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 A B S T R A C T

We present MLFoMpy, a Python package for post-processing data from semiconductor device simulations. 
The software automatically extracts key figures of merit from current–voltage curves of field effect transistor 
and calculates statistical analyses for these curves. MLFoMpy also includes machine learning tools to predict 
figures of merit and current–voltage curves for devices with intrinsic variability. Additionally, it offers data 
visualization tools to plot current–voltage curves and statistical graphs.
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. Motivation and significance

In the realm of nanoelectronics, an unresolved concern revolves 
round the approaching limit of transistor scaling. This impending 
imitation threatens the continuous progression of the digital revolution 
itnessed in the past five decades [1]. Thus, it is pressing to explore 
ew alternatives for implementation in forthcoming transistor technol-
gy nodes. At present, new field-effect transistors (FET) architectures 
re being proposed like gate-all-around devices such as nanosheet FETs 
r nanowire FETs [2], due to their exceptional electrostatic control [3].
A FET is a multi-gate semiconductor device with three terminals, 

ource (connected to ground), gate (connected to a V𝐺 bias) and drain 
connected to a V𝐷 bias). The drain current I𝐷 is the flow of charge 
arriers inside the device. FETs can be affected by different sources 
f variability like line-edge-roughness (LER) or metal-grain-granularity 
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(MGG), among others, that modify their electrical characteristic, mak-
ing it necessary to perform extensive statistical studies [4].

As advanced FET architectures emerge, a critical gap remains in 
understanding the impact of variability sources on their electrical per-
formance. Comprehensive and automated statistical analyses tailored to 
nanosheet and nanowire FETs are still needed. This demands extensive 
exploration and significant computational resources. Thus, developing 
tools to systematize and optimize these analyses is crucial for ensuring 
the viability of future technology nodes [5].

1.1. Figures of merit

Fig.  1 shows examples of the I𝐷 vs. V𝐺 characteristics for a n-type 
FinFET at two drain biases. Several relevant figures of merit (FoM) 
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Fig. 1. Drain current (I𝐷) - Gate voltage (V𝐺) curves for a generic FET device indicating relevant figures of merit that characterize the device at a low drain bias (V𝐷) and at a 
high drain bias (V𝐷𝐷).

are indicated, namely the off-current (I𝑜𝑓𝑓 ), sub-threshold slope (𝑆𝑆), 
threshold voltage (V𝑡ℎ), on-current (I𝑜𝑛) and drain-induced-barrier low-
ering (𝐷𝐼𝐵𝐿). These FoMs characterize the behavior of transistors, 
allowing for a fair comparison between different device dimensions, 
architectures and designs. However, in the literature, there is not 
an standard that specifies the appropriate extraction criteria to es-
tablish the different FoM values [6], which complicates comparisons 
between works. This becomes particularly relevant for variability stud-
ies because, as previously shown [7], the selected extraction criteria 
influence the standard deviation of the statistical distributions. There-
fore, the automatic extraction of the FoMs is essential for a systematic 
handling of the generated data. In addition, the computational cost of 
variability studies is becoming prohibitive since the correct modelling 
of nanometric FETs requires the use of 3D simulators that include quan-
tum effects. Consequently, the development of alternative techniques 
that allow to reduce simulation times and/or to expand the scope of 
the investigation is crucial. Recently, machine-learning (ML) close code 
solutions have been developed in the field of nanoelectronics, aimed to 
predict the impact of different sources of variability in state-of-the-art 
transistors [8,9].

1.2. Mlfompy

MLFoMpy is a Python-based package that post-processes and manip-
ulates semiconductor device current–voltage characteristics. MLFoMpy 
has four main functionalities: (i) automatic extraction of the most 
relevant FoMs, (ii) calculation of statistical parameters for ensembles 
of variability-affected devices, (iii) machine-learning based prediction 
of the different FoMs and full I𝐷–V𝐺 curves and iv) data visualization 
tools to plot the analysis results.

Some functionalities of this software have been previously pre-
sented [10] and they have been used to extract the threshold voltage 
values in variability studies of state-of-the-art FETs [11]. Although ML-
FoMpy was initially developed to work alongside VENDES, an in-house-
built 3D variability-enabled semiconductor device simulator [12], it 
currently also accepts inputs from both experimental data and com-
mercial simulators, such as Silvaco TCAD [13] or Synopsys TCAD [14].

2. Software description

In this section, we describe the software architecture and the soft-
ware functionalities implemented in the different modules of the tool.

Table 1
Data sources supported by MLFoMpy.
 Data source Description  
 Text files Text files containing comma or tab-separated columnar data, 

managing different file formats produced by simulation 
softwares.

 

 Local repository The repositories should be organized following the structure 
of the examples published in the Zenodo repository 
submitted by A. Garcia-Loureiro et al.[15].

 

 Remote repository Nextcloud or Owncloud data repositories are supported. 
Other remotely stored data can be handled with minor 
software adaptations. The files and directories in the remote 
repositories should follow the same structure as in the local 
repositories.

 

2.1. Mlfompy: Logical architecture

The logical architecture of MLFoMpy is illustrated in Fig.  2. The core 
of the software is the MLFoMpy_dataset (fds) class, which is the 
element for the data organization. It provides a basic set of methods and 
properties to obtain information of the data volumetry and integrity. 
The fds objects are the main input/output parameter for an extended 
set of functions that provide the functionality of the software. The 
implemented functions are divided into four main groups or modules: 
data integration, FoM extraction, machine learning (ML) models, and 
data visualization. This module organization will be explained later in 
the development architecture section.

The first set of functions, included in the parser module, provides 
the functionality to integrate data from different sources (summarized 
in Table  1) into a fds object. The library includes preprocessing 
subroutines to check the validity of the imported data because the 
inputs can be noisy (as in the case of experimental data or Monte 
Carlo simulations at low biases) or include non finalized simulations. 
MLFoMpy performs sanity checks, filtering the data by searching for 
empty files and NaN values, checking the stability of the final current 
values, or establishing if the acquired input data is enough to extract 
the different FoMs with adequate accuracy. The input data is also 
interpolated to increase the precision in the estimation of FoMs.

The extraction methods module provides the functionality to 
extract the different FoM from the data stored in the fds object. The 
details of mathematical methods used to extract the FoM are explained 
2 
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Fig. 2. Main classes and functions of MLFoMPy and their relationships.

in Section 2.4.1. The machine learning models module and ma-
chine learning training and testing module provide a set of 
tested ML models and methods to train and test them, see Section 2.4.3. 
These models can be used to predict the electrical response and the 
FoMs from the physical design parameters of the different devices.

The plots module provides a set of functions to plot the data 
stored in the fds object: FoM extraction representations, histograms 
with variability analyses and ML prediction depiction. The outputs
module provides the functionality to export and save the data stored 
in the fds object in .𝑗𝑠𝑜𝑛 format to be used in other software or to be 
shared with other users. Lastly, the auxiliary module provides a set 
of support functions used across all the other modules: anomalous and 
validity data detection, interpolation and data completion functions 
and logging functions.

2.2. Mlfompy process architecture

The process architecture of MLFoMpy is illustrated in Fig.  3. Fol-
lowing the standard workflow, first the user will integrate the source 
data in a fds instance using the parser functions. Then, the FoMs are 
obtained using the extraction functionality. From the obtained FoMs, 
plots or output files with the statistical analyses can be produced. The 
output files, combined with the device variability characteristics, can 
be used to train and test ML models to predict I–V characteristic and 
FoMs. Predicted data from ML models can also be imported into new 
fds objects for further analysis using the MLFoMpy functionality, in 
the same way as was done with raw source data from simulations. 
MLFoMPy is implemented as a Python library, therefore, the described 
workflow, can be created in a Jupyter Notebook or in a Python script. 
The ML models implemented in MLFoMpy are designed to run in the 
computer CPU, no special hardware is required like GPUs or TPUs.

2.3. Mlfompy development architecture

The software code and modules are organized in a directory struc-
ture, where every module is a Python file with the same name as 
the module in the directory src/mlfompy shown in Fig.  4. The 
directory and file organization follows the recommendations of the 
Python Enhancement Proposal 402 (PEP 402) [16] and the Python 
Packaging User Guide [17]. The software code is written using the 
recommendations of the Python Enhancement Proposal 8 (PEP 8) [18].

The code is maintained, using the Git version control system, in a 
public repository on a self-hosted GitLab platform [19]. MLFoMpy users 
can submit issues, ask for help or propose new features using a form 
included in the Read the Docs [20] software documentation.

MLFoMPy is mainly developed using a test-driven development 
methodology [21]. The software has been tested only for the Linux 

Fig. 3. The process of MLFoMpy shows the standard workflow of the tool and its 
relationship with the fds object. The flowchart also illustrates the software architecture 
and the interactions between the different modules of the tool.

operating system, using the Python pytest framework [22]. The tests 
are organized in a test directory. The tests are run automatically using 
the GitLab CI/CD (Continuous Integration/Continuous Delivery) tool.

The software is distributed using the Python Package Index (PyPI) 
[23] and it is published under the GNU General Public License, version 
3 [24]. It can be installed using the Python Package Manager (pip). The 
main basic dependencies of the software are the Python programming 
language, version 3.6 or higher, the numpy library [25], the scipy 
library [26], the matplotlib library [27] and the seaborn library [28]. 
The ML models are implemented using the scikit-learn library [29], 
the torch library [30] and the pytorch-lightning library [31]. When 
installing the software, users have the option to include or exclude 
the ML model capabilities adding the [ML] option in the installation 
command.

The code documentation is generated using the reStructuredText 
format. To generate the documentation, the docstrings of the different 
elements of the software are written following the recommendations 
of the Python Enhancement Proposal 257 (PEP 257) [32]. In partic-
ular, the docstrings of the modules, classes, functions and methods 
are written using the numpydoc format. The readable documenta-
tion can be generated using the Sphinx documentation generator. The 
documentation is published in the Read the Docs platform [20].
3 
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Fig. 4. The diagram depicts the physical architecture of MLFoMpy and highlights the modularity of the tool.

Fig. 5. I𝐷 vs. V𝐺 curves showing the (Fig.  5(a)) constant current (CC) and (Fig.  5(b)) second derivative (SD) threshold voltage (V𝑡ℎ) extraction methods and (Fig.  5(c)) the linear 
extrapolation (LE) threshold voltage extraction method and (Fig.  5(d)) the sub-threshold slope (SS) estimation.

2.4. Software functionalities

This section describes the main functionalities of the MLFoMpy 
library, including the automatic extraction of FoMs, their statistical 
analyses, the ML prediction functionality and the data visualization 
tools.

2.4.1. Automatic extraction of foms in i𝐷–v𝐺 curves
The software extracts several FoMs that characterize the device 

behavior from I𝐷–V𝐺 characteristics. For the extraction of the V𝑡ℎ, 
several methods have been implemented. The constant current (CC), 
see example in Fig.  5(a), chooses the V𝑡ℎ that corresponds with a user-
defined value of the drain current, I𝐷𝐶𝐶 . The second derivative (SD), 
see example in Fig.  5(b), defines V  as the gate bias for which the 
𝑡ℎ

4 
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Fig. 6. Examples of statistical analyses generated by MLFoMPy: (Fig.  6(a)) the distribution of threshold voltage (extracted by the SD method) due to a particular source of 
variability (including the standard deviation (𝜎) and the mean value (𝜇)) and (Fig.  6(b)) I𝑜𝑓𝑓  vs. V𝑡ℎ (extracted by the SD method) including the two figures of merit distributions.

derivative 𝑑2√𝐼𝐷∕𝑑𝑉 2
𝐺 is maximum (expression valid for high drain 

bias conditions, the equivalent expression implemented for low drain 
bias can be found in [6]). The linear extrapolation (LE), see example in 
Fig.  5(c), estimates the maximum of the derivative 𝑑√𝐼𝐷∕𝑑𝑉 𝐺 (labeled 
as FD max in the figure), and obtains V𝑡ℎ as the V𝐺 axis intercept 
of the linear extrapolation of the tangent to the √𝐼𝐷–𝑉 𝐺 curve at 
its FD max point (valid for high drain bias conditions, the equivalent 
expression that has been implemented for low drain bias is available 
in [6]). The 𝑆𝑆, Fig.  5(d), is defined as the inverse of the slope in the 
linear region (i.e. the subthreshold region) of the I𝐷–V𝐺 characteristics 
defined between two user-defined gate bias values, V𝐺

𝑠𝑡𝑎𝑟𝑡 (set to 0.0 by 
default) and V𝐺

𝑒𝑛𝑑 (set to V𝑡ℎ by default). The I𝑜𝑓𝑓  is calculated as the 
drain current at a user-defined gate bias (0.0 V by default), and the I𝑜𝑛
is dependent on V𝑡ℎ and the supply voltage value, V𝐷, being the drain 
current for which V𝐺=V𝑡ℎ+V𝐷.

2.4.2. Statistical analysis for ensembles of variability-affected semiconduc-
tor devices

Once the main FoMs that affect the behavior of the devices have 
been extracted, MLFoMpy automatically performs simple statistical 
analyses, calculating for instance, the mean value of the distribution 
and its standard deviation, the fit of the data to the Gaussian distribu-
tion or to the kernel density estimation (light blue line in Fig.  6(a)), the 
skewness and Kurtosis of the distribution, or the Pearson correlation 
coefficient between different variables. MLFoMPy also includes auto-
matic detection of outlier values, very relevant to avoid errors when 
processing large datasets.

2.4.3. Machine-learning based prediction of foms and full i𝐷–v𝐺 curves
For each variability-affected device, the software stores in .𝑗𝑠𝑜𝑛

format, its I𝐷–V𝐺 curve, the different extracted FoMs and the variability 
profile that characterizes the deviation of the device behavior from the 
ideality. This information will be used as input parameters for the neu-
ral networks. This data will be scaled (different methods implemented: 
StandardScaler, MinMaxScaler, MaxAbsScaler, RobustScaler, Quantile-
Transformer, and PowerTransformer), and split into three datasets 
(train, test and validation). A PCA (Principal Component Analysis) 
is also implemented to reduce the number of relevant features if 
needed. For the ML training different regressors are implemented, 
namely Multi-Layer Perceptron (MLP), Linear, Decision Tree, Random 
Forest and Support Vector Machine. Currently, three ML models are 
included and optimized in MLFoMpy, two MLPs that allow to predict 
the FoMs for LER and MGG, and another MLP that allows to estimate 
the I𝐷–V𝐺 curves for MGG-affected devices.

For a more detailed discussion on the implementation of the ML 
models and methods mentioned above, the reader is referred to the 

software documentation [20]. Comparative studies of the different ML 
models implemented in MLFoMpy can be found in [33,34]. The first 
study [33] compares and evaluates various ML approaches for predict-
ing the impact of variability sources on the electrical performance of 
nanosheet FETs. The second study [34] provides a detailed description 
of dataset construction, MLP models, hyperparameter tuning, and the 
training/validation processes. Both studies also include performance 
analyses, as well as CPU time and memory usage comparison.

2.4.4. Plotting tools
MLFoMpy includes different plotting functionalities, comprising the 

visualization of the different extraction methods (see examples in Fig. 
5), scatter plots between two variables (see example in Fig.  6(b) show-
ing the relationship between the I𝑜𝑓𝑓  and the V𝑡ℎ extracted using the 
SD method), histograms showing the distribution of a particular figure 
of merit (see example in Fig.  6(a) for the V𝑡ℎ extracted using the SD 
method), or the representation of I𝐷–V𝐺 characteristics both in linear 
and logarithmic scales (see examples in Fig.  7 comparing simulation 
data and ML predictions). In addition, to easily assess the quality of the 
ML prediction, the software includes scatter plots comparing the sim-
ulated values versus the ML predicted ones, showing their correlation 
via the coefficient of determination 𝑅2.

3. Illustrative examples

In this section we present some representative examples of the main 
functionalities of MLFoMpy. Code snippets are provided to show how 
to use the software to extract the different FoMs, to perform statistical 
analysis of the data, or to predict a full I𝐷–V𝐺 curve using machine-
learning functionalities. In the snippets some non-representative code 
lines are not included. Check the tool documentation for complete 
versions of the codes.

3.1. Extraction of a FoM from simulated data and statistical analysis

The Listing 1 shows how to extract the 𝑉𝑡ℎ and the 𝐼𝑜𝑓𝑓  from a 
dataset of simulated I–V curves. The dataset is imported from a set 
of JCJB simulations. The extraction is performed using the SD method 
for 𝑉𝑡ℎ and the drain current at 𝑉𝑔𝑠 = 0 V for 𝐼𝑜𝑓𝑓 , as explained in 
Section 2.4.1.

The script also shows how to print the basic statistics of the ex-
tracted FoMs. The extracted values are stored in a .𝑗𝑠𝑜𝑛 file for further 
use. Next, the histograms of the extracted FoMs are generated and 
saved to disk files as images (Fig.  6(a) for 𝑉𝑡ℎ). Additionally, the script 
generates correlation plots between the extracted FoMs (𝑉𝑡ℎ and 𝐼𝑜𝑓𝑓 , 
Fig.  6(b)).
5 



Enrique Comesaña et al. SoftwareX 30 (2025) 102166 
Fig. 7. (7(a)) I𝐷 vs. V𝐺 characteristics plotted with MLFoMPy comparing simulated values and ML-based predictions. (Fig.  7(b)) Drain current ML predictions against simulated 
values with the coefficient of determination 𝑅2.

1 # IV curves from JCJB (drift-diffusion output
)

2 fds = MLFoMpyDataset()
3 prs.iv_from_JCJB(fds,path=Path(’jcjb_example/

’))
4 # Threshold voltage extraction using the SD

method
5 extraction.threshold_voltage(fds,’SD’)
6 # Off current extraction
7 extraction.off_current(fds,vg_ext=0.0)
8 # Printing FoM DD statistics on terminal
9 aux.print_fom_stats(fds)
10 # Storing to output file (Figure_of_merit.

json)
11 output.fom_to_json(’examples/jcjb_example/’,

fds)
12 # Storing to output file (ler_ml_maps.json)

that will
13 # be generated on device path by default
14 output.ML_fom_to_json_ler(’NW’,fds,width=7,

label=’10nm’)
15 # Histogram plots.
16 plots.hist(fds,’vth’,’SD’)
17 # Correlation plots between FoMs with their

histograms.
18 plots.fom_correlation(fds,fom1=’vth’,fom2=’

ioff’)

Listing 1 Extraction of the V𝑡ℎ and I𝑜𝑓𝑓  from a dataset of simulated I–V 
curves

3.2. Prediction of the I-v curve using machine learning models

The Listing 2 shows how to predict the I–V curve of a set of FETs 
using MLP models, as explained in Section 2.4.3.

The input dataset is generated from a synthetic MGG profile gener-
ator (see an example of how to generate these profiles in the software 
repository [19]). The profiles used to train the ML models are simulated 
to obtain the JCJB data, and the resulting simulated I–V curves are used 
as input for this example.

The script shows how to load the simulation data and how to split 
the dataset into training, validation, and test sets. A MLP model is 
trained and then evaluated using the 𝑅2 score. I–V curves for new 
configurations are predicted and the results are evaluated again using 
the 𝑅2 score. Finally, the script generates plots of the predicted vs 
simulated I–V curve. An example of these plots can be seen in Fig.  7(a).

1 # Import the dataset and dataset
preprocessing

2 # _tr, _va, _te stand for training ,
validation and test

3 dt = json.load(open(’ml_iv_fom_MGG_GS3.json’)
)

4 X, Y = ml_train_exp.input_output_iv(dt)
5 X_tr,X_va,X_te,Y_tr,Y_va,Y_te = ml_train_exp.

split_data(
6 X, Y, test_size = 0.2)
7 # Train and test the MLP model
8 model = ml_train_exp.mgg_train_test_iv(
9 X_tr,X_va,X_te,Y_tr,Y_va,Y_te)
10 # Predict the IV curves for new

configurations
11 y_predicted = model(X_te)
12 # Plotting the prediction versus simulated IV

curves
13 plots.prediction_versus_simulation_plot(
14 simulation=Y_test_data , prediction=y_hat,
15 r2=r2_score(Y_te, y_predicted),
16 xlabel=’Sim’,ylabel=’Pred’)
17 plots.iv_curves_simulation_prediction(
18 i_simulated=Y_te,i_predicted=y_pr,scale=’

lin’)

Listing 2 Prediction of the I–V curve using machine learning for MGG 
variability

4. Impact

The primary contribution of this work is the development of an inte-
grated platform that allows for a speedy post-processing of data arising 
from semiconductor device simulations. The user can automatically 
obtain the relevant FoMs, choosing from different extraction criteria, 
facilitating future comparisons among scientific works. Using the same 
tool, the user can plot results and obtain standard statistical analysis 
of them, and generate input datasets that can be employed for further 
studies. All these capabilities simplify the tasks that need to be carried 
out by researchers when analyzing variability-affected semiconductor 
devices, in which the amount of data that has to be processed is very 
large. In addition, the incorporation of ML tools in MLFoMpy also 
allows for new research questions to be addressed that would be too 
computationally expensive using solely semiconductor device simula-
tion. Some of these questions include the prediction of the effect of 
different sources of variability [34], or the optimization of beyond the 
state-of-the-art device structures [35]. Note that, the aforementioned 
works [34,35] used the resources provided by MLFoMpy.

MLFoMpy is a fast, open-source tool for semiconductor variability 
analysis, focusing on statistical FoM extraction and ML-based pre-
dictions. Unlike Silvaco Victory Analytics [13] and Synopsys Sentau-
rus [14], which provide full TCAD simulations, MLFoMpy analyzes 
existing TCAD or experimental data. While commercial alternatives are 
costly and complex, MLFoMpy is free, user-friendly, and serves as a 
6 
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complementary tool, accelerating statistical analysis and offering quick 
insights without requiring full TCAD simulations.

To the authors knowledge, no other tool offers the same capa-
bilities as MLFoMpy. Most statistical analyses in the literature are 
done manually with ad-hoc scripts, which can be time-consuming 
and error-prone. We believe MLFoMpy will significantly impact the 
semiconductor device modeling community by enabling faster, more 
efficient analyses and addressing new research questions that would 
otherwise be computationally expensive.

5. Conclusions

We have developed MLFoMpy, a Python-based package aimed at the 
post-processing of data arising from semiconductor device simulations. 
The software allows to automatically extract the most relevant figures 
of merit from current–voltage characteristic curves. It also calculates 
several statistical parameters for sets of current–voltage curves. Finally, 
MLFoMpy incorporates machine-learning based prediction tools to esti-
mate figures of merit and full current–voltage curves for semiconductor 
devices affected by a particular source of intrinsic variability.

Future developments of MLFoMpy will focus on expanding its capa-
bilities by enhancing its machine learning models with deep learning 
techniques for more advanced pattern recognition and improved de-
vice behavior forecasting. These new models will not only extract 
electrical characteristics and figures of merit but also will allow to 
analyze intrinsic properties such as electrostatic potential, electric field, 
carrier densities, and carrier generation/recombination processes. This 
will provide a more comprehensive understanding of device operation 
and enable more accurate predictions of performance under various 
operating conditions.
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