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Abstract—

Multispectral images frequently suffer from limited
labeled data, which constrains the accuracy of clas-
sification. The objective of data augmentation is to
improve the performance of machine learning mod-
els by artificially increasing the size of the training
dataset. This paper introduces mDAGAN, a data
augmentation method for the classification of high res-
olution multispectral remote sensing images. It is an
adaptation of DAGAN (Data Augmentation GAN) to
multispectral images, a generative adversarial network
that consists of a generator and a discriminator. The
augmentation capacity of mDAGAN for three different
classical supervised classification algorithms has been
evaluated over three high resolution multispectral im-
ages of vegetation, providing increased classification
accuracies.
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I. Introduction

In the context of machine learning applied to re-
mote sensing multispectral imaging, some challenges
arise based on the scarcity of labeled data available in
the images. This condition limits the learning capa-
bilities of the machine learning algorithms, in general,
and the deep learning ones, in particular. Data aug-
mentation strategies that synthetically generate new
training data based on the existing data have been
designed to deal with this problem [1], [2], [3], [4]. A
notable division exists between classical and machine
learning approaches for data augmentation [5]. The
classical approach encompasses methods such as ho-
mographies, crops, rotations, flips, and noise addition
[6]. In contrast, machine learning data augmentation
techniques involve constructing a machine learning
model to generate synthetic samples. In the case of
remote sensing classification problems, the augmenta-
tion data techniques need to adequately exploit both
the spatial and the spectral information available in
the image.

Among the deep learning data augmentation tech-
niques, various types can be identified, mainly, Au-
toencoders (AE, in special way Variational Autoen-
coders VAE), and generative adversarial networks
(GANs) [5]. Recently, the augmentation techniques
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that have gained more popularity are those based on
GAN models [7], [8], [9].

A GAN model consists basically of two separate
networks. First, a generator for building synthetic
data. A second network called discriminator distin-
guishes between real and synthetic samples to teach
the generator to produce better real samples. The
training process works as a competition of the two
networks.

In this work, a GAN-based data augmentation
technique for the classification of very high-resolution
multispectral images of vegetation, mDAGAN, is pro-
posed. It is based on DAGAN (Data Augmenta-
tion GAN) [10]. As DAGAN is designed to operate
with RGB images, the most relevant modification
proposed in this paper is to adapt the network to
operate over multispectral images exploiting all the
spectral information. To reduce the computational
cost and incorporate more relevant information to
the network, the dataset is first segmented using a
superpixel algorithm that also analyzes all the spec-
tral bands of the image. A new discriminator is also
proposed, a siamese network [11]. The loss functions
are also redefined to accelerate the convergence. The
resulting modified network features a reduced number
of parameters in the discriminator compared to the
original network which leads to approximately a 50%
reduction in training time.

II. Data augmentation technique
The proposed data augmentation technique is

shown in Figure 1. In order to reduce the execu-
tion time of the experiments, the input image is first
segmented by using the waterpixel segmentation algo-
rithm as described in [7]. The resulting segments are
homogeneous regions whose compacity and average
size have been selected to adapt to the structures
in the image. Each sample is a patch centered in
the central pixel of a segment. In each step, the
inputs are two patches. The input denoted as Gi

corresponds to a synthetic patch generated by the
generator network.

As we can see in Figure 1, the first stage of the gen-
erator is a U-Net encoder as in the original DAGAN
[10], producing features that are concatenated with
a z − noise vector. The obtained feature vector is
processed by the U-Net decoder, obtaining a new gen-
erated patch Gi, the augmented sample of the same
class than the real sample used as input. The genera-
tor of the DAGAN network [10], originally designed
for RGB images, has also been adapted to process
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Fig. 1: Architecture of the mDAGAN data augmentation technique.

all the spectral bands available in the multispectral
images.

The design of the discriminator in a GAN is very
relevant to avoid the so-called mode collapse during
training, i.e., the loss of discrimination capability of
the network. In this case, the discriminator network,
also shown in Figure 1, presents with respect to the
DAGAN network the substantial modification of in-
cluding two siamese subnetworks that share the same
architecture. It receives two patches of the image
as inputs, and each one is processed by one of the
siamese networks (RES ENC in figure 1). Figure 2
shows the architecture of the RES ENC module. RES
ENC is a residual network with three concatenated
blocks of convolutional layers and a dense layer. Each
convolutional block has a residual connection with
the dense layer. The last layer in each block applies a
stride of 2. The difference between the feature vectors
produced by the siamese networks is introduced in
the dense layer producing a similarity measure repre-
sented by a scalar value as output. The discriminator
operates in two stages: in the first stage, it receives
a pair of real patches from the same class, and in the
second stage, the inputs are a pair of patches from
the same class, one real and one generated.

The training process of mDAGAN is divided in two
stages. During the first stage, critic iterations are
performed: the generator network weights are fixed,
and the discriminator network weights are trained
based on the loss function Lossdisc shown in equation
1. During the second stage, the discriminator network
weights are fixed and the generator network weights
are trained based on its loss function, Lossgen shown
in equation 2.

The following loss functions for the discriminator
Loossdic and the generator Loossgen are proposed:

Lossdisc :=
√
|disc(Ii, Gi)− disc(Ii, Ij) + gp|. (1)

Lossgen :=
√
|disc(Ii, Ij)− disc(Ii, Gi)|. (2)

Fig. 2: Residual Encoder (RES ENC in Figure 1).

The higher the disc value for a real and a generated
image, disc(Ii, Gi), the higher the value of Lossdisc.
Lossgen has the opposite behaviour. These loss func-
tions avoid possible unbalances between the genera-
tion and the discriminator that would cause a mode
collapse in the network, and consequently would make
it impossible to train the augmentation model.

III. Experimental results

The dataset used for the experiments consists of
very high-resolution (10 cm/pixel) multiespectral im-
ages of vegetation captured by a MicaSense RedEdge-
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MX sensor that features five spectral bands [12]. The
distribution of samples in the ten available classes
is as indicated in Table I. These classes range from
native vegetation to human-made structures such as
roads or buildings. It is important to highlight the
strong imbalance in number of samples among classes
in all datasets. This imbalance introduces a bias in
the classification towards majority classes, potentially
causing also imbalance in the classification accuracy
across the different classes.

Class
Das Mestas Eiras Ermidas

River Dam Creek

Water 0 3557 890
Bare soil 7076 867 874
Rocks 0 2923 1846
Asphalt 0 340 3597
Concrete 0 182 126
Tiles 0 47 608
Meadows 23 417 5722 13 052
Native trees 2973 13 466 4559
Pines 0 687 1527
Eucalyptus 23 592 74 8984
Total samples: 57 058 27 865 36 063

Table I: Dataset description. The number of samples is the
number of labelled samples available. It is reported in number
of superpixels after applying segmentation by the waterpixel
algorithm.

The experiments were executed in a server using 8
Intel E5-2623 v4 cores, 64 GB of RAM memory, and
a Nvidia P40 GPU with 24 GB of memory.

Concerning the configuration of the algorithms for
the experiments, the input patches are of 32x32 pixels.
All the datasets were segmented using the Waterpixel
algorithm [13] by choosing an average size of 400
px/superpixel, allowing a minimum size of 100 px/-
superpixel, and employing a compactness factor of
0.5 points. The GAN model is trained during 500
epochs with a batch size of 32. One epoch of training
is performed for the generator for each training epoch
of the discriminator. The chosen optimizer was the
PyTorch implementation of Adam [14]. The learning
rate is 0.00001. The β1 value is 0.1 for the discrimi-
nator and 0 for the generator. In the case of β2 the
value is 0.9 for both networks.

Four supervised classification techniques have been
selected to test the effectiveness of mDAGAN. These
are a linear Support Vector Machine (SVM), a Multi-
layer Perceptron (MLP), and a Random Forest clas-
sifier (RF). The Scikit-Learn [15] implementations of
SVM, MLP and RF were used. The MLP was config-
ured as two fully connected layers with 128 and 32
neurons, respectively, and the number of estimators
for RF has been set to 1000. For all the experiments,
the same 25 samples per class randomly selected used
for training the mDAGAN are used for training the
classifier.

Table II shows the results offered by the different
classification techniques when mDAGAN data aug-
mentation is applied for the high resolution multispec-
tral images considered. The percentage of samples

used for training and validation over the total size
of each image are indicated below each image name
in the first column. For obtaining the classification
results, first the mDAGAN is trained, and then it is
used for generation of the samples during the training
stage of the classification technique. The classification
results are expressed in terms of Average Accuracy
(AA) and Overall Accuracy (OA) that are in %. Av-
erage Accuracy takes into account the imbalance in
the number of samples across different classes. Over-
all accuracy is the proportion of correctly classified
samples out of the total samples in the image.

As shown in Table II, two different percentages of
synthetic samples were added to the training process
for each image (10% and 20%). The results show
similarity between the two configurations, suggesting
that even a small percentage of augmented samples
enhances the accuracy compared to no augmentation
(denoted as ”None” in the table). The performance of
mDAGAN is compared against generating the same
percentages of synthetic samples using a simple but
standard technique involving randomly selected rota-
tions in multiples of 90 degrees and horizontal flips
applied to the samples.

The comparison summary, represented by the aver-
age values across all datasets (column ”Average” in
the table), indicates that the proposed deep learning-
based data augmentation yields the best results
among the three classification techniques analyzed.
While the improvements are modest, the increase in
average accuracy (AA) demonstrates that the effect
is consistent across different classes of datasets, even
when dealing with unbalanced classes.

IV. CONCLUSIONS

In this paper, a data augmentation technique for
the classification of remote sensing multispectral im-
ages called mDAGAN is proposed. mDAGAN is
based on a GAN networks and leverages all the mul-
tispectral and spatial information available in the
image, accelerating the convergence of the model and
reducing its computational cost. The results with
three different supervised classification techniques
(SVM, RF, and MLP) show a moderate increase of
around 1% in classification accuracy for all the high-
spatial resolution multispectral images considered
regardless of the classification technique applied.

Although these results are promising, further re-
search is required. Firstly, it is necessary to explore
more configurations of the GAN network and other
parameters involved in the technique, including dif-
ferent sizes of the initial segmentation process. Since
the images used in this work are of vegetation, it
would also be beneficial to conduct experiments with
images from different remote sensing domains and
varying spatial and spectral resolutions. Addition-
ally, analyzing the results obtained for deep learning
classifiers would be necessary to generalize the find-
ings. Finally, as the network is already optimized
to reduce computational costs, the next step would
be to investigate the possibility of applying parallel
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Image
DA

technique
SVM RF MLP

AA OA AA OA AA OA

Das Mestas River
0.4 %

None 71.92 74.25 71.77 72.34 68.91 73.76
mDAGAN-10 % 71.39 73.01 72.18 72.06 69.48 72.66
mDAGAN-20 % 71.25 72.54 72.21 72.06 69.22 73.34

Rotate+Flip 10 % 71.46 74.43 71.72 72.05 68.44 73.36
Rotate+Flip 20 % 70.97 73.67 71.05 71.86 68.52 72.82

Eiras Dam
1.8 %

None 66.21 64.53 72.34 67.70 64.01 59.26
mDAGAN-10 % 69.15 64.93 73.62 68.56 65.47 64.05
mDAGAN-20 % 67.77 64.51 73.42 69.17 65.34 60.79

Rotate+Flip 10 % 67.49 64.81 73.17 68.09 65.70 61.67
Rotate+Flip 20 % 66.22 64.57 73.16 67.92 65.72 59.43

Ermidas Creek
1.4 %

None 68.03 58.28 68.34 64.60 65.72 67.77
mDAGAN-10 % 68.75 59.81 69.81 65.71 66.40 69.89
mDAGAN-20 % 68.87 66.37 68.61 66.98 66.78 70.73

Rotate+Flip 10 % 67.96 58.20 68.77 63.73 66.37 68.71
Rotate+Flip 20 % 68.61 58.90 69.23 65.37 66.20 68.70

Average
mDAGAN 69.53 66.86 71.64 69.09 67.11 68.58

Rotate+Flip 68.78 65.76 71.18 68.17 66.82 67.45

Table II: Comparative results for different classification techniques. The best results for each technique are in bold. AA and OA
in %.

Fig. 3: Example of real and snynthetic samples obtained by mDAGAN for six different classes.

computation to further reduce these costs.
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new multispectral data augmentation technique based on
data imputation,” Remote Sensing 2021, Vol. 13, Page
4875, vol. 13, pp. 4875, 11 2021.

[5] Connor Shorten and Taghi M. Khoshgoftaar, “A survey
on image data augmentation for deep learning,” Journal
of Big Data, vol. 6, pp. 1–48, 12 2019.
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