
O

M
m
E
a

b

A

K
S
N
D
M
P
P

C

1

a
l
w
n
o
a
o

s
(
c
o

h
R

SoftwareX 30 (2025) 102166

A
2
n

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

riginal software publication

LFoMpy: A post-processing tool for semiconductor TCAD data with

achine-learning capabilities
nrique Comesaña a ,∗, Julian G. Fernández b , Natalia Seoane b , Antonio García-Loureiro b
Escola Politécnica Superior de Enxeñaría, Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain
Centro Singular de Investigación en Tecnoloxías Intelixentes, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain

 R T I C L E I N F O

eywords:
emiconductor device modeling
anoelectronics
ata processing
achine learning
ython
ytorch

 A B S T R A C T

We present MLFoMpy, a Python package for post-processing data from semiconductor device simulations.
The software automatically extracts key figures of merit from current–voltage curves of field effect transistor
and calculates statistical analyses for these curves. MLFoMpy also includes machine learning tools to predict
figures of merit and current–voltage curves for devices with intrinsic variability. Additionally, it offers data
visualization tools to plot current–voltage curves and statistical graphs.

ode metadata

Current code version 0.0.4
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-25-00022
NanoHub tool https://nanohub.org/tools/mlfompyusc/
Legal Code License GNU General Public License v3.0
Code versioning system used git
Software code languages, tools, and services used Python, Matplotlib, seaborn, Torch, scikit-learn
Compilation requirements, operating environments & dependencies Linux OS, Tested for Python 3.7 on Ubuntu 22.04
If available Link to developer documentation/manual https://mlfompy.readthedocs.io/
Support email for questions modev@usc.gal

. Motivation and significance

In the realm of nanoelectronics, an unresolved concern revolves
round the approaching limit of transistor scaling. This impending
imitation threatens the continuous progression of the digital revolution
itnessed in the past five decades [1]. Thus, it is pressing to explore
ew alternatives for implementation in forthcoming transistor technol-
gy nodes. At present, new field-effect transistors (FET) architectures
re being proposed like gate-all-around devices such as nanosheet FETs
r nanowire FETs [2], due to their exceptional electrostatic control [3].
A FET is a multi-gate semiconductor device with three terminals,

ource (connected to ground), gate (connected to a V𝐺 bias) and drain
connected to a V𝐷 bias). The drain current I𝐷 is the flow of charge
arriers inside the device. FETs can be affected by different sources
f variability like line-edge-roughness (LER) or metal-grain-granularity

∗ Corresponding author.
E-mail address: e.comesana@usc.es (Enrique Comesaña).

(MGG), among others, that modify their electrical characteristic, mak-
ing it necessary to perform extensive statistical studies [4].

As advanced FET architectures emerge, a critical gap remains in
understanding the impact of variability sources on their electrical per-
formance. Comprehensive and automated statistical analyses tailored to
nanosheet and nanowire FETs are still needed. This demands extensive
exploration and significant computational resources. Thus, developing
tools to systematize and optimize these analyses is crucial for ensuring
the viability of future technology nodes [5].

1.1. Figures of merit

Fig. 1 shows examples of the I𝐷 vs. V𝐺 characteristics for a n-type
FinFET at two drain biases. Several relevant figures of merit (FoM)
ttps://doi.org/10.1016/j.softx.2025.102166
eceived 9 January 2025; Received in revised form 28 March 2025; Accepted 14 April 2025
vailable online 2 May 2025
352-7110/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
c/4.0/).

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://orcid.org/0000-0001-8422-5394
https://orcid.org/0000-0002-1347-4577
https://orcid.org/0000-0003-0973-461X
https://orcid.org/0000-0003-0574-1513
https://github.com/ElsevierSoftwareX/SOFTX-D-25-00022
https://nanohub.org/tools/mlfompyusc/
https://mlfompy.readthedocs.io/
mailto:modev@usc.gal
mailto:e.comesana@usc.es
https://doi.org/10.1016/j.softx.2025.102166
https://doi.org/10.1016/j.softx.2025.102166
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Enrique Comesaña et al. SoftwareX 30 (2025) 102166
Fig. 1. Drain current (I𝐷) - Gate voltage (V𝐺) curves for a generic FET device indicating relevant figures of merit that characterize the device at a low drain bias (V𝐷) and at a
high drain bias (V𝐷𝐷).

are indicated, namely the off-current (I𝑜𝑓𝑓), sub-threshold slope (𝑆𝑆),
threshold voltage (V𝑡ℎ), on-current (I𝑜𝑛) and drain-induced-barrier low-
ering (𝐷𝐼𝐵𝐿). These FoMs characterize the behavior of transistors,
allowing for a fair comparison between different device dimensions,
architectures and designs. However, in the literature, there is not
an standard that specifies the appropriate extraction criteria to es-
tablish the different FoM values [6], which complicates comparisons
between works. This becomes particularly relevant for variability stud-
ies because, as previously shown [7], the selected extraction criteria
influence the standard deviation of the statistical distributions. There-
fore, the automatic extraction of the FoMs is essential for a systematic
handling of the generated data. In addition, the computational cost of
variability studies is becoming prohibitive since the correct modelling
of nanometric FETs requires the use of 3D simulators that include quan-
tum effects. Consequently, the development of alternative techniques
that allow to reduce simulation times and/or to expand the scope of
the investigation is crucial. Recently, machine-learning (ML) close code
solutions have been developed in the field of nanoelectronics, aimed to
predict the impact of different sources of variability in state-of-the-art
transistors [8,9].

1.2. Mlfompy

MLFoMpy is a Python-based package that post-processes and manip-
ulates semiconductor device current–voltage characteristics. MLFoMpy
has four main functionalities: (i) automatic extraction of the most
relevant FoMs, (ii) calculation of statistical parameters for ensembles
of variability-affected devices, (iii) machine-learning based prediction
of the different FoMs and full I𝐷–V𝐺 curves and iv) data visualization
tools to plot the analysis results.

Some functionalities of this software have been previously pre-
sented [10] and they have been used to extract the threshold voltage
values in variability studies of state-of-the-art FETs [11]. Although ML-
FoMpy was initially developed to work alongside VENDES, an in-house-
built 3D variability-enabled semiconductor device simulator [12], it
currently also accepts inputs from both experimental data and com-
mercial simulators, such as Silvaco TCAD [13] or Synopsys TCAD [14].

2. Software description

In this section, we describe the software architecture and the soft-
ware functionalities implemented in the different modules of the tool.

Table 1
Data sources supported by MLFoMpy.
 Data source Description
 Text files Text files containing comma or tab-separated columnar data,

managing different file formats produced by simulation
softwares.

 Local repository The repositories should be organized following the structure
of the examples published in the Zenodo repository
submitted by A. Garcia-Loureiro et al.[15].

 Remote repository Nextcloud or Owncloud data repositories are supported.
Other remotely stored data can be handled with minor
software adaptations. The files and directories in the remote
repositories should follow the same structure as in the local
repositories.

2.1. Mlfompy: Logical architecture

The logical architecture of MLFoMpy is illustrated in Fig. 2. The core
of the software is the MLFoMpy_dataset (fds) class, which is the
element for the data organization. It provides a basic set of methods and
properties to obtain information of the data volumetry and integrity.
The fds objects are the main input/output parameter for an extended
set of functions that provide the functionality of the software. The
implemented functions are divided into four main groups or modules:
data integration, FoM extraction, machine learning (ML) models, and
data visualization. This module organization will be explained later in
the development architecture section.

The first set of functions, included in the parser module, provides
the functionality to integrate data from different sources (summarized
in Table 1) into a fds object. The library includes preprocessing
subroutines to check the validity of the imported data because the
inputs can be noisy (as in the case of experimental data or Monte
Carlo simulations at low biases) or include non finalized simulations.
MLFoMpy performs sanity checks, filtering the data by searching for
empty files and NaN values, checking the stability of the final current
values, or establishing if the acquired input data is enough to extract
the different FoMs with adequate accuracy. The input data is also
interpolated to increase the precision in the estimation of FoMs.

The extraction methods module provides the functionality to
extract the different FoM from the data stored in the fds object. The
details of mathematical methods used to extract the FoM are explained
2

Enrique Comesaña et al. SoftwareX 30 (2025) 102166
Fig. 2. Main classes and functions of MLFoMPy and their relationships.

in Section 2.4.1. The machine learning models module and ma-
chine learning training and testing module provide a set of
tested ML models and methods to train and test them, see Section 2.4.3.
These models can be used to predict the electrical response and the
FoMs from the physical design parameters of the different devices.

The plots module provides a set of functions to plot the data
stored in the fds object: FoM extraction representations, histograms
with variability analyses and ML prediction depiction. The outputs
module provides the functionality to export and save the data stored
in the fds object in .𝑗𝑠𝑜𝑛 format to be used in other software or to be
shared with other users. Lastly, the auxiliary module provides a set
of support functions used across all the other modules: anomalous and
validity data detection, interpolation and data completion functions
and logging functions.

2.2. Mlfompy process architecture

The process architecture of MLFoMpy is illustrated in Fig. 3. Fol-
lowing the standard workflow, first the user will integrate the source
data in a fds instance using the parser functions. Then, the FoMs are
obtained using the extraction functionality. From the obtained FoMs,
plots or output files with the statistical analyses can be produced. The
output files, combined with the device variability characteristics, can
be used to train and test ML models to predict I–V characteristic and
FoMs. Predicted data from ML models can also be imported into new
fds objects for further analysis using the MLFoMpy functionality, in
the same way as was done with raw source data from simulations.
MLFoMPy is implemented as a Python library, therefore, the described
workflow, can be created in a Jupyter Notebook or in a Python script.
The ML models implemented in MLFoMpy are designed to run in the
computer CPU, no special hardware is required like GPUs or TPUs.

2.3. Mlfompy development architecture

The software code and modules are organized in a directory struc-
ture, where every module is a Python file with the same name as
the module in the directory src/mlfompy shown in Fig. 4. The
directory and file organization follows the recommendations of the
Python Enhancement Proposal 402 (PEP 402) [16] and the Python
Packaging User Guide [17]. The software code is written using the
recommendations of the Python Enhancement Proposal 8 (PEP 8) [18].

The code is maintained, using the Git version control system, in a
public repository on a self-hosted GitLab platform [19]. MLFoMpy users
can submit issues, ask for help or propose new features using a form
included in the Read the Docs [20] software documentation.

MLFoMPy is mainly developed using a test-driven development
methodology [21]. The software has been tested only for the Linux

Fig. 3. The process of MLFoMpy shows the standard workflow of the tool and its
relationship with the fds object. The flowchart also illustrates the software architecture
and the interactions between the different modules of the tool.

operating system, using the Python pytest framework [22]. The tests
are organized in a test directory. The tests are run automatically using
the GitLab CI/CD (Continuous Integration/Continuous Delivery) tool.

The software is distributed using the Python Package Index (PyPI)
[23] and it is published under the GNU General Public License, version
3 [24]. It can be installed using the Python Package Manager (pip). The
main basic dependencies of the software are the Python programming
language, version 3.6 or higher, the numpy library [25], the scipy
library [26], the matplotlib library [27] and the seaborn library [28].
The ML models are implemented using the scikit-learn library [29],
the torch library [30] and the pytorch-lightning library [31]. When
installing the software, users have the option to include or exclude
the ML model capabilities adding the [ML] option in the installation
command.

The code documentation is generated using the reStructuredText
format. To generate the documentation, the docstrings of the different
elements of the software are written following the recommendations
of the Python Enhancement Proposal 257 (PEP 257) [32]. In partic-
ular, the docstrings of the modules, classes, functions and methods
are written using the numpydoc format. The readable documenta-
tion can be generated using the Sphinx documentation generator. The
documentation is published in the Read the Docs platform [20].
3

Enrique Comesaña et al. SoftwareX 30 (2025) 102166
Fig. 4. The diagram depicts the physical architecture of MLFoMpy and highlights the modularity of the tool.

Fig. 5. I𝐷 vs. V𝐺 curves showing the (Fig. 5(a)) constant current (CC) and (Fig. 5(b)) second derivative (SD) threshold voltage (V𝑡ℎ) extraction methods and (Fig. 5(c)) the linear
extrapolation (LE) threshold voltage extraction method and (Fig. 5(d)) the sub-threshold slope (SS) estimation.

2.4. Software functionalities

This section describes the main functionalities of the MLFoMpy
library, including the automatic extraction of FoMs, their statistical
analyses, the ML prediction functionality and the data visualization
tools.

2.4.1. Automatic extraction of foms in i𝐷–v𝐺 curves
The software extracts several FoMs that characterize the device

behavior from I𝐷–V𝐺 characteristics. For the extraction of the V𝑡ℎ,
several methods have been implemented. The constant current (CC),
see example in Fig. 5(a), chooses the V𝑡ℎ that corresponds with a user-
defined value of the drain current, I𝐷𝐶𝐶 . The second derivative (SD),
see example in Fig. 5(b), defines V as the gate bias for which the
𝑡ℎ

4

Enrique Comesaña et al. SoftwareX 30 (2025) 102166
Fig. 6. Examples of statistical analyses generated by MLFoMPy: (Fig. 6(a)) the distribution of threshold voltage (extracted by the SD method) due to a particular source of
variability (including the standard deviation (𝜎) and the mean value (𝜇)) and (Fig. 6(b)) I𝑜𝑓𝑓 vs. V𝑡ℎ (extracted by the SD method) including the two figures of merit distributions.

derivative 𝑑2√𝐼𝐷∕𝑑𝑉 2
𝐺 is maximum (expression valid for high drain

bias conditions, the equivalent expression implemented for low drain
bias can be found in [6]). The linear extrapolation (LE), see example in
Fig. 5(c), estimates the maximum of the derivative 𝑑√𝐼𝐷∕𝑑𝑉 𝐺 (labeled
as FD max in the figure), and obtains V𝑡ℎ as the V𝐺 axis intercept
of the linear extrapolation of the tangent to the √𝐼𝐷–𝑉 𝐺 curve at
its FD max point (valid for high drain bias conditions, the equivalent
expression that has been implemented for low drain bias is available
in [6]). The 𝑆𝑆, Fig. 5(d), is defined as the inverse of the slope in the
linear region (i.e. the subthreshold region) of the I𝐷–V𝐺 characteristics
defined between two user-defined gate bias values, V𝐺

𝑠𝑡𝑎𝑟𝑡 (set to 0.0 by
default) and V𝐺

𝑒𝑛𝑑 (set to V𝑡ℎ by default). The I𝑜𝑓𝑓 is calculated as the
drain current at a user-defined gate bias (0.0 V by default), and the I𝑜𝑛
is dependent on V𝑡ℎ and the supply voltage value, V𝐷, being the drain
current for which V𝐺=V𝑡ℎ+V𝐷.

2.4.2. Statistical analysis for ensembles of variability-affected semiconduc-
tor devices

Once the main FoMs that affect the behavior of the devices have
been extracted, MLFoMpy automatically performs simple statistical
analyses, calculating for instance, the mean value of the distribution
and its standard deviation, the fit of the data to the Gaussian distribu-
tion or to the kernel density estimation (light blue line in Fig. 6(a)), the
skewness and Kurtosis of the distribution, or the Pearson correlation
coefficient between different variables. MLFoMPy also includes auto-
matic detection of outlier values, very relevant to avoid errors when
processing large datasets.

2.4.3. Machine-learning based prediction of foms and full i𝐷–v𝐺 curves
For each variability-affected device, the software stores in .𝑗𝑠𝑜𝑛

format, its I𝐷–V𝐺 curve, the different extracted FoMs and the variability
profile that characterizes the deviation of the device behavior from the
ideality. This information will be used as input parameters for the neu-
ral networks. This data will be scaled (different methods implemented:
StandardScaler, MinMaxScaler, MaxAbsScaler, RobustScaler, Quantile-
Transformer, and PowerTransformer), and split into three datasets
(train, test and validation). A PCA (Principal Component Analysis)
is also implemented to reduce the number of relevant features if
needed. For the ML training different regressors are implemented,
namely Multi-Layer Perceptron (MLP), Linear, Decision Tree, Random
Forest and Support Vector Machine. Currently, three ML models are
included and optimized in MLFoMpy, two MLPs that allow to predict
the FoMs for LER and MGG, and another MLP that allows to estimate
the I𝐷–V𝐺 curves for MGG-affected devices.

For a more detailed discussion on the implementation of the ML
models and methods mentioned above, the reader is referred to the

software documentation [20]. Comparative studies of the different ML
models implemented in MLFoMpy can be found in [33,34]. The first
study [33] compares and evaluates various ML approaches for predict-
ing the impact of variability sources on the electrical performance of
nanosheet FETs. The second study [34] provides a detailed description
of dataset construction, MLP models, hyperparameter tuning, and the
training/validation processes. Both studies also include performance
analyses, as well as CPU time and memory usage comparison.

2.4.4. Plotting tools
MLFoMpy includes different plotting functionalities, comprising the

visualization of the different extraction methods (see examples in Fig.
5), scatter plots between two variables (see example in Fig. 6(b) show-
ing the relationship between the I𝑜𝑓𝑓 and the V𝑡ℎ extracted using the
SD method), histograms showing the distribution of a particular figure
of merit (see example in Fig. 6(a) for the V𝑡ℎ extracted using the SD
method), or the representation of I𝐷–V𝐺 characteristics both in linear
and logarithmic scales (see examples in Fig. 7 comparing simulation
data and ML predictions). In addition, to easily assess the quality of the
ML prediction, the software includes scatter plots comparing the sim-
ulated values versus the ML predicted ones, showing their correlation
via the coefficient of determination 𝑅2.

3. Illustrative examples

In this section we present some representative examples of the main
functionalities of MLFoMpy. Code snippets are provided to show how
to use the software to extract the different FoMs, to perform statistical
analysis of the data, or to predict a full I𝐷–V𝐺 curve using machine-
learning functionalities. In the snippets some non-representative code
lines are not included. Check the tool documentation for complete
versions of the codes.

3.1. Extraction of a FoM from simulated data and statistical analysis

The Listing 1 shows how to extract the 𝑉𝑡ℎ and the 𝐼𝑜𝑓𝑓 from a
dataset of simulated I–V curves. The dataset is imported from a set
of JCJB simulations. The extraction is performed using the SD method
for 𝑉𝑡ℎ and the drain current at 𝑉𝑔𝑠 = 0 V for 𝐼𝑜𝑓𝑓 , as explained in
Section 2.4.1.

The script also shows how to print the basic statistics of the ex-
tracted FoMs. The extracted values are stored in a .𝑗𝑠𝑜𝑛 file for further
use. Next, the histograms of the extracted FoMs are generated and
saved to disk files as images (Fig. 6(a) for 𝑉𝑡ℎ). Additionally, the script
generates correlation plots between the extracted FoMs (𝑉𝑡ℎ and 𝐼𝑜𝑓𝑓 ,
Fig. 6(b)).
5

Enrique Comesaña et al. SoftwareX 30 (2025) 102166
Fig. 7. (7(a)) I𝐷 vs. V𝐺 characteristics plotted with MLFoMPy comparing simulated values and ML-based predictions. (Fig. 7(b)) Drain current ML predictions against simulated
values with the coefficient of determination 𝑅2.

1 # IV curves from JCJB (drift-diffusion output
)

2 fds = MLFoMpyDataset()
3 prs.iv_from_JCJB(fds,path=Path(’jcjb_example/

’))
4 # Threshold voltage extraction using the SD

method
5 extraction.threshold_voltage(fds,’SD’)
6 # Off current extraction
7 extraction.off_current(fds,vg_ext=0.0)
8 # Printing FoM DD statistics on terminal
9 aux.print_fom_stats(fds)
10 # Storing to output file (Figure_of_merit.

json)
11 output.fom_to_json(’examples/jcjb_example/’,

fds)
12 # Storing to output file (ler_ml_maps.json)

that will
13 # be generated on device path by default
14 output.ML_fom_to_json_ler(’NW’,fds,width=7,

label=’10nm’)
15 # Histogram plots.
16 plots.hist(fds,’vth’,’SD’)
17 # Correlation plots between FoMs with their

histograms.
18 plots.fom_correlation(fds,fom1=’vth’,fom2=’

ioff’)

Listing 1 Extraction of the V𝑡ℎ and I𝑜𝑓𝑓 from a dataset of simulated I–V
curves

3.2. Prediction of the I-v curve using machine learning models

The Listing 2 shows how to predict the I–V curve of a set of FETs
using MLP models, as explained in Section 2.4.3.

The input dataset is generated from a synthetic MGG profile gener-
ator (see an example of how to generate these profiles in the software
repository [19]). The profiles used to train the ML models are simulated
to obtain the JCJB data, and the resulting simulated I–V curves are used
as input for this example.

The script shows how to load the simulation data and how to split
the dataset into training, validation, and test sets. A MLP model is
trained and then evaluated using the 𝑅2 score. I–V curves for new
configurations are predicted and the results are evaluated again using
the 𝑅2 score. Finally, the script generates plots of the predicted vs
simulated I–V curve. An example of these plots can be seen in Fig. 7(a).

1 # Import the dataset and dataset
preprocessing

2 # _tr, _va, _te stand for training ,
validation and test

3 dt = json.load(open(’ml_iv_fom_MGG_GS3.json’)
)

4 X, Y = ml_train_exp.input_output_iv(dt)
5 X_tr,X_va,X_te,Y_tr,Y_va,Y_te = ml_train_exp.

split_data(
6 X, Y, test_size = 0.2)
7 # Train and test the MLP model
8 model = ml_train_exp.mgg_train_test_iv(
9 X_tr,X_va,X_te,Y_tr,Y_va,Y_te)
10 # Predict the IV curves for new

configurations
11 y_predicted = model(X_te)
12 # Plotting the prediction versus simulated IV

curves
13 plots.prediction_versus_simulation_plot(
14 simulation=Y_test_data , prediction=y_hat,
15 r2=r2_score(Y_te, y_predicted),
16 xlabel=’Sim’,ylabel=’Pred’)
17 plots.iv_curves_simulation_prediction(
18 i_simulated=Y_te,i_predicted=y_pr,scale=’

lin’)

Listing 2 Prediction of the I–V curve using machine learning for MGG
variability

4. Impact

The primary contribution of this work is the development of an inte-
grated platform that allows for a speedy post-processing of data arising
from semiconductor device simulations. The user can automatically
obtain the relevant FoMs, choosing from different extraction criteria,
facilitating future comparisons among scientific works. Using the same
tool, the user can plot results and obtain standard statistical analysis
of them, and generate input datasets that can be employed for further
studies. All these capabilities simplify the tasks that need to be carried
out by researchers when analyzing variability-affected semiconductor
devices, in which the amount of data that has to be processed is very
large. In addition, the incorporation of ML tools in MLFoMpy also
allows for new research questions to be addressed that would be too
computationally expensive using solely semiconductor device simula-
tion. Some of these questions include the prediction of the effect of
different sources of variability [34], or the optimization of beyond the
state-of-the-art device structures [35]. Note that, the aforementioned
works [34,35] used the resources provided by MLFoMpy.

MLFoMpy is a fast, open-source tool for semiconductor variability
analysis, focusing on statistical FoM extraction and ML-based pre-
dictions. Unlike Silvaco Victory Analytics [13] and Synopsys Sentau-
rus [14], which provide full TCAD simulations, MLFoMpy analyzes
existing TCAD or experimental data. While commercial alternatives are
costly and complex, MLFoMpy is free, user-friendly, and serves as a
6

Enrique Comesaña et al. SoftwareX 30 (2025) 102166
complementary tool, accelerating statistical analysis and offering quick
insights without requiring full TCAD simulations.

To the authors knowledge, no other tool offers the same capa-
bilities as MLFoMpy. Most statistical analyses in the literature are
done manually with ad-hoc scripts, which can be time-consuming
and error-prone. We believe MLFoMpy will significantly impact the
semiconductor device modeling community by enabling faster, more
efficient analyses and addressing new research questions that would
otherwise be computationally expensive.

5. Conclusions

We have developed MLFoMpy, a Python-based package aimed at the
post-processing of data arising from semiconductor device simulations.
The software allows to automatically extract the most relevant figures
of merit from current–voltage characteristic curves. It also calculates
several statistical parameters for sets of current–voltage curves. Finally,
MLFoMpy incorporates machine-learning based prediction tools to esti-
mate figures of merit and full current–voltage curves for semiconductor
devices affected by a particular source of intrinsic variability.

Future developments of MLFoMpy will focus on expanding its capa-
bilities by enhancing its machine learning models with deep learning
techniques for more advanced pattern recognition and improved de-
vice behavior forecasting. These new models will not only extract
electrical characteristics and figures of merit but also will allow to
analyze intrinsic properties such as electrostatic potential, electric field,
carrier densities, and carrier generation/recombination processes. This
will provide a more comprehensive understanding of device operation
and enable more accurate predictions of performance under various
operating conditions.

6. Conflict of interest

No conflict of interest exists: We wish to confirm that there are no
known conflicts of interest associated with this publication and there
has been no financial support for this work that could have influenced
its outcome.

CRediT authorship contribution statement

Enrique Comesaña: Writing – original draft, Visualization, Valida-
tion, Supervision, Software, Methodology, Investigation, Formal analy-
sis, Conceptualization. Julian G. Fernández: Writing – review & edit-
ing, Visualization, Validation, Software, Methodology, Investigation.
Natalia Seoane: Writing – review & editing, Validation, Supervision,
Methodology, Investigation, Formal analysis, Conceptualization. Anto-
nio García-Loureiro: Writing – review & editing, Validation, Super-
vision, Resources, Project administration, Methodology, Investigation,
Funding acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The work presented in this paper is funded by the Xunta de Galicia
and FEDER funds (ED431F 2020/008, ED431C 2022/16) and by the
Agencia Estatal de Investigación (PID2022-141623NB-I00, PID2022-
142709OB-C21/PID2022-142709OA-C22).

References

[1] Iwai H. Impact of micro-/nano-electronics, miniaturization limit, and technology
development for the next 10 years and after. ECS Trans 2021;102(4):81–8.
http://dx.doi.org/10.1149/10204.0081ecst.

[2] IEEE. International roadmap for devices and systems. 2022, URL https://irds.
ieee.org.

[3] Nagy D, Espiñeira G, Indalecio G, García-Loureiro AJ, Kalna K, Seoane N.
Benchmarking of FinFET, nanosheet, and nanowire FET architectures for future
technology nodes. IEEE Access 2020;8:53196–202. http://dx.doi.org/10.1109/
ACCESS.2020.2980925.

[4] Seoane N, Fernandez JG, Kalna K, Comesaña E, García-Loureiro A. Simulations
of statistical variability in n-Type FinFET, nanowire, and nanosheet FETs. IEEE
Electron Device Lett 2021;42(10):1416–9. http://dx.doi.org/10.1109/LED.2021.
3109586.

[5] Amuru D, Zahra A, Vudumula HV, Cherupally PK, Gurram SR, Ahmad A,
Abbas Z. AI/ML algorithms and applications in VLSI design and technology.
Integration 2023;93:102048. http://dx.doi.org/10.1016/j.vlsi.2023.06.002.

[6] Ortiz-Conde A, García-Sánchez FJ, Muci J, Terán Barrios A, Liou JJ, Ho CS.
Revisiting MOSFET threshold voltage extraction methods. Microelectron Reliab
2013;53(1):90–104. http://dx.doi.org/10.1016/j.microrel.2012.09.015.

[7] Espiñeira G, García-Loureiro AJ, Seoane N. Does the threshold voltage extraction
method affect device variability? IEEE J Electron Devices Soc 2021;9:469–75.
http://dx.doi.org/10.1109/JEDS.2020.3046122.

[8] Akbar C, Li Y, Sung W-L. Transfer learning approach to analyzing the work
function fluctuation of gate-all-around silicon nanofin field-effect transistors.
Comput Electr Eng 2022;103:108392. http://dx.doi.org/10.1016/j.compeleceng.
2022.108392.

[9] Butola R, Li Y, Kola SR. A machine learning approach to modeling intrinsic
parameter fluctuation of gate-all-around si nanosheet MOSFETs. IEEE Access
2022;10:71356–69. http://dx.doi.org/10.1109/ACCESS.2022.3188690.

[10] Espiñeira G, Seoane N, Nagy D, Indalecio G, García-Loureiro AJ. Fompy: A
figure of merit extraction tool for semiconductor device simulations. In: 2018
joint international EUROSOI workshop and international conference on ultimate
integration on silicon. 2018, http://dx.doi.org/10.1109/ULIS.2018.8354752.

[11] Fernandez JG, Seoane N, Comesaña E, García-Loureiro A. Pelgrom-based pre-
dictive model to estimate metal grain granularity and line edge roughness in
advanced multigate mosfets. IEEE J the Electron Devices Soc 2022;10:953–9.
http://dx.doi.org/10.1109/JEDS.2022.3214928.

[12] Seoane N, Nagy D, Indalecio G, Espiñeira G, Kalna K, García-Loureiro AJ.
A Multi-Method Simulation Toolbox to Study Performance and Variability of
Nanowire FETs. Materials 2019;12(15):2391–406. http://dx.doi.org/10.3390/
ma12152391.

[13] Silvaco TCAD. 2023. URL https://silvaco.com/tcad.
[14] Synopsys TCAD. 2023. URL https://www.synopsys.com/manufacturing/tcad.

html.
[15] Garcia-Loureiro A, Seoane N, Fernandez JG, Comesaña E, Pichel JC. Figures of

merit that characterize silicon gate- all-around nanowire FETs affected by line
edge roughness variability. 2023, http://dx.doi.org/10.5281/zenodo.7674909.

[16] Smith EV. PEP 420 - implicit namespace packages. 2012, URL https://peps.
python.org/pep-0420/.

[17] Python Packaging Authority. Python packaging user guide. 2021, URL https:
//packaging.python.org/.

[18] van Rossum G, Warsaw B, Coghlan N. PEP 8 - style guide for python code. 2001,
URL https://peps.python.org/pep-0008/.

[19] Fernández JG, Comesaña E, Seoane N, García-Loureiro AJ. MLFoMpy - GitHub
repository. 2023, URL https://gitlab.citius.gal/modev/mlfompy.

[20] Fernández JG, Comesaña E, Seoane N, García-Loureiro AJ. MLFoMpy’s
documentation. 2003, URL https://mlfompy.readthedocs.io/.

[21] Beck K. Test-driven development: by example. Addison-Wesley signature series,
Addison-Wesley; 2003.

[22] Krekel H, Oliveira B, Pfannschmidt R, Bruynooghe F, Laugher B, Bruhin F. pytest
8.2. 2004, URL https://github.com/pytest-dev/pytest.

[23] Fernández JG, Comesaña E, Seoane N, García-Loureiro AJ. MLFoMpy - PyPI
project page. 2023, URL https://pypi.org/project/mlfompy/.

[24] Free Software Foundation. Gnu general public license v3.0. 2007, URL https:
//www.gnu.org/licenses/gpl-3.0.html.

[25] Harris CR, Jarrod Millman K, et al. Array programming with NumPy. Nature
2020;585(7825):357–62. http://dx.doi.org/10.1038/s41586-020-2649-2.

[26] Virtanen P, Gommers R, Oliphant TE, et al. SciPy 1.0: Fundamental algorithms
for scientific computing in python. Nature Methods 2020;17(3):261–72. http:
//dx.doi.org/10.1038/s41592-019-0686-2.

[27] Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng
2007;9(3):90–5. http://dx.doi.org/10.1109/MCSE.2007.55.

[28] Waskom ML. seaborn: statistical data visualization. J Open Source Softw
2012;6(60):3021. http://dx.doi.org/10.21105/joss.03021.

[29] Pedregosa F, Varoquaux G, et al. Scikit-learn: Machine learning in python.
J Mach Learn Res 2011;12(85):2825–30, URL https://dl.acm.org/doi/10.5555/
1953048.2078195.
7

http://dx.doi.org/10.1149/10204.0081ecst
https://irds.ieee.org
https://irds.ieee.org
https://irds.ieee.org
http://dx.doi.org/10.1109/ACCESS.2020.2980925
http://dx.doi.org/10.1109/ACCESS.2020.2980925
http://dx.doi.org/10.1109/ACCESS.2020.2980925
http://dx.doi.org/10.1109/LED.2021.3109586
http://dx.doi.org/10.1109/LED.2021.3109586
http://dx.doi.org/10.1109/LED.2021.3109586
http://dx.doi.org/10.1016/j.vlsi.2023.06.002
http://dx.doi.org/10.1016/j.microrel.2012.09.015
http://dx.doi.org/10.1109/JEDS.2020.3046122
http://dx.doi.org/10.1016/j.compeleceng.2022.108392
http://dx.doi.org/10.1016/j.compeleceng.2022.108392
http://dx.doi.org/10.1016/j.compeleceng.2022.108392
http://dx.doi.org/10.1109/ACCESS.2022.3188690
http://dx.doi.org/10.1109/ULIS.2018.8354752
http://dx.doi.org/10.1109/JEDS.2022.3214928
http://dx.doi.org/10.3390/ma12152391
http://dx.doi.org/10.3390/ma12152391
http://dx.doi.org/10.3390/ma12152391
https://silvaco.com/tcad
https://www.synopsys.com/manufacturing/tcad.html
https://www.synopsys.com/manufacturing/tcad.html
https://www.synopsys.com/manufacturing/tcad.html
http://dx.doi.org/10.5281/zenodo.7674909
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/
https://packaging.python.org/
https://packaging.python.org/
https://packaging.python.org/
https://peps.python.org/pep-0008/
https://gitlab.citius.gal/modev/mlfompy
https://mlfompy.readthedocs.io/
http://refhub.elsevier.com/S2352-7110(25)00133-5/sb21
http://refhub.elsevier.com/S2352-7110(25)00133-5/sb21
http://refhub.elsevier.com/S2352-7110(25)00133-5/sb21
https://github.com/pytest-dev/pytest
https://pypi.org/project/mlfompy/
https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.21105/joss.03021
https://dl.acm.org/doi/10.5555/1953048.2078195
https://dl.acm.org/doi/10.5555/1953048.2078195
https://dl.acm.org/doi/10.5555/1953048.2078195

Enrique Comesaña et al. SoftwareX 30 (2025) 102166
[30] Paszke A, Gross S, Massa F, Lerer A, Bradbury J, et al. PyTorch: An imperative
style, high-performance deep learning library. In: 33rd international conference
on neural information processing systems, vol. 721, 2019, p. 8026–37, URL
https://dl.acm.org/doi/10.5555/3454287.3455008.

[31] Falcon W, The PyTorch Lightning team. Pytorch lightning. 2019, URL https:
//www.pytorchlightning.ai/.

[32] Goodger D. PEP 257 - docstring conventions. 2001, URL https://peps.python.
org/pep-0257/.

[33] García-Loureiro A, Seoane N, Fernández JG, Comesaña E, Pichel JC. A machine
learning approach to model the impact of line edge roughness on gate-all-around
nanowire FETs while reducing the carbon footprint. PLoS ONE 2023;18(7).
http://dx.doi.org/10.1371/JOURNAL.PONE.0288964.

[34] Fernandez JG, Comesaña E, Seoane N, Pichel JC, García-Loureiro AJ, Bescond M.
An accurate neural network model to study threshold voltage variability due to
metal grain granularity in nanosheet FETs. In: 9th joint international EuroSOI
workshop and international conference on ultimate integration on silicon. 2023.

[35] Fernandez JG, Etesse G, Comesaña E, Seoane N, García-Loureiro AJ, Bescond M.
Optimization of thermionic cooling semiconductor heterostructures with deep
learning techniques. In: International conference on simulation of semiconductor
processes and devices. 2023.
8

https://dl.acm.org/doi/10.5555/3454287.3455008
https://www.pytorchlightning.ai/
https://www.pytorchlightning.ai/
https://www.pytorchlightning.ai/
https://peps.python.org/pep-0257/
https://peps.python.org/pep-0257/
https://peps.python.org/pep-0257/
http://dx.doi.org/10.1371/JOURNAL.PONE.0288964
http://refhub.elsevier.com/S2352-7110(25)00133-5/sb34
http://refhub.elsevier.com/S2352-7110(25)00133-5/sb34
http://refhub.elsevier.com/S2352-7110(25)00133-5/sb34
http://refhub.elsevier.com/S2352-7110(25)00133-5/sb34
http://refhub.elsevier.com/S2352-7110(25)00133-5/sb34
http://refhub.elsevier.com/S2352-7110(25)00133-5/sb34
http://refhub.elsevier.com/S2352-7110(25)00133-5/sb34
http://refhub.elsevier.com/S2352-7110(25)00133-5/sb35
http://refhub.elsevier.com/S2352-7110(25)00133-5/sb35
http://refhub.elsevier.com/S2352-7110(25)00133-5/sb35
http://refhub.elsevier.com/S2352-7110(25)00133-5/sb35
http://refhub.elsevier.com/S2352-7110(25)00133-5/sb35
http://refhub.elsevier.com/S2352-7110(25)00133-5/sb35
http://refhub.elsevier.com/S2352-7110(25)00133-5/sb35

	MLFoMpy: A post-processing tool for semiconductor TCAD data with machine-learning capabilities
	Motivation and significance
	Figures of merit
	MLFoMPy

	Software description
	MLFoMpy: Logical architecture
	MLFoMpy process architecture
	MLFoMpy development architecture
	Software Functionalities
	Automatic extraction of FoMs in ID–VG curves
	Statistical analysis for ensembles of variability-affected semiconductor devices
	Machine-learning based prediction of FoMs and full ID–VG curves
	Plotting tools

	Illustrative Examples
	Extraction of a FoM from simulated data and statistical analysis
	Prediction of the I-V curve using machine learning models

	Impact
	Conclusions
	Conflict of Interest
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

