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Abstract

Nonalcoholic steatohepatitis (NASH) is a common disease that ultimately can lead to the development of end-stage liver
disease, cirrhosis, or hepatocellular carcinoma. An early prediction of NASH provides an opportunity to make an appropriate
strategy for prevention, early diagnosis, and treatment. The most accurate approach for NASH diagnostics is a liver biopsy,
which can lead to various complications for the patient. Many papers have studied non-invasive machine learning (ML)-driven
approaches to early non-invasive NASH prediction; however, to the best of our knowledge, none of the works considered the
problem of explainability of the trained ML models to the medical experts. In this work, we address this issue. We use the
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) nonalcoholic fatty liver disease adult database
to train different ML models and propose the technique to explain their predictions. We compare the explanations obtained
from a transparent model (Decision Tree) and a non-transparent model (Random Forest). Furthermore, we analyze the quality
of explanation prediction by objective means and with a user study involving 11 medical practitioners. Our findings show
that there is no significant difference in the perception of explanation obtained from transparent and non-transparent models,
and that the explanation of the models’ predictions slightly increases their usability and trustworthiness for real practitioners,
enhancing their practical adoption in clinical settings.

Keywords Explainable Artificial Intelligence - Natural Language Generation - Textual explanations - Explainable Machine
Learning - Non-Alcoholic Fatty Liver Disease (NAFLD) - NonAlcoholic SteatoHepatitis (NASH)

1 Introduction

Non-Alcoholic Fatty Liver Disease (NAFLD) is a leading
cause of chronic liver diseases around the world [1]. NAFLD
is strongly associated with metabolic syndrome and is consid-
ered the hepatic manifestation of the metabolic syndrome [2].
It can manifest as pure fatty liver disease (hepato-steatosis)
or as non-alcoholic steatohepatitis (NASH), an evolution of
the former in which steatosis is associated with inflammation
and hepatocellular damage and with fibrogenic activation that
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can lead to cirrhosis and the onset of hepatocarcinoma [3]. In
its ultimate phase, NASH can lead to the development of end-
stage liver disease, cirrhosis, or hepatocellular carcinoma
(HCC) [4]. However, NASH remains significantly under-
diagnosed because of the lack of specific clinical symptoms,
low awareness among patients, and the lack of treatments
explicitly approved for NASH. Identifying patients with a
high probability of NASH is the first step toward risk strati-
fication and diagnosis for disease management.

The early diagnosis of NASH and elimination of its cause
can stop further liver damage, increase the chances of trans-
plant success, and also reduce mortality rates [5]. The most
accurate way to detect NASH is a liver biopsy. However, it
is an invasive method that can be risky and can lead to var-
ious complications [6]. This naturally creates the need for
non-invasive testing [7].

There are already many works aiming to apply Artificial
Intelligence (AI) techniques to diagnose NASH, relying on
image [8—10] or numerical data [11-14]. In our work, we
consider numerical data obtained from the results of patient
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Table 1 Comparison of our

. L Paper Cohort size Data available Global explanation Model available User study

work with the existing works

about NASH diagnosis. “Global [14] 3,000 B + B B

explanation” indicates whether

the trained model predictions (13] 10,000 AR B -

were explained and analyzed on [15] 500 - - - -

a global level. The data or model [16] 26,000 + + - -

is .as.sumed to be available only [17] 100 N + ) )

if it is open-sourced or can be

requested clearly. If it is [11] 700 + + - -

available only by requesting the [12] 100 - - - -

authors it is labeled as “AR”.

“User study” indicates whether (18] 200 ) * * )

the predictions of the trained [19] 600 - - - -

model were assessed by medical [20] 5,156 + + AR -

practitioners. [21] 141,293 B + B B
Our work 600 + + + +

examinations. Refer to Table 1, where we compare our work
with the existing ones.

Even though Al-driven non-invasive NASH diagnosis has
been widely studied, most of the existing papers and the
Al models presented in them have certain shortcomings.
First, it is pretty common that NASH-related studies are
performed on closed-source datasets that have to be either
requested from the authors of the study or impossible to
request at all, which makes the results of such studies unre-
producible. Second, the models trained in such studies are
rarely made open-sourced. This problem is related not only
to the Al models applied to NASH but also to many medical
Al papers [22], which significantly hinders their adaptabil-
ity in real practice [23]. The most important drawback is
that the explainability of the models trained in such works
is not verified with real medical practitioners (see Table 1).
In some works, global explainability analysis (which stud-
ies the significance of different features for the predictions)
of the trained models is considered; however, to the best
of our knowledge, none of the existing works dedicated to
NASH diagnosis engaged medical experts in the examina-
tion of the explainability of such models in their real practice.
The lack of verification of explainable Al (XAI) techniques
in medicine by practitioners is also applicable not only to
NASH but to all medical XAI [24, 25].

It is generally known that the final decision about a
patient is up to a human expert, who cannot blindly rely
on Al-model prediction [26], which raises the need for XAI
methods [27]. An Al model may only be treated as a clin-
ical decision support system, which must be capable of
providing clinicians with the knowledge to enhance medi-
cal decision-making [28]. Still, the experts may resist using
a system if it does not provide a relevant explanation of
the reasons behind its decision or capture the nuances of
human thinking [29-31]. Thus, in our work, we address the
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aforementioned drawbacks and set the following research
questions:

e RQI. Does the transparency of a model increase the
acceptability of the model to medical professionals?

e RQ2. Does the explanation of the Al model’s prediction
increase the acceptability of the model to medical pro-
fessionals?

To answer these questions, we use the NIDDK dataset!, a
high-quality clinical resource collected by the US National
Institute of Diabetes and Digestive and Kidney Diseases.
While this dataset is not open-access, it has a clearly defined
process for academic use, making it a reliable benchmark for
medical Al research.

Unlike most previous studies on Al-based NASH
prediction-which often overlook the explainability of model
decisions or fail to involve real clinicians in the evaluation
process-our work explicitly focuses on how explanations are
perceived by medical professionals and whether they con-
tribute to the practical usability of Al predictions. We propose
a systematic methodology to assess this through both quan-
titative analysis and a dedicated user study.

Our main contributions are as follows:

e Wedesign and implement amethod to explain NASH pre-
dictions from both a transparent model (Decision Tree)
and a non-transparent model (Random Forest), using
SHAP-based visual and verbal explanations tailored for
clinical relevance.

e We conduct a detailed analysis of explanation quality
through both user-agnostic metrics and a user study with
11 medical practitioners experienced in NASH diagnosis.

! https://repository.niddk.nih.gov/home/
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Fig.1 Decision Tree
explanation example. The
explanation interface consists of
three parts. Information about
the patient: table containing
two groups of features. The first
group (from HbAlc to
Hypertension) shows the
features used by the model for
predictions. The second group
(from Age to Parenteral
nutrition) indicates that the
patient is related to a certain
cohort which implies that the
patient does not have certain
diseases, does not take certain
medicines, etc (that is why most
of the features in this group have
“not found” value). Shapley
values-based decision plot: the
plot showing how the model has
arrived at the conclusion, where
the features in the top part play a
more significant role and the
direction of the line indicates
whether the feature increased or
decreased the risk of NASH.
Verbal explanation of the
model’s decision: Verbal
explanation of the model’s
decision containing the features
increased and decreased the risk
of NASH. The exact form of the
verbal explanation varies w.r.t.
the transparency of the model.

Information about the patient

Parameter Value Normal range
HbA1c 6.90% Below 5.7%
For men 14 to 20 U/L, for
Aspartate aminotransferase (AST) 21.0 U/L women 10 to 36 U/L
Alanine aminotransferase (ALT) 27.0 UL 4 to 36 U/L
Total protein 7.7 g/dL 6.0t0 8.3 g/dL
AST/ALT 0.78 0.8-1.0
Triglycerides 146.87mg/dL Below 150 mg/dL

Total cholesterol

200.33 mg/dL

125 - 200 mg/dL

For men 40 mg/dL and above,

HDL cholesterol 27.25 mg/dL for women 50 mg/dL and above
LDL cholesterol 92.25 mg/dL Below 100 mg/dL
Platelet count 389000.0 cells/pL 150,000 to 450,000 cells/uL
Albumin 5.0 g/dL 3.4t05.4 g/dL
BMI 34.43 kg/m2 18.5 - 25 kg/m2
For men below 94 cm, for
Waist circumference 103.0 cm women below 80 cm
Hypertension found
Age 39
Gender male
Alcohol abuse not found

Bariatric surgery or other types of
surgery on the stomach, intestines
(bypass surgery), biliopancreatic
diversion

not performed

Chronic HBV/HCV infection

not found

Hemochromatosis

not found

Taking corticosteroids, amiodarone,
methotrexate, tamoxifen, valproate

not performed

Hepatocellular carcinoma not found
AlH, PBC, PSC, Wilson-Konovalov
disease, A1AT deficiency,
dysbetalipoproteinemia not found
Liver transplantation not performed
Short bowel syndrome not found

Parenteral nutrition

not performed

J

HbAlc

Aspartate aminotransferase
Total protein

Platelet count

LDL cholesterol
Hypertension

bmi

Total cholesterol
Triglycerides

HDL cholesterol

ast/alt

Albumin

Alanine aminotransferase

Waist circumference
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‘ (200.334)
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“ (103)
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Model output value

The model predicts a HIGH RISK of NASH with a probability of 100% because

Explained model prediction

(from most to least important features)

- HbA1lc is greater than 5.94% (1.2% above norm)

However, the following factors decrease the risk of NAFLD

~

- Aspartate aminotransferase is less than 37.50 U/L (1.0 U/L above norm) j
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e We empirically investigate whether model transparency
or explanation alone increases clinicians’ trust and will-
ingness to rely on Al predictions in a realistic diagnostic
context.

e We release the trained models and explanation code to
the research community to encourage reproducibility and
reuse in future clinical Al studies.

2 Related literature

Al is widely applied in various fields of healthcare, such
as health services management, predictive medicine, clin-
ical decision-making, and patient data and diagnostics (a
lot of application examples are listed in [32]). In the field
of medicine, where risks are high and responsibilities are
substantial, Al models are primarily employed as decision
support systems. Ultimately, the final decision rests with a
human medical expert [33]. This naturally raises the interest
in XAI methods [27].

Several XAl techniques have been developed to interpret
model predictions in different domains. SHAP [34] assigns
each feature an importance score based on its marginal con-
tribution to the prediction, using principles from cooperative
game theory; it provides consistent, additive explanations
that are both local and global. LIME [35] approximates the
model’s behavior locally around a specific prediction by fit-
ting a simple interpretable model (usually linear) to perturbed
samples near the input point. Grad-CAM [36] is tailored for
convolutional neural networks and highlights the most influ-
ential regions of an input image by computing the gradients
of the prediction with respect to spatial feature maps.

XAI methods may be roughly divided into global and
local [37]. Global explanation allows us to determine the
extent to which each feature contributes to the model’s
decisions across all predictions, whereas local explanations
focus on a single prediction and are useful for under-
standing specific model outputs. In the majority of medical
papers, Shapley-values-based (SHAP) [34] explanation tech-
niques are used [27]. This is natural because SHAP has a
well-maintained open-sourced implementation?, and under-
standing the generated explanation requires only a basic
knowledge of the Shapley values concept. However, most
medical papers apply only global explainability analysis to
the trained models [38—42] and do not analyze the predic-
tions on the local level. The same is applicable to the papers
applying ML to NASH prediction: XAl techniques are used
either only for global explanation of the models [11, 13, 14,
16-18] or not used at all [12, 15, 19].

2 https://shap.readthedocs.io/en/latest/, retrieved on February 13th,
2024
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This seems pretty critical because, as we mentioned above,
the most natural role of Al models in medicine is decision
support, which is applied to specific cases by the human prac-
titioner. That is why verification of the usability of the local
explanation methods seems crucial to the integration of XAl
into real practice. However, the process of XAl method eval-
uation is also a complicated area that deserves discussion.

In one of the first papers on XAI evaluation [43] four
key perspectives of evaluation were proposed: goodness, user
satisfaction, comprehension, and the impact on expert per-
formance. Still, the evaluation is based not only on the right
questions for participants, but also on the task demonstrated
before the questions are asked. [44] showed that the XAl
evaluation setup must be based on the real decision task
rather than on artificial proxy tasks. Moreover, apart from
collecting feedback from experts, there are still several ways
to evaluate the XAl techniques objectively in a user-agnostic
manner [45].

XAI evaluation in medicine has also been studied from
different perspectives [46]. [47] delves into the critical
consideration of various XAI failures and their potential
implications on decision-making for individual patients.
The most relevant medical domain paper that served as a
motivation for the user study setup is [31], which is specifi-
cally dedicated to collecting feedback from medical experts
regarding their expectations from XAI. In this work, it was
shown that the following factors play a crucial importance
in the usability of XAI techniques in the decision-making
process: feature importance, level of a model’s uncertainty,
and transparent design of the model.

3 Materials and Methods

In this section, we describe the data used for our experi-
ments, the process of selecting the patient cohort relevant to
our study, data pre-processing techniques, and feature selec-
tion strategies. We also present the machine learning models
trained on the processed data and explain the methodology
used to generate interpretable predictions for the user study.
An overview of the entire experimental pipeline-from cohort
selection to explanation assessment by clinicians-is illus-
trated in Figure 2, and an example of the explanation interface
is shown in Figure 1.

3.1 Dataset

We use the dataset obtained from The National Institute
of Diabetes and Digestive and Kidney Diseases (NIDDK),
which is based on the 5-year study of 1441 patients, 1066 of
whom have from one to three NASH or non-NASH diagnoses
confirmed through liver biopsy and histological assessment.
The dataset has a complex structure; it consists of 18 files,
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Model-dependent
feature processing

—

I——)| Feature selection Model training

Cohort Missing value drop Automatic Decision Trees
(684 - - -
) . Consultation with medical
diagnoses) Augmentation pracitioners Random Forest
KNN imputation
cohort
selection Explanation
Patient information
NIDDK Decision plot
dataset user study with medical Verbal explanation
practitioners erbal explanatio

Fig. 2 Overview of the experimental pipeline used in this study. The
process begins with cohort selection from the NIDDK dataset, result-
ing in 684 biopsy-confirmed diagnoses. Pre-processed data is generated
using model-dependent pipelines, which include options such as miss-
ing value dropping, KNN-based imputation, and data augmentation.
Feature selection is carried out using a combination of automatic tech-

each corresponding to the form filled out either by a patient
or practitioner during initial screening or follow-up visits that
take place five times every 24 weeks. Below is a list of the
forms that play the most significant role in our study:

e Central Histology Review. Record results of the NASH
Pathology Committee review of liver biopsy slides. This
form contains the decision of the Committee answering
the question “Is this steatohepatitis?”” with three possible
answers: “No”, “Suspicious”, and “Yes, definite”.

e Laboratory results. The form contains various laboratory
results taken during the study; it includes such important
tests as HbAlc, AST, ALT, and other factors having a
direct relation to NASH.

e Physical examination. Record-focused physical exam
findings, which may be used as a source for such impor-
tant patient properties as BMI and waist circumference,.

e Alcohol Use Disorders Identification Test. A self-
administered form containing general information about
a patient’s alcohol-consuming habits is necessary for fur-
ther considering the patient’s suitability for the NASH
study.

Other forms are related to either general information (ini-
tial registration, medical background, physical activity, etc.)
or other observations of the patient (liver imaging studies,
symptoms of liver disease).

3.2 Cohort selection

We consider only adult patients with at least one biopsy-
confirmed NASH or non-NASH diagnosis and also with
the results of alcohol use disorder tests applicable to non-
alcoholic steatohepatitis. We also exclude patients who have
other forms of chronic liver disease (e.g., hepatocellular car-

niques and input from medical practitioners. Trained models (including
a transparent Decision Tree and a non-transparent Random Forest) are
then explained using a unified interface that includes patient infor-
mation, SHAP-based decision plots, and verbal explanations. These
explained predictions are presented to clinicians in a user study to eval-
uate their perceived trustworthiness and usefulness.

cinoma), have undergone bariatric surgery (e.g., stapling or
banding of the stomach), or take certain medicines likely to
interfere with our study (e.g., corticosteroids). After apply-
ing all inclusion and exclusion criteria, we get 582 patients
with corresponding 684 biopsy-confirmed NASH diagnoses
(some patients have several diagnoses). 495 of the diagnoses
are either certain or borderline NASH. The whole list of inclu-
sion and exclusion criteria with the sequence of applications
and the number of dropped patients corresponding to each
step is available in Appendix A Table 5.

3.3 Data pre-processing

As mentioned in Section 3.1, the NIDDK dataset consists of
multiple files, so preparing the training-ready dataset requires
certain pre-processing. To create fixed-size samples, we use
NASH diagnoses as a target variable, and according to the
corresponding histology review, we collect the latest data
available to the NASH Pathology Committee by the date of
the review. After the fixed-size samples are prepared, we
apply the following data pre-processing techniques:

e Missing values processing. 70% of the values from all
the data files are missing. This requires certain steps to
handle the missing values. We consider two approaches.
First, we simply drop the features with a percentage of
non-available values above a certain threshold. Alterna-
tively, we use K-nearest neighbor imputation based on
10 neighbors.

e Feature processing. We normalize continuous values and
do not apply pre-processing to integer values.

e Target variable. Originally, the target variable consisted
of four states. Two of them mean either a “certain yes”
or a “certain no” NASH diagnosis. Two other states are
used for certain degrees of borderline decisions. Such
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a granular decision could be made if the results of the
biopsy are available. However, in this study, we develop
a model that relies on the data obtained by non-invasive
methods. Thus, to make the training task feasible, we
interpret all borderline diagnoses as positive NASH, so
the target variable takes binary form.

e Augmentation. After cohort selection, the obtained dataset
turns out to be imbalanced, and since the overall number
of samples capable of training the model is pretty low,
we apply the well-known augmentation technique. It is
done by nullifying existing values and further imputing
them with a KNN algorithm, which results in “new” sam-
ples in a dataset. To prevent nullification of any data from
samples with too many missing values, we consider only
such samples that have more than half of the non-missing
values. We add 5 “new” samples to the data if the element
has positive NASH and 10 “new” ones otherwise.

e Train-test splitting. We apply stratified 5-fold cross-
validation to ensure that the proportion of positive and
negative target values is preserved across each fold. All
augmented samples are excluded from test splits to avoid
data leakage.

We always use feature processing, train-test splitting,
and target variable pre-processing steps. Other approaches
(missing value processing and augmentation) serve as hyper-
parameters in our pre-processing pipeline. We experiment
with various combinations of these approaches and ulti-
mately report the most effective one for each specific model.

We also acknowledge that while KNN imputation and data
augmentation allow us to make better use of limited clinical
data, they also introduce potential limitations. Imputed val-
ues may not fully capture the variability of true patient data,
and synthetic samples created through augmentation could
introduce biases if overused. However, given the small sam-
ple size after cohort filtering, these methods were necessary
to enhance model robustness. To mitigate their impact, aug-
mented samples were excluded from evaluation splits during
cross-validation.

3.4 Feature selection

Our study focuses on enhancing model explainability, and
within data pre-processing, feature selection plays a crucial
role. This is because, even if a feature set yields high metrics
for the trained model, it may still prove impractical for real-
world practitioners. So the features should be suitable for
a demonstration to the practitioners and, at the same time,
should result in proper metrics for the model.

As an initial reference, we considered the feature set pro-
posed in [11], as it achieved strong performance and was
aligned with medical reasoning. However, we did not rely
on it exclusively. In our study, we applied several stan-
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dard feature selection techniques-including recursive feature
elimination, removal of low-variance features, and univariate
feature selection-both using the referenced set as a starting
point and independently, in order to assess the robustness
and relevance of features from multiple perspectives. The
experiments with such techniques gave us an initial feature
set. However, after preliminary consultations with a group of
medical experts, we slightly adjusted these features, taking
into account their feedback. First, we remove white blood
cell count and hematocrit because they do not look useful for
real diagnostics, and height because it is encoded in BMI and
does not yield significant information alone. Second, we do
not consider the gender of the patient as a standalone feature
for model training; however, we keep it for demonstration
during the explanation because the normal ranges of some
analyses vary depending on the gender (e.g., AST). Finally,
we add cholesterol (total, HDL, and LDL) and waist cir-
cumference. The final feature set and the corresponding data
statistics are shown in Table 2.

3.5 Machine-learning models

We consider various ML models. First, we use such base-
line methods as Logistic Regression (LR), support vector
machines (SVM), naive Bayes (NB), k-nearest neighbor
(KNN), and Decision Trees (DT). The more sophisticated
models included in our experiments are Random For-
est (RF) [48], Bayesian Networks (BN) [49], XGBoost
(XGB) [50], CatBoost [51], and MLP [52].

3.6 Explanation technique

In our study, we experimented with explaining transpar-
ent and non-transparent models. The main motivation for
this model selection is that transparent models are naturally
explainable, but as a rule have less complex structure than
non-transparent models, which may result in lower perfor-
mance compared to more complex non-transparent models.
Thus, we study the usability of more transparent but less
accurate models applied to the specific task of NASH pre-
diction.

For transparent models, we select the Decision Trees,
because they can be naturally explained [53, 54] which
have been widely used in medical practice [55-57]. We also
use a non-transparent model, because normally they have a
more complex structure that yields better performance on
unseen data. For both types of models, the general explana-
tion interface consists of three main parts: information about
the patient, a Shapley values-based decision plot, and a verbal
explanation of the model’s decision. Refer to Figure 1 for the
DT explanation interface and C Figure 8 for non-transparent
explanation interface examples.
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Table2 Statistics of the data selected for ML model training: mean and
standard deviation of NASH and non-NASH samples, and null values’
fraction. For Hypertension, only a percentage of patients with the found

hypertension is reported. p-value is calculated with an independent t-test
between the NASH and non-NASH groups of samples.

NASH (N=495) Non-NASH (N=189) Empty, % p-value
HbAlc (%) 6.41 +1.43 5.84 £1.13 4 <0.001
Aspartate aminotransferase, AST (U/L) 50.66 + 32.23 39.49 £ 25.94 1 <0.001
Alanine aminotransferase, ALT (U/L) 66.83 £51.95 58.04 £51.76 1 0.049
Total protein (g/dL) 7.32+0.6 7.14 £0.55 1 0
AST/ALT 0.87 £0.35 0.86 +0.49 1 0.796
Triglycerides (mg/dL) 179.98 4+ 137.89 163.96 + 128.8 1 0.17
Total cholesterol (mg/dL) 189.49 +43.72 198.15 +39.27 1 0.018
HDL cholesterol (mg/dL) 44.22 £ 12.11 45.81 £ 11.78 1 0.128
LDL cholesterol (mg/dL) 113.08 +36.14 123.92 + 33.56 4 0.001
Platelet count (cells/mcL) 234183.64 4+ 77844.49 245244.68 +77734.5 1 0.099
Albumin (g/dL) 4.25+£0.47 4.17+£0.42 1 0.054
BMI (kg/m2) 33.35+£6.22 33.41 £6.14 56 0.939
Waist circumference (cm) 106.87 £ 13.77 106.69 £ 14.28 57 0.922
Hypertension 1.0£0.0 1.0£0.0 48

3.6.1 Information about the patient

In the upper part of the explanatory interface, we show the
information about the patient corresponding to the selected
features. Each parameter has a corresponding value and a
normal range. In cases where the value of the parameter is
out of the normal range, the corresponding line in a table is
highlighted in red to make studying patient data more conve-
nient for medical experts. Moreover, we show the information
that clarifies that the patient has passed the exclusion criteria
used in our study (age, alcohol consumption, other forms of
chronic liver disease, etc.).

3.6.2 Shapley values-based decision plot

A wide range of techniques have been developed to explain
the predictions of complex machine learning models, espe-
cially in high-stakes domains such as healthcare. Among
the most widely used are LIME (Local Interpretable Model-
agnostic Explanations) [35] and SHAP (SHapley Additive
exPlanations) [34]. Both aim to make individual model deci-
sions interpretable by attributing importance scores to input
features.

LIME explains a model’s prediction by approximating it
locally with a simpler interpretable model-typically a sparse
linear model-trained on randomly perturbed samples around
the instance of interest. The idea is that small changes in the
input should reveal how each feature influences the model’s
output. However, as shown in [35], LIME explanations can
exhibit high variance across runs due to their reliance on
random sampling. Moreover, since LIME is inherently local

and fitted around a single point, it is not suitable for produc-
ing global explanations-i.e., summarizing feature importance
across the entire dataset.

In contrast, SHAP is grounded in cooperative game the-
ory and assigns each feature an importance value based on
its contribution to the model’s output, considering all pos-
sible combinations of features. The general intuition is that
each feature value is treated as a "player” in a game where the
model prediction is the "payout"”, and the Shapley value deter-
mines how fairly to attribute that payout among the features.
This approach satisfies several desirable properties such as
consistency and local accuracy.

Given the need for consistency in explanations, especially
in a clinical setting where reproducibility is essential, and
our intent to perform global analyses of model behavior
beyond individual cases, we adopt SHAP for both individual
and aggregate explanation of predictions. SHAP’s theoreti-
cal grounding and stable outputs make it well-suited for this
purpose.

To visualize the Shapley values-based feature importance,
we use a decision plot that shows how complex models arrive
at their prediction. It displays the average of the model’s base
values and shifts the SHAP values accordingly to accurately
reproduce the model’s predictions.

3.6.3 Verbal explanation of the model’s decision

Even though the SHAP values decision plot may give ini-
tial intuition to a medical expert about how the model made
the particular prediction, we cannot be absolutely sure that
it will be correctly interpreted by the expert, especially if
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they are not familiar with the concept of SHAP and with
the basic principles of Al models. Thus, we assume that the
SHAP values visualization may serve only as a supplemen-
tary explanation tool, whereas the core explanation should
be delivered in textual form.

The textual explanation consists of a clear identification
of what exactly a model predicts and what its confidence
is in the prediction. The decision of the model (i.e., “High
risk” or “Low risk™) is highlighted with red or green corre-
spondingly to make the prediction text more readable. Then
the factors increasing and decreasing the risk of NASH are
shown to an expert (we use SHAP values to calculate that).
The order of factors in the demonstration depends on the final
prediction. So, if a model predicts high risk, we show the fac-
tors increasing the risk first and then the decreasing ones. In
the case of low-risk prediction, we demonstrate them in the
opposite order. Moreover, we include only the factors that
are out of the normal range to the ones increasing the risk.

The exact way of verbalizing the factors varies depending
on the type of model we explain. In the case of any non-
transparent model explanation, we can only list the names of
the corresponding factors and their values.

However, in the case of DT explanation, we may provide
the expert with a deeper look at the decision-making process,
as shown in Figure 3. As far as the nature of DTs provides
the exact decision path of the model’s prediction, we may
verbalize it [58]. The only problem is that straightforward
verbalization may not be readable because the decision path
may have repetitive features. We take the idea similar to the
one described in [59]. In this work, the authors verbalize the
DT decision path by showing either one of the biggest or the
smallest boundaries of the feature value, or the interval of the
values. They rely on the dataset used for training a particu-
lar DT to calculate which features favor the final prediction
and which ones are against it. As far as we demonstrate the
SHAP-values-based decision plot, we rely on SHAP values
to calculate which group the feature should be shown in (in
favor or against the final prediction). Apart from dropping the
features that have their value within the normal range from
the group, increasing NASH risk, we also do not show the
features that are not present in the DT decision path.

Finally, in both the DT and non-transparent models’ expla-
nations, we show the reminder of whether the value of
this factor is outside the normal range. To prevent showing
insignificant and unnecessary information for each group of
factors, we calculate the sum of modules of SHAP values
and verbalize only the ones whose SHAP value is above the
manually selected 5% threshold of this sum.

3.7 User study design

To the best of our knowledge, there is no unified way to
evaluate XAl techniques, either in medical or any other appli-
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cations. Thus, we design our user study by joining the best
existing XAl evaluation practices (discussed in Section 2)
and our study’s peculiarities.

The case of each patient is shown on two pages. On
the first page, the patient information is shown with the
verbalization of the model’s prediction without any expla-
nation (see C Figure 9). On this page, we only ask the
expert one question: “What is their diagnosis or solution for
this patient (NASH, non-NASH, impossible to determine, or
other)?” This approach ensures that the doctor engages with
the model’s predictions in a manner consistent with real-
world practice.

On the second page, we show the patient information
accompanied by an explained prediction similar to the one
shown in Figure 1 or C Figure 8. After that, we ask about
the diagnosis again. We also show the following statements
related to personal perception of the explanation and ask the
participants to rate them using a 5-point Likert scale with
answers that vary from “Strongly agree” to “Strongly dis-
agree” (see D Figure 11):

e Explanation makes sense from the medical knowledge
point of view

e Explanation increases the trustworthiness of the model’s
prediction

e Explanation is easy to understand

e Explanation helps me assess whether the prediction is
correct

e [ would consider this explanation when making decisions
about real patients

As mentioned in Section 3.6, we use DT and a best-
performing non-transparent model (the specific model will
be indicated in Section 4.1) for predictions. We take three
samples from the NIDDK dataset for this user study. These
samples are extracted from train and test splits. Moreover,
we ensure that the patient corresponding to this sample has
only one histology review result associated with it to prevent
data contamination. Additionally, we use two patients from
the real practice of one of the authors. Overall, two selected
cases have negative NASH, and three of them have positive.
We ensure that all selected models make correct predictions
for all the selected cases because this study aims to evaluate
the explanations and, therefore, it only makes sense to explain
correct predictions. An expert can most probably recognize
an incorrect prediction, which could yield a negative bias in
scoring the quality of explanations.

The experts are engaged from the professional network
of one of the authors. Before the expert starts participating
in the user study, we ask for their informed consent to par-
ticipation (see B Figure 7). Then we ask them about their
medical specialty, years of active experience, frequency of
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Information about the patient
BMI 22 kg/m2 (Normal range 18.5-25 kg/m2)
HbA1c 6.9% (Normal range below 5.7%)

AST/ALT 0.9 (Normal range 0.8-1.0)

HbA1c <7

True SHAP
HbA1c<4 :: HbA1c 1
False

AST/ALT |

True

AST/ALT <1.2

t

i

Fig. 3 The illustration of the approach for Decision Tree path verbal-
ization. In this example, the HbAlc feature passed two decision steps
with borders 4 and 7, and as far as its value is between these borders it
is verbalized as “greater than 4% and less than 7%”. AST/ALT passed
two decision steps, and it turned out to be less than both engaged border

work with patients with NASH, and their common practices
for making a NASH diagnosis (see D Figure 10). Poten-
tial participants who indicate that they have never worked
with NASH patients are automatically excluded from the
study. We also use the manual input about their practices in
NASH diagnostics to make sure that the participant possesses
the minimal necessary knowledge about NASH. Finally, we
track the time of page completion of each page presented to
a participant to further control the quality of the replies.

To make sure that the participants provide relevant
answers that do not have any sequence-related bias, we
shuffle the cases and present them to the participant in a
random order. Moreover, we ensure that each patient can be
shown only once to one participant (with either DT or non-
transparent explained prediction).

The target audience for the user study is qualified med-
ical professionals with little time available. To avoid such
problems as tiredness or lack of motivation for long ques-
tionnaires, we aim to show only four cases in total to each
participant. However, as it is difficult to predict how much
cognitive load will be required for each case, after two cases
are shown, we ask the participant whether they want to go
on the study or they would like to quit it. This is supposed to
prevent collecting irrelevant answers from experts who lose
the motivation to participate due to excessive study time.

4 Results

-

The model predicts a HIGH RISK of NASH with a
probability of 100% because (from most to least
important features)

Explained model prediction \

- HbAlc is greater than 4% and less than 7% (1.2%
above norm)

However, the following factors decrease the risk

of NAFLD
QST/ALT is less than 1.2 J

values, so it is demonstrated with the least of these values - “less than
1.2”. The features not engaged in the DT decision path are not verbal-
ized. SHAP-values are used to decide whether to show the verbalized
feature as increasing or decreasing the NASH risk.

4.1 Trained models performance

The selected ML models are trained and tested on a 5-fold
train-test split. We apply grid search for both model and data
pre-processing hyperparameters. In Table 3 we report the
type of model and its corresponding best metrics. The precise
hyperparameters resulting in the corresponding metrics are
reported in E Table 6. RF performed best of all according
to most of the metrics. So we use it for further explainability
experiments.

We could also consider BNs as a possible candidate
for explanation. BNs are sometimes referred to as gray-
box models [60] because their internal structure can be
inspected, but generating clear explanations is not very
straightforward. There are several BN explanation meth-
ods that may be interesting to be tested in a user study
similar to ours [61, 62]. However, the BNs trained with
the selected dataset do not show proper metrics, and what
is more important, the structure learned from the cohort
did not make much medical sense, so we finally decided
not to consider them in our user study. The most proba-
ble reason for the poor quality of structure learned from
the data is its limited amount, which is known to be
a significant obstacle for many structure learning algo-
rithms [63].

We analyze the feature importance of DT and RF models
using SHAP values in Figure 4. On these plots, the higher
the feature is placed on the Y-axis, the more importance it
has. Moreover, the colors of the features encode their value
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Table 3 Model performance on

5-fold train-test splits of Model F-score Accuracy Precision Recall Specificity AUC
NIDDK dataset. RF 0.69+£0.05 0.75+003 0.69+0.04 0.69+0.06 055+0.13 0.72+0.04
XGB 0.67 £ 0.05 0.74 £0.04  0.68 £ 0.05 0.66 + 0.05 0.48+£0.08  0.73 £0.04
CatBoost  0.66 £0.02  0.72+£0.02  0.67 £0.01 0.65 +£0.03 0.484+0.02  0.70 £0.07
MLP 0.66 + 0.03 0.74 £0.03 0.68 £0.04  0.66 +0.01 0.49 +£0.05 0.71 £0.03
NB 0.65 £+ 0.05 0.71£0.04  0.65+0.05 0.65 +0.05 0.534+0.06  0.70 +0.04
SVM 0.65 +0.03 0.71 +£0.03 0.65 +0.03 0.65 +0.03 0.524+0.07  0.65 £+ 0.03
KNN 0.64 +£0.02 0.70+0.02 0.64+0.02 0.66+0.02 0.57 +0.07 0.68 +0.03
BN 0.64 £0.06  0.69 £ 0.05 0.64+0.06 0.65+0.06 0.55+0.12 0.68 &+ 0.06
DT 0.64 +0.01 0.68 £0.02  0.63 +0.01 0.65 +0.01 0.57+£0.04  0.64 +0.03
LR 0.60 & 0.03 0.70 +0.01 0.61+£0.02  0.60 & 0.03 0.36 £0.07  0.69 £ 0.05
a) Decision Tree b) Random Forest
High High
AST .- . AST 0 e sedm ss seee s (e auplafeyen .
AST/ALT AST/ALT PR R X aes Vs T e
HbAlc HbAlc o Bl chemmce codee o e o
Triglycerides Total protein
Total cholesterol ALT -
Platelet count g Triglycerides - E]
BMI v g LDL cholesterol §
Albumin ‘E Total cholesterol %
Total protein - Platelet count &
Hypertension Albumin
LDL cholesterol HDL cholesterol
HDL cholesterol BMI
ALT Waist circumference
Waist circumference Hypertension
Low Low

-0.4 -0.2 0.0 0.2 0.4
SHAP value (impact on model output)

Fig. 4 Shapley plots for Decision Tree and Random Forest models.
The higher the feature is placed on the Y-axis, the more importance it
has. The colors of the features encode their value (light corresponds to

(light corresponds to low, and dark to high), and the position
relative to the X-axis encodes whether the corresponding fea-
ture increases (when shifted to the right) or decreases (when
shifted to the left) the model output.

In the case of DT, we can see that hypertension has a clear
impact on the increase in NASH risk; however, this impact
is not among the most significant ones. Other factors do not
have clear dependence, so higher and lower values of the
corresponding feature may lead to both high-risk and low-
risk predictions. In the case of RF, we can see more clusters
that seem explicit: increased values of AST, AST/ALT, total
protein, ALT, BMI, and hypertension yield “High risk” pre-
dictions of RF.
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-0.2 -0.1 0.0 0.1 0.2
SHAP value (impact on model output)

low, and dark to high), and the position relative to the X-axis encodes
whether the corresponding feature increases (when shifted to the right)
or decreases (when shifted to the left) the model output.

4.2 User-agnostic analysis of explanations

When we select a certain XAl approach, we may expect some
tradeoff between the transparency of the model’s design and
its accuracy, which however not always take place [64]. In
Table 3 we can see that DT, which is transparent by its nature,
performs worse than non-transparent RF and XGB, which
can be explained only on the feature-importance level, like
all other non-transparent models. Thus, it seems natural to
analyze whether the transparency of DT is valuable enough to
sacrifice the performance compared to the more sophisticated
non-transparent models. One of the possible approaches to
this analysis could be a human-agnostic analysis [65] of the
sensibility of the explanation from the medical knowledge
point of view.

Refer to Figure 5, which visualizes how well the borders
verbalized during the explanation correlate with the experts’
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Fig.5 Analysis of the borders used in the explanations of Decision Tree
predictions. » and <« signs mean that the textual explanation referred
to “greater than” or “less than” a particular value of the feature, respec-
tively. The vertical lines and the green zone between them correspond

knowledge about the normal range of each particular property
of the patient. To create this plot, we take the best-performing
DT, run it on the corresponding test set, and collect the statis-
tics of what exactly is verbalized to explain the prediction.
Each subplot of Figure 5 corresponds to the feature engaged
in the prediction. We use the B and <« signs to refer to the fact
that during the explanation it is mentioned that the feature is
“greater than” or “less than” some value. For example, if the
explanation of the prediction of NASH contains the phrase
“... because (from most to least important features) HbAlc
is greater than 5.2%” we place the » sign in the HbAIC

to the normal range of the parameter. In cases where the normal range
depends on gender, the women’s range is highlighted with a light red
color. For some analysis (e.g., HbAlc, Triglycerides, and BMI), we
draw additional gray lines corresponding to the “increased risk” zone.

subplot on the X-coordinate corresponding to the 5.2% (note
that we slightly vary the X and Y coordinates to make the
signs readable on the plots).

When the values referred to during the DT prediction
explanations are visualized, we may compare them to the
common knowledge of the normal ranges of these parame-
ters. The exact borders were collected from the guidelines
frequently used in one of the author’s medical practice expe-
rience, who is a medical practitioner. We indicate the borders
of normal ranges with vertical dot lines, and draw the area
corresponding to the normal range with a green color. When
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the normal ranges for men and women vary, we use a light red
color to highlight the normal range for women. Additionally,
in some cases, we draw a “High risk” border of the feature if
it is frequently used in real practice.

From this plot, we can see that the sensibility of the bor-
ders shown during the explanation varies. In some cases, like
“Total cholesterol”, “HDL cholesterol” and “AST/ALT” the
values show a significant correlation with the known nor-
mal range borders. Some features like “HbA1C”, “BMI”, or
“Trigliceridies” do engage meaningful values for DT expla-
nation, but still, a significant amount of such values seem
to be placed pretty far from the commonly known normal
ranges. Finally, there are a significant number of features
whose values, while being used for DT explanation, do not
seem to make much sense from the medical point of view,
e.g., “ALT”, “Total protein”, “Platelet count”.

Note that we do not show the “Waist circumference” fea-
ture on Figure 5, because it turned out to not be engaged
in any explanation of the selected test set. This corresponds
to its low importance, as shown in the previous section on
Figure 4a.

4.3 User study of explanations perception

Whereas the user-agnostic analysis performed in Section 4.2
isimportant, itis clear that the addressee of an explanationis a
medical expert who will finally decide the patient’s diagnosis
(probably) relying on the explained model’s prediction. That
is why it is crucial to verify the usability of the generated
explanations with the experts.

We engaged 15 medical experts in the user study using the
professional network of one of the authors. Participation in
the survey was voluntary and not paid. That is why we manu-
ally analyze the collected responses to make sure that they are
sensible. In particular, we checked the time spent answering
each task page, the declared experience with NASH, and the
free-form answers to the question about the practices they
use for the treatment and diagnosis of NASH.

We dropped the results of 4 participants as far as all the
answers to Likert-scale-based questions from them were sim-
ilar within each page, and the submission time of such pages
was pretty small (normally below 20 seconds). This was
the only exclusion criteria applied to filter the experts, i.e.,
all other participants indicated that they at least sometimes
work with NASH patients, provided sensible descriptions of
the practices used for NASH diagnosis, and their answers
to Likert-scale-based questions varied and were submitted
within adequate time (normally 60 seconds or more).

After filtering, the number of participants decreased to
11 medical experts with different experiences, which varied
from 3 to 32 years (median 8 years). 7 of them were gastroen-
terologists, 3 were cardiologists, and 1 was a therapist. They
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Medical experts scores

medical sense trust easy verify correctness real use

Fig.6 Aggregated statistics of a user study on the quality of the DT and
RF models explanations. The labels correspond to the questions about
the personal perception of the explanation shown in Section 3.7.

gave 10 and 14 answers about DT and RF-based predictions,
respectively.

We map the verbal Likert-scale answers to the integers
from 1 to 5, where 1 means “Strongly disagree” and 5 means
“Strongly agree”. We show the aggregated scores in Figure 6.
On the plot, it can be seen that the scores of DT and RF
corresponding to all 5 questions do not differ significantly
from each other. To analytically study the significance of the
difference between the scores of the two approaches, we use a
dependent t-test for paired samples because the evaluated and
explained predictions are obtained from the data of similar
patients. This test confirms the visual intuition - in none of
the 5 questions, the difference between DT and RF scores
turns out to be significant (the p-value is greater than 0.05).

We also analyze the comments provided by the partic-
ipants during the survey. Typical comments are related to
the unclarity of SHAP-value-based grouping of the features’
importance. Here are some examples of such comments:

e [t is not very clear why deviations that are not specific
are noted in the explanation of low risk, and not, on the
contrary, normal indicators that reduce this risk are high-
lighted

e [t’s not entirely clear why albumin is placed in the first
place and LDL in the third

Indeed, SHAP values are particularly useful for taking a
look into the logic of certain decisions in the model. However,
it is not guaranteed that the model itself learned all the pecu-
liarities of the diagnosis correctly, which sometimes results
in not very sensible priorities for the highlighted features.

In addition to SHAP-related feedback, several practition-
ers also commented on the lack of certain clinical features
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they considered important for diagnosis. However, these sug-
gestions varied considerably between individuals, with no
consistent pattern in the requested features. This observation
supports the idea that the feature set we constructed-with
input from a dedicated team of medical practitioners and
supported by automatic selection techniques-likely covers
the general diagnostic needs, though specific clinical scenar-
ios may require more tailored or extensive information.

By this moment, we have enough information to answer
the RQI (Does the transparency of a model increase the
acceptability of the model to medical professionals?). First,
in Section 4.2 we show that even though some borders used
to explain DT predictions make sense from a medical knowl-
edge point of view, in many cases such borders are not very
clear. Second, as mentioned above, there is no statistically
significant difference in any studied property of medical
experts’ perception of the explanation obtained from DT and
RF. Finally, given the aforementioned lack of sensibility of
some feature borders used for DT prediction explanation,
we may expect some relevant comments about this from the
experts who participated in the study. However, this is not
the case; no one asks any questions about why the explana-
tion includes the reference to “greater than” or “less than”
this particular value. The possible explanation for this lack
of interest in these sometimes arguable borders yielded by
the DT decision path is that the experts do not pay specific
attention to what borders are highlighted in the explanation.
Instead, they seem to analyze just the names of the features
referred to in the explanation text and what group (increasing
or decreasing NASH risk) they belong to. Thus the answer
to RQ 1 is No.

We may also answer RQ2 (Does the explanation of the Al
model’s prediction increase the acceptability of the model to
medical professionals?) using the results of the user study.
Recall that we do not explicitly ask participants about their
perception of the model prediction without explanation, as
far as we assume that the blind belief in the model in the
medical domain tasks is unacceptable [45]. Furthermore,
posing questions that inherently require a demonstration of
the explanation behind a prediction might compromise the
quality of responses to inquiries about the explained predic-
tions, which are essential for our study.

To study the general increase in usability of the models’
predictions with an explanation, we analyze the answers to
the questions about the explained predictions in Table 4.

We apply a one-sample t-test to all scores collected about
DT and RF-explained predictions in isolation and jointly.
The idea of this test is to compare the distribution of the
scores collected in terms of a user study with the mean of the
unknown population. The null hypothesis is that the mean
of the collected scores and observations is equal to the given
population mean. We perform a comparison to the following
means: 2 (“Somewhat disagree”), 3 (“Neither agree nor dis-

Table 4 Analysis of the different properties of explained predictions
perception obtained from DT and RF separately and jointly. p; refers
to the p-value calculated with a one-sample t-test with the population
mean i. “*” sign indicates that the null hypothesis of equality between
the population mean and the mean of the analyzed distribution for the
population mean i is accepted.

Expl. perception p —valy p —valz p —valy
DTedicalsense 0.003 0.168* 0.343*
RF,nedicalsense 0.0008 0.459%* 0.015
DT+RF,edicaisense 4.73e-06 0.119* 0.013
DT st 0.002 0.177* 0.177*
0.0005 0.336* 0.027
DT+RF,ryse 1.63e-06 0.095* 0.008
DTeasy 0.0006 0.032 1.0*
RFeasy 0.0004 0.075* 0.453*
DT+RFeqsy 5.29¢-07 0.005 0.539*
DTyerifycorrectness 0.003 0.213* 0.213*
RFyerifycorrectness 0.001 0.612* 0.008
DT+RFyeri fycorrectness 5.89¢-06 0.2* 0.004
DT eatuse 0.001 0.111%* 0.269*
RFeqtuse 0.009 0.596%* 0.068*
DT+RF,eqtuse 3.36e-05 0.175% 0.029

agree”), and 4 (“Somewhat agree”). We mark cases where
the null hypothesis is accepted with “*” which means that
the mean of the distribution is equal to the particular value.

In all the cases of the first column (p — valy) the null
hypothesis that the mean of the distribution equals 2 is
rejected. For the second and third columns, the null hypoth-
esis is accepted either for mean value 3 or 4 (or both), which
has the general interpretation that none of the models received
bad marks (in the rank below 3) about any explanation per-
ception property. Looking at the data in more detail, we can
see that in most cases, the mean of the experts’ scores is 3
(“Neither agree nor disagree”). However, for the readiness to
use the explained predictions in real practice, the null hypoth-
esis was accepted for both population means 3 and 4. The
only property for which the null hypothesis was accepted for
the mean value 4 is the easiness of perception.

In general, these significant results indicate that the expert
markings are, in most cases, “Neither agree nor disagree.”
Therefore, we cannot conclude that the medical practitioners
in this case express a significant, general, and consistent pref-
erence for the explanations of the prediction models. Still,
we may see that none of the explanations obtained "Strongly
disagree" or "Somewhat disagree" scores. So the obtained
results are promising, but they do not allow us to conclu-
sively answer RQ?2 positively, and further evidence needs to
be gathered in this regard.

One possible approach to getting a more precise answer
about the real usability of the explained prediction could be
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running a study where one group of medical professionals
scores unexplained predictions and answers some questions
specific to this type of prediction, and another group answers
the questions only about explained predictions. However, it
is clear that for such a study, a larger number of participants
will be needed to get significant results.

5 Discussion

In this section, we discuss several insights collected from our
study.

5.1 Experts had their own views of important
features, different from models.

In the era of rapid development of Al, even the conserva-
tive medical field is turning towards modern technologies;
more and more medical data is collected specifically for ML
model training. However, we may hardly assume that every
possible peculiarity of the phenomena to which a particular
dataset is dedicated may be visited with the cases included
in such datasets. This makes cross-disciplinary collaboration
between Al and medical specialists crucial to developing a
model that could at least theoretically be useful in real prac-
tice. This is especially important in terms of selecting the
features for training the model.

Our variable selection process included several iterations.
We started with the feature set proposed in [11]. In this work,
the authors pre-selected the initial set of variables manually.
Then they relied on a recursive feature elimination algo-
rithm to select variables that maximized the metrics of the
trained models. However, after several attempts to show the
explained predictions based on these features to an initially
small group of experts, we had to significantly modify the
list of features: almost all preliminary interviewed experts
highlighted the lack of Cholesterol and waist circumference,
whereas the importance of those features could hardly be
learned from pure data. Refer to Table 2 where it is shown that
the distributions of HDL cholesterol and waist circumference
of NASH and non-NASH patients do not have a significant
difference, and moreover, the waist circumference data is
not available in more than half of the cases from the selected
cohort.

5.2 Explanations of DT are rated no better than
explanations of the better-performing
non-transparent model, so use the latter.

Our study directly explores the commonly cited trade-off
between model transparency and predictive performance [64,
66]. Transparent models like Decision Trees are inherently
easier to interpret and offer detailed, rule-based like expla-
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nations. However, this interpretability often comes at the
cost of reduced accuracy, as confirmed in our experiments,
where Decision Trees consistently underperformed com-
pared to more complex, non-transparent models like Random
Forests. In theory, this loss in performance might be justified
if transparency meaningfully improves practitioner trust or
understanding. However, our user study revealed that clini-
cians did not express a clear preference for explanations from
the transparent model, nor did they appear to engage with its
specific decision thresholds. This suggests that, in practice,
the gain in interpretability did not translate into added value
for end users. While methods like constraint-regularized
DTs [67] could enhance the clarity of explanations, they still
assume that users actively engage with such structure-which
was not observed in our study. As a result, in this setting,
prioritizing performance through more accurate models like
Random Forests appears to be the more effective choice.

5.3 Explainability may not be enough if the model’s
performance is far from perfect

Overall, even though the idea of the usability of the expla-
nation seems intuitive, it is necessary to remember that the
explanation depends on the model. In the case of our work, it
seems that the models trained on the data were far from ideal.
This can be seen from the metrics in Table 3. Even the best-
performing non-transparent models failed to overcome the
0.7 thresholds in most of the metrics, which certainly leaves
much room for improvement. This problem is most probably
caused by the small amount of cases available to us. Thus,
the explanation techniques applied to both DT and RF may
allow us to understand the model’s logic, but this logic may
not always be right.

However, even with the aforementioned limitations, we
can see that the participants in the user study gave mostly
positive feedback. Still, we believe that if more data of similar
quality is available, the results of the experts’ feedback can
become significantly better.

6 Limitations and Future Work

Our study has several limitations that open up directions for
future research. First, the dataset used for model training was
derived from the NIDDK repository and filtered using strict
inclusion and exclusion criteria. While this ensures internal
consistency and clinical focus, it limits the generalizability of
the model to broader patient populations, particularly those
with comorbidities or atypical profiles. Future studies could
address this by evaluating the proposed approach on more
heterogeneous cohorts or across multiple datasets, including
multi-center or commercial data such as OPTUM.
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Second, the overall size of the dataset is relatively small,
which may constrain the model’s ability to capture com-
plex patterns and increases the risk of overfitting. Although
this was partially mitigated through data augmentation and
stratified cross-validation, access to larger and more diverse
datasets would enable more robust training and validation.

Third, our user study involved 11 medical practitioners,
which is in line with similar studies but still limited in
scale. Participation was voluntary and unpaid, and while we
applied quality control measures, we cannot fully rule out
variability in attention or engagement. Expanding the user
study to include more participants and a broader range of
clinical backgrounds-potentially through multi-institutional
collaborations-would strengthen the findings and allow for
deeper subgroup analyses.

Fourth, while we incorporated SHAP for generating expla-
nations due to its stability and compatibility with structured
data, other XAl techniques-such as counterfactuals, con-
trastive explanations, or domain-specific visualizations-may
offer complementary insights. Future work should investi-
gate how these methods compare in terms of clinician trust
and usability.

Finally, future studies could explore the use of more com-
plex models, including deep neural networks, TabNet, or
TabTransformer, to examine whether performance gains jus-
tify the reduced transparency. However, incorporating such
models into clinician-centered evaluation would require re-
running human studies with new explanation formats, which
presents significant logistical challenges.

7 Conclusion

In this work, we train several machine learning models pre-
dicting non-alcoholic steatohepatitis (NASH) on the features
manually selected to be maximally relevant to the ones used
in the real practice of NASH diagnostics. We propose several
explanation techniques for transparent and non-transparent
models and show that for the task of non-invasive NASH
diagnosis, transparent models are less useful because they
have worse metrics than non-transparent models, and their
transparency does not significantly improve the perceived
quality and trustworthiness of the obtained explanations. We
also show that overall, the explanation of the models’ predic-
tions slightly increases their usability for real practitioners.
Finally, we open-source the trained models and code for
explanation generation to make it easily re-usable for the
research community. Given the general approach to struc-
tured clinical data, our methodology could be adapted to other
diagnostic tasks where model explainability is essential for
building clinician trust and supporting decision-making.

Appendix A Inclusion and exclusion criteria

Table 5 Inclusion and exclusion criteria were applied in our study. Seq.
Indicates the serial number corresponding to the sequence of applying
the particular criterion.

Seq. Skipped patients Criterion
385 Patient is over 18 y.o.
142 At least one histology

review is available

3 54 Any alcohol use disorder

4 3 Hepatocellular carcinoma

5 3 Hepatitis B

6 0 Hepatitis C

7 5 Autoimmune hepatitis

8 0 Autoimmune cholestatic
liver disorder

9 0 Wilson’s disease

10 0 Alpha-1 antitrypsin
deficiency

11 82 Iron overload

12 1 Dysbetalipoproteinemia

13 9 Stapling or banding of the
stomach

14 6 Jejunoileal bypass

15 0 Biliopancreatic diversion

16 1 Total parenteral nutrition

17 0 Short bowel syndrome

18 0 Has the patient ever
received a liver transplant

19 0 Hemophilia

20 159 Any corticosteroids taken (6
month before study or
during the study)

21 5 Amiodarone

22 1 Methotrexate

23 3 Tamoxifen

24 0 Valproate sodium
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Appendix B Informed consent Appendix C Explanation interfaces

Informed consent
Before you start participating in this study, it is important to familiarize yourself
with the general information about it.

The survey will consist of an introduction to the predictions of artificial
intelligence models about non-alcoholic steatohepatitis (NASH) for different
patients, accompanied by an explanation. The participant should carefully read
the explanation and then answer a few questions. The duration of this survey is
approximately 10-15 minutes, participation in it is voluntary, so it can be
interrupted or left at any time without any restrictions.

For questions related to the protection or confidentiality of your personal data,
you can contact the Data Protection Department of the University of Santiago

de Compostela (e-mail: dpd@usc.es ).

To continue, accept the conditions listed below.

By agreeing to participate in this study,

You confirm that you are over 18 years old
You confirm that you have read and understood the previous information

You know that your participation is voluntary and anonymous

You understand that you can withdraw from the study at any time without
having to explain the reasons for your refusal and without any
consequences for you

You agree to participate in the above research
You agree that the information collected during this research may be
shared with the guarantee of its anonymity to other teams through joint

research networks or repositories for non-commercial research purposes

(@) Agree
(O Disagree

Fig. 7 Informed consent demonstrated to the participants before the
start of the survey.
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Fig.8 Non-transparent model
explanation example.

Information about the patient

Parameter Value Normal range
HbA1c 6.90% Below 5.7%
For men 14 to 20 U/L, for
Aspartate aminotransferase (AST) 21.0 UL women 10 to 36 U/L
Alanine aminotransferase (ALT) 27.0 UL 4 to 36 U/L
Total protein 7.7 gldL 6.0 to 8.3 g/dL
AST/ALT 0.78 0.8-1.0
Triglycerides 146.87mg/dL Below 150 mg/dL

Total cholesterol

200.33 mg/dL

125 - 200 mg/dL

For men 40 mg/dL and above,

HDL cholesterol 27.25 mg/dL for women 50 mg/dL and above
LDL cholesterol 92.25 mg/dL Below 100 mg/dL
Platelet count 389000.0 cells/pL 150,000 to 450,000 cells/pL
Albumin 5.0 g/dL 3.4t05.4 g/dL
BMI 34.43 kg/m2 18.5 - 25 kg/m2
For men below 94 cm, for
Waist circumference 103.0 cm women below 80 cm
Hypertension found
Age 39
Gender male
Alcohol abuse not found

Bariatric surgery or other types of
surgery on the stomach, intestines
(bypass surgery), biliopancreatic
diversion

not performed

Chronic HBV/HCV infection

not found

Hemochromatosis

not found

Taking corticosteroids, amiodarone,
methotrexate, tamoxifen, valproate

not performed

Hepatocellular carcinoma not found
AlH, PBC, PSC, Wilson-Konovalov
disease, A1AT deficiency,
dysbetalipoproteinemia not found
Liver transplantation not performed
Short bowel syndrome not found

Parenteral nutrition

not performed

0.1 0.2 0.3 0.4 0.5

0.6 0.7 0.8

Albumin
Aspartate aminotransferase
LDL cholesterol

Total protein

(92.25)

ast/alt (0.778)
HbAlc (6.1)
Platelet count (389,000)
Total cholesterol (200.334)
Alanine aminotransferase (27)
HDL cholesterol (27.25)
Triglycerides (146.874)
bmi (32.471)
Waist circumference (103)
Hypertension (1)

01 02 03 04 05 06 07 08
Model output value

/ Explained model prediction \

The model predicts a HIGH RISK of NASH with a probability of 84% because
(from most to least important features)

- ast/alt =0.78 (0.02 below norm)
- HbAlc = 6.10% (0.4% above norm)
- Total cholesterol = 200.33 mg/dL (0.33 mg/dL above norm)

However, the following factors decrease the risk of NASH

\ - Aspartate aminotransferase = 21.00 U/L (1.0 U/L above norm) /
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Fig.9 The example of a
Decision Tree prediction
demonstration interface without
explanation (shown to the user,
study participants before the
explained prediction is shown).

Information about the patient

Parameter Value Normal range
HbA1c 6.90% Below 5.7%
For men 14 to 20 U/L, for
Aspartate aminotransferase (AST) 21.0 U/L women 10 to 36 U/L
Alanine aminotransferase (ALT) 27.0 U/L 4 to 36 U/L
Total protein 7.7 g/dL 6.0 to 8.3 g/dL
AST/ALT 0.78 0.8-1.0
Triglycerides 146.87mg/dL Below 150 mg/dL

Total cholesterol

200.33 mg/dL

125 - 200 mg/dL

For men 40 mg/dL and above,

HDL cholesterol 27.25 mg/dL for women 50 mg/dL and above
LDL cholesterol 92.25 mg/dL Below 100 mg/dL
Platelet count 389000.0 cells/uL 150,000 to 450,000 cells/uL
Albumin 5.0 g/dL 3.4t05.4 g/dL
BMI 34.43 kg/m2 18.5 - 25 kg/m2
For men below 94 cm, for
Waist circumference 103.0 cm women below 80 cm
Hypertension found
Age 39
Gender male
Alcohol abuse not found

Bariatric surgery or other types of
surgery on the stomach, intestines
(bypass surgery), biliopancreatic
diversion

not performed

Chronic HBV/HCV infection

not found

Hemochromatosis

not found

Taking corticosteroids, amiodarone,
methotrexate, tamoxifen, valproate

not performed

Hepatocellular carcinoma not found
AlH, PBC, PSC, Wilson-Konovalov
disease, A1AT deficiency,
dysbetalipoproteinemia not found
Liver transplantation not performed
Short bowel syndrome not found

Parenteral nutrition

not performed

|

Explained model prediction

The model predicts a HIGH RISK of NASH with a probability of 100%

Appendix D Questions interface examples
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Information about your experience

Please answer a few questions about your medical experience. This will help
us in further analysis of the survey results.

Your medical specialty
Active medical experience, years

How often do you work with patients diagnosed with NASH?

@) Never
O Rarely
O Sometimes
QO often
QO Very often

Please indicate the diagnostic methods you usually use for NASH

Fig. 10 The interface of the primary questions asked to participants.

Please provide your diagnosis for this patient

o NASH
O Non NASH

QO Impossible to understand: Use this option if the information is insufficient or
unclear, making it impossible to make a diagnosis.

QO Other: Select this option if your diagnosis does not fit into the above
categories or if you have additional comments or considerations to provide.

Please share your thoughts on the explanation's quality and clarity.

Neither

Strongly ~ Somewhat agree nor Somewhat  Strongly

disagree disagree disagree agree agree
Explanation makes
sense from the
medical knowledge O & o O &
point of view
Explanation
increases the
trustworthiness of O @] @] O O
the model's
prediction
Explanation is easy
to understand O & & o o
Explanation helps
me assess whether
the prediction is © o o © o
correct

I would consider this

explanation when e} o) o) e} o)

making decisions

about real patient

Please share any other thoughts and suggestions on the explained predictions
demonstrated above. How do you believe the explanation algorithm can be
improved?

Fig.11 The example of an interface of the questions about the explained
predictions.

Appendix E Best-performing models hyper-
parameters

Table 6 shows the data pre-processing and model-specific
hyperparameters that resulted in the best performance of the
corresponding model.

Data pre-processing

Recall the meaning of the engaged pre-processing steps

e Missing drop. Whether the features with too many (more
than 50%) missing values were dropped.

e Aug Whether the augmentation was applied to the data.

e KNN Whether the KNN-imputation was used to impute
the missing values.

See Section 3.3 for the details of the pre-preprocessing.

Model-specific hyperparameters.

We used sklearn > for the training of most of the models
(RF, NB, SVM, KNN, DT, LR, MLP). For LR and NB the
default sklearn parameters were used. For other models, the
precise hyperparameters are specified.

We used xgboost 4 for XGB, catboost > for CatBoost,
pgmpy [68] for BN training.

3 https://github.com/scikit-learn/scikit-learn, retrieved on February
13th, 2024

4 https://github.com/dmlc/xgboost, retrieved on February 13th, 2024
5 https://catboost.ai/docs/en/, retrieved on April 1st, 2025
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Table 6 Hyperparameters corresponding to the best-performing setup of the trained models.

Model Missing drop Aug KNN Model-specific parameters

RF - + + depth=10,estimators=40,max features=10, criterion=log-loss

XGB - + estimators=150,dept=8,1r=0.2

NB + + - default

SVM - - + c=2 kernel=poly,gamma=auto

KNN - - + neighbours=35,algorithm=auto

BN + + - Struct.Learn.:Hill-Climbing,score=aicscore; Parameters: Max.Likelihood
DT - + + depth=10

LR - - + default

CatBoost - + iterations=500, 1r=0.05, depth=06, 12_leaf reg=3

MLP - + + hidden layer = (64,32), activation = relu, Ir=adaptive, solver=adam
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