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Abstract

Data Assimilation can be used to achieve patient specific simulations of the blood
flow. Integrating the data from medical imaging into the simulations can be done
through an optimal control problem. We present an approach for this problem which
includes dealing with the non-Newtonian character of the blood and WSS measurements.
We finally present some numerical results for this approach.

Key words: blood circulation, non-Newtonian, optimal control

1 Introduction

The collaboration between the medical community and scientists offers an exchange of
knowledge and data information between both strands. Such data can be used by the
researchers in the numerical simulations to predict blood behavior under healthy or disease
conditions. This process is called Data Assimilation. Although different techniques can
be considered, in [3, 4] it has been shown that the so called variational approach can lead
to better results when in the frame of hemodynamics modeling. Here we present some
advances in this direction.

In the vascular system, one of the most frequently disease we can observe is the partial
obstruction of the vessels, reducing the diameter which commits the normal behavior of the
blood circulation. It is already known that hemodynamical issues can affect the progression
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of this and others pathologies through the action of the shear stress exerted by the blood
flow on the vessels walls, although it’s influence is not fully known yet (see [1, 2]).

In normal situations the blood flow has a Newtonian behavior in most parts of the
arterial system. In fact, when non-Newtonian effects are observed it may indicate that
some abnormality can be occurring. Some blood effects can be observed, for instance stable
recirculation of the flow downstream a stenosis or inside a saccular aneurysm. In such
cases is important the study of non-Newtonian behavior as well as shear-thinning viscosity,
thixotropy and eventually the yield stress of the blood.

In the same sense, it is believed that the development of aneurysms and its consequently
rupture is also related to local hemodynamical factors and vessels structure. The size of
the vessels, its radius, curvature and branching plays a role in the growth and rupture
of the aneurysm. Some parameters like the wall shear stress (WSS) can also give some
information about a patient condition. The WSS is measured in the vessel wall and high
values are associated to disease conditions.

In Section 2 we define an control problem describing the data assimilation process, for
a non-Newtonian dynamics. We use the inlet boundary condition as the control. In Section
2 we present some numerical results for solution of such an optimal control problem.

2 State equation and control problem formulation

We deal with generalized steady Navier-Stokes equations given by

−div (τ(Dy)) + (y · ∇)y +∇p = f (1)

with the divergence free condition
div y = 0,

both defined in a domain Ω where the unknowns are the velocity field y and the pressure
p, τ is the viscous stress tensor is represented by

τ = 2µ(γ̇)Dy, (2)

where µ is the kinematic viscosity and γ̇ is the shear rate given by

γ̇ =

√
1

2
(∇y + (∇y)T ) : (∇y + (∇y)T )

and D is the strain tensor

Dy =
1

2
(∇y + (∇y)T ).

The model considered for viscosity is the generalized Cross model given by

µ(γ̇) = µ∞ +
µ0 − µ∞

(1 + (λ γ̇)b)a
(3)
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where a, b, λ > 0. The constants µ0 and µ∞ are the asymptotic viscosity values at zero and
at infinite shear rates.

Our purpose is to minimize the difference between the computed state variable and the
data observations yd registered a priori in part of the domain in such a way to capture the
the correct behavior of the blood in the proposed domains. We intend to control the inlet
boundary by introducing a Dirichlet control and to compare the obtained results with the
data observations. The control problem can be formulated as

min J(y,u) = w1

∫
Ωpart

|y− yd|2 dx+w2

∫
Γin

|∇u|2 dx+w3

∫
Γwall

|WSSm−WSSmd|2 dx.

(4)
subject to 

−div τ + (y · ∇)y +∇p = f in Ω

div y = 0 in Ω,

y = 0 on Γwall

y = u in Γin

−ν∇y · n + pn = 0 in Γout.

(5)

The constants w1, w2 and w3 are weights to balance the integrals in the cost function, yd

represents the data observations collected in a previous chosen part of the domain Ω, named
Ωpart. The WSSm is the magnitude of the WSS and the WSSmd is the data magnitude
of the WSS both computed in the surface of the domain.

The WSS is the tangential stress exerted by the fluid in the vessels wall and is given by

WSS = σn − (σn · n)n (6)

Where σ = pI − τ , n is the outward normal to the wall surface, σn is the normal
component of the stress tensor.

3 Numerical results

After discretizing the optimal control problem using finite element methods we obtain a
finite dimensional optimization problem corresponding to 35934 degrees of freedom. We
solve this problem by a Sequential Quadratic Programming approach. We generate the
data by solve the model using a Poiseiulle profile with the following parameter

µ0 = 0.004Pa.s, µ∞ = 3.6e−3 Pa.s
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a = 1.23, b = 0.64, λ = 8.2 s

U0 = 0.0662m/s, ρ = 1059Kg/m3.

where U0 is the maximum velocity at the inlet.
We use an idealized geometry representing a stenosis. The velocity is represented in

Figure 1.

Figure 1: Non-Newtonian case: velocity contour highlighting a circulating region after the stenosed area

We chose to observe the data at the sections represented in Figure 2.

Figure 2: Ωpart representation

We test different values of w1, w2 and w3. We show the results for such tests in Tables
1, 2 and 3. There Y = y − yd and W = WSSm −WSSmd. The final cost function (CF)
is also represented. We remark that for w3 = 0 since no regularization term is present,
the the corresponding cost J is minimized but the control is not the expected one. When
w3 6= 0 we see that the first term in the cost J has a fundamental role in approximating the
solution y from the data yd. We see however that including the second term for the WSS
improves the approximation.
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Table 1: Cost functions components values fixing w2 = 1e6 and w3 = 1e−3 and varying w1,
non-Newtonian problem.

w̄ = (w1, w2, w3)
∫

Ωpart
|Y |2

∫
Γwall

|W |2
∫

Γin
|∇u|2 CF

(0, 1e6, 1e−3) 8.556603e−8 9.245164e−14 3.680136 0.00368022846896

(1e5, 1e6, 1e−3) 9.201587−12 1.601673e−16 3.767962 0.00376888268568

(1e6, 1e6, 1e−3) 9.965953e−14 4.340147e−18 3.769641 0.00376974041077

(1e7, 1e6, 1e−3) 1.011144e−15 6.587033e−20 3.769821 0.00376983073395

(1e10, 1e6, 1e−3) 1.014796e−21 3.985640e−23 3.769841 0.00376984085014

Table 2: Cost functions components values fixing w1 and w3 and varying w2, non-Newtonian
problem.

w̄ = (w1, w2, w3)
∫

Ωpart
|Y |2

∫
Γwall

|W |2
∫

Γin
|∇u|2 CF

(1e6, 0, 1e−3) 1.012988e−13 1.855193e−13 3.769638 0.00376973951987

(1e6, 1e5, 1e−3) 9.971377−14 4.018386e−16 3.769641 0.00376974037362

(1e6, 1e7, 1e−3) 9.964534e−14 4.425922e−20 3.769641 0.00376974041479

(1e6, 1e10, 1e−3) 9.965343e−14 4.421446e−26 3.769641 0.00376974041492

Table 3: Cost functions components values fixing w1 and w2 and varying w3, non-Newtonian
problem.

w̄ = (w1, w2, w3)
∫

Ωpart
|Y |2

∫
Γwall

|W |2
∫

Γin
|∇u|2 CF

(1e6, 1e6, 0) 3.689777e−16 6.351068e−22 75.994451 3.689783e−10

(1e6, 1e6, 1e−2) 9.220232−12 1.523402e−14 3.767958 0.03768881276207

(1e6, 1e6, 1e−1) 7.593194e−10 1.818445e−11 3.753622 0.37613975336735

(1e6, 1e6, 1e1) 2.095783e−6 1.793444e−6 2.923831 33.1275360625329

4 Conclusions and future work

We propose an optimal control problem for the non-Newtonian model for blood flow that
solves the Data Assimilation problem on an idealized stenosis. We tested the different
parameters in the cost function to verify their influence in the approximation. In the future
we should deal with noisy data and apply this method to 3D models.
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Abstract

This paper presents an step towards applying the theory of discrete dynamical sys-
tems to the analysis of Concurrent Computing Systems. In order to do that, a restricted
model of Timed - Arc Petri Net, TAPN, where the labels of the arcs connecting places to
transitions are non-negative integer numbers, has been encoded as a discrete dynamical
systems, so defining the corresponding phase space, which has been endowed with the
evolution operator of the system.

Key words: Formal Computing Science, Timed-Arc Petri Net, Quasi-Pseudometric,
Discrete Dynamical System.

1 Timed-Arc Petri Nets

Given the TAPN N = (P, T, F, times) where:

• P is the finite set of places

• T is the finite set of transitions

• P ∩ T = ∅. In the classical representation of PNs, places are circles and transitions
are rectangles

• F is the flow relation which relates places and transitions by arcs connecting them.
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• F ⊆ (P × T ) ∪ (T × P )

• dom(F ) ∪ cod(F ) = P ∪ T

• times : F |P×T −→ IN

• M : P −→ IN is a Marking of N.

Markings of TAPNs are graphically represented by including in places either non-
negative integers so representing tokens with that age, or, nothing when there is no
token in that place.

Example 1. Fig. 1 shows the MTAPN which models the classical Producer/Consumer
problem with a buffer of capacity 1, where transition t1 represents “producing” an item so
lasting 5 units of time, t2 “putting” the item into the buffer immediately , t3 “removing” an
item from the buffer as soon as a token appears in places p3 and p6, and, t4 “consuming”
the item so elapsing at least 4 units of time.
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Figure 1: M0 of the TAPN modeling the Producer/Consumer with a single capacity buffer

Once elapsed 4 units of time, the new Marking can be seen in fig. 2:
One unit of time later is shown in figs. 3, 4 and definitively 5
Four units of time more have elapsed in fig. 6

Given a MTAPN (M,P, T, F, times) with P = {p1, . . . , pn}, a Marking M of it which
has m tokens in places pi1 , . . . , pim (m ≤ n) with ages xi1 , . . . , xim , will be codified by a
n-tuple containing in every ij-position j ∈ {1 . . .m} the age of the token in place pij and
the remainder n−m positions contain ∅.
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Figure 2: M4 of the TAPN modeling the Producer/Consumer with a single capacity buffer
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Figure 3: M5 of the TAPN 1
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Figure 4: M5 of the TAPN 2
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Figure 5: M5 of the TAPN 3
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Figure 6: M9 of the TAPN

The codification of the MTAPN modeling the initial state of the classical Producer/Consumer
problem with a buffer of capacity 1, as shown in fig.1, appears enumerated as 1., so that,
the codification once elapsed i units of time appears enumerated as i+ 1. as follows:

1. (0, ∅, 0, ∅, 0, ∅) ( see fig.1)

2. (1, ∅, 1, ∅, 1, ∅)

3. (2, ∅, 2, ∅, 2, ∅)

4. (3, ∅, 3, ∅, 3, ∅)

5. (4, ∅, 4, ∅, 4, ∅) ( see fig.2)

(a) (5, ∅, 5, ∅, 5, ∅) t1 can be fired

(b) (∅, 0, 5, ∅, 5, ∅) t2 can be fired (see fig.3)

(c) (0, ∅, 5, ∅, ∅, 0) t3 can be fired (see fig.4)

6. (0, ∅, ∅, 0, 0, ∅) (see fig.5)

7. (1, ∅, ∅, 1, 1, ∅)

8. (2, ∅, ∅, 2, 2, ∅)

9. (3, ∅, ∅, 3, 3, ∅)

(a) (4, ∅, ∅, 4, 4, ∅) t4 can be fired

10. (4, ∅, 0, ∅, 4, ∅) (see fig.6)
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Given a MTAPN (M,P, T, F, times), a transition t ∈ T is fired as soon as ∀p ∈ •t, p
has an enabled token for t.

A token in a place p ∈ P (p ∈ •t), xp, is enabled for that transition t ∈ T when
xp ≥ times(p, t).

Let N = (M,P, T, F, times) be a MTAPN and t ∈ T :

• t is fired at M iff ∀p ∈ •t.xp ≥ times(p, t)

• When t is fired at M and, consequently, marking M ′ is reached, we denote M [t〉M ′

– M ′(p) = M(p)− C−(p, t) + C+(t, p), ∀p ∈ P

∗ C−(p, t) =

{
xp when p ∈ •t, xp ≥ times(p, t) ∧ xp ∈M(p)
∅ otherwise

∗ C+(t, p) =

{
∅ when p 6∈ t•
0 otherwise

Thus, from each precondition place of t, the corresponding enabled token is removed,
and a new token (with age 0) appears on each postcondition place of t.

Let N = (M,P, T, F, times) be a MTAPN and R ⊆ T be a subset of transitions.
It is said that all transitions in R can be fired at marking M iff

∀t ∈ R.∀p ∈ •t.M(p) ≥ times(p, t)

We would like to note that since a place can belong to the precondition set of more
than one different transition, a token in it could potentially be enabled for more than one
transition and, after firing one of them (transitions), more than one different marking can
be reached.

This fact has lead us to consider as Phase Space not the set of n-tuples of either natural
numbers or ∅’s but the set of all its subsets, in order to properly capture these cases.

Moreover, as once a transition is fired there will appear tokens with age 0 in all its
postcondition places, that, potentially could be enabled for other (sometimes different)
transitions; we assume that when modeling the elapsing of a single unit of time, the Net
fires as much transitions (eventually sequentially ordered multisets of transitions) as possible
until no transitions can be fired, see figs. 3, 4 and definitively 5

The firing of a sequentially ordered multiset of transitions RR at the marking M until
no more transitions can be fired, as explained above, generates a new marking M ′, so
denoted by M [RR〉M ′. This represents the complete evolution of the Net without time
elapsing. Therefore, we call the evolution of the Net in a single step, the sequence of, first
aging all its tokens (increasing in 1 their ages) and then, completely evolve the marking
reached after such 1-aging. It can be better understood in the codification of the example
of the Producer/Consumer.
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2 A restricted version of Timed-Arc PNs as Discrete Dy-
namical Systems

We have considered a slight variation of the well known Timed-Arc Petri Nets formalism,
that modifies the temporal behaviour of the time required for firing, which meanwhile in the
former it was uniformly randomly distributed in the time interval labeling each arc (p, t), for
the sake of fulfilling a compulsory restriction of Dynamical Systems, we have considered just
non-negative integers so labeling these arcs connecting places and transitions, thus resulting
the model with the dynamical behaviour previously explained within this paper.

The discrete dynamical system which encodes the MTAPN N = (M,P, T, F, times) is
the triple (X, τ,Φ), where:

• X = P({IN, ∅}n) is the set of all subsets of {IN, ∅}n, being n the number of places of
the MTAPN. Note that IN could be changed by Z, and, ∅ by a special value, as e. g.
−1, without loss of generality.

• τ is the monoid N ∪ {0}

• Φ : τ ×X → X is the evolution operator Φ verifying:

1. Φ(0, A) = A ∀A ∈ X, i.e., Φ0 = idX

2. Φ(1, A) = B A,B ∈ X where:

– A = {z1, . . . , zk} where zi ∈ {IN, ∅}n encodes Markings of the MTAPN N

– ∀t ∈ {1 . . . k} . xt = 1 + zt capturing one unit of time elapsed, in this way:

∀i ∈ {1 . . . n} . xti =

{
∅ when zti = ∅

zti + 1 otherwise

– B = ∪ki=1Bi

– Bi = ∪tj=1{y
j
i }, i.e. the union of all (t) possible reachable markings from xi,

defined by xi[RRi〉yji being RRi the maximal ordered multiset of transitions
of the net that can be fired from the marking xi

3. Φ(t,Φ(s,A)) = Φ(t+ s,A) ∀t, s ∈ τ , ∀A ∈ X

3 Conclusions and future work

We have presented a codification of a “urgent” version of Timed-Arc Petri Nets as a Discrete
Dynamical System.

Our next step is to provide this Phase Space with a metric such that would fit well
with the behavioral meaning of the this type of Timed PNs, and, that would give this
set a sound topological structure to analyze the key elements of the underlying Discrete
Dynamical System.
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Abstract

We study the dynamics of damped Newton’s methods applied to some degree three
polynomials. We consider a damping factor in the real line. We use in our study two
different techniques that allow us to demonstrate our results: the Lyapunov exponents
and the Feigenbaum diagrams. The conclusions drawn are that the inclusion of the
damping factor modifies significantly the dynamical behavior of the method.
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1 Introduction

In many areas related to the Applied Sciences one confronts the problem of solving a nonlin-
ear equation of the form f(x) = 0. The solutions of these equations can rarely be found in
closed form. That is why most solution methods are iterative. There exist lots of iterative
methods with different properties that allow us to solve this kind of equations, but the most
well-known and used is the Newton’s method, which has the following form:

xn+1 = xn −
f(xn)

f ′(xn)
, n ≥ 0. (1)

The study of the dynamics of the iterative methods attracts the attention of many
groups [1, 2, 3, 4, 5]. Our main goal in this paper is to study the real dynamics for a variant
of Newton’s method that it is called relaxed Newton’s method (see [6]):

xn+1 = xn − λf ′(xn)−1f(xn), n ≥ 0, λ ∈ R. (2)
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It is well known that under adequate conjugations the dynamics of every cubic polynomial
is equivalent to the dynamics of

q(x) = x3 + αx+ β. (3)

In this work, we are interested in polynomials with β = 0.
Let Nλ,q be the iteration function of damped Newton’s method applied to a cubic

polynomial of the form (3), with β = 0, that is

Nλ,q(x) =
x
(
(3− λ)x2 + α(1− λ)

)
3x2 + α

.

Then we can divide the study in the following cases:

1. If α = 0, then

Nλ,q(x) = Nλ,0(x) =
1

3
x(3− λ),

which is the damped Newton’s method applied to the polynomial p0(x) = x3.

2. If α > 0, then

Nλ,q(x) = Nλ,+(x) =
x
(
(λ− 3)x2 + 1− λ

)
3x2 + 1

,

which is the damped Newton’s method applied to the polynomial p+(x) = x3 + x.

3. If α < 0, then

Nλ,q(x) = Nλ,−(x) =
x
(
(3− λ)x2 + λ− 1

)
3x2 − 1

,

which is the damped Newton’s method applied to the polynomial p−(x) = x3 − x.

The paper is organized as follows. In Section 2 we present the dynamical study of
the damped Newton’s method applied to p0(x) = x3, in section 3 the dynamical study for
p+(x) = x3 + x and in section 4 for polynomial p−(x) = x3 − x.

2 Damped Newton’s method applied to p0(x) = x3

The polynomial p0 only has one triple root at x = 0. We have that (2) has the following
form:

Nλ,0(x) = −1

3
x(−3 + λ)

which is a linear contraction for values of λ ∈ (0, 6), so every point of the real line will
converge to the fixed point x = 0. For λ = 6, method (2) is minus the identity so every
point will constitute a 2-cycle. Finally for values of λ 6∈ (0, 6], the iteration of every point
except the fixed point will diverge to infinity.
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3 Damped Newton’s method applied to p+(x) = x3 + x

In this case, p+ has only one real root at x = 0, and the method (2) has the following form:

Nλ,p+(x) =
x
(
(3− λ)x2 + 1− λ

)
1 + 3x2

.

Since p′+(x) = 1 + 3x2 > 0 for all x, it follows that p+ has no critical points, hence
Nλ,p+(x) has no vertical asymptotes. Moreover, we obtain that the multiplier asociated
to the fixed point x = 0 is µ = |1 − λ| and so for values of λ ∈ (0, 2) the fixed point is
atractor (super-atractor if λ = 1). For values of λ ∈ (0, 3) there exist 4 critical points and
for λ ∈ (3, 4] there exist only two.

The dynamical behavior of the damped Newton method applied to polynomial p+(x) =
x3 + x, is the following:

• If λ < 0, then the iterations of every point different of x = 0 diverge to infinity.

• If λ ∈ (0, 2], 0 is an atractor fixed point and the iteration of every point converge to
it.

• If λ ∈ (2, 6), 0 is a repulsor fixed point,and Nλ,p+ has an atractor 2-cycle which it
corresponds to the solutions of −2 + λ− 6x2 + λx2 = 0.

• If λ ≥ 6, then the iterations of every point different of x = 0 diverge to infinity.

4 Damped Newton’s method applied to p−(x) = x3 − x

In this case, p− has three different real roots at x = 0, x = 1 and x = −1 and the method
(2) has the following form:

Nλ,p−(x) =
x
(
(3− λ)x2 + λ− 1

)
−1 + 3x2

.

Notice that Nλ,p−(x) has 2 vertical asymptotes at x = ± 1√
3
. Moreover, the multiplier

asociated to the every fixed point is µ = |1− λ| and so for values fixed points are atractor
for values of λ ∈ (0, 2)(super-atractor if λ = 1). For values of λ ∈ (0, 1] there exist 4 critical
points and for λ ∈ (1, 3) there exist only two.

The dynamical behavior of the damped Newton method applied to polynomial p−(x) =
x3 + x, is the following:

• If λ < 0, then the iterations of every points distinct to ehe fixed points diverge to
infinity.
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• If λ ∈ (0, 2], 0,1 y −1 are atractor, and the iteration of every point converge to one of
them.

• If λ ∈ (2, 2.37064), the fixed points are repulsor. Moreover, Nλ,p− has atractor 2-cycles
which are the roots of (λ− 3)2x4 − (λ2 − 4λ+ 6)x2 + 4 = 0.

• If λ ∈ (2.37064, 2.4423), the fixed points are repulsor. Moreover, Nλ,p− has atractor
cycles.

• If λ ∈ (2.4423, 2.72221) the fixed points are repulsor. The dynamics are chaotic.

• If λ ∈ (2.72221, 2.753), the fixed points are repulsor. Moreover, Nλ,p− has an atractor
4-cycle.

• If λ ∈ (2.753, 6), the fixed points are repulsor. The dynamics are chaotic.

• If λ ≥ 6, then the iterations of every points distinct to ehe fixed points diverge to
infinity.
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Abstract

In this talk, we present a parallel approach for numerically solving the Black-Scholes
equation in order to price European and American basket options. Therefore, hardware-
features of contemporary HPC computer architectures such as NUMA and hardware-
threading are exploited by a hybrid parallelization using MPI and OpenMP. Our ap-
proach is based on a sparse grid discretization with finite elements and makes use of a
sophisticated adaption. The resulting linear system is solved by a conjugate gradient
method that uses a parallel operator for applying the system matrix implicitly. Several
numerical examples as well as an analysis of the performance for different computer
architectures are provided.

Key words: Computional Finance, Option Pricing, High Performance Computing,
Sparse Grids

Extended Abstract

Typically, there is no closed form solution available when pricing basket options based on
the model of Black and Scholes. Hence, for determining the price of a basket, one has to
resort to numerical methods. Up to now solving these multi-dimensional option pricing
problems, Monte Carlo (MC) methods are widespread as the favorite method. They are
flexible, can be implemented in a straightforward way and handle multiple dimensions, but
they exhibit rather slow convergence rates. Several approaches based on variance reduction
techniques exist, improving the speed of convergence. Consider, for example, quasi MC
methods, control variate techniques, adaptive MC, or multi-level MC. But in recent years,
also PDE methods have been examined for financial problems reasoning the fast speed
of convergence compared to MC techniques which theoretically allows to obtain higher
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accuracies. Additionally, PDEs allow the fast computation of Greeks, that are needed for
hedging tasks, as an additional benefit. Unfortunately, up to now, PDE methods usually
can not compete against MC methods in three or more dimensions in terms of computing
time: the computations are rather costly and the PDE approach suffers from the so-called
curse of dimensionality, the exponential dependency on the dimensionality. Hence, common
PDE approaches as the ones stated above are currently typically limited to two or, in the
best case, three dimensions.

A possible solution to overcome this limitation are the so-called sparse grids. In [1, 2, 3]
we presented a different approach: Here, the (multi-asset) Black-Scholes PDE, see Eq. (1),
is discretized by finite elements on spatially adaptive sparse grids in order to optimally
adopt to a given option that should be priced.

∂V

∂t
+

1

2

d∑
i,j=1

σiσjρijSiSj
∂2V

∂Si∂Sj
+

d∑
i=1

µiSi
∂V

∂Si
− rV = 0. (1)

We achieved sufficiently high accuracies for European and American options. Never-
theless, one has to mention that calculation times (apart from the accuracy) are one of the
biggest issues when dealing with higher dimensional PDEs on sparse grids. In this paper
we address this issue by applying several optimization techniques (such as the principal axis
transformation on log-transformed equation of Eq. (1), refer to [4] details) and a proper
parallelization which unleashes the power of modern compute clusters.

The transformed Black-Scholes PDE is given in Eq. (2a)

∂u

∂τ
− 1

2

d∑
i=1

λi
∂2u

∂z2i
= 0 (2a)

with the initial condition

u(z, 0) = max

K − 1

d

d∑
i=1

exp

 d∑
j=1

qijzj

 , 0

 (2b)

The solution of the original Black-Scholes PDE (1) is then obtained via the inverse
transformation

V (S, t) = e−rτ · u(z, τ) (3)

with

zi = τ · µ̂i +

d∑
j=1

qji log(Sj), µ̂i =

d∑
j=1

(
µj −

1

2
σ2j

)
qji (4)

and backward time τ = T − t.
Since spatially adaptive sparse grids require non-standard algorithms that directly work

on the grid’s data, the parallelization of this algorithms is the main focus of this article:
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we present solutions for systems with a shared memory (like normal desktop systems or
workstations) and implementations that support compute clusters with a high-speed inter-
connect.

The talk will describe steps that are needed to implement a Black-Scholes PDE solver
on spatially adaptive sparse grids. Starting with mathematical foundations such as choosing
sufficient boundary conditions, determining and appropriate domain size, we will continue
with deriving Eq. 2a, which is basically the well-known heat-equation that requires a fast
Laplace-operator. Afterwards we deep-dive into the solver’s structure and develop a paral-
lelization scheme that exploits all levels of parallelism in the specific sparse grid algorithms
and map them on current hardware platforms by respecting their technically opportunities
and as well their limitations.
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Abstract

In this work, we present a new family of iterative methods for solving nonlinear
systems that are optimal in the sense of Kung and Traub’s conjecture for the unidimen-
sional case. We generalize this family performing a new step in the iterative method
getting a new family with order of convergence six. We study the efficiency of these
families for the multidimensional case introducing a new term in the computational
cost defined by Grau-Sánchez et al. A comparison with already known methods is done
studying the dynamics of these methods in an example system.

Key words: nonlinear systems, iterative methods, convergence order, optimal meth-
ods, computational cost, efficiency, dynamics.

1 Introduction

Finding iterative methods with high order of convergence in order to approximate the
solution of a nonlinear system F (x) = 0 is an active field in the numerical analysis. The
range of applications where it is required to use a high level of numeric precision is increasing
nowadays. Focusing on higher order iterative methods for the multidimensional case, we
can mention some recently published works: [1, 2, 3, 4].
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In this work we generalize the technique used in [5], obtaining a new family of iterative
methods with fourth order of convergence. The procedures used in [9] and [6] for increasing
the convergence order of an iterative method, that is, to perform another Newton’s step
avoiding the evaluation of the jacobian matrix in the new step in order to get the maximum
efficiency, do not work for the optimal method introduced in [5], so we propose a new
procedure to increase the order with a reasonable efficiency.

Obviously, performing a new step in an iterative method carries more function evalu-
ations and so one has to check if the higher convergence order justifies the increase of the
computational cost. For nonlinear system, a thorough study of cost and efficiency can be
found in [8]. Nevertheless, we introduce a new term in this cost definition for taking into ac-
count matrix-vector operations that occur in some iterative methods such as the considered
here.

Finally, we study the dynamics of these methods for a particular nonlinear system.

2 New families of iterative methods

Our aim is to develop high order methods for nonlinear systems, in line with the recently
published method of order 4 by Sharma et al. [5]. First of all, we generalize this technique
introducing a new term in their proposal, obtaining a new family of iterative methods of
order 4.

That is, we consider the family of iterative methods given by:

yn = xn − θ ΓxnF (xn)

H(xn, yn) = ΓxnF
′ (yn)

Gs(xn, yn) = s1I + s2H(yn, xn) + s3H(xn, yn) + s4H(yn, xn)2

zn = xn −Gs(xn, yn)ΓxnF (xn) (1)

where Γxn = F ′ (xn)−1, and θ, s1, s2, s3, s4 are constants that we determine in order
to get a new family of 4th-order optimal methods. Notice that, in the unidimensional case,
we evaluate just three functions, F (xn), F ′ (xn) and F ′ (yn) so the family will be optimal
in the sense of Kung and Traub’s conjecture, [7].

By using Taylor’s developments adequately we can prove the following result that gives
us the convergence order.

Theorem 1 Let F : Rn −→ Rn be a sufficiently Fréchet differentiable function in a neigh-
borhood D, convex set containing α, that is a solution of the system F (x) = 0, whose
jacobian matrix is continuous and nonsingular in D. Then, for an initial approximation
sufficiently close to α, the family of methods defined by (1) has local order of convergence 4
for the following relations among the parameters: s1 = 5−8s2

8 , s3 = s2
3 , s4 = 9−8s2

24 ; ∀s2 ∈ R
and for θ = 2

3 .
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The error equation obtained is as follows:

en+1 =
(64s2 + 117)c32 − 81c1c3c2 + 9c21c4

81c31
e4n +O

(
e5n
)

where ck = F (k)(α)
k! , k ≥ 1

Now we are interested in improving the convergence order of this family of methods, so
we propose performing a new step in this terms:

xn+1 = zn −Gt(xn, yn)ΓynF (zn) (2)

where for each value of s2, we find relations among the constants t1, t2, t3, t4 providing a
family of 6th-order methods according to the following:

Theorem 2 Considering the same conditions as in Theorem 1, the biparametric family of
3-step methods (2) has local order of convergence 6 for this relation among the constants:
t2 = −3+8t1

8 , t3 = 15−8t1
24 , t4 = 9+4t1

12 ; ∀(s2, t1) ∈ R2. The vectorial error difference equation
can be written as:

en+1 =
c3
(
−(64s2 + 117)c32 + 81c1c3c2 − 9c21c4

)
81c41

e6n +O
(
e7n
)

where ck = F (k)(α)
k! , k ≥ 1

3 Computational efficiency

In order to compare the different methods we have to study their efficiency. We use the
efficiency index introduced in [4], given by E = ρ1/C , where ρ is the order of convergence
and C is the computational cost per iteration. For a system of n nonlinear equations in n
unknowns, C is obtained by:

C (µ0, µ1, n) = µ0a0n+ µ1a1n
2 + P (n)

where a0 and a1 represent the number of evaluations of F (x) and F ′ (x) respectively, P (n)
is the number of products per iteration and µ0 and µ1 are the ratios between products and
evaluations required to express the value of C (µ0, µ1, n) in terms of products.

Apparently, the best methods of the family defined by (1) from the point of view of
computational efficiency are obtained for a2 = 9

8 and a2 = 0. The first one is the method
proposed in [5], that we denote by M14. The second one is a new method, denoted by M24.

c©CMMSE ISBN: 978-84-616-2723-3Page 830 of 1797



Forth and sixth order iterative methods with dynamics

We point out that for each particular method of the fourth order family, performing
the new step given in (2), we obtain a different family of sixth order methods. For the
comparisons, starting from M14 nd M24 we choose for the new step value t1 = −9

4 in both
cases, and so, we obtain two new methods denoted by M16 and M26 respectively. We
summarize in Table 1 the four methods considered in the numerical experiments.

Method s0 s1 s3 s4 t1 t2 t3 t4
M14 −1/2 9/8 3/8 0 - - - -
M24 5/8 0 0 3/8 - - - -
M16 −1/2 9/8 3/8 0 −9/4 15/8 11/8 0
M26 5/8 0 0 3/8 −9/4 15/8 11/8 0

Table 1: Values of coefficient for differents methods

We will express the computational cost per iteration with the same notation as in [4],
where p0 denotes the number of scalar products per iteration, p1 the number of complete
resolutions of the linear system (LU decomposition and resolution of two triangular systems)
and p2 the number of resolutions of two linear systems when LU decomposition is computed
in another step in the same iteration.

Nevertheless, we need to introduce a new factor p3 that is the number matrix by vector
products per iteration. This adds a new term in the expression of the total number of
products:

p(n) = n/6(2p1n
2 + (3p1(k + 1) + 6p2))n+ 6p0 + p1(3k − 5) + 6p2(k − 1) + 6p3n)

where it is supposed that a quotient is equivalent to k products.

Table 2 compares the computational cost of the analyzed methods.

Method a0 a1 p0 p1 p2 p3 C(µ0, µ1, n)

M2 1 1 0 1 0 0 1/6n(−5 + 6µ0 + 3n+ 6µ1n+ 2n2 + 3k(1 + n))
M14 1 2 4 2 1 1 1/3n(4 + 3µ0 + 9n+ 6µ1n+ 2n2 + 3k(2 + n))
M24 1 2 3 2 1 1 1/3n(1 + 3µ0 + 9n+ 6µ1n+ 2n2 + 3k(2 + n))
M16 2 2 7 2 3 2 1/3n(7 + 6µ0 + 18n+ 6µ1n+ 2n2 + 3k(4 + n))
M26 2 2 6 2 4 2 1/3n(1 + 6µ0 + 21n+ 6µ1n+ 2n2 + 3k(5 + n))

Table 2: Computational cost for the different methods
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M2 M14 M24 M16 M26

n = 2 1.05846 1.03818 1.0404 1.03116 1.03011
n = 4 1.01292 1.00933 1.00959 1.00833 1.00789
n = 6 1.00491 1.00377 1.00383 1.00356 1.00336
n = 9 1.00177 1.00143 1.00145 1.00143 1.00135
n = 12 1.00083 1.0007 1.0007 1.00072 1.00069
n = 15 1.00045 1.00039 1.00039 1.00042 1.0004
n = 18 1.00028 1.00024 1.00024 1.00026 1.00025

Table 3: Efficiency indexes for different values of n for µ0 = 1.7 and µ1 = 0.7

M2 M14 M24 M16 M26

n = 2 1.02123 1.02377 1.02462 1.01808 1.01772
n = 4 1.0071 1.00703 1.00717 1.00591 1.00569
n = 6 1.00329 1.00309 1.00313 1.00279 1.00266
n = 8 1.00179 1.00164 1.00166 1.00156 1.00148
n = 12 1.00069 1.00063 1.00064 1.00064 1.00061
n = 16 1.00034 1.00031 1.00031 1.00033 1.00031
n = 20 1.00019 1.00017 1.00017 1.00019 1.00018

Table 4: Efficiency indexes for different values of n for a µ0 = 11.5 and µ1 = 1

4 Dynamics of the methods

In this section we study the dynamics of the iterative methods M14, M24, M16 and M26
when applied to the solution of a system of quadratic equations, representing the intersection
of two hyperbolas in R2 and compare them with the dynamics of Newton method. We show
that the methods are generally convergent and depict their attraction basins. The chosen
example present four simple real roots. When there are less roots or multiple roots, the
convergence order is lower, as expected, and even the convergence fails in certain regions of
the plane.

Let us first recall some dynamical concepts. Consider a Frechet differentiable function
G : Rn −→ Rn. For x ∈ Rn, we define the orbit of x as the set x,G(x), G2(x), . . . , Gp(x), . . ..
A point xf is a fixed point of G if G(xf ) = xf . A periodic point xr of period m is such that
Gm(xr) = xr where m is the smallest such integer. A fixed point xf is called attracting if
‖JG(xf )‖ < 1, repelling if ‖JG(xf )‖ > 1, and neutral if ‖JG(xf )‖ = 1. If JG(xf ) = 0, the
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point xf is superattracting. Let xaf be an attracting fixed point of the function G. The
basin of attraction of xaf is the set of points whose orbits tend to this fixed point

A(xaf ) = {x ∈ Rn : Gp(x) −→ xaf for p −→∞}

The dynamics of Newton’s method and higher order iterative methods has been widely
studied ([10, 11, 12, 13]). In these references the method is applied to simple polynomial
equations in the complex domain. Our purpose here is to show the aspect of the basins of
attraction of the above mentioned methods applied to a system of nonlinear equations in R2.
The pictures for the complex case are nicer, but we are mainly interested in the behavior
of the methods for solving systems of nonlinear equations in the real n-dimensional space.

For the comparisons, we consider the following quadratic system representing the in-
tersection of two hyperbolas,

(x− 3)2 − 16y2 = 1

x2 − y2 = 1

}
.

In this system the axes of one hyperbola are parallel to the asymptotes of the other.
One intersection is near the barycenter of the other three.

For the comparisons, we have run the methods iterating with tolerance 10−6 performing
a maximum of 100 iterations. The starting points form a uniform grid of 512×512 in
a rectangle of the real plane. The attraction basins have been colored according to the
corresponding fixed point.

Figures 1 and 2 show, respectively, the attraction basins and the number of iterations
for Newton’s method. Figures 3, 4, 5 and 6 show the attraction basins of methods M14,
M24, M16, and M26, respectively.

Observe that the complexity of the basins increases with the order, but the convergence
regions cover almost all the plane. Methods M24 and M26 have slightly more complex
basins than their counterparts M14 and M16. The four roots are superattractive for all the
analyzed methods. In a further study we will consider the existence of periodic orbits and
the convergence in case of double or missing roots.

5 Conclusions

As it can be observed in Tables 3 and 4, Newtons method, M2, maintains higher efficiency
index than the other methods. Our method M24 always gets better indexes than M14 due
to the fewer number of operations. However, M26 does not reach the efficiency of M16.
Although the 4th-order methods are good for systems with a reduced number of equations,
as more complex a systems is, more advantages we get using the methods of order six.
So, the 4th-order methods are as good as the 6th-order ones for systems between nine to
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Figure 1: Attraction basins for Newton’s method

Figure 2: Iteration count for Newton’s method
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Figure 3: Attraction basins for method M14

Figure 4: Attraction basins for method M24
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Figure 5: Attraction basins for method M16

Figure 6: Attraction basins for method M26
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twelve equations. From this point on, these last methods exceed lower order methods. In
particular M16 goes closer than the others to the efficiency index of Newton’s method. The
dynamical experiment shows that the global convergence properties are not worsened by
the increase of the order of the method.
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Abstract

An implicit surface sampling algorithm accelerated using parallel computation on
Graphics Processing Unit (GPU) is presented in this paper. The sampling algorithm
generates a set of surface points distributing uniformly in density and in distance. The
proposed method is based on repulsive particle simulation that can be computed in
parallel. In our numerical test, the repulsive particle simulation was accelerated up to
40 times over a single-thread CPU implementation.

Key words: GPU, implicit surfaces, repulsive particle system

1 Introduction

The purpose of this research is to develop a fast computational method for generating
densely and uniformly distributed points on implicit surfaces. The sampling technique is
required in many practical situations. For example, the boundary node method, a tool for
solving boundary value problems, requires a set of surface points and the location of the
points affects the accuracy of the solution. The point based rendering technique used in
computer graphics or scientific visualization also requires a set of points densely distributed
on surfaces and uniformity of the points determines the quality of the visualization.

Implicit surface sampling techniques have been well studied in computer graphics.
Witkin and Heckbert [1] proposed a method for uniform sampling of implicit surfaces. In
this method, the uniformity is achieved by applying a repulsive force model to the particles.
Some improvements were made by Meyer et al. [2] for adaptive sampling and stable compu-
tation. In the sampling methods based on repulsive particles, initial points on surfaces are

c©CMMSE ISBN: 978-84-616-2723-3Page 839 of 1797



GPU-accelerated uniform sampling of implicit surfaces

required. The unifrom sampling method proposed by Kojima et al. [3] adopted the sam-
pling technique called the stochastic sampling method (SSM [4]) for automatic generation
of initial point sets on implicit surfaces. In the SSM, a sequence of random surface points
with a guarantee of convergence to a point cloud with uniform density can be stochastically
generated and is suitable for an initial state of the repulsive particle simulation.

In this paper, we propose a GPU-accelerated uniform sampling method for implicit
surfaces. The input of the process is a set of surface points given using a point generation
method such as the SSM and we provide an effective parallel algorithm for iterative scheme
of repulsive simulation. The algorithm is designed so that the local interactions of particles
can be efficiently computed using GPU cores in parallel and, as a result, the motion of
millions of repulsive particles can be performed with smaller cost than that on CPU.

2 Particle diffusion method for implicit surfaces

The particle diffusion method is a technique to generate a set of uniformly distributed
surface points starting from a set of initial points. The uniformity of the points is achieved
by assuming a repulsive force at all the given points.

Let us assume that an implicit surface defined by F (x) = 0 and a set of surface points
x1, . . . ,xN are given, where N is the total number of the given points. In the particle
diffusion method, the energy of a particle xi derived by the other particles is defined by

Ei =
1

2

N,j 6=i
∑

j=1

E(‖rij‖),

where Ei is the energy at the i-th particle, the notation ‖ · ‖ represent the Euclidean norm
in three-dimensional space, rij = ‖xi − xj‖ and E(t) a compactly supported function. Let
f ij be the repulsive force at the i-th particle as a result of the energy derived from the j-th
particle. The force is defined as

f ij = −
rij

‖rij‖
·
d

dt
E(‖rij‖).

As a result, the force at the i-th particle imposed by its neighboring particles is determined
as the total of the particle forces as

f i = Pi

N,j 6=i
∑

j=1

f ij , (1)

where Pi is the projection matrix that maps a three-dimensional vector onto the tangent
plane at the i-th particle. See [4] for detail.
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The motion of each particle is determined by the force (1). In the simulation, the
locations of the particles are updated with a small time interval and the final locations are
obtained by repeating this process. Note that, at each time step, the updated location of
each particle deviates from the surface with a small distance because the motion of each
particle is limited to the tangent plane. In our implementation, the gap is corrected at each
time step using Newton’s method.

3 Parallel computation of particle diffusion method on GPU

In each iterative step of the repulsive particle simulation, the following three processes are
required: generation of a look-up table, computation of repulsive forces at all the particles
and update of their locations with error correction. Note that all the coordinates of initial
particles need to be sent to GPU memory in advance of the simulation and no other major
data transfer is required during the iteration.

In the first stage, construction of the look-up table is required for efficient detection of
neighboring particles of an arbitrary point in three-dimensional space. The table can be
efficiently constructed using the combination of cell id of a uniform grid and particle id. In
this process, sorting is required and the algorithm called the fast radix sort enables us fast
sorting on GPU in parallel. In the second stage, the computation of the repulsive forces of
all the particles can be performed in parallel. In our implementation, the computation of
the force at one particle is assigned to one core on the GPU. In the final stage, locations
of all the particles are updated in parallel according to the particles forces obtained in the
previous stage. The error correction process using Newton’s method is also performed in
parallel after the update process.

The results of a test problem is summarized in Table 1 and an example of the result of
uniform sampling with 105 points starting from the initial point cloud in Figure 1 is shown
in Figure 2. The initial particles is generated using SSM and the number of iterations for
uniform sampling is 10 for all tests. All the CPU computations are performed on an Intel
Core i5 2500, 3.3 GHz processor (a single core is used throughout the numerical test), and
the GPU computations are performed on an NVIDIA GeForce GTX 460 (336 SPs in total).

4 Conclusion

The uniform sampling based on repulsive particle system has successfully accelerated by
parallel computation on GPU. The key of the effective parallelization is that the neigh-
boring particle detection can be performed efficiently using a look-up table and that the
repulsive force can be computed in parallel using many cores on GPU. The uniform sam-
pling technique can be applied to practical problems such as continuum mechanics and
visualization of surfaces.
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Table 1: Computational time for repulsive particle simulation
num points CPU [sec] GPU [sec] speed-up

100,000 3.9 2.8 1.3

310,000 30.1 4.3 7.0

1,000,000 222.6 14.7 15.1

3,160,000 1901.7 42.5 44.7

Figure 1: Original implicit surfaces model Figure 2: Result of uniform sampling
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Abstract

A variety of regularization techniques were used for iterative reconstruction in com-
puted tomography. Generally, additional penalties on solution are imposed in the spatial
domain only, however when data is undersampled and contaminated with noise the use
of temporal information can be advantageous. In this paper we present a 4D spatial-
temporal regularization based on fourth order partial differential equations (PDE’s).
Using higher order equations can be beneficial to obtain more smooth yet sharp on edges
reconstructions and avoid piecewise-constant solutions related to lower order penalties,
such as total variation (TV). To make reconstruction time feasible we implemented our
method on graphical processor units (GPUs) using a shared memory approach. To show
advantage of the technique presented we test it quantitatively using a computational 4D
phantom. Numerical results show that the spatial-temporal approach presented yields
images with sharper features, lower noise and bias compared to other techniques.

Key words: 4D reconstruction, spatial-temporal penalties, higher order PDE’s, split-
ting methods, GPU acceleration

1 Introduction

The presence of noise in tomographic measurements (e.g. due to short exposure time) and
the limited number of projections acquired (e.g. fast imaging to avoid blurring due to
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sample motion) can lead to a low signal-to-noise ratio (SNR) of reconstructed images which
are difficult to analyse. To increase the SNR and resolution of images it is advisable to
use iterative reconstruction techniques [1] over analytical methods, such as filtered back-
projection (FBP) or Fourier direct inversion [2].

Dealing with underdetermined ill-posed problems in tomography it is necessary to im-
pose additional information on the solution (e.g. smoothness) to ensure well-posedness of
the iterative algorithm [3]. Penalties based on partial differential equations (PDE), such
as total variation (TV) [4] and anisotropic diffusion (AD) [5] are successful in dealing with
noise while leaving edges intact. However, considering lower order equations leads to an
undesirable “cartoon” effect where images recovered as piecewise-constant valued regions.
One can avoid the staircase effect in reconstruction by using higher order PDE’s (e.g. fourth
order).

In situations where series (time frames) of projection data are available it is beneficial to
use temporal information in addition to the spatial constraints [7],[9],[10],[11]. It is crucial
to emphasize that the motion model is usually problem specific, therefore various model
assumptions lead to different 4D reconstruction algorithms (a good overview can be found
in [8]). Adding information using only adjacent time phases is the most “safe” method since
it minimizes the risk of smoothing over quite different phases [9],[10]. This local approach
can be used in experiments where significant motion is involved during scan. However this
might impose its own limitations on reconstructed quality of images (see Discussion).

To impose sparsity in spatial and temporal domains simultaneously the TV penalty is
widely used in 4D iterative reconstruction [10]. Instead of the conventional TV penalty
which is usually linked with an undesirable staircase effect, in this work we use a higher
order diffusivity term [6] for spatial and temporal regularization.

Calculating higher order derivatives generally means longer computational time since
larger voxel stencils are considered. One can overcome this problem by employing parallel
computing. Here we used GPUs to accelerate our algorithm by implementing a CUDA
based code with an efficient shared memory model.

We use a splitting technique [12] to minimize a cost function alternatingly switching
between minimization of several sub-problems [10]. The first step is performed with a
conjugate gradient least squares (CGLS) optimization algorithm [13]; the second step is a
minimization problem of the fourth order diffusivity functional in the spatial domain and
the third step is optimization using the same penalty function in temporal domain.

Numerical experiments were performed using a synthetic 4D phantom to demonstrate
visually and quantitatively the advantage of the proposed spatial-temporal penalty (CGLSST).
We compared CGLSST with CGLS algorithm, CGLS with spatial regularization (CGLSS),
and FBP.
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2 METHOD

2.1 Parallel beam tomography model in 4D

A discrete representation of the attenuation to be reconstructed can be written as a system
of linear equations:

bj =

N∑
i=1

ajixi + δj , (1)

where bj , j = 1, . . . ,M is the measured projection data (sinogram), xi, i = 1, . . . ,N is
the discrete distribution of attenuation coefficient to be reconstructed and δj is the noise
component in bj measurements. Weights aji ∈ [0, 1] are forming the sparse system matrix
A : RN → RM.

Writing equation (1) in a matrix-vector form and adding the temporal dimension:

bk = Axk + δk, k = 1, 2, . . . ,K (2)

where K is a total number of 3D time frames or phases.
In our case the system of equations (2) is underdetermined (M � N) and the system

matrix A is ill-conditioned. Here we aim to reconstruct iteratively the unknown set of
images xk while adding regularizing penalties in spatial and temporal domains.

2.2 Main structure of the 4D reconstruction algorithm

Lets define a vector consisting all image time frames as X = (xT1 ,x
T
2 , . . . ,x

T
K)T and similarly

the measured projection vectors as B = (bT1 , b
T
2 , . . . , b

T
K)T .

The reconstruction problem is the minimization of the following cost function:

X = min
X
‖AX −B‖22 + β1Rs(X) + β2Rt(X), (3)

where the first term is related to the least squares data fidelity, Rs is a penalty in the spatial
domain and Rt in temporal with corresponding regularization parameters β1,2.

Using splitting ideas [12] one can write the optimization problem (3) as a nested algo-
rithm [10]:
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Algorithm 1 A nested method for 4D spatial-temporal reconstruction

Step 1: vnk = xnk − γAT (Axnk − bk) (4)

Step 2: tnk = min
xk

‖xnk − vnk‖22 + β1‖f(|∇2xnk |)‖ (5)

Step 3: xn+1
k = min

xk

‖xnk − tnk‖22 + β2(‖f(|∇2(xnk − xnk−1)|)‖+ ‖f(|∇2(xnk − xnk+1)|)‖)

(6)

Step 4: Repeat steps 1-3 until ‖xnk − xn−1
k ‖22 < εtolerance (7)

Here step 1 is a gradient descent minimization of the least squares data term and for
convergence acceleration it will be replaced by the CGLS algorithm [13]. Steps 2 and 3 are
separate optimization problems which can be solved by gradient descent method. The proof
of convergence for nested algorithms Lagrangian type is given in [12], here we will focus on
the nature of penalties in steps 2-3.

2.3 Fourth order diffusion filter

Variational penalties based on L1 norm minimization, such as TV [4], are used in image
reconstruction with optimization of the following cost function:

x = min
x
‖Ax− b‖22 + β1‖∇x‖1, (8)

where ‖∇x‖1 =
√
|xx|2 + |xy|2 + |xz|2. While promoting sparsity in image space the second

term is successfully deals with noise in undersampled data. However, considering lower
order derivatives in the Euler-Lagrange equation of (8) the resulting solution is prone to be
piecewise constant, which usually is not favourable.

To impose spatial and temporal constraints in (3), we use a fourth order diffusion
penalty [6] which successfully compromises between smooth variations in the flat regions
and sharp edges. The cartoon effect is eliminated resulting in more visually pleasant smooth
images with sharp edges.

Initializing u0 = vnk , um=0 = xnk and applying Euler-Lagrange equation to minimization
problem in the step 2 of Algorithm 1 the gradient descent iterations can be written as:

um+1 = um + τ
(
(um − u0)− β1(∇2(c(‖∇um‖)2umηη + c(‖∇um‖)(umξ1ξ1 + umξ2ξ2))

)
, (9)

where τ is a small time step constant, the diffusivity function c ∈ (0, 1] is defined by
Perona and Malik [5] as: c(‖∇u‖) = σ2/(σ2 + ‖∇u‖2), σ is an edge preserving parameter,
η is a direction of the gradient (normal) and ξ1,2 are tangential directions. The strength of
smoothing in the normal direction is suppressed by the square factor. Equation (9) is solved
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explicitly (small time step τ and large number of iterations m) using Euler approximation
for discretization in 3D space, the details for 2D case can be found in [6].

The temporal information is embedded in the step 3 of Algorithm 1 by using adjacent
time frames. It is the same type of gradient descent algorithm as (9) with a different
initialization.

3 Numerical Experiments

In this section we present numerical results of reconstruction using a synthetic 4D phantom.

3.1 Synthetic 4D phantom reconstruction

We use the following quantitative measures: given the true image u and reconstructed image
u∗ the criterion signal to noise ratio (SNR) in the region of interest (ROI) is:

SNR(u, u∗)ROI = 10 log

(
‖u∗ − u∗‖2
‖u∗ − u‖2

)
, (10)

where u∗ is a mean of the reconstructed ROI of image u∗.
For accuracy measure the normalized root-mean-square error (NRMSE) used:

NRMSE(u, u∗)ROI =
‖u∗ − u‖2
‖u‖2

, (11)

Figure 1: 3D phantom 128 × 128 × 128 which consists of 6 objects, static spheres No. 1-4
and dynamic objects No. 5-6 (Obj. No. 5 is shifting and No.6 is expanding); Left: the 1st
time frame, Centre: the 7th (final) phase, Right: The middle slice z = 64 of the 3rd time
frame.

In Fig. 1, the volumetric synthetic phantom (128×128×128 voxels) is used for numerical
experiments. The phantom comprises four static objects (they remain stationary during
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Figure 2: 2D slices of 3D phantom (time frame 3) (see Fig. 1, right) reconstructed with:
FBP, CGLS (3 iterations), CGLS (4 iterations) with spatial smoothing Rs (30 iterations
of (9) in step 2 of Algorithm 1) and CGLS (4 iterations) with spatial Rs and temporal
smoothing Rt (30 iterations in step 3 of Algorithm 1). The gray map scale of intensities is
given.

the experiment), namely objects No. 1-4 and dynamic objects No.5-6. The objects have
different intensity values. We test our method by introducing seven time frames (K = 7)
during which object No. 5 is shifting and No. 6 is expanding (see 1 left and centre).

After forward projection of xk phantoms using 190 detectors and 160 acquisition angles
in [0, π] angular interval, δk realizations of Poisson noise was applied to the data. Using
noisy sinograms bk, all phantoms were reconstructed using FBP method with Shepp-Logan
filter [2], CGLS [13], CGLS with spatial penalty Rs (9) and CGLS with proposed temporal-
spatial reconstruction technique (CGLSST).

The iteration processes for CGLS, CGLSS and CGLSST were stopped when the mini-
mum of NRMSE and maximum of SNR was reached for each method. The reconstructions
in Fig.2 are shown for the optimal NRMSE-SNR values. The NRMSE-SNR values were
calculated for ROIs belong to static and dynamic objects and presented in Fig. 3. As ex-
pected, for dynamic objects (see 3, right) the NRMSE-SNR values are slightly worse than
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Figure 3: NRMSE-SNR plots for 4 methods, left: ROI’s are static objects No. 1-4, right:
ROI’s are dynamic objects No. 5-6.
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Figure 4: 1D plot across the reconstructed volume (3rd time frame) (see dotted line in the
Fig. 1, right). Edges are more emphasized when using CGLSST method.

for static ones, but nevertheless objects No. 5-6 have more defined edges with combined
spatial-temporal reconstruction (see Fig. 2).

The 1D plot (see Fig. 4) through the reconstructed 3rd time frame (see dotted line in
the Fig. 1, right) shows more emphasized edges for static and dynamic objects. Moroever
the curve for the CGLSST is the closest one to the profile of exact phantom (the NRMSE
equals to 0.335 for CGLSST and 0.419 for CGLSS).

The images reconstructed with FBP (see Fig.2) suffer from the strong noise (low SNR)
and high error (see Fig.3). CGLS reconstruction gives significant enhancement of NRMSE
and SNR, however noise level is still high. Using spatial regularization with CGLS leads
to a better noise reduction, however the edges of objects are slightly blurred. The bias
value is high for CGLSS (the intensity level is overestimated according to the plot in Fig.
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4). Temporal regularization strongly increases NRMSE-SNR characteristics of static and
dynamic objects, edges are better emphasized with CGLSST.

The CUDA implementation on GPU using shared memory gives feasible time of re-
construction using spatio-temporal penalties. Reconstruction of 7 volumes takes less than
one minute with CGLSST. Further optimization of the code is possible and currently in
progress.

4 Discussion

Using adjacent time frames in the step 3 of Algorithm 1 leads to better bias-noise charac-
teristics. However, when motion is known to be insignificant the use of all time frames can
be more beneficial.

To appreciate the benefits of the higher order penalties to the lower ones we aim to test
our method in the future applied to smooth objects (e.g. Gaussian) and also real data.

5 Conclusions

In this paper we present preliminary results of spatial-temporal regularization technique
which based on the fourth order diffusivity model. Applying this method results in better
resolution and reduced noise of reconstructed images. As such this method has potential
for application in the visualisation and quantification of dynamic processes.
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Abstract

In this paper we present our recent results on application of the Riccati transfor-
mation for solving the evolutionary Hamilton-Jacobi-Bellman equation arising from the
stochastic dynamic optimal allocation problem. It turns out that the fully nonlinear
Hamilton-Jacobi-Bellman equation governing evolution of the value function can be
transformed into a quasi-linear parabolic equation. Its diffusion function is obtained
as a value function of certain parametric convex optimization problem. A solution is
then constructed by means of an implicit iterative finite volume numerical approxima-
tion scheme. As an application we present results of computing optimal strategies for
a portfolio investment problem.

Key words: Hamilton–Jacobi–Bellman equation, Riccati transformation, quasi-linear
parabolic equation, finite volume approximation scheme
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1 Introduction

The goal of this paper is to investigate a novel method based on the Riccati transformation
for solving a time dependent Hamilton-Jacobi-Bellman equation arising from a stochas-
tic dynamic optimal allocation problem on a finite time horizon. Our motivation arises
from a dynamic stochastic optimization problem in which the purpose is to maximize the
conditional expected value

max
θ|[0,T )

E
[
U(Xθ

T )
∣∣Xθ

0 = x0

]
, (1)
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of the terminal utility U(Xθ
T ) of a portfolio. Here {Xθ

t } is an Itō’s stochastic process on
the finite time horizon [0, T ], U : R → R is a given terminal utility function and x0 a
given initial state condition of {Xθ

t } at t = 0. The function θ : R × [0, T ) → Rn mapping
(x, t) 7→ θ(x, t) represents an unknown control function governing the underlying stochastic
process {Xθ

t }t≥0. Here θ|[t,T ) for 0 ≤ t < T denotes the restriction of the control function

θ to the time interval [t, T ). We assume that Xθ
t is driven by the stochastic differential

equation

dXθ
t =

{
εe−Xt + r + µ(θ)− σ(θ)2/2

}
dt+ σ(θ)dWt, (2)

where Wt denotes the standard Brownian motion and the functions µ(θ) and σ(θ) are the
drift and volatility functions depending on the control function θ. The parameter ε ≥ 0
represents a constant inflow rate of property to the system whereas r ≥ 0 is the interest
rate. Throughout the paper we shall assume that the control parameter θ ∈ Sn belongs to
the compact simplex

Sn = {θ ∈ Rn | θ ≥ 0,1Tθ = 1} ⊂ Rn, (3)

where 1 = (1, · · · , 1)T ∈ Rn. It should be noted that the process {Xθ
t } is a logarithmic

transformation of a stochastic process {Y θ̃
t }t≥0 driven by the SDE:

dY θ̃
t =

{
ε+ [r + µ(θ̃)]Y θ̃

t )
}
dt+ σ(θ̃)Y θ̃

t dWt, (4)

where θ̃(y, t) = θ(x, t) with x = ln y.

As a typical example leading to the stochastic dynamic optimization problem (1) in
which the underlying stochastic process satisfies SDE (2) one can consider a problem of dy-
namic portfolio optimization in which the assets are labeled as i = 1, · · · , n, and associated
with the price processes {Y i

t }t≥0, each of them following a geometric Brownian motion

dY i
t

Y i
t

= µidt+

n∑
j=1

σ̄ijdW
j
t ,

(cf. Merton [12, 13], Browne [4], Bielecki and Pliska [3]. The value of a portfolio with

weights θ̃ = θ̃(y, t) is denoted by Y θ̃
t . We have µ(θ) = µTθ and σ(θ)2 = θTΣθ with

µ = (µ1, · · · , µn)
T and Σ is a positive definite symmetric covariance matrix, Σ = Σ̄Σ̄T

where Σ̄ = (σ̄ij). It can be shown that {Y θ̃
t }t≥0 satisfies (4) with ε = r = 0. The

assumption θ ∈ Sn corresponds to the situation in which borrowing of assets is not allowed,
i.e. θi ≥ 0 and

∑n
i=1 θi = 1. A function U(x) represents a given terminal utility function

representing investor’s risk preferences.
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2 Hamilton-Jacobi-Bellman Equation and Method of Riccati
transformation

It is known from the theory of stochastic dynamic programming that the so-called value
function

V (x, t) := sup
θ|[t,T )

E
[
U(Xθ

T )|Xθ
t = x

]
(5)

subject to the terminal condition V (x, T ) := U(x) can be used for solving the stochastic
dynamic optimization problem (1) (cf. Bertsekas [2]). If the process Xθ

t is driven by (2),
then the value function V = V (x, t) satisfies the Hamilton-Jacobi-Bellman (HJB) equation

∂tV + max
θ∈Sn

{(
εe−x + r + µ(θ)− 1

2
σ(θ)2

)
∂xV +

1

2
σ(θ)2∂2

xV

}
= 0 , (6)

for all x ∈ R, t ∈ [0, T ) subject to the terminal condition V (x, T ) := U(x) (see e.g. Macová
and Ševčovič [11] or Ishimura and Ševčovič [6]).

Following the methodology of the Riccati transformation studied by Ishimura et al.
[1, 5, 7] and further analyzed by Ishimura and Ševčovič [6], we introduce the following
Riccati like transformation:

φ(x, t) = 1− ∂2
xV (x, t)

∂xV (x, t)
. (7)

According to [8, Theorem 3.2], the transformed function φ is a solution to a Cauchy
problem for the following quasi-linear parabolic equation

∂tφ+ ∂2
xα(φ) + ∂x[(εe

−x + r)φ+ (1− φ)α(φ)] = 0, x ∈ R, t ∈ [0, T ), (8)

φ(x, T ) = 1− U ′′(x)/U ′(x), x ∈ R,

where the diffusion function α(φ) is obtained as the value function of the parametric non-
linear constrained optimization problem.

α(φ) = min
θ∈Sn

{−µ(θ) +
φ

2
σ(θ)2} . (9)

In our application the problem (9) is a convex quadratic programming problem with µ(θ) :=
µTθ and σ(θ)2 := θTΣθ where µ ∈ Rn and Σ is a positive definite n× n matrix.

Unfortunately, the value function α(φ) need not be sufficiently smooth. Indeed, ac-
cording to [8, Theorem 4.1] α ∈ C1,1(R+), i.e. its derivative is Lipschitz continuous only.
Moreover, with regard to [8] there are concrete market data examples of German DAX 30
stock index for which the value function can have a finite number of discontinuities in the
second derivative of α.
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Applying the methodology of Schauder estimates we were able to prove the following
result on existence and smoothness of classical solutions to (8) belonging to the parabolic
Hölder spaces H2+λ,1+λ/2(R× [0, T ]) for some 0 < λ < 1. The detailed proof can be found
in the recent paper [8] by the authors.

Theorem 2.1 Suppose that Σ is positive definite, µ ∈ Rn, ε, r ≥ 0, and the optimal
value function α(φ) is given by (9). Assume that the terminal condition φ(x, T ) = 1 −
U ′′(x)/U ′(x), x ∈ R, is positive and uniformly bounded for x ∈ R and belongs to the Hölder
space H2+λ(R) for some 0 < λ < 1/2. Then there exists a unique classical solution φ(x, t)
to the backward quasi-linear parabolic equation (8) satisfying the terminal condition φ(x, T ).
The function t 7→ ∂tφ(x, t) is λ/2-Hölder continuous for all x ∈ R whereas x 7→ ∂xφ(x, t) is
Lipschitz continuous for all t ∈ [0, T ]. Moreover, α(φ(., .)) ∈ H2+λ,1+λ/2(R× [0, T ]).

3 Application to portfolio optimization

In [8], the authors proposed an iterative numerical approximation scheme for solving the
Cauchy problem for the quasi-linear parabolic equation (8). We followed the method of a
finite volume approximation scheme (cf. LeVeque [10]) combined with a nonlinear equation
iterative solver proposed by Mikula and Kútik in [9]. The scheme has been tested with semi-
explicit traveling wave solutions (see [8, Sections 6,7]) and it turned out that the scheme is
of the second experimental order of convergence. We furthermore applied the scheme to a
practical example in which our goal was to optimize a portfolio consisting of n = 30 assets
forming the German DAX 30 Index. The regular contribution to the portfolio was set to
ε = 1 and r = 0. As far as the utility function is concerned, we considered the constant
absolute risk aversion (CARA) utility function of the form U(x) = − 1

a−1 exp(−(a−1)x) with
a coefficient of the absolute risk aversion a = 9. In terms of the transformed variable x =
ln y the CARA utility function corresponds to the constant relative risk aversion (CRRA)
function Ũ(y) = − 1

a−1y
−a+1. We considered the finite time horizon T = 10.

Using the finite volume approximation scheme we constructed a numerical solution
φ(x, t) to the quasilinear parabolic equation (8). Then, by solving the parametric quadratic
programming problem (9) for φ = φ(x, t) we found optimal response strategies θ as a
function of the logarithmic level of property x and time t. Results of numerical calculation
are shown at Fig. 1.

It turned out shows that there are only a few relevant assets out of the set of thirty
assets entering the DAX 30 Index. The figure reveals the highest portion of Merck stocks
for the early period of saving and for low account values y. It is indeed reasonable to invest
in an asset with the highest expected return, although with the highest volatility, when
the account value is low, in early times of saving. Evident fast decrement of the Merck
company weight can be observed for increasing account value. It should be noted that
Fresenius Medical company has the lowest volatility out of the considered five assets (and
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Figure 1: Nonzero components θ̃i, i ∈ {1, · · · , n} of tptimal response strategy vector θ̃ =
θ̃(y, t) = θ(ln y, t) for the DAX 30 index portfolio optimization, for time instances t = 0,
t = T/3, t = 2T/3 and t = T where T = 10 Source: [8].

third lowest out of all thirty assets) and third best mean return, which is reflected in its
major representation in the portfolio.
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Abstract

Mesh adaptivity algorithms for the Finite Element Method are crucial for solving
problems with no, or only little a-priori information about its solution as well as for
solution of any problem where saving memory and CPU time is important.

These algorithms can significantly influence the results in terms of quality and reso-
lution. But CPU time and memory consumption are not less important when it comes
to solving real problems for engineering or any other purposes.

• On one hand one can get unnecessarily well resolved results (below the level of
detail that the engineer can utilize) and pay for it by waiting unbearable amount
of time.

• On the other hand by decreasing the mesh resolution to obtain the results faster
and cheaper, one can lose substantial details of the solution at hand.

A lot of work has been done in the development of robust adaptive strategies ([?],
[?]) and also in comparing their performance from the mathematical point of view ([?],
[?]), but as soon as an adaptive implementation is able to give the user the solution he
is looking for with a sufficient resolution, a natural question about their speed arises.

In this work, we focus on the speed aspects of some FEM adaptive algorithms, and
not only the CPU time - as it is a very implementation-specific quantity to compare.
We compare the following attributes:

• Steps the adaptive algorithm must make in order to achieve the error threshold.
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• Number of unknowns reached by the adaptive algorithm (the smaller the algebraic
problems, the better).

• Cumulative number of unknowns of all systems solved in the process (even when
the final number of unknowns is small, when this quantity is big, the CPU time
will suffer).

• Capabilities of the algorithm to perform faster by caching of any sort, in this
sense, how many local stiffness matrices and rhs vectors can be reused (both for
matrix/vector assembling and the linear system solution) compared to their total
number.

• Cumulative direct solver factorization size, used memory and flops needed.

• Measurement how well a particular adaptive strategy followed the prescribed error
threshold (by not dropping unnecessarily much below it, etc.).

• Error estimate and exact error (where appropriate) comparison.

• Nonlinear solver performance on adapted meshes.

We compare h-adaptivity, p-adaptivity, and many kinds of hp-adaptivity with various
polynomial orders, with various settings and strategies how to perform refinements. The
test examples are taken from ([?]), and from the Hermes library ([?]) examples collection.
Data are collected from a large number of problem and algorithm settings to obtain a
general view of the algorithms’ performance.

All this work was done within the framework of the open source Finite Element library
Hermes2D, for problems of various size and complexity. The underlying data structures
and algorithms are described to support the conclusions.

Key words: FEM, hp-FEM, adaptivity, algorithm performance, memory consump-
tion, CPU time, finite element method
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Abstract

In present paper, the movement of clusters on networks of some symmetrical struc-
tures (chainmails) is considered. The network consists of rings, and each ring has a
common point (vertex) with each of two or four neighboring rings. There is a single
cluster on each ring. Each cluster moves in the same direction except in the case of
situations when two clusters compete for the common point of the rings. In the latter
case the loser cluster is waiting for the intersection. We consider the problem of finding
sufficient conditions of that a finite time instance exists since that all the clusters move
freely with maximum possible velocity (synergy), and also conditions of that this effect
does not occur for finite time.

Key words: Cluster models, synergy, chainmails, monotonic random walks

1 Introduction

On of the possible approaches in flow modeling is to represent the movement in form of clus-
ters, i.e., fragments of uniform distributed particles, which move with a velocity depending
on the flow density and interacting according special rules.

As we suppose, models of this type have been introduced in [1 – 3], where the movement
of clusters on a straight line and a circle have also been investigated.

In present paper, we consider the movement of clusters on networks of some symmetrical
structures (chainmails). The network consists of rings, and each ring has a common point
(vertex) with each of two neighboring rings.
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In common case, the model is reduced to a system of ordinary differential equation with
non-linear hand, and with dimension (the number of equations and parameters) on graphs,
though, in the case of classic Greenschields, considered in our paper, the right hand is linear.
This fact does not help to investigate the problem, because support is too complicated.

There is a single cluster, which moves in the same direction except in the case of
situations when two clusters compete for the common point of the rings. In the latter case
the loser cluster is waiting for the intersection, and its state varies in accordance with a
designated scenario.

The problem of finding sufficient conditions of that a finite time instance exists since
that all the clusters move freely with maximum possible velocity (synergy), and also con-
ditions of that this effect occurs for no finite time.

2. Model description

Let us describe the model. There are some set of circles (rings) of radius r = 1. These
circles form a network of a given structure (chainmail). There is a cluster on each ring.
The density, the coordinates of boundaries, and the velocity of movement characterize the
cluster. No common point of two rings can be located within two clusters simultaneously.

Suppose the cluster density cannot be more than a fixed value (for example, ρmax = 1.)
At present time each boundary (front and rear) of the cluster moves with velocity v0 = f(ρ0),
which is a function of the cluster density, or does not move. The function f can be any
smooth function [0, 1]→ R, f(0) = 1, f(1) = 0, e.g., f(x) = 1− x, and the cluster state is
defined as a step function of density in accordance with one of the following rules.

(Cld) Cluster model with locally distributed information. In this case there two possible
values of density function. The densities depend on the velocity of the cluster boundaries
velocity. The density function is uniquely determined by the law of mass conservation. All
changes occur at the junction of a congestion and natural flow state.

If the front cluster boundary O coincides with the vertex, through that the neighboring
cluster is going, and the cluster density ρ0 is less than 1, then the front boundary of the
considered cluster continues be located at the vertex, the rear boundary moves with velocity
v0, Fig. 1., and the congestion boundary x varies as

ẋ = − v0ρ0
1− ρ0

since the point O.

Let l0 be the length of a cluster, moving freely; ρ0 is the density; v0 = f(ρ0) is the
velocity; l(t) is the cluster length at time t; x(t) is the length of the cluster component of
density ρ0; , y(t) is the length of the cluster component of density 1. Then the following
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0

1

p0

x

v0

Figure 1: A cluster, decelerating at a cross-roads, Cld

equality is true

x(t)ρ0 + y(t)× 1 = l0ρ0,

and the cluster simultaneous velocity is

v(t) =
x(t)ρ0 × v0 + y(t)× 1× 0

l0ρ0
= v0

x(t)

l0
.

Therefore velocity of the cluster, moving on the ring, is

v(t) =
ρ0v0

l0ρ0−y(t)
ρ0

+ 0

l0ρ0
= v0(1−

y(t)× 1

l0 × ρ0
). (1)

The average velocity vc of a cluster, moving on the chainmail, is the cluster velocity averaged
over all rings.

The average v∗c over time is defined as

v∗c = lim
t→∞

vc(t)

t
,

if this limit exists.

If the cluster intersection has released, then the congestion, i.e. the decelerating cluster
of density 1, begin to come nearer to the operating mode with the initial parameters, and the
congestion is moving awhile in the direction opposite to the direction of cluster movement,
Fig.2.

0

v0

v0

Figure 2: cluster, leaving the wait state, Cld

c©CMMSE ISBN: 978-84-616-2723-3Page 863 of 1797



On Synergy of Totally Connected Flows on Chainmails

(Cud) Cluster model with uniformly distributed information). All particles react in-
stantly to changing of movement conditions at the front boundary of the cluster. In this
case the cluster velocity is constant and can have one of two values v0 and 0.

Common mode of moving through the cross-roads is that first comes — first moves,
and the other is waiting. In the case of simultaneous arriving to the cross-roads there two
scenarios of cluster behavior.

(Ip) - Priority mode. It is given which of to adjacent rings is the priority ring. If
the boundaries of two clusters come simultaneously to some vertex, then the cluster of the
priority ring goes through the vertex.

(Is)- Random mode. For each pair of clusters coming to the vertex, each cluster is
chosen equiprobable.

3. Two rings necklace

Suppose the network consist of two rings, and there is a common point. Let us introduce
the coordinate system for each circle, and origins of these systems is in the common point
(vertex), Fig. 3. Suppose the initial length of the ith cluster is equal to 0 < li < 2π, i = 1, 2.
The densities of both the clusters are the same, and, therefore, these clusters are moving
with the same velocity v0.

Pi

3/2*Pi

0 Pi

3/2*Pi

2*Pi - l1

l2Pi/2

Pi/2

Figure 3: Two rings with a common point – necklace

Theorem 1. Suppose C = Cld ∨ Cud, I = Ip ∨ Is.

1) If l1 + l2 < 2π, then, for any initial conditions, a finite instant after that both the
clusters move with constant velocity v0 (synergy), and, therefore,

v∗c = v0.

c©CMMSE ISBN: 978-84-616-2723-3Page 864 of 1797



Valery V. Kozlov, Alexander P. Buslaev, Alexander G. Tatashev

2) If l1 + l2 > 2π, then the movement is never synchronized, and the average velocity is

v∗c =
2π

l1 + l2
v0. (2)

Proof.

1) Suppose 0 < l1 + l2 < 2π. Some initial conditions exist such that each cluster comes
to the vertex ever when the other cluster is not going through the vertex, i.e., at initial time
the front boundary of the cluster 1 and the rear boundary of the cluster 2 are located at the
vertex. In the case of this initial conditions, if one of the cluster comes to the vertex, and,
at the same instant, the other cluster is going through the vertex, then since the instant at
that the rear boundary of the moving cluster comes through the vertex, both the clusters
ever come to the vertex when it is free. The first statement of Theorem 1 has been proved.

2) Suppose l1 + l2 > 2π.
Suppose the movement becomes synchronized. Then the portion of time during that

the cluster i is going through the vertex is equal to li/2π, i = 1, 2. However, it is impossible
because li/2π + li/2π > 1.

Suppose that one of the clusters comes to the vertex, while the other cluster is going
through the vertex. Suppose, for example, the cluster 2 comes to the vertex. The front
boundary of the cluster 2 begins to move as soon as the rear boundary of the cluster 1 is
going through the vertex. In that instant, the remaining distance that the front boundary
has to go to the vertex is 2π − l2. In the time interval of duration (2π − l1)/v0 the front
boundary of the cluster 1 comes to the vertex, Fig. 5, but the rear vertex of the cluster 1
reaches the vertex in time interval of duration (l1 + l2 − 2π)/v0, Fig. 4, after that the front
boundary of the cluster 1 for the time interval of the same duration the front boundary of
the cluster 1 is not moving. After that time intervals of duration 2π/v0 when the cluster
moves with velocity v0, and time intervals of duration (l1 + l2 − 2π)/v0 when the front
boundary of cluster does not move and is waiting at the vertex. The total duration of
two such subsequent intervals is equal to (l1 + l2)/v0. For this time the front boundary of
the cluster 1 covers the distance equal to the circle length, i.e, the distance equal to 2π.
Therefore, the average velocity of the cluster 1 is calculated with formula (1). Similarly, it
is proved that the velocity of the cluster 2 is calculated also with formula (1).

Theorem 1 has been proved.

4. Clusters on a closed 2-necklace

Suppose there is a network consists of two circles, which have two common points (vertices).
On both the circles, coordinates of one of the vertex are equal to 0, and coordinates

of the other vertex are equal to π, Fig. 4. Suppose the initial cluster i length equals li,
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0 < li < 2π, i = 1, 2. Both the clusters have the same density, and, therefore, the clusters
move with the same velocity v0.

Pi 0 Pi

Figure 4: Closed necklace of two rings

The following Theorem is true that is analogous to Theorem 1.

Theorem 2. Suppose C = Cld ∨ Cud, I = Ip ∨ Is.

1) If l1 + l2 < 2π, then, for any initial conditions there exists a time instant after that
the both clusters ever move with velocity v0, and, therefore, v = v0.

2) If l1 + l2 > 2π, then the movement cannot be synchronized and the average velocity
is calculated with formula (2), if min(l1, l2) < π. . 3) If min(l1, l2) > π, then the movement
stops for a finite time, v ≡ 0.

Proof. The proof of Theorem is similar to the proof of Theorem 2.

5. Flows on a 2N-necklace

Let us consider a generalization of the model that was considered in Section 4. Suppose
there are 2N rings. Each ring has common points (vertices) with two adjacent, Fig. 5.
Each vertex has the same coordinates on the both rings. These coordinates are equal to 0
and π. Neighboring clusters have indices difference of that is equal to 1 (except neighboring
rings 1 and 2N, which have also a common point). By li denote the initial length of the
cluster i, i = 1, . . . , 2N.

Theorem 3. Suppose C = Cud, I = Is.

1) If li = l < π, i = 1, . . . , 2N, then, for any initial conditions there exists a time instant
after that the both clusters move always with velocity v0, and therefore, this is a case of flow
synergy.

2) If the total length of two adjacent rings is more than 2π, then, for any initial con-
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Figure 5: Closed 2N -necklace

ditions, the average velocity v∗c of the clusters is less than v0, i.e., the movement cannot be
synchronized.

3) If min(l1, . . . , l2N ) > π, then the movement stops for a finite time, v ≡ 0.

Suppose that θk(x, t) = 1, if the point x on the ring k at time t is located within the
cluster; θi(x, t) = 0, otherwise;

Ik(t) =

2π∫
0

2N∑
1

θi(x, t)θi+1(x, t) dx, k = 1, . . . , 2N − 1,

I2N (t) =

2π∫
0

2N∑
1

θ2N (x, t)θ1(x, t) dx,

I(t) =
2N∑
k=1

Ik.

The movement is synchronized, if, since some time instant, I(t) = 0..

Lemma 1. Suppose C = Cud. If li < π for any i = 1, . . . 2N, then I(t) is the non-
increasing function of time.

Proof. The item Ik(t), k = 2, . . . , 2N − 1, in the sum I(t) =
2N∑
k=1

Ik can increase at time

instant t, if at this instant at least one of the clusters k and k + 1 is not moving. Suppose,
for example, it is the cluster k. However, the item Ik−1 decreases with the same velocity as
increases the item Ik, and the sum I is non-increasing. The cases k = 1 and k = 2N are
considered similarly.

Lemma 1 has been proved.

Lemma 2 Suppose C = Cud. If li > π for any i = 1, . . . 2N, then the movement stops
for a finite time.
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Proof. There are 2N clusters and 2N vertices. We have li > π, i = 1, . . . 2N. Hence any
cluster covers at least a vertex, and no cluster can cover more than one vertex. The front
boundary of no cluster can enter a vertex, because such a cluster covered two vertices, and
this is impossible.

Lemma 2 has been proved.

6. Flows on chainmail of a torus

Consider a network that has two-dimensional structure 2 × 2. There are four rings: (1, 1),
(1, 2), (2, 1), and (2, 2). Points of each ring are characterized with a coordinate on the circle.
Each ring has common points (vertices) with four rings. Hence the structure of the network
is a torus structure. The location of vertices is shown in Fig. 6. The clusters have the same
mass l, (1, 2, π2 );

The rings (1, 1) and (2, 2) are priority rings.

Theorem 4 Suppose C = Cud, I = Is.

1) If l < π
2 , then, for any initial conditions, synergy occurs after some finite time

interval.

2) If π
2 < l < π, then, for any density, there exist both initial conditions for that the

movement is synchronized and initial conditions for that the movement cannot be synchro-
nized.

If l > π, then the flow stops for a finite time.

The movement is synchronized, for example, if at initial time, on the rings (1, 1) and
(2, 2) the front boundaries are located at the vertices with coordinate 0, and on the rings
(1, 2) and (2, 1) the front boundaries are located at the vertices with coordinate π.

The movement is synchronized, if

x11 = 0, x21 =
π

2
, x22 = π, x12 =

3π

2
,

where xij is the coordinate of the front boundary of cluster on the ring (i, j), i, j = 1, 2.

In Fig. 6–10, the networks states are shown at some times, for l = 11
18π, ρ = 1

2 , and the
velocity of free movement v0 = 2π

360 .
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Figure 6: Network state at t = 0
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Figure 7: Network state at t = 20

In this case the average velocity of the cluster movement on each ring is equal to

v =
2π

2l + π
v0.
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Figure 8: Network state at t = 40
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Figure 9: Network state at t = 110

7. Flows without synergy

Consider a chain of four rings connected at points with coordinates 0 and π, Fig. 9.

On each ring a cluster is moving of length π. If two clusters come to the vertex simul-
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Figure 10: Network state at t = 200

0Pi Pi 0 Pi

Figure 11: Location of clusters at the initial time instant

taneously, then the cluster located to the right has the priority. This corresponds to case in
that, for each vertex, the priority cluster is assigned. The velocity of free cluster movement
equals v0.

Suppose, at the initial time instant, the front boundaries of clusters 1 and 2 are located
at vertices with coordinates 0, and the front boundaries of clusters 3 and 4 are located at
vertices with coordinates π.

Then for time interval of the length π/v0, the clusters 2, 3 and 4 go through a distance
π, and the cluster 1 is not moving, Fig. 10.

In time interval (π/v0, 2π/v0), all clusters are moving save the cluster 3.

At time t = 2π/v0 the front boundaries of clusters 1 and 4 are located at vertices
with coordinates π, and the front boundaries of clusters 2 and 3 are located at vertices
with coordinates 0, Fig. 11. The situation is repeated that is similar to initial on. A
similar situation will be repeated in time intervals of duration 2π/v0. The movement is not
synchronized.
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0Pi Pi 0 Pi

Figure 12: Location of clusters for t = π/v0

0Pi Pi 0 Pi

Figure 13: Location of clusters for t = 2π/v0

8. Simplified stochastic model of flows on a necklace

Suppose there are 2N rings. Each ring has common points (vertices) with two adjacent
rings. Neighboring clusters have indices difference of that is equal to 1. The adjacent rings
1 and 2N have also a common point. The vertices on the same ring are located at opposite
edges of diameter, Fig. 12. The rings are numerated to the right.

0

0 0 0 1 0111

1

Figure 14: Clusters on a necklace

On each ring clusters move. The length of each cluster is equal to a half circle. At each
discrete time instant (tact) each cluster occupies the upper part of its circle or the lower
one. We say that the ring with an odd index is at the state 1, if the cluster occupies the
upper part of the ring, and is at the state 2, if the cluster occupies the lower part of the
ring. The ring with an even index is at the state 1, if the cluster occupies the lower part
of the ring, and is at the state 2, if the cluster occupies the upper part of the ring. The
front boundary of cluster with an odd number is located to right, if the cluster occupies
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the upper part of the ring, and to left, if the cluster occupies the lower part of the ring.
The front boundary of cluster with an even number is located to left, if the cluster occupies
the upper part of the ring, and to right, if the cluster occupies the lower part of the ring.
Clusters moves clockwise on the rings with odd numbers and counter-clockwise on the rings
with even numbers. At each tact, each cluster changes occupying part save the case when
the front boundary of the given cluster is located at the same vertex as the front boundary
of the neighboring cluster. In the latter case each of two clusters comes to the other part
of the circle with probability 1/2 and with the same probability the cluster does not move
at given tact.

Theorem 5. For the time interval with a time interval with a finite expectation all rings
come or to the state 1, or to the state 2, after that no conflicts occur and the clusters move
freely and are in turns at states 1 and 2.

Proof. Let us describe the clusters movement process by a Markov chain [5], states
of which correspond to configurations of clusters on the network of wings. There are 22N

the chain states. By (i1, . . . , i2N ) denote the chain state for that the ring j is at state ij ,
ij = 1, 2; j = 1, . . . , N. In accordance with rules of movement, each cluster always changes
its location at every step save cases when this ring is at the state 1 and the ring to right is
at the state 2, or when the given ring is at the state 2 and the ring to left is at the state 2,
Fig. 13.

1    2

1

11

1 1

1

1

2 2 22

2

2

2

Figure 15: Rules of clusters movement

This means that, if, at some time, the chain comes to the state E1 = (1, 1, . . . , 1) or
to the state E2 = (2, 2, . . . , 2), then, after this, the chain will be by turns at each of these
states. If each cluster of the chain is in turns at odd steps at the state E1, and at even
steps at the state E2, then we say that the chain is at the mode 1. If each cluster of the
chain is in turns at even steps at the state E1, and at odd steps at the state E2, then we
say that the chain is at the mode 2. Let us prove that the chain come from any state come
to the mode 1 no more for N steps. We say that a ring, at an odd time instant is at the
state corresponding to the mode 1 (corresponds to the mode 1), if this ring, at this instant,
is at the state 1. We say that a ring, at an even time instant is at the state corresponding
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to the mode 1, if this ring, at this instant, is at the state 2. Suppose the chain is at the
state k rings are at the states do not correspond to the mode 1. If the chain is at the state
neither E1 nor E2, then there is at least a pair of adjacent rings such that the left ring is at
state 1 and the right ring is at state 2. One ring of such the pair correspond to the mode
1, and the other ring does not correspond to the mode 1. With probability 1/2, the ring
corresponding to the mode 1, moves at the present step, and the other ring does not move
after that both the clusters will correspond to the mode 1. With a probability, which is not
less than 1/22k, at each of next k steps corresponding to the mode 1 will increase unless all
rings correspond to the mode 1. Since k ≤ 2N, then, with probability no less 1/23N , the
chain, from any state, for no more than N steps, comes to the mode 1. Similarly, it can be
proved that, with probability no less 1/23N , the chain, from any state, for no more than N
steps, comes to the mode 2. Hence, with probability no less 1/23N−1, the chain, from any
state, for no more than N steps, comes to the mode 1 or to the mode 2. Thus the chain,
from any state, comes to mode 1 or to the mode 2 for the time interval expectation of that
is no more thanNd, where d is the expectation of a random value distributed geometrically
with the parameter p = 1/23N−1. This expectation equals 23N−1.

Theorem 5 Has been proved.
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Abstract

The use of Newton method is a well-established option for solving nonlinear partial
differential equations. The theory of its convergence is, however, rather complicated
and the results are restricted to simple academic examples. The matter is even more
complicated due to necessity of use of damping, attempts to save computation time by
using the same Jacobian for several successive steps, or other variants of the algorithm.
In the case of solution of complicated problems arising in the engineering practice, one
usually have to fine-tune the method for each problem individually in order to ensure
convergence and avoid extensively long calculation. The goal of this contribution is to
develop wide range of variants of the Newton method, test them on several real-world
engineering problems and compare their performance. Resulting algorithms, which were
implemented in the frame of our general-purpose finite element software, allow us to
automatically select appropriate settings for the given problem.

Key words: Nonlinear partial differential equations, Newton solver, higher-order
finite element method, numerical software

1 Introduction

In this work, we would like to address the issue of effective implementation of the Newton
method, used for solution of partial differential equations. It is a part of ongoing effort
to create universal software for solution of nonlinear coupled partial differential equations,
which would use the most advanced approaches towards the finite element method, but,
in the same time, would be easily usable for engineers performing complicated real-world
calculations.
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2 Hermes and Agros2D software

Hermes (see, e.g., [3], [5], [6]) is a C++ library for rapid development of adaptive hp-FEM
and hp-DG solvers, with emphasis on nonlinear, time-dependent, multi-physics problems.
It implements several unique features, that can speed-up the calculation significantly. It has
been shown, that hp-adaptivity can lead to exponential convergence. The use of arbitrary-
level hanging nodes significantly reduces the need of unnecessary refinements during the
adaptivity process. Multi-mesh approach allows us to use separate mesh for each field,
respecting its specific requirements, but creating one discrete problem. Other key features,
such as curvilinear elements or dynamical meshes, are described on the web page of the
Hermes project [7].

Agros2D (see, e.g., [4], [8]) is a multi-platform engineering software for solution of
nonlinear coupled problems from large variety of engineering practice. Its goal is to allow
the use of advanced algorithms implemented in the Hermes library in a convenient way.
It brings advanced GUI, with which it is simple to develop complicated models including
interaction of several physical fields. As it uses Hermes library as its computational core, it
brings all its unique features, such as automatic hp-adaptivity with arbitrary-level hanging
nodes, multi-mesh assembling, curvilinear elements, etc. Agros2D comprises convenient
pre-processor for geometry definition, meshing tools, FEM calculation (using the Hermes
library) and advanced post-processor, defining large variety of point and integral physical
quantities for each individual physical field.

3 Selected nonlinear problems

Our work is focused at solution of nonlinear coupled problems, comprising interaction of
more physical fields. In this work, we focus on the study of three nonlinear problems arising
in three different areas, which may be then used to formulate coupled problems.

3.1 Temperature distribution

Problems of temperature distribution T are described by equation

−∇ · (λ∇T ) + ρcp

(∂T
∂t

+ v · ∇T
)

= Q,

where thermal conductivity λ, specific heat cp and density ρ may be considered nonlinear.
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3.2 Magnetic field

The distribution of magnetic field will be calculated in terms of vector magnetic potential
A, given by equation

∇×
( 1

µ
(∇×A−Br)

)
− σv ×∇×A = Jext,

where the permeability µ exhibits a very strong nonlinear dependence on magnetic induction
B = ∇×A and causes convergence problems.

3.3 Incompressible flow

Equations governing incompressible flow are as follows:

ρv · ∇v = −∇p+ µ4v + f

∇ · v = 0

Those equations are nonlinear by its nature (the term on the left-hand side of the first
equation) and also its coefficients have to be considered nonlinear in some cases.

In the case of coupled problems, the situation is even more complicated due to mutual
dependence of nonlinear parameters on individual fields. Such problems can be solved in
monolithic formulation using the Hermes multi-mesh capability.

4 Newton method

Various approaches towards the Newton method can be found in a large number of sources
(see, e.g., [1], [2]). The main focus of this paper is to implement different variants (including
the use of automatic or fixed damping factor, different strategies of reusing of the Jacobian
for several successive steps, different stopping criteria, etc.), to compare their performance
in terms of convergence and CPU time and to identify optimal parameters for each type of
equation. The basic algorithm can be written as follows:

initial step

while stopping criterion not reached

recalculate jacobian

solve the linear problem

while condition on residual not satisfied

update damping factor

calculate residual

end

while condition on jacobian reuse satisfied
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solve the linear problem

calculate residual

end

In the presentation, extensive comparisons of different choices of stopping criterion, condi-
tions influencing the calculation of damping factor and strategies for Jacobian reuse and
other parameters will be provided. The comparisons will be done for all mentioned equations
with the aim to allow more effective calculations.
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Pavol Kútik1 and Karol Mikula1

1 Department of Mathematics and Descriptive Geometry, Slovak University of Technology

emails: pavol.kutik@gmail.com, karol.mikula@gmail.com

Abstract

This article is aimed to provide a stable numerical scheme, based on the finite
volume method discretization, for solving the partial differential equation arising in
the Heston model. In order to build a scheme which does not violate the discrete
minimum-maximum principle a diamond–cell approximation of the gradient is used
and a splitting into an inflow/implicit and an outflow/explicit part is applied. By the
use of appropriate weights, a sufficiently large set of the outflow fluxes are transfered
to the corresponding inflow fluxes of the neighbouring finite volumes. We illustrate the
stability and accuracy of the scheme on two numerical experiments, the former one with
a European binary option and the latter one with a European call option.

Key words: Finite volume method, Heston model, Stabilized scheme

1 Introduction

Since its introduction in 1973 the Black-Scholes formula (cf. [1]) has remained the most
widely used application for pricing of European call options. However, as Hull and White (cf.
[8]), Heston (cf. [9]) and many others point out, some of the underlying assumptions which
determine the stock price dynamics, have to be modified in order to replicate the option
prices more accurately. Particularly, Heston relaxes the constant variance assumption and
allows it to follows the so-called mean reverting square root process originally proposed by
Cox, Ingersoll and Ross in [3]. Hence the couple of stochastic differential equations which
govern the price evolution looks as

dSt = µStdt+
√

vtStdWt, (1)

dvt = κ(θ − vt)dt+ σ
√

vtdZt (2)
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where {St}t≥0 and {vt}t≥0 are stochastic processes for the underlying stock and the vari-
ance of the underlying, respectively. Processes {Wt}t≥0 and {Zt}t≥0 are Wiener stochastic
processes mutually correlated by E[dWtdZt] = ρdt. The list of other parameters reads as
follows:

(i) ρ is the correlation parameter,

(ii) κ is the reversion speed,

(iii) σ is the volatility of variance,

(iv) θ denotes the long-term variance,

(v) µ represents the drift of the process for the stock.

Modeling the asset price by means of (1)-(2) allows to capture important skewness effect
of the spot returns that arise from the mutual correlation |ρ| > 0 between the two Wiener
processes. Now, if we follow the hedging procedure of a synthetic portfolio, omit the sub-
scripts t indicating time dependence in St and vt and assume zero market price of risk we
can write the governing partial differential equation as follows:

∂V

∂t
+ rS

∂V

∂S
+

1

2
vS2∂

2V

∂S2
+ ρσvS

∂2V

∂S∂v

+
1

2
σ2v

∂2V

∂v2
+ κ(θ − v)

∂V

∂v
− rV = 0 (3)

where r > 0 is the risk-free interest rate. What is more, the Heston model provides a
closed-form solution (cf. [9]) for a European call option which we later take as a benchmark
when testing the accuracy of our scheme.

2 Numerical Schemes

In order to obtain an efficient numerical scheme we apply the finite volume discretization
method to the linear advection-diffusion-reaction equation of the form (3). Before we do
so, it is convenient to transform the governing equation into a form with the diffusion
and advection term in divergent form. To this end we first use standard substitutions
x = ln

(
S
E

)
, y = v , τ = T − t and u(x, y, τ) = V (S, v , t) and rewrite equation (3) in a

compact form as follows
∂u

∂t
+ ~A · ∇u = ∇ · (B∇u)− ru, (4)

where

B =
1

2
y

(
1 ρσ
ρσ σ2

)
(5)
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and
~A = −

(
r − 1

2y −
1
2ρσ

κ(θ − y)− 1
2σ

2

)
. (6)

If we shrink the computational domain, for implementation purposes, to Ω ≈ (Xl, Xr) ×
(0, Y ) and denote the uniform lengths of each rectangular finite volume in the x- and y-
direction by

hx =
Xr −Xl

Nx
,

hy =
Y

Ny

we can define the admissible mesh Th in the sense of [5] of the domain Ω ⊂ R2 by

pij = (xi− 1
2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
), for i = 1, . . . , Nx and j = 1, . . . , Ny. (7)

The boundaries of each finite volume (cell) pij are defined by the set of points

x 1
2

= Xl, xi+ 1
2

= xi− 1
2

+ hx, for i = 1, . . . , Nx,

y 1
2

= 0, yj+ 1
2

= yj− 1
2

+ hy, for j = 1, . . . , Ny.

Concerning the time discretization, we use uniform discrete time step k = T
Nts

in order to
discretize the time interval I = (0, T ).

Before integrating equation (4) let us rewrite also the advection term into conservative
and nonconservative part as follows:

~A · ∇u = ∇ · ( ~Au)− (∇ · ~A)u. (8)

Inserting this identity into (4) and integrating it over a finite volume p we obtain its following
integral form:∫

p

∂u

∂τ
dx+

∫
p
[∇ · ( ~Au)− (∇ · ~A)u]dx =

∫
p
∇ · (B∇u)dx−

∫
p
rudx. (9)

On the terms ∇ · ( ~Au) and ∇ · (B∇u) we can apply Green’s theorem to obtain∫
p

∂u

∂τ
dx+

∑
q∈N(p)

∫
σpq

~Au · npq dγ −
∫
p
(∇ · ~A)udx =

∑
q∈N(p)

∫
σpq

B∇u · npq dγ −
∫
p
rudx (10)

where σpq represents a mutual edge between finite volumes p and q. Furthermore, the
symbol npq denotes the unit outer normal vector relative to the finite volume p and N(p)
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Figure 1: A detail of the finite volume p and corresponding adjacent points with represen-
tative solution values ūpq.

is the set of all cells which have a common edge with the cell p, i.e. N(p) = {e, w, n, s} (see
Figure 1).

Let us denote by vpq the approximation of the averaged exact advection velocity on the
face σpq in the inward normal direction to the finite volume p, i.e.

vpq ≈ −
1

m(σpq)

∫
σpq

~A · npq dγ (11)

where m(σpq) denotes the measure of a mutual face between cells p and q. Hence for each

edge we can write vpq = − ~Apq · npq where ~Apq denotes the mean value of the advection
vector along σpq. Particularly, for each edge σpq, the velocity approximation vpq can be
formulated as

vpn = −a2
pn, vpw = a1

pw, vpe = −a1
pe, vps = a2

ps (12)

where a1
pq, a

2
pq are the mean scalar elements of the advection velocity vector ~A =

(
a1

a2

)
evaluated along the edge σpq.

In order to approximate the exact gradient ∇u along the edge σpq let us introduce a
discrete diamond-cell gradient operator ∇DC = (∇DCx ,∇DCy ) which we define for each edge
σpq, q ∈ N(p) as follows (cf. [4]):

∇DCpe (u) =

(
ūe−ūp
hx

ūpne−ūpse
hy

)
, ∇DCpw (u) =

(
ūp−ūw
hx

ūpnw−ūpsw
hy

)
, (13)

∇DCpn (u) =

(
ūpne−ūpnw

hx
ūn−ūp
hy

)
, ∇DCps (u) =

(
ūpse−ūpsw

hx
ūp−ūs
hy

)
(14)

where ūpq, q ∈ N(p) denotes a representative value on the edge σpq. Furthermore, by
defining N ′(p)\N(p) as a set which contains all cells q having a common point with the
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finite volume p, i.e. N ′(p)\N(p) = {ne, nw, se, sw} (see Figure 1), we can define ūpq, q ∈
N ′(p)\N(p) as a representative value in the vertex xpq, q ∈ N ′(p)\N(p). Analogically,
ūp denotes a representative value in the finite volume p. In what follows we assume the
representative points to fulfill the most natural choice for reconstructions

ūmp = ump , ūmpq =
ump + umq

2
, if q ∈ N(p), (15)

ūmpne =
ump + ume + umne + umn

4
, ūmpnw =

ump + umn + umnw + umw
4

, (16)

ūmpsw =
ump + umw + umsw + ums

4
, ūmpse =

ump + ums + umse + ume
4

(17)

where m denotes the old time layer m = n − 1 or the new time layer m = n. Using the
following approximations for the advection terms∫

σpq

~Au · npq dγ ≈ ūpq
∫
σpq

~A · npq dγ, (18)∫
p
(∇ · ~A)udx ≈ ūp

∫
σpq

~A · npq dγ (19)

and inserting the approximate advection velocity (12) and the diamond-cell approximation
of the gradient (13)-(14) into the equation (10) we obtain∫

p

∂u

∂τ
dx+

∑
q∈N(p)

vpq (ūp − ūpq)m(σpq) =

∑
q∈N(p)

(
b11
pq∇DCx,pq(u) + b12

pq∇DCy,pq(u)

b21
pq∇DCx,pq(u) + b22

pq∇DCy,pq(u)

)
· npqm(σpq)− ūp

∫
p
rdx. (20)

To simplify the notation of the numerical schemes to come we introduce advection-associated
coefficients apq, q ∈ N(p) and diffusion-associated coefficients bpq, q ∈ N ′(p) which we define
as follows:

ape = −1

2
hya

1
pe, apw =

1

2
hya

1
pw, apn = −1

2
hxa

2
pn, aps =

1

2
hxa

2
ps, (21)

bpe =
hy
hx
b11
pe +

b21
pn

4
−
b21
ps

4
, bpw =

hy
hx
b11
pw −

b21
pn

4
+
b21
ps

4
, (22)

bpn =
hx
hy
b22
pn +

b12
pe

4
−
b12
pw

4
, bps =

hx
hy
b22
ps −

b12
pe

4
+
b12
pw

4
, (23)

bpne =
b12
pe

4
+
b21
pn

4
, bpsw =

b12
pw

4
+
b21
ps

4
, (24)

bpnw = −
b12
pw

4
−
b21
pn

4
, bpse = −

b12
pe

4
−
b21
ps

4
. (25)
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Now, if we insert the reconstructions(15)-(17) into (20) with m = n and replacing the time

derivative ∂u
∂τ by a backward difference

unp−u
n−1
p

k in a representative point xp we obtain the
basic diamond-cell-based fully-implicit scheme:

(1 + k r)unp +
k

m(p)

∑
q∈N ′(p)

cpq
(
unp − unq

)
= un−1

p (26)

where
cpq = apq + bpq, q ∈ N(p),
cpq = bpq, q ∈ N ′(p)\N(p).

and m(p) = hxhy is the measure of any finite volume p. Following the ideas in [2, 4] we
are able to prove that for hx > 0, hy > 0 sufficiently small an unique solution of the scheme
(26) does exist and it is conditionally stable in L2(I,Ω) norm. Similarly, it may be also
possible to prove the convergence of the discrete numerical solution to the weak solution
of the Heston model (3) accompanied by some appropriate boundary conditions. However,
since for some hx > 0, hy > 0 the solution delivered by the numerical scheme (26) may not
always exist and if it does it is only conditionally stable our further goal is to enhance these
properties.

In order to obtain a scheme which is always solvable our goal is to construct a non-
singular system matrix. We can take advantage of the Levy-Desplanques theorem (cf. [7])
which states that a strictly diagonally dominant matrix is regular. Such matrix can be built
by splitting the coefficients cpq into two groups as follows

cinpq = max(cpq, 0) and coutpq = min(cpq, 0) (27)

where cinpq denote the so-called inflow coefficients and coutpq the so-called outflow coefficients,
cf. [6]. Now, taking all numerical fluxes cpq(ump −umq ) associated with the inflow coefficients,
i.e. cpq > 0, implicitly (from the time layer m = n) and all numerical fluxes cpq(ump − umq )
associated with the outflow coefficients, i.e. cpq < 0, explicitly (from the time layer m =
n− 1) leads to the split scheme:

(1 + k r)unp +
k

m(p)

∑
q∈N ′(p)

cinpq(u
n
p − unq ) =

un−1
p − k

m(p)

∑
q∈N ′(p)

coutpq (un−1
p − un−1

q ). (28)

The system matrix of scheme (28) is a M-matrix which not only is diagonally dominant but
also keeps the numerical solution on the new time layer in the range of the right-hand side
vector. However, if the magnitude of the outflow coefficients coutpq (actually corresponding
to backward diffusion) in the right-hand side vector is too significant, spurious oscillations
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in the solution may occur. Hence the final goal is to propose a scheme which would ensure
that the discrete minimum-maximum principle is not violated. The stabilized scheme can
be formulated in the following form:

(1 + k r)unp +
k

m(p)

∑
q∈N ′(p)

C inpq (unp − unq ) =

un−1
p − k

m(p)

∑
q∈N ′(p)

θoutpq coutpq (un−1
p − un−1

q ) (29)

where outflow weighting factors θoutpq ∈ [0, 1] and corrected inflows C inpq were used. We define
the coefficients θoutpq as

θoutpq = min

(
1,
m(p)(umax,n−1

p − un−1
p )

k noutp coutpq (un−1
q − un−1

p )

)
, if coutpq (un−1

q − un−1
p ) > 0, (30)

θoutpq = min

(
1,
m(p)(umin,n−1

p − un−1
p )

k noutp coutpq (un−1
q − un−1

p )

)
, if coutpq (un−1

q − un−1
p ) < 0, (31)

θoutpq = 1, if coutpq (un−1
q − un−1

p ) = 0 (32)

where the symbol noutp is defined as the number of nonzero outflows from the finite volume

p to all its neighbours. Symbols umax,n−1
p and umin,n−1

p denote the upper and lower bound
for an arbitrary right-hand side element p ∈ Th. By using definitions (30)-(32) we have
reduced the outflow coefficients in the scheme (29) by the factor (1− θoutpq )coutpq which must
be added to the inflows of the neighbors. To this end we define

C inqp = cinqp − (1− θoutpq )coutpq . (33)

which determines the new inflow coefficients in the stabilized scheme (29).

3 Numerical Experiments

We have performed two types of numerical experiments. The first one is related to the
overall accuracy respectively convergence and the second one to the discrete minimum-
maximum principle. In the former case we have exploited the fact that we are provided
with a quasi closed-form solution for a European call option in the Heston model. We shall
thus use it as a benchmark for the numerical test. Table 1 lists all parameters and variable
ranges used in this section. Furthermore, a quadratic coupling between the time step k and
the space mesh sizes hx, hy have been chosen, i.e. k = hxhy. Errors eNts

Nx,Ny
are estimated

in the L2(I,Ω) numerical norm and the experimental order of convergence is defined as

EOCk∼hxhy = log2

||eNts
Nx,Ny

||

||e4Nts
2Nx,2Ny

||
.
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Table 1: Variable ranges and parameter values used for the computation of the numerical
solution for the Heston model.

Parameter Value Parameter Value

x [−7, 3] S [0.1, 2008]
y [0, 1] v [0, 1]
τ [0, 0.05] t [0, 0.05]

E1 100 E2 120
ρ −0.5 κ 5
θ 0.07 σ 0.5
r 0.1 T 0.05

We have applied the basic scheme (26) and the stabilized scheme (29) on the evolution
of the European call option initial profile described by V (S, v , T ) = max(S − E, 0) with
E = E1. Since the call option is a continuously differentiable function ∀τ > 0 and does
not contain large gradients we can expect that not much stabilization is needed during the
computation. This fact is clearly visible in Table 2 where the basic scheme only slightly
outperforms its stabilized version regarding both accuracy and convergence. Nevertheless,
for this solution profile the stabilized scheme seems to exhibit second order convergence in
space as expected.

Table 2: Errors in L2(I,Ω) norm and EOCs of the schemes (26) and (29) compared with
the exact solution of a European call option.

Nx Ny Nts Basic EOC S2IIOE EOC

20 10 1 1.341 10−3 - 1.390 10−3 -

40 20 4 5.491 10−4 1.29 5.387 10−4 1.37

80 40 16 1.952 10−4 1.49 2.105 10−4 1.36

160 80 64 6.118 10−5 1.67 6.943 10−5 1.60

320 160 256 1.729 10−5 1.82 1.993 10−5 1.80

The second experiment is related to the discrete minimum-maximum principle. We
have investigated the evolution of an European-style binary option under the Heston model
whose payoff is defined as follows (cf. Figure 2):

V (S, v , T ) = 1, if S ∈ [E1, E2]

V (S, v , T ) = 0, otherwise. (34)

For the analysis of the violation of the global minimum-maximum principle we can exploit
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Figure 2: Payoff function V (S, v , T ) for a binary option with strike prices E1 = 100 and
E2 = 120: 3D view (left) and contour plot (right).

the non-arbitrage principle which implies that the price of such a product can never reach
negative values and it can never exceed its payoff maximum V (S, v , t) ≤ 1, ∀t ∈ [0, T ).
In this example the interest rate has been put r = 0.3. The space discretization has been
chosen as follows: hx = 0.05, hy = 0.01, i.e. Nx = 200, Ny = 100. The coupling between
time and space stepping has been set to k = hxhy, i.e. Nts = 100.

Figure 3: Numerical solution computed by the basic diamond-cell scheme (26) for a binary
option with r = 0.3 at T = 0.05: 3D view (left) and contour plot (right).

In Figures 3 - 4 numerical solution profiles in time t = 0 are presented. Clearly, the
unstabilized basic scheme exhibit oscillations – on both sides of the main mass (S < 100
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Figure 4: Numerical solution computed by the stabilized scheme (29) for a binary option
with r = 0.3 at T = 0.05: 3D view (left) and contour plot (right).

and S > 120) and on both ends of the original range [0, 1]. It is the consequence of the
backward diffusion inherent in the basic scheme applied on a solution profile containing
large gradients. The global extremes are exceeded by an error of order 10−2. On the other
hand, the stabilized scheme gives results which behave according to the discrete minimum-
maximum principle.

4 Conclusion

We have introduced three numerical schemes based on the finite volume discretization for
solving an advection-diffusion-reaction partial differential equation arising in the Heston
model. In order to obtain the basic scheme we have replaced the diffusion fluxes by means
of the diamond-cell approximation and all reconstructed values have been taken implicitly.
Secondly, we have split the flux coefficients into inflow and outflow group. Taking all inflows
implicitly and all outflows explicitly has led to a system M-matrix and favourable solvability
properties of the split scheme. Thanks to an adjustment of weights of certain coefficients in
the split scheme we have been able to propose a stabilized scheme which does not violate
the discrete minimum-maximum principle and is second order accurate in space. Finally,
we have shown on numerical experiments that all these theoretical properties hold.
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Abstract

This paper provides a mathematical model for a predator-prey system, with recruit-
ment and capture on both species, and analyzes its qualitative dynamics. The model is
formulated considering a population growth based on a general form of recruitment and
predator functional response, as well as the capture on both preys and predators at a
rate proportional to their populations. In this sense, it is proved that the dynamics and
bifurcations are determined by a two-dimensional threshold parameter R = (m1,m2)
with m1,m2 > 0. Finally, some numerical simulations, varying the parameters values
m1 and m2, show different scenarios about the evolution of the system and allow to
validate the model.

1 Introduction

Dynamics of predator-prey systems continue being of interest to both applied mathemati-
cians and ecologists due to its universal existence and importance [2]. Predator-prey in-
teraction is one of the basic interspecies relations for ecological and social models [24].
Mathematical models to describe this type of interactions have their origin in Lotka [17]
and Volterra [23], who, in the 1920s, formulated a similar model, but independently, which
is known as Lotka-Volterra model in honor to them [12]. Since then, a logistic type growth
has been usually assumed for the prey species in the models, while a linear mortality rate
for the predator species [24].

Some time later, a predator functional response began to be incorporated, i.e., it was
assumed that the rate of predation depends on the density of the population of victims [12].
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Some models with these features, known as Rosenzweig-MacArthur models [20], are of the
form {

ẋ = xf(x)− xyφ(x)
ẏ = cxyφ(x)− ey, (1)

where: xf(x) represents the growth rate of the prey species in the absence of predators; the
term xyφ(x) is called predator functional response; xφ(x) is the number of preys consumed
per predator in a unit time; the constant c is the conversion efficiency of preys into predators
(usually 0 < c < 1 [24]); the term cxyφ(x) is named the predator numerical response; and
the constant e is the predator mortality rate [4].

So far, some conventional forms for the predator functional response that have been
used (see [4, 5, 11, 14, 15, 18, 22, 24]) are:

xφ(x) = αx
M , 0 ≤ x ≤M , xφ(x) = α, x > M , (α,M > 0) [Holling type I]

xφ(x) = αx
x+A , (α,A > 0) [Holling type II]

xφ(x) = αx2

x2+A2 , (α,A > 0) [Holling type III]

xφ(x) = a(1− e−cx) [Ivlev type]

xφ(x) = axq, (q < 1) [Rosenzweig type]

The harvesting and capture in mathematical models of population dynamics have been
treated by authors as Brauer and Castillo-Chavéz [4], Britton [5], Murray [18] or Isaza
and Campos [12]. In particular, for predator-prey systems, authors have only studied the
capture on predators. However, Brauer and Castillo-Chavéz suggest studying the capture
also on preys, since this could be appropriate for an examination of the extent to which one
can control a population by tampering with its food supply [4].

When studying populations that are fishery resources, researchers are generally inter-
ested only in the exploitable population, since it is the part of the total population that is
visible to fishing and fisheries research [7]. For this reason, it is necessary to know about the
different changes of state of the fish concerning to its biological life cycle and its exploita-
tion. The life cycle of the fishes develops to the extent that each individual goes through
stages of egg, larva, juvenile and adult. In the early stages of life, the fish cannot be cap-
tured by those engaged in fishing activities, either because they are too small or because
they are outside the fishing areas [7]. But, as the fish grows, the conditions are modified
until a change (in the size, location and/or habits of the new fish) which provokes that the
fish can be detected and caught by the existing fishing methods for the first time [7]. The
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number of individuals that arrive in the fishing area for this first time is called recruitment
to the exploitable phase [6]. These individuals grow, spawn (once or several times) and
die. The variations in their abundances are mainly due to predation and environmental
factors (winds, currents, temperature, salinity, etc.) [6]. In these non exploitable phases,
the mortality is not directly caused by fishing [6] and is usually very high, particularly at
the end of the larvae phase [9]. This results in a small percentage of survivors until the
recruitment [6]. In [16], the authors set out an approach to these kinds of models, providing
one that considers recruitment in a two-stage species.

The relationship between stock S and recruitment R in fish populations has been sub-
ject of many studies (see [8, 9, 10, 13, 21]). Among the models that have been developed to
fit stock-recruitment curves to data sets are the well-known Beverton-Holt [3] and Ricker
[19] curves, namely:

R = αS
S+β , (α, β > 0) [Beverton-Holt]

R = δSe−λS , (δ, λ > 0) [Ricker]

In this sense, the main purpose of this work is to provide and analyze a mathematical
model for the dynamics of a predator-prey system, which is formulated considering a pop-
ulation growth based on a general form of recruitment, a fairly general predator functional
response and capture on both predators and preys at a rate proportional to their popula-
tions. Thus, the results obtained cover the casuistry originated by the different types of
functional response and recruitment stated before.

So, we set out a continuous mathematical model for the dynamics of a predator-prey
system with recruitment and capture on both species, which can be modeled by the following
system of nonlinear differential equations,{

ẋ(t) = x(t)f(x(t), y(t)) = x(t)[r(x(t))− y(t)φ(x(t))−m1]
ẏ(t) = y(t)g(x(t), y(t)) = y(t)[s(y(t)) + cx(t)φ(x(t))−m2]

(2)

All the parameters in this model are non-negative, in order to have a biological signifi-
cance. Additionally, the following properties are satisfied,

• ∀x ≥ 0, r(x) > 0, r′(x) < 0 and lim
x→∞

r(x) = 0,

• ∀y ≥ 0, s(y) > 0, s′(y) < 0 and lim
y→∞

s(y) = 0,

• [xr(x)]′ ≥ 0 and [ys(y)]′ ≥ 0,

• ∀x ≥ 0, φ(x) > 0, φ′(x) ≤ 0 and [xφ(x)]′ ≥ 0, being xφ(x) bounded as x → ∞
[4, 15].
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The proposed model constitutes a new perspective for mathematical modeling of bio-
logical populations, because it incorporates a growth rate based on the recruitment, a fairly
general predator functional response and the capture of both predators and preys, as sug-
gested by Brauer and Castillo [4] at a rate proportional to their populations.

The mathematical results achieved have great biological interest, since they allow to
predict when the predator and prey populations tend to be stable or, on the contrary, when
they tend to disappear, either both or only one of them.

These theoretical results have been validated by numerical simulations which have been
executed by means of a software develop by the authors [1], using statistical data of some fish
stocks of the genus Prochilodus and Pseudoplatystoma, that interact as prey and predator,
respectively, in the Orinoco basin in Colombia.
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Abstract

Radial basis function (RBF) based approximation methods for numerical solution of
partial differential equations are interesting due to their potentially spectral accuracy
and due to being meshfree. This could be especially beneficial for high dimensional
problems, where meshing is non-trivial. In this work, we present different RBF ap-
proaches and evaluate them on a multi-asset option pricing problem. The conclusion is
that the properties of the problem need to be taken into account in the solution method
in order to have an approach that is viable for higher dimensions. Furthermore, we
suggest to use an RBF based partition of unity approach in order to introduce locality
and reduce the computational cost.

Key words: radial basis function, option pricing, partition of unity, collocation
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1 Introduction

Radial basis function (RBF) based methods [4] have become quite popular for pricing of
financial derivatives based on partial differential equation (PDE), or in the case of jump
diffusion partial-integro differential equation (PIDE) formulations of the pricing problem.
One of the main arguments is that RBF methods are easy to use in high-dimensions, i.e.,
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for several underlying assets. The methods work only with scattered node points and do
not require meshing. Furthermore, the basic mathematical formulation is the same in any
number of dimensions. In an RBF method, the RBF approximation s(x, t) to the value
u(x, t) of the financial derivative is typically of the form

s(x, t) =
N
∑

j=1

λj(t)φ(ε‖x− xj‖) ≡
N
∑

j=1

λj(t)φj(x), (1)

where φ(r) is a (conditionally) positive definite RBF, ε is the shape parameter, which
makes the RBF more flat as it goes to zero and more peaked as it goes to infinity, and xj
are scattered node points that act as the center points for the RBFs. The coefficients λj

can be determined through collocation with equations and boundary conditions.
As can be seen from (1), the RBF approximation yields a continuous representation of

the solution function. This allows explicit evaluation of derivatives of the approximation,
which is an advantage in finance where the partial derivatives ∂u

∂x and ∂2u
∂x2 , denoted by ∆

and Γ, are needed for hedging purposes.
In the following sections, we will describe some different approaches, comment on their

strengths and weaknesses, provide some relevant citations, and show numerical experiments
to demonstrate the performance. Finally, we will reach to what we think is currently the
most promising approach, radial basis function partition of unity methods, and present
some preliminary results for these.

2 The model problems used for demonstrations

We will use the simplest possible option pricing problem to test the numerical approaches.
We consider this to be a European basket call option, priced using the multi-dimensional
Black-Scholes equation. Any added features like jump diffusion, stochastic volatility and
exoticity may need special treatment by the numerical methods, but this is not an issue
that we are pursuing in this paper.

The d-dimensional Black-Scholes equation for an option on d underlying assets is de-
fined on R

d
+. For computational purposes, we define a computational domain Ω ⊂ R

d
+.

Furthermore, we define Γ ⊂ ∂Ω as the part of the boundary of the computational domain
where we impose boundary conditions. After transformation of the time-variable [17] and
scaling of the spatial variables as in [13], we can write the Black-Sholes equation as the
following initial-boundary value problem

∂u

∂t
(x, t) = Lu(x, t), x ∈ Ω, t > 0, (2)

u(x, t) = g(x, t), x ∈ Γ, t > 0, (3)

u(x, 0) = Φ(x), x ∈ Ω, (4)
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where u(x, t) is the value of the option, x ∈ R
d
+ contains the scaled values of the d assets,

and t is the time left to the exercise time T of the option. The spatial operator has the
form

Lu(x, t) = r
d

∑

i=1

xi
∂u

∂xi
+

1

2

d
∑

i,j=1

[

σσT
]

ij
xixj

∂2u

∂xi∂xj
− ru,

where r is the risk free interest rate and σ is the volatility matrix. For our numerical
examples, we use the contract function

Φ(x) = max(0,
1

d

d
∑

i=1

xi −K), (5)

where, in our present case, the exercise price K is always equal to 1 due to scaling. The
boundary conditions are linked to the contract function [19]. At the near-field boundary,
consisting of the origin x = 0, we use

g(x, t) = 0, (6)

and at the far-field boundary, here defined as the part of the boundary where 1
d

∑d
i=1 xi ≥

4K, we impose

g(x, t) =
1

d

d
∑

i=1

xi −K exp(−rt). (7)

3 Discretization in time and approximation in space

Let the time interval [0, T ] be divided into M steps of length kn = tn − tn−1, n = 1, . . . ,M ,
and let the approximate solution at the discrete times tn be denoted by

vn(x) ≈ u(x, tn).

In the majority of the numerical experiments we discretize the PDE problem (2–4) in time
using the unconditionally stable, second-order accurate, implicit BDF-2 method [11, p. 401],
resulting in

v1(x)− k1Lv1(x) = v0(x), x ∈ Ω, (8)

vn(x)− βn
0Lv

n(x) = βn
1 v

n−1(x)− βn
2 v

n−2(x), x ∈ Ω, n = 2, . . . ,M, (9)

vn(x) = g(x, tn), x ∈ Γ, n = 1, . . . ,M, (10)

v0(x) = Φ(x). x ∈ Ω, (11)
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The details of how we choose the coefficients βi are described in [13]. For the approximation
in space, we use (1) in its time discrete form, evaluated at the node points to get

vn(xi) =
n
∑

j=1

λn
j φj(xi), i = 1, . . . , N, (12)

corresponding to the linear system
vn = Aλn, (13)

where vn = (vn(x1), . . . , v
n(xN ))T , Aij = φj(xi), and λn = (λn(x1), . . . , λ

n(xN ))T . In a
similar fashion, we get

Lvn = Bλn, (14)

where Bij = Lφj(xi). Combining the two, we get

Lvn = BA−1vn, (15)

allowing us to work with nodal values as unknowns. Note that we can easily exchange the
set of evaluation points {xi}

N
i=1 in the matrix B for some other set of points x ∈ Ω to

compute solution values or derivatives at arbitrary locations.

4 Numerical results for different RBF approaches

We use two different radial basis functions for the numerical experiments. The multiquadric
RBF, which is conditionally positive definite, but nevertheless guarantees a non-singular
interpolation matrix for distinct nodes and ε > 0,

φ(r) =
√

1 + ε2r2,

and the Gaussian RBF, which is positive definite,

φ(r) = exp(−ε2r2).

The scaled exercise price K = 1, and the exercise time used is T = 1 year. In the volatility
matrix, we set σii = 0.3 and σij = 0.05, i 6= j. The risk free interest rate is set to r = 0.05.
As computational domain we use Ω = R

d
+ \ {x | 1d

∑

xi > 4K}, which results in the interval
[0 4] in 1-D, a triangle with corners in(0, 0), (0, 8), and (8, 0) in 2-D, and higher order
simplexes in more dimensions. This is possible because the RBF method is meshfree, and it
leads significant savings in the computational cost compared with solving over a hypercube.
This approach was used in [19] and [13]. In [13], we also showed that there is no loss of
accuracy from this truncation of the domain.

Figure 1 shows examples of node layouts used in the numerical experiments in the 2-D
case. The uniform and Chebyshev nodes can be generated for any number of dimensions
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and are based on barycentric coordinates within the simplex [14]. In the Chebyshev case,
the nodes are clustered in a Chebyshev fashion towards each boundary. The adapted nodes
are more dense in the region of interest, and take the strike location into account.

0 8
0

8

x
1

x 2

0 8
0

8

x
1

x 2

0 8
0

8

x
1

x 2

Figure 1: Examples of the uniform nodes, Chebyshev nodes, and adapted nodes that are
used in our 2-D experiments.

In the following, the one-dimensional problem will be used as a starting point for quan-
titative investigation of different methods (due to the reasonable computational cost), the
two-dimensional problem will be used for testing if the 1-D results carry over, and the
potential for solving higher dimensional problems is discussed.

As asset prices are typically given with four or five digits of accuracy, we consider
τ = 1·10−4 to be a reasonable target accuracy for the solution of the option pricing problem.
Of course, the desired accuracy significantly influences how large or how high-dimensional
problems we can solve, so with a lower accuracy the projections become brighter. In the
following subsections, we discuss different approaches in detail.

4.1 Global collocation using uniform node layouts

The most straightforward approach of an RBF method to option pricing is to use (1) directly
on a set of uniformly distributed nodes. This was done for European and American options
in one dimension by Hon et al. in [12, 23], and for one and two dimensions by Fasshauer
et al. [6] and Marcozzi et al. [16]. RBF methods have also been applied to other types of
options and contracts such as a digital option [5], a currency option [2], and a credit default
swap [10], as well as to problems with jump diffusion [1, 9, 22]. In all cases, the methods
work well.

Figure 2 shows the results for different values of N as a function of ε. It should be
noted that due to ill-conditioning that grows with increasing N and decreasing ε, the errors
blow up and are not shown for the lower left corner of the figure. The target accuracy is
reached the first time for N = 46 node points. The solutions are shown to the right and

c©CMMSE ISBN: 978-84-616-2723-3Page 899 of 1797



RBFs in finance

the errors are about equally large at the boundaries and at the region of interest near the
exercise price K = 1. It should also be noted that the results are sensitive to the placement
of nodes near the strike discontinuity (see also [19]). Therefore, the number of node points
have been chosen in the most favourable way.
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Figure 2: Left: The maximum error in the solution to the one-dimensional European option
pricing problem as a function of ε for different values of N . From top to bottom, N = 4j+2,
j = 2, . . . , 24. The dotted line shows the target error. Right: The solution error as a function
of the scaled asset price for different values of ε ∈ (1.25, 2.25) for N = 46.

Now, consider the same problem in two dimensions. We can try to estimate how many
points we are likely to need to achieve the same accuracy. It is reasonable to assume that
we want the same node distance along the diagonal x1 = x2 in the two-dimensional case as
we had along the interval in the one-dimensional case. This line is

√
2 times longer than the

interval, leading to
√
2N1D nodes. We can use this as a measure of the number of points per

dimension in the 2-D case. We can apply similar arguments in higher dimensions, leading
to the special and general cases

N2D ∝
(
√
2N1D)

2

2
= N2

1D, NdD ∝
(
√
dN1D)

d

d!
, (16)

where the factorial in the denominator is due to the ratio of the simplex to the hypercube.
With 46 points in one dimension, this indicates that we need around 2100 points in two
dimensions. The best solution we could come up with, without an extensive search of the
parameter space, was for ε = 1.5 and N = 2939 with a maximum error E = 5.2 · 10−3. The
error, displayed in Figure 5, is largest in the strike region. In the three-dimensional case,
formula (16) indicates over 28 000 nodes. Since we need to solve a dense linear system of
this size, this becomes very expensive, both in terms of computational cost and memory
requirements. In four dimensions, we judge it to be unfeasible in practice.
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4.2 Global collocation using adapted node layouts

As discussed in the previous subsection, the problem is sensitive to the placement of nodes
near the strike region. Furthermore, the errors are large in this region, which is where we
want to know the solution. Typically, options are traded with exercise prices in the vicinity
of the current asset value.

By employing an adapted node layout, we aim to reduce the error in the region of
interest, while possibly sacrificing accuracy in other parts of the domain. Therefore, we
introduce a different error measure, the financial error [19], defined by

Ef = max
x∈ΩK

|s(x, T )− u(x, T )|,

where ΩK = {x |K − 2
3K ≤ 1

d

∑d
i=1 xi ≤ K + 2

3K}. We use the type of adapted node
layout shown in Figure 1 and perform the same experiment as for the uniform nodes, but
using the financial error measure. The results are shown in Figure 3. We can see that the
errors in the strike region are much smaller than in the rest of the domain, and we reach
the target accuracy already at N = 17 points. If we again use formula (16) we now need
around 300 points in 2-D, 4000 points in 3-D, and 56 000 points in 4-D. This means that
3-D is definitely accessible, while 4-D might be stretching it a bit, but could be done with
a lower target accuracy.
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Figure 3: Left: The financial error for the adapted nodes as a function of ε for different
values of N . From top to bottom, N = 3j + 2, j = 3, . . . , 33. The dotted line shows the
target error. Right: The solution error as a function of the scaled asset price for different
values of ε ∈ (1.03, 1.41) for N = 17.

Actual experiments in 2-D show that we can reach the target accuracy. However,
because of the special node layout, we cannot hit the target exactly. At N = 599 points,
we get a financial error Ef = 5.1 · 10−5. The result is shown in Figure 5.
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The approach with adapted nodes is compared with the adaptive finite difference
method from [18] in [19]. With our target tolerance, the adapted node RBF method is
about 40 times faster in 1-D and 30 times faster in 2-D.

In [20], it is shown why using exponentially converging methods on uniform nodes must
lead to exponential ill-conditioning. This issue can be overcome by clustering the nodes
toward the boundaries, which was done successfully in [7]. However, for the option pricing
problems, it results in reducing the errors at the boundaries while increasing them in the
strike region, and is hence not an effective approach. Another example of an approach
with node adaption that seems to work well is given in [1], where the adaptive residual
subsampling method of [3] is used. There, the shape parameter is scaled individually for
each RBF, proportionally to the inverse of the local node distance. This was suggested
in [8], based on a heuristic exploration of optimal node locations and shape parameter
values for some test problems. Here, we have employed this strategy for scaling the shape
parameter in the adapted node approach. The results are shown in Figure 4. The error
does become smaller outside of the strike region and the general behaviour of the error is
somewhat improved, but there are no dramatic changes.
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Figure 4: Results for adapted nodes and individually scaled shape parameters.

4.3 Least squares and multi-level approximations

Using a least squares approach, i.e., using more evaluation points than node points, leads
to a better approximation of the non-smooth initial condition in terms of capturing the
low frequencies compared with using pure collocation. By using uniform nodes and a least
squares approximation we reach the target accuracy with N = 26 nodes. Solving the least
squares problem is more expensive than solving the collocation system, but in [14], we show
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that a least squares method is more effective than collocation in terms of the total work for
a given accuracy.

An issue regarding the solutions to the option pricing problems that we have not men-
tioned so far is the transition from non-smooth to smooth. The non-smooth initial condition
is best approximated using a large shape parameter, but the smooth solution at the final
time fares better with a small shape parameter. The solution we propose in [14] is to use
a multilevel approach with different shape parameters at different levels. This results in a
method that is quite robust with respect to the choice of method parameters, that has a
quite uniform error distribution and has a comparatively small error over the whole time
interval.

Figure 5 shows how the least squares multilevel method compares with the other ap-
proaches. The number of nodes at the fine level (which determines the computational cost)
is comparable to the adapted case, so the potential for solving higher dimensional problems
is the same. However, the new method is more robust and the overall error behaviour is
better. Therefore, we consider this to be the most promising approach so far.

5 The RBF partition of unity method

The main obstacle to using the different versions of global RBF methods is computational
cost. An attractive compromise between high order and locality is offered by RBF based
partition of unity (RBF-PU) methods. We have developed a method of this type in the
manuscript [15]. This first paper deals with time-independent PDEs, and we are able to
show theoretical results of the types below for the RBF-PU approximant.

‖s(x)− u(x)‖W 2
∞
(Ω) ≤ Cmax

j
Cjρ

m− d
2
−α

j ‖u‖N (Ωj), (17)

‖s(x)− u(x)‖W 2
∞
(Ω) ≤ Ceγ log(h)/

√
hmax

j
‖u‖N (Ωj), (18)

where Ωj are the partitions that cover Ω, ρj is the radius of the partition Ωj , h is the local
node distance, and α is the degree of the PDE operator. An example of adapted partitions
and nodes is shown in Figure 5. The meaning of the two estimates is the following

(i) If we fix the number of nodes/partition, we get algebraic convergence in ρ.

(ii) If we fix the partitions, we get spectral convergence in the local node distance.

A numerical demonstration of the theoretical results is given in Figure 6. Note that the
target accuracy can be reached without using RBF-QR [7]. This is relevant for higher
dimensions since RBF-QR is currently only available in up to three dimensions. The system
matrix of the RBF-PU method is sparse, which allows us to solve very large systems of
equations. We are currently working on a parallel iterative solver for these systems.
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Figure 5: Top left: Collocation on N = 2939 uniform nodes for ε = 1.5. The dashed line
indicates the location of the strike discontinuity. Top right: Collocation with N = 599
adapted nodes. Bottom left: The least squares multilevel method with Nf = 592 nodes
at the fine level and Nc = 96 at the coarse level for εf = 2 and εc = 0.1. Bottom right:
Partitions and nodes for the RBF-PU method.

In [21] the RBF-PU method is applied to a convection-diffusion problem and an Amer-
ican option pricing problem with promising results. The node and partition layout used for
the American option pricing problem is shown in Figure 5.
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Valencia, Spain.

emails: leilebep@mat.upv.es, oromero@dcom.upv.es, njthome@mat.upv.es

Abstract

In this paper, we consider generalized centro-invertible matrices, which are an ex-
tension of centro-invertible matrices introduced by R.S. Wikramaratna in [The centro-
invertible matrix: A new type of matrix arising in pseudo-random number generation,
Linear Algebra and its Applications, 434, 1, 2011, 144–151]. An application to image
encryption is given by means of the design of algorithms for encrypting and decrypting
based on generalized centro-invertible matrices.

Key words: involutory matrix, centro-symmetric matrix, encryption

1 Introduction

An involutory matrix is a matrix that is its own inverse. They appear in a wide range
of different topics such as: computing elementary matrices (permutation matrices), the
signature matrices, an orthogonal matrix which is also symmetric, reflection against a plane,
classification of finite simple groups, taking the transpose in a matrix ring, etc.

On the other hand, in cryptography, it was suggested by Hill [1] to use an involutory
matrix as a key while encrypting with the Hill Cipher. The Hill’s idea was to use the
same matrix for encrypting and decrypting avoiding the computation of an inverse matrix.
Therefore, the Hill cipher’s keyspace consists of all matrices of a given size that are invertible
over the ring Zm of the integers modulo m. The number of such matrices was computed
in [2]. The authors also compared this number with the total number of matrices and the
number of involutory matrices (for a given size and modulus).
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Let J be the square matrix with ones on the cross diagonal and zeros elsewhere; J is
often called the centro-symmetric permutation matrix. This matrix J allows us to introduce
the centro-invertible matrices as those matrices X such that its inverse coincides with the
rotation of all the elements of the matrix through 180 degrees about the mid-point of the
matrix, that is JXJ [4]. The author studied these matrices computing the total number
of them by means of a bijection with the involutory matrices of the same size. As an
application of this type of matrices, an algorithm to generate uniformly distributed pseudo-
random numbers was developed in [3].

In what follows we consider a special type of matrix, namely generalized centro-invertible
matrices. They are an extension of the centro-invertible matrices where an involutory ma-
trix R is used instead of the centro-symmetric permutation matrix J . Specifically, let R

be an n × n integer involutory matrix. An integer n × n matrix A is called generalized
centro-invertible matrix if satisfies RAR = A−1.

In this paper algorithms for encrypting and decrypting based on generalized centro-
invertible matrices are presented.

2 An application

Next we present algorithms for encrypting by computing previously an involutory matrix
R and then a generalized centro-invertible matrix A.

Let Zn×n

256 be the set of n×n matrices with coefficients in Z256. The part of the image to
be encrypted is subdivided in X1, . . . , Xt where Xi denotes n×n sub-images of the original
one. The encryption algorithm can be applied to every sub-images Xi or to a subset of
them. Consider the encryption function eA : Zn×n

256 → Z
n×n

256 defined by

eA(Xi) = AXi(mod (256)) for Xi ∈ Z
n×n

256 .

Algorithm for encrypting

Inputs: Sub-image Xi and the size n of A and R.

Outputs: Encrypted sub-image Yi.

Step 1 Generate n×n random integer matrices TR, TA and QR, QA such that
TR, TA are lower triangular and QR, QA are upper triangular, all of them
with 1’s in the main diagonal.

Step 2 Compute PR = TRQR and PA = TAQA.

Step 3 Choose an arbitrary integer r(R) such that 1 ≤ r(R) ≤ n− 1 and set

R = PR

[

Ir(R) O

O −In−r(R)

]

P−1
R

.
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Step 4 Choose an arbitrary integer r(A) such that 1 ≤ r(A) ≤ n− 1 and set

A = RPA

[

Ir(A) O

O −In−r(A)

]

P−1
A

.

Step 5 Yi = AXi(mod (256)).

End

In order to decrypt we proceed as follows. Let us now consider the decryption function
dA : Zn×n

256 → Z
n×n

256 defined by

dA(Y ) = (RAR)Y (mod (256)) for Y ∈ Z
n×n

256 .

We first restrict the function dA to the set Y = {Y1, . . . , Yt} where Yi are the encrypted sub-
images by means of A. Then, for every i = 1, . . . , t, we get dA(Yi) = (RAR)Yi(mod (256)) =
A−1Yi(mod (256)) = Xi. Thus, the decrypted sub-images coincide with the matrices Xi.

This reasoning allows us to design an algorithm for decryption. The inputs are the
encrypted sub-images Yi and the key matrices R and A obtained in the encryption algorithm.
And the output will be the decrypted sub-images.

3 Numerical example

Our algorithms can easily be implemented on a computer. We have used the MATLAB
R2010b package.

First, we obtain an involutory matrix R ∈ Z
12×12 and a random integer generalized

centro-invertible matrix A ∈ Z
12×12. Figure 1 (a) shows the original image partially en-

crypted via the algorithm for encrypting. In this example, the algorithm has been applied
to the sub-images X1, . . . X193 grouped as indicated in Figure 2 where the corresponding
mesh can be observed. Figure 1 (b) shows the decrypted image.

We can conclude that our encryption method provides a large number of keys because
a large number of matrices A and R can be chosen for encrypting and decrypting. This
large quantity of matrices is due to the randomness of the selection of these matrices as the
algorithm for encrypting shows. It is important to remark that our decrypting algorithm
does not compute inverse matrices.

Acknowledgements

This work has been partially supported by the Ministry of Education of Spain (Grant DGI
MTM2010-18228).

c©CMMSE ISBN: 978-84-616-2723-3Page 909 of 1797



An application of generalized centro-invertible matrices

PARTIALLY ENCRYPTED IMAGE

100 200 300 400 500 600 700

50

100

150

200

250

300

350

DECRYPTED IMAGE

100 200 300 400 500 600 700

50

100

150

200

250

300

350

Figure 1: (a) Partially encrypted image and (b) decrypted image
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Figure 2: Mesh for the encrypting to the sub-images X1, . . . , X193
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Abstract

Lid-driven cavity flows have been widely investigated and accurate results have been
achieved as benchmarks for testing the accuracy of computational methods. This paper
verifies the accuracy of a mesh refinement method using 2D lid-driven flows. The
accuracy is shown by comparing the coordinates of centres of primary and secondary
vortices located by the mesh refinement method with the corresponding benchmark
results. The accuracy verification shows that the mesh refinement method provides
refined meshes that all centres of primary and secondary vortices are contained in refined
grids based on the numerical solutions of Navier-Stokes equations solved by finite volume
method. The well known SIMPLE algorithm is employed for pressure-velocity coupling.
The accuracy of the numerical solutions is shown by comparing the profiles of horizontal
and vertical components of velocity fields with the corresponding benchmarks and also
streamlines. The mesh refinement method verified in this paper can be applied to
find the accurate numerical solutions of any mathematical models containing continuity
equations for incompressible fluid or steady state fluid flows.

Key words: finite volume method, lid-driven cavity flow, mesh refinement
MSC 2000: AMS codes 35Q35, 70-08, 68U20

1 Introduction

Meshing is the process of breaking up a physical domain into smaller sub-domains (called
grids or elements or cells) in order to evaluate the numerical solutions of differential equa-
tions. Adaptive mesh refinement is a computational technique to improve the accuracy of
numerical solutions of differential equations by starting the calculations on a coarse basic
mesh (initial mesh) and then refining this mesh where less accuracy may occur locally.
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There are a large number of publications on adaptive mesh refinements and their ap-
plications. Some refinement methods use a refinement criterion which is based on local
truncation errors (e.g. Almgren et al. [1]; Bell et al. [3]). Other common methods in-
clude h-refinement(e.g. Lohner [18]; Speares & Berzins [21]), p-refinement (e.g. Bell et
al. [3]; Zienkiewicz et al. [23]) or r-refinement (e.g. Miller & Miller [19]; Mosher [20]),
with different combinations of these also possible (e.g. Capon & Jimack [4]; Demkowicz
et al. [5]). The overall aim of these adaptive algorithms is to allow a balance to be ob-
tained between accuracy and computational efficiency. The h-refinement is a method where
meshes are refined and/or coarsened to achieve a prescribed accuracy and efficiency. The
p-refinement is a method where the accuracy orders are assigned to elements to achieve
exponential convergence rates and r-refinement is a method where elements are moved and
redistributed to track evolving non-uniformities. In summary, all these mesh refinement
methods are proposed based on the quantitative considerations of numerical solutions of
differential equations.

We introduced adaptive mesh refinement methods from a different point of view for 2D
velocity fields (Li [12]) and for 3D velocity fields (Li [11]) based on a theorem in qualitative
theory of differential equations (Theorem 1.14, page 18, Ye et al. [22]). The theorem
indicates that a divergence free vector field has no limit cycles or one sided limit cycles,
that is, the trajectories (or streamlines) of divergence free vector fields are closed curves
in bounded domains (singular points are streamlines). Identification of accurate locations
of singular points and asymptotic lines (planes), and drawing closed streamlines are some
of the accuracy measures for computational methods. The accuracy of the adaptive mesh
refinement methods for the numerical velocity fields obtained by taking the vectors of the
analytical velocity fields at nodes of meshes has been verified with examples by locating
the singular points and asymptotic lines for two-dimensions [12]; the singular points and
asymptotic plane for three-dimensions [11]; and drawing closed streamlines (Li [10]; Li &
Mallinson [13]) using the refined meshes with a pre-specified number of refinements of the
initial meshes. The Lebesgue measure of the set of the grids on which the mesh refinement
criteria are satisfied tends to zero as the number of mesh refinements tends to infinity
from the examples. However, it is impossible to achieve such numerical velocity fields
in practice. The sensitivity analysis of the 2D adaptive mesh refinement for achieving the
same above results for the numerical velocity fields obtained by solving mathematical models
numerically is considered using 2D lid-driven cavity flows (Li & Lal [16]). The accuracy of
the 2D adaptive mesh refinement method is investigated using coarse meshes [17].

This paper establishes the accuracy of the 2D mesh refinement method using 2D lid-
driven cavity flows, a different finite volume method from the one used for sensitivity analysis
[16] and finer meshes than those used before [17]. A comparison of the accuracy between
the second order colocated finite volume method (GSFV) with a splitting method for time
discretization [7] and a finite volume method with SIMPLE algorithm [8] has been done
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[15]. Our programs for these two finite volume methods use different stop conditions but
the same number of grids. The comparison shows that our implementation for the finite
volume method with SIMPLE algorithm provides more accurate outputs. We report the
results from the refined meshes using the numerical solutions of Navier–Stokes equations
obtained from the latter finite volume method.

2 Algorithm of mesh refinement and finite volume method

In this section, we summarize the mesh refinement method based on the law of mass con-
servation (Li [12]) and the finite volume method used (Ferziger & Peric [8]).

Assume that Vl = AX + B is a vector field obtained by linearly interpolating the
vectors at the three vertexes of a triangle, where

A =

(
a11 a12
a21 a22

)
, B =

(
b′1
b′2

)
are constant matrices and vertical vector respectively, and X = (x1, x2)

T . Vl is unique if
the area of the triangle is not zero [13]. Mass conservation for an incompressible fluid or
steady flows means that

∇ ·Vl = trace(A) = 0. (1)

Let f be a scalar function depending only on spatial variables. We assume that fVl satisfies
Equation (1) and then calculate the expressions of f . Li [12] gives the expressions of f for
the four different Jacobian forms of coefficient matrix A in Table 1. The conditions MC
(MC is the abbreviation of mass conservation) are the functions f in Table 1 not equaling
zero or infinity at any point on the triangular domains when fVl satisfies Equation (1) on
these triangular domains.

We take that Vl does not satisfy mass conservation (1) or f does not satisfy the condi-
tions MC as the criteria for the adaptive mesh refinement. Such adaptive mesh refinement
method can be used to both triangular and quadrilateral grids. We have applied the adap-
tive mesh refinement method to quadrilateral grids for analytical velocity fields [11, 12]. In
this paper we also consider quadrilateral grids. Li [12] presents the algorithm of the 2D
mesh refinement.

In Section 3, we use the finite volume method with SIMPLE algorithm for pressure-
velocity coupling to evaluate numerical velocity fields [8]. This finite volume method has
different arrangement for pressure-velocity from the finite volume method we used before
[7].

In this paper, we subdivide a quadrilateral by connecting the mid-points of the two
opposite sides of a quadrilateral and the threshold number T=1, i.e., we subdivide a grid
once only for testing the accuracy of the refinement method.
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3 Accuracy analysis by comparisons with benchmarks

We take the results obtained by using a mesh with 601×601 uniform grids, stream function
and vorticity as the benchmarks (Erturk et al. [6]). We consider the accuracy of the mesh
refinement method in the following two aspects:

• the variations of the refined meshes according to the comparison of horizontal profile of
the numerical velocity fields with the corresponding benchmarks (omitted the vertical
profile due to the limit of the paper length but the final results are the same).

• inclusion of the centres of vortices located in the benchmarks in the refined mesh.

3.1 Variation of refined meshes

We consider the refined meshes for 2D lid-driven cavity flows for different mesh sizes and
Reynolds number Re = 1000 and 2500, respectively. We show horizontal profiles at x = 0.5
as the corresponding benchmarks are known, streamlines of Vl, and refined meshes. The
streamlines are generated by Matlab build-in function streamline. The streamline generates
streamlines from vector data so the numerical velocity fields are accurate if the streamlines
are closed. A grid is said to be a refined grid if a cross is drawn inside.

One of the possible comparisons is the adaptive mesh refinement which refines every-
where that solution gradients are large (Henderson [9], 293-299). The refinement criteria
enforce

‖∇u(k)‖ ≤ ε‖uh‖1
everywhere in the mesh, where ‖·‖ is the L2 norm, ‖·‖1 is the H1 norm, ε is the discretization
tolerance, uh is finite-dimensional approximation for u, and k in ‖∇u(k)‖ is the number of
subdomains. Figure 5.7 of [9] shows the refined meshes for ε = 10−3, 10−4, 10−5, and 10−6

for lid-driven cavity flow at Re = 1000. Even though there might be some relations between
the refined meshes and the vorticity field as ε decreases, no one provides any information
on the pattern of the flow field such as locations of the centres of vortices and separation
curves of the regions (e.g., primary and secondary vortex regions).

3.1.1 Re = 1000

We show the figures for Re = 1000 generated from a mesh with 99×99 uniform grids.
From Figure 1, the profile of the horizontal component u of the numerical velocity field at
x = 0.5 shows a slight difference with the corresponding benchmark. The horizontal and
vertical profiles reflect the local accuracy of the numerical velocity field. The streamlines
in Figure 2 provide the global accuracy of the numerical velocity field. The streamlines
in Figure 2 are not closed (spiral lines) so we conclude that the velocity field Vl does not
satisfy Equation (1) [22, 6] or f does not satisfy the condition MC on some grids in the
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Figure 1: Horizontal profile of velocity field at x = 0.5 for mesh size 99×99.
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Figure 2: Streamlines for mesh size 99×99.
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Figure 3: Refined mesh for Re = 1000 with mesh size 99×99.

regions. Figure 3 shows the refined mesh. There are three isolated grids in the refined mesh:
one in the primary region and two in the secondary regions. The refined grid in the primary
regions contains the centre of primary vortex, and the isolated refined grid on the bottom
left side contains the centre of the bottom left secondary vortex, and the isolated refined
grid on the bottom right side contains the centre of the bottom right secondary vortex (refer
to Table 1). Even though the centres of tertiary vortices are included in some of the refined
grids, we can not identify them in the refined mesh. Further mesh refinement is needed for
more information on this matter.

3.1.2 Re = 2500

We show the figures for Re = 2500 generated from a mesh with 121×121 uniform grids.
From Figure 4, the difference between the horizontal profile u of the numerical velocity
field at x = 0.5 and the corresponding benchmark is small. The streamlines in the primary
vortex region in Figure 5 are almost closed with very small errors. If the errors come
from the process of generating of streamline, we conclude that the velocity field Vl satisfies
Equation (1) or f satisfies the condition MC and there is no refinement in the region. If the
errors come from the numerical velocity field, there are refinements in the region. There
is no refinement in the primary vortex region in Figure 6 so the errors shown in Figure 5
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Figure 4: Horizontal profile of velocity field at x = 0.5 for mesh size 121×121.
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Figure 5: Streamlines for mesh size 121×121.
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Figure 6: Refined mesh for Re = 2500 with mesh size 121×121.

come from the generation of the streamlines. The difference between the coordinates of the
centre of primary vortex from the benchmark and linearly interpolated velocity field Vl is
shown in Table 1. Even though the centre of primary vortex is not shown in Figure 6 due to
the linearly interpolated velocity field Vl satisfying Equation 1 or fVl satisfying condition
MC in the primary region, the centre of an extra tertiary vortex is shown in the bottom
right corner. This result is different from the case using 85×85 uniform grids [17]. The
three isolated refined grids in the two bottom corners contain the centres of two secondary
vortices (refer to Table 1) and the isolated grid located at the top of the bottom right corner
comes from the error of the numerical velocity field. There are no such isolated grids for
analytical velocity fields [11, 12].

3.1.3 Vortex centre locations

This subsection shows the comparison of the centres of vortices between the benchmarks
and the corresponding estimates obtained in this paper.

Table 1 presents that coordinates of centres of vortices in the benchmark (blue) and the
corresponding coordinates for Re = 1000 and 2500 from the linearly interpolated velocity
fields Vl. In this table, the abbreviations BR, BL and TL refer to bottom right, bottom left
and top left corners of the cavity, respectively. The numbers following these abbreviations
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Table 1: Locations of the centre of vortices

Vortex type
Reynolds numbers

Re = 1000 Re = 2500

Primary vortex
(0.5316,0.5659) (0.5202,0.5446)
(0.5300,0.5650) (0.5200,0.5433)

BR1
(0.8634,0.1128) (0.8318,0.0910)
(0.8633,0.1117) (0.8350,0.0917)

BL1
(0.0839,0.0779) (0.0845,0.1108)
(0.0833,0.0783) (0.0850,0.1100)

BR2
- (0.9851,0.0056)

(0.9917,0.0067) (0.9900,0.0100)

BL2
(0.0075,0.0075)) (0.0090,0.0083)
(0.0050,0.0050) (0.0067,0.0067)

TL1
- (0.0441,0.8904)
- (0.0433,0.8900)

refer to the vortices that appear in the flow, which are numbered according to size (e.g. BR1
refers to bottom right secondary vortex, and BR2 refers to bottom right tertiary vortex,
etc.).

3.2 Refined grids containing centres of vortices

We take Re = 2500 as an example to verify if the centres of vortices are contained in some
refined grids of the refined mesh except the centre of the primary vortex. If the centres
of vortices are included in refined grids, further refinements of the mesh will provide more
accurate estimate locations of the centres. The following figures show the sub plots of
bottom left and bottom right corners of the refined mesh for Re = 2500. The red dots
are the centres given in the benchmark [6]. We conclude that the centres are contained in
refined grids in these enlarged sub plots clearly. The top left corner is the same as bottom
left and bottom right corners. Figure 7 shows the refined mesh and the centres of vortices
in region [0 0.3]×[0 0.3]. Figure 8 shows the refined mesh and the centres of vortices in
region [0.6 1]×[0 0.4]. The centre of the secondary vortex is almost located at the centre of
the refined grid.

4 Discussions

We considered the accuracy of the 2D adaptive mesh refinement method using two cases
of 2D lid-driven cavity flows and finer meshes. We use horizontal profile of velocity fields
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at x = 0.5 and the streamlines generated by Matlab built-in function streamline for the
accuracy of the numerical velocity fields. We then consider whether the refined meshes can
locate the centres of vortices. Besides the centre of primary vortex for Re = 2500 which
has been estimated accurately, the other centres of vortices locate in the refined grids in the
refined meshes. Further refinement for the refined meshes provide more accurate estimates
for location of the centres of the vortices.
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Abstract

In this work, we will present our new high-order energy-conserved splitting FDTD
scheme for solving Maxwell’s equations. The proposed scheme has the significant prop-
erties that are energy-conserved, unconditionally stable, non-dissipative, high-order ac-
curate, and computationally efficient. We prove that the scheme satisfies energy conver-
sations and is unconditionally stable. We analyze theoretically the convergence of the
scheme by using the energy method and obtain the optimal spatial fourth-order error
estimates in the discrete L2-norm for the approximations of the electric and magnetic
fields. Further, the divergence-free convergence is also analyzed and the error estimate
of the approximation of divergence-free is obtained. Numerical experiments show that
the proposed scheme preserves energy conservations and has high-order accuracy, which
confirm our theoretical results.

Key words: Energy-conserved, S-FDTD, High order, Maxwell’s equations
MSC 2000: 65M10, 65M15, 65N10, 65N15

1 Introduction

In computational electromagnetics, a very popular numerical method for solving Maxwell’s
equations is the finite-difference time-domain (FDTD) scheme, which was first introduced
by Yee in [1] and was further developed in [2, 3], etc. The scheme has been widely applied to
simulate transient electromagnetic wave propagations in a broad range of practical problems
with perfectly electric conducting boundary conditions or absorbing boundary conditions.
For problems requiring long-time integration and problems of wave propagations over longer
distances, it has led to the development of high-order FDTD schemes which produce smaller
dispersion or phase errors for a given mesh resolution. The fourth-order explicit schemes
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were developed for solving Maxwell’s equations in [4, 5], etc. However, some developed high-
order FDTD schemes are conditionally stable and require large computational memory and
huge computational cost. On the other hand, during the propagation of electromagnetic
waves in lossless media without sources, the electromagnetic energy keeps constant for all
time, which explains the physical feature of conservation of electromgnemtic energy in long
term behavior.It thus is significantly important to physically keep the invariance of energy
in time, for developing efficient numerical schemes in computation of Maxwell’s equations
and specially in a long term computation of electromagnetic fields. Based on the Yee’s grid
and splitting technique, [6] first proposed second-order energy-conserved splitting FDTD
schemes. It was proved both theoretically and numerically that the EC-S-FDTD I&II
schemes are energy-conserved and unconditionally stable and the EC-FDTDII scheme is
of second order convergence in both time and space steps. Thus, it is very important and
challenging to develop high-order splitting FDTD schemes which provide discrete energy
conservations, unconditional stability, non-dissipativity, and higher-order accuracy.

2 Problems

The Maxwell’s equations in an isotropic, homogeneous and lossless medium are

−∇×E =
∂B

∂t
, (1)

∇×H =
∂D

∂t
, (2)

where E and H are electric and magnetic fields; D and B are the electric displacement and
magnetic flux density, D = ϵE and B = µH. (1) is Faraday’s Law and (2) is Ampere’s
Law. In the absence of electric charge, the electric displacement and magnetic flux density
satisfy divergence-free conditions (Gauss’s Law)

∇ ·B = 0, (3)

∇ ·D = 0, (4)

where ϵ is the electric permittivity and µ is the magnetic permeability. The speed of the
electromagnetic wave is c = 1√

ϵµ .

For the simplicity of notations, we shall focus on the two-dimensional transverse electric
(TE) problems in a lossless medium and without sources and charges, where the electric field
is a plane vector while the magnetic field is a scalar. Let the domain Ω = [0, a]× [0, b] and
the time period T > 0. The electric and magnetic fields are E = (Ex(x, y, t), Ey(x, y, t)) and
Hz=Hz(x, y, t). We consider the perfectly electric conducting (PEC) boundary condition:

(E, 0)× (n, 0) = 0, on (0,T]× ∂Ω, (5)
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where n is the outward normal vector on the boundary. The initial conditions are given as

E(x, y, 0) = E0(x, y) = (Ex0(x, y), Ey0(x, y)) and Hz(x, y, 0) = Hz0(x, y). (6)

3 The high-order EC-S-FDTD scheme and Resutls

We define the spatial fourth-order difference operator to ∂
∂xEy for the strict interior nodes

by a linear combination of two central differences, one with a spatial step and the other
with three spatial steps above, as

ΛxEy
n
i+ 1

2
,j+ 1

2

=
1

8
(9δx − δ2,x)Ey

n
i+ 1

2
,j+ 1

2

, (7)

for i = 1, 2, · · · , I − 2 and j = 0, 1, · · · , J − 1. However, when we treat the near boundary
nodes with i = 0 and i = I − 1, the function values in the definition of δ2,xEy

n
i+ 1

2
,j+ 1

2

will

go out the domain where Ey−1,j+ 1
2
and EyI+1,j+ 1

2
are not defined. We propose the spatial

fourth-order difference operator δ̃2,xEy for the near boundary node with i = 0 by

δ̃2,xE
n
y 1
2 ,j+1

2

=
En

y
1,j+1

2

+ En
y
2,j+1

2

− 2En
y
0,j+1

2

3∆x
. (8)

Thus, we can define the difference operators to approximate ∂
∂xEy for the near boundary

node with i = 0 by

Λ̃xEy
n
1
2
,j+ 1

2
=

1

8
(9δx − δ̃2,x)Ey

n
1
2
,j+ 1

2
, (9)

for j = 0, 1, · · · , J − 1.
Based on the proposed high-order difference operators on the strict interior node and

the near boundary nodes, we proposed the high-order energy-conserved splitting FDTD
scheme.

In this work, we develop and analyze the spatial high-order energy-conserved split-
ting FDTD scheme. One important issue is to construct the numerical boundary differ-
ence schemes to be energy conservative and high-order relative to the interior difference
schemes. It is because the high-order difference operators often have a large spatial stencil
which cannot be used in the near boundary nodes. The one-sided differences and extrap-
olation/interpolation numerical boundary schemes normally break the property of energy
conservations near the boundary. The proposed scheme in this work has the significant
properties that are energy-conserved, unconditionally stable, non-dissipative, high-order
accurate, and computationally efficient. We prove that the scheme satisfies energy con-
versations and is unconditionally stable. We analyze theoretically the convergence of the
scheme by using the energy method and obtain the optimal-order error estimates in the
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discrete L2-norm for the approximations of the electric and magnetic fields. Further, the
divergence-free convergence is analyzed and we obtain the error estimate of the approxima-
tion of divergence-free. Numerical experiments show that the proposed scheme preserves
energy conservations and has fourth-order accuracy in space.
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Abstract

We introduce a protocol based on blind signatures using elliptic curves that allows to
trace those users, in any service, that share their legitimate licence to access a service,
with other people, avoiding the abuse or the unauthorized use of the legal licences. Blind
signature are very useful to provide the users anonymity and the signers privacy. The
scheme uses the inherent advantage of elliptic curve cryptosystem in terms of smaller
key size and lower computational resources.
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1 Introduction

A digital signature provides proof of authenticity that a transaction originated from a par-
ticular sender but also reveals the identity of the individual in the process. Blind signatures
provide the same authentication but do so in a non-identifiable or ’blind’ manner. The re-
cipient is assured of the fact that a transmission is authentic and reliable, without knowing
who actually sent it.

Besides the property of blindness, a blind signature scheme must satisfy an additional
requirement: unlinkability. This property refers to the fact that the signer cannot trace
the requester of a blind signature after the corresponding message-signature pair has been
published.

The blind digital signature is a digital signature protocol created by David Chaum in
[4].

One of the goals of the blind signature schemes is to preserve the anonymity in trans-
actions, and therefore are used in applications where the sender privacy is important. This
includes various ”digital cash” [4, 2] schemes and voting protocols [3].
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Another situation where anonymity of users is desirable is the use of online services,
nowadays widely used thanks to the popularization of platforms of video and/or audion
on demmand. These services make use of what it is known as multicast secure schemes
to distribute both the encrypted contents and the secret key to access them. The schemes
that are becoming more popular are those with a computational approach due to the low
requiremets of storing at the client part and because of their good properties concerning
self-synchronism. Some specific examples of such multicast secure schemes based on com-
putational approaches are presented in [5][6] and [7]. However the problem of identifying
those users that abuse on the licences , i. e. those that share the private information that
allow the access to the private contents is still and open problem.

Our aim is the use of a scheme based on blind signatures with elliptic curves to detect
those users that share their licence or key in an illegal way in order to third people access
some service in a fraudulently. Our idea is that as it is made in the case of double spending
with digital cash, protocol that also uses blind signatures, traintors, i.e. those users that
share their licence or key, will be used when a double access is detected. The protocol also
allows anonymity to any user.

2 The protocol

The situation is as follows: A Server provides an online service, e.g. TV, audio stream-
ing, antivirus, etc., that will be accessed only by using a determined key that it is also
broadcasted in an encrypted way; the user recovers the key by using a private key that was
previously distributed individually at the moment of subscription together with a unique
licence corresponding to that individual key; everytime a user demands access to the service,
he contacts an agent that verifies the validity of the licence and who will detect a fraudulent
use in that case.

Thus in this protocol there exist three different parts:

1. A Server - that will provide the service as well as the session key to access it.

2. An Agent - that will check the validity of a licence shown by the user requesting the
service.

3. The User.

2.1 Set up

We are assuming that the service provided by the Server makes use of a session key KS .
Let E be an elliptic curve and P a point in E generating a subgroup of order a prime

p and let q be a prime such that q|p− 1. Then the Server computes a point G multiple of
P of order q.
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The Server computes

G1 = k1G and G2 = k2G

for k1 and k2 secret random numbers and it makes public

{p, q,G,G1, G2}.

The Server now chooses a secret identity x, computes and makes public

{Q0 = xG Q1 = xG1 Q2 = xG2}.

We will also consider three different hash functions H1, H2 and H3 whose inputs are 1,
5 and 4 integers and that outputs each one a unique integer modulus q.

2.2 The protocol

1. When a user access for the first time a session on the Server, he chooses a random
secret integer u and sends I = uG1 to the Server.

2. The Server stores I, together with some information that identifies this user and sends
a private ticket T , used to recover the session key KS and that will allow to access
the service.

3. The Server chooses w, computes and sends back the triple

{z′ = x(I + G2), h = wG, k = w(I + G2)}

4. The User chooses seven random secret numbers

(s, x1, x2, n1, n2, n3, n4)

and computes:

• A = s(I + G2)

• B = x1G1 + x2G2

• z = sz′

• a = n1h + n2G

• b = sn1k + n2A

• a′ = n3h + n4G

• c ≡q n
−1
1 H2(Ax0 , Bx0 , z, a, b)
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• d ≡q n−13 H2(Ax0 , Bx0 , z, a,H1(T )), where H1(T ) denotes the hash value of the
ticket T and Ax0 , Bx0 denote the first coordinate of the points A and B respec-
tively.

5. The User sends to the Server the pair {c, d}.

6. The Server computes and sends back the pair

{c1 ≡q cx + w, d1 = dx + w}

7. The User computes r ≡q n1c1 + n2 and r′ ≡q n3d1 + n4.

The licence that corresponds to the ticket T will be

L = {A,B, z, a, b, r, a′, r′}

Theorem 2.1 The following equalities hold for the licence L = {A,B, z, a, b, r, a′, r′} cor-
responding to the ticket T :

rG = a + Q0H2(Ax0 , Bx0 , z, a, b),

rA = b + zH2(Ax0 , Bx0 , z, a, b),

r′G = a′ + Q0H2(Ax0 , Bx0 , z, a,H1(T ))

Proof. Firstly we recall that r′ ≡q n3d1 + n4 and so r′ ≡q n3dx + n3w + n4. Then
d ≡q n

−1
3 H2(Ax0 , Bx0 , z, a,H1(T )).

a′+Q0H2(Ax0 , Bx0 , z, a,H1(T )) = n3h+n4G+xGH2(Ax0 , Bx0 , z, a,H1(T )) = n3wG+
n4G + xGH2(Ax0 , Bx0 , z, a,H1(T )) = G(n3w + n4 + xdn3) = (n3dx + n3w + n4)G = r′G

Analogously we get that rG = a + Q0H2(Ax0 , Bx0 , z, a, b)

We check that b + zH2(Ax0 , Bx0 , z, a, b) = rA since H2(Ax0 , Bx0 , z, a, b) ≡q n1c and
c1 ≡q w + cx. �

2.3 Accessing the contents

1. When the User wants to access the service, the Agent in charge of validating the
licence requires him the pair (h(T ), L).

2. The Agent verifies equalities of Theorem 2.1. In that case (if the theorem holds) the
Agent computes the hash value H3(Ax0 , Bx0 , H1(T ), t) where t denotes a timestamp,
which is sent to the User.
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3. The User computes

s1 = H3(Ax0 , Bx0 , H1(T ), t)us + x1 and s2 = H3(Ax0 , Bx0 , H1(T ), t)s + x2

where u is his own private information and s, x1 y x2 are the random numbers gen-
erated on step 4.

4. The Agent verifies that s1G1 + s2G2 = A + BH3(Ax0 , Bx0 , H1(T ), t) and in that case
the Agent sends to the Server the pair (h(T ), L) together with the triple
(s1, s2, H3(Ax0 , Bx0 , H1(T ), t)).

5. The Server sends KS to the User, encrypted using his private ticket T and the infor-
mation concerning the licence will be stored while the user is still using the service.

Theorem 2.2 With the above notation, the following equality holds

s1G1 + s2G2 = AH3(Ax0 , Bx0 , H1(T ), t) + B

Proof: Since I = uG1, A = s(I + G2) and B = x1G1 + x2G2, we get
s1G1 +s2G2 = (H3(Ax0 , Bx0 , H1(T ), t)us+x1)G1 +(H3(Ax0 , Bx0 , H1(T ), t)s+x2)G2 =

H3(Ax0 , Bx0 , H1(T ), t)usG1 + x1G1 + H3(Ax0 , Bx0 , H1(T ), t)sG2 + x2G2 =
H3(Ax0 , Bx0 , H1(T ), t)sI + H3(Ax0 , Bx0 , H1(T ), t)sG2 + x1G1 + x2G2 =
H3(Ax0 , Bx0 , H1(T ), t)s(I + G2) + B = AH3(Ax0 , Bx0 , H1(T ), t) + B �

Proposition 2.3 The above protocol avoids the use of a determined licence by two different
users simultaneously, protects and avoids the use of a stolen licence and the reuse of a
recorded message previously utilised to get a determined service.

Proof: Assume that a legal user shares all his private information, including the ticket,
the licence and every number generated throughout the protocol, and the copy is used to
authenticate (H1(T ), L) along with a different triple (s′1, s

′
2, H3(Ax0 , Bx0 , H1(T ), t′) while

someone else is logged in the system using the same (H1(T ), L) along with
(s1, s2, H3(Ax0 , Bx0 , H1(T ), t). Then the Server will detect that there is a double use of
the same licence and by computing u ≡q (s1 − s′1)(s2 − s′2)

−1, the Server will identify the
traitor given by I = uG1. Now considering that computing u from I involves solving the
elliptic logarithm, it is highly probable that the user identified by I has share his private
information to someone else.

Suppose now that an outsider records or steals a licence (H3(T ), L) in order to get the
service. Then the forger should know the private information u to generate s1 and s2. We
note that generating s1 and s2 such that verify Theorem 2.2 involves solving the elliptic
logarithm

s1G1 = AH3(Ax0 , Bx0 , H1(T ), t) + B − s2G2

�
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Proposition 2.4 The above protocol provides anonymity to the users.

Proof. This follows again by observing that identifying user I = uG1 requires solving an
elliptic logarithm even in case an attacker knows every number generated on step 4 for the
given licence (H1(T ), L). �
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Abstract

The HEVC is the very last video coding standard that significantly increases the
computing demands to encode video to reach the limits on compression efficiency. Our
interest is centered on applying parallel processing techniques to HEVC encoder in
order to significantly reduce the computational power demands without disturbing the
coding performance behavior. So, we propose several parallelization approaches to
the HEVC encoder which are well suited to multicore architectures. Our proposals
use OpenMP programming paradigm working at a coarse grain level parallelization we
call GOP-based level. GOP-based approaches encode simultaneously several groups of
consecutive frames. Depending on how these GOPs are conformed and distributed it is
critical to obtain good parallel performance, taking also into account the level of coding
performance degradation.

Key words: Parallel algorithms, video coding, HEVC, multicore, performance

1 Introduction

The new High Efficiency Video Coding (HEVC) standard has been recently developed by
the Joint Collaborative Team on Video Coding (JCT-VC) which was established by the
ISO/IEC Moving Picture Experts Group (MPEG) and ITU-T Video Coding Experts Group
(VCEG). This new standard will replace the current H.264/AVC [1] standard in order to
deal with nowadays and future multimedia market trends. 4K definition video content is a
nowadays fact and 8K definition video will not last to become a reality too. Furthermore,
the new standard supports high quality color depth at 8 and 10 bit. The HEVC standard
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aims to provide a doubling in coding efficiency with respect to the H.264/AVC High profile,
delivering the same video quality at half the bit rate.

Regarding complexity, HEVC decoder does not appear to be significantly different from
the H.264/AVC one [2]. However, HEVC encoder is expected to be several times more
complex than H.264/AVC encoder and will be a hot research topic in years to come. At the
time of developing this work, the current version of the reference software, called the HEVC
test model (HM), is HM 10.0 which corresponds to the HEVC text specification draft 10
[3]. A good overview of HEVC standard can be found in [4].

We can find in the literature several works about complexity analysis and parallelization
strategies for the emerging HEVC standard as in [5] [6] [7]. Most of the available HEVC
parallelization proposals are focused in the decoding side, looking for the most appropriate
parallel optimizations at the decoder that provide real-time decoding of High-Definition
(HD) and Ultra-High-Definition (UHD) video contents.

Currently, there are few works focused at the HEVC encoder. In [8] authors propose
a fine-grain parallel optimization in the motion estimation module of the HEVC encoder
allowing to perform the motion vector prediction in all prediction units (PUs) available at
the Coding Unit (CU) at the same time. In [9] authors propose a parallelization inside the
Intra prediction module that consist on removing data dependencies among subblocks of a
CU, obtaining interesting speed-up results.

In this paper we will analyze the available parallel strategies in the HEVC standard
and its viability over the HM reference software. Furthermore, we present a parallelization
alternative for the HEVC encoder which is specially suited for low delay encoding profiles.
Our proposal works at Group Of Pictures (GOP) processing level, following different parallel
GOP-based strategies and analyzing the overall behavior in terms of complexity reduction
and coding performance.

The remainder of this paper is organized as follows: In Section 2 an overview of the
available profiles in HEVC and common condition test are presented. Section 3 provides an
overview of the high-level parallelism strategies proposed in the HEVC standard. Section 4
presents the GOP-based parallel alternatives we propose for the low delay application profile,
while in Section 5 a comparison between the proposed parallel alternatives is presented.
Finally, in Section 6 some conclusions and future work are discussed.

2 HEVC profiles

In [10] the JCT-VC defines the common test conditions and software reference configurations
to be used for HEVC experiments. In that paper it can be found a series of settings in order
to evaluate HEVC video codec and to compare the different contributions made to it.

A total of 24 video sequences are specified, arranged in 6 classes. Also the Quantization
Parameter (QP) and the set of configuration files for the encoding process are detailed.
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Using these common conditions, makes easier to perform comparisons between innovative
proposals. JCT-VC also provides a spreadsheet to calculate Rate-Distortion (RD) curves
and the percentage of gain in bit rate, by using Bjontegaard-Delta (BD) measurements [11].

Classes from A to E include natural video sequences at diverse frame sizes. Class F
comprises sequences than contain synthetic video in part of them or in its whole. Two of
the sequences in class A have a bit depth of 10 bits and the rest of the sequences have a bit
depth of 8 bits. The frame rate of the sequences ranges from 20 to 60 fps.

It is indicated to code and decode test sequences to compare them with the anchors at
four QP values: 22, 27, 32, 37. For each of these points, bit rate and Peak Signal-to-Noise
Ratio (PSNR) are obtained. With these values, RD-curves can be drawn and by using cubic
interpolation or piecewise cubic interpolation, BD rate differences can be computed.

Configuration files are provided within reference software package [12]. There are 8
different test conditions which are a combination of 2 bit depths: Main (8 bits) and Main10
(10 bits) with 4 coding modes: All Intra (AI), Random Access (RA), Low-Delay B (LB),
and Low-Delay P (LP). When a sequence has a bit depth of 8 bits and we choose to code it
with one of the Main10 modes the coder converts each source sample value by multiplying
it by 4. If a sequence has a bit depth of 10 bits and we choose to code it with one of the
Main modes the coder converts every source sample by adding it 2 and dividing it by 4 in
order to clip it to the [0, 255] range.

In All Intra mode every frame is coded as an I-frame i.e. it is coded without any
motion estimation/compensation. So each frame is independent from the other frames in
the sequence. This mode gets lower compression rates (compared to the other 3 modes)
because P-frames and B-frames can usually obtain better compression rates than I-frames
at the same quality level. On the other hand, the coding process for All Intra mode is faster
than for the other 3 modes because no time is wasted in motion estimation. Every frame
is coded in rendering order. Applications that require a fast encoding process and are not
concerned about limited bandwidth or storage capacity, fit perfectly in this coding mode.

Random Access mode combines I-frames and B-frames. A B-frame is a frame that uses
motion estimation/compensation in order to achieve good compression rates. Each block
of a B-frame can use up to 2 reference frames, so in the coding process 2 lists of reference
pictures are maintained. The GOP (Group Of Pictures) size used is 8. Reference frames
can be located earlier or later than the frame we are currently coding. So, in this mode,
coding (and decoding) order is not the same as rendering order. So as to allow navigating
along the coded sequence (pointing to a certain moment) or to allow functions like fast
forward, an I-frame is inserted periodically. Depending on the frame rate of each sequence
the intra refresh period varies. We have a value of 16 for 20 fps, 24 for 24 fps, 32 for 30 fps,
48 for 50 fps, and 64 for 60 fps. The intra period is a multiple of 8 (the size of the GOP)
which inserts an I-frame approximately every second. Applications that do not have time
constraints (when coding a video sequence) and need features like the aforementioned fast
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forward, are the target applications of this coding mode.

Low-Delay modes (LP and LB) code each frame in rendering order. First an I-frame
is inserted in the coded bit stream and then only P-frames (or B-frames) are used for the
rest of the sequence. GOP size is 4. All the reference pictures are located earlier than the
current frame. This two modes achieve better compression performance than AI mode and
do not suffer from the delay that RA mode introduces. Applications like video-conference
which have bandwidth and time constraints can benefit from low delay modes.

3 HEVC high-level parallelism strategies

High-level parallel strategies may be classified in a hierarchical scheme depending on the
desired parallel grain size. This classification should carefully be applied taking into account
the available parallel hardware resources in order to perform the most adequate and efficient
implementation. So, we define from coarser to finer grain parallelism levels: GOP, tile,
slice, and wavefront. When designing a HEVC parallel version we first analyze the available
hardware where the parallel encoder will run, in order to determine which parallelism levels
are the most appropriate.

The coarsest parallelization level, GOP-based, is based on breaking the whole video
sequence in GOPs in such a way that the processing of each GOP is completely independent
from the other GOPs. In general, this approach will be the one that best parallel efficiency
should provide. However, depending on the way we define the GOPs structure and remove
the inter-GOP dependencies, the coding performance may be affected.

Tiles are used to split a picture horizontally and vertically into multiple sub pictures.
By using Tiles, prediction dependencies are broken just at Tile boundaries. Consecutive
tiles are represented in raster scan order. The scan order of Coding Tree Blocks (CTBs)
remains a raster scan. When splitting a picture horizontally, tiles may be used to reduce
line buffer sizes in an encoder, as it operates on regions narrower than a full picture. Tiles
also permit the composition of a picture from multiple rectangular sources that are encoded
independently.

Slices follow the same concept as in H.264/AVC allowing a picture to be partitioned into
groups of consecutive Coding Tree Units (CTUs) in raster scan order, each for transmission
in a separate network adaptation layer unit that may be parsed and decoded independently,
except for optional inter slice filtering. There is a break in prediction dependences at slices
boundaries, which causes a loss in coding efficiency. The use of slices is more concerned
with error resilience or maximum transmission unit size matching than a parallel coding
technique, although it has undoubtedly been exploited for this purpose in the past.

Wavefronts split a picture into CTU rows, where each CTU row may be processed
by a different thread. Dependences between rows are maintained except for the CABAC
[13] context state, which is reinitialized at the beginning of each CTU row. To improve
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the compression efficiency, rather than performing a normal CABAC reinitialization, the
context state is inherited from the second CTU of the previous row.

All high-level parallelization tools become more useful with image sizes growing beyond
HD for both encoder and decoder. At small image sizes where real-time decoding in a
single-threaded manner is possible, the overhead associated with parallelization might be
too high for there to be any meaningful benefit. For large image sizes it might be useful to
enforce a minimum number of picture partitions to guarantee a minimum level of parallelism
for the decoder.

Current HM reference software does not directly support most of the high-level par-
allelism approaches mainly due to its implementation design. In the next section we will
present several GOP-based parallelization approaches that may be implemented in cluster-
based or multicore-based hardware architectures.

4 Parallel algorithms

In previous sections we have reviewed the main features of the HEVC video compression
standard. We have parallelized the HEVC reference software using LB and AI modes, both
of them combined with Main profile (bit depth of 8 bits). This two modes are useful for
applications that have time constraints, so we think they can benefit from parallelization
strategies. Obviously, this work can be easily extended to use Low-Delay P mode. But this
is not true for Random-Access mode due to the way it uses reference frames. In particular,
Random-Access mode uses both past and future frames as reference pictures so dependencies
between frames are tighter than in the two evaluated modes.

The developed parallel algorithms are designed at GOP-based parallelization level. First
of all, note that in AI mode the GOP size is 1, because all frames are computed as I-frames
(no reference frames are used at all). In LB mode the GOP size used is 4, however this value
could be changed. On the other hand, we have considered synchronous algorithms where
the synchronization process is performed after the GOP computation. We have developed
four parallel approaches:

• Option I: (LB) in this option we sequentially assign each GOP to one process in the
parallel execution, so processes will encode isolated GOPs.

• Option II: (LB) in this approach we divide the sequence in as many parts as the
number of parallel processes, so that each process will encode a block of adjacent
GOPs.

• Option III: (LB) similar to Option II, except that each process begins the coding by
inserting an I-frame.
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Figure 1: Option I: Parallel distribution.
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Figure 2: Option II: Parallel distribution.

• Option IV: (AI) similar to Option I where each GOP is sequentially assigned to a
process, but here a GOP consists of only one I-frame.

Figure 1 shows the parallel distribution performed when Option I is used. Note that
the synchronization processes are located after each GOP. The root process (Proc. 0 or
P0) computes the first frame as an I-frame. After that, all processes encode a GOP of 4 B-
frames. All processes, except the root process, encode their first B-frame without reference
pictures, therefore the number of bits needed to encode this first B-frame is similar to the
number of bits needed to encode an I-frame.

In order to increase the performance of the proposed parallel algorithms, each process
will have its own working buffers. This fact changes the real pattern of the reference pictures
used. For instance, in sequential processing the second B-frame of a GOP uses frames -1

-2 -6 -10 as reference pictures (-1 means the previous frame, and so on). As the GOP
size is 4, frame -2 points to the last frame of the previous GOP (the frame two positions
before the current frame in the original video sequence). In parallel processing, as we assign
isolated GOPs to each process, the previous GOP is not the previous adjacent GOP in the
original video sequence and therefore frame -2 will not point to the frame two positions
before the current frame. If, for instance, the number of processes is 6, then the previous
GOP for this process will be located in the video sequence 6 GOPs away from the current
GOP. So for the second B-frame of a GOP, the reference picture -2 will point to frame -22

(-2-(6-1)x4=-22) in the original video sequence. We can conclude that both parallel and
sequential algorithms will produce different bit streams. We will analyze, in Section 5, the
impact of this fact in terms of PSNR and bit rate.

In Figure 2 we can see a representation of the Option II parallel distribution. As in
Option I, the synchronization processes are located after each GOP. Then, all processes,
except the root process, encode their first B-frame without reference pictures. Note that the
root process encodes the first I-frame. In this case the reference pictures are not significantly
disturbed, because each process works with a group of adjacent GOPs. In the previous
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Figure 3: Option III: Parallel distribution.
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Figure 4: Option IV: Parallel distribution.

example, for the second frame of the GOP, the pattern is only altered for the first three
GOPs. From this point onward all reference pictures needed are available in the private
working buffer of each process.

Figure 3 shows the parallel distribution of Option III, where the parallel structure is
similar to Option II. Here each process starts the encoding procedure computing the first
frame as an I-frame. In this case, the parallel and sequential executions can be exactly the
same if in the sequential execution we perform a slight change in the standard configuration.

In order to get the same bit stream with both the parallel and sequential algorithms we
must change the IntraPeriod parameter according to the number of processes of the parallel
execution. Table 1 shows the value of the IntraPeriod parameter when we compute 240
and 480 frames. Moreover the I-frame included must be an IDR (Instantaneous Decoding
Refresh), so we set the DecodingRefreshType parameter equal to 2.

Finally, in Figure 4 the parallel distribution for Option IV is shown. Note that the
parallel structure is similar to the parallel structure of Option I, but the GOP always
consists of one I-frame. Moreover the I-frames are IDRs, therefore there are no differences
between the parallel and the sequential execution.

Number of Processes 240 frames 480 frames
2 120 240
4 60 120
6 40 80
8 30 60
10 24 48
12 20 40

Table 1: Option III: IntraPeriod parameter to match sequential and parallel execution.
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(a) Option I. (b) Option II.

(c) Option III. (d) Option IV.

Figure 5: Computational times for the parallel algorithms. 120, 240 and 480 frames.

5 Numerical experiments

We will analyze the parallel algorithms described in Section 4, in terms of parallel per-
formance, PSNR and bit rate. First of all, we have used the OpenMP [14] programming
paradigm.

The multicore platform used is a HP Proliant SL390 G7 with two Intel Xeon X5660,
each CPU with six cores at 2.8 GHz, therefore the experiments reported use up to 12
processes. The testing video sequence used is BasketballPass 416x240.yuv, and disposes of
500 frames at 50Hz with a frame size equal to 416x240 pixels. We have run the parallel
algorithms encoding 120, 240 and 480 frames and low delay mode. Note that the low delay
profile sets the GOP size equal to 4, computes only the first frame as I-frame and the value
of quantization parameter (QP) is equal to 32.

In Figure 5 we present the computation times for Option I, Option II, Option III, and
Option IV parallel algorithms. The results show good parallel behavior in all cases. On the
other hand, when using just 1 process, all the proposed algorithms show the same timings
than the ones obtained with the sequential version. Respect to Option IV, the reference
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(a) Option I. (b) Option II.

(c) Option III. (d) Option IV.

Figure 6: Efficiency for the parallel algorithms. 120, 240 and 480 frames.

sequential execution is not the same, as we are using AI mode configuration.

Figure 6 shows the efficiency associated to the results shown in Figure 5. This figure
confirms the good behavior of the proposed parallel algorithms, obtaining nearly ideal effi-
ciencies in some cases, and above 0.85 in most of the performed experiments. We want to
remark that Option IV obtains an average efficiency greater than 0.95.

As it was said in Section 4, the parallel versions do not provide the same results than
the ones produced by the sequential algorithm. So, in Figure 7 we show how parallel
versions modify the sequential version bit rate. It is important to remark that Figure 7
shows results for Option I, II and III, but not for Option IV, because in the last case the
parallel and sequential versions exhibit the same bit rate. Furthermore, we can observe that
the bit rate increase introduced by Option I algorithm is not acceptable. This algorithm
drastically changes the structure of the reference pictures, and as a consequence it causes
the large bit rate increase shown in Figure 7. In all cases the bit rate increase becomes
larger as the number of processes does. Note that the first frames of each process are
encoded without reference frames, lineally increasing the bit rate as the number of processes
increases. Finally, the bit rate increase is greater in Option III, because the initial I-frame
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Figure 7: Percentage of bit rate increase for the parallel algorithms. 480 frames.

Figure 8: Speed-up for Option III parallel algorithms. 480 frames.

is encoded with higher quality than the initial B-frame in Option II algorithm, as specified
in the low delay profile configuration.

Table 2 shows the PSNR data, i.e. a quality measurement, for the parallel algorithms
II and III. We can observe that using Option II algorithm the quality of the encoded video
decreases, although, in Figure 7, we have showed that the bit rate increases. In contrast, the
bit rate increase for Option III algorithm showed in Figure 7 is compensated by a quality
increase as can be seen in Table 2.

Finally, we modify the low delay profile configuration in order to obtain the same PSNR
and bit rate results with both parallel and sequential versions of Option III algorithm. Fig-
ure 8 shows as Speed-up NON EQUIV the speed-up when parallel and sequential algorithms
obtain slightly different results, and as Speed-up EQUIV the speed-up when they provide
equivalent executions. We can conclude that the proposed Option III algorithm obtains
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Algorithms 1 Proc 2 Proc 4 Proc 6 Proc 8 Proc 10 Proc 12 Proc

Option II 33.23 33.23 33.20 33.18 33.17 33.16 33.15
Option III 33.23 33.26 33.31 33.35 33.39 33.44 33.47

Table 2: Luminance PSNRs (dB) for parallel algorithms. 480 frames.

good efficiencies in the range of 0.80 (worst case) to 0.91.

6 Conclusions

In this paper we have proposed several parallel algorithms of the HEVC video encoder.
These algorithms are based on a coarser grain parallelization approach with the organization
of video frames in GOPs and different GOP process allocation schemes. They are specially
suited for multicore architectures. After implementing the algorithms in the HEVC software
under low delay mode, some experiments were performed showing interesting results as
(a) GOP organization determines the final coding performance, being the best approach
the Option IV (AI mode) when comparing both sequential and parallel versions in terms
of speed-up/efficiency, and (b) Although the Option III algorithm introduces a bit rate
overhead as the number of processes increase, the overall parallel performance and the
improvements in PSNR make it a good approach when LB coding mode is demanded.In
general, all proposed versions attain high parallel efficiency results, showing that GOP-
based parallelization approaches should be taken into account to reduce the HEVC video
encoding complexity. As future work, we will explore hierarchical parallelization approaches
combining GOP-based approaches with slice and wavefront parallelization levels.
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Abstract

One of the main problems in celestial mechanics is the study of the motion of the
planets in the solar system. To solve this problem numerical, semi-analytical and a-
nalytical methods can be used. This paper is focused on the study of semi-analytical
theories, these theories involve the use of the Fourier Poisson series developments de-
pending on entire combinations of the anomalies. Poisson series involve two problems
one the slow convergence rate when the eccentricities or mutual inclination of orbirs are
not small and the presence of small denominators in the integration process that can
induce great inequalities. In this paper we show that the use of an appropriate anomaly
in the genelalized Sundman family con improve the convergence rate and the value of
the great inequalities.

Key words: Celestial Mechanics. Planetary Theories. Algorithms. Orbital Mechan-

ics. Perturbation Theory. Computational Algebra.

MSC 2000: 70F05, 70F10, 70F15,70M20.

1 Introduction

One of the main problems in celestial mechanics is the study of the motion of the main bo-
dies of the solar system. Its solutions are the so-called planetary theories. To obtain these
solutions there are three main procedures: numerical methods, based on the integration by
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the appropriate numerical methods of the differential equation of the motion; the analytical
ones, based on the literal expansion of the second member of the Lagrange planetary equa-
tions [10], [14] and the semi-analytical theories, based on the use of numerical values for the
amplitude coefficients of developments and literal values for the anomalies. The second and
third ways are based on the integration of the differential equations through the solution of
the well known two body problem and using the perturbation theory.

To integrate these differential equations using analytical or semi-analytical methods
it is necessary to develop the second member of Lagrange planetary equations as Fourier
series of the anomalies. Classical methods use the mean anomaly (or mean longitude) of
the planets as temporal variables.

In the year 1977 Nacozy [13], in order to improve the performance of the numerical
methods, introduces the intermediate anomaly as an extension of the Sundman transfor-
mation dt = Crαdτ defined by Ψα = Ψα(M), where Ψα(M) satisfies that Ψα(M) is a 2π
periodic function of M , dΨα

dM > 0, Ψα(−M) = −Ψα(M), Ψα(0) = 0, Ψα(2π) = 2π. This
family includes the mean (α = 0), eccentric (α = 1), true (α = 2) and intermediate (α = 3

2 )
anomalies.

The analytical properties of the generalized Sundman anomalies have been studied by
Lopez [12], these proprerties include

Ψα = M +
∞
∑

s=0

Ψs(e, α) sin sM (1)

the Kepler equation obtained through the use of the Deprit algorithm [6].

M = Ψα +
∞
∑

s=1

Hs(e,α ) sin sΨα (2)

and the developments of the quantities r, sinV and cos V where r is the vector radius, and
V the true anomaly.

2 Integration of the Lagrange equations

To integrate the Lagrange planetary equations by semi-analytical methods it is necessary
to develop the second member of the planetary equations as Fourier series of the selected
anomalies [1],[7],[3],[10]. To obtain these developments the main problem is to develop the
inverse of the distance between two planets. For this purpose we can use the Kovalevsky
iteration algorithm [9], [5]

(

1

△

)

k+1

=
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where △ is the distance between the two planets.

The quantity △2 can be computed using the developments of r, sinV , cos V with great
accuracy.

An appropriate first approximation for the inverse of the distance is given by

1

△0

=
1

a′



b
(0)
1/2 +

∞
∑

j=1

b
(j)
1/2(α) cos j(λ − λ′)



 (4)

where b
(j)
s are the Laplace coefficients [14], and λ, λ′ the mean longitudes of the planets.

The use of the Kovalewsky algorithm produces a development

1

△
=

∑

k1,k2

[Ak1,k2 cos(k1Ψ1 + k2Ψ2) +Bk1,k2 sin(k1Ψ1 + k2Ψ2)] (5)

and from them the osculating elements σ satisfies

σ̇ =
∑

k1,k2

[Sk1,k2 cos(k1Ψ1 + k2Ψ2) +Rk1,k2 sin(k1Ψ1 + k2Ψ2)] (6)

To integrate with respect of t each term of the series using the generalized Sundman
anomalies Ψ1, Ψ2 of two planests as temporal variables we can proceed as [11].

To handle with this developments a new C++ Poisson series processor poisson.h has
been developed. A Poisson series processor is a especialised software package to manage
aritmethic, and functional operations with Poisson series [8],[4].

3 Concluding Remarks

The use of appropriate anomalies in the generalized Sundman family can improve the con-
vergence rate of the Poisson series developments of the osculating elements of the bodies,
especially if the eccentricities are not small.

In the case of the small denominators, the value of the induced great inequalities can
be decreased using an aprorpiate value of the parameters α in the generalized Sundman
family.
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Abstract

In this work, we present an efficient algorithm that performs the refinement of 3D
meshes composed of triangular facets. Each original facet is subdivided into four new
ones and this process may be repeated iteratively as many times as necessary in order
to obtain the desired level of refinement. The method is based on an octree spatial
subdivision with Z-ordering (also known as Gray encoding) that facilitates the task
of avoiding the insertion of duplicated vertices. The computational complexity of the
developed solution is O(N) in terms of time. Moreover, in order to reduce the memory
usage (which may be a limiting factor), we use linked lists to store the vertices in each
octree box. Finally, we show some results that demonstrate the low runtime and the
moderate memory consumption of our solution. Thus, this method is ideal to produce
the meshes composed of millions (or even billions) of facets that the most challenging
scattering problems require.

Key words: mesh refinement, octrees, algorithmic efficiency

1 Introduction

In the field of acoustic and electromagnetic scattering, it is of great interest to analyze
realistic objets in a wide range of frequencies. The increasing efficiency of the techniques
that compute the scattered field [1, 2, 3] is widening its range of application to big size
objects [4, 5].
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By means of methods such as the Boundary Elements Method (BEM) [6] or the Method
of Moments (MoM) [7] it is possible to numerically solve the scattering problem. In order
to obtain accurate results, the BEM and MoM require between 6 and 10 basis functions
(or elements) per linear wavelength. As a consequence, the analysis of big objects may
require geometrical meshes with a huge number of facets that may need more than one
billion unknowns for the biggest problems analyzed until the moment [5].

In this work, we present an algorithm whose goal is the efficient refinement of 3D surface
meshes composed of triangular facets. The algorithm proceeds iteratively subdividing, in
each iteration, every facet of the original mesh into four new ones until the desired level of
refinement is gotten. The algorithm guarantees that no duplicated vertices are inserted on
the new mesh. In this manner, the target geometry has a lower memory footprint and the
possibility of BEM (MoM) numerical instabilities caused by repeated facets is eluded. The
presented algorithm relies on the use of octree [8] structures to efficiently avoid the insertion
of repeated nodes. Among different types of mesh subdivision algorithms, our algorithm
pertains to the category of vertex insertion [9], in a similar manner as the Butterfly scheme
presented in [10].

This paper is organized as follows. Section 2 presents a brief summary of the theory
associated to tree structures in d dimensions, 2d-trees. In Section 3, we explain the algorithm
that we have developed for mesh subdivision. In Section 4, some results of the computational
cost of the algorithm are shown. Finally, some conclusions are presented in Section 5.

2 2d-trees theory review

In this Section, we describe the fundamental aspects related to the 2d-tree structures [8]
that result more relevant in the development of the presented algorithm. A 2d-tree structure
is a type of space subdivision1 that may be used to group the facets of a mesh within that
space. Although we apply the 2d-tree structures to 3D problems, this review is developed
for a general d. This does not complicate the algebra so much and it allows us to use 2D
examples (d = 2, or quadtree structure) which eases its representation.

The first step consists on enclosing the geometry under study on a box, that is assigned
the level 0. Afterwards, the 0 level box, noted parent box, is subdivided into 2d equal size
boxes whose sides have a length that is half of its parent box. All these boxes are assigned to
level 1, and are called children boxes respect to the level 0 box. This process of subdivision
may be repeated as many times as necessary (see recursive division on Figure 1). Two boxes
are called neighbors when they share at least one point.

1Note that d is the dimension of the space.
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2.1 2d-tree numbering

In the level l of a 2d-tree, there are 2dl boxes, each of which is assigned an index n =
0, 1, . . . , 2dl − 1. Therefore, every box may be characterized by the pair (n, l) (also called
universal number [8]). It is also possible to identify each box by another number that is
more adequate for the calculations that must be performed. Every box is associated to a set
of l numbers in the form (N1, N2, . . . , Nl), being Nj the index of the box at j level. This set
is known as string number [8]. Finally, the string number may be mapped to the universal
number by means of the following expression:

n = (2d)l−1N1 + (2d)l−2N2 + . . . + (2d)Nl−1 + Nl . (1)

In Figure 1, a quadtree numbering example is represented. According to equation (2.1),
the red box has the string number (2, 3, 1) and universal number (45, 3).

1 3

20

1 3

20

1 3

20

1 3

20

1 3

20

1 3

20

1 3

20

1 3

20

1 3

20

1 3

20

1 3

20

1 3

20

1 3

20

1 3

20

1 3

20

1 3

20

3

2

3

2

1

0

1

0

1

0

1

0

3

2

3

2

1

0

3

2

0

Figure 1: Hierarchical numbering for a quadtree.

2.2 2d-tree generation

During the process of the 2d-tree generation, it is necessary to map the 0 level box to a
reference box (coordinate normalization). In this manner, if the coordinates of any point of
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the geometry are given by r = (x1, x2, . . . , xd), the normalized coordinates become:

r̃ = (x̃1, x̃2, . . . , x̃d) = 2Ltree

(
r − rmin

D

)
, (2)

where D is the biggest geometry size, Ltree is the highest 2d-tree subdivision level, and rmin

is the vertex coordinate of 0 level box that is closest to the origin of coordinates.

Finally, each point of the geometry may be represented by the string number of the
group it pertains to, just by applying an interleaving process [8] to the binary representation
of the normalized coordinates.

3 Efficient mesh refinement algorithm

The method presented in this work operates in an iterative manner in order to refine meshes.
A 3D mesh, composed of triangular facets, inputs the algorithm and, throughout the itera-
tive execution, it produces a new set of meshes. After each iteration, every original triangle
is divided into four new ones that are obtained by connecting the midpoints of each side, as
shown in Figure 2. Thus, the number of facets that form each new mesh may be calculated
as follows:

fout = 4i · fin, (3)

where i is the iteration number, fin is the number of facets of the original input mesh, and
fout is the number of facets of the output mesh in the ith iteration.

(a) Iteration 0. (b) Iteration 1.

Figure 2: Simplified example. Arabic numerals are used to identify vertices whereas roman
numerals are used to enumerate facets.(a) Input mesh. (b) Output mesh.

At the beginning of every iteration, two different files are read. The first file is the
facets file, which defines every triangle by means of three vertex indices. The second file
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is the vertices file, which contains the three coordinates of each vertex. Table 1 shows the
facets and vertices files corresponding to the geometry of Figure 2(b).

Table 1: facets and vertices files in the iteration 1 (related to Figure 2)

F (facets file) V (vertices file)
f1 : v1 v5 v6 v1 : x1 y1 z1
f2 : v5 v7 v6 v2 : x2 y2 z2
f3 : v5 v2 v7 v3 : x3 y3 z3
f4 : v6 v7 v3 v4 : x4 y4 z4
f5 : v2 v8 v7 v5 : x5 y5 z5
f6 : v7 v8 v9 v6 : x6 y6 z6
f7 : v8 v4 v9 v7 : x7 y7 z7
f8 : v7 v9 v3 v8 : x8 y8 z8

v9 : x9 y9 z9

Once the files that define the mesh have been loaded, the refinement process begins. For
every facet of the previous iteration, its three original vertices are preserved. In addition,
three new vertices are created. These new vertices are the midpoints of each side in the
original facet (see Figure 2). Then, the six vertices related to the previous facet produce
four new facets that are created by connecting the midpoints of each side (see Figure 2).
Thus, the new vertices file will contain the previous vertices and the new ones, but the new
facets file will only contain the new facets (see Figure 2 and Table 1).

All the process described in the above paragraph would be straightforward if there were
no duplicated vertices. But, in a closed surface, each new vertex belongs to two different
facets. For example, in Figure 2(b) it is showed that the vertex 7 belongs to the facets I and
II of the previous iteration (Figure 2(a)). In order to avoid duplicated vertices, we use two
different data structures: octrees and linked lists. Every time a new vertex (a midpoint of a
previous facet side) is going to be included in the vertices file, the algorithm checks whether
it is new or duplicated. First, the octree box that encloses the new vertex is calculated.
Then, the algorithm accesses to the linked list associated to that box (using the box number
as an index). Thus, the search for a duplicate is confined to a single octree box instead of
the whole mesh. If the vertex was present in the list, that would mean the new vertex is a
duplicate and it would be discarded. If the vertex was not in the list, then the new vertex
is inserted in the list and it is also written in the vertices file. Once the algorithm has the
indices of the correct vertices, the new facets are generated and then written to the facets
file.

In order to achieve a time cost of O(N) per iteration (where N is the number of facets
of the current mesh), the search for a duplicated vertex in its associated list must be of
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O(1). This requirement is satisfied whenever the maximum number of vertices per list is
constant. Because of this, the octree box size must be carefully chosen. Furthermore, the
side of the octree boxes is halved (i.e, the octree level is increased) every iteration in order
to keep constant the maximum number of vertices per list.

The use of an array of linked lists to store the vertices in each octree box allows to keep
a low memory footprint, since only non-empty boxes take up space. Moreover, since the
vertices are added to the list as needed, we avoid the usage of preallocated memory prior
to knowing the exact number of vertices per list.

4 Results

To obtain the results presented in this section, we used a workstation that consists of 1 CPU
(Intel Core i7-3820 with 4 cores at 3.6 GHz) and 64 GB of RAM. The source code is written
in C and was compiled using Intel icc 12.1. It is also worth noting that the implementation
is fully sequential and based on single-precision arithmetic.

The first example is a mesh of a sphere with 1 000 988 triangular facets. The input
mesh is refined 5 times in order to obtain a set of meshes, each one with 4x the number of
facets of the previous one. Table 2 shows the runtime and the memory consumption for this
example. It should be noted that the runtime is the wall time (including the refinement
process and I/O). The algorithm is able to generate a mesh with a billion facets in about 5
minutes and using only 28 GB of RAM.

Table 2: Runtime and memory consumption using a sphere.

Input: mesh with 1 000 988 triangular facets (� 4 m sphere)

Iteration facets Octree boxes Runtime [s] RAM usage [GB]

1 4 003 952 218 1.2 0.1

2 16 015 808 221 4.6 0.4

3 64 063 232 224 19.7 1.7

4 256 252 928 227 77.1 7.1

5 1 025 011 712 230 317.3 28.0

The second example is a mesh of a full-scale Airbus A380 airplane with 1 009 392 tri-
angular facets. The input mesh is also refined 5 times in order to obtain a set of high
resolution meshes. As shown in Table 3, in this case the algorithm is able to generate a
mesh with a billion facets in about 8 minutes and using only 26 GB of RAM.
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Table 3: Runtime and memory consumption for an Airbus A380 airplane.

Input: mesh with 1 009 392 triangular facets (full-scale airplane)

Iteration facets Octree boxes Runtime [s] RAM usage [GB]

1 4 037 568 218 5.4 0.1

2 16 150 272 221 10.9 0.4

3 64 601 088 224 34.3 1.7

4 258 404 352 227 124.3 6.6

5 1 033 617 408 230 484.2 26.0

5 Conclusions

In this work, we present an algorithm based on the octree theory that efficiently performs the
refinement of 3D meshes. The developed solution has a time complexity of O(N) and enables
obtaining meshes with a billion facets within minutes using a workstation. Additionally,
its iterative operation is ideal for scattering problems, since the algorithm produces sets of
meshes of the same object, which allows the analysis of the object at different frequencies.
As a result, the developed solution has a great applicability on the field of acoustic and
electromagnetic scattering.
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Abstract

In this work, we present an efficient tool, implemented in CUDA, that computes the
scattered noise by an object over whose surface the pressure distribution and its nor-
mal derivative are known. The method essentially implements a Matrix-Vector Product
where the matrix elements are calculated on the fly in order to keep a low memory foot-
print. Our implementation is tested using two different GPU architectures (Fermi and
Kepler) and we achieve a reduction of an order of magnitude in the runtime compared
to our reference OpenMP codes. As a result, the use of the presented implementation
together with an efficient computation of the acoustic field over the obstacle surface
enables a powerful tool for noise control applications.

Key words: heterogeneous, acoustic scattering, MVP, CUDA, OpenMP

1 Introduction

Nowadays, acoustic scattering is a topic of major concern for the industry. Scattering pre-
diction applications are, among others, the simulation of the acoustic behavior of industrial
products, such as aircrafts. Scattering simulations allow to predict the acoustic behavior
of a product in early stages of the design phase in contrast to the traditional try and error
prototyping methodology.

The solution of the scattering problem may be carried out in two steps: i) computation
of the acoustic field (pressure and its normal derivative) over the obstacle surface, and
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ii) calculation of the pressure at any point outside of the obstacle from the previously
calculated acoustic field on its surface.

The Boundary Elements Method (BEM) [1] provides an accurate numerical formulation
of this type of problems. Nonetheless, the BEM solution of the scattering problem may be
very expensive from a computational viewpoint. The first step requires to solve a linear sys-
tem with N equations and N unknowns. Efficient solvers based on spectral representations
on the κ-space —Fast Multipole Method (FMM) [2] and its Multilevel counterpart [3]— may
reduce the solution complexity up to O(N log(N)) per iteration. In addition, the compu-
tation of the noise scattered by the aircraft over a surrounding wide region may be very
computationally demanding, since it requires a Matrix-Vector Product (MVP) where the
matrix size is proportional to the discretization of the obstacle times the noise observation
points.

For its part, hardware accelerators may help in the reduction of the run time of de-
manding problems. Especially, the Graphics Processing Units (GPUs) may provide large
speedups in those compute-intensive algorithms that have a high degree of parallelism [4].
Since similar MVPs are proved to be prone to parallelization [5, 6], the second step in the
solution of the scattering problem seems to fulfill the requirements to exploit the massively
parallel architecture of modern GPUs.

This work actually complements the ones presented by the authors in [7, 8] where
an efficient GPU solver for computing the acoustic field over the obstacle surface (the
above mentioned first step) was presented. BEM is used to model numerically the physical
problem.

2 Developed solution using CUDA

In this work, we tackle a MVP whose computational complexity is of O(NM) in terms of
time, where N is the number of source points and M is the number of observation points.
Moreover, when analyzing the noise generated by a real-scale object —such as an aircraft—
on a plane with a meaningful area, M and N may be on the order of millions. Thus,
the N ×M matrix that relates the source points and the observation points may be huge.
Because of this, the MVP should not be performed in the usual way, but calculating the
matrix elements on the fly in order to minimize the memory footprint.

Prior to develop the CUDA [9] algorithm, we chose to begin with a simpler parallel
approach. The algorithm that we have used as a starting point is based on the OpenMP
parallel for construct [10]. In this algorithm, each thread only deals with the vector and a
single matrix row at a time, thus calculating a single element of the solution vector (scattered
pressure on the observation points). In this manner, we have a parallel algorithm that is
suitable for shared memory systems and does not require large amounts of RAM.

Nevertheless, the number of parallel tasks of the above-mentioned solution is not suffi-
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cient for many-core architectures like GPUs. Thus, the chosen approach to deal with GPUs
had to be different, in order to turn the original MVP into thousands of sub-problems that
may be computed concurrently.

The calculation of the MVP is accomplished in such a way that matrix rows are assigned
to CUDA thread blocks [9] and the elements within a row are assigned to those threads within
the same block. Moreover, the assignment is performed in a cyclic fashion, since M and N
may be much larger than the grid size and the block size [9], respectively.

First, each thread computes its matrix element on the fly —thus avoiding the storage
of the matrix in global memory. After that, each thread multiplies its matrix element and
its vector element and stores the result in a register. Finally, in order to obtain the MVP,
all the threads within the same block add its partial results by performing a reduction in
shared memory [9].

Table 1 shows the kernel execution parameters when compiling for Fermi and Kepler
architectures. The occupancy has been calculated using the occupancy calculator that is
part of the CUDA toolkit and has been verified by means of the NVIDIA Visual Profiler.
The parameters shown below are the ones that delivered the best performance throughout
our tests.

Table 1: CUDA kernel execution parameters for both Fermi and Kepler architectures.

Common parameters

Registers per thread 26

Shared memory per block 2 KB

Grid size ∗ block size 8192 ∗ 256

Shared memory : L1 cache ratio 16 KB : 48 KB

Fermi architecture

Compute capability 2.1

Multiprocessor occupancy 67 %

Kepler architecture

Compute capability 3.0

Multiprocessor occupancy 100 %

3 Results

In order to obtain the results presented in this work, we used two workstations with differ-
ent GPU architectures. The first workstation consists of 1 CPU (Intel Core i5-2500T with
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4 cores at 2.3 GHz), 16 GB of RAM, and 1 NVIDIA Fermi GPUs (GTX 560 with 336 cores
at 1.62 GHz). The second workstation consists of 1 CPU (Intel Core i7-3820 with 4 cores /
8 threads at 3.6 GHz), 64 GB of RAM, and 1 NVIDIA Kepler GPU (GTX 680 with 1536 cores
at 1.07 GHz). The source code is written in C and CUDA C, and was compiled using Intel
icc 12.1 and NVIDIA CUDA compilation tools 4.2, respectively. It is also worth noting that
single-precision arithmetic was used in all cases.

In this section, we analyze the noise generated by a real-scale aircraft model (Airbus
A300 series) at a frequency of 1 kHz. The mesh that is used to represent the aircraft consists
of 1009392 triangular facets (N = 1009392) and has been generated to model the geometry
using approximately six elements per linear wavelength. First, we calculated the acoustic
field over the aircraft surface by means of the tool presented in [8]. Then, we calculated the
acoustic field on a plane at z=0 m (beneath the aircraft) by using the tool presented in this
work. The dimensions of the observation plane are 80.07 m × 80.07 m, with a resolution of
four elements per linear wavelength (M = 889249). Figure 1 shows the magnitude of the
total pressure on the observation plane when the engines (noise sources) are placed beneath
the wing.

Figure 1: Magnitude of the total pressure on a plane at z = 0 m (beneath the aircraft).
Engines placed beneath the wing. Frequency: 1 kHz.

Table 2 shows a comparison between the OpenMP implementation and the CUDA
implementation using the first workstation (Fermi architecture). It should be noted that the
incident field calculation is not much demanding, so we decided to perform this computation

c©CMMSE ISBN: 978-84-616-2723-3Page 961 of 1797
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Table 2: CPU implementation (OpenMP) vs GPU implementation (CUDA) using the first
workstation.

Workstation with Fermi GPU

Problem size: N = 1009392, M = 889249

OpenMP

Incident field calculation time 0.03 s

Scattered field calculation time 2069.96 s

Overall runtime 2070.63 s

CUDA

Incident field calculation time 0.03 s

Scattered field calculation time 308.09 s

Overall runtime 309.62 s

using the CPU. On the other hand, it is noticeable that the scattered field calculation —the
MVP whose computational complexity is of O(NM)— is much more demanding. Using a
mid-range Fermi GPU (GTX 560), the CUDA implementation achieves a speedup of 6.7x
when compared to the OpenMP parallel algorithm.

Table 3: CPU implementation (OpenMP) vs GPU implementation (CUDA) using the sec-
ond workstation.

Workstation with Kepler GPU

Problem size: N = 1009392, M = 889249

OpenMP

Incident field calculation time 0.05 s

Scattered field calculation time 1162.60 s

Overall runtime 1163.86 s

CUDA

Incident field calculation time 0.05 s

Scattered field calculation time 112.56 s

Overall runtime 113.52 s

Table 3 also shows a comparison between the OpenMP implementation and the CUDA
implementation, but this time making use of the second workstation (Kepler architecture).
Using a NVIDIA GTX 680, the CUDA solution is 10.3 times faster than the OpenMP
solution.
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It is also worth noting the advantage of calculating the matrix elements on the fly. For
this problem, the storage of the matrix that relates the source points and the observation
points would require at least 6.5 TB of RAM (assuming 8-byte complex numbers are used).

4 Conclusions

In this work, a method for computing the scattered acoustic pressure using GPUs is pre-
sented. We test our implementation using two different GPU architectures. Using a mid-
range Fermi GPU, the presented solution achieves a speedup of 6.7x when compared to
our own parallel algorithm for CPUs. In addition, the CUDA implementation allows re-
ducing the runtime in an order of magnitude with a Kepler card compared to the reference
OpenMP implementation. As a result, we get a tool for acoustic-scattering prediction that
clearly surpasses the performance of our parallel algorithm for CPUs, thus allowing the
accomplishment of accurate and more efficient analyses in noise control applications.
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Mart́ınez-Álvarez and F. Las-Heras, Fast antenna characterization using the
sources reconstruction method on graphics processors, Prog. Electromagn. Res. 126
(2012) 185–201.
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Ayestarán and F. Las-Heras, A multi-gpu sources reconstruction method for imag-
ing applications, Prog. Electromagn. Res. 136 (2013) 703–724.
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Abstract

Modern systems present complex memory hierarchies and heterogeneity among cores
and processors. As a consequence, efficient programming is challenging. An easy-to-
understand performance model, offering guidelines and information about the behaviour
of a code, may be useful to alleviate these issue. In this paper, we present a new model,
the Dynamic Roofline Model, an extension of the well known Berkeley Roofline Model.
The aim is to take into consideration the complexities of multicore and heterogeneous
systems, to understand their influence in the performance of a code when it is executed
in a particular system. A set of tools to obtain and represent the model have been
implemented. Different views are displayed by the tool that can be used to extract
the main features of the code. Results of studying the NAS Parallel Benchmarks for
OpenMP with these tools using the Dynamic Roofline Model are presented.

Key words: Roofline Model, Performance, Hardware Counters, PEBS, NPB.

1 Introduction

For a parallel code to be correctly and efficiently executed, its programming must be careful.
Taking into account architectural features, particularly the behaviour of memory accesses,
is critical to improve locality among accesses and affinity between data and processors.
Performance bottlenecks can be identified by collecting data related to how an application
or system performs. This collection is known as performance monitoring. Characterising
the nature and cause of the bottlenecks using this information allows us to understand
reasons why a program behaves in a particular way. Some performance issues in which this
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information is important are, among others, data locality or load balancing. Characterising
them may help lead to a performance improvement [1].

In order to help programmers to understand the performance of their codes in a particu-
lar system various performance models have been proposed. In particular Berkeley Roofline
Model [2] (RM) offers a nice balance between simplicity and descriptivism. Nevertheless, its
own simplicity might hide some performance bottlenecks present in modern architectures.
In this paper, an extension to the RM is presented. The RM is extended taking different
measurements during the life of an application, in order to show the evolution of different
phases on the execution. We call this model the Dynamic Roofline Model (DyRM), to
highlight the fact that it shows the evolution in time of a kernel, in a per thread basis.
This has special importance in multicore and heterogeneous systems, since it shows clearly
differences in the execution in each core. To obtain this model we have developed a tool
that takes advantage of the hardware counters present in modern processors. The data it
collects is used in by a second tool to render various figures.

Nowadays, performance monitoring counters, also known as hardware counters, are
powerful monitoring mechanisms included in the Performance Monitoring Unit [3] of most
of modern microprocessors. Their use is gaining popularity as an analysis and validation
tool. Their effect in the monitored program is virtually imperceptible and their precision has
noticeably increased recently thanks to the new Precise Event-Based Sampling (PEBS) [4]
features.

To show the benefits of our extended model an study of the NAS Parallel Benchmark
Suite for OpenMP (NPB-OMP) [5] was carried out. The NPB-OMP is a set of kernels and
pseudo-applications designed to test shared memory systems in general.

The rest of the paper is organised as follows: Section 2 introduces the RM and the
proposed extension, the DyRM. Section 3 introduces the PEBS hardware counters present
in modern Intel processors, and the usage we made of them in the performance tools. In
Section 4 the results of our analysis of the NPB-OMP3.3 benchmark suite are presented.
Finally, the conclusions of this paper are drawn in Section 5.

2 The Dynamic Roofline Model

The RM [2] is an easy-to-understand model, offering performance guidelines and information
about the behaviour of a program. It offers insight on how to improve the performance of
software and hardware. Stochastic analytical models and statistical performance models
can accurately predict program performance on multiprocessors but rarely provide insight
into how to improve the performance of programs, compilers, and computers and can be
difficult to use by non experts [6] [7] [8].

The RM uses a simple bound and bottleneck analysis approach, where the influence of
the system bottleneck is highlighted and quantified. In modern systems the main bottle-
neck is often the connexion between processor and memory. This is why the RM relates
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processor performance to off-chip memory traffic. It uses the term operational intensity
to mean operations per byte of DRAM traffic (measured in Flops/Byte). Note that, it
measures traffic between the caches and memory rather than between the processor and
the caches. Thus, operational intensity predicts the DRAM bandwidth needed by a kernel
on a particular computer. The RM ties together floating-point performance (measured in
GFlops/sec), operational intensity, and memory performance in a 2D graph.

The RM allows the definition of performance limits. A horizontal line showing peak
floating-point performance of the computer can be drawn. The actual floating point perfor-
mance of a particular kernel can be no higher than this horizontal line, since this line is the
hardware limit. A second line that bounds the maximum floating-point performance that
the memory system of the computer can support for a given operational intensity can be
plotted. Its slope would correspond to the peak memory bandwidth. The two lines would
intersect at the point of peak computational performance and peak memory bandwidth.
Thus we get a upper limit for performance, or roof. This way, if a kernel operational inten-
sity is below the slanted part of the roof it means its performance is memory-bound. If it
is otherwise below the flat part, it would be compute-bound.

The RM gives a simple representation of a program performance in a particular system.
Nonetheless, in some cases it may be misleading. Consider an example program which goes
through two phases of execution. One of them might be close to the maximum GFlops/sec
and operational intensity of the machine, while the other might be performing poorly. The
RM would place the program performance at a single point of the figure, perhaps between
the performance of both phases, that would not be entirely representative of the program
real behaviour. In another example, consider an heterogeneous system. While the RM would
give a performance point for the entire system, thus hiding the heterogeneity, differences
inside the system would mean threads would have to be studied separately. Situations like
these justify the proposal of a DyRM, that provides information at regular intervals of an
execution, in a thread by thread basis.

The DyRM is essentially the equivalent of dividing in time slices the execution of a code
and getting one RM for each one, then combining them in just one graph. This way a more
detailed view of the performance during the entire life of the code, showing its evolution
and behaviour, is obtained. With a DyRM different execution phases or behaviours can be
detected. To show the kernel evolution in time we colour each point in the graph sequentially,
using a colour gradient. To better show the phases, a two dimensional density estimation
of the points in the DyRM can be performed. Such an estimation allows to readily find
clusters, the zones in the model where the code spends more time, which allows to easily
identify performance bottlenecks. The resulting groups can be highlighted in the DyRM,
and changing colouring a Density Graph can be shown, giving a better view of these. Using
both graphs DyRM combines the simplicity of the RM with a detailed view of a program
execution.
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(a) Dynamic Roofline sp.B (b) Density Graph sp.B

Figure 1: Examples of Dynamic Roofline Models for NPB benchmark sp.B.

An example is shown in Figure 1. Here we display the DyRM of an application running
in an Intel Xeon E5-2603. In these models we have drawn three roofs, representing a proces-
sor core maximum performance. The topmost roof represents the peak GFlops/sec using
SIMD instructions and its theoretical maximum memory bandwidth [9], this roof reaches
14.4 GFlops/sec and it is cut from the Figure. The middle roof represents the maximum
GFlops/sec without SIMD instructions, considering one multiply and add operations per
cycle and the maximum memory bandwidth given by the STREAM benchmark [10]. The
lower roof represent the GFlops/sec considering only one floating operation per cycle and
the worst memory bandwidth given by the STREAM benchmark. In Figure 1(a) we show
how the application remains mostly under the lower roof during its life. Each point is
coloured according to the time it was taken. In Figure 1(b) we show the clusters where the
application spend more of its execution time, mainly two. One of these clusters exceeds the
lower roof, meaning it makes more than one flop per cycle, by combining add and multiply
operations. The other cluster is below the slanted side of the roof, so it is memory-bound
and would not benefit greatly from using SIMD operations.

3 DyRM Tools for Data Capture

3.1 Intel PEBS

PEBS [4] is an advanced sampling feature of the Intel Core-based processors in which the
processor is directly recording samples into a designated memory region. Each sample
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contains the machine state of the processor at the time a hardware counter reaches a set
goal. The precision of PEBS comes from the fact that the instruction pointer recorded in
each sample is at most one instruction away from where the counter actually overflowed.
The skid is minimised compared to regular interrupted instruction pointer. Another key
advantage of PEBS is that is minimizes the overhead because the Linux kernel is only
involved when the PEBS buffer fills up, i.e., there is no interruption until a number of
samples are available. A constraint of PEBS is that it works only with certain events.

In the modern Intel processors, starting with the Nehalem architecture, the PEBS record
format allows for detailed information about memory accesses. When sampling memory
operations the virtual address of the operation data is recorded. For load operations the
latency in which the data is served is also recorded (in cycles), as well as information
detailing the memory level from where the data was read.

In order to interact with hardware counters we use the linux perf events interface.
This interface provides means to interact with the Linux kernel, via a system call, so hard-
ware counters can be programmed and read. This interface is compatible with PEBS, in
this case the sampling buffer is stored in kernel space and can be read in user space once
it has overflowed. The Linux perf events interface expands the PEBS format, recording
for each sample data like the pid and tid of the active process and timing information. By
using this interface we ensure compatibility across numerous systems, as long as they are
Linux and Intel based.

3.2 Data Capture

A tool to obtain and process performance information of a complete shared memory system
has been implemented. It uses the Linux perf events interface to read the hardware
counters in each CPU to characterise the performance of the whole system. Then the data
are processed in an R environment[11].

To obtain a DyRM two kinds of data are needed. We need data from the floating
point operations performed in each core. In modern Intel Sandy/IvyBridge processors [12]
this means recording up to ten different hardware events (variations of fp comp ops exe
and simd fp 256). If packed floating point instruction are ignored it can be enough to
measure just two events fp comp ops exe: sse scalar double and fp comp ops exe:
sse fp scalar single, since fp comp ops exe:x87 is usually negligible. To measure
memory traffic between the caches and main memory for each core the number of cache
lines read from main memory (event offcore request:all data read) are recorded.
PEBS and a sampling buffer are used to capture the information. In every sample floating
point operations data and data memory reads are captured. The instruction count in each
core is used to set the sampling period, so in each overflow information about instructions,
floating point operations and data reads, is obtained. This way the sampling period can be
easily set, independently, of the floating point load of the program.
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The state of the hardware counters for each core is captured. If more that one process
or thread is executed simultaneously in the same core, the data must be scaled, so each
thread can be measured individually. Each sample has information about the pid and tid

of the specific instruction captured. This, together with the timing information provided
by the perf events interface, allows us to scale the data in each core to approximate the
values for each thread. In this way programming the hardware counters becomes an easy
task and the complete execution of a program can be recorded, including Operative System
processes needed, but still allowing for a detailed review of the performance.

4 Case Study

In this section we show performance results for some of the NPB3.3-OMP benchmarks [5],
executed in a system with two Intel Xeon E5-2603 processors – 4 core per processor, 8 total
– and 16 GB of RAM. All executions were carried out with 8 threads, and a DyRM for
each thread was obtained. The compiler used was gcc 4.6.3. Since, for the purpose of this
paper, a detailed analysis was not needed, and the resulting models are quite similar for
all threads, only the one thread will be used to represent the benchmark. The benchmark
we study are: CG (Conjugate Gradient), irregular memory access and communication; FT
(Discrete 3D fast Fourier Transform), all-to-all communication; UA (Unstructured Adaptive
mesh), dynamic and irregular memory access; and the solvers LU (Lower-Upper Gauss-
Seidel), BT (Block Tri-diagonal), and SP (Scalar Pentadiagonal). These kernel can use
various sizes for input. The ones we use are Classes A, B, C, the standard test problems;
4X size increase going from one class to the next.

In our DyRM each point in the graph represents the performance of an application
during a small slice of time. Each point can be coloured according to the actual time
in which they are executed, to show the applications progression. Colours are selected
using a gradient format. This way we can distinguish different phases in the execution
of an application, and rate their performance separately. The Density Graphs show the
performance spots where the program stays longer, allowing to see more clearly phases and
to calculate a more general performance.

4.1 Overhead

The data capture application is very lightweight. As such, the overhead is mainly determined
by the sampling rates: the higher the desired resolution, the larger the overhead. Most
figures in this paper were obtained sampling each 108 instructions – about one sample
per 5ms for most benchmarks – . When the execution time of the benchmark was larger
than 50 seconds, the sampling period was heightened to 3x108 instructions, thereby the
file size of the resulting trace remains reasonable – under 10 MB – , and only a small
effect in the resolution of the graphs is noticed. The overhead we obtained in this study,
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Table 1: Data Capture Overhead.
Size A Size B Size C

Benchmark Time(s) Overhead(%) Time(s) Overhead(%) Time(s) Overhead(%)

bt 53.27 0.23 218.61 0.30 834.15 0.02

cg 0.70 1.07 36.07 3.19 96.46 3.15

ft 3.21 2.18 41.10 1.85 – –

lu 48.67 2.95 197.41 0.36 754.40 0.46

ua 41.37 1.00 164.30 0.77 629.21 1.99

sp 54.36 <0.01 213.29 0.56 786.36 0.27

is shown in Table 1. In this table the execution times for the NPB benchmarks studied,
compiled without any optimisation (column Time), and the overhead obtained with the
same benchmarks running alongside the data capture program (column Overhead), are
displayed. Note that, the overhead from the sampling and data capture program is low
and, in many cases, inside the error of the measurement. In the cases where the sampling
rate was set to 3x108 (in italic in Table 1) the overhead usually remains below 0.80%.

4.2 Effect of Compiler Optimisations

To illustrate the use of the tool we analysed the effect of general optimisations in the model.
In the next paragraphs we describe the NPB benchmarks compiled without optimisation
and with an O2 optimisation level. Due to space constraints only the most representative
cases are shown. Note that, in order to better see the resulting model, the axes values in
the next figures vary.

The FT benchmark shows several differentiated phases (Figure 2), one with an initial-
isation phase. Optimising the program improves the GFlop/sec count, but the difference
among the phases persists, which may indicate the need to manually optimise each one
separately.

The UA benchmark (Figure 3) shows a strange pattern in the non optimised version,
but the density graph shows that it is not very important. Once optimised, the pattern
changes sightly, and the density graph seems to imply that the right side of the graph is
more important.

4.3 Effect of the Problem Size

In this Section we show the effects in our model of different problem sizes in the NAS
benchmarks. Only the most representative kernels are shown.

In the CG benchmark note that it has an initialisation phase, which shows a much lower
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(a) Roofline ft.A No Optimisations (b) Roofline ft.A

(c) Density. ft.A No Optimisations (d) Density. ft.A

Figure 2: Roofline for ft.A benchmark.
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(a) Roofline ua.A No Optimisations (b) Roofline ua.A

(c) Density. ua.A No Optimisations (d) Density. ua.A

Figure 3: Roofline for ua.A benchmark.

c©CMMSE ISBN: 978-84-616-2723-3Page 973 of 1797



Dynamic Roofline Model

(a) Roofline cg.A (b) Roofline cg.B (c) Roofline cg.C

Figure 4: Roofline for CG benchmark. Sizes A, B and C.

performance. It can be seen in Figures 4(a), 4(b) and 4(c) in the lower left corner, with
a blue colour which means it happens earlier in time. We observe it is a memory-bound
benchmark. As problem size increases, both computational intensity and GFlops/sec count
decrease, and the initialisation phase still retains its importance. We see how it follows the
roof, since it is memory-bound. In the case of size C, the performance overcomes the
second roof, since it is not using SIMD instructions it probably means it achieves a better
bandwidth than the STREAM benchmark.

In the BT benchmark (Figure 5)at least three phases can be seen, although, a seen in
the density lines, one of them is of greater importance than the others, and it grows with

(a) Roofline bt.A (b) Roofline bt.B (c) Roofline bt.C

Figure 5: Roofline for BT benchmark. Sizes A, B and C.
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problem size. Here we can see how, as the problem size increases, the GFlops/sec count
stabilizes, but not so the computational intensity, with all phases moving left. Anyway, this
is clearly a computational bound program, and would have to use SIMD instructions to be
optimised.

5 Conclusion

In this paper a set of extensions to the Berkeley Roofline Model, an showed their usefulness,
have been presented. To create these models advantage of the PEBS counters of Intel
processors was taken. A set of tools to automate the task were implemented. We have
shown that, while the Berkeley Roofline Model remains a useful and simple model, it hides
some characteristics of the applications that become important in many systems, specially
manycore, NUMA or heterogeneous systems. We use these tools to show how parallel
applications like the NPB-OMP benchmarks present complex behaviours and unbalances in
NUMA systems. These problems can be easily modelled with our tools, without influencing
the normal execution of the applications, and showing a realistic model of their performance.
Thanks to our Dynamic Roofline Model a program behaviour, its phases or unbalances can
be more easily detected, making it easier to correct performance issues.
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Abstract

In this paper, we present two new iterative methods to solve systems of nonlinear
equations. These methods require the evaluation of first-order Frechet derivative and
the main advantage of them is that we achieve high convergence orders using appropriate
computations of Jacobians. The error analysis is presented to prove the convergence
order.
Key words: Nonlinear systems; Matrix; LU factorization; Computational complexity

MSC 2000: 65H10

1 Introduction

Let the function F : D ⊂ Rn → Rn has at least, second-order Frechet derivatives with
continuity on a convex set D. Suppose that the equation F (x) = 0 has a solution α ∈ D.
In this work, we introduce two methods of multi-step iterative methods free from second or
higher-order Frechet derivatives for solving nonlinear systems of equations.

In this paper, we improve the convergence behavior of Weerakoon and Fernando method
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[2] and also Parhi and Gupta [1] to solve systems of nonlinear equations.
It is widely known that the Newton’s method in several variables could be written as

x(k+1) = x(k) − F ′(x(k))−1F (x(k)), k = 0, 1, 2, · · · . (1.1)

Another famous scheme for solving systems of nonlinear equations is the Jarratt fourth-
order method which is the generalization of the scheme in the scalar case given in [3] as
follows{

y(k) = x(k) − 2
3F ′(x(k))−1F (x(k)),

x(k+1) = x(k) − 1
2(3F ′(y(k))− F ′(x(k)))−1(3F ′(y(k)) + F ′(x(k)))F ′(x(k))−1F (x(k)).

(1.2)
Note that although most of the works emphasizes on the numerical aspects of these

iterations without some theoretics, there are two general ways for pursuing this aim ana-
lytically. One is based on the well-known n-dimensional Taylor expansion [4] and second is
based on the matrix approach, which is so-called as Point of Attraction, introduced first in
[6]. We here apply the first case by reminding the following:

Let F : D ⊆ Rn −→ Rn be sufficiently Frechet differentiable in D. By using the
notation introduced in [4], the qth derivative of F at u ∈ Rn, q ≥ 1, is the q-linear function
F (q)(u) : Rn × · · · × Rn −→ Rn such that F (q)(u)(v1, . . . , vq) ∈ Rn. It is well known that,
for x∗ + h ∈ Rn lying in a neighborhood of a solution x∗ of the nonlinear system F (x) = 0,
Taylor’s expansion can be applied and we have

F (x∗ + h) = F ′(x∗)

h +
p−1∑
q=2

Cqh
q

+ O(hp), (1.3)

where Cq = (1/q!)[F ′(x∗)]−1F (q)(x∗), q ≥ 2. We observe that Cqh
q ∈ Rn since F (q)(x∗) ∈

L(Rn × · · · × Rn, Rn) and [F ′(x∗)]−1 ∈ L(Rn). In addition, we can express F ′ as

F ′(x∗ + h) = F ′(x∗)

I +
p−1∑
q=2

qCqh
q−1

+ O(hp), (1.4)

wherein I is the identity matrix, and qCqh
q−1 ∈ L(Rn).

2 Development of the first iterative method

We here propose a contributed high-order method of this paper for finding solution of the
nonlinear systems in what follows

y(k) = x(k) − F ′(x(k))−1F (x(k)),

z(k) = x(k) − 2(F ′(x(k)) + F ′(y(k)))−1F (x(k)),

x(k+1) = z(k) − (3F ′(y(k))− F ′(x(k)))−1(F ′(x(k)) + F ′(y(k)))F ′(x(k))−1F (z(k)),

(2.1)
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Theorem 2.1. Let F : D ⊆ Rn −→ Rn be sufficiently Frechet differentiable at each point of
an open convex neighborhood D of x∗ ∈ Rn, that is a solution of the system F (x) = 0. Let
us suppose that F ′(x) is continuous and nonsingular in x∗. Then, the sequence {x(k)}k≥0

obtained using the iterative method (2.1) converges to x∗ with convergence rate six.

Proof. Note that in what follows, e(k) = x(k) − x∗ is the error in the kth itera-
tion and e(k+1) = Le(k)p

+ O(e(k)p+1

) is the error equation, where L is a p-linear func-
tion, i.e. L ∈ L(Rn, Rn, . . . , Rn) and p is the order of convergence. Observe that e(k)p

=
(e(k), e(k), . . . , e(k)).

From (1.3) and (1.4), we obtain F (x(k)) = F ′(x∗)[e(k) +C2e
(k)2 + C3e

(k)3 + C4e
(k)4 +

C5e
(k)5 +C6e

(k)6] + O(e(k)7), and

F ′(x(k)) = F ′(x∗)
[
I +2C2e

(k) +3C3e
(k)2 +4C4e

(k)3 +5C5e
(k)4 +6C6e

(k)5
]
+O(e(k)6), (2.2)

where Ck = (1/k!)[F ′(x∗)]−1F (k)(x∗), k = 2, 3, . . .. From (2.2), we have

[F ′(x(k))]−1 =
[
I + X1e

(k) + X2e
(k)2 + X3e

(k)3 + · · ·
]
[F ′(x∗)]−1 + O(e(k)6), (2.3)

where X1 = −2C2, X2 = 4C2
2 − 3C3, X3 = −8C3

2 + 6C2C3 + 6C3C2 − 4C4, ... . Note that
e(k)p is a singular matrix, not a vector. Then,

[F ′(x(k))]−1F (x(k)) = e(k) − C2e
(k)2 + 2(C2

2 − C3)e(k)3

+(−4C3
2 + 4C2C3 + 3C3C2 − 3C4)e(k)4 + · · ·+ O(e(k)7), (2.4)

and subsequently y(k) = x∗ + e(k) + C2e
(k)2 +2(C2

2 −C3)e(k)3 +(−4C3
2 + 4C2C3 + 3C3C2 −

3C4)e(k)4 + · · ·+ O(e(k)7). The Taylor expansion of the Jacobian matrix F ′(y(k)) is

F ′(y(k)) = F ′(x∗)[I + 2C2(y(k) − x∗) + 3C3(y(k) − x∗)2

+ 4C4(y(k) − x∗)3 + 5C5(y(k) − x∗)4] + O(e(k)5)

= F ′(x∗)
[
I + N2e

(k)2 + N3e
(k)3
]

+ · · ·+ O(e(k)7), (2.5)

where N2 = 2C2
2 , and N3 = 2C2(−2C2

2 + 2C3). Therefore, we obtain

z(k)−x∗ =
(

C2
2 +

C3

2

)
e(k)3+

1
2
(
−6C3

2 + 2C2C3 + C3C2 + C4

)
e(k)4+ · · ·+O(e(k)7). (2.6)

Hence, taking into account (2.6), it will be easy to write the Taylor series of F (z(k)) as
follows

F (z(k)) = [F ′(x∗)]
(

C2
2 −

C3

2

)
e(k)3+

1
2
(
−6C3

2 + 2C2C3 + C3C2 + C4

)
e(k)4+ · · ·+O(e(k)7).

(2.7)
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We now should find the Taylor series at the third step of (2.1), thus using (2.3) and (2.7),
we have

F ′(x(k))−1F (z(k)) =
(

C2
2 −

C3

2

)
e(k)3 +

1
2
(
−10C3

2 + C2C3 + 2C4

)
e(k)4 + · · ·+ O(e(k)7).

(2.8)
By using (2.8), and similar terminology, we have the final error equation

e(k+1) = C2

(
C4

2 − 2C2
2C3 −

5C2
3

4

)
e(k)6 + O(e(k)7), (2.9)

which shows that the new method has sixth order of convergence for solving systems of non-
linear equations.

3 Development of the second iterative method

We here propose a contributed high-order method of this paper for finding real solutions of
the nonlinear systems in what follows

y(k) = x(k) − F ′(x(k))−1F (x(k)),

z(k) = x(k) − 2(F ′(x(k)) + F ′(y(k)))−1F (x(k)),

x(k+1) = z(k) − (F ′(x(k)) + F ′(y(k)))−1(3F ′(x(k))− F ′(y(k)))F ′(x(k))−1F (z(k)),

(3.1)

Theorem 3.1. Let F : D ⊆ Rn −→ Rn be sufficiently Frechet differentiable at each point of
an open convex neighborhood D of x∗ ∈ Rn, that is a solution of the system F (x) = 0. Let
us suppose that F ′(x) is continuous and nonsingular in x∗. Then, the sequence {x(k)}k≥0

obtained using the iterative method (3.1) converges to x∗ with convergence rate five.

Proof. Similar to the proof of Theorem 2.1, we have then the final error equation

e(k+1) = C2
2

(
4C2

2 + 2C3

)
e(k)5 + O(e(k)6), (3.2)

which shows that the new method has fifth order of convergence for solving systems of
nonlinear equations.

4 Computational complexities

In first iterative method (2.1), we solve four linear systems of equations, while three LU
factorizations must be done due to multiple right hand sides. Also, for using the second
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iterative method, we solve four linear systems of equations, while just two LU factorizations
must be done due to multiple right hand sides. In these situations, one could compute a
factorization of the (Jacobian) matrix and use it repeatedly.

The iterative method (2.1) has the following cost: n evaluations of scalar functions for
F (x), n evaluations of scalar functions for F (z), n2 evaluations of scalar functions for F ′(x),
again n2 evaluations of scalar functions for F ′(y) and three LU decompositions for solving
the linear systems involved.

The computation of LU decomposition by any of the existing algorithms in the literature
normally requires 2n3

3 flops in floating point arithmetic, while the floating point operations
for solving the two triangular systems will be 2n2 when the right hand side of the systems
is a vector, and 2n3, or roughly n3 (as considered in this paper), when the right hand side
is a matrix.

The computational efficiency of the new algorithms has now been computed by a prac-
tical efficiency index, defined by

FEI = p
1
C , (4.1)

also known as flops-like efficiency index [5], wherein C stands for the total computational
cost per iteration in terms of the number of functional evaluations along with cost of LU
decompositions and solving two triangular systems (based on the flops), to observe the
competence of distinctive methods. Note that for the flops-like efficiency indices, we have

FEI(1.1) = 2
1

n+3n2+2n3
3 , FEI(1.2) = 4

1

n+4n2+7n3
3 ,for frist method FEI(2.1) = 6

1
2n+8n2+3n3 and

for second method FEI(3.1) = 5
1

2n+8n2+7n3
3 .

5 Numerical implementation

In this section, we want to apply our methods to solve three examples, taken from [4]. Also
we compare the computed results and justify the accuracy and applicability of the mentioned
algorithm and theorems. In fact, we want to estimate the zeros of the following nonlinear
systems. Also in tables Ai means ‖x(i)−x∗‖+‖F (x(i))‖ and a×10−b was shown with a(−b).

(i) F (x1, x2) = (sin(x1) + x2 cos(x1), x1 − x2) , x∗ = (0, 0)T , x(0) = (0.8, 0.8)T .

(ii) F (x1, x2) =
(
exp(x2

1)− exp(
√

2x1), x1 − x2

)
, x∗ =

(√
2,
√

2
)T

, x(0) = (0.1, 1.1)T .

(iii) F (x1, x2) =
(

x2
1 + x2

2 − 1, x2
1 − x2

2 +
1
2

)
, x∗ =

(
1
2
,

√
3

2

)T

, x(0) = (2, 2)T .

As it can be observed from Tables 1-3, our developed methods work in action very
efficiently.
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Methods A1 A2 A3 A4 A5

Newton Method 1.081347 1.96980 0.24646 0.01065 2.44544(−8)
Jarratt Method 0.36510 0.00070 8.46419(−17) 4.10363(−97) 5.55178(−486)
Frist Method 1.95571 0.01098 6.31628(−19) 1.31219(−132) 2.19151(−928)
Second Method 1.88613 0.00190 1.41255(−21) 1.52068(−151) 0

Table 1: solutions for frist system

Methods A1 A2 A3 A4 A5

Newton 13.81680 4.61691 1.28240 0.21494 0.009634
Jarratt 3.10308 0.05366 4.98801(−8) 3.96362(−32) 1.58035(−128)
Frist method 0.16012 3.68313(−8) 3.17899(−48) 1.31439(−288) 0
Second method 5.059485 0.26508 1.26862(−5) 5.24590(−27) 6.34254(−134)

Table 2: solutions for Second system

Methods A1 A2 A3 A4 A5

Newton 3.16798 0.78191 0.11717 0.00431 6.55581(−6)
Jarratt 0.78191 0.00431 1.51951(−11) 2.35604(−45) 1.361744(−180)
Frist method 0.28530 1.29497(−6) 2.60515(−38) 1.72692(−228) 0
Second method 0.35841 2.38741(−4) 1.57255(−26) 1.42781(−128) 1.58712(−648)

Table 3: solutions for third system
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6 Conclusion

Two new and efficient multi-point iterations have been developed for solving systems of
nonlinear equations.
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Abstract

It is attempted to introduce some new methods with memory for solving nonlinear
equations. This family uses four function evaluations per cycle and is derivative free
with order of convergence 12.
Key words: nonlinear equations, iterative methods with memory
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1 Introduction

Traub introduce for the first time an Steffensen-like method with memory in his book [4].
Indeed he could increase the order of Steffensen method [3] by applying a new parameter
and polynomial interpolation to approximate the mentioned parameter in a genuine way.
Traub’s idea has not been considered until very recently [2, 5].

In this study our primary aim is to introduce a new class of three-point method with
memory. To do this, we first develop an optimal new free-derivative class without memory.
This class uses only four function evaluations per iterate. Then, we try to modify it using
the idea on accelerator in such a way that without any extra function evaluation the order of
convergence increase from 8 to 12. Finally, to justify our method numerically, we implement
it using some example and compare it to some fresh methods in the same class.
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2 Development a new derivative free three-point class with-
out memory

Let α be a simple real zero of a real function f : D ⊂ R → R and let x0 be an initial
approximate to α. To construct derivative free three-point methods of optimal order eight,
let us start from the tripled Newton’s method (iteration indices are dropped for simplicity)

y = x− f(x)
f ′(x) ,

z = y − f(y)
f ′(y) ,

x̂ = z − f(z)
f ′(z) .

(2.1)

It is well known that the order of convergence of scheme (2.1) is eight, but its computational
efficiency is low. To improve this disadvantage, we substitute in all three steps by suitable
approximations that use available data, not including calculation of derivatives. To provide
these requirements, in the first step we approximate

f ′(x) ≈ f [x,w], where w = x + γf(x), 0 6= γ ∈ R,

and f [x, y] = f(x)−f(y)
x−y denotes a divided difference. Similarly, the other two derivative can

be approximated by weight functions with two variables. We introduce approximations

f ′(y) ≈ f [y, w]
H(t, u)

, t =
f(y)
f(x)

, u =
f(w)
f(x)

, f ′(z) ≈ f [z, w]
G(t, s)W (v, s)

, s =
f(z)
f(y)

, v =
f(z)
f(x)

,

and apply them in the second and third step of (2.1), where H, G and W are weight
functions. So, the following iterative family of three-point family is obtained

y = x− f(x)
f [x,w] ,

z = y −H(t, u) f(y)
f [y,w] ,

x̂ = z −G(t, s) W (v, s) f(z)
f [z,w] ,

(2.2)

and the function H, G and W should be determined in such a way that the order of con-
vergence of the three-point method (2.2) is eight.
Now we state the following convergent theorem for the family (2.2).

Theorem 2.1. Let H(t,u), G(t,s) and W(v,s) be differentiable two-variable functions that
satisfy the conditions H(0, 0) = W (0, 0) = G(0, 0) = H1,0(0, 0) = G1,0(0, 0) = G0,1(0, 0) =
1, H0,1(0, 0) = H0,2(0, 0) = H0,3(0, 0) = H1,1(0, 0) = H1,2(0, 0) = H2,0(0, 0) = H2,1(0, 0) =
G2,0(0, 0) = W1,0(0, 0) = W0,1(0, 0) = 0, G1,1(0, 0) = 2 and G3,0(0, 0) = H3,0(0, 0) − 6 −

6
1+γf [x,w] . If an initial approximation x0 is sufficiently close to the root α of a function
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f , then the convergence order of the family of three-point method without memory (2.2) is
equal to eight. Moreover, we have

ê =− 1
6
(c2(1 + γf ′(α))4(−c3 + c2

2(3 + γf ′(α)))(−6c2c4 + 3c2
3(−2 + G0,2 + W0,2) (2.3)

− 3c2
2c3(−22 + 6G0,2 + G2,1 + 6W0,2 + γf ′(α)(−6 + 2G0,2 + G2,1 + 2W0,2))

+ c4
2(−H3,0(1 + γf ′(α))2 + 3G2,1(1 + γf ′(α))(3 + γf ′(α)) + 3G0,2(3 + γf ′(α))2

+ 3(W0,2(3 + γf ′(α))2 − 2(13 + γf ′(α)(7 + γf ′(α))))))e8 + O[e9],

We denote by Hi,j , Gi,j Wi,j , the (i, j)th partial derivatives with respect to their vari-
ables.

Some explicit forms of weight functions

Now we present some simple weight functions satisfying the conditions of Theorem (2.1)

H(t, u) = 1 + t, (2.4)

G(t, s) = 1 + t + s + 2ts + (−1− φ)t3,

W (s, v) = 1 + s2 + v2,

and

H(t, u) = 1 + t, (2.5)

G(t, s) =
1

1+φ(1 + t + s + 2ts) + t2

1
1+φ + t2

,

W (s, v) = 1 +
s2

v2 + 1
,

where φ = 1/(1 + γf [x,w]).
We apply these weight functions in the proposed method (2.2) as concretes in the

numerical section and compare them with some existing methods in the same class.

3 New family of three-point methods with memory

We deduce from (2.3) that the order of convergence of the method (2.2) is eight when
γ 6= −1/f ′(α). If γ = −1/f ′(α), then the order of convergence is greater than 8, but f ′(α)
is unknown in practice since α is unknown. To this end, one can approximate f ′(α) using
available data. Here we deal with this problem. In fact, we calculate the forth degree of
Newton’s interpolation for approximate f ′(α). In other words

γ =
−1

f ′(α)
≈ −1

N ′
4(xk)

= γk, (3.1)
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where

N ′
4(xk) = f [xk, zk−1] + f [xk, zk−1, yk−1](xk − zk−1) + f [xk, zk−1, yk−1, xk−1](xk − zk−1)(xk − yk−1)

(3.2)
+ f [xk, zk−1, yk−1, xk−1, wk−1](xk − zk−1)(xk − yk−1)(xk − xk−1).

Considering Theorem (2.1) and (3.1) we construct the following new derivative free
method with memory

γ0 and x0 are given,

wk = xk + γk f(xk),
yk = xk − f(xk)

f [xk,wk] ,

zk = yk −H(tk, uk)
f(yk)

f [yk,wk] ,

xk+1 = zk −G(tk, sk) W (vk, sk)
f(zk)

f [zk,wk] , k = 0, 1, · · · ,

γk = −1
N ′

4(xk)
, k = 1, 2, · · · .

(3.3)

To determine the order of convergence of the method (3.3) with memory, where γ ≈ γk

is estimated by (3.1), we state the following convergence theorem.

Theorem 3.1. If an initial approximation x0 is sufficiently close to a simple zero α of f ,
then the R-order of convergence of the three-point method with memory (3.3) is at least 12.

Proof. We will use Herzbergers matrix method [1] to determine the R-order of convergence
for (3.3). In other words, the lower bound of order of a single step s-point method xk =
G(xk−1, xk−2, xk−3, xk−4) is the spectral radius of a matrix M (s) = (mi,j), associated to this
method, with elements

m1,j = amount of information required at pointxk−j , j = 1, 2, 3, 4.

mi,i−1 = 1, i = 2, 3, 4
mi,j = 0, otherwise.

(3.4)

The lower bound of order of an s-point method G = G1oG2oG3oG4 is the spectral radius
of the product of matrices M = M1.M2.M3.M4. More precisely, we have

M =


8 4 4 4 4
4 2 2 2 2
2 1 1 1 1
1 1 1 1 1
1 0 0 0 0

 =


1 1 1 1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0




1 1 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0




1 1 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0




1 1 1 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 ,

(3.5)
with the eigenvalues 12, 0, 0, 0, 0. Hence, the R-order of the method with memory (3.3) is
at leat 12.

Remark 3.2. If we take γk = 1/N ′
i(xk), i = 1, 2, 3, then we achieve lower R-orders which

has no practical interest.
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4 Numerical results and comparisons

In this section, the family of three-point methods (3.3) is tested on two nonlinear equations
along with several three-point iterative methods of optimal order eight. Some of them are
displayed bellow:

The first concrete of the new method with memory (3.3)

γ0 and x0 are given,

wk = xk + γk f(xk),
yk = xk − f(xk)

f [xk,wk] ,

zk = yk − (1 + tk)
f(yk)

f [yk,wk] ,

xk+1 = zk −
(
1 + tk + sk + 2tksk + (−1− φk)t3k

)
(1 + s2

k + v2
k)

f(zk)
f [zk,wk] , k = 0, 1, · · · ,

γk = −1
N ′

4(xk)
, k = 1, 2, · · · .

(4.1)
where φk = 1/(1 + γkf [xk, wk]).

The second concrete of the new method with memory (3.3)

γ0 and x0 are given,

wk = xk + γk f(xk),
yk = xk − f(xk)

f [xk,wk] ,

zk = yk − (1 + tk)
f(yk)

f [yk,wk] ,

xk+1 = zk −
( 1

1+φk
(1+t+s+2ts)+t2

1
1+φk

+t2

) (
1 + s2

v2+1

) f(zk)
f [zk,wk] , k = 0, 1, · · · ,

γk = −1
N ′

4(xk)
, k = 1, 2, · · · .

(4.2)

where φk = 1/(1 + γkf [xk, wk]).
For demonstration, among many numerical experiments, we have selected a test prob-

lem. The errors |xn − α| of approximations to the zeros are given in Table 1 where A(−h)
denotes A×10−h. These tables include the values of the computational order of convergence
rc calculated by the formula [5]

rc =
log |f(xn)/f(xn−1)|

log |f(xn−1)/f(xn−2)|
. (4.3)
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methods |x1 − α| |x2 − α| |x3 − α| rc (4.3)
NEW: (4.1) 0.71066(-4) 0.20396(-49) 0.49715(-596) 12.0
NEW: (4.2) 0.80715(-4) 0.15495(-49) 0.65738(-595) 12.0

[5] 0.90460(-5) 0.81817(-56) 0.30880(-670) 12.0

Table 1: f(x) = exp(x2 + x cos x− 1) sinπx + x log(x sinx + 1), x0 = 0.6, α = 0, γ = −0.1

5 Conclusion

A new class with memory has been introduced using four function evaluations per iterate.
This family does not require any derivative and has 12 order of convergence.
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The primarily goal of this paper is to provide an optimal three-step class. In other
words, using four function evaluation per iterate with eight-order convergence. More-
over, the proposed class includes both Bi et al families as particular cases.
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1 Introduction

Multipoint methods for solving nonlinear equations f(x) = 0, where f : D ⊂ R → R,
possess an important advantage since they overcome theoretical limits of one-point methods
concerning the convergence order and computational efficiency [1, 2, 4]

In this paper we present a new optimal family of three-point methods without memory
which employs the idea of weight functions in the second and third steps. The order of
this family is eight requiring four function evaluations so supports the Kung and Traub
conjecture [3]. The proposed class includes the most cited papers by Bi et al. [1, 2] in three
last years. It is supposed they are the first optimal three point methods in this field and
have made great progresses in the studies as well.

In order to construct new methods, we need the knowledge of divided differences. Let
f(x) be a function defined on an interval I, where I is the smallest interval containing
k + 1 distinct nodes x1, x2, . . . , xk. The divided difference f [x0, x1, . . . , xk] with kth-order
is defined as follows: f [x0] = f(x0)

f [x0] =
f [x1]− f [x0]

x1 − x0
, · · · , f [x0, x1, . . . , xk] =

f [x1, x2, . . . , xk]− f [x0, x1, . . . xk−1]
xk − x0

.
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It is clear that the divided difference f [x0, x1, . . . xk] is a symmetric function of its
arguments x0, x1, . . . xk. Moreover if we assume that f ∈ C(k+1)(Ix) where Ix is the smallest

interval containing the nodes x0, x1, . . . xk and x, then f [x0, x1, . . . xk] =
f (k+1)(ξ)
(k + 1)!

,

for a suitable ξ ∈ Ix. Specially, if x0 = x1 = . . . = xk = x, then

f [x, x, . . . , x, x] =
f (k+1)(x)
(k + 1)!

.

2 The method and analysis of convergence

Newton’s method converges quadratically. To obtain a higher convergence order and a
higher efficiency index than that of Newton’s method, we consider the following three-step
Newton’s method (omitting iteration index for simplicity)

y = x− f(x)
f ′(x)

,

z = y − f(y)
f ′(y)

,

x̂ = z − f(z)
f ′(z)

.

(2.1)

f ′(z) in the third step can be approximated given in [1, 2] as follows

f ′(z) ≈ f [z, y] + f [z, x, x](z − y).

We can easily prove that Scheme (2.1) has convergent order eighth and it requires six
function evaluations . it has an efficiency index of [1] 8

1
6 = 1.414, which is the same as

Newton’s method. In other words, it does not increase the computational efficiency. To
derive a scheme with a higher efficiency index, the following three step methods is proposed

y = x− f(x)
f ′(x)

,

z = y − g(s)
f(y)
f ′(x)

, s =
f(y)
f(x)

x̂ = z − h(t)
f(z)

f [z, y] + f [z, x, x](z − y)
, t =

f(z)
f(x)

.

(2.2)

It is clear that the proposed method by (2.2) requires only four function evaluations
per iteration while it is not eight order method. To recover the optimal eight order, we find
some suitable conditions on the introduced weight functions g(s), and h(t).

To find the weight functions g and h in (2.2) providing order eight, we will use the
method of undetermined coefficients and Taylor’s series about 0 since t → 0, s → 0, when
x → 0.
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Let

g(s) = g(0) + g′(0)s + g′′(0)
s2

2
+ g′′′(0)

s3

6
+ . . . ,

and

h(t) = h(0) + h′(0)t + h′′(0)
t2

2
+ h′′′(0)

t3

6
+ . . . .

The simplest method for finding the coefficient of the above Taylor expansions is the
use of symbolic computation by a computer algebra system. In the following we disclose our
Mathematica code which provides required conditions. Because of simplicity of the given
code, we prevent ourselves to add comments for them. Program (written in Mathematica)
f[e−] = f1a(e +

∑8
k=2 cke

k);
ey = e− Series[ f[e]

f′[e] , e, 0, 8];

s = f[ey]
f[e] ;

g[s−] = g0 + g1s + g2
2
s2 + g3

6
s3 + g4

24
s4;

ez = ey − g[s] ∗ f[ey]
f′[e] ;

t = f[ez]
f[e] ;

h[t−] = h0 + h1t + h2
2
t2 + h3

6
t3 + h4

24
t4;

f[a−, b−] := f[a]−f[b]
a−b ;

f[a−, b−, b−] := f[a,b]−f′[b]
a−b ; eT = ez − h[t] ∗ f[ez]

f[ez,ey]+f[ez,e,e](ez−ey) ;
a2 = Coefficient[eT, e2]//Fullsimplify
Out[a2] = c2(−1 + g0)(−1 + h0)
g0 = 1; h0 = 1 (* Vanish coefficient of e2 *)
a3 = Coefficient[eT, e3]//Fullsimplify
0
a4 = Coefficient[eT, e4]//Fullsimplify
0
a5 = Coefficient[eT, e5]//Fullsimplify
Out[a5] = −c42(−2 + g1)2h1
g1 = 2; (* Vanishes coefficient of e5 *)
a6 = Coefficient[eT, e6]//Fullsimplify
0
Out[a7] = −1

4
c22(2c3 + c22(−10 + g2))(2c3(−2 + h1) + c22(−10 + g2)h1)

g2 = 10; h1 = 2; (*Vanish coefficient of e7 *)
eT//FullSimplify
Out[eT] = −1

3
(c22c3(−6c2c3 + 3c4 + c32(−84 + g3)))e8 + O[e]9.

To sum up, g(0) = h(0) = 1, g′(0) = h′(0) = 2, g′′(0) = 10, |g′′′(0)| < ∞.
According to the above analysis, we have proved the following theorem.
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Theorem 2.1. Assume that f ∈ C5(D). Suppose x∗ ∈ D, f(x∗) = 0 and f ′(x∗) 6= 0. If
the initial point x0 is sufficiently close to x∗, then the sequence xn generated by any method
of the family (2.2) has eight-order of convergence to x∗ if g and h are any functions with
g(0) = h(0) = 1, g′(0) = h′(0) = 2, g′′(0) = 10 and |h′′(0)| < ∞ and |g′′(0)| < ∞.

Corollary 2.1. If we set g(s) =
1 + as

1 + (a− 2)s
, a ∈ R, our proposed method results Bi et

al’s Method [1].

Corollary 2.2. If we set h(t) =
1 + bt

1 + (b− 2)t
b ∈ R , the proposed method results Bi et al’s

Method [2].

3 Conclusion

In conclusion, a new optimal class of three-step methods without memory has been gener-
alized based on Bi et al families [1, 2].
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Abstract

In this paper we address the problem of finding a geodesic curve that best fits a
given set of time-labeled points on a sphere. Since the corresponding normal equations
are highly non-linear, we formulate the problem as a constrained nonlinear optimiza-
tion problem and solve it using the routine fmincon from MATLAB with the SQP
(Sequential Quadratic Programming) algorithm.

Key words: Manifolds, geodesics, geodesic distance, normal equations, constrained
nonlinear optimization, SQP.

1 Introduction

The astounding development of mechanical and robotics industry in the past few years
has required the generalization of classical methods to more general curved spaces. This
is mainly due to the fact that the configuration systems of the most part of mechanical
systems are particular manifolds, like Lie groups or symmetric spaces. Although obtaining
such generalizations is not as straightforward as we might expect.

In this paper we show how to generalize the linear regression problem on Euclidean
spaces to the n−dimensional unit sphere. This technique of approximating data is a common
procedure in several applications from a wide range of fields including statistics, computer
vision, signal processing, fuzzi control, air traffic and aeronautics control.

In the classical problem, [6], we are given a collection of points and the same number
of instants of time and the objective is to find a parameterized straight line that best fits
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the data. However, finding the best approximant curve is not a trivial task especially when
the points belong to some curved space. We refer to [5], where it has been developed a
variational approach to generate fitting curves on the sphere and to [8] and [9], where this
approach has been generalized to the more general context of Riemannian manifolds. The
major difficulty that we face is the fact that, in general, explicit formulas to the analogues
of straight lines, the so-called geodesics, are not available. Such is not the case of the unit
n−sphere, when equipped with the metric induced by the metric in the embedding space,
where geodesics are the great arc circles, [4].

To get some insight, we start, in Section 2, by recalling the classical linear regression
problem on Euclidean spaces. In Section 3, we formulate the corresponding problem on the
n−dimensional unit sphere and then present the first order necessary optimality conditions.
Unlike the Euclidean case, this system of equations is extremely non-linear and numerical
optimization methods are put to use in Section 4. In this section, the problem is formu-
lated as a constrained nonlinear optimization problem and numerical experiments using the
optimization toolbox from MATLAB will be provided. Some conclusions and future work
ideas are carried out in Section 5.

2 Linear regression problem

Although in the most part of the literature, [6, 11, 3], the linear least squares problem is
addressed for data in R, the approach to more general Euclidean spaces is straightforward,
[7].

Let us consider the Euclidean space Rn endowed with the usual inner product and let
us denote by d the metric induced by the l2-norm ∥a∥ = ⟨a, a⟩

1
2 .

In the linear regression problem, we are given a finite set of points in Rn, p0, . . . , pN ,
and a set of instants of time, t0, . . . , tN , and wish to find a parameterized straight line
t 7−→ γ(t) = a0 + a1t ∈ Rn, that best fits the given data, in the sense that the functional
E, defined by

E(γ) =

N∑
i=0

d2(pi, γ(ti)),

should be as small as possible.

Theorem 2.1. For each N ≥ 1, the parameterized straight line t 7→ γ(t) = a0 + a1t that
best fits the given data is unique and is the solution of the following system of equations

N∑
i=0

γ(ti) =
N∑
i=0

pi

N∑
i=0

tiγ(ti) =
N∑
i=0

tipi

. (1)
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The linear system of equations (1), known in the literature as the normal equations,
can be solved explicitly and its unique solution is given by

γ(t) =

N∑
i=0

t2i

N∑
i=0

pi −
N∑
i=0

ti

N∑
i=0

tipi

(N+1)

N∑
i=0

t2i −
( N∑
i=0

ti
)2 +

(N+1)

N∑
i=0

tipi −
N∑
i=0

ti

N∑
i=0

pi

(N+1)

N∑
i=0

t2i −
( N∑
i=0

ti
)2 t.

This classical problem can be naturally generalized to more general curved spaces as
long as explicit formulas for geodesics are available, [8]. Nevertheless, even in those cases
obtaining exact solutions is not an easy task mainly because the counterpart of the normal
equations give rise to nonlinear systems of equations.

In the next section we will present the generalization of this classical problem to the
n−dimensional unit sphere Sn.

3 Regression problem on spheres

Let us consider the unit n−sphere Sn as an embedded submanifold of the Euclidean space
Rn+1. Since the tangent space of Sn at a point p ∈ Sn is

TpS
n =

{
v ∈ Rn+1 : ⟨v, p⟩ = 0

}
,

let us define an inner product in TpS
n by

⟨u, v⟩ = u⊤v, u, v ∈ TpS
n.

With this inner product, Sn can be considered a Riemannian manifold whose metric is
the one induced by the Euclidean inner product in Rn+1.

Geodesics with respect to this metric are the solutions of the second order differential
equation

γ̈ − ⟨γ̈, γ⟩γ = 0.

The unique geodesic t 7→ γ(t) with initial conditions γ(0) = p ∈ Sn and γ̇(0) = v ∈ TpS
n

is given by

γ(t) = p cos(t∥v∥) + v

∥v∥
sin(t∥v∥). (2)

If we settled on the 2−dimensional sphere, S2, geodesics are simply the great arc circles.

In order to find out the geodesic distance with respect to the above metric, one just
needs to compute the velocity vector of the geodesic that joins two points on the sphere.
Let us assume that we are given two points p and q on Sn such that the angle between
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them lies on the interval ]0, π[. Then, the geodesic that joins p, at t = 0, to q, at t = 1, can
be parameterized explicitly as

γ(t) = p cos(αt) +
q − p cosα

sinα
sin(αt),

where t ∈ [0, 1] and α = arccos⟨p, q⟩, [2]. Therefore, the geodesic distance between p and q
is given by the length of the velocity vector of γ at t = 0, that is,

d(p, q) = arccos⟨p, q⟩. (3)

3.1 Problem’s formulation

Since we have already defined the distance function, we are now in conditions to formulate
the analogous to the linear regression problem on Sn. Let us consider a collection of N +1
points, p0, . . . , pN , on Sn and a monotone increasing sequence of instants of time t0 <
t1 · · · < tN , that we assume, for simplicity, that they form a partition of the unit time
interval [0, 1]. Our main goal is to find a geodesic on Sn parameterized explicitly by

γ(t) = p cos(t∥v∥) + v

∥v∥
sin(t∥v∥), (4)

where p ∈ Sn and v ∈ TpS
n, that best fits the given data in the sense that it yields the

minimum value for the functional

E(γ) =

N∑
i=0

d2(pi, γ(ti)),

where d is the geodesic distance on Sn defined by (3).
Notice that finding γ is equivalent to find p ∈ Sn and v ∈ TpS

n that minimize the
function

F (p, v) =
N∑
i=0

arccos2
⟨
pi, γ(ti)

⟩
. (5)

Theorem 3.1. ([8]) A necessary condition for t 7→ γ(t) = p cos (∥v∥t) + v
∥v∥ sin (∥v∥t) to be

the geodesic that best fits the given data (points and instants of time) is that the pair (p, v)
satisfies the following system of equations:

N∑
i=0

αi
sinαi

cos
(
∥v∥ti

)(
pi − ⟨pi, p⟩p

)
= 0

N∑
i=0

αi sin(∥v∥ti)
sinαi

(
pi − ⟨pi, p⟩(tiv + p)− ⟨pi,v⟩

∥v∥2 v
)
=

N∑
i=0

−αi cos(∥v∥ti)
sinαi

⟨pi,v⟩
∥v∥ tiv

, (6)

where αi = arccos
⟨
pi, p cos

(
∥v∥ti

)
+ v

∥v∥ sin
(
∥v∥ti

)⟩
, for i = 0, . . . , N .
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Analogously to what happens in the Euclidean case, we call to the system of equations
(6) the normal equations for the geodesic regression problem on Sn.

Since the above system of equations is highly nonlinear, a numerical optimization ap-
proach to find out the approximate solutions of the proposed optimization problem will be
considered in the next section.

4 Numerical tests using an optimization approach

Let us consider the constrained optimization problem:

min
p,v

F (p, v) =

N∑
i=0

arccos2⟨pi, γ(ti)⟩

s.t. ∥p∥ = 1

⟨p, v⟩ = 0

(7)

whose objective function is defined in (5). The equality constraints mean that the point p
must belong to the unit n-sphere Sn and v must be orthogonal to p.

4.1 Computational experiments

The computational experiments were made on a 2.0 GHz Intel Core i7 with 8GB of RAM,
Windows 7 64-bit operating system. The MATLAB version used was 7.13.0.564 (R2011b).

The problem was codified in MATLAB and solved with the fmincon routine from the
optimization toolbox. This routine, fmincon, attempts to find a constrained minimum of a
scalar function of several variables starting at an initial estimate. This is generally referred
to as constrained nonlinear optimization or nonlinear programming. fmincon has four
algorithm options: interior-point, SQP, active-set and trust-region-reflective (default). In
these experiments the SQP algorithm is used, [10]. SQP is an iterative method for nonlinear
optimization used on problems for which the objective function and the constraints are twice
continuously differentiable. SQP methods solve a sequence of optimization subproblems,
each of which optimizes a quadratic model of the objective objective function subject to a
linearization of the constraints.

Several numerical tests were performed on the two dimensional unit sphere S2. Table
1 reports information from two of them. In the first column it is indicated the number of
points (N + 1) and in the second column the set of instants of time (t). The third column
reports the N + 1 points randomly generated on S2. p∗, v∗ and F ∗ are the optimal values
of p, v and F , respectively, and iter denotes the number of iterations carried out by the
fmincon routine.
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Figure 1 shows the geodesic that best fits two (1a) and five given data (1b), respectively,
corresponding to the tests mentioned on Table 1. Notice that, as expected, the geodesic
that best fits two points is exactly the one that joins them (interpolation case).

Table 1: Numerical tests

N + 1 t Data p∗ v∗ F∗ iter

2 {0,1}
0.1585 -0.5605 0.1585 -0.9351

≈ 10−14 14-0.8624 0.4575 -0.8624 0.5696
0.4807 0.6903 0.4807 1.3302

5
{0, 0.25, -0.89 0.8243 -0.9164 -0.9383 0.0192 -0.8006 4.6366

3.4203 470.5, 0.75, 1} -0.3941 -0.2085 -0.158 0.3022 -0.7635 -0.2176 -32,542
-0.2292 0.5264 -0.3678 0.1678 0.6455 0.5583 5.3801

(a) Two data points (b) Five data points

Figure 1: Geodesics on S2

5 Conclusions and future work

In this paper we formulated the analogous linear regression problem to the unit n−sphere.
In contrast to what happens in the Euclidean case this optimization problem cannot be
solved analytically due to nonlinearity of the counterpart of the normal equations (6).
To overcome this difficulty we have successfully used the MATLAB optimization toolbox
routine fmincon.

Since in the Euclidean case higher order degree polynomials can be used to fit a given
data set of points, as future work we aim to find more general fitting curves on spheres.
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Abstract

We study the spread of childhood infectious diseases in geographically detailed popu-
lation focussing on stochastic amplification. We use an individual based SIR model with
demography where individuals reside in small geographical areas representing a portion
of land, and long-distance transmission among different geographical areas occurs due
to mobility of individuals. Mobility is implemented using the recently introduced radia-
tion model [Simini et al., Nature 484, 96 (2012)]. Parameterizing the model for measles,
we observe that some features of the data available for this disease can be understood
within the framework of stochastic amplification, but also that the interplay between
mobility and disease dynamics influences the resulting time-series.

Key words: stochastic amplification, human mobility, measles, SIR

1 Introduction

Stochastic fluctuations around the equilibrium for epidemiological models have been exten-
sively studied in recent years [1, 2]. Substantial research has shown that the time series
observed for various childhood diseases can be understood in terms of stochastic ampli-
fication, that is the increase in amplitude and regularization of the fluctuations around
the equilibrium value observed for finite populations in epidemiological models driven by
stochasticity. Such studies have shown that the frequency and amplitude observed for re-
current epidemics in available datasets for various infectious diseases could be understood
within this framework [2, 3]. The work we present here investigates this idea in a more re-
alistic setup by using realistic geographically detailed populations, where individuals move
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around different geographical areas following a mobility model recently introduced that
was shown to reproduce observed human mobility patterns [4]. We show that some of the
features observed in real datasets can be understood in terms of stochastic amplification;
however we also show that further fine tuning is needed to properly reproduce the observed
data.

2 Methods

We perform individual based simulation of a SIR model with demography, in which we
assume equal death and birth rates, so that the population size is kept constant. Individual
based simulations for this kind of compartmental models show fluctuations of the number of
infective individuals around the endemic equilibrium [2]; these fluctuations have a preferred
frequency which can be easily determined calculating their power spectrum. Spatial and
temporal correlations enhance the coherence and amplitude of such fluctuations [5, 6]. This
phenomenon, known as stochastic amplification, has been suggested as an explanation for
the incidence patterns observed for some childhood diseases.

Our aim is to study this phenomenon using the detailed geographic distribution of
human population provided by the Gridded Population of the World database [7], which
provides estimates for the population of a given geographical area on a regular grid of cells
of angular size 2.5 arc-minutes. This corresponds roughly to 5 km at the equator. Each of
these cells is considered by us as a well mixed population, and disease evolution in described
by a simple individual based SIR model. Since the geographical areas we consider include
population sizes of the order of tens of millions of individuals, we use parallel computation
which grants unlimited complexity. A simulated annealing technique is used to partition
the map under consideration into regions that are similar in population size and compact
in shape. Each of these regions is then assigned a different node of a computer cluster.

Interactions among cells is introduced by moving individuals among the cells: when
an individual leaves a cell, it ceases to participate to the dynamics of that cell, while
it starts to participate to the dynamics of the new cell it moves to. Thus, by moving
around, individuals can spread the disease from their cell of origin to new cells, leading
to long-distance transmission. The way individuals move among different cells reflects
the recently introduced radiation model for human mobility described in ref. [4]. This
model, which gives the mobility fluxes among a set of locations, is influenced by a single
parameter Nc/N which corresponds to the fraction of individuals in the population that
participates to such long-distance displacements (N is the total population, Nc is the total
number of individuals moving, or commuters). This parameter controls the level of long-
distance transmission and hence can be estimated by data on human mobility. Following
previous studies [8], individuals are assigned a set of preferred locations that they visit with
a frequency compatible with the fluxes provided by the radiation model, allowing us to limit
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Figure 1: Infective incidence as a function of time for a grid cell in the city of London;
time is in years. Simulations parameters: β0 = 1.175 days−1, β1 = 0.35, γ = 1/13 days−1,
µ = 5.5 × 10−5 days−1, Nc/N = 0.1

the computational requirements of our simulations.

3 Results

We considered parameters corresponding to measles, a disease that received considerable
attention [9] and was shown to be compatible with the stochastic amplification mechanism
[2]. Since there are available datasets for England, we performed simulations for the geo-
graphical area of the British Isles that we assumed to be isolated: no imports from outer
regions were considered. We introduced seasonality by modulating the contact rate through
term-time forcing:

β(t) = β0 [1 + β1 Term(t)]

where Term(t) is a function taking values +1 during school terms and −1 otherwise [9].

From the time series of the number of infective individuals for different locations in the
area, we calculated the corresponding power spectra which we found to be in agreement with
those calculated in previous studies [2]. The time series also show regular biennial cycles
(see figure 1) for some location as well as propagation of waves from big centres towards less
populated areas. We found however that the regularity of the sequence of peaks observed in
the time series for some locations depends on the intensity of human mobility, controlled by
the parameter Nc/N . Low populated cities are characterized by extinctions of the disease
that must be imported by another location, however if Nc/N is low, such import events
might be considerably delayed, leading to a separation among peaks larger than biennial
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Figure 2: Infective incidence as a function of time for a grid cell in the city of York; time
is in years. Due to the low Nc/N , peaks appear temporally more separated than the
biennial sequence observed for London. Simulations parameters: same as in figure 1, except
Nc/N = 0.02

(see figure 2). When Nc/N is high, long-distance transmission becomes efficient, but on the
other hand this leads to higher infectiveness and broader peaks.

Although some of the features observed can also be interpreted in terms of broadness
of the power spectra, we think that additional features should be considered in order to get
a better agreement. An improved description for measles is that obtained using an SEIR
model: our first attempts show that this change influences the time series but does not
solve the discrepancies observed with data. Instead, we believe that more realistic recovery
profiles using multiple infective classes would lead to a higher regularization of the epidemic
sequence while reducing inter-epidemic infectivity. Also, contact restriction on individuals
a few days after being infectives would also act to reduce the overall infectiveness observed
in simulations.
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Abstract

The evaluation of process models require the availability of execution logs, which
hardly are available. Therefore, some techniques have been proposed to generate logs
from a process model. The problem of generating a complete event log is NP-hard,
therefore for complex process model looking for a complete event log might be infeasi-
ble. In this paper we propose an approach,based on an order preserving heuristic, for
sampling the log space which produces equiprobable execution runs.

Key words: process mining, business process, log generation

1 Introduction

Modern enterprises rely on well-defined business processes in order to pursue their mission.
A process can be defined as a set of actions or activities that happen over the time, but
which are related to each other by a common goal. It is possible to identify processes in
companies, hospitals, government institutions, universities, and so on. Process Mining is a
knowledge discovery approach which represents an emerging area of interest able to cover
problems such as the analysis or design of processes, their evolution over the time, the
adaptation of the original process definition to their practice and experience.4,5

Data Mining and Knowledge Discovery approaches have been deeply developed with
respect to tabular data, spatial information, text and other specific sources. However, when
applied to business processes it unveils new and specific issues to be faced. Event logs
provide the starting point for process mining techniques,2,3 as they collect most of relevant
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information to understand how a process is instanced, operated and evolved. They describe
a flow of activities along a graph of functional dependencies between tasks, even when this
structure is implicit in practice. Basically, a process log is made or runs according to a
given abstract process model where each run represents a specific process instance. A great
amount of work in process mining tries to discover from a log the process model that best
describes the set of process instances. To do that, process instances can be represented as
a directed graph, a finite state machine or a Petri net.4,5

As logs represent all the information related to a given process, their analysis and
generation represent an important issue because Process Mining approaches normally rely on
the assumption that the log to be mined is complete. However, the problem of generating all
possible runs given a model is NP-hard. This might lead to make infeasible the production
of a complete event log. An alternative way is to sample the log space by picking a given
number of execution runs. In order to avoid any statistical bias, log sampling should rely
on a pseudo random generation of runs which would approximate uniform distribution. i.e.
each run should be equiprobably generated.

This work proposes a heuristic method to sample a process log in a uniform way,
which produces runs considering the correct interleaving of activities according to the given
model. This heuristic is inspired to a general method to obtain linear extensions from a
partial order.1 Log generation is complicated by the different gateways which control the
process workflow. In particular, we cope with parallel and exclusive gateways, as these are
the most common in practice. In addition, we did not take into account cycles, as they
generally reflects anomalous executions which require to redo some activities.

In the following section we provide a detailed description of the method as well as some
insights about its application.

2 Algorithm

In this section we present an algorithm based on heuristics able to generate runs quasi-
uniformly. Generating equiprobable runs avoid to bias the log sampling when more extended
and complex process model are considered. Indeed, in this case it is not feasible to determine
in advance which and how many different runs are possible. Algorithm for generating process
runs is described by pseudo code in Algorithm 1.

The algorithm takes as input A, the list of activities entailed by the process; G, the
adjacency matrix of activities in A, so that G(aj , ak) = 1 if ak follows immediately after aj ;
s, the activity starting the process; E, the set of activities ending the process.

As first step, we compute R the transitive closure of the matrix G, and we assign s as
starting activity; R0 is the closure matrix without considering a0; variable i provides the
current run step (lines 1-4). For each step, we collect in P activities that has no predecessor
in Ri: they are the candidate to be selected (line 5). If there is only one activity in P , we
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Algorithm 1 RunGenerator

Input: A, activities
Input: G, adjacency matrix
Input: s, stating activity
Input: E, ending activities
Output: (a0, a1, . . . , am), the run
1: R← closure(G)
2: a0 ← s
3: R0 ← R cleared of a0
4: i← 0
5: repeat
6: P ← {a ∈ A | a has no predecessor in Ri}
7: if |P | = 1 then
8: ai+1 ← a ∈ P
9: else

10: if context(ai) = MAIN,PAR then
11: Ni ← {(u, v) ∈ A2

i |Ri(u, v) = 0}
12: for all a ∈ P do
13: Q(a)← # (a, ·) ∈ N
14: end for
15: ai+1 ← roulette(P,Q)
16: Ri+1 ← Ri cleared of ai+1

17: else
18: ai+1 ← roulette(P )
19: Ri+1 ← Ri cleared of ai+1 and unreachable nodes in Ri

20: end if
21: end if
22: i← i + 1
23: until ai ∈ E
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select it as the next in the run (lines 7-8); otherwise we have to choose. Choice depends
on the context of ai, that is determined by the last gateway entered. Context values can
be MAIN , PAR and XOR. The different context will affect how the next activity will
be selected. In the case of PAR and MAIN (line 9), we assign to activities a chance of
being that inversely proportional to the number of possible paths that can be originated.
To estimate this number we collect in Ni all pairs activities that are not connected in Ri.
For each activity a in P we compute the number of times it appears as first element in a
pair (a, ·) considered by Ni and assigned to Q (line 13). We select an activity from P with
a probability that inversely proportional to Q (line 15). We reduce the closure matrix Ri+1

by removing ai+1 from Ri and we move to the next step (line 16). Instead, if the context is
XOR, we just make a random selection in P (line 18), and we prepare Ri+1 by removing
ai+1 and unreachable nodes from Ri (line 19). As output we get the run made of activities
a0, a1, . . . , am.

The crucial point here is related to the selection of each activity at step i because
it is necessary to distinguish between parallel or exclusive activities. In a flow, if control
originates a double path which leads to two activities ak and aj (parallel gateway), we can
obtain runs in which both activities are interleaved. By contrast, if a decision is made in ai
which leads to ak or alternatively to aj (exclusive gateway), we will get runs in which only
one of the two activities will appear. These two possibilities have to be taken into account
in generating a path.

If the activities belong to an exclusive gateway, the same probability of being selected
is assigned to each activity. Instead, if the activities belong to parallel gateway, it’s not fair
to assign to each activity the same probability to be selected, because the final execution
flows will have different probabilities of being generated.

3 An example

Let’s check the algorithm with an example that contains both parallel and exclusive gate-
ways. Only activities belonging to the same gateway will be referred. Figure 1 shows a
process with 8 activities. Activities a2 and a3 are exclusive. That is, a certain log instance
contains either a2 or a3, but not both. All possible execution flows are showed in Figure 2.

The run tree showed in Figure 3 is explored for the determination of the execution flow
assigning to each activity the same probability of being selected. As it can be seen, the
activity starting the process is a1 and a8 the ending one. Therefore each log instance starts
with activity a1. The activities following next the current activity are a2 and a3. As they
are exclusive, the probability of being selected is 1/2. If a2 is selected just after a1, the first
log instance of Figure 2 is obtained.

On the other side, if activity a2 is selected after a1, there is more than one possibility
for the third activity. The candidates to be placed in third position are a4 and a5. As
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Figure 1: Example of a process model by BPMN notation.

Figure 2: Log instances

Figure 3: The run tree (generator). Number in arcs represent the relative weight for any
node
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these activities can be executed in parallel, then the probability of selecting one of them
is inversely proportional to the number of possible paths that can be originated. If a4
is executed at third step, it will affect one log instance (the second in Figure 2), If a5 is
executed at third step, it will affect two log instances (the third and fourth in Figure 2).
Therefore, the probability of selecting a4 (a5) at third step is 1/3 (2/3). For the logs starting
by a1, a3, a5 we repeat the proces for selecting the fourth activity. We then continue the
process until some ending activity is reached.

4 Conclusion

The algorithm described in previous section is able to generate different execution runs
according to a given process model. Runs are generated with the nearly equal probability.
This allows a uniform sampling of the log space when it is not feasible to generate a complete
log. The run generation depends on the nature of the different gateways met along the path.
In this paper we considered two main gateways: parallel and exclusive. Other gateways are
possible. In the future we aim to take into account them along the run generation. Also,
we did not consider cycles, as they are generally related to anomalous executions, while we
were interested to outline the nominal behaviour.

Having a uniform log sampling might help to answer questions concerning log com-
pleteness, as non trivial criteria for testing it are not known. There are some works focused
on studying the completeness of logs6 but all of them make assumptions hardly to verify
in practice. Other works take a probabilistic approach in order to guarantee, with some
probability, that the event log is complete and the discovered process is similar to the gen-
erating process. We aim to investigate relationship between uniform log sampling and log
completeness more deeply in the future.
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Abstract

Multidrug-resistant tuberculosis (MDR-TB) is a specific and particularly a dan-
gerous form of drug-resistant TB, which is defined as the form of disease caused by
resistance of a strain of Mycobacterium tuberculosis (MTB) to two or more of the an-
tituberculosis drugs. Key words: Mycobacterium tuberculosis - TB - MDR-TB - Basic

reproductive number - treatment - drug-sensitive strains - drug-resistant strains

1 Main results.

MDR-TB is generally treatable, however, the efficacy of treatment of drug-resistant cases
is reduced compared with that of drug-sensitive cases. Studies have found that drug re-
sistance develops because of inadequate or erratic therapy, although it has been shown
that persons previously treated for drug-sensitive tuberculosis can be reinfected with drug-
resistant strains.
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A number of theoretical studies have been performed on the mathematical modelling
of coexistence of different pathogens (strains) in the same host [1], [3], [9], [11], [12], [13].
One of the first mathematical model that included the dynamics of both drug-sensitive
and drug-resistant tuberculosis was published by Blower et.al. [2]. More recently others
have modeled the emergence of drug-resistant tuberculosis and predict the future burden
of MDR-TB [4], [5], [8], [10], [14].

This work is concerned with a mathematical model to evaluate the effect of MDR-TB on
TB epidemic and its control by assessing the transmission dynamics of both drug-susceptible
and drug-resistant TB.

Our mathematical model monitors the temporal dynamics of susceptible individuals
(not infected but susceptible to infection), latent individuals (infected but unable to infect
others) and the active-TB infections, given by the infectious individuals (i.e., infected in-
dividuals that are able to infect others). Since the model assesses the drug-resistant and
drug-susceptible tuberculosis transmission, two subclasses of latent and infectious TB indi-
viduals are required to build it. Hence, the total population (N), is divided into five classes,
namely, S, the susceptible individuals; LS , the drug-sensitive latent individuals; LR, the
drug-resistant latent individuals; TBS , the drug-sensitive with active-TB individuals, and
TBR, the drug-resistant with active-TB individuals.

We assume that MTB infection is transmitted by infectious individuals with active-TB
(TBS and TBR), and the infection propagates following the pseudo mass-action incidence
[6], [11]. The susceptible individuals (S) can be infected with either a drug-sensitive strain
or a drug-resistant strain. The rate of newly recruited drug-sensitive and drug-resistant
cases are βSTBSS and βRTBRS, respectively. The transmission coefficients, βS and βR
specify the transmissibility of drug-sensitive TB, and the transmissibility of drug-resistant
TB individuals, respectively. The transmission of drug-resistant TB occurs via two indepen-
dent but interacting processes: (i) transmission of drug-resistant to susceptible individuals
(transmitted resistance) and (ii) conversion of sensitive cases to drug-resistant cases during
the treatment (acquired resistance).

The dynamics of epidemic models can be understood in terms of the basic reproductive
number of infection, R0, which is the average number of secondary cases caused by one
infectious case in a completely susceptible population. It is well-known that the condition
R0 < 1 is necessary for disease eradication [7]. Here, the relative reproductive fitness function
will be approximated by the basic reproductive number of infection (R0) in the absence of
treatment or the effective reproductive number (R) in the presence of treatment.

We identify the steady states of the model to analyse their stability. We find that the
basic reproductive number is composed of two critical values, relative reproductive number
for sensitive (strains sensitive to all drugs) and MDR strains (strains resistant to all drugs).

Paradoxically, we have found that even MDR strains that are considerably less fit (and
thus less transmissible) than the drug-sensitive strains can lead to a high MDR incidence.

c©CMMSE ISBN: 978-84-616-2723-3Page 1014 of 1797



S.Martorano Raimundo, H. Mo Yang, E. Venturino

Drug-resistant pathogens gain an advantage over drug-sensitive pathogens because treat-
ment is less effective against drug-resistant strains.
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Abstract

We consider here coordinated behavior of predators, in correspondence of prey indi-
vidual and group gathering. Two models for analysing these situations are introduced.
In both cases the system can thrive at coexistence, but in case of prey herd defense,
quite unexpectedly, we observe that the system may very well collapse, if environmental
conditions are suitable. In addition, in this very same case limit cycles are discovered,
when a certain bifurcation parameter crosses a critical value. Finally, the population
values at coexistence for these two models are compared among themselves as well as
against those of the classical Lotka-Volterra model with prey logistic correction, and
with a previously proposed prey herd behavior system.

Key words: predator-prey, group gathering, stability, ecosystems
MSC 2000: AMS codes 92D25, 92D40

1 Introduction

In this paper we consider two predator-prey models. Common to both, and contrary to
classical models in which predators search for prey on an individual basis, see for instance
the first chapters in [7], is the assumption that they hunt the prey in a coordinate fashion. In
other words, the pack hunts the prey, but the strongest individuals in general have the upper
hand, in the sense that either they occupy the forefront positions of the pack in order to get
the best benefits from the action, or simply they obtain them afterwards. We assume these
positions to be on the outskirts of the pack. In this situation the individuals in these places
will be the first to fall upon the prey. As for the latter, we use the standard assumption
of individual behavior, for which they are kind of isolated, and can be attacked by the
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predators’ pack individually, but we also assume that they can gather together in herds, as
recently introduced in the literature, [2]. In such situation therefore the consequences of the
attacks are felt mostly by the prey on the perimeter of the herd, as they are more exposed
to the predators’ hunting.

In the literature the idea of group defense, first expressed along these lines in [1], had
been explored long time ago, with rather different assumptions, [6]. More recently, it has
been further investigated, [3] and explored also in the context of ecoepidemiology, [4].

Two models are then presented along these lines. Mathematically, the pack and the
herd assumptions correspond to replacing the classical mass action law terms by a nonlin-
ear function of the populations. Specifically, as discussed in [2], these terms involve the
square root of the population densities, rather than the populations themselves. In other
words, here we suitably combine Gompertz-like interaction terms, where the exponent is
not generic, but fixed to the value 1

2 , as this value expresses the relationship between area
and perimeter of the territory occupied by the herd or the pack.

2 Modelling pack predation

Here we consider at first the predators gathering together to hunt for food, while the prey
have an individualistic behavior. Let P (τ) represent the density of the predators, namely
the number of individuals per surface unit. As described in [2], if the pack occupies an area
A, the individuals who stay at the outskirts of the pack are in number proportional to the
perimeter of the patch on which the pack sits, so that its length is proportional to

√
A.

This dependence is thus reflected by the density square root, i.e.
√
P . We assume that the

interactions with the prey population occur mainly via these peripheral individuals, hence
the interaction term must be proportional to Q

√
P , where Q denotes the prey population.

The model is thus

dQ

dτ
= r

(
1− Q

K

)
Q− q

√
PQ,

dP

dτ
= −mP + p

√
PQ. (1)

The first equation describes the logistic dynamics of the prey population, while the second
one expresses the corresponding evolution of the predators. The interactions of the predators
with the prey occur essentially through the individuals lying at the outskirts of the herd.
The parameter r is the growth rate of the prey, K is the environment’s carrying capacity,
m represents the predators natural death rate. The predation rate is represented by the
parameter q, which affects negatively the prey, while p is the hunting profit, i.e. the benefit
for the predator. Since not the whole prey is converted in food for the predators we need
to impose that p < q. All the parameters are nonnegative.
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2.1 Model simplification

The model (1) has a singularity in the Jacobian, due to the presence of the square root
term. It is therefore advisable to remove it, before proceeding to the analysis. We rescale
the variables as follows

X =
Q

K
, Y =

q
√
P

m
, t = mτ,

and define the new parameters

b =
r

m
, c =

pq

2Km2
.

The adimensionalized system for Y 6= 0 can be written as

dX

dt
= b (1−X)X −XY, dY

dt
= −1

2
Y + cX, (2)

while in absence of predators, the system reduces just to the first equation. In this case,
easily, the prey follow a logistic growth, toward the adimensionalized carrying capacity
X1 = 1. We have defined the new dependent variable Y by taking P ’s square root, thus Y
is nonnegative. Similarly, but straightforwardly from its definition, we have also thatX must
be nonnegative. Also the new parameters b and c are combinations of the old parameters
r, m, p, q, K which are nonnegative. As a consequence, they must be nonnegative as well.

2.2 Boundedness

Let us introduce the total population in the environment, Z(t) = X(t) + Y (t). Summing
the equations in (2), we find

dZ

dt
= −1

2
Y + cX + bX − bX2 −XY = −1

2
Z +

(
c+ b+

1

2
− bX − Y

)
X.

Thus the following estimates follow on taking the maximum of the parabola in X

dZ

dt
+

1

2
Z ≤

(
c+ b+

1

2
− bX

)
X ≤

(
c+ b+ 1

2

)2
4b

≡ M̄.

From the theory of differential inequalities we obtain

Z(t) ≤ e−
1
2
t + 2M̄

(
1− e−

1
2
t
)
≤ 1 + 2M̄ = M

and in view of the fact that the total population is bounded, each subpopulation X and Y
must be bounded as well.
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2.3 Equilibria

For the system (2) there are only two equilibria Ei = (Xi, Yi), namely the origin E0 = (0, 0),
at which point both populations become extinct, and the coexistence equilibrium

E2 =

(
b

b+ 2c
,

2bc

b+ 2c

)
,

which is always feasible.

As mentioned earlier, there is also the equilibrium point E1 = (1, 0) for the subsystem
without predators. But this does not satisfy the second equation in (2) and furthermore
it is unstable. In fact, since at any point (X∗, ε), with ε > 0 but arbitrarily small and X∗

close to X1 we have dY
dt = cX∗ + o(ε) > 0, it follows that solution trajectories of (2) move

away from E1.

2.4 Stability

The Jacobian of (2) is

J ≡
(
b− 2bX − Y −X

c −1
2

)
.

At the origin E0, the eigenvalues are λ1 = b > 0 and λ2 = −1
2 , so that it is unstable.

Let us denote by J2 the Jacobian matrix evaluated at E2. Applying the Routh-Hurwitz
criterion to the characteristic equation, we find

det(J2) = −1

2
b+

b2 + 2bc

b+ 2c
=

1

2
b > 0, tr(J2) = −1

2
+ b− 2b2 + 2bc

b+ 2c
= −2b2 + 2c+ b

2(b+ 2c)
< 0.

Thus both conditions are always satisfied. This means that J2 has eigenvalues with negative
real part and therefore E2 is always a stable equilibrium. The phase plane picture also
sustains this conclusion as we can see in Figure 1. Summarizing, we found the following
result.

Theorem 1. The equilibria E0 and E1 are always unstable equilibria. The coexistence
equilibrium E2 is always locally asymptotically stable.

Furthermore, taking the point N∗ ≡ (N, 2cN) on the isocline through the origin in
Figure 1, with N > 1, we can identify a compact set Ω, the rectangle having N∗ and the
origin as opposite vertices, which is positively invariant. On its right vertical side indeed

dX

dt
|X=N = b(1−N)N − 2cN2 < 0
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Figure 1: Phase plane sketch of the model (2) with parameters value r = 0.9, m = 0.3,
p = 0.6, q = 1.5 and K = 5.

so that trajectories enter into Ω from the right. Similarly on the upper horizontal side, for
X < N , we have

dY

dt
|Y=2cN = −1

2
2cN + cX < 0

and again trajectories of (2) enter into Ω from above. Applying the Poincaré-Bendixson
theorem, global stability follows. Hence

Theorem 2. The coexistence equilibrium E2 is also globally asymptotically stable.

No Hopf bifurcations can arise at this point, since tr(J2) < 0 strictly.

3 Pack hunting with herd response

In this second model we still assume the predator population to hunt in packs, but in
addition the prey population here exhibits an herd behaviour. Using the same notations,
the interactions between the two populations occur via peripheral individuals, those who
take the outermost position in both herds. Thus the interactions between predators and
prey are proportional to the product of the square roots of their densities,

√
P
√
Q. The
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model is therefore given by

dQ

dτ
= r

(
1− Q

K

)
Q− q

√
P
√
Q,

dP

dτ
= −mP + p

√
P
√
Q. (3)

Again the first equation describes the evolution of the prey population, while the second
one describes the same for the predators. The parameters retain their meaning as for (1).

3.1 Model simplification

We proceed in the same way as we did for (1). We rescale the variable as follows

X =

√
Q

K
, Y =

q

2m

√
P

K
, t = mτ,

and define the new parameters, which are nonnegative as a result of the nonnegativity of
the original ones,

e =
r

2m
, f =

pq

4m2
.

For Y 6= 0, the adimensionalized system takes the form

dX

dt
= e(1−X2)X − Y, dY

dt
= −1

2
Y + fX. (4)

Again, for Y = 0, the prey evolve toward the equilibrium Ê1 ≡ (1, 0).

3.2 Boundedness

Once again we define the total population Z(t) = X(t) + Y (t). Summing the equations in
(4), we have

dZ

dt
= eX − eX3 − Y − 1

2
Y + fX = X

(
e+ f +

3

2
− eX2

)
− 3

2
Z.

Thus we obtain the following estimates

dZ

dt
+

3

2
Z ≤

(
2

3
e+

2

3
f + 1

)√
2e+ 2f + 3

6e
≡ M̄.

The last estimate follows on taking the maximum of the cubic in X.
Finally, from the theory of differential inequalities we have

Z(t) ≤ e−
3
2
t +

2

3
M̄
(

1− e−
3
2
t
)
≤ 1 +

2

3
M̄ = M.

Each subpopulation X and Y is therefore bounded since their sum is.
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3.3 Equilibria

The two equilibria Êi = (X̂i, Ŷi) of (4) are once again the origin Ê0 = (0, 0) and the
coexistence equilibrium

Ê2 =

(√
e− 2f

e
, 2f

√
e− 2f

e

)
.

The latter is feasible if

e ≥ 2f. (5)

In Figures 2 and 3 we compare the two situations in which Ê2 is feasible and when it is
unfeasible.

Figure 2: Phase plane of model (4) with
e ≥ 2f , both Ê0 and Ê2 exist.

Figure 3: Phase plane of model (4) with
e < 2f , Ê2 is unfeasible.

As we can see in Figure 2 also the point Ê1 = (1, 0) seems to be an equilibrium, but
it does not satisfy (4). Since at any point (X̂∗, ε), with an arbitrarily small ε > 0 and X̂∗

near X̂1 we have dY
dt = fX̂∗ − o(ε) > 0, it follows that Ê1 cannot be a stable equilibrium.

3.4 Stability

The Jacobian of (4) is

Ĵ ≡
(
e(1− 3X2) −1

f −1
2

)
.
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At the origin Ê0, the characteristic polynomial is

λ2 +

(
1

2
− e
)
λ+ f − 1

2
e = 0.

Applying the Routh-Hurwitz criterion we obtain the stability conditions for Ê0 as

2f > e, e <
1

2
. (6)

Thus in this situation the ecosystem may well disappear. Also comparing the first condition
in (6) with (5) we have the following result.

Theorem 3. The origin of system (4) is locally asymptotically stable if (6) holds. There
is a transcritical bifurcation for which Ê2 emanates from the origin when the parameter e
raises up to attain the critical value e∗ = 2f .

Letting Ĵ2 denote the Jacobian evaluated at Ê2, the Routh-Hurwitz conditions are
det(Ĵ2) = e− 2f > 0 and

tr(Ĵ2) = −2e+ 6f − 1

2
< 0. (7)

The first one is always true in view of the feasibility condition (5) of Ê2. As for the second
condition we have several cases, which are represented in Figure 4. In summary

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

f

e

 

 

E2 stable

E2 unfeasible

e=3f−1/4

e=2f

Figure 4: Region of the e−f parameter space in which the coexistence equilibrium is stable.

Theorem 4. The coexistence equilibrium of system (4) is locally asymptotically stable
in the following cases:
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if 2f < e < 1
2 , (7) holds and then E2 is stable;

if e > max
{
1
2 , 3f −

1
4

}
, (7) holds as well and thus E2 is stable;

if 1
2 < e < 3f − 1

4 , (7) is not true, so that E2 is unstable.

Theorem 5. The equilibria Ê0 and Ê2 are both globally asymptotically stable, when-
ever they are locally asymptotically stable.

Proof . We proceed as for the former model (2). Take in this case a point L̂∗ ≡ (L, 2fL)
with

L > max

{
1,

e

3
√

3f

}
.

The rectangle Ω̂ with the origin and L̂∗ as opposite vertices is a positively invariant set since
on its right vertical and upper horizontal sides, for the latter recalling that here X < L, we
have

dX

dt
|X=L = e(1− L2)L− Y < 0,

dY

dt
|Y=2fL = −f(L−X) < 0.

Hence all trajectories enter into Ω̂ and therefore the only locally asymptotically stable
equilibrium in its interior, be it Ê0 or Ê2, which are mutually exclusive in view of the
transcritical bifurcation of Theorem 3, must also be globally asymptotically stable.

We can sum up the situation of the equilibria of system (4) in the following table.

Parameters Ê0 Ê2 Bifurcation

e < 1
2 f > e

2 STABLE UNFEASIBLE

e < 1
2 e∗ = ef Transcritical

e < 1
2 f < e

2 UNSTABLE STABLE

e > 1
2 e > 3f − 1

4 UNSTABLE STABLE

e > 1
2 e = e† = 3f − 1

4 Hopf

e > 1
2 2f < e < 3f − 1

4 UNSTABLE UNSTABLE

e > 1
2 f > e

2 UNSTABLE UNFEASIBLE

3.5 Bifurcations

In addition to the transcritical of Theorem 3, we now try to establish whether for special
parameters combinations Hopf bifurcations originate near Ê2. We need purely imaginary
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eigenvalues for the characteristic equation, and this occurs when the trace of the Jacobian
vanishes, i.e. (7) becomes an equality and the constant term is positive, det(Ĵ2) = e−2f > 0,
which is true in view of (5). Thus, in summary

Theorem 6. The system (4) admits a Hopf bifurcation at the coexistence equilibrium
when the bifurcation parameter e crosses the critical value

e† = 3f − 1

4
. (8)

For the dimensionalized model (3), Figure 5 contains the simulations of the system
trajectories and the corresponding limit cycles in the phase plane. The experiments are run
over long times to show that the oscillations obtained are really persistent.

0 2000 4000 6000 8000 10000
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2

2.5

Q

time

pack predation and prey herd defense 
 r=0.75, m=0.2995, p=0.2955, q=0.605, K=10
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 r=0.75, m=0.2995, p=0.2955, q=0.605, K=10

Figure 5: Left: time series of the system trajectories (3); Right: corresponding limit cycle
in the phase plane. The original parameter values are r = 0.75, m = 0.2995, p = 0.2955,
q = 0.605, K = 10, with coexistence equilibrium E2 = (2.041, 1.9869); they correspond to
e = 1.2521, f = 0.4983 in the rescaled model (4).

4 Conclusions

We have examined predators’ pack hunting, in correspondence both of individual prey be-
havior, as well as their gathering in herds. The major difference between the two models
is that when the prey move loose in their habitat, the ecosystem always attains a coexis-
tence equilibrium. Instead, if they gather together, presumably for defense purposes, the
ecosystem may be prone to extinction. This is a rather counterintuitive result, since one
would expect the defensive strategy to work. However, it can be interpreted observing that
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perhaps the group defense is less effective when predators hunt in pack, since the prey per-
haps are more easily discovered. Clearly, if the herd is wiped out, then the predators will
disappear as well, as the model assumes that no other food source is available for them.
Note that ecosystem extinction does occur, but rarely, in the model without pack predation,
[8]. Furthermore, in case of herd defense, we have seen that the populations can exhibit
persistent oscillations. Other than this, in both situations we can find only that popula-
tions coexist, as the prey-only equilibrium is unstable. However, the population values at
coexistence in the two cases differ. Therefore the two proposed models differ almost only
in the equilibria location in the phase plane, but their qualitative behavior is about similar,
apart from the limit cycles arising in the latter system.

In order to better compare these results from the quantitative point of view, we consider
also the classical model, with logistic correction. However, in such case, since the square root
is absent, if we rescale it, we end up with different adimensionalized variables and coefficients
than those used here. It is therefore imperative to return to the original dimensionalized
models, for this comparison, both for the classical model and for those introduced here.

Now, if we consider the classical Lotka-Volterra model with logistic correction for the
prey, i.e. (1) with mass action terms and in place of the square root interaction term, it
is easy to find its equilibria. In particular the coexistence point C∗ is feasible for pK > m
and in such case always stable. When unfeasible, the equilibrium (K, 0) takes its place,
via a transcritical bifurcation. The coexistence equilibria of the two models presented here,
respectively with loose prey and herd defense, in dimensional form are given by

E2 ≡

(
K

mr

mr + pqK
,
p2

m2
K2

(
mr

mr + pqK

)2
)
, Ê2 ≡

(
K
(

1− pq

mr

)
,
p2

m2
K
(

1− pq

mr

))
.

For the classical model and the model with loose hunting and prey group defense instead
the coexistence equilibrium reads, [1],

C∗ ≡
(
m

p
,
r

q

(
1− m

pK

))
, Ẽ2 =

(
m2

p2
,
mr

pq

(
1− m2

p2K

))
.

To assess the population levels we need essentially to compare m and p, i.e. the preda-
tors’ mortality and predation efficiency. The ultimate prey population values of the latter
two models depend on model parameters that belong to predators and not on their repro-
ductive capabilities nor to the environment carrying capacity. When the predators instead
pack together, the prey equilibrium values at coexistence involve also their own intrinsic
characteristics. Still in the last two models if the predators’ hunting efficiency exceeds their
own mortality, m < p, the prey settle at a much lower value when gathering together for de-
fense purposes; the predators instead will reach a higher population value. On the contrary
for m > p the prey defensive strategy keeps them at higher numbers than when they behave
individualistically; the predators instead will have the opposite result, reaching lower values
when the prey use a defensive behavior, and higher ones with individualistic prey.
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The reverse situation occurs for pack hunting and herd defense. The ratio of the preda-
tors’ hunting efficiency p and their mortality m tells whether their population will ultimately
be larger than that of the prey. A similar result could hold for the model of pack hunting
coupled with loose prey, but the predators population at equilibrium depends on the prey
population squared. If the latter is smaller than 1 the conclusion is not immediate. At E2

and at Ê2 the prey populations are given by a term in the bracket, smaller than 1, multiplied
by the carrying capacity, so that its value depends on K and may be large, most likely, but
also small. A population smaller than 1 is in fact not counterintuitive, since we can not
just count individuals, but also can measure the population by its weight. Depending on
the units chosen, the claim therefore makes sense.
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Abstract

In this work we solve Mathematical Programs with Complementarity Constraints
using the hyperbolic smoothing strategy. Under this approach, the complementarity
condition is relaxed through the use of the hyperbolic smoothing function, involving a
positive parameter that can be decreased to zero. An iterative algorithm is implemented
in MATLAB language and a set of AMPL problems from MacMPEC database were
tested.

Key words: complementarity constraints, hyperbolic smoothing, SQP

1 Introduction

Mathematical Programs with Complementarity Constraints (MPCC) is a subclass of more
general Mathematical Programs with Equilibrium Constraints (MPEC). These kind of con-
straints may come in the form of a game, a variational inequality or as stationary conditions
of an optimization problem. The main applications areas are Engineering and Economics
[1], [2], [3]. They are so widespread in this areas because the concept of complementarity is
synonymous with the notion of system equilibrium. They are very difficult to solve as the
usual constraint qualifications necessary to guarantee the algorithms convergence fail in all
feasible points [4]. This complexity is caused by the disjunctive nature of the complemen-
tarity constraints. They have been proposed some nonlinear approaches to solve MPCC,
starting with the smoothing scheme [5], [6], the regularization scheme [7], [8] the interior
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point methods [10], the penalty approaches [11], [12], [13] and the "elastic mode" for nonlin-
ear programming in conjunction with a sequential quadratic programming (SQP) algorithm
[14]. On this paper we present the hyperbolic smoothing strategy [15] and we apply it for
solving MPCC. The proposed method adopts a C∞ differential class function, in order to
overcome the difficulties on solving the complementarity constraints.
This paper is organized as follows. Next section defines the MPCC problem. Some optimal
issues are presented in Section 3. The hyperbolic smoothing technique and the MATLAB
algorithm are described in Section 4. Numerical experiments using the hyperbolic smooth-
ing algorithm are reported in Section 5. Some conclusions and future work are exposed in
Section 6.

2 Problem definition

We consider Mathematical Program with Complementarity Constraints (MPCC):

min f(x)
s.t. ci(x) = 0, i ∈ E,

ci(x) ≥ 0, i ∈ I,
0 ≤ x1 ⊥ x2 ≥ 0,

(1)

where f and c are the nonlinear objective function and the constraint functions, respectively,
assumed to be twice continuously differentiable. E and I are two disjoined finite index sets
with cardinality p and m, respectively. A decomposition x = (x0, x1, x2) of the variables is
used where x0 ∈ Rn (control variables) and (x1, x2) ∈ R2q (state variables). The expressions
0 ≤ x1 ⊥ x2 ≥ 0 : R2q → Rq are the q complementarity constraints. One attractive way of
solving (1) is to consider its equivalent nonlinear programming formulation:

min f(x)
s.t. ci(x) = 0, i ∈ E,

ci(x) ≥ 0, i ∈ I,
x1 ≥ 0, x2 ≥ 0,
X1x2 ≤ 0,

(2)

where X1 is a diagonal matrix with x1 as diagonal. On this formulation the complementarity
constraints are replaced by a set of nonlinear inequalities, such as x1j x2j ≤ 0, j = 1, . . . , q,
enabling the use of standard NLP solvers to solve the complementary constraints.

3 Optimal issues

This section introduces some concepts related to stationarity and first order conditions.
The optimality concepts follow the development of [16] and the corresponding proves can
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be consulted in this work. Consider two index sets: X1, X2 ⊂ {1, . . . , q} with X1 ∪ X2 =
{1, . . . , q}, denoting the corresponding complements in {1, . . . , q} by X⊥1 e X⊥2 . For each
pair of index one define the relaxed NLP corresponding to (1):

min f(x)
s.t. ci(x) = 0, i ∈ E,

ci(x) ≥ 0, i ∈ I,
x1j = 0, ∀j ∈ X⊥2 ,
x2j = 0, ∀j ∈ X⊥1 ,
x1j ≥ 0, ∀j ∈ X2,
x2j ≥ 0, ∀j ∈ X1.

(3)

Concepts like constraints qualification, stationarity and second order conditions of the
MPCC problem will be defined in terms of (3). The linear independence constraint qualifi-
cation, LICQ, is extended to MPCC that is MPCC-LICQ:

Definition 1. MPCC-LICQ Consider x1, x2 ≥ 0 and define: X1 = {j : x1j = 0}, X2 =
{j : x2j = 0}. The MPCC problem verifies the MPCC-LICQ at x if the corresponding (3)
verifies the LICQ.

If x∗ is a local solution of (3) and satisfies x∗1
Tx∗2 = 0, then x∗ is also a local solution of

original MPCC.
There are several kinds of stationarity defined for MPCC problem. Among them, the

strong stationarity is the following one:

Definition 2. Strong stationarity x∗ is a strong stationary point if exist Lagrange multipliers
λ, ν̂1 and ν̂2 so that:

∇f∗ − [∇(c∗i ), i ∈ E : ∇(c∗i ), i ∈ I]λ−

 0
ν̂1
ν̂2

 = 0,

c∗i = 0, i ∈ E,
c∗i ≥ 0, i ∈ I,
x∗1 ≥ 0,
x∗2 ≥ 0,
x∗1j = 0 or x∗2j = 0,

λi ≥ 0, i ∈ I,
ciλi = 0,
x∗1j ν̂1j = 0,

x∗2j ν̂2j = 0,

if x∗1j = x∗2j = 0 then ν̂1j ≥ 0 and ν̂2j ≥ 0.

(4)
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Note that (4) are the first order optimality conditions of the problem (3) at x∗. As
theoretical support, we summarized some known results concerning constraint qualifications
and first order optimality conditions of MPCC. Based on these ideas, a computational imple-
mentation of a hyperbolic smoothing strategy was developed. Details of the corresponding
hyperbolic smoothing algorithm are in next section.

4 Hyperbolic smoothing

They have been proposed several smoothing approaches, the most obvious smoothing analy-
sed by [9] is to replace X1x2 ≤ 0 by X1x2 ≤ εk, and solve a sequence of NLPs, decreasing εk
to zero. Another similar approach studied by [7] is to gather the complementarity constraints
into a single constraint by xT1 x2 ≤ εk. Other alternative is to penalize the complementarity
constraints [12], solving a sequence of NLPs where the objective is modified as

min f(x) + ρkx
T
1 x2

for a sequence of increasing penalty parameters ρk > 0.
Another smoothing idea [6] is to replace the complementarity constraints by the smoothed
function,

ψµ(x1j , x2j) =
√

(x1j − x2j)2 + 4µ− x1j − x2j = 0,

for j = 1, . . . , q, where µ > 0 is a parameter that decreases to zero.
On this work we consider the following NLP:

min f(x)
s.t. ci(x) = 0, i ∈ E,

ci(x) ≥ 0, i ∈ I,
x1 ≥ 0, x2 ≥ 0,
φ(x1, x2) ≤ 0,

(5)

where φ(x1, x2) = (ϕτ (x11, x21), . . . , ϕτ (x1q, x2q)) is a vector and ϕτ is the hyperbolic
smoothing function defined as follows:

ϕτ (x1j , x2j) =
1

2

(
x1jx2j +

√
(x1jx2j)2 + τ2

)
,

for j = 1, . . . , q and τ → 0. An algorithm was implemented (Algorithm 1) to iteratively
solve problem (5) with τ → 0. This algorithm has two iterative procedures, the inner one
is performed by fmincon routine from MATLAB Optimization toolbox, that uses the SQP
method.
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Algorithm 1 Hyperbolic smoothing
1: Take initial values x0, τ0 > 0 and tolerances ε1, ε2.
2: for k = 0, 1, 2, . . . do
3: Solve the minimization problem (5) with xk, τk obtaining xk+1.
4: if ‖∇L(xk+1, . . .)‖ ≤ ε1 and ‖xT1 x2‖ ≤ ε2 then
5: STOP.
6: else
7: τk+1 = rτk, 0 < r < 1.
8: end if
9: end for

To evaluate the stop criterium in the algorithm, we consider the following equality in
the solution x∗:

∇L(x∗, δ, γ, ξ) = ∇f(x∗)−
m∑
i=1

δi∇ci(x∗)−
p∑
i=1

γi∇ci(x∗) +
q∑
j=1

ξi∇ϕτ,j(x∗)

where for j = 1, . . . , q and x ∈ Rn we have

∇ϕτ,j(x∗) =
1

2

(
∇x1jx2j +

x1jx2j∇x1jx2j√
(x1jx2j)2 + τ2

)
.

The Lagrange multipliers δ, γ and ξ are an output of the fmincon routine from MATLAB.
The tolerances used in the stop criterium are ε1 = ε2 = 10−4. The initial choices, τ0 = 0.25
and r = 0.25 were considered. Next section reports the numerical results using 45 test
problems.

5 Numerical results

This section describes the numerical experiments with an implementation of the hyperbolic
smoothing scheme for problem (1). The computational experiments were made on a 2.26
GHz Intel Core 2 Duo with 8GB of RAM, MAC OS 10.6.8 operating system. The MATLAB
version used was 7.11.0 (R2010b). The fmincon routine is connected to the modeling lan-
guage AMPL [17] by a MATLAB mex interface and the test problems are from MacMPEC
database [18].
Table 1 reports the numerical results achieved by Algorithm 1, the first column indicates
the name of the test problem, from column 2 to 5, the problem dimensions are presented.
Column f∗ shows the final objective function value and column ‖∇L‖ presents the norm of
the Lagrangian function of problem (5). The last three columns give information about the
performance of the algorithm. Column int presents the number of internal iterations per-
formed by the fmincon routine from MATLAB, column ext shows the number of external
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Problem n m p q f∗ ‖∇L‖ int ext nfe
bard1 5 3 1 3 17.000 1.781910e-15 63 10 661
bard3 6 2 3 1 -12.679 8.149116e-09 19 18 161
bard1m 6 3 1 3 17.000 9.949933e-16 40 10 480
bard2m 12 4 5 3 -6598.000 7.831440e-06 104 10 2076
bilevel2 16 9 4 8 -6600.000 5.560937e-05 229 11 5275
bilevel2m 16 9 4 8 -6600.000 5.560937e-05 229 11 5275
dempe 3 1 1 1 28.258 5.577955e-06 175 26 3952
desilva 6 2 2 2 -1.000 7.450581e-09 35 18 677
df1 2 3 0 1 0.000 9.425165e-09 13 10 54
ex9.1.1 13 5 7 5 -13.000 1.159107e-15 27 20 419
ex9.1.2 8 2 5 2 -3.000 1.364484e-07 35 22 521
ex9.1.4 8 2 5 2 -37.000 4.322747e-15 22 17 229
ex9.1.5 13 5 7 5 -1.000 6.182457e-15 27 21 421
ex9.1.8 11 4 5 3 -3.250 4.965068e-16 23 19 311
ex9.1.10 11 4 5 3 -3.250 4.965068e-16 23 19 311
ex9.2.9 9 3 5 3 2.000 5.787607e-16 15 10 281
flp2 4 2 0 2 0.000 1.568440e-07 58 12 706
flp4-1 80 60 0 30 0.000 5.132135e-12 11 10 902
flp4-2 110 110 0 60 0.000 9.102046e-12 11 10 1232
flp4-3 140 170 0 70 0.000 7.670026e-12 11 10 1562
flp4-4 200 250 0 100 0.000 9.583691e-12 11 10 2222
incid-set1-8 118 54 50 49 0.000 1.147902e-14 15 11 1949
incid-set1c-8 117 61 49 49 0.000 1.288618e-07 14 10 1844
jr1 2 1 0 1 0.500 2.349058e-08 63 3 457
kth1 2 1 0 1 0.000 0 3 2 12
kth2 2 1 0 1 0.000 2.014697e-08 13 10 53
kth3 2 1 0 1 0.500 6.852287e-06 23 10 236
nash1a 6 2 2 2 0.000 1.701382e-07 13 10 104
nash1b 6 2 2 2 0.000 2.359488e-07 16 10 187
nash1c 6 2 2 2 0.000 2.359719e-07 14 10 130
nash1d 6 2 2 2 0.000 2.359995e-07 16 10 153
outrata31 5 4 0 4 3.208 2.704044e-08 85 10 903
outrata32 5 4 0 4 3.449 2.823092e-08 139 15 3419
outrata33 5 4 0 4 4.604 6.415710e-07 144 12 2674
outrata34 5 4 0 4 6.593 4.768317e-07 172 17 2662
qpec1 30 20 0 20 80.000 1.055822e-14 13 10 416
scholtes1 3 1 0 1 2.000 5.176421e-08 107 10 2137
scholtes2 3 1 0 1 15.000 1.336380e-07 107 10 2137
scholtes3 2 1 0 1 0.500 2.279238e-07 36 11 380
scholtes5 3 2 0 2 1.000 7.377520e-06 223 10 1987
scale1 2 1 0 1 1.000 9.643328e-05 107 21 824
scale2 2 1 0 1 1.000 1.491230e-06 74 17 729
scale3 2 1 0 1 1.000 2.210586e-05 28 12 177
scale5 2 1 0 1 100.000 7.805362e-05 43 11 422
sl1 8 3 2 3 0.0001 3.266939e-08 13 10 157
stackelberg1 3 1 1 1 -3266.667 1.101177e-06 65 9 946

Table 1: Numerical results.

iterations and the last column reports the number of function evaluations. The solutions
obtained by Algorithm 1 are similar to the ones reported in MacMPEC database with good
accuracy.

6 Conclusions and future work

An iterative algorithm in MATLAB language to solve MPCC was implemented. The algo-
rithm aims to compute a local optimal solution joining the hyperbolic smoothing the SQP
strategy. The algorithm is still in an improvement phase but some conclusions can already
be taken: the promising numerical results present good accuracy of the solutions when com-
pared with the ones provided from the MacMPEC test problem database. As future work,
it is intended to test the method on large scale test problems and compare the hyperbolic
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smoothing strategy with others smoothing methods suggested in literature.
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Abstract

We investigate the problem of simultaneously solving thousands of dense linear sys-
tems of moderate size via the Cholesky factorization on Graphics Processing Units
(GPUs). We propose the concept of a batched solver to calculate hundreds of different
and independent Cholesky, thus addresing the corresponding linear systems concur-
rently. This problem arises, among others, in the context of anomaly detection in
hyperspectral images, an important task for Earth observation data exploitation. The
approach studied for this purpose is the local version of the well-known RX (Reed-Xiaoli)
algorithm (LRX), which applies the same concept as the original RX to a local sliding
window centered around each image pixel. LRX has a very high computational cost
and can be expressed in terms of batched solvers which are evaluated in this application
context.

Key words: Batched Cholesky solver, GPU computing, anomaly detection, remote
sensing, RX algorithm.
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1 Introduction

The Cholesky factorization is a well-known method for the numerical solution of linear sys-
tems of equations when the coefficient matrix is symmetric and positive definite (SPD) [1].
Blocked implementations of this method are available from the LAPACK library1, or the
MKL library2, while MAGMA3 includes a hybrid CPU-GPU implementation of this fac-
torization. All these implementations are designed to accelerate the calculation of a single
Cholesky factorization, being specially tuned to deal with very large dense matrices.

On the other hand, there are applications which require a different computation scheme,
where it is necessary to solve many independent linear systems of small-to-moderate dimen-
sion. The linear algebra operations related to this particular context are often referred to as
batched [3]. Two parallel levels can be exploited in this kind of solvers: (1) the parallelism of
the standard solver, which is constrained by the data dependencies and the size of the local
problem; and (2) the concurrency intrinsic to the solution of multiple linear systems. Very
few references address the parallel implementation of batched solvers on GPUs [4]. In this
work, we develop a CUDA version of the Batched Cholesky Solver (hereafter, CuBCholS) for
NVIDIA GPUs [5,6], describing the major implementation details and performing an exper-
imental evaluation on an NVIDIA GeForce GTX 680 GPU, for the matrix cases encountered
in the field of remotely sensed hyperspectral image processing. This field is characterized by
the availability of remotely sensed images with hundreds of different channels (correspond-
ing to different wavelengths, typically in the visible and near infra-red part of the spectrum)
for the same area on the surface of the Earth. These data open tremendous possibilities
from the viewpoint of remote Earth observation, but these come at the expense of very high
computational cost that can be addressed using specialized architectures.

2 Batched Cholesky Solver on GPU

Given a SPD matrix A ∈ Rn×n, the Cholesky factorization computes the decomposition
A = LLT , where L ∈ Rn×n is lower triangular and directly yields the solution to the linear
system Ax = b via two simple triangular system solves [1, 7].

In this work, our interest focuses on scenarios where it is necessary to solve thousands
of dense SPD linear systems of moderate dimension (concretely, 50 ≤ n ≤ 500) using
the Cholesky factorization. Therefore, the global problem has a high computational load,
clearly asking for the adoption of high performance platforms. In this paper, we propose a
batched implementation to solve these systems on GPUs (CuBCholS). For this purpose, we
develop a tiled algorithm that leverages the computational resources of the GPU, comput-

1http://www.netlib.org/lapack/
2http://software.intel.com/en-us/articles/intel-math-kernel-library-documentation
3http://icl.cs.utk.edu/magma/
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ing hundreds of independent linear systems simultaneously. Two levels of parallelism are
exploited by CuBCholS on GPU: (1) internally, each system can be decomposed into a series
computations (tasks) with dependences among these tasks; and (2) externally, the compu-
tation of the linear systems can be performed independently. According to this scheme, in
our GPU implementation of the Cholesky method, each CUDA block computes a Cholesky
factorization and solves the corresponding system. In this context, we optimize these linear
algebra operations taking into account the use of the resources of a single CUDA block.
Moreover, the set of blocks solves the systems associated to CuBCholS, efficiently exploiting
the resources of the GPU platform.

3 Local RX based on CuBPOTRF

In this work, we consider the local RX algorithm as a case study for CuBCholS. This ap-
proach [9–11] is specially suited for local anomaly detection in hyperspectral images as, for
each pixel x, the LRX filter is computed independently using a square window of size κ×κ,
centered at pixel x. Consequently, the filter is defined by:

δLRX
κ (x) = xTRκ×κ(x)

−1x, (1)

where R is the correlation matrix and x is the hyperspectral pixel (a vector of dimension
equal to the number bands, B, of the hyperespectral image, typically in the order of a
couple hundreds).

Bearing in mind the previous descriptions, three stages can be identified in the LRX al-
gorithm for every pixel of the image (x): (1) evaluation of the correlation matrices Rκ×κ(x);
(2) computation of the intermediate vector y(x) = R−1x; (this stage can be expressed in
terms of the batched Cholesky solver as, for every pixel, a system of dimension B is in-
volved;) and (3) computation of the output filter δ(x) = xTy. Stages 1 and 2 exhibit a high
computational cost when LRX is applied to a real hyperspectral scene. The acceleration of
Stage 1 in GPUs has been described in [12], while our focus here is on Stage 2.

4 Experimental Evaluation

Our evaluation of CuBCholS is carried out on a computing platform equipped with an
Intel Xeon E5640 (2.67 GHz) multicore processor with 12 GB of RAM memory. The
GPU connected to the system is an NVIDIA GeForce GTX 680 GPU (GK104 “Kepler”
architecture) [8], with 8 multiprocessors and 192 cores per multiprocessor (for a total of
1536 cores), clock rate of 1.06 GHz, and 2 GB of global memory.

In order to evaluate the performance of CuBCholS, we have considered a real hyper-
spectral data set, which was collected in the framework of the HYperspectral Digital Image
Collection Experiment (HYDICE). The original scene [13] consists of 64 × 64 pixels and
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Table 1: Computing time (in milliseconds) for the most important stages of LRX, processing
a line of the real hyperpectral scene (HYDICE) using different number of spectral bands.

Bands Cholesky + Solver (CPU) CuBCholS (GPU) SpeedUp
64 23.4 6.9 3.3 ×
128 104.9 13.6 7.7 ×
160 147.2 21.7 6.7 ×
169 153.6 25.2 6.1 ×

B=169 bands, but we defined several tests with different number of bands, from 64 to 169,
for our experiments. As a preliminary study, Table 1 shows the cost of processing a single
line (64 pixels) of the image. Although this time is small, the speed-up obtained with the
GPU illustrates the benefits of routine CuBCholS.

5 Conclusions

This work provides a new batched GPU implementation that is especially appropriate to
handle hundreds of small to moderate dense SPD linear systems. In our approach, we map
an independent Cholesky factorization and the corresponding linear system solver to an
entire GPU CUDA block. This routine is applied and evaluated in the context of anomaly
detection in hyperspectral images via the LRX algorithm, and preliminary results show the
advantage of this routine in terms of performance, even with small test images of reduced
dimensions. While the batched solver is tailored to suit the special needs of hyperspectral
image processing, our approach carries beyond this particular application, and we believe
that it is also valid for other batched applications.
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Abstract

This talk is based on an article written by the authors that has appeared in the Jour-
nal of Algebra [14]. In [10] we developed two methods for constructing codes and designs
from finite groups. In this paper we apply the Method 1 to the sporadic simple group Ru
of Rudvalis and study the binary codes Cn (where n ∈ {1755, 1756, 2304, 2305, 4059}),
defined by the rank-3 primitive permutation representation of degree 4060 on the cosets
of the Ree group 2F4(2). These codes are obtained from the row span of the inci-
dence matrices of the designs defined by the union of the orbits of 2F4(2). We prove
that dim(C1756) = 29, dim(C2304) = 28, C1756 ⊃ C2304 and Ru acts irreducibly on
C2304. Furthermore we have C1755 = C2305 = C4059 = V4060(F2), Aut(D1755) =
Aut(D1756) = Aut(D2304) = Aut(D2305) = Aut(C1756) = Aut(C2304) = Ru while
Aut(D4059) = Aut(C1755) = Aut(C2305) = Aut(C4059) = S4060. We also determine the
weight distribution of C1756 and C2304 and that of their duals. For each word wl of
weight l, in the codes CΓ1756

or C2304 we determine the stabilizer (Ru)wl
, and some

primitive designs held by particular codewords.

Key words: Design, Code, Sporadic Simple Group, Rudvalis Group, Primitive Per-
mutation Representation

MSC 2000: AMS codes (05E20, 94B25, 20D08)

1 Introduction

The simple group Ru of Rudvalis is one the 26 sporadic simple groups. It has a rank-
3 primitive permutation representation of degree 4060 which can be used to construct a
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strongly regular graph Γ with parameters v = 4060, k = 1755, λ = 730 and µ = 780
or its complement a strongly regular Γ̃ = (4060, 2304, 1328, 1280) graph. The stabilizer
of a vertex u in this representation is a maximal subgroup isomorphic to the Ree group
2F4(2) producing orbits {u}, ∆1, ∆2 of lengths 1, 1755, and 2304 respectively. The regular

graphs Γ, Γ̃,ΓR, Γ̃R, ΓS are constructed from the sets ∆1, ∆2, {u} ∪ ∆1, {u} ∪ ∆2, and
∆1 ∪∆2, respectively. If A denotes an adjacency matrix for Γ then B = J − I − A, where
J is the all-one and I the identity 4060 × 4060 matrix, will be an adjacency matrix for
the graph Γ̃ on the same vertices. We examine the neighbourhood designs D1755, D1756,
D2304, D2305 and D4059 and corresponding binary codes C1755, C1756, C2304, C2305, and C4059

defined by the binary row span of A, A + I, B, B + I and A + B respectively. Note that
A + I and B + I are adjacency matrices for the graphs ΓR, Γ̃R obtained from Γ and Γ̃,
respectively, by including all loops, and thus referred to as reflexive graphs. Since ΓS is the
complete graph on 4060 vertices, we do not need to use Ru to construct it. Also clearly
Aut(ΓS) = Aut(D4059) = Aut(C4059) = S4060. So throughout the paper we omit discussions
on ΓS , D4059 and C4059.

In the theorem given below, we summarize our results; the specific results relating to
the codes are given as propositions and lemmas in the following sections.

Theorem 1 Let G be the simple Rudvalis group Ru and Γ, Γ̃,ΓR, Γ̃R be the regular graphs
defined by the union of the orbits of 2F4(2), and Ci where i ∈ {1755, 1756, 2304, 2305} be the
codes defined by the binary row span of their adjacency matrices. Then

(i) Aut(D1755) = Aut(D1756) = Aut(D2304) = Aut(D2305) = Aut(C1756) = Aut(C2304) =
Ru.

(ii) dim(C1756) = 29, dim(C2304) = 28, C1756 ⊃ C2304 and Ru acts irreducibly on C2304.

(iii) C1755 = C2305 = V4060(F2).

(iv) Aut(C1755) = Aut(C2305) = S4060.

Note that Theorem 1 (i) implies that Aut(Γ) = Aut(ΓR) = Aut(Γ̃) = Aut(Γ̃R) =
Ru. The proof of the theorem follows from a series of lemmas in Sections 7, 6, 8, and 9
respectively. We will show that the codes C1756 and C2304 are of types [4060, 29, 1756]2 and
[4060, 28, 1792]2, respectively. Moreover,

C1756 = 〈C2304, 〉 = C2304 ∪ {w +  : w ∈ C2304} = C2304 ⊕ 〈〉,

where  denotes the all-ones vector. Let Wl denote the set of all codewords of C1756 of weight
l and let Al be the size of Wl, that is |Wl| = Al. Then clearly Wl + {} = W4060−l ⊂ C1756

and |Wl| = Al = |W4060−l| = A4060−l. We find the weight distributions of C1756 and that of
C2304. The structure of the stabilizers (Ru)wl

, for all nonzero weight l, where wl ∈ C1756 is
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a codeword of weight l (see Table 4) is determined in Section 9. The weight distributions
and the structures of the stabilizers (Ru)wl

for C2304 follows clearly from those of C1756.

The paper is organized as follows: after a brief description of our terminology and
some background, Section 5 outlines the construction of graphs, designs and codes, and in
Sections 6, 7, 8, and 9 we present our results.

2 Terminology and notation

Our notation will be standard, and it is as in [1] and ATLAS [4]. For the structure of groups
and their maximal subgroups we follow the ATLAS notation. The groups G.H, G : H, and
G·H denote a general extension, a split extension and a non-split extension respectively.
For a prime p, the symbol pn denotes an elementary abelian group of that order. If p is an
odd prime, p1+2n

+ and p1+2n
− denote the extraspecial groups of order p1+2n and exponent p

or p2 respectively.

Terminology for graphs is standard: the graphs, G = (V,E) with vertex set V and
edge set E, are undirected and the degree of a vertex is the number of edges containing
the vertex. A graph is regular if all the vertices have the same degree; a regular graph is
strongly regular of type (n, k, λ, µ) if it has n vertices, degree k, and if any two adjacent
vertices are together adjacent to λ vertices, while any two non-adjacent vertices are together
adjacent to µ vertices. A rank 3 graph is a graph that admits an automorphism group
which is transitive on the vertices, edges, and nonedges. Note that any rank 3 graph is
a strongly regular graph. The converse is not always true. The complementary graph
of a strongly regular graph with parameters (n, k, λ, µ) is a strongly regular graph with
parameters (n, n − k − 1, n − 2k + µ − 2, n − 2k + λ). The neighbourhood design of a
regular graph is the 1-design formed by taking the points to be the vertices of the graph
and the blocks to be the sets of neighbours of a vertex, for each vertex. The code of a
graph Γ over a finite field F is the row span of an adjacency matrix A over the field F ,
denoted by CF (Γ) or CF (A). The dimension of the code is the rank of the matrix over
F , also written rankp(A) if F = Fp, in which case we will speak of the p-rank of A or Γ,
and write Cp(Γ), Cp(A) or simply CΓ for the code. A connected strongly regular graph
has diameter 2. If v and w are vertices of a connected strongly regular graph Γ such
that d(v, w) = i, i = 0, 1, 2, then the number pij of neighbors of w whose distance from
v is j, j = 0, 1, 2, are the intersection numbers of Γ. The 3 × 3-matrix with entries pij ,
i, j = 0, 1, 2, is called the intersection matrix of Γ. The weight enumerator of CΓ is defined
as WCΓ

(x) =
∑n

i=0Aix
i, where Ai denotes the number of codewords of weight i in CΓ.

The dual code CΓ
⊥ is the orthogonal complement under the standard inner product (, ),

i.e. CΓ
⊥ = {v ∈ Fn | (v, c) = 0 for all c ∈ CΓ}. A code CΓ is self-orthogonal if CΓ ⊆ CΓ

⊥

and it is self-complementary if it contains the all-one vector. The all-one vector will be
denoted by 1, and is the constant vector of weight the length of the code. A binary code
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CΓ is doubly-even if all codewords of CΓ have weight divisible by four. Two linear codes
of the same length and over the same field are isomorphic if they can be obtained from
one another by permuting the coordinate positions. An automorphism of a code CΓ is an
isomorphism from CΓ to CΓ. The automorphism group will be denoted by Aut(CΓ).

3 Preliminary results

The designs and codes in this paper come from the following construction, described in [7,
Proposition 1] and corrected in [9]. See also [8]:

Result 2 Let G be a finite primitive permutation group acting on the set Ω of size n. Let
α ∈ Ω, and let ∆ 6= {α} be an orbit of the stabilizer Gα of α. If B = {∆g | g ∈ G} and,
given δ ∈ ∆, E = {{α, δ}g | g ∈ G}, then D = (Ω,B) forms a symmetric 1-(n, |∆|, |∆|)
design. Further, if ∆ is a self-paired orbit of Gα then Γ = (Ω, E) is a regular connected
graph of valency |∆|, D is self-dual, and G acts as an automorphism group on each of these
structures, primitive on vertices of the graph, and on points and blocks of the design.

In fact one can use any union of orbits of a point-stabilizer in this construction, and this is
the approach that we will adopt in the paper. The above construction has been applied by
the authors to various sporadic groups, for example see [11], [12] and [13].

4 The Rudvalis group Ru

In this section we give a brief but complete overview of the Rudvalis group Ru. For more
information on the Rudavlis group we refer the reader to [4, p.126] or [17, Section 5.9.3].
The simple group Ru of Rudvalis is the automorphism group of a certain 28-dimensional
lattice over Z[i ]. There is a monomial group of type (26:U3(3)):2 ∼= 26 · G2(2) which may
be constructed by taking the 28 non-zero isotropic vectors in a unitary 3-space over F9.
The square of a non-zero element a ∈ F9 is a fourth root of unit which can be lifted to the
complex number a[2] = ±1 or ±i. The Rudvalis group can be described as the automorphism
group of a regular graph Γ of degree 1755 or Γ̃ of degree 2304 on 4060 vertices. The vertex
stabilizer is 2F4(2), and in the degree 1755 case the stabilizer of a pair of non-adjacent vertices
is L2(25) ·22. The stabilizer of an edge is a non-maximal subgroup isomorphic to 21+4+6 ·5 ·4
contained in the centralizer of an involution of shape 21+4+6S5. The orbit of length 1755
corresponds to the points of generalized octagon for 2F4(2). Two points are joined in the
graph when they are perpendicular in the 26-dimensional natural representation of 2F4(2). In
the degree 2304 case, the vertices of the graph are the minimal vectors considered modulo the
unit scalar factors ±1, ±i. These have norm 4; a vertex is joined (inner product ±1, or ± i)
to 2304 others or is disjoined (orthogonal) to the remaining 1755. Four mutually orthogonal
vertices form a quartet if any further vertex orthogonal to three of them is orthogonal to
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the fourth. Modulo 1 + i the lattice yields a 28-dimensional orthogonal representation over
F2 in which many of the vector stabilizers are maximal subgroups.

Result 3 (Wilson [16]) The Rudvalis simple group Ru has just fifteen conjugacy classes of
maximal subgroups, as follows:
(A) Four classes of 2-local subgroups:
2 · 24+6:S5, 23+8:L3(2), (26:U3(3)):2, (22 × Sz(8)):3.
(B) Four classes of odd-local subgroups:
3A6 · 22, 5+

1+2:[25], 5:4×A5, 52:4S5.
(C) Seven classes of non-local subgroups:
A6 · 22, A8, L2(25) · 22, L2(29), L2(13):2, U3(5):2, 2F4(2).

The primitive representations referred to in Result 3 are listed in Table 1. The first
column gives the ordering of the primitive representations as given by Magma [2], [3] (or
the ATLAS [4]) and as used in our computations; the second gives the maximal subgroups;
the third gives the degree (the number of cosets of the point stabilizer);

No. Max. sub. Deg. No. Max. sub. Deg.

1 2F4(2) 4060 9 L2(29) 11980800

2 (26:U33):2 188500 10 52:4S5 12160512

3 (22×Sz(8)):3 417600 11 3·A6·22 33779200

4 23+8:L3(2) 424125 12 5+
1+2:[25] 36481536

5 U3(5):2 579072 13 L2(13):2 66816000

6 2·24+6:S5 593775 14 A6
·22 101337600

7 L2(25)·22 4677120 15 5:4×A5 121605120

8 A8 7238400

Table 1: Maximal subgroups of Ru

5 The graphs, designs and codes

Observe from Result 3 and Table 1 that there is just one class of maximal subgroups
of Ru of index 4060. The stabilizer of a vertex u in this representation is a maximal
subgroup isomorphic to 2F4(2), producing orbits {u}, ∆1, and ∆2 of lengths 1, 1755 and 2304

respectively. The regular graphs Γ,ΓR, Γ̃, Γ̃R are constructed from the sets ∆1, {u} ∪∆1,
∆2 and {u} ∪∆2, respectively. Notice that the orbit containing a single element, has been
omitted, as it would produce a trivial design. The binary codes C1755, C1756, C2304, C2305

whose properties we will be examining are obtained as described below.
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• The rows of an adjacency matrix A for Γ give the blocks of the neighbourhood de-
sign of Γ which we will denote D1755. Notice that D1755 is a self-dual symmetric
1-(4060, 1755, 1755) design. We write C1755 to denote the binary code spanned by the
rows of D1755.

• From the rows of an adjacency matrix A+ I of the reflexive graph ΓR we obtain the
self-dual symmetric 1-(4060, 1756, 1756) design D1756, and the binary code C1756.

• The rows of an adjacency matrix B for Γ̃ yield the neighbourhood 1-(4060, 2304, 2304)
design D2304. This is a self-dual symmetric design, and the binary row span of gives
the code C2304.

• From the rows of an adjacency matrix B + I of the reflexive graph Γ̃R we get the
self-dual symmetric 1-(4060, 2305, 2305) design D2305. We write C2305 to denote the
binary code of D2305.

The Rudvalis group Ru acts on each of these graphs, designs and codes and it is always
the full automorphism group. In the sequel, when necessary we will use the graphs and
their corresponding designs interchangeably. This will be noticed for example in the proofs
of Lemma 6 and Lemma 8. In Sections 6, 7, 8 we deal with these designs and respective
binary codes.

6 Designs D1755 and D2305

In Lemma 4 below we examine the properties of the designs Di, and of their binary codes
Ci spanned by the rows of the incidence matrices of each Di.

Lemma 4 Let G be the Rudvalis group Ru and Di and Ci where i ∈ {1755, 2305, 4059} be
the designs and binary codes constructed from the primitive rank-3 permutation action of G
on the cosets of 2F4(2). Then

(i) Aut(D1755) = Aut(D2305) = Ru and D1755 is the unique point-primitive and flag-
transitive symmetric design on 4060 points.

(ii) C1755 = C2305 = V4060(F2).

(iii) Aut(C1755) = Aut(C2305) = S4060.

Proof: (i) The definition of Ω and B emerges from Result 2, and from this it is clear
that G ⊆ Aut(D1755). It follows from Result 2, and also from the Atlas [4, p.126] that
G acts primitively on both Ω and B of degree |Ω| = |B| = 4060, and the stabilizer of a
vertex u (point) has exactly three orbits in Ω. Hence Gu fixes setwise each of {u}, ∆1
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and Ω \ (∆1 ∪ {u}) = ∆2 and these are all possible Gu-orbits. This shows that D1755

is a point primitive, symmetric 1-design. It remains to show that G = Aut(D1755). Now
G ⊆ Aut(D1755) ⊆ S4060, so Aut(D1755) is a primitive permutation group on Ω of degree
4060. Moreover, Aut(D1755)u must fix ∆1 setwise, and hence Aut(D1755)u also has orbits
of lengths 1, 1755, and 2304 in Ω. The only primitive group of degree 4060, such that
Aut(D1755)u can have orbit lengths 1, 1755, and 2304 is Ru, see [6, Theorem 18]. Hence
G = Aut(D1755). Since D2305 = D̃1755, we deduce that Aut(D2305) = Aut(D1755) = Ru.
Recall that there is a unique class of maximal subgroups of Ru of type 2F4(2). Now, given a
subgroup K in that class, its normalizer is twice bigger in Ru, meaning that there are exactly
two subgroups 2F4(2) that contain K, and so we derive a contradiction. Thus, we conclude
that there is a unique 1-(4060, 1755, 1755) symmetric design invariant under Ru, and since
the block stabilizer acts transitively on the points of the block the claim on flag-transitivity
holds.

(ii) For p = 2, the row span of D1755 and D2305, respectively, yield the full space
V4060(F2). That is

C1755 = C2305 = V4060(F2).

(iii) Since Aut(V4060(F2)) = S4060, we have

Aut(C1755) = Aut(C2305) = S4060.

7 The code of the graph ΓR

The rows of an adjacency matrix A + I for the reflexive graph ΓR give the blocks of the
design D1756. In Lemma 5 we determine the automorphism group of this design, and in
Lemma 6 we examine some of the properties of its binary code C1756.

Lemma 5 For Ru of degree 4060, the automorphism group of the graph ΓR or design
D1756 is a non-abelian finite simple group of order 145926144000. Moreover this group is
isomorphic to the simple sporadic group Ru.

Proof: This follows readily by computations with Magma.

Lemma 6 The group Ru is the automorphism group of the [4060, 29, 1756]2 code C1756 ob-
tained from D1756. The code C1756 is self-orthogonal doubly-even. Its dual is a [4060, 4031, 4]2
code. Moreover,  ∈ C1756.
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Proof: It is clear that the rows of the adjacency matrix of ΓR generate C1756 (this is
also the case if we regard the adjacency matrix for ΓR as the incidence matrix for the 1-
(4060, 1756, 1756) design D1756 and by Lemma 5 we have Aut(D1756) = Ru. Furthermore,
direct calculations reveal that |Aut(D1756)| = |Aut(C1756)|, thus we have Aut(C1756) ∼= Ru.
Now, using the fact that the block size of D1756 is divisible by four, i.e. 1756 ≡ 0 (mod 4)
and that all block intersection numbers are even (in fact two distinct blocks intersect either
in 780 or 732 points), we have that the design D1756 is self-orthogonal. Thus, the rows of
the block-point incidence matrix of D1756 span a self-orthogonal binary code of length 4060
namely C1756. Since the incidence vectors of the blocks of the design span the code, and
the vectors have weight 1756, we deduce that C1756 is doubly-even. In fact Magma gives
the weight enumerator which is listed below.

WC1756 = 1 + 4060 x1756 + 188500 x1792 + 417600 x1820 + 4677120 x1952

+ 33779200 x1980 + 38001600 x1984 + 95597775 x2012

+ 95769600 x2016 + 95769600 x2044 + 95597775 x2048

+ 38001600 x2076 + 33779200 x2080 + 4677120 x2108

+ 417600 x2240 + 188500 x2268 + 4060 x2304 + x4060.

Notice that there are 4060 codewords of minimum weight 1756 in C1756. Thus, the
incidence matrix of D1756 is determined by the set of all minimum weight codewords up
to a column permutation. In addition note that the blocks of D1756 are of even size, so 
meets evenly every vector of C1756, and thus  ∈ C1756

⊥. From computations with Magma
we deduce that the sum (modulo 2) of all rows of the generator matrix for the code is
the all-one vector, hence  ∈ C1756. That C1756

⊥ has minimum weight 4 was found using
Magma. The full weight distribution can be obtained. Notice that w4060 =  ∈ C1756 and
that 〈〉 is an 1-dimensional Ru−invariant subspace of C1756. Also A4060−l = |{wl +  : wl ∈
C1756}| = |{wl : wl ∈ C1756}| = Al. Direct calculations show that dim(C1756) = 29 (it will
be shown in Lemma 8 that C1756 ⊇ C2304, and that C1756 is in fact C2304 adjoined by the
all-one vector), and hence C1756 is a [4060, 29, 1756]2 code.

Remark: Notice that the minimum weight 1756 of C1756 is the valency of the graph ΓR,
thus the minimum weight codewords are precisely the rows of the adjacency matrix A+ I.

8 The code of the graph Γ̃

The rows of an adjacency matrix B for the graph Γ̃ gives the blocks of the neighbourhood
design D2304. In Lemma 7 below we determine the automorphism group of this design.
Further, in Lemma 8 we examine the properties of its binary code C2304.
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Lemma 7 For Ru of degree 4060, the automorphism group of the design D2304 is isomor-
phic to the group Ru.

Proof: Since D2304 = D̃1756, we have Aut(D2304) = Aut(D̃1756) = Aut(D1756). Now the
proof follows from Lemma 5.

It should now be clear that an adjacency matrix for the graph Γ̃ is also an incidence
matrix for the neighbourhood design D2304. The reader will notice that in the sequel we use
either structures interchangeably. We will see an instance of this interplay in the proof of
Lemma 8 where we examine the binary code C2304 = [4060, 28, 1792]2 spanned by the rows
of the adjacency matrix of the graph Γ̃. In that lemma we establish some of the properties
of C2304, and show that this code is in fact the unique irreducible 28-dimensional module
invariant under the Rudvalis group.

Lemma 8 The group Ru is the automorphism group of C2304. The code C2304 is self-
orthogonal doubly-even, with minimum weight 1792. Its dual is a [4060, 4032, 4]2. Moreover,
Ru acts irreducibly on C2304 as an F2-module, C2304 ⊂ C1756, and Aut(C2304) = Ru.

Proof: We will use the strong regularity of Γ̃ to show that the code C2304 is self-orthogonal.
Notice first that C2304 is obtained from the strongly regular graph Γ̃ with parameters
(4060, 2304, 1328, 1280) and intersection matrix 0 1 0

2304 1328 1280
0 975 1024

 .
It can be seen from Figure 1 below that if we fix a vertex v in Γ̃ we can divide the

remaining vertices into two sets, namely Γ̃′ of size 2304 and Γ̃′′ of size 1755, with Γ̃′ being
the set of vertices adjacent to v, and Γ̃′′ the set of vertices non-adjacent to v. Now, from the
second column of the above matrix we deduce that each vertex in Γ̃′ is adjacent to v and
to 1328 other vertices in Γ̃′, thus to 975 vertices in Γ̃′′ while from the third column shows
that a vertex in Γ̃′′ is adjacent to 1280 vertices in Γ̃′, and so to 1024 vertices in Γ̃′′. The
structure of the graph and the orbit joins are summarized in the following diagram.

Figure 1: Number of joins between orbits of a stabilizer

The valency 2304 ensures that generating codewords have length zero (mod 2) and the
1328 and the 1280 ensure that (i) any two generating codewords have an even number of

c©CMMSE ISBN: 978-84-616-2723-3Page 1050 of 1797



Design and codes from Ru

non-zero entries in common, and (ii) that any two generating codewords are orthogonal to
one another. Hence C2304 is self-orthogonal, and since all non-zero codewords have weights
divisible by 4, it follows that C2304 is doubly-even. Moreover, the blocks of D2304 are of
even size, so  meets evenly every vector of C2304, so  ∈ C2304

⊥. It can be deduced from [5,
Section 3] that the 2-rank of Γ̃ is 28, and so the dimension of C2304 follows.

We used Magma to calculate the weight enumerator of C2304 which is as follows:

WC2304 = 1 + 188500 x1792 + 4677120 x1952 + 38001600 x1984

+ 95769600 x2016 + 95597775 x2048 + 33779200 x2080

+ 417600 x2240 + 4060 x2304.

Finally, notice that the 2-modular character table of the group Ru is completely known
(see [15]) and it follows from it that the irreducible 28-dimensional F2-representation is
unique. Moreover, 28 is the smallest dimension for any non-trivial irreducible F2-module
invariant under Ru. Using the above weight distribution, we can easily see that C2304 does
not contain a invariant subspace of dimension 1. If C2304 were reducible, it would contain
an invariant irreducible subspace E of dimension d where 1 ≤ d ≤ 27, which is not possible.
Hence C2304 is irreducible and must be isomorphic to the 28-dimensional F2-module on
which Ru acts irreducibly. Further, notice that D1756 is the complement of D2304, so the
inclusion follows as C1756 is C2304 adjoined by the  vector. Finally we can also use this fact
to show that Aut(C2304) = Ru. Clearly Ru sits in Aut(C2304). If α ∈ Aut(C2304), then since
α() =  and C1756 = 〈C2304, 〉, we have α ∈ Aut(C1756). So that Aut(C2304) ⊆ Aut(C1756).
Now, order arguments and Lemma 6 show that Aut(C2304) = Ru.

9 Stabilizer in Ru of a word wi of weight i

Due to symmetry (since  ∈ C1756) we will only consider the action of Ru on the code
C2304. In fact, the structures of the stabilizers of the codewords of C1756 can be described
by means of the stabilizers of the codewords of C2304. Thus, let wi be a word of weight i in
C2304, in this section we determine the structures of (Ru)wi i.e, the stabilizers of wi in Ru.
These are listed in Table 3. Also, for each wi, we take the support of wi and orbit its image
under the action of G = Ru to form the blocks of the 1 − (4060, i, ki) designs Dwi , where
ki = |(wi)G| × i

4060 . Information on these designs is listed in TABLE 4.
Proposition 9, which follows, deals with the action of Ru on the words of C2304. Since

Ru acts as an automorphism group of C2304 we consider this action and determine the
structure of (Ru)wi where i is in L, with L as defined below.

Let L = {1792, 1952, 2080, 2240, 2304} and L = {1984, 2016, 2048}. For i ∈ L ∪ L we
define Wi = {wi ∈ C2304 | wt(wi) = i}, with wt(wi) denoting the weight of the word wi,
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and let |Wi| = |Ai|. We show in Proposition 9 that (Ru)wi is a maximal subgroup of Ru,
for all i ∈ L. Also, for wi ∈Wi we take the support of wi and orbit that under Ru to form
the blocks of the 1-designs Dwi . We show that Ru acts primitively on Dwi , for all i ∈ L.

Proposition 9 Let i ∈ L and wi ∈ Wi. Then (Ru)wi is a maximal subgroup of Ru. Fur-
thermore Ru is primitive on Dwi for each i.

Proof: Let i ∈ L with L is a described above. Our computations show that wi
Ru = Wi.

Therefore each Wi forms an orbit under the action of Ru and thus Ru is transitive on each
Wi. For wi ∈ Wi we construct (Ru)wi as a permutation group inside Ru. Furthermore, we
determine its structure by computing its composition factors. We deduce that for i ∈ L we
have (Ru)wi ∈ {2F4(2), (26:U3(3):2), (22×Sz(8)):3, L2(25):22, 3·A6·22}. By the transitivity
of Ru on the code coordinates, the codewords of Wi form a 1-design Dwi with Ai blocks.
This implies that Ru is transitive on the blocks of Dwi for each wi and since (Ru)wi is a
maximal subgroup of Ru, we deduce that Ru acts primitively on Dwi .

Remark: Note that if i ∈ L and wi ∈ Wi. Then (Ru)wi is not necessarily a maximal
subgroup of Ru. In Table 3, for i = 1984 we have (Ru)w1984

∼= 26:A5 which is not a maximal
subgroup Ru.

10 Observations

(i) In Table 3 the first column represents the words of weight i and the second column
represents the stabilizer in Ru of a codeword wi of Wi. In the final column we test the
maximality of (Ru)wi in Ru.

Table 3
Stabilizer in Ru of a word wi

i (Ru)wi Maximality

1792 (26 : U3(3):2) Yes

1952 L2(25)·22 Yes

1984 26:A5 No

2080 3·A6·22 Yes

2240 (22 × Sz(8)):3 Yes

2304 2F4(2) Yes

(ii) In Table 4 the first column represents the words of weight i and the second column
gives the structure of the designs Dwi which were defined in Section 9. In the third column
we list the number of blocks of Dwi . We test the primitivity for the action of Ru on Dwi in
the final column.
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Table 4
1-designs Dwi from Ru

i Dwi No. of blocks Primitivity

1792 1-(4060, 1792, 83200) 188500 Yes

1952 1-(4060, 1952, 2248704) 4677120 Yes

1984 1-(4060, 1984, 18570240) 38001600 No

2080 1-(4060, 2080, 17305600) 33779200 Yes

2240 1-(4060, 2240, 230400) 417600 Yes

2304 1-(4060, 2304, 2304) 4060 Yes

11 Concluding remarks

In the paper we uncover many interesting links between combinatorial designs, graphs,
groups, codes and modular representation theory. We show that C2304 is irreducible when
regarded as a Ru-invariant F2-module. Moreover, we show that the stabilizers of several
sets of codewords are maximal subgroups of the automorphism group. Thus, some designs
are primitive.
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Abstract

Multi-adjoint logic programming, MALP in brief, represents a modern and powerful
approach for fuzzifying pure logic programming, by dealing with truth degrees and
connectives collected from lattices more complex than the trivial one based on two
simple values true and false. Each MALP program is associated with its own multi-
adjoint lattice, equipped with a complete or partial ordering among the (possibly infinite
set of) elements and a wide set of fuzzy connectives where it is crucial to connect each
implication symbol with a proper conjunction thus conforming constructs of the form
(←i,&i). Initially used for modeling a fuzzy variant of the classical modus ponens
inference rule, the use of the so-called adjoint pairs strongly affects the definitions of
both declarative and operational semantics (as well as their corresponding soundness
and completeness properties) of the MALP framework. In this work we relax this
impact in two stages. Firstly, we show a sub-class of MALP programs for which it is
possible to define simpler versions of models and computational steps non depending
on adjoint pairs. Next, and what is the best, we show a very simple technique able to
map every MALP program with other one in this sub-class, thus moving the need for
using adjoint pairs from the semantic core of MALP to a purely syntactic pre-process.

Key words: Multi-adjoint Logic Programming, Adjoint Pairs
MSC 2000: Multi-adjoint Lattice

1 Introduction

During the last years, our research group has provided both theoretical and practical ad-
vances in the design of declarative languages, applications and tools with a fuzzy taste (visit
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&P(x, y) ≜ x ∗ y ←P (x, y) ≜ min(1, x/y) Product

&G(x, y) ≜ min(x, y) ←G (x, y) ≜

{
1 if y ≤ x
x otherwise

Gödel

&L(x, y) ≜ max(0, x+ y − 1) ←L (x, y) ≜ min{x− y + 1, 1} L̷ukasiewicz

Figure 1: Adjoint pairs in [0, 1] for L̷ukasiewicz, Gödel and product fuzzy logics

http://dectau.uclm.es/floper/ and http://dectau.uclm.es/fuzzyXPath/) as shown
in [3, 9, 10, 8, 1], where we focus on the multi-adjoint framework.

In essence, the notion of multi-adjoint lattice considers a carrier set L (whose elements
verify a concrete ordering ≤) equipped with a set of connectives like implications, con-
junctions, disjunctions and other hybrid operators (not always belonging to an standard
taxonomy) with the particularity that for each implication symbol there exists its adjoint
conjunction used for modeling the modus ponens inference rule in a fuzzy logic setting.
For instance, some adjoint pairs -i.e. conjunctors and implications- in the lattice ([0, 1],≤)
are presented in Figure 1, where labels L, G and P mean respectively L̷ukasiewicz logic,
Gödel logic and product logic (with different capabilities for modeling pessimist, optimist
and realistic scenarios, respectively).

Definition 1.1. Let (L,≤) be a lattice. A multi-adjoint lattice is a tuple (L,≤,←1,&1, . . . ,
←n,&n) such that:

i) (L,≤) is a complete lattice, namely, ∀S ⊂ L, S ∕= ∅,∃ inf(S), sup(S)1.

ii) (&i,←i) is an adjoint pair in (L,≤), i.e.:

1) &i is non-decreasing in both arguments, for all i, i = 1, . . . , n.

2) ←i is non-decreasing in the first argument and non-increasing in the second one.

3) x ≤ (y ←i z) if and only if (x&iz) ≤ y, for any x, y, z ∈ L (adjoint property)2.

iii) ⊤&iv = v&i⊤ = v for all v ∈ L, i = 1, . . . , n, where ⊤ = sup(L).

In what follows, we present a short summary of the main features of the MALP language
(we refer the reader to [7, 5, 6] for a complete formulation). We work with a first order lan-
guage, ℒ, containing variables, function symbols, predicate symbols, constants, quantifiers
(∀ and ∃), and several (arbitrary) connectives to increase language expressiveness. In our
fuzzy setting, we use implication connectives (←1,←2, . . . ,←m) and also other connectives

1Then, it is a bounded lattice, i.e. it has bottom and top elements, denoted by ⊥ and ⊤, respectively.
2This condition is the most important feature of the framework.
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which are grouped under the name of aggregators or aggregation operators. They are used
to combine/propagate truth values through the rules. The general definition of aggregation
operators subsumes conjunctive operators (denoted by &1,&2, . . . ,&k), disjunctive opera-
tors (∨1,∨2, . . . ,∨l), and average and hybrid operators (usually denoted by @1,@2, . . . ,@n).
Although the connectives &i, ∨i and @i are binary operators, we usually generalize them
as functions with an arbitrary number of arguments. By definition, the truth function
for an n-ary aggregation operator [[@]] : Ln → L is required to be monotone and fulfills
[[@]](⊤, . . . ,⊤) = ⊤, [[@]](⊥, . . . ,⊥) = ⊥. Additionally, our language ℒ contains the ele-
ments of a multi-adjoint lattice, (L,⪯,←1,&1, . . . ,←n,&n), equipped with a collection of
adjoint pairs (←i,&i), where each &i is a conjunctor intended to the evaluation of modus
ponens. In general, the set of truth values L may be the carrier of any complete lattice.

A rule is a formula H ←i ℬ, where H is an atomic formula (usually called the head) and
ℬ (which is called the body) is a formula built from atomic formulas B1, . . . , Bn (n ≥ 0 ),
truth values of L and conjunctions, disjunctions and aggregations. Rules with an empty
body are called facts. A goal is a body submitted as a query to the system. Variables in
a rule are assumed to be governed by universal quantifiers. Roughly speaking, a MALP
program is a set of pairs ⟨ℛ; v⟩, where ℛ is a rule and v is a truth degree (a value of L)
expressing the confidence which the user of the system has in the truth of the rule ℛ.

Both operational and declarative semantics of this fuzzy framework are presented in
Section 2, whose strong dependence of adjoint pairs is largely weakened for an interesting
sub-class of MALP programs in Section 3. Before concluding in Section 5, we provide in
Section 4 a mapping which links any MALP program with its corresponding one into this
subset, thus deviating the need for using adjoint pairs to just a simple, purely syntactic and
semantics-preserving pre-process.

2 Operational and Declarative Semantics of MALP

In order to describe the procedural semantics of the MALP language, in the following we
denote by C[A] a formula where A is a sub-expression (usually an atom) which occurs in the
–possibly empty– context C[] whereas C[A/A′] means the replacement of A by A′ in context
C[]. Moreover, Var(s) denotes the set of distinct variables occurring in the syntactic object s,
�[Var(s)] refers to the substitution obtained from � by restricting its domain to Var(s) and
mgu(E) denotes the most general unifier of a set of expressions E. In the next definition,
we always consider that A is the selected atom in goal Q and L is the multi-adjoint lattice
associated to P.

Definition 2.1 (Admissible Step). Let Q be a goal and let � be a substitution. The pair
⟨Q;�⟩ is a state. Given a program P, an admissible computation is formalized as a state

transition system, whose transition relation
AS
⇝ is the smallest relation satisfying the fol-

lowing admissible rules:
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1) ⟨Q[A];�⟩ AS
⇝ ⟨(Q[A/v&iℬ])�;��⟩ if � = mgu({H = A}), ⟨H←iℬ; v⟩ in P and ℬ is

not empty.

2) ⟨Q[A];�⟩ AS
⇝ ⟨(Q[A/v])�;��⟩ if � = mgu({H = A}), and ⟨H←i; v⟩ in P.

3) ⟨Q[A];�⟩ AS
⇝ ⟨(Q[A/⊥]);�⟩ if there is no rule in P whose head unifies with A (this

case copes with possible unsuccessful branches).

An admissible derivation is a sequence ⟨Q; id⟩ AS
⇝ ∗⟨Q′; �⟩. As usual, rules are taken renamed

apart. We shall use the symbols
AS1
⇝ ,

AS2
⇝ and

AS3
⇝ to distinguish between computation

steps performed by applying one of the specific admissible rules. The application of a rule

on a step will be annotated as a superscript of the
AS
⇝ symbol.

If we exploit all atoms of a given goal, by applying admissible steps as much as needed
during the operational phase, then it becomes a formula with no atoms (a L-expression)
which can be then interpreted w.r.t. lattice L as follows.

Definition 2.2 (Interpretive Step and Fuzzy Computed Answer). Let P be a program,
Q a goal and � a substitution. Assume that [[@]] is the truth function of connective @ in
the lattice (L,≤) associated to P, such that, for values r1, . . . , rn, rn+1 ∈ L, we have that
[[@]](r1, . . . , rn) = rn+1. Then, we formalize the notion of interpretive computation as a

state transition system, whose transition relation
IS
⇝ is defined as the least one satisfying:

⟨Q[@(r1, . . . , rn)];�⟩ IS
⇝ ⟨Q[@(r1, . . . , rn)/rn+1];�⟩

An interpretive derivation is a sequence ⟨Q;�⟩ IS
⇝ ⋅ ⋅ ⋅ IS

⇝ ⟨Q′;�⟩. When Q′ = r ∈ L, the
state ⟨r;�⟩ is called a fuzzy computed answer (f.c.a.) for that derivation.

Moreover, in the MALP framework [7, 5, 6], each program has its own associated multi-
adjoint lattice and each program rule is “weighted” with an element of L, whereas the
components in its body (i.e., atoms and elements of L) are linked with connectives of the
lattice.

We formally introduce now the semantic notions of Herbrand interpretation and Her-
brand model, or directly, interpretation and model for short, for a MALP program P, in a
similar way to [7] and [3].

Definition 2.3 (Herbrand Interpretation). A Herbrand interpretation is a map ℐ : BP →
L, where BP is the Herbrand base of the MALP program P and (L,≤) is the multi-adjoint
lattice associated to program P.

ℐ is extended in a natural way to the set of ground formulae of the language. In order
to interpret a non ground formula A (closed, and universally quantified in the case of the
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MALP language), it suffices to take ℐ(A) = inf{ℐ(A�) : A� is a ground instance of A}.
Let ℋ be the set of interpretations whose order is induced from the order of L:

ℐj ≤ ℐk ⇐⇒ ℐj(F ) ≤ ℐk(F ),∀F ∈ BP

It is trivial to check that (ℋ,≤) inherits the structure of complete lattice from the multi-
adjoint lattice (L,≤).

Definition 2.4 (Herbrand Model). An interpretation ℐ satisfies (or is model of) a rule
⟨H←i ℬ;�i⟩ if, and only if, v ≤ ℐ(H←i ℬ). An interpretation ℐ is a Herbrand model of P
if, and only if, all rules in P are satisfied by ℐ.

In [3] we have defined, for the first time in the literature using model theory, a declarative
semantics for multi-adjoint logic programming in terms of the least fuzzy Herbrand model.
This construction reproduces, in our fuzzy context, the classic construction of least Her-
brand model of pure logic programming [4, 2], which has been traditionally accepted as the
declarative semantics of logic programs.

In the last years, other adaptations of this concept have been provided, using model
theory too ([13, 11, 12]), in alternative fuzzy logic programming frameworks different from
MALP.

Furthermore, in [3] we have related our notion of least fuzzy model with the already
existing procedural semantics and fix-point semantics, and we have given revealing examples
in which our declarative semantics has still sense beyond the multi-adjoint case, while the
previously mentioned ones remain undefined.

Definition 2.5 (Least Fuzzy Herbrand Model). Let P be a MALP program with associated
lattice (L,≤). The interpretation ℐP = inf{ℐj : ℐj is model of P} is called least fuzzy
Herbrand3 model of P.

The following result justifies that the previous interpretation ℐP can be thought really as
the least fuzzy Herbrand model.

Theorem 2.6 ([3]). Let P be a MALP program with associated lattice L. The map ℐP =
inf{ℐj : ℐj is a model of P} is the least model of P.

In the proof of this result provided in [3], it is essential that the lattice associated to the
program be a multi-adjoint lattice. In this reference it is possible to contrast the necessity
of this hypothesis for Theorem 2.6.

In Figure 2 we illustrate most definitions presented in this section, where we wish to
remark that:

3Sometimes we will say only least fuzzy model or least model.
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∙ In the first rule of P, we mix connectives belonging to three different fuzzy logics,
whose truth functions appear in Figure 1, having too that ∣L(x, y) ≜ min(x+ y, 1).

∙ Note that since there are no rules defining predicate s, the last step in the admissible

derivation reduces s(Y2) to 0 by applying an
AS3
⇝ step, which contrasts with crisp

logic languages such as Prolog which would abort the whole derivation. Hence,
in our fuzzy setting we can reach computed answers (at the end of the interpretive
phase) even in the presence of non defined predicates.

∙ When describing the least fuzzy Herbrand model of P, we omit those elements of the
Herbrand Base interpreted as 0.

3 A MALP Sub-class non Depending on Adjoint Pairs

From now on, we call ℳ⊤ to the set of MALP programs whose rules are always labeled
with the top element ⊤ of their associated lattices. We now speak about ⊤-programs, ⊤-
rules and so on. For executing these programs, we can conceive the following operational
semantics which is simpler than the one seen in the previous section (see Definition 2.1).

Definition 3.1 (⊤-Admissible Step). Let Q be a goal and let � be a substitution. The pair
⟨Q;�⟩ is a state. Given a ⊤-program P ∈ℳ⊤, a ⊤-admissible computation is formalized as

a state transition system, whose transition relation
AS⊤
⇝ is the smallest relation satisfying

the following ⊤-admissible rules:

1) ⟨Q[A];�⟩ AS⊤
⇝ ⟨(Q[A/ℬ])�;��⟩ if � = mgu({H = A}), ⟨H←iℬ;⊤⟩ in P and ℬ is

not empty.

2) ⟨Q[A];�⟩ AS⊤
⇝ ⟨(Q[A/⊤])�;��⟩ if � = mgu({H = A}), and ⟨H←i;⊤⟩ in P.

3) ⟨Q[A];�⟩ AS⊤
⇝ ⟨(Q[A/⊥]);�⟩ if there is no ⊤-rule in P whose head unifies with A

(this case copes with possible unsuccessful branches).

A ⊤-admissible derivation is a sequence ⟨Q; id⟩ AS⊤
⇝ ∗⟨Q′; �⟩. We shall use the symbols

AS1⊤
⇝ ,

AS2⊤
⇝ and

AS3⊤
⇝ to distinguish between computation steps performed by applying

one of the specific admissible rules. Note that this definition (which is very close to the
classical one of SLD-resolution used in Prolog) differs for Definition 2.1 just in the first
case, since it does not make use on states of the &i conjunction adjoint to the←i implication
symbol of ⊤-rules.
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Multi-adjoint logic program:

P =

⎧⎨⎩
ℛ1 : ⟨p(X) ←P q(X,Y ) &G (r(Y ) ∣L s(Y )) ; 0.8⟩
ℛ2 : ⟨q(a, Y ) ← ; 0.9⟩
ℛ3 : ⟨r(b) ← ; 1⟩

Admissible derivation:

⟨p(X); id⟩ AS1
⇝ ℛ1

⟨0.8 &P (q(X1, Y1) &G (r(Y 1) ∣L s(Y 1))); {X/X1}⟩
AS2
⇝ ℛ2

⟨0.8 &P (0.9 &G (r(Y 2) ∣L s(Y 2))); {X/a,X1/a, Y1/Y2}⟩
AS2
⇝ ℛ3

⟨0.8 &P (0.9 &G (1 ∣L s(Y 2))); {X/a,X1/a, Y1/b, Y2/b}⟩
AS3
⇝

⟨0.8 &P (0.9 &G (1 ∣L 0)); {X/a,X1/a, Y1/b, Y2/b}⟩

Interpretive derivation:

⟨0.8 &P (0.9 &G (1 ∣L 0)); {X/a}⟩ IS
⇝

⟨0.8 &P (0.9 &G 1); {X/a}⟩ IS
⇝

⟨0.8 &P 0.9; {X/a}⟩ IS
⇝

⟨0.72; {X/a}⟩ — f.c.a. means “p(X) is proved with
truth degree 0.72 when X = a”.

Least fuzzy Herbrand model:

ℐP : ℬP → [0, 1] s.t. ℐP(p(a)) = 0.72, ℐP(q(a, a)) = ℐP(q(a, b)) = 0.9, and ℐP(r(b)) = 1.

Figure 2: Illustrative examples of MALP syntax and semantics

The following result establishes that, when dealing with ⊤-programs, the derivations built
with admissible (together with subsequent interpretive) steps as well as those ones based
on ⊤-admissible (and interpretive) steps, lead to the same set of fuzzy computed answers.

Theorem 3.2. Let P ∈ℳ⊤ be a MALP ⊤-program with associated lattice L, Q a goal, �
a substitution and v ∈ L. Then,

⟨Q; id⟩ AS
⇝ ∗ ⋅ ⋅ ⋅ IS

⇝ ∗⟨v;�⟩ w.r.t. P if and only if ⟨Q; id⟩ AS⊤
⇝ ∗ ⋅ ⋅ ⋅ IS

⇝ ∗⟨v;�⟩ w.r.t. P.

Proof. In our our proof we simply need to show that the effects produced by
AS
⇝ steps

on a generic state of the form ⟨Q[A];�⟩, are replicated by
AS⊤
⇝ steps and viceversa. We

consider three different cases:
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1) If ⟨H←iℬ;⊤⟩ ∈ P, where ℬ is not empty and � = mgu({H = A}), then ⟨Q[A];�⟩ AS1
⇝

⟨(Q[A/⊤&iℬ])�;��⟩ if and only if ⟨Q[A];�⟩ AS1⊤
⇝ ⟨(Q[A/ℬ])�;��⟩, since ⊤&iℬ ≡ ℬ

and hence (Q[A/⊤&iℬ])� ≡ (Q[A/ℬ])�.

2) If ⟨H←i;⊤⟩ ∈ P, where � = mgu({H = A}), then ⟨Q[A];�⟩ AS2
⇝ ⟨(Q[A/⊤])�;��⟩ if

and only if ⟨Q[A];�⟩ AS2⊤
⇝ ⟨(Q[A/⊤])�;��⟩.

3) If there is no ⊤-rule in P whose head unifies with A then, ⟨Q[A];�⟩ AS3
⇝ ⟨(Q[A/⊥]);�⟩

if and only if ⟨Q[A];�⟩ AS3⊤
⇝ ⟨(Q[A/⊥]);�⟩.

Let us continue now with declarative semantics aspects related with ⊤-programs.

Definition 3.3 (⊤-model). An interpretation ℐ ⊤-satisfies (or is ⊤-model of) a ⊤-rule
⟨H←i ℬ;⊤⟩ if, and only if, ℐ(ℬ) ≤ ℐ(H). An interpretation ℐ is ⊤-model of a ⊤-program
P if, and only if, all ⊤-rules in P are ⊤-satisfied by ℐ.

Definition 3.4 (Least Fuzzy Herbrand ⊤-Model). Let P ∈ ℳ⊤ be a MALP ⊤-program
with associated lattice (L,≤). The interpretation ℐ⊤P = inf{ℐj : ℐj is ⊤-model of P} is the
least fuzzy Herbrand ⊤-model of P.

In the following result we prove that the notion of least fuzzy Herbrand model of a given
MALP ⊤-program is just the same construct than its least fuzzy Herbrand ⊤-model.

Theorem 3.5. The least fuzzy Herbrand model of a MALP ⊤-program P ∈ℳ⊤ coincides
with its least fuzzy Herbrand ⊤-model, that is, ℐP = ℐ⊤P .

Proof. Consider a generic ⊤-rule ℛ : ⟨H←iℬ;⊤⟩ ∈ P and an interpretation ℐ. In order
to prove that ℐ satisfies ℛ if and only if it ⊤-satisfies ℛ, it suffices by showing that ⊤ ≤
ℐ(H←iℬ) becomes into ℐ(⊤&iℬ) ≤ ℐ(H) thanks to the adjoint property, and then this
expression can be simplified to ℐ(ℬ) ≤ ℐ(H) (since obviousy ⊤&iv = v, for any v ∈ L),
as desired. So, since the set of models for a given ⊤-program P is the same as its set of
⊤-models, the infimmun of such set is just ℐP = ℐ⊤P , which concludes our proof.

It is noteworthy that, in the previous definitions related with ⊤-models and ℐ⊤P , we don’t
require that the lattice associated to MALP ⊤-programs be a multi-adjoint lattice (in fact,
we never use adjoint pairs), as occurred too when defining the new operational semantics
for ⊤-programs. For this reason, from now on we can simplify the syntax of ⊤-rules, by
removing the label of their implication symbols as well as their weights (or associated truth
degrees), i.e., instead of ⟨H←iℬ;⊤⟩ we will simply write H←ℬ.
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Multi-adjoint logic ⊤-program:

P ′ = Pℳ⊤ =

⎧⎨⎩
ℛ′1 : p(X) ← 0.8 &P (q(X,Y ) &G (r(Y ) ∣L s(Y ))
ℛ′2 : q(a, Y ) ← 0.9
ℛ′3 : r(b) ←

⊤-Admissible derivation:

⟨p(X); id⟩ AS1⊤
⇝

ℛ′
1

⟨0.8 &P (q(X1, Y1) &G (r(Y 1) ∣L s(Y 1))); {X/X1}⟩
AS1⊤
⇝

ℛ′
2

⟨0.8 &P (0.9 &G (r(Y 2) ∣L s(Y 2))); {X/a,X1/a, Y1/Y2}⟩
AS2⊤
⇝

ℛ′
3

⟨0.8 &P (0.9 &G (1 ∣L s(Y 2))); {X/a,X1/a, Y1/b, Y2/b}⟩
AS3⊤
⇝

⟨0.8 &P (0.9 &G (1 ∣L 0)); {X/a,X1/a, Y1/b, Y2/b}⟩

Figure 3: Illustrative examples of concepts defined in Sections 3 and 4

4 A Mapping from MALP Programs to ℳ⊤

The following definition represents a very simple, purely syntactic pre-process which, by
making use of adjoint pairs, is able to link MALP programs with ⊤-programs.

Definition 4.1. We define a mapping that associates to each MALP program P a
⊤-program in ℳ⊤ with the following shape:

Pℳ⊤ = {ℛℳ⊤ : ℛ ∈ P}

where for each ⊤-rule ℛ : ⟨H ←i ℬ; v⟩ ∈ P, the mapping is defined too as:

ℛℳ⊤ =

{
H ← v&iℬ if v ∕= ⊤
H ← ℬ otherwise

In Figure 3 we illustrate this definition as well as other concepts introduced in the previous
section. Note that:

∙ The ⊤-program P ′ coincides with the transformation of the MALP program P seen
in Figure 2, that is P ′ = Pℳ⊤ , since ℛ′1 = ℛℳ⊤

1 , ℛ′2 = ℛℳ⊤
2 and ℛ′3 = ℛℳ⊤

3 . In
this last case, we have simply removed the weight of the rule (since it is just 1, i.e., the
top element of lattice [0, 1]) and both ℛ1 and ℛ′1 are facts in P and P ′, respectively.
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∙ On the other hand, note that even when ℛ2 ∈ P is a fact, ℛ′2 ∈ P ′ is not a fact, since
its body is not empty (it is composed by just a truth degree). For this reason, while

the second admissible step of the admissible derivation in Figure 2 is of kind
AS2
⇝ ,

the corresponding second ⊤-admissible step of the ⊤-admissible derivation in Figure

3 is not a
AS2⊤
⇝ but a

AS1⊤
⇝ step.

∙ The sequence of states in the admissible derivation of Figure 2 coincides with the
sequence of states in the ⊤-admissible of Figure 3, and after applying exactly the same
sequence of interpretive steps drawn in Figure 2 (for this reason we have omitted it
in Figure 3), the same fuzzy computed answer is reached.

∙ Note that even when the notion of ⊤-model4 is less involved than the one of model,
the least fuzzy Herbrand ⊤-model of P ′ coincides with ℐP in Figure 2, as wanted.

The following result establishes that derivations built with admissible (together with sub-
sequent interpretive) steps lead to the same set of fuzzy computed answers than those ones
based on ⊤-admissible (and interpretive) steps when dealing with ⊤-programs obtained
from previous MALP programs after being transformed according Definition 4.1.

Theorem 4.2. Let P be a MALP program with associated lattice L, Q a goal, � a substi-
tution and v ∈ L. Then,

⟨Q; id⟩ AS
⇝ ∗ ⋅ ⋅ ⋅ IS

⇝ ∗⟨v;�⟩ w.r.t. P if and only if ⟨Q; id⟩ AS⊤
⇝ ∗ ⋅ ⋅ ⋅ IS

⇝ ∗⟨v;�⟩ w.r.t. Pℳ⊤ .

Proof. We distinguish four cases for showing that the effects produced by
AS
⇝ steps on a

generic state of the form ⟨Q[A];�⟩, are replicated by
AS⊤
⇝ steps and viceversa.

1) Note that ⟨H←iℬ; v⟩ ∈ P, where ℬ is not empty and � = mgu({H = A}), if and

only if ⟨H←v&iℬ⟩ ∈ Pℳ⊤ , and hence ⟨Q[A];�⟩ AS1
⇝ ⟨(Q[A/v&iℬ])�;��⟩ if and only

if ⟨Q[A];�⟩ AS1⊤
⇝ ⟨(Q[A/v&iℬ])�;��⟩.

2) Now, ⟨H←; v⟩ ∈ P, where v ∕= ⊤ and � = mgu({H = A}), if and only if ⟨H←v⟩ ∈
Pℳ⊤ , and hence ⟨Q[A];�⟩ AS2

⇝ ⟨(Q[A/v])�;��⟩ if and only if ⟨Q[A];�⟩ AS1⊤
⇝

⟨(Q[A/v])�;��⟩ (note this particular correspondence between
AS2
⇝ and

AS1⊤
⇝ steps).

3) Observe that ⟨H←;⊤⟩ ∈ P, where � = mgu({H = A}), if and only if ⟨H←⟩ ∈ Pℳ⊤ ,

and hence ⟨Q[A];�⟩ AS2
⇝ ⟨(Q[A/⊤])�;��⟩ if and only if ⟨Q[A];�⟩ AS2⊤

⇝

⟨(Q[A/⊤])�;��⟩ (now we have shown the equivalence between
AS2
⇝ and

AS2⊤
⇝ steps).

4This concept does not make use of adjoint pairs and weights of program rules.
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4) Finally, there is no rule in P whose head unifies with A if and only if there is no rule

in Pℳ⊤ whose head unifies with A and so, ⟨Q[A];�⟩ AS3
⇝ ⟨(Q[A/⊥]);�⟩ if and only if

⟨Q[A];�⟩ AS3⊤
⇝ ⟨(Q[A/⊥]);�⟩.

In the following result we prove that the notion of least fuzzy Herbrand model of MALP
programs is just the same construct than the least fuzzy Herbrand ⊤-model of those ⊤-
programs obtained by applying the transformation process described in Definition 4.1.

Theorem 4.3. The least fuzzy Herbrand model of a MALP program P coincides with the
least fuzzy Herbrand ⊤-model of its associated ⊤-program Pℳ⊤, that is, ℐP = ℐ⊤Pℳ⊤ .

Proof. Consider a generic rule ℛ : ⟨H←iℬ; v⟩ ∈ P and correspondingly ℛℳ⊤ : H←v&iℬ ∈
Pℳ⊤ . Assume an interpretation ℐ such that ℐ satisfies ℛ if and only if ℐ ⊤-satisfies ℛℳ⊤

since by the adjoint property v ≤ ℐ(H←i ℬ) if and only if ℐ(v&i ℬ) ≤ ℐ(H) and hence,
the set of models of P coincides with the set of ⊤-models of Pℳ⊤ and, in particular, the
infimmum of such set is ℐP as well as ℐ⊤Pℳ⊤ , as wanted.

5 Conclusions and Future Work

The high expressive power (and even the sense of its name) of the MALP language, very
often relies on the possibility of using multiple adjoint pairs when coding programs. Al-
though we have shown that the adjoint property plays an important role when defining and
proving the properties of MALP, it somehow restricts (at least under a theoretical point of
view) the class of lattices for being safely used in fuzzy programs.

In this paper we have presented a semantics-preserving transformation which makes
use of adjoint pairs just once in order to produce new MALP programs with a very simple
shape, which will no longer depend on adjoint constraints, thus opening the door for future
developments intended to increase the range of fuzzy logic programs beyond MALP. We
are nowadays implementing the technique described so far into our ℱℒOPℰℛ platform,
which is freely available from http://dectau.uclm.es/floper/.
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[6] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. A procedural semantics for multi-adjoint
logic programing. Progress in Artificial Intelligence, EPIA’01, Lecture Notes in Arti-
ficial Intelligence, 2258(1):290–297, 2001.

[7] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Similarity-based Unification: a multi-
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