92.5 79.4 94.9 91.6 77.2
ionosphere 82.5 83.0 76.1 84.6 85.4 85.9 85.1 85.3 74.2
letter 75.4 72.7 42.6 71.9 71.8 00.3 74.0 71.1 45.2
magic 84.6 81.8 85.2 84.0 80.6 82.1 84.8 81.0 87.9
mammograph 71.0 78.6 90.4 68.2 77.4 73.7 69.3 77.1 93.1
miniboone 90.5 87.7 84.5 89.9 86.7 76.3 90.5 87.6 84.0
monks2 46.5 54.6 79.3 53.0 53.0 53.8 49.0 54.8 71.7
msa 98.7 98.7 93.1 99.7 99.7 93.0 100 100 92.2
nursery 95.4 90.7 82.6 94.2 89.5 81.1 95.2 93.0 71.1
pima 68.5 74.7 95.9 68.4 75.7 59.5 67.3 75.5 86.8
planning 48.8 48.8 72.8 59.3 59.3 87.9 56.7 56.7 66.2
seeds 93.9 93.8 89.8 93.8 93.8 95.1 93.8 94.3 88.6
shuttle 98.7 93.6 90.8 99.0 93.0 87.8 97.9 91.3 87.2
sonar 78.0 78.0 74.9 74.6 74.6 87.6 80.4 80.4 73.8
synthetic 97.2 94.7 86.7 94.2 92.7 85.5 96.2 95.8 83.9
tictac 98.6 98.5 79.2 98.5 98.3 89.0 98.3 97.8 80.7
vehicle 79.5 80.9 68.4 79.6 83.0 54.2 80.6 76.4 85.1
voting 94.2 94.5 84.0 86.0 92.7 85.6 — — —
wine 97.8 97.8 91.6 98.6 98.6 97.0 98.6 98.6 90.5
Avg. 80.6 81.0 95.9 80.2 80.5 96.7 79.9 80.2 93.1

dataset the RSELM achieves ACC=86% while EMA-RSELM reaches 92.7% with β=85.6%.
Moreover, comparing EMA-MELM and MELM the average β is 95.9%, while EMA-MELM
achieves avg. ACC=81% and MELM ACC=80.6%. In the pima dataset the MELM recorded
ACC=68.5% while EMA-MELM achieved 74.7% with β=95.9%. Again, β is very slow in
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dataset chess and negative because the accuracy is always calculated by training ELM and
never estimated using EMA, so EMA-ELM is slower than ELM.

Table 4.9: Comparison between DC-ELM and ELM.

ELM DC-ELM

Dataset ACC H T (s) ACC H T ′(s) M α(%) β (%)

abalone 66.2 500 29.27 66.2 500 6.22 8 78.8 84
australian 76.2 500 10.78 76.2 500 2.21 8 79.5 84
chess 42.4 490 304.6 42.1 500 59.68 8 80.4 84
connect-4 75.5 500 1296.25 75.5 500 268.51 8 79.3 84
energy-heat 92.8 390 7.83 93.0 500 1.72 8 78.0 84
german 65.3 240 6.69 65.3 240 1.51 10 77.4 80
heart 76.7 160 3.84 76.7 160 0.69 8 82.0 84
hepatitis 78.7 90 2.27 78.7 90 0.45 8 80.2 84
imseg 94.7 460 19.36 94.9 500 4.06 8 79.0 84
ionosphere 83.7 200 5.66 84.9 210 1.15 9 79.7 82
letter 77.0 490 157.68 77.0 500 32.23 8 79.6 84
magic 84.7 500 130.87 84.7 500 29.36 9 77.6 82
mammograph 68.4 370 6.99 63.2 500 1.72 8 75.7 84
miniboone 90.7 490 1799.25 90.6 500 355.93 8 80.2 84
monks2 52.9 280 5.07 56.3 320 1.12 8 77.9 84
msa 98.8 30 7.41 99.9 40 1.17 8 84.2 84
nursery 92.6 470 108.55 92.7 500 21.78 8 79.9 84
pima 66.8 500 7.53 66.8 500 1.69 8 77.6 84
planning 52.4 130 2.13 52.7 130 0.45 9 78.9 82
seeds 93.9 80 2.15 93.9 90 0.45 8 79.1 84
shuttle 96.8 410 406.30 97.5 500 85.04 8 79.1 84
sonar 72.6 130 4.35 72.6 130 0.87 9 80.0 82
synthetic 94.8 170 11.76 94.8 210 2.33 9 80.2 82
tictac 97.8 320 10.58 97.8 320 2.21 8 79.1 84
vehicle 80.1 480 9.55 79.8 500 2.18 8 77.2 84
voting 90.9 150 5.35 91.0 180 1.06 9 80.2 82
wine 95.0 10 2.34 96.5 40 0.44 8 81.2 84
Avg. 79.9 80.0 4.9 79.3 83.4
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4.7 Comparison of DC-ELM with ELM and CELM

Table 4.10: Accuracy and β of CELM, CSELM and DELM with and without DC.

CELM DC-CELM CSELM DC-CSELM DELM DC-DELM

Dataset ACC ACC β ACC ACC β ACC ACC β

abalone 66.6 66.6 75.0 67.1 66.4 78.3 66.5 67.1 80.4
australian 78.1 76.4 79.2 76.5 79.4 79.5 77.1 78.4 78.2
chess 43.4 43.4 80.0 49.2 49.1 80.7 43.2 49.2 81.0
connect-4 76.7 76.7 80.6 77.4 77.5 81.6 76.6 77.4 81.5
energy-heat 94.4 94.2 77.1 93.7 94.4 78.6 94.3 93.9 78.2
german 60.3 57.6 77.7 64.8 61.5 79.5 65.9 61.8 80.3
heart 79.0 79.0 80.3 73.4 68.9 77.9 76.3 73.4 80.6
hepatitis 79.3 79.3 79.1 81.3 80.6 81.8 76.1 81.3 82.8
imseg 95.4 95.8 78.0 95.0 95.4 80.9 95.4 95.0 78.1
ionosphere 85.7 85.7 81.5 82.3 81.7 81.8 84.3 82.3 80.7
letter 75.7 75.7 79.6 74.2 74.0 81.0 75.7 74.2 79.8
magic 84.5 84.5 79.7 84.8 84.8 78.0 84.5 84.8 78.2
mammograph 66.3 67.9 74.9 73.3 69.4 77.2 74.1 77.1 80.2
miniboone 90.3 90.3 80.0 90.5 90.5 80.6 90.3 90.5 81.1
monks2 52.2 52.2 76.3 49.8 50.7 76.9 53.9 47.5 78.0
msa 99.4 100 83.9 99.5 100 85.4 99.7 100 86.5
nursery 94.3 94.3 79.3 95.5 95.7 80.1 94.3 95.6 80.8
pima 69.3 69.3 76.3 66.8 67.8 77.8 66.4 67.7 76.6
planning 50.5 51.6 77.5 54.5 50.5 79.3 49.3 54.5 79.3
seeds 92.9 93.3 80.7 93.4 95.8 83.0 93.9 94.8 80.5
shuttle 98.6 98.8 78.6 97.9 98.1 78.9 98.3 98.1 80.3
sonar 75.2 75.2 79.2 81.4 79.8 81.2 76.1 81.4 81.2
synthetic 97.2 97.2 79.5 96.7 96.0 79.9 97.5 96.7 78.4
tictac 98.5 98.5 78.5 98.5 98.4 80.5 98.8 98.5 80.4
vehicle 80.0 78.9 75.8 80.8 77.7 76.9 80.5 79.7 75.1
voting 85.8 86.9 75.2 92.7 93.9 82.2 84.5 92.7 82.3
wine 97.9 98.6 80.8 97.2 98.6 83.8 98.6 99.3 83.1
Avg. 80.3 80.3 78.7 81.0 80.6 80.1 80.4 81.2 80.2

Now, we will compare DC-ELM with the original ELM and CELMs. The divide-and-
conquer method is used to reach the best-hidden size instead of training all hidden neurons
in traditional ways, as discussed in section 4.3. The ELM is only trained using the candi-
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date numbers of hidden neurons, and ignoring the unsuitable numbers of hidden neurons.
This reduces the number of training executions in DC-ELM compared to ELM, as shown in
Fig 4.2. Table 4.9 reports the accuracy, best H and elapsed time (T ) of the original ELM,
alongside with the accuracy, best H, time (T ′), number M of training executed, percentage
α of reduction in M and percentage β of reduction in the training time of DC-ELM for each
UCI benchmark classification dataset. The results show that the proposed method DC-ELM
achieves α values between 75.4% and 84.2% and β between 82% and 84%. The DC-ELM
slightly overcomes ELM in terms of ACC, with average values 80% and 79.9%, respec-
tively. For instance, in the miniboone dataset, DC-ELM achieved T ′=355.93 sec, while
the original ELM achieved T = 1799.25 s. with an ACC (90.6%) close to ELM (90.7%), with
α=80.2% and β=84%. Regarding the shuttle dataset, DC-ELM achiveds T ′=85.04 s. and
ACC=97.5% outperforming ELM (T =406.30 s., ACC=96.8%) with α=79.1% and β= 84%.
In addition, in the nursery dataset, DC-ELM achieved T ′=21.78 s. while the ELM spends
T =108.55 s., whereas the ACC=92.7% in DC-ELM and 92.6% in ELM, with α=79.9% and
β=84%.

The results also showed that there is no significant difference between ELM and DC-
ELM in choosing the appropriate H. For example, in the dataset tictac, the original ELM
selected H=320 with T =10.58 s., which is the same H value selected by DC-ELM with lower
T ′=2.21 s. and α=79.1% and β=84%. In the german dataset, the original ELM selected
H=240 and spent T =6.69 s., which is the same H selected by DC-ELM with T ′=1.51 s.,
α=77.4% and β=80%, and both achieved the same ACC=65.3%. This proves that DC-ELM
has higher ACC and more speed in choosing the appropriate hidden neuron compared to the
original ELM. The time ratio (last line in Table 4.9) between the original ELM and DC-ELM
is T/T ′ =4.87, which means that ELM is about five times slower than DC-ELM.

Similarly to MA-ELM and EMA-ELM, the proposed method DC-ELM was also com-
bined with SELM, CELM and CSELM. The results are reported in Table 4.10, proving
that DC-ELM achieves accuracy similar or higher than CSELMs with high β values. The
DC-CELM achieves an average β=78.7%, with the same ACC=80.3% as CELM. Compar-
ing CSELM and DC-CSELM, the percentage of training time reduction β ranges between
76.9% to 85.3%. Considering average values, the average ACC is 80.6% and 81% for DC-
CSELM and CSELM, respectively. For instance, in shuttle dataset the CSELM achieved
ACC=97.9% while DC-CSELM achieved ACC=98.1 with β=78.9%. The combination of
DC-DELM and DELM, leaded to a β range between from 75.1% and 86.5%, with an average
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Table 4.11: Accuracy and β of MELM, RSELM and SELM with and without DC.

MELM DC-MELM RSELM DC-RSELM SELM DC-SELM

Dataset ACC ACC β ACC ACC β ACC ACC β

abalone 66.9 66.9 76.6 66.4 66.4 78.6 66.3 66.1 76.8
australian 74.3 74.3 78.5 73.9 73.9 77.8 77.2 77.7 77.0
chess 46.1 46.1 79.8 43.3 43.3 80.1 49.3 49.3 80.2
connect-4 77.2 77.2 80.6 76.9 76.9 81.1 77.5 77.5 80.0
energy-heat 94.1 93.9 76.9 94.9 94.9 78.6 95.2 93.6 76.3
german 62.0 63.3 78.2 58.7 58.1 79.6 62.0 59.0 77.1
heart 74.1 70.4 78.1 77.8 77.8 85.1 71.9 68.2 76.2
hepatitis 85.2 85.2 81.0 80.6 80.6 88.6 83.3 81.3 78.0
imseg 95.4 95.4 78.5 95.5 95.6 75.7 94.9 95.4 78.2
ionosphere 82.5 81.7 78.6 84.6 84.6 84.4 85.1 85.1 78.8
letter 75.4 75.4 79.6 71.9 71.9 79.7 74.0 74.0 79.7
magic 84.6 84.6 79.2 84.0 84.0 79.3 84.8 84.8 79.4
mammograph 71.0 71.0 77.0 68.2 67.9 76.8 69.3 72.9 74.6
miniboone 90.5 90.5 81.2 89.9 89.9 80.3 90.5 90.5 79.7
monks2 46.5 49.3 76.8 53.0 53.0 76.4 49.0 52.6 75.5
msa 98.7 98.7 85.2 100 99.2 79.2 100 99.9 83.9
nursery 95.4 95.4 77.8 94.2 94.2 79.3 95.2 95.2 79.1
pima 68.5 68.5 73.4 68.4 68.4 76.9 67.3 67.5 77.0
planning 48.8 48.8 77.5 59.3 59.3 86.8 56.7 56.7 76.4
seeds 93.9 94.8 80.3 93.8 95.2 88.5 93.8 93.9 79.0
shuttle 98.7 98.8 80.4 99.0 99.1 78.9 97.9 98.1 76.2
sonar 78.0 78.0 80.1 74.6 74.6 86.7 80.4 76.4 78.1
synthetic 97.2 97.2 78.0 94.2 94.2 82.8 96.2 96.2 79.1
tictac 98.6 98.8 77.7 98.5 98.6 79.0 98.4 98.4 78.0
vehicle 79.5 80.7 76.7 79.6 79.6 77.3 80.6 78.7 76.6
voting 94.2 94.2 79.8 86.0 85.1 81.6 — — —
wine 97.8 97.9 81.3 98.6 98.6 89.3 98.6 98.6 83.7
Avg. 80.6 80.6 85.2 80.2 80.2 81.1 79.9 79.6 76.2

ACC=81.2% slightly higher than DC-DELM (80.4%). For instance, in hepatitis dataset
DELM and DC-DELM achieves ACC=76.1% and 81.3%, respectively, while in connect-4
dataset, DC-ELM outperformed DELM with ACC=77.4% and 76.6%, respectively, with
β=81.5%.
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Table 4.12: Average accuracy and β of ELM, MA-ELM, EMA-ELM and DC-ELM.

ELM MA-ELM EMA-ELM DC-ELM
ACC ACC β ACC β ACC β

79.9 79.9 96.2 80.0 80.1 80.0 83.4

Table 4.11 reports the comparison of MELM, RSELM and SELM with and without DC.
The DC-MELM (ACC=80.6%) equals MELM in terms of performance leading to a high
average β up to 85.2%. The comparison of DC-RSELM and RSELM reports a β value
ranging from 76.4% to 89.3%, also with the same average ACC=80.2%. Finally, the average
ACC was 79.9% and 79.6% using SELM and DC-SELM, also with a high average β=76.2%.

4.8 Discussion

The results of previous sections report that the three aproaches MA-ELM, EMA-ELM and
DC-ELM perform fairly well, achieving accuracy slightly higher than the classical ELM tuned
using grid-search and accelerating very much the hyper-parameter tuning and the time spent
in training and tuning. Table 4.12 reports that average values of accuracy and β of ELM,
MA-ELM, EMA-ELM and DC-ELM compiled from Tables 4.3, 4.6 and 4.9. The average
accuracy is very similar using ELM (79.9%) or the proposed methods MA-ELM, EMA-ELM
and DC-ELM (79.9% and 80%). This is expectable, because our approaches only reduce the
number of H values tried during tuning, but using the same collection of H values as ELM, so
the accuracy can be only slightly better. However, the percentage β of reduction in time with
respect to ELM is very high in the three methods, although much higher in MA-ELM (96.2%)
compared to EMA-ELM and DC-ELM (80% and 83.4%), so the first approach seems to be
faster while keeping the same accuracy as the original ELM.
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CHAPTER 5

CONCLUSIONS

This dissertation presents three new algorithms based on the extreme learning machine (ELM)
that are oriented to solve several defficiencies of these neural networks. The first problem
is related to the limitation of the ELM for the classification of large-scale datasets. This
limitation is caused by the need of perform generalized inversion of a matrix that scales with
the number N of training patterns and with the number H of hidden neurons. With large-scale
classification problems, the own matrix can not ne stored in memory due to its large size.
Besides, it is even less practical nor factible to perform the generalized inversion of such a
large matrix, because the complexity of this problems scales with O(N p) with 2 ≤ p ≤ 3.
The need to perform hyper-parameter tuning over the size H of the hidden layer also adds an
important overload and increases the complexity with large-scale datasets, because training
and test of the ELM network must be repeated several times in order to select an appropiated
size.

In order to solve these drawbacks, the chapter 2 of the current thesis proposes the quick
extreme learning machine (QELM), a version of ELM designed for large-scale classifica-
tion problems with many patterns (in our experiments, up to 31 millions) in general purpose
computers without any special software (such as pre-trained neural networks or big data plat-
forms) nor hardware (such as graphic processing units, GPUs), something that is not currently
available in the literature and therefore exhibits a high practical interest [12]. The classifica-
tion over large-scale datasets is performed in QELM by replacing the hyper-parameter tuning
of the number H of hidden neurons, that usually represents an important overload because it
requires to train and test the network several times, by an bounded estimation of H from the
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number N of training patterns.

On the other hand, instead of performing the generalized inversion of the hidden activation
matrix Y, whose size is H×N, the QELM uses an alternative activation matrix of size bounded
both on the numbers of rows and columns, avoiding and indefinite growing of the matrix
with the dataset size. First, the number H of rows of Y is required to be H ≤ bηN0c=2,250
neurons, with η=0.15 and N0=15,000 training patterns, so the value of H is upper bounded
for large N. Second, the number M of columns of Y is required to be M ≤ N1 = 5,000
prototypes, created using an efficient on-line version of the K-means clustering algorithm
from the training patterns, instead of the original training patterns as in ELM, so Y has at
most N1 =5,000 columns when N ≥ N1, independently on N. Thus, the maximum size of Y
is ηN0×N1, or 2,250×5,000.

Both changes with respect to ELM allow QELM to process datasets with millions of
patterns, because only less than 5,000 prototypes are stored, although the time required by
the prototype calculation raises with N. Consequently, QELM is able to classify datasets up
to 31 millions of patterns (23 millions of training patterns), 30,000 inputs and 131 classes,
while the standard ELM can only manage datasets up to 5 million patterns (3,7 millions of
training patterns) and even the linear SVM can not execute in three of the largest datasets. The
QELM performance, in terms of Cohen kappa (in %) is only 2 and 7 points below ELM and
radial SVM, respectively, in small datasets. In large datasets, the kappa of QELM is only 2
points below ELM and 13 points above the linear SVM. Considering speed, QELM is 36 and
154 times faster than ELM and radial SVM, respectively, on the small datasets. In the large
datasets, QELM is so fast as the ELM without hyper-parameter tuning (i.e., using H =500),
but the latter fails in 40% of the datasets. Compared to the linear SVM, the QELM is 14 times
faster. Moreover, the time spent by QELM is relatively stable when the size of the training
set increases, due to the limitation on the matrix size. The sensitivity of QELM with respect
to its hyper-parameters (e.g. the maximum number N1 of prototypes) is low, so no tuning is
required for a good performance.

The second algorithmic proposal, developed in chapter 3 of this thesis, is relative to the
random choice of biases for the neurons of the hidden layer of the ELM. The current work
discusses the effectiveness of this random choice and proposes an improved algorithm, named
confidence-random-based extreme learning machine (CRB-ELM), that makes a proper se-
lection of the random input bias [13]. Once a confidence level F (in %) is defined (e.g.,
96%), a confidence interval is determined for the bias of the hidden neurons of the ELM
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Chapter 5. Conclusions

using the mean and standard deviation of the input data (method D), of the input weights
(W) or of the product of input data and weights (WD). This confidence interval is created in
such a way that F-% of the bias values, that are randomly set, are inside the interval lim-
its. The random initialization of the bias values also follow four different methods to split
the data population: the original values (method NCI), the absolute value of the original data
(ACI), the upper-lower bounds of the confidence interval (NULCI) and the absolute value of
the upper-lower bounds (AULCI). Another alternative method also proposed in this thesis,
named confidence-random-bias singular-value-decomposition extreme learning machine
(CRB-SVD-ELM), uses one of the matrices provided by the singular value decomposition
of the true input data as the new input data for the calculation of the confidence interval for
the random bias. The results report that the proposed CRB-ELM is a particularly attractive
option for solving complex classification and regression problems in the presence of limited
computational storage resources. In fact, all the variants of CRB-ELM (WD, D and W) bring
significant performance advantages in real applications either with small and large datasets
compared to the classical ELM network (about 2% more accuracy in average over the classifi-
cation tasks, and 0.2 points below in RMSE for the regression tasks) and to the base projection
machine (BPVM), that is based on singular value decomposition.

Although the QELM already offers an alternative for hyper-parameter tuning, it is de-
signed mainly for large-scale datasets and brings a small loss in performance compared to the
ELM with standard grid-search tuning on small and medium sized datasets. The third algo-
rithmic proposal of the current thesis (chapter 4) uses moving average and exponential moving
average statistical tools and the divide-and-conquer strategy in order to make more efficient
the search of an optimal value H for the number of hidden neurons. The moving average
extreme learning machine (MA-ELM) uses MA to estimate the accuracy of ELM trained
with different H values, saving an important number of H values and, consequently, of ELM
trainings, and thus reducing the time spent in hyper-parameter tuning compared to the clas-
sical ELM. As an alternative, the exponential moving average extreme learning machine
(EMA-ELM) uses EMA instead of MA to perform this estimation with more sensitivity with
respect to the changes in the ELM accuracy for each value of H. The divide-and-conquer
extreme learning machine (DC-ELM) uses this strategy to avoid trying lots of numbers of
hidden neurons, and also trainings of the ELM network, by dividing the set of H values in
two subsets, evaluating the accuracy in their largest values and selecting the subset with the
highest accuracy value. The process is repeated recursively until the current set has only
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one H value, that is selected for testing. The methods MA, EMA and DC have been also
applied to the well-known constrained, constrained sum and constrained difference extreme
learning machines (CELM, CSELM and DELM, respectively), and to the mixed, random sum
and mixed sum extreme learning machines (MELM, ESELM and SELM, respectively). The
results for classification datasets report that the same or even higher accuracy is achieved
when the proposed methods are used, compared to the ELM, constrained and mixed ELM.
The value selected for H is very often the same as the existing ELM version, but with a
very important reduction in the number of H values for that ELM was trained, and in the
training-tuning time, that reaches 98% in many cases, i.e., the proposed versions may be until
50 times faster than ELM. Although MA-ELM, EMA-ELM and DC-ELM achieve accura-
cies very similar to ELM, the MA-ELM is the fastest one, reducing the time an average of
96.2% and being about 26 times faster than ELM. The three methods may bring significant
performance advantages in applications where factors limit the number H of hidden neurons
and specified biases, such as a multiuser eye-tracking systems [8]. In such cases, and in other
analogous real-life applications, the MA-ELM, EMA-ELM, and DC-ELM approaches can
deliver improved performance compared to existing alternatives.

The future research includes to extend the capabilities of QELM to datasets with even
larger number of inputs, and to integrate the three proposed versions (QELM, CRB-ELM and
MA-ELM) on a optimal ELM that allows an efficient and accurate prediction for datasets of
any size. As well, we will also research in optimized ways of calculating the generalized
inverse for large matrices, in order to remove the main bottleneck of ELM and to extend its
use for any machine learning problem.
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APPENDIX A

LISTADO DE PUBLICACIÓNS

As publicacións asociadas á tese son as seguintes:

1. A. Albtoush, M. Fernández-Delgado, E. Cernadas, S. Barro. Quick extreme learn-
ing machine for large-scale classification. Revista Neural Computing and Applications,
Springer, pp. 1-16. Enero 2022. ISSN 1433-3058. DOI: https://doi.org/10.1007/s00521-
021-06727-8. Índice de impacto 5.606 (2020), posición 31 de 139 en Computer Sci-
ence, Artificial Intelligence (Q1). Os contidos desta publicación descrı́bense no capı́tulo
2 da tese.

2. A. Albtoush, M. Fernández-Delgado, E. Cernadas, S. Barro. “Extreme learning ma-
chine with confidence interval based bias initialization”. II IEEE International Confer-
ence on Intelligent Data Science Technologies and Applications (IDSTA), 2021, Tartu
(Estonia), 15-16 noviembre 2021, pp 1–8. DOI https://doi.org/10.1109/IDSTA53674.
2021.9660822. Os contidos desta publicación descrı́bense no capı́tulo 3 da tese. Este
artigo recibiu o Best Paper Award neste congreso.

Os co-autores das publicacións Eva Cernadas e Senén Barro pertencen ao Departamento
de Electrónica e Computación, Universidade de Santiago de Compostela. Estas publicacións
foron realizadas exclusivamente polo doutorando, polo tanto a súa contribución é do 100%
das mesmas, é orixinal e propia do doutorando.
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The extreme learning machine (ELM) is a popular neural 
network that has two major drawbacks for large-scale data 
sets: the need of tuning of the number of hidden neurons, and 
the pseudo-inversion of the hidden activation matrix. This thesis 
proposes algorithms that keep the simplicity and speed of the 
ELM network and: 1) avoid tuning and bound the size of hidden 
activation matrix; 2) raise the ELM performance with a suitable 
choice of the random bias values; 3) speeds up the hyper-
parameter tuning by reducing the number of training 
executions required.


