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Abstract
Efficiently implementing the divide-and-conquer pattern of parallelism in distributed 
memory systems is very relevant, given its ubiquity, and difficult, given its recursive 
nature and the need to exchange tasks and data among the processors. This task is 
noticeably further complicated in the presence of multi-core systems, where hybrid 
parallelism must be exploited to attain the best performance, and when unbalanced 
and deep workloads are considered, as additional measures must be taken to load 
balance and avoid deep recursion problems. In this manuscript a parallel skeleton 
that fulfills all these requirements while providing high levels of usability is pre-
sented. In fact, the evaluation shows that our proposal is on average 415.32% faster 
than MPI codes and 229.18% faster than MPI + OpenMP benchmarks, while offer-
ing an average improvement in the programmability metrics of 131.04% over MPI 
alternatives and 155.18% over MPI + OpenMP solutions.

Keywords Algorithmic skeletons · Divide-and-conquer · Template 
metaprogramming · Load balancing · Multi-core clusters · Hybrid parallelism

1 Introduction

The development of parallel applications requires a great effort, particularly 
when the best possible performance is sought and distributed memory systems, 
or worse, systems with portions of both shared and distributed memory, are 
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involved. In our opinion, one of the best approaches to deal with this problem 
are parallel skeletons [17], which hide the complexity of parallelism while pro-
viding good performance as well as high-level semantics and easy-to-use APIs. 
Skeletons target different parallel patterns, one of the most relevant ones argu-
ably being divide-and-conquer, hence denoted D&C. The reason for its impor-
tance stems from two facts. The first one is that it is the natural expression for 
many essential algorithms in a wide array of fields [16]. The second one is that 
a properly designed D&C skeleton can be used to express several of the other 
most basic and critic parallel patterns such as map or reduce, thus much further 
expanding its scope of applicability.

As a result of the importance of D&C, many libraries of parallel skeletal opera-
tions consider it, although often restricted to shared memory environments [8, 15, 
22]. Still, a critical restriction found in the literature is the lack of implementations 
optimized for unbalanced problems. This is particularly true for distributed memory 
systems, as shared memory implementations usually provide limited load balancing 
strategies which, even if present, are noticeably less performant than implementa-
tions optimized for unbalanced workloads [24]. This is a very serious restriction, 
as many problems naturally present different degrees of imbalance, thus heavily 
restricting the performance achievable with solutions that do not consider it. This 
problem is aggravated by the fact that manually implementing good dynamic load 
balancing techniques is very challenging, particularly in distributed memory envi-
ronments, not to mention systems where both shared and distributed memory paral-
lelism are exploited.

A second issue that was also considered in [24] in shared memory is the fact 
that D&C frameworks usually rely on stack-based recursivity. While this is conveni-
ent and performant, in the case of deep levels of recursion this approach can eas-
ily break the application due to the limited availability of this kind of memory if 
not properly configured, which is sometimes non-trivial or even cannot be done due 
to system-level restrictions. The heap-based alternative proposed in [24] proved to 
avoid this problem while providing good performance.

Given the discussion above and the existence of many large problems that require 
the usage of distributed memory to be solved, where load imbalance is much more 
critical, we set to implement the first skeleton for the resolution of D&C problems 
in multi-core clusters developed with unbalanced and deep problems in mind. Our 
proposal is a natural evolution of [24], which was restricted to shared memory, and 
as a result of its focus, it follows a totally new strategy compared to all the previous 
parallel skeletons we know of. Our implementation relies on MPI for interprocess 
communications and on C++11 threads for efficient multithreading within each pro-
cess. Dynamic work balancing is provided both between the different processes and 
the threads within each process, always using known efficient work-stealing tech-
niques to minimize overload. The design also solves the problems associated with 
deep recursion trees in the D&C problem mentioned above. Furthermore, the pro-
posal provides several configurable parameters and mechanisms that allow adapt-
ing its behavior to different types of problems and environments. While most of 
them can be safely ignored, since their default value is suitable for most situations, 
they can be used to fine-tune the execution and further increase performance. The 
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new implementation is available at https:// github. com/ fragu ela/ dpara llel_ recur sion 
together with the material published in [15, 16, 24].

The rest of this manuscript is organized as follows. Section 2 reviews the related 
work, while Sect.  3 presents the new proposal and explains its syntax and imple-
mentation. The performance and programmability evaluation is found in Sect.  4. 
This is followed by our conclusions and future work in Sect. 5.

2  Related work

While there are numerous libraries of skeletal operations, many of them are 
restricted to shared memory environments, e.g., [8, 22, 24]. In fact, our proposal 
uses shared memory techniques inherited from parallel_stack_recursion 
[24], a skeleton that relies on stacks where the problems that must be processed are 
stored and advanced work-stealing techniques to achieve load balancing among the 
participating threads. In our library, work-stealing is also applied to the distributed 
part of the implementation thanks to the good levels of performance and scalability 
that it allows to achieve. This is a widely known technique used by several libraries, 
such as [29] for shared memory and [10] for distributed memory. A variety of solu-
tions that use different types of work-stealing adapted to their specific needs are col-
lected in [31], where their advantages and counterparts are analyzed. Some of these 
strategies have been incorporated into our implementation adapting them for D&C 
problems.

There is also a fair share of skeletal libraries that support distributed memory sys-
tems, our interest being focused on those that provide D&C. For example, eSkel 
[7] provides parallel skeletons for C on top of MPI, including one for D&C. Due to 
the C language limitations the API is somewhat low-level, which leads, for example, 
to the exposure of MPI details. This also precludes this library from benefiting from 
the large advantages that object-oriented languages provide to the development of 
libraries such as encapsulation or polymorphism. Lithium [1] is a Java library that 
provides, among others, a parallel skeleton for D&C. Its implementation is based 
on macro data flow instead of templates and it extensively relies on runtime poly-
morphism. This differs from Quaff [13], where the programmer must encode a task 
graph by means of C++ type definitions which are processed at compile time to 
produce optimized message-passing code. Due to these static definitions, tasks can-
not be dynamically generated at arbitrary levels of recursions. Therefore, the library 
allows skeleton nesting but it has the limitation that this nesting must be statically 
defined.

A C++ library built on top of MPI is SkeTo [20]. It centers around data-parallel 
skeletons on distributed data types and it provides no support for task-parallel skel-
etons such as D&C. Muesli [6] is a C++ library that combines the use of MPI and 
OpenMP. However, this hybrid solution is only applied to its data-parallel skeletons, 
so that its D&C skeleton is only optimized for distributed memory. Further, this 
library relies on runtime polymorphism, which represents large overheads compared 
with the use of template metaprogramming and static polymorphism techniques 
such as the our skeleton uses.

https://github.com/fraguela/dparallel_recursion
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D&C skeletons specifically oriented to multi-core clusters are [19] and [16]. Both 
of them combine message-passing in order to support distributed memory with 
multithreading within each process. While [16] lacks load balancing mechanisms 
among processes and only provides basic load balancing among threads, [19] sup-
ports load balancing by means of work-stealing, although its balancing operations 
always involve a single task, which can be somewhat inefficient. In addition, this 
latter proposal is only evaluated with very balanced algorithms and unfortunately, 
contrary to ours, it is not publicly available.

There are other high-level proposals that support the parallelization of D&C 
problems beyond skeletons. For example, the Merge [23] framework couples a new 
language based on map-reduce and an associated compiler with a dynamic runtime 
that automatically distributes computations among different cores in a heterogene-
ous multi-core system. Petabricks [2] proposes a new implicitly parallel pro-
gramming language and compiler. Programs written in this language can naturally 
describe multiple algorithms for solving a problem and how they can be fit together. 
This information is used by the compiler and runtime to create and autotune an opti-
mized hybrid algorithm.

Another line of research related to our work is the development of techniques and 
tools to identify computational patterns in sequential programs and refactor these 
codes in order to enable their effective parallelization. Many of these works consider 
explicitly or are specifically devoted to the D&C pattern targeted by our skeleton 
[14, 21, 30], further justifying the importance of this pattern. Coupling the analy-
sis and transformations proposed by these works with efficient implementations like 
ours could enable the much desirable automatic optimized parallelization of D&C 
algorithms by advanced compilers.

3  A divide‑and‑conquer skeleton for unbalanced problems 
on distributed memory systems

In this section we describe our new proposal, called dparallel_stack_
recursion. We will begin with its syntax and semantics and continue with the 
implementation and optimizations.

3.1  Syntax and semantics

A D&C algorithm involves four kinds of tasks: deciding whether a problem is a base 
case or it can be further subdivided, solving a base case, subdividing a non-base 
case, and combining the results of the subproblems to get the joint solution to the 
original problem. Our library provides two C++ class templates, called Info and 
Body, whose member functions provide all the information needed to perform these 
tasks, and which users must therefore specify in order to adapt the skeleton to each 
specific problem at hand. Listing 1 shows a detailed description of these templates.
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The Info class provides the structure of the problem and it must derive from a 
class Arity<N> provided by the skeleton, where N is either the number of children 
of every non-base case of the problem, when it is fixed, or the identifier UNKNOWN 
when this value is not a constant. In the last case, the user must implement the num_
children function to return the number of subproblems of each non-base prob-
lem. Function child(i, t) must return the ith child of the non-base problem 
t, while is_base(t) must return a Boolean that indicates whether the problem t 
is a base case or not.

The Body class provides the computations and it must provide the functions 
shown in Listing 1. Here, base(t) supplies the solution for a base case t, while 
non_base(t) solves a non-base case. This last function is optional and it is not 
used in all D&C algorithms, but it is especially useful when the internal nodes of 
the recursion tree contribute to the result. Function post(local_result, 
global_result) receives a local_result element that is a partial result 
obtained by processing a problem in the recursion tree, and global_result is 
the global result with which this result must be reduced. Finally, gather_input_
post is only occasionally used, as we will see later.

This class also supports two member functions that allow performing com-
putations on a problem t before further processing. Namely, pre is run before 
checking whether the problem is a base case, while pre_rec is executed only 
for non-base cases after this checking. This way it is ideal to perform computa-
tions before the subproblems are generated, and even before the number of chil-
dren of this problem t is obtained. These two functions are optional and they 
were found to be useful for some D&C problems. The library provides a class 
template EmptyBody<T,S,ProcNonBase> that can be optionally used as 
base case for the Body classes, where T is the type of the problems and S is the 
type of the solutions. The ProcNonBase is an optional Boolean parameter, with 
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false value as default, that must be set to true if the non_base function is 
used. The main advantage of this template is that it provides empty implementa-
tions of all the Body functions, so that deriving a class from it avoids writing 
unneeded components.

An optional parameter of our skeleton is the partitioner, which can be a sim-
ple_partitioner or a custom_partitioner. The simple partitioner, 
which is the default, parallelizes every problem. The custom partitioner relies on a 
user-provided do_parallel(t) function of the Info class to decide whether a 
problem t should be processed in parallel or not. When a problem proceeds with a 
sequential execution, this problem and all its subproblems are processed in a sequen-
tial execution. This partitioner is especially useful when the problems can have a 
very fine grain, so that the overhead caused by their management can be significant. 
Custom partitioning should be used with caution because the sequential execution of 
whole subtrees of a problem can cause performance losses and even stack overflow 
errors, as this execution relies on a natural recursive stack-based implementation. 
This last issue can be avoided by increasing the system limits to allow for larger 
stack sizes, although this also has its drawbacks.

The only argument to the skeleton that is related to distributed memory is called 
behaviour_flags. It is a bitmask of flags that informs about the distribution of the 
inputs and outputs. These flags are basically those from [16], and they are:

• DefaultBehavior: implements the behavior applied when no bitset is pro-
vided. In this configuration the skeleton assumes that the input is only in the 
process with id or rank 0. The only copy of the result of the algorithm will be 
located in this process when the computation finishes.

• DistributedOutput: informs the skeleton that there is no need to gather or 
replicate the output. Each process will simply keep its portion of the result.

• ReplicateOutput: affects the placement of the result. Instead of obtaining 
the final result only in the source process, a copy of it is obtained in all the pro-
cesses.

• DistributedInput: reports that the input is already distributed among the 
processes, and the portion resident in each process is the input provided to the 
skeleton by that process.

• ReplicateInput: indicates that the input of the process with rank 0 should 
be replicated to all processes before the computations starts.

• GatherInput: controls the behavior of the skeleton with respect to the input 
problem after the D&C algorithm execution. By default the skeleton only col-
lects the result of the reduction of the algorithm, that is, the value returned by 
the post method of the body object. This flag requests that the skeleton also 
gathers the input problem in the source process, or all the processes, if Repli-
cateOutput is also active. The most relevant situation when this is interesting 
is when the D&C algorithm modifies the initial input problem. This can hap-
pen in any or all the methods of the body object. The use of this flag entails an 
additional computational and memory cost, since it is necessary to store and not 
delete the data of each child problem generated. The gather_input_post 
function of the body object will be executed at the end for each child problem 
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in order to perform a reduce operation on them and save the results in the initial 
root problem.

The last argument received by our skeleton is a configuration object that allows 
the user to control multiple aspects of the internal behavior of the library that can 
greatly influence the performance achieved. The configuration object contains a data 
member for each controllable parameter, and those not explicitly specified by the 
user take default values that provide very good performance in general. Since these 
parameters are related to the internal operation of the library, they are explained in 
Sect. 3.2.

Other API specifications were developed for data communication since MPI does 
not directly allow sending arbitrary data structures and classes. Our skeleton uses the 
Boost [5] library to serialize objects for transmission through MPI, being deserial-
ized at the destination and converted back into the corresponding object. It may be 
thus necessary for the user to indicate how this serialization is done, which is quite 
easy to do with Boost. When primitive data types are to be transmitted, no addi-
tional API or indications are needed. When the objects involved are not primitive but 
they are bitwise serializable, it is only necessary to indicate that the class meets this 
condition with the macro BOOST_IS_BITWISE_SERIALIZABLE(class). In 
case the class is not bitwise serializable, then the user must follow the API of the 
Boost serialization library.
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Listing 2 exemplifies the usage of our skeleton on a tree representing a file sys-
tem. Each item_t node in the tree contains information about its size, whether it 
is a file or a folder, and, in the latter case, a vector of pointers to the items that the 
folder contains. Each folder can contain a different number of items, so the number 
of children of each node is variable. The problem consists in traversing this tree and 
computing a structure result_t with the total number of folders and files, and 
their total size. The is_base member function of the FileSystemInfo class 
identifies the base cases, which are the nodes in the tree that have no children or are 
files. The num_children function returns the number of children of each node, 
while the child nodes are returned by the child function. The base function of 
the FileSystemBody class processes the base nodes returning a result_t 
object with the info of the node. The ProcNonBase value of FileSystemBody 
class is set to true, which means that function non_base must also be executed 
for each non-base case. The results returned by all the nodes are processed via the 
post function of body object, where the reduction on the global result_t is 
done. The last line in Listing 2 illustrates the invocation of the skeleton with the root 
of the tree, the info and body objects, a simple partitioner to run all tasks in paral-
lel without cutoffs, and a default behavior flag and configuration object. The user 
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should also add the necessary Boost macros and functions related to the serializa-
tion of relevant classes, as indicated before.

Finally, it also deserves to be mentioned that while the dparallel_stack_
recursion skeleton is the kernel of our library, it also includes other components 
that facilitate its use. The main ones are range classes that provide automatic parti-
tioning and macros and function templates to implement parallel loops and reduc-
tions on top of our skeleton using a very simple syntax.

3.2  Implementation and optimizations

Since our skeleton strongly focuses on unbalanced workloads, it implements 
advanced work-stealing methods both in shared and distributed memory. The shared 
memory parallelization and load balancing rely on C++11 threads and synchroniza-
tion facilities, inheriting the techniques used and explained in detail in [24]. This 
way, each thread uses a separate stack allocated in the heap memory to store the 
subproblems that it generates. When a thread finds that its stack is empty, it first tries 
to steal a set of tasks from another thread. The granularity of the steals, that is, the 
number of problems that are stolen at once, is defined by a parameter called chunk-
Size. This value allows stealing several problems at once, which reduces the average 
overhead per stolen item. However, using too large values limits the chances of a 
successful steal and it can keep some threads idle for longer.

The distributed memory implementation of the skeleton relies on MPI. There-
fore, after an unsuccessful attempt to steal work from other local threads, an idle 
thread performs an MPI request to obtain tasks from other process and it waits for 
the response. After that, if no work could be stolen, the cycle is repeated, so that the 
thread tries again first to steal work from other local threads and then, if this fails, to 
steal work from other process, and so on.

Except for some data synchronizations at the beginning and the end of the execu-
tion, all communications between processes are made through point-to-point mes-
sages. This allows for greater scalability and good performance even when using a 
very high number of cluster nodes. Almost all these MPI communications are non-
blocking, thus allowing threads to overlap communications with other activities. 
Our implementation allows a single thread to request work in a single MPI request 
for several threads, thus reducing the number of messages. Every request receives 
an associated response, which can be either the requested work itself or a null 
response if the process that received the request has no spare work available. In the 
case of a request for multiple threads, the response can be partial, that is, it may only 
return work for some threads in the case in which the target process does not have 
enough tasks for all the requester threads.

In our implementation, any thread can make work requests, but these requests 
will only be addressed to specific processes and not to threads. In addition, any 
thread of a process that receives a work request can handle it. The thread in charge 
of handling an MPI request will check the available work in all the threads of the 
process, it will steal the available work from these threads in a similar way to how 
the steals are carried out between the threads in shared memory, and it will send this 
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work as a response. In case of not finding work, it will send a message indicating 
that the request could not be satisfied. As we previously discussed, among threads of 
the same process, the chunkSize parameter determines the number of tasks that are 
stolen in one steal step. Among processes, the new parameter chunksToSteal defines 
how many chunks should be stolen at once with one MPI request. Its default value is 
1 and there is seldom need to modify it, since it is usually a good value that provides 
good performance.

Each process must periodically check whether there are unprocessed work 
requests from another process. All threads perform this check, and they have the 
ability to search and collect work from among all the threads in the same process in 
order to gather the requested work, pack it, and send it to the requester. This check 
is done periodically when the thread is idle because it has no work. But in addi-
tion, it is also necessary to carry out this check even if the threads have work in 
order to avoid very long waits in the requester processes. Unfortunately this activity 
can greatly affect performance. If the checks are performed too often, the associated 
overhead degrades the performance, but a long wait between checks implies slower 
responses to work requests, and therefore a global worst performance. The param-
eter polling_rate controls the rate for checking new MPI work requests. The optimal 
value for this parameter depends on many factors, such as the type of problem, its 
implementation, and the hardware available. In order to address this, a functional-
ity has been implemented that allows using an automatic adaptive polling rate. This 
mechanism dynamically changes the value of the polling rate during execution, lin-
early increasing it when no work is found as response to the request, and multipli-
catively decreasing it when work is found. This adaptive polling rate is enabled by 
default, and it performed very well in our tests, providing performance very close to 
the one achieved with the optimal value.

Another important feature of our implementation is the limitation of the number 
of outstanding MPI requests per process. Indeed, we have observed that not restrict-
ing it can severely hurt performance due to network congestion and the messages 
processing costs when there is high imbalance or the algorithm execution is in its 
final stages. This limit can be defined with the mpi_workrequest_limits parameter. 
As a related optimization in our implementation, before a thread launches an MPI 
request, it observes the state of the other threads in order to check whether any-
one needs work and has not made an MPI request yet. If this is the case, the thread 
launches a single joint MPI request for it and these other threads. This allows seek-
ing work for all the threads even if the outstanding number of requests allowed is 
smaller than the number of threads, making a smarter usage of the requests available 
and contributing to the proper load balancing among processes despite the reduction 
in messages and network congestion. Taking into account this second optimization, 
the default limit in our library for the number of requests from each process given 
by mpi_workrequest_limits is equal to half the number of threads per process, which 
resulted in stable and close to optimal performance in all our tests. As a result, users 
do not really need to modify this parameter unless they want to fine tune it.

Detecting when an algorithm finishes in a distributed memory environment is not 
as easy as it is in shared memory. Our library uses a ring-based termination detec-
tion algorithm similar to that proposed by Dijkstra et al. [9]. In this algorithm, each 
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process passes the token to its right in order to reach a consensus. The token can 
be of three colors: white, pink or red, and it has information about the number of 
requests sent and received from each process. White is the default color while the 
algorithm has not finished. With the token information, a process can detect a ter-
mination condition and set the token color to pink. This color is a transition state to 
terminate pending communications, but new requests are forbidden. When all these 
communications are finished, the token is set to red and the computation ends.

4  Evaluation

The evaluation benchmarks and their sequential runtime are described in Table 1. 
This time was obtained by running a purely sequential optimized version of each 
benchmark in a single core of our evaluation system. These codes were compiled 
with the same software environment and optimization flags as the parallel experi-
ments, which will be discussed later. Also, all the runs where performed in an exclu-
sive fashion, where the nodes used were available only for the tests and no other 
software besides the OS was running.

The uts (Unbalanced Tree Search [26]) benchmark processes unbalanced trees of 
different shapes and sizes that follow different distributions according to the param-
eters passed to the program. The T3XXL tree is predefined in the uts distribution 
package and it processes a binomial tree, which is a very unbalanced and unpredict-
able problem. This is an optimal adversary for load balancing strategies. The second 
configuration used is T2XL, which is a geometric tree with a circular factor branch, 
which although somewhat more predictable, is unbalanced enough to be challeng-
ing. Its uts parameters are -t 1 -a 2 -d 26 -b 7 -r 220. The N Queens 
benchmark solves the N Queens puzzle problem, which computes on how many 
ways can n chess queens be placed on an n × n chessboard so that no two queens 
threaten each other. The fib benchmark implements the recursive algorithm to com-
pute the nth Fibonacci number. This is an inefficient method, but it is often used in 
the literature of D&C and unbalanced algorithms. This algorithm with very simple 
calculations is interesting when evaluating parallel solutions because the overheads 
can be clearly observed. Finally, topsorts computes the topological sorts of a direct 
acyclic graph using the reverse search approach for enumeration [3]. A topological 

Table 1  Benchmarks used

n stands for nodes and h for heights

Name Problem size Seq. time (s)

uts-T3XXL Binomial tree, 2793M n, h 99049 519.87
uts-T2XL Geometric [cyclic branch factor] 

tree, 1495M n, h 104
457.09

N Queens 17 × 17 number 1316.60
fib 57th Fibonacci number 1395.64
topsorts 24466M n 4795.64
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sort or order is a linear ordering of the nodes where for each directed edge from 
node A to node B, A appears before B in the ordering. This is an unbalanced bench-
mark, where the level of imbalance is highly determined by the input, thus an input 
that produces a fairly considerable level of imbalance is used in the evaluation.

We will first analyze the performance of the skeleton, which will be followed by 
a study on programmability and a discussion. The evaluation will always consider a 
sequential version, a version developed using only MPI, and another one based on 
the dparallel_recursion [16] algorithm template, which also provides D&C 
computations optimized for environments with shared and distributed memory, but 
which lacks efficient load balancing mechanisms. This latter skeleton uses the low-
level API of the Intel TBB [27] for shared memory operations and a custom MPI 
implementation for the distributed part. In addition, some benchmarks will also con-
sider a manually developed MPI + OpenMP version. For the sake of fair compari-
son, the MPI-only and MPI + OpenMP implementations take a balanced approach, 
using code that is not very complex but which includes a reasonable initial load 
balancing mechanism that allows for significant performance improvement without 
worsening too much the programmability metrics. In OpenMP this involves a user 
selected cutoff mechanism to prevent excessive task creation that greatly benefits 
performance. The best value of this parameter for each execution was used in every 
benchmark. The exceptions to this methodology are uts and topsorts, for which no 
manual MPI + OpenMP version was developed because of their complexity and the 
fact that they enjoy complex MPI-based baselines developed by other authors that 
are specifically targeted to addressing their imbalance problems. Namely, the code 
used for the uts MPI implementation was the MPI version developed by its authors 
[11]. Similarly, for the MPI version of topsorts the mts [4] framework was used, 
which is especially developed and optimized for this type of problem. As for the 
MPI, MPI + OpenMP and dparallel_recursion versions of N Queens and 
fib, we used those from [16], which are available in its public repository. Finally, 
we wrote the dparallel_recursion versions of uts and topsorts following the 
same strategy used in the other benchmarks implemented with this algorithm tem-
plate, which is also the same used by the new proposal.

Two different versions are tested for dparallel_recursion and dparal-
lel_stack_recursion, one that does not limit the creation of tasks (simple), 
and another one manually tuned to limit the number of tasks created by a cutoff 
mechanism (manual). The dparallel_recursion tests include a third auto-
matic version that relies on its automatic partitioner.

4.1  Performance evaluation

All the experiments, both sequential and parallel, were compiled and run with opti-
mization level O3 in a cluster with the specifications described in Table 2. A total of 
ten runs are performed for each benchmark case and their average runtime is selected 
as the final execution time. The speedup of the parallel executions is computed by 
dividing the sequential execution time taken from Table 1 by the measured parallel 
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runtime. Also, in every execution it was verified that the result of the program was 
correct. The performance tests use 1, 2, 4, 8, 16, and 32 nodes. In the single node 
runs, 6, 12, and 24 cores are used. The experiments with 2, 4, 8, 16, and 32 nodes 
always involve the 24 cores of each node, resulting in a total of 48, 96, 192, 384, and 
768 cores, respectively. We tested the usage of a variable number of processes per 
node and threads per process, always exploiting all the cores in each node. The best 
for dparallel_stack_recursion and dparallel_recursion is always 
to use one process with 24 threads per node. For MPI + OpenMP the optimal num-
ber of processes per node depends on the benchmark and the number of nodes used, 
varying between 1, 2, or 4 processes per node. Our evaluation in Fig. 1 always uses 
the best configuration for each situation.

The MPI implementation of uts achieves a decent speedup until 96  cores, 
showing a very large performance drop after that point. This contrasts with the 
results in [12], where good scalability is achieved for a large number of cores. 
We believe that this is due to the fact that its results are somewhat old, hard-
ware having noticeably evolved since then. No manual versions are shown for 
uts-T3XXL because they did not improve upon the simple one. The automatic ver-
sion of dparallel_recursion hardly improves sequential execution time. 
The simple version of this skeleton achieves certain performance when using one 
node, but it does not improve performance beyond that point. It should be noted 
that using the default system limits, the executions failed due to stack overflow, a 
consequence of the skeleton not being prepared to deal with very deep problems 
as a result of being based on traditional recursion in the limited stack memory. In 
order to perform the executions, it was necessary to increase the maximum stack 
size allowed for the applications in the evaluation system, the maximum stack 
size of each application thread and the maximum stack size of the TBB worker 
threads. The new proposal addresses this issue with the use of a stack located 

Table 2  System configuration Feature Value

CPUs per node 2 x Intel Xeon E5-2680v3
CPU family Haswell
CPU frequency 2.5 GHz
Num cores/CPU 12
Total cores per node 2 × 12 = 24

Memory per node 128 GB DDR4
Operating system RHELS 7.5 (Maipo)
Kernel version 3.10.0-862.14.4.el7.x86_64
Num nodes 32
Compiler g++ 6.4.0
OpenMP version 4.5
TBB version 2018.4.222
MPI version OpenMPI 2.1.5
Interconnection network Infiniband FDR@56 Gbps
Topology Fat-tree
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in the heap. In addition, it clearly outperforms the other alternatives in both uts 
benchmarks, which are among the most challenging ones due to their unbalance 
and characteristics. This happens especially beyond 96 cores, obtaining efficiency 
levels above 82% up to this limit, which drop to 70% and 50% for 384 and 768 
cores, respectively. Altogether our skeleton allows reducing the runtime from 
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Fig. 1  Performance metrics of the parallel implementations. dpar stands for dparallel_recursion 
and dspar for dparallel_stack_recursion 
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519.87 and 457.09 s in the sequential version to 1.37 and 1.07 s for uts-T3XXL 
and uts-T2XL, respectively, when using 32 nodes.

All the implementations achieve good performance for N Queens. The simple ver-
sion of dparallel_recursion offers slightly lower performance, but using a 
automatic or manual partitioner solves this. The MPI version also shows somewhat 
lower performance than hybrid alternatives, which is expected due to the overhead 
of MPI calls in shared memory. The performance difference between the best imple-
mentations is minimal up to 384 cores, but when we use 768 cores dparallel_
stack_recursion with a simple partitioner clearly achieves better speedup than 
the other alternatives.

The fib benchmark has very fine grained subproblems, which leads to low perfor-
mance on all the simple implementations. The automatic partitioner of dparal-
lel_recursion does a very good job with this problem, reaching performance 
levels close to those achieved with a custom tuned manual partitioner. Despite its 
limited dynamic load balancing capabilities, this library can achieve very good per-
formance in this benchmark due to its ability to balance work in the initial distribu-
tion among processes according to a given cost function [16], which perfectly suits 
fib, as it is possible to accurately estimate the cost of the computation of its subprob-
lems. The best performance is, however, almost always achieved by our dparal-
lel_stack_recursion with a manual partitioner, begin only surpassed by a 
small margin by dparallel_recursion for 768 cores. The main reason for the 
better behavior of the new library up to that point despite the perfectly balanced dis-
tribution per process of dparallel_recursion is its much more advanced load 
balancing strategy in shared memory. It is also interesting that even if the simple 
partitioner is clearly a bad option for this benchmark, it allows our library to achieve 
better performance than MPI and MPI + OpenMP. This highlights the optimizations 
made in our implementation with the aim of reducing the overheads in the handling 
of tasks.

The mts MPI topsorts benchmark provides good results up to 192 cores, a decent 
but lower performance for 384 cores and a clearly bad scalability for 768 cores. 
dparallel_recursion fails to obtain good performance, and the use of the 
automatic partitioner only worsens the results, noticing the lack of a dynamic load 
balance system. Our solution, however, perfectly suits this unbalanced problem, 
always outperforming the other alternatives and scaling very well up to 768 cores, 
where the efficiency is still at 78%.

In addition to the great scalability achieved by our proposal when using a large 
number of nodes, the good performance obtained when using a single node is also 
notable, being very similar to that achieved by parallel_stack_recursion 
[24]. This was expected since dparallel_stack_recursion inherits the 
shared memory techniques used by that skeleton.

4.2  Programmability comparison

While the ideal approach for programmability analyses involves asking program-
mers with similar expertise to develop codes and comparing the results [28], this 
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is seldom possible. Therefore, our study relies on objective metrics extracted 
from the source codes, which is a widely used alternative. Our evaluation relies 
on three different metrics. The first one is the number of lines of code, excluding 
comments and blank lines (SLOC). This value can be very sensitive to the pro-
gramming style and it does not consider the length and complexity of the lines. 
For this reason the second metric is the Halstead programming effort [18], which 
estimates the cost of development considering the number of unique operands, 
unique operators, total operands and total operators found in the code. The last 
metric is the cyclomatic complexity [25], defined as P + 1, where P is the number 
of predicates or decision points in a program.

Table 3 shows the absolute values of the aforementioned metrics obtained for 
the different implementations of the fib, NQueens, uts and topsorts programs. A 
graphical depiction is found in Fig.  2, which shows the growth of the metrics 
obtained for the different parallel implementation of the benchmarks relative to 
the cost of the associated sequential version as a percentage. It must be noted 
that the MPI and MPI + OpenMP versions of N Queens and fib perform an initial 
simple load balancing that tries to provide a similar number of subproblems to 
each process. The reason for the great increase in the programmability metrics 
of all the parallel versions, but mostly the manual ones, in fib with respect to the 
sequential counterpart is the great simplicity of this latter code.

The uts benchmark is the only one in which the versions based on skeletons 
attain better programmability metrics than the sequential source code. The reason 
is that the sequential code has to manually build and manage a stack of nodes 
located in the heap in order to support the large recursion depths that can be 
experienced in this application. Since this feature is automatically provided by 
the skeletons, a noticeable code complexity reduction is experienced in the three 
metrics.

Table 3  Programming effort 
absolute values of different 
sequential and parallel 
implementations of several 
benchmark programs. dpar is 
dparallel_recursion and 
dspar is dparallel_stack_
recursion. Halstead effort is 
expressed in thousands

Sequential MPI MPI + OpenMP dpar dspar

SLOC
uts 306 733 – 240 241
N Queens 42 100 146 84 79
fib 15 47 67 43 37
topsorts 73 156 – 91 90

Halstead effort
uts 1110.40 4301.69 – 786.06 758.28
N Queens 65.24 315.13 626.63 241.90 221.24
fib 6.42 73.35 131.29 45.73 34.79
topsorts 205.02 707.24 – 332.57 307.32

Cyclomatic complexity
uts 45 97 – 36 35
N Queens 8 17 28 12 11
fib 3 8 10 4 4
topsorts 11 29 – 11 11
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The MPI topsorts benchmark relies on the mts general framework, which 
allows it to achieve decent performance levels thanks to its dynamic load balanc-
ing mechanisms. Another advantage is that this reduces the programming effort 
compared to a totally manual implementation not relying on a pre-developed 
specialized library. Nevertheless, as we can see in Fig. 2d, the programmability 
metrics are noticeable worse than those obtained using the skeletons tested.

Finally, all the metrics are quite similar for the two skeletons tested, which 
was expected given the similarity in their API. In addition, they clearly provide 
the best metrics compared to the other alternatives tested, which is especially 
relevant given the good performance levels obtained. This is possible thanks to 
the fact that users only have to worry about adapting the D&C problem to the 
interface provided by the skeletons, which hide all the complex implementation 
that provides both the efficient divide-and-conquer implementation and, particu-
larly in the case of the skeleton presented in this paper, the complex load balanc-
ing mechanisms supported in shared and distributed memory.
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Fig. 2  Relative programming effort of uts, N Queens, fib and topsorts benchmarks compared with their 
respective sequential implementation



 M. A. Martínez et al.

1 3

4.3  Discussion

One of the main problems with the dparallel_recursion framework 
is that it relies on recursive function calling and nested TBB tasks. Recursive 
function calls are also the natural performant and easy to program approach for 
D&C problems once the granularity for a sequential resolution has been reached 
in manual MPI or MPI  +  OpenMPI implementations. This is very stack inten-
sive, which is very efficient, but it is problematic for deep workloads, as the stack 
memory is limited and thus the application can break. While proper configuration 
of the stack limit can avoid this problem, it requires additional effort from users, 
requiring both multiple steps, as there are multiple gears involved in its control, 
as well as a trial and error or estimation process to learn the required size in 
order to be successful. In contrast, in our proposal, each thread uses a separate 
stack allocated in the heap memory to store the subproblems that can dynamically 
grow as required, so that it can adapt to any needed depth requiring no particular 
configuration.

A downside to our skeleton compared to dparallel_recursion is that it 
lacks an automatic partitioner. This is not especially relevant because our design 
tried to minimize the overheads of the simple partitioner as much as possible so 
that it is very efficient in most cases. Still, in some very fine grained problems like 
fib this partitioner may not be enough to obtain the best performance, the custom 
available partitioner being the solution. An automatic partitioner would avoid the 
additional programming involved by the custom partitioner in these situations.

Another minor disadvantage of our skeleton compared to dparallel_
recursion is the lack of a static cost-based system for workload distribu-
tion, our load balancing being totally based on dynamic mechanisms. We think 
that there are few unbalanced problems where it is easy and feasible to compute 
beforehand their cost in order to statically optimally distribute them. Furthermore, 
in our experience, even in those algorithms our skeleton can be quite competitive 
and even outperform them, as we could see in most cases in the evaluation of fib 
dparallel_recursion implementation, which exploits that possibility.

Something that could be more relevant in comparison with dparallel_
recursion is the restriction to D&C problems where the reduction stage can 
be performed independently for each subresult. Although this restricts the scope 
of applicability of the skeleton, it enables very critical optimizations and sufficed 
to cover all the algorithms considered.

Finally, the largest degree of flexibility and potential performance is of course 
provided by manual implementations based on low level tools such as MPI or 
C++11 threads, or even somewhat higher level approaches such as OpenMP. 
Needless to say, programmers can develop with these tools codes that can repli-
cate or may be even surpass the performance of our skeleton, the downside being 
the enormous amount of effort that they will have to put in order to program and 
debug them, including the non-trivial dynamic load balancing mechanisms. This 
is particularly true in the case that they want to exploit both shared and distrib-
uted memory parallelism in order to obtain the best possible performance.
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5  Conclusions

The development of applications optimized for multi-core clusters and supercom-
puters requires combining parallel programming models for shared and distributed 
memory to achieve good efficiency. One promising technique to facilitate this task 
is parallel skeletons, which abstract users from this complexity while achieving high 
levels of efficiency, largely thanks to current very well-optimized compilers.

In this paper we present the C++ dparallel_stack_recursion skeleton, 
designed to efficiently process D&C algorithms, with a special focus on problems 
with large levels of recursion and/or high degree of imbalance. D&C is a widely 
used programming pattern that is highly parallelizable and can be applied to a large 
number of algorithms. The skeleton offers a simple API while making transparent 
to users the great complexity of distributing, processing, and balancing the tasks to 
perform using efficient shared and distributed memory mechanisms.

Special emphasis has been placed on keeping the skeleton as efficient as pos-
sible in order to be competitive with hand-optimized implementations. It has also 
been sought to grant flexibility in the configuration of the internal behavior of 
the library, so that users can try different options for fine-tuning. However, the 
default values of the library parameters provide in general good levels of per-
formance, so that usually there is no need to test different settings for each prob-
lem unless totally optimal performance is sought. Also, an adaptive algorithm 
has been implemented for one of the most important parameters, which allows 
dynamically adjusting its value according to the state of the system.

Our evaluation shows an excellent performance of our skeleton in all the bench-
marks tested. It achieves outstanding results in the most irregular and unbalanced 
benchmarks, providing in addition high levels of efficiency for large numbers of 
nodes, where even the most competitive alternatives often show a significant drop 
in scalability. Namely, our skeleton is on average 415.32% faster than the reasonably 
optimized manual MPI versions tested and 229.18% faster than the MPI + OpenMP 
codes manually developed. Our proposal is also 63.42% faster than the dparal-
lel_recursion skeleton [16] in the fib and NQueens benchmarks, and 4350.56% 
faster in the uts and topsorts benchmarks, where dparallel_recursion is 
much less competitive due to its limited load balancing capabilities, which are cru-
cial in these very unbalanced algorithms. In addition, dparallel_recursion 
required special testing and handling of the stack configuration in order to complete 
one of the uts tests due to the high level of recursion needed, while our new skel-
eton straightforwardly achieved excellent performance. Our library also shows very 
good programmability rates, which contrasts with the great effort required to imple-
ment the low-level MPI or, even worse, MPI + OpenMP solutions. On average, our 
library offers a 131.04% improvement in programmability metrics with respect to 
the MPI benchmarks, and a 155.18% improvement over the MPI + OpenMP ver-
sions. These differences are particularly relevant considering the high level of per-
formance obtained by our proposal.

As future work we propose the extension of the library to consider other skel-
etal operations beyond D&C. Another interesting possibility is the development 
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of mechanisms that allow the use of not only regular CPUs but also hardware 
accelerators inside the skeleton to aid the computations.
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