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Highlights

• A online approach to unsupervised instance-incremental learning with
stream data.

• Adaptation from pseudo-labels, which are the own predictions of the sys-
tem.

• A strategy to deal with catastrophic forgetting and the effect of wrong
pseudo-labels.

• Designed to operate in the open-set, extendable to the class-incremental
problem.

• Method for person re-identification based on face without a reservoir of
face images.
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Abstract

Deep Learning approaches have brought solutions, with impressive perfor-

mance, to general classification problems where wealthy of annotated data are

provided for training. In contrast, less progress has been made in continual

learning of a set of non-stationary classes, mainly when applied to unsupervised

problems with streaming data.

Here, we propose a novel incremental learning approach which combines a

deep features encoder with an Open-Set Dynamic Ensembles of SVM, to tackle

the problem of identifying individuals of interest (IoI) from streaming face data.

From a simple weak classifier trained on a few video-frames, our method can

use unsupervised operational data to enhance recognition. Our approach adapts

to new patterns avoiding catastrophic forgetting and partially heals itself from

miss-adaptation. Besides, to better comply with real world conditions, the

system was designed to operate in an open-set setting. Results show a benefit

of up to 15% F1-score increase respect to non-adaptive state-of-the-art methods.
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1. Introduction

Deep Learning approaches have brought solutions, with impressive perfor-

mance, to general classification problems where a wealthy set of annotated data

is provided for training. Given the fact that in real-world applications specific

data are many times scarce, very costly to label, non-stationary (i.e. data distri-5

butions changing over time), or streaming, new and classical learning strategies

have been incorporated to the realm of Deep Learning, to deal with these chal-

lenges [1]. Thus, topics as transfer learning [2], reinforcement learning [3], or

incremental learning [4, 5, 6, 7], both supervised and unsupervised, have gained

new momentum.10

Incremental learning is the ability of a classifier to evolve by continuously in-

tegrating information from new instances or new classes, and without resorting

to full retraining [1]. Currently, incremental and online machine learning are

receiving more and more attention, especially in the context of learning from

real-time data streams [4, 5]. In particular, rehearsal-free incremental learning15

techniques have also demonstrated their abilities to extend the class-set of a

classifier considering only labels from the new classes, while avoiding the prob-

lem of catastrophic forgetting [6, 7]. Catastrophic forgetting is the tendency

of an artificial neural network to completely and abruptly forget previously

learned information upon learning new information [8]. Overcoming this issue20

is of special interest when computational capacities do not allow full retraining,

or confidentiality issues impede new access to old samples during the process

of extending the class set. In contrast, less progress has been made in incre-

mental learning of a set of non-stationary classes, mainly when applied to tasks

involving unsupervised streaming data.25

A paradigmatic example of the application of incremental learning, dealing

with unsupervised, non-stationary and streaming data is the case of video-to-

video face recognition (V2V-FR) in video surveillance [9]. Usually, video-frame

are captured with a broad range of individual pose, camera position, resolution,

and illumination, which often exceeds the diversity available in datasets used to30
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Figure 1: Open-Set Dynamic Ensembles of SVM (OSDe-SVM) is able to incorporate new

knowledge and correcting wrong updates by adding and removing classifiers in an unsupervised

way. The system is designed to work under open-set recognition conditions.

train deep networks (generally focused on web extracted images) [10]. Transfer

learning to specific task domains in V2V-FR has proven to be challenging even

for Deep Learning encoders [11, 12] since image quality factors are still decisive

for performance [13]. Besides, since the data are received continuously in a

stream fashion, individual appearance could change when switching between35

different cameras, which could also operate in changing conditions over time [14].

While, in theory, all of these issues can be solved with further labelling, the task

of having addressed every possible variation in a training dataset is, in practical

terms, infeasible [4]. Then, a more efficient and scalable approach is needed

[15, 6, 7]. In this regard, what truly represents the application context and40

the changes that appear over time is the actual data incrementally extracted

during the operation of the system, and so without labels.

Another characteristic of real-world applications of V2V-FR relates to their

intrinsic open-set nature [16, 17]. Open-set recognition refers to the classi-

fication problem aimed at identifying a specific set of known classes over an45

undetermined number of unknown ones [16]. This type of recognition exactly

corresponds to some of the most common scenarios in which FR is demanded.

Take for example the case of an airport video-surveillance aimed to track some
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individuals of interest (IoI) who have not been collaboratively enrolled in the

system, e.g. those exhibiting suspicious behaviours, among a larger number of50

unknown non-target identities, that should be identified as unknown non-target

identities.

In this paper, we propose a novel incremental learning system, the Open-Set

Dynamic Ensembles of SVM (see Fig. 1). Using a deep feature encoder as a ba-

sis, the system is capable of using operational data to enhance and improve the55

recognition of target identities in an unsupervised way. Additionally, guided

by real-world necessities, the system is designed to operate in a completely

open set setting. Rooted on the power of a Deep features encoder, trained for

the general face recognition problem, an incremental learning module, fed with

stream data, simultaneously predict and update classifiers, while dealing with60

catastrophic forgetting issues. The incremental module is based on dynamic

ensembles of SVM classifiers, which from a single SVM built from a few labelled

video-frames directly taken from the footage, can acquire and adapt to addi-

tional information by adding/removing classifiers to/from ensembles. It follows

the self-training strategy [18] in which predictions also play the role of pseudo-65

labels, which are used to update and improve the classifiers. Based on the

modular nature of ensembles, adaptations consists of either adding or removing

classifiers. Contributions of this paper can be summarised as:

• An approach to unsupervised incremental learning designed to operate

online with stream data. During its operation, predictions also play the70

role of pseudo-labels.

• A strategy to deal with both catastrophic forgetting issues and the effect

of mistaken pseudo-labels.

• An approach to instance-incremental learning in the open-set, which could

be extended to cope with the class-incremental problem.75

• A method for person re-identification based on face, which is not directly

based on a reservoir of face images.
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The rest of the paper is organised as follows. First, in Sec. 2 we perform

an extensive study of the existent literature related to the problem. After that,

we move to present the proposed approach in Sec. 3 and a set of experiments80

to study its behaviour, in Sec. 4 and 5. Finally, in Sec. 6, we reflect on the

conclusions we can extract from the work.

2. Related Work

Open-set Recognition. In open set recognition, training is performed on

a dataset with samples of some known classes, while samples of both known85

and unknown classes are presented for testing. Therefore, classifiers should ap-

propriately deal with all of them. Within this approach, closer to real-world

applications, decision boundaries not only separate instances of different known

classes, but they separate the known from the unknown as well [16]. A recent

survey [19] distinguishes between discriminative and generative approaches to90

open set recognition. Discriminative classifiers are trained to discriminate be-

tween the known classes, and then, given the most likely class label, to decide

whether a test sample was in fact drawn from the distribution of known class

samples or not [17]. Meanwhile, generative methods try to provide explicit

probability estimation over unknown categories, most of them based on deep95

networks [20, 21]. Plenty of methods in both sets of approaches, leverage Ex-

treme Value Theory (EVT) to tackle the unknown [22]. EVT is a branch of

statistics aimed to assess the probability of observing an event more extreme

than any previously observed. It has been widely used for outlier detection in

open-set recognition [23].100

In face recognition, the most realistic scenario corresponds to an open-set

setting (e.g. criminal watch-lists, restricted areas access control, smart-homes,

etc.) [17]. In this domain, apart from EVT based methods, solutions based on

siamese networks have been proposed to address the open-set as they are metric

learning methods, and their similarity scores can be thresholded to perform105

recognition [24]. Although they do not fit the data stream context, they could
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be used as a baseline for comparison purposes [25].

Incremental Learning. The main goal of incremental (a.k.a. lifelong, con-

tinuous or continual) learning is to learn from data as they are provided by

real-world dynamic sources, usually at a low pace, including noisy samples and,110

in general, exhibiting non-stationarity. As data distributions change with time,

computational systems have to deal with the stability-plasticity dilemma. This

dilemma consists of finding a balance between models’ plasticity allowing them

to adapt to changes (i.e. concept drift) [5] and stability to avoid that that new

knowledge erases old one.115

In the context of deep approaches, incremental learning has been focused

on learning new tasks/classes, more than on enhancing the performance of

classifiers (fixed number of classes) as new instances arrive [15, 26]. Among

common strategies are the exploitation of, at least, partial rehearsal (looping

over old data) [1, 27], dynamic changes in architectures (retraining after prun-120

ing/increasing the number of neurons, filters or layers), and regularisation (up-

dating weights in order not to forget previous knowledge) [28]. Among the last

are usually also included a wide range of knowledge distillation methods, in

which a teacher network transfers knowledge to a student network [29]. How-

ever, the drawback of distillation is that it generally needs to retain big past125

memories [6]. Notwithstanding the progress made in supervised incremental

learning in recent years, there is still a substantial gap between the performance

of batch offline learners on stationary data and the performance of the incre-

mental learners that deal with non-stationary data [27, 1].

Most of the work carried out to date regarding incremental learning is fo-130

cused on batches. So, they need to wait for a batch of data to accumulate

before a new adaptation can take place. Only a bunch of approaches were really

designed to tackle the problem of incremental learning from streaming data,

which is considered a more challenging task [30]. One of its critical difficulties

is the infeasibility of complete manual labelling of streaming data in real-world135

applications. A more realistic approach should only assume that a few instances

in data streams are labelled [31].

6

                  



Most of the semi-supervised methods leverage unlabelled examples by mak-

ing some assumptions, using label propagation or generating pseudo-labels dur-

ing the learning process [32]. Some approaches are based on keeping a set of140

dynamic clusters to summarise class distributions and model their evolution

over time [31]. Others use a few labelled data to initialise a set of models, which

are afterwards sequentially updated based on pseudo labelled data [33, 34, 35].

In the specific case of video recognition, weak labels can be provided by the tem-

poral tracking [36, 37], but also co-training or predictions of the own classifiers145

can provide pseudo-labels.

Ensemble methods have been acknowledged as powerful tools to overcome

catastrophic forgetting [38, 1], when dealing with data streams [39, 33]. More-

over, ensemble algorithms can be integrated with drift detection algorithms and

incorporate dynamic updates, such as selective removal or addition of classifiers150

[40]. In the semi-supervised scenario, it must be taken into account that any

kind of weak labelling or pseudo labelling is prone to error. So, dynamic up-

dates can be also useful for healing from the effect of mislabelling. Unlike other

incremental learning approaches (either classic [41] or DL-based [4]), ensembles

provide a simple way to isolate updates and, consequently, make changes re-155

versible. And not only that, since decisions are based on majorities, ensembles

are robust to outliers.

In [42] ensembles of deep networks have been proposed to encourage net-

works to cooperate and take advantage of their prediction diversity, in the con-

text of few-shot classification. Besides, to deal with tasks where training data160

are inadequate, the training of a collection of incrementally fine-tuned CNN

models and their combination using an ensemble, was presented [43]. In [44],

the authors propose an ensemble learning framework based on multiple CNN

classifiers. The CNN acts as a feature extractor for the posterior use of different

ensemble frameworks to classify its content. Recently, already in the context of165

incremental learning, an approach based on ensembles, which is close to ours,

was proposed for tackling the problem of mechanical fault diagnosis [45].

Although there are propositions of end-to-end deep learning approaches for
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Figure 2: The pipeline of OSDe-SVM. After being processed by a deep feature extractor, the

sequence’s frames pass through the Ensemble Decision Function (EDF). This function assigns

an identity label (either one of the IoI or unknown) based on the scores given by the ensembles

at the moment. If recognised as one of the IoI, OSDe-SVM will add an additional classifier

to the associated ensemble. Additionally, the limitation module controls ensembles to not

exceed maximum size and the self-healing module helps to correct possible wrong updates a

posteriori.

incremental semi-supervised learning [32, 35], their inherent characteristics make

them yet unsuitable to operate online with streaming data. Therefore, for this170

specific context, we propose to combine the good characteristics of a deep feature

encoder, which transfers knowledge from the source domain, with an ensemble

method able to provide adaptation to the target domain.

3. Proposed Method: Deep Embeddings + Open-Set Dynamic En-

sembles of SVM (OSDe-SVM)175

In this work we present the Open-Set Dynamic Ensemble of SVM (OSDe-

SVM)1 for the problem of V2V-FR in the open-set context (Fig. 1). This

method takes advantage of transfer learning from large labelled datasets, to

1Implementation can be found on: https://gitlab.citius.usc.es/eric.lopez/osde-svm
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get discriminant feature embeddings that feed an instance-incremental learning

module. The complete method is able to achieve online adaptation to the task180

domain from unlabelled streaming data. To do so, OSDe-SVM relies on the

self-training strategy and the modular nature of ensembles to add and remove

classifiers in a totally autonomous way.

OSDe-SVM uses features taken after the last pair of convolutional and batch

normalisation layers of the ResNet100-ArcFace (RN100-AF) network trained185

on MS1MV2 dataset [46]. This is one of the top-performing CNN in the face

recognition state-of-the-art. ArcFace is a loss-function specifically designed to

enhance the discriminative power of face recognition models. In this sense, the

deepest networks, like ResNet-100, are the ones that take the most advantage

of it [46]. The encoding transforms a 112x112 face crops into a 512-D feature190

embedding.

The general structure of OSDe-SVM is depicted in Fig. 2. Each individual

of interest (IoI), k, has an associated ensemble, ek, composed of a set of SVM

classifiers, hk
i . This ensemble is updated whenever the system is queried. The

update mechanism consists of adding classifiers based on the Ensembles Decision195

Functions, Sec. 3.1, following the self-training paradigm (Sec. 3.2). Besides,

OSDe-SVM can remove classifiers when the maximum number of classifiers is

reached (Limitation Module, Sec. 3.3) or when a possible mistake is detected

(Self-healing, Sec. 3.4). Each SVM classifier is trained with a small number of

positive samples (face crops of the first 5 frames containing each IoI) against200

a pool of initially labelled training samples (specifically a total of 100 frames)

randomly drawn from other IoIs.

3.1. Ensemble Decision Functions

OSDe-SVM builds, and keeps updated, ensembles aimed at the re-identification

of each IoI within the area of a camera network (Fig. 2). Ensemble’s decisions205

are made in a two-step process. Firstly, the Sequence Scoring Function assigns

a certain score to the query sequence. Secondly, the Recognition Decision Func-

tion uses these scores to assign an identity label (either as one of the IoI or as

9

                  



an unknown).

3.1.1. Sequence Scoring Function210

When making decisions, it is convenient that each ensemble gives a unique

score to each incoming sequence. Nevertheless, both (sequences and ensembles)

are composed elements. Being nF the number of sequence’s frames and Mk the

number classifiers of ensemble k, we would have a total of nF ×Mk different

responses. We call the Sequence Scoring Function (SSF) to the process of com-215

bining all of these different responses into a unique score. This process consists

of two levels:

• At frame level, we combine the responses of the ensemble’s classifiers to

give a unique score to each frame. The function used here is the median

of the individual ensemble’s SVM scores. If we then make decisions by220

establishing a threshold on the median score, in practice, we will be per-

forming a majority voting based on the binary responses (using this same

threshold) of the ensemble’s classifiers.

• At sequence level, we take advantage of the temporal coherence assumption

to assign a unique identity to the whole input sequence. This assumption225

allows us to combine all the frame’s scores into a unique one. The function

used here is the median.

3.1.2. Recognition Decision Function based on Extreme Value Theory

Once every ensemble delivers its prediction score about an input query, the

next step is to combine all the predictions to decide the underlying identity. The230

identity assignment based on the best score is the usual procedure in a closed-

set scenario [46, 47]. That is because input sequences always belong to a known

IoI. In an open-set scenario, assigning identities becomes trickier because non-

match responses, corresponding to unknown identities, are also expected [17].

To tackle these scenarios, OSDe-SVM was endowed with a Recognition Decision235

Function (RDF) based on Extreme Value Theory (EVT).
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Figure 3: Examples of Extreme Values (EV) distributions and application of RDF. A Weibull

function is fitted to the EV distribution to see whether the candidate belongs or not to this

distribution. First row illustrates examples of known identities and second row does the same

with the unknown ones.

EVT is a statistical theory aimed at estimating the probability of observing

events more extreme than any previously observed. In practice, it has been

widely used for reliability applications, as well as outlier detection [48]. In the

frame of open-set recognition, EVT has been successfully applied on numerous240

occasions (see Sec. 2).

Here, we follow an approach similar to [48]. As any input sequence belongs

to a unique identity, the ensembles associated with other identities should de-

liver non-match outputs. According to the Fisher-Tippet-Gnedenko Theorem

of EVT [22], the distribution of these non-match scores is modelled by some245

particular functions.

In this case, for left bounded positive samples, the distribution of the extreme

values G(z), is given by the Weibull distribution. For OSDe-SVM the greater

similarity, the smaller the SSF (x) score (i.e. x < 0 for similar input sequences).

So, we need to perform a variable change (x̂ = m − x, being m the median of250

the non-match scores) to satisfy the previous conditions and be able to fit the

n-top scores to a Weibull distribution as described in [48]. Then, to discrimi-

11

                  



Algorithm 1 Recognition Decision Function (RDF) based on EVT.

1: S is the input sequence, TW is the threshold in the Weibull function

2: E =
{
e0, e1, . . . , eN−1

}
set of ensembles associated to known identities

3: R = ∅ set of scores given by each ensemble to a candidate

4: for ei in E do

5: R← SSF (ei, S)

6: end for

7: c = min(R); m = median(R \ {c})
8: V = {(m− x) | x ∈ (R \ {c}) ∧ (x < m)}
9: Fit V to a Weibull function, W

10: if thenW (m− c) < TW

11: ID = arg(c)

12: else

13: ID =unknown

14: end if

nate between unknown and known identities, the best ensemble response (the

best score) can be checked whether it comes from the Weibull Extreme Value

distribution (Fig. 3) or not.255

The complete decision process is depicted in Alg. 1. More importantly,

there we also show a way of distinguishing the known from the unknown by

thresholding the Weibull distribution (TW ), instead of the actual scores which

can be uncalibrated. Since the fitted function is different depending on the input

sequence, we are implicitly personalising the threshold to each input sequence,260

as is depicted in Fig. 3.

3.2. Update Module: Incremental learning based on Self-Updating

OSDe-SVM was conceived to operate in the context of a shortage of labelled

data. Only the first classifier of each ensemble is trained with a very short

labelled sequence extracted from the input. The first five frames have proven to265

be the bare minimum for our method. From that point on, incremental learning

is exclusively based on pseudo-labels (Fig. 1).
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After an ensemble is initialised, our method decides whether a new classifier

must be added to enhance future performance, each time a sample of the same

identity is identified. OSDe-SVM follows a self-updating strategy based on270

pseudo-labels provided by EDF to input sequences. Whenever an identity, k, is

identified in an input sequence, a new SVM is created using as (pseudo-labelled)

positive samples, P k
j , the 5 hardest frames of the sequence, namely those which

got the lowest scores returned by the SSF (see Fig. 2). This way, diversity within

each ensemble is encouraged.275

3.3. Limitation Module

In a self-updating context where each ensemble is initialised with only one

classifier trained with a few labelled frames, further updates can only occur

when close samples of the same identity query the system. If they are almost

identical, there is nothing to be learnt. However, if they are very different, there280

is a danger of not being identified. So, the model can only learn from samples

on the borderline, i.e. samples that can still be recognised by the ensemble

of the corresponding identity, but which also include some level of novelty in

their features. However, ensembles’ size should not grow indefinitely whenever

the EDF recognised their target identities in input sequences. As ensembles’285

performance relies on diversity, we have chosen a solution inspired in [49], to

decide which classifiers are to be removed once the maximum size is reached.

Classifies are compared against each other to obtain a measurement of their

relative relevance, the diversity score D(·). Given an ensemble, ek, composed by

Mk SVM classifiers,
{
hk
0 , h

k
1 , ..., h

k
Mk−1

}
, D(hk

i ), is computed from the binary290

response of each of the classifiers of the ensemble over a certain set of video

frame features {x0, x1, ..., xQ−1}:

D(hk
i ) =

Mk−1∑

j=0;j 6=i

d
(
hk
i , h

k
j

)
(1)

d
(
hk
i , h

k
j

)
= − 1

Q

Q−1∑

q=0

sgn
(
hk
i (xq)

)
· sgn(hk

j (xq)), (2)
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Figure 4: The pipeline of OSDe-SVM when self-healing is performed. The frames used to cre-

ate each of the ensemble’s classifiers are passed again through the Ensemble Decision Function

to check if they are still recognised with the same identity. If not, this classifier is removed.

where hk
i (xq) is the response of the SVM classifier hk

i to the frame feature xq,

and sgn(·) is the sign function.

Whenever an ensemble ek reaches the maximum size, the classifier hk
∗ with295

the lowest diversity will be removed.

3.4. Self-healing: Correcting Wrong Updates

Since the whole adaptation process performs without supervision, wrong

updates, provoked by errors in pseudo-labelling, should be expected. This be-

haviour may affect re-identification performance, mainly in the long term. The300

self-healing procedure is designed to mitigate this problem.

Self-healing relies on the fact that the ensembles build their decisions based

on majorities. Therefore, if an ensemble reaches a relatively high accuracy in

the first classifications, it should be difficult for wrong classifiers to take over

very soon. This fact opens the possibility of detecting wrong updates before it305

becomes irreversible. We expect that, with a limited amount of wrong updates,

ensembles are still able to recognise their target identity. Consequently, the

future detection of the target identity can build a stronger majority capable of

detecting the previous wrong update.
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To implement these ideas, along with each SVM classifier, hk
i , we store the310

positive samples used to create it, P k
i , which, in practice, can be considered a

sequence. Therefore, we can pass every set (for all k and i) again through the

EDF for a re-evaluation. If the system assigns the same identity as before, the

classifier is maintained. Otherwise, the classifier is removed (Figs. 4). The self-

healing module triggers after a certain period which is adjustable (see Fig. 1).315

4. Experimental Preliminars

4.1. Database Selection

To test any V2V-FR system, we must rely on video datasets to perform our

experiments, and they are not too abundant [50]. In this sense, frames’ quality

(especially in terms of resolution), which can vary substantially depending on320

the context, can have a substantial impact on the performance of recognition

methods [13]. This fact is even more important when we aim to work in video-

surveillance scenarios.

We have included experiments in three different video datasets. On the one

hand, CMU FiA [51] and COX Face Database [9], are datasets specifically de-325

signed for video-surveillance scenarios. However, their frame quality is radically

different, as is the demand for adaptation.

On the other hand, we have also performed experiments on YouTube Faces

Database [52] to test how the proposed method performs in other FR video

contexts.330

4.1.1. CMU Face in Action (FiA) database

The CMU FiA database contains 20-second videos of more than 200 different

individuals simulating a passport checking scenario in both indoor and outdoor

environments [51]. Data was acquired by six synchronised cameras from 3 dif-

ferent angles, 2 focal lengths per angle, in 3 different sessions (3-months span335

between each pair of sessions). FiA video-frames present a considerable high
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Figure 5: Performance versus image resolution, scales 1, 1/2, 1/4, 1/8 and 1/16 (that is,

112x112, 56x56, 28x28, 14x14, and 7x7 pixel image sizes) for CMU FiA database.

quality, specifically in terms of resolution, since they were captured in a rela-

tively controlled scenario. This dataset has been used to assess other adaptive

methods, like the one in [33].

In our experiments, we have used the videos provided by the smaller focal340

length of the frontal camera, both indoor and outdoor, and only considered the

70 identities present in all sessions. Given the high quality of frames, the initial

performance of our method reached values of +92% in F1-score, which widely

surpasses the ones observed in [33]. In this sense, with these performance rates,

it is difficult for any unsupervised adaptation method to increase them. Even345

more, if we take into account that OSDe-SVM mainly provides improvements in

recall (as we will see in the following sections), which here reach almost perfect

values from the beginning.

To challenge our method by emulating more realistic conditions, we decided

to down-sample the video-frames before entering the feature encoder. In Fig. 5350

performance results for 5 different downscaling ratios are shown for the case of

35 IoI in a universe of 70 identities. Without having the possibility of averaging

performance under different universes, we decided to randomly draw 20 different

sets of 35 IoI for average and deviation computations. We measure OSDe-SVM

performance before and after adaptation. Results in Fig. 5 show the performance355

degradation as the resolution decrease, which OSDe-SVM alleviates with its

unsupervised adaptation. It must be taken into account that a 1/16 downscale
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(a) COX Face Database. (b) YouTube Face Database.

Figure 6: Some samples of the main datasets used during the experiments.

gives face crops of size 7x7 (for an original size of 112x112); such low resolutions

make identification almost unfeasible.

4.1.2. COX Face Database360

COX Face database [9] was specifically designed for the context of video-

surveillance. There are a total of 1000 different identities in the dataset. The

creators of the database asked to each of individual to follow an S-path while

they capture video from 3 different viewpoints (cam1, cam2 and cam3). Samples

can be seen in Fig. 6. Despite being taken in an interior setting, the result-365

ing video frames present important variations in terms of both illumination

and pose and especially low resolution. Samples provided by the database are

the output of a commercial face tracker with a partially removed background.

Nevertheless, to fine-tune this background removal and for alignment purposes,

faces are passed through a face detection module for the proper performance370

of the feature encoder module [53]. This database will be the one in which the

core parts of OSDe-SVM are tested.

4.1.3. YouTube Faces Dataset

YouTube Faces database [52] is a widely used database for the context of

video face recognition. While not being designed for the case for the specific case375

of video-surveillance, it will provide insights into how well OSDe-SVM generalise

to other video contexts. This database contains 3 425 videos of 1 595 different

people. Each identity contains from 1 to 6 different sequences. Since we wanted

to have room to perform adaptation during operation, we will only keep the
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identities containing ≥3 videos. This gives us a total of 533 different identities.380

Samples can be seen in Fig. 6.

4.1.4. Dataset adjustments for the experiments

Given the specific context of our application, it was necessary to perform

some adjustments to adapt the data provided by databases to how we operate.

First, to increase the number of sequences per identity (and so the possibilities385

to update), we split each of the available videos to have an initial mini-sequence

of 5 frames and 9 additional sub-sequences. All this process keeps intact the

temporal order. Second, we organised the data into different sets depending on

their role in the experiments. These different sets are:

• The initially labelled training sequences are labelled video-frames of390

target identities used to create the first classifier of each ensemble (the

sets positive samples, P k
i ). They consist of the first 5 frames from the

first available database video.

• The operational sequences simulate input sequences which would be

received in the operational phase. They consist of the first eight sub-395

sequences of the available sequences.

• The testing sequences are used to assess performance. They correspond

to the last sub-sequence of 9 sub-sequences of each of the available indi-

viduals.

Hereafter, each sequence will be noted by Sk
t , where t refers to temporal400

order and k refers to the identity. Following this notation, t = 0 corresponds to

the 5-frame sequences of the initially labelled training sequences used in the ini-

tialisation, t = 1, 2, . . . , 8 correspond to the streaming of sequences (operational

sequences), and t = 9 corresponds to a sequence for performance assessment

(testing sequences).405
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INI UP UP UPUP SHUPUPUPSHUPUP ...

...

Figure 7: Adaptation steps performed during the experiments. INI stands for initialisation,

UP for update and SH for self-healing. The last step corresponds to the beginning of the

second iteration. Each sub-sequence contains about 20 to 60 frames.

4.2. Experimental Setup

We designed the experimental setup to simulate the stream data scenario

of V2V-FR. First, initial models of the IoIs are created, which consist of one-

classifier ensembles. This classifier is created using samples from the initially

labelled training sequences (Sk
0 ): 5 frames of the actual identity as a positive410

set and a 100 frames from other IoI as a negative set (randomly drawn without

restrictions for each classifier from other subject’s samples pool). The size of

the negative set is maintained for future classifier additions to have the same

balance in each of the ensemble’s classifiers. After this initialisation process, the

system is repeatedly queried with unlabelled sequences. These sequences have a415

variable number of frames (from 20 to 60). Since we are working in an open-set

scenario, these input sequences can belong to one of the IoI or not.

Experiments are organised in adaptation steps, after which performance is

measured. An adaptation step corresponds to either the initialisation, a com-

plete iteration over the k available identities with the same t, or a process of420

self-healing (See Fig 7). Additionally, we fully iterate over t = {1, 2, ..., 8} a to-

tal of 3 times (iterations), always preserving the temporal order. This way, we

can increase the number of possible updates and study the system’s behaviour

with redundant data of both IoI and unknowns. Self-healing was performed

at adaptation steps multiples of 5, and the maximum number of classifiers per425

ensemble, M , was fixed to 10. This gives us a total of 31 adaptation steps per

experiment. Alg. 2 outlines the whole procedure.

Both the size of the identity universe and the number of IoIs vary with the

experiment. For universe sizes smaller than 1000, the experiment is repeated
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Algorithm 2 Experimental procedure and testing protocol.

1: Sk
t is the sequence t of the identity k, L is the number of iterations

2: f number of different sub-sequences per identity

3: N = number of IoI, NU = number identities in the universe

4: for each split do

5: for k = 0 to N − 1 do

6: Initialise ensemble k using Sk
0

7: end for

8: Perform testing using the set of S
k={0,1,...,N−1}
f

9: for lap = 0 to L− 1 do

10: for t = 1 to f − 1 do

11: for k = 0 to NU − 1 do

12: Perform adaptation using Sk
t .

13: end for

14: Perform testing using the set of S
k={0,1,...,N−1}
f

15: end for

16: end for

17: end for

for different splits of identities (following Alg. 3) to compute an average perfor-430

mance. A partial overlapping between splits was considered to get a more com-

prehensive sampling. For the case of 1000 identities, we repeat the experiment

5 times to address the variations provoked by the random set of negatives. For

example, in the case of a universe with 100 identities, we would have a total of

19 different splits. As for metrics, we measure precision, recall and F1-measure,435

using a TW fixed to 0.01.

5. Experiments and Results

The experimental part of the paper is organised as follows. First, we study

the dependence of performance against the size of the universe, while maintain-

ing the ratio with respect to the number of IoI constant (Sec. 5.1). After that,440

we perform a comprehensive analysis of the temporal evolution of one of the
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Algorithm 3 Algorithm to create the splits

1: NU is the number of identities in each experiment universe

2: ND is the number of identities in the dataset

3: i = 0

4: while i + NU < ND do

5: splits ← Samples with ID ∈
[
i
2
, i
2

+ NU

]

6: i+ = NU

7: end while

Table 1: Performance over different universe sizes (NU ), while preserving the ratio with the

number (N) of IoI. Values are expressed as µ(σ), where µ stands for mean and σ for standard

deviation. Test performed on COX Face Database.

Precision Recall F1

N NU Initial Final Initial Final Initial Final

10 20 75 (12) 71 (12) 79 (17) 88 (11) 76 (14) 78.5 (9.7)

20 40 86.9 (8.2) 85.1 (6.3) 74 (15) 91.1 (6.7) 79 (11) 87.8 (5.4)

30 60 88.5 (6.4) 89.7 (5.5) 72 (10) 94.3 (3.7) 78.8 (7.8) 91.8 (3.7)

50 100 91.2 (4.7) 91.9 (3.8) 70 (13) 94.2 (4.1) 78.8 (9.0) 93.0 (3.2)

100 200 92.6 (3.0) 92.6 (2.1) 68 (10) 95.1 (1.9) 77.8 (7.8) 93.79 (0.97)

200 400 92.0 (1.8) 93.5 (1.6) 66.5 (8.5) 95.7 (1.0) 76.8 (5.6) 94.6 (1.1)

300 600 90.3 (1.3) 91.9 (1.3) 63.8 (4.8) 95.6 (1.0) 74.6 (2.9) 93.8 (1.1)

500 1000 84.6 (1.4) 89.33 (0.76) 63.3 (1.7) 95.33 (0.59) 72.4 (1.1) 92.23 (0.64)

previous configurations (Sec. 5.2.1). Then, we compare the performance of our

approach against state-of-the-art face recognition methods (Sec. 5.3). Finally,

the effect of openness is assessed (Sec. 5.4).

5.1. Performance vs. Universe Size445

This experiment shows the performance behaviour of OSDe-SVM under dif-

ferent universe sizes (NU ) while keeping the proportion of IoI to NU 1:2. Results

are shown in Tabs. 1 and 2. We measure initial (non-adaptation) and final (after

adaptation) performance of OSDe-SVM, using the previously described experi-

mental set-up (Sec. 4.2). It is important to remark that non-adaptation means450

that ensembles do not incorporate new SVMs apart from the initial one. Thus,
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Table 2: Performance over different universe sizes (NU ), while preserving the ratio with the

number (N) of IoI. Values are expressed as µ(σ), where µ stands for mean and σ for standard

deviation. Test performed on YouTube Faces dataset.

Precision Recall F1

N NU Initial Final Initial Final Initial Final

10 20 79 (10) 73.3 (9.5) 86 (11) 89.4 (9.4) 81.9 (8.2) 80.2 (8.1)

20 40 89.4 (5.8) 87.0 (6.2) 86.0 (8.2) 91.2 (6.4) 87.3 (5.0) 88.8 (4.9)

30 60 91.8 (4.4) 90.5 (5.1) 84.6 (7.5) 91.8 (5.7) 87.8 (4.5) 91.0 (4.4)

50 100 93.6 (2.9) 91.7 (3.7) 84.1 (5.4) 90.3 (4.0) 88.5 (3.2) 90.9 (3.2)

100 200 93.7 (1.5) 91.9 (1.7) 84.3 (6.1) 90.8 (2.8) 88.6 (3.4) 91.3 (1.8)

200 400 92.3 (1.6) 93.81 (0.48) 84.1 (2.7) 91.5 (1.2) 87.94 (0.71) 92.62 (0.88)

performance is quite similar to the one provided by the original network [46].

From the experimental results on both datasets, the benefits provided by

the adaptive nature of the OSDe-SVM are patent. F1-scores increase in all but

one case (the case of having 10 IoI in a Universe of 20 for YTF), mainly due455

to the impact on recall (9-30% improvement). OSDe-SVM helps to enhance

and enrich the existent face models, being able to recognise what previously

were unrecognisable. This improvement is even more remarkable accounting

for the challenging experimental conditions. First, only 5 low-quality frames

are provided with true labels to create the initial models. After that, no ad-460

ditional labelling is provided. Second, we use the same identities (both known

and unknown) to perform the queries in each adaptation step. Therefore, con-

fusions between identities could reinforce the impostor and eventually provoke

a complete identity theft.

Although overall the behaviour observed is stable, the highest improvement465

in performance corresponds to larger universes. This behaviour can be explained

by how we use the EVT. The quality of the Weibull fit in RDF (Section 3.1.2)

increases as the number of samples to fit do so. For instance, since just half of

the data is used in this process (those greater than the median, L8 in Alg. 1),

when the IoI is 10 the Weibull fit is done with only 5 points.470

Finally, while OSDe-SVM presents benefits in both datasets, COX is the
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Figure 8: Evolution of OSDe-SVM for the case of 50 IoI over an universe of 100 identities.

Test performed on COX Face Database.

one which presents the best result. This can be attributed to fact that their

sequences are more contiguous.

5.2. Comprehensive study of the 50 IoI in a universe of 100

This experiment was aimed at performing a detailed study of one of the475

previous cases (50 IoI in a universe of 100) to fully understand OSDe-SVM be-

haviour. First, we will study its detailed temporal evolution in Sec. 5.2.1. After

that, we complement this study by exploring the behaviour of two fundamen-

tal parts of OSDe-SVM: self-healing (Sec. 3.4) and the decision threshold TW

(Sec. 5.2.3).480

5.2.1. Temporal evolution

The results of the temporal evolution are shown in Fig. 8. The first thing we

can extract from the experiments (Fig. 8a) is that the performance improvement

is higher in the first steps. This is something which could be expected as adding

individual classifiers has a higher impact when the size of the ensemble is lower.485

Besides, this behaviour shows the system’s robustness against repeated unknown

queries.

These figures also allow observing in a more detailed manner the remarkable

recall improvement provided by OSDe-SVM. Precision is also improved but to a
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Table 3: Comparison of OSDe-SVM with and without the self-healing module. Test performed

on COX Face Database. Performance is expressed as µ(σ), where µ stands for mean and σ for

standard deviation. The number of tests used to compute these values are the ones explained

in Section 4.2.

Precision Recall F1

Conf. Initial Final Initial Final Initial Final

With SH 91.2 (4.7) 91.9 (3.8) 70 (13) 94.2 (4.1) 78.8 (9.0) 93.0 (3.2)

Without SH 91.2 (4.0) 90.8 (3.7) 70 (11) 94.5 (3.5) 79.0 (7.8) 92.6 (2.9)

lesser extent. Besides, Fig. 8b shows the evolution of the average ensemble size490

for each of the splits (Alg. 3). We can see the effect of self-healing (every 5 steps)

and the limitation module. First, drops in size correspond to the triggering of

the self-healing process. Second, the size of each ensemble, Mk, is effectively

restricted by the limitation module to 10 SVM classifiers.

5.2.2. The effects of self-healing495

Here we wanted to see the effects on the performance of using or not the

self-healing module. Therefore, we have repeated the previous experiment for

50 IoI in a universe of 100 with the self-healing module disabled. The results

are in Tab. 3.

Self-healing provides limited performance increases. Consequently, the re-500

sults do not achieve enough significance. Precision is not degraded as much with

this module activated (+1% difference). All of this suggests that the module

may be helping to partially eliminate wrong classifiers from the ensemble. This

improvement, while being small, opens an interesting research line to further

optimise ensemble errors self-correction in the future.505

5.2.3. Dependence on TW

OSDe-SVM makes its decisions by establishing a threshold (TW ) on the

Weibull distribution fitted to the ensemble’s scores of an incoming sequence

(see Sec. 3.1.2). This approach allows the threshold to better generalise to each

specific context. Even more, when data scarcity forces us to fix its value a priori.510
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Table 4: Initial and final performances for different values of the decision threshold (TW ) over

the Weibull distribution. Test performed on COX Face Database.

Precision Recall F1

TW Initial Final Initial Final Initial Final

0.100 69.5 (5.2) 70.9 (4.7) 91.4 (5.8) 97.3 (2.3) 78.8 (4.8) 81.9 (3.4)

0.010 91.2 (4.7) 91.9 (3.8) 70 (13) 94.2 (4.1) 78.8 (9.0) 93.0 (3.2)

0.001 97.0 (3.6) 95.7 (3.2) 48 (12) 83.2 (5.7) 63 (11) 88.9 (4.1)

Table 5: Comparison against state-of-the-art face recognition models: FaceNet [25] and

RN100-AF (ArcFace) [46], (for the case of 50 IoI in an universe of 100) using their pro-

posed metrics for classification and a simple threshold (TH) to determine the unknown. We

represent standard deviation within brackets. Test performed on COX Face Database.

Method Precision Recall F1-measure

FaceNet +Euclidean+TH 38.7 (7.4) 71.3 (9.4) 49.0 (8.7)

RN100-AF +Cosine+TH 77.3 (9.9) 86 (11) 80.7 (6.5)

RN100-AF +OSDe-SVM, Initial 91.2 (4.7) 70 (13) 77.8 (7.8)

RN100-AF +OSDe-SVM, After Adapt. 91.9 (3.8) 94.2 (4.1) 93.0 (3.2)

In this section, though, we wanted to explore the influence of TW in OSDe-

SVM performance, to better understand its behaviour. Note that such an ex-

ploration could not be performed in a real-world application. We are going to

measure initial and final performance for the case of 50 IoIs in a universe of 100,

for 3 different values of TW .515

Results in Table 4 show that overall the properties of OSDe-SVM are main-

tained over each value, keeping its ability to improve performance without su-

pervision. Therefore, varying TW only move the point of the precision-recall

curve in which OSDe-SVM operates.

5.3. Comparison against state-of-the-art face recognition models.520

Here, we compare the performance of OSDeSVM against two other well-

known methods for face recognition (Tab. 5). In these two methods, the focus

was on obtaining the most widely separated classes in feature space, to make
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the classification as easy as possible. On the one hand, FaceNet [25] feature

embedding is designed to distinguish faces by computing the euclidean distance525

between two features (99.6% accuracy on LFW). On the other hand, ArcFace

[46] embeddings are designed to distinguish features by using cosine similarity.

All of this makes them suitable for application in any face related task (either

verification, identification or general recognition) or, as in our case, to use as a

basis for the development of an adaptive method.530

Both euclidean distance and cosine similarity are used to compare two single

features. Since here we work with the features of all the frames in each query

sequence, the centre of this cluster of features is computed as proposed in the

original paper [46], to obtain a unique feature per sequence. Besides, the thresh-

olds were tuned offline to get the best F1-scores, which are used as baselines.535

This would be impossible to do in stream learning conditions.

Results on Tab. 5 allow us to gain insights into the issues addressed in this

paper. First, the performance of FaceNet shows the difficult endeavour of transi-

tioning to real-world problems (low-quality, open-set considerations, etc.). Sec-

ond, our initialisation OSDe-SVM with RN100-AF embeddings preserves most540

of the discrimination power of the original decision function (cosine similarity).

Finally, the enhanced performance provided by OSDe-SVM is put into perspec-

tive against other state-of-art static face recognition models. This improvement

translates into a 15% higher F1-score.

5.4. Performance vs. Openness545

The goal of this experiment is to study how the behaviour of OSDe-SVM

changes with the openness ratio, O, that is the ratio of known to unknown

identities [16]. This measure goes from 0% openness (closed-set recognition) to,

theoretically, 100%:

O = 1−
√

2 ·
Ntraining

Ntarget + Ntesting
, (3)

where Ntraining is the number of identities used on training (in our case, N),550

Ntarget is the number of identities to recognise (in our case, N as well) and
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Figure 9: Performance openness dependence with fixed IoI (50), and universe ∈ {50, 100, 200,

400, 600, 1000}.

Ntesting are the number of identities used on testing (in our case, NU ). Thus,

Eq. 3 simplifies to:

O = 1−
√

2 · N

N + NU
. (4)

To have a wide range of openness values, we selected a relatively low number

of IoI (50) and then vary the size of the universe from 50 identities (0% openness,555

i.e. closed-set) to 1000 identities (≈70%). Experimental results are shown in

Fig. 9, where performance is represented in terms of precision, recall and F1-

scores.

The performance graphs show a clear decay of F1 performance as openness

increases, because of the loss of precision. It must be noted that openness560

affects both the unsupervised adaptation and the testing process. An increase in

openness provokes a decay in precision, which also entails making more mistakes

during the self-adaptation. Accordingly, the drop in precision leads to a decay

in recall after the adaptation process. Against all odds, the system proves its

robustness until almost 60% of openness.565

6. Conclusions

In this work, we propose a novel system, the OSDe-SVM as an instance-

incremental learning approach to the problem of open-set face recognition in
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video surveillance. This system aims to operate in real-world non-stationary

environments where the availability of labelled data is quite limited.570

OSDe-SVM design uses the power of deep face representations as a basis.

Once initialised (using 5 labelled frames per IoI), the proposed method creates

and updates an ensemble of SVM classifiers using samples directly taken from

the input sequence which effectively deals with catastrophic forgetting. These

updates are performed following the self-training paradigm in which OSDe-SVM575

predictions are used as pseudo-labels to incorporate new knowledge without ad-

ditional supervision. In this regard, we achieve update reversibility by encap-

sulating each update into an individual SVM classifier. By the use of EVT,

OSDe-SVM can make decisions in open-set conditions.

Experiments were mainly performed on COX Face Database, to our knowl-580

edge the most challenging video-surveillance database available. Guided by real-

world necessities, the set-up simulates open set recognition conditions. Results

show up to a 15% F1-measure (achieving up to a ≈ 94% F1-measure, depending

on the amount of IoI to recognise) increase respect to the closest static state-

of-the-art (ResNet100+AF) face recognition model. Furthermore, the proposed585

system’s performance is tested under different degrees of openness, proving to

be reliable up to +60% openness (50 IoI in a universe of 1000 identities), where

unknown identities appear many more times than IoI. Additionally, CMU FiA

and YouTube Face databases are also successfully used to test the generalisation

capabilities of the proposed OSDe-SVM.590

In future work, apart from translating OSDe-SVM to other related machine

learning applications, an interesting line of research would be to extend the

proposed system to the unsupervised class-incremental problem. Following the

same self-training paradigm, unknown responses could be used to incorporate

additional IoI into the recognition system. And, since classifiers are indepen-595

dently created, these additions would not have any adverse effect on previous

knowledge.
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