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health records provide rich, heterogeneous data about the evolution of the patients’ health status. Howe
e processed carefully, with the aim of extracting meaningful information for clinical decision support. In th
terpretable (deep) learning and signal processing tools to deal with multivariate time-series data collected
Unit (ICU) of the University Hospital of Fuenlabrada (Madrid, Spain). The presence of antimicrobial m

R) bacteria is one of the greatest threats to the health system in general and to the ICUs in particular d
status of the patients therein. Thus, early identification of bacteria at the ICU and early prediction of their
key for the patients’ prognosis. While intelligent data-based processing and learning schemes can contribu
n, their acceptance and deployment in the ICUs require the automatic schemes to be not only accurate

e by clinicians. Accordingly, we have designed trustworthy intelligent models for the early prediction of AM
ation of meaningful feature selection with interpretable recurrent neural networks. These models were crea
pled clinical measurements, both considering the health status of the patient and the global ICU environm

al strategies to cope with strongly imbalance data, since only a few ICU patients are infected by AMR ba
g that our approach exhibits a good balance between performance and interpretability, especially when co
f the classification task at hand. A multitude of factors are involved in the emergence of AMR (several of

od), and the records only contain a subset of them. In addition, the limited number of patients, the imbalance
e irregularity of the data render the problem harder to solve. Our models are also enriched with SHAP
and validated by clinicians who considered model understandability and trustworthiness of paramount co

poses. Moreover, we use linguistic fuzzy systems to provide clinicians with explanations in natural langua
re automatically generated from a pool of interpretable rules that describe the interaction among the mos
fied by SHAP. Notice that clinicians were especially satisfied with new insights provided by our models. Suc

trust the automatic schemes and use them to make (better) decisions to mitigate AMR spreading in the IC
aves the way towards more comprehensible time-series analysis in the context of early AMR prediction in
e of detection of infectious diseases, opening the door to better hospital care.

plainable Artificial Intelligence, Multivariate Time Series, Recurrent Neural Network, Linguistic Fuzzy Mo
Multidrug Resistance, Intensive Care Unit
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decade, there has been a growing interest in an-
l data as time-series sequences, allowing clinical
ss better the patient’s health evolution [1, 2, 3].
ime Series (MTS) have a strong presence beyond
ations, with relevant examples including finance,
or video processing, to name a few [4]. Focus-
are applications, different data-driven approaches
have been developed [5, 6].

Given the complexity and irregular patterns presen
ical datasets, deep neural networks (NNs) have eme
suitable alternative to model and handle MTS [7].
al. pioneered the application of deep learning tools t
care, demonstrating the capacity of deep learning to
ize patterns from serum uric acid measurements [8
of the most widely-used deep learning approaches
ing with time-series sequences are the Gated Recur
(GRU) [9], the Long Short-Term Memory (LSTM) [10

d to Elsevier Ma
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ely used for prediction using MTS due to their
with time-varying observations and capture long-
dependencies [10]. For example, Lipton et al.

TM network to classify diagnoses based on the
recorded in the Electronic Health Record (EHR)
Intensive Care Unit (ICU) [12]; Pham et al. used
odel the interaction between diagnosis and med-

nd Nguyen et al. developed a Bi-LSTM model to
ortality outcomes [14].
er, we describe how different RNNs can predict
multidrug resistance (AMR) in the ICU. AMR
as the bacteria’s ability to withstand the effects

f harmful chemical agents designed to damage
e adaptation of the bacteria to different antimi-

hich they were previously susceptible) is a seri-
due to the reduction of appropriate treatments and

secondary antimicrobials [15, 16]. As a result,
h as cuts, care of premature babies, chemother-
ncer, or infections can cause debilitating or even
cs in the absence of effective treatments [15, 17].
ding AMR factors (e.g., epidemiology, emergence,
burden of infectious diseases) is crucial for early
on. It is also likely to improve decision-making
CU management, e.g. by allowing early patient
therefore reducing AMR rates. Even if RNNs
chieve high performance, they behave in prac-
oxes, hindering their interpretation by humans.

terpretability is even more severe for MTS-based
Us and LSTMs due to their fairly opaque hidden
particular, because the information stored in the

s a mixture of all the MTS, it is impossible to dis-
idual contribution of each time series. This lack
lity is one of the main reasons why data-driven
ing (ML) models in general, and RNNs in partic-
tensively used in healthcare applications yet [19].
retability is of paramount importance to make in-

s ready to assist clinicians in high-risk decision-
ses [20]. Accordingly, intelligent clinical models
owed with interpretability as a requirement to be-
ble, trustworthy, and used worldwide [21].
led Responsible and Trustworthy Artificial Intel-
ays attention to fairness, accountability, respon-
rivacy, in scenarios where Explainable AI (XAI
a key role [22]. XAI is an endeavor to develop
AI sensitive not only to technical but also le-
issues. XAI is rooted in knowledge engineering,

ms raw data into meaningful knowledge (through
, data pre-processing, feature engineering, inter-
ling, validation, etc.) ready to be understood by
respecting the “chain of trust” [23]. All in all, the
twofold [24]: i) building “white-box” AI mod-

sion trees, rule-based systems, expert systems,
interpretable by design [25]; and ii) developing
es to endow opaque data-driven AI models (e.g.,

nterpretability [26]. More precisely, approaches

explanations supported by interpretable surrogate mo
and ii.b) extrinsic post-hoc explanations (e.g., SHAP
only pay attention to the model output while disrega
model internal mechanisms.

In this work, we apply XAI for assisting clinicia
discovery and understanding of how AMR develops an
in the ICU. This is the main novelty of this work com
previous studies that have attempted to model ICU inf
as MTS to predict the AMR onset [29, 30]. This pape
the preliminary work published in [30]. Unlike the p
study, we have further expanded the proposed model
ducing different time window lengths, new meaningfu
such as the ICU occupation, the treatment provided in
and the application of XAI for assisting clinicians. O
contributions are as follows:

• Analyzing and modeling MTS related to AM
challenging scenario of an ICU. The dataset
data with the evolution of 3,470 patients. Data h
carefully cleaned and pre-processed before mod

• In the modeling stage, we coped with missing
MTS and class imbalance.

• Regarding XAI, we first studied the effect of Fe
lection (FS), finding out relevant and meaningfu
for clinicians. Then, we built several predictors
RNNs (endowed with post-hoc interpretability)
the temporal relation among the previously sele
tures. Then, we built linguistic (interpretable b
models to better understand the interaction am
most relevant features in the model that exhibite
interpretability-performance trade off.

• Validating with clinicians the interpretability of
els in AMR prediction.

The rest of the paper is organized as follows. Sec. 2
the notation and methods used in this paper. Sec. 3 des
dataset and the related pre-processing tasks. Experim
results are shown in Sec. 4. Finally, the main conclu
associated discussions are drawn in Sec. 5.

2. Methods

The experimental pipeline is sketched in Figure 1
cussed in the following sections. Data pre-processing
duced in Sec. 2.1. Then, Sec. 2.2 describes the MTS c
tion stage. Finally, validation is addressed in Sec. 2.
attention to performance and interpretability.

2.1. Data preparation
We start by introducing the notation adopted throu

remainder of the manuscript. We consider I patients
by i = 1, 2, ..., I. Each patient is modeled as a coll
D time series, all of them with the same length (dur

2
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Voting
scheme

al illustration of the workflow implemented. First, the MTSs
considering different time window lengths (see Sec. 3). An
formed using three FS procedures and a voting strategy (see
, different strategies are applied to handle the imbalance data
sing MTS values. At that point, we create different models
chitectures for MTS (see Sec. 2.2). Afterward, we evaluate
and interpretability using several figures of merit (see Sec. 4).

a associated with the i-th patient can be arranged
i = [x1

i , x
2
i , . . . , x

Ti
i ] ∈RD×Ti . The column vector

e D variables associated with the t-th time slot,
,1), x(t,2)

i , · · · , x(t,D)
i ]⊤. Thus, x(t,d)

i represents the
th feature in the t-th time slot for the i-th patient.
le the value of D is the same across patients, the
be different, since the length of the patient’s ICU

on the condition and evolution of the particular

hat we address is cast as a binary classifier, with
ifying AMR patients. We use yi to represent the
d with the i-th patient, and ŷi to denote the output
dicted) by the ML model at hand.
ith data collected from the EHR is challenging

rvations come from different sources, often have
quire homogenization, especially when working
, 32]. For this reason, a pre-processing stage is re-
antee consistent and reliable results. Towards that
ed a process of normalization, database integra-
leaning, and window modeling. Further details

cessing stage will be given in Sec. 3.

indowing
pointed out, the length of the MTS (i.e., the num-

s of Xi) can change with the index i. Since most
quire inputs to have the same size across samples,
owing technique to render the MTS length homo-
s patients. Windowing requires setting a window
d as W) and then, for every patient i, setting a
tini
i , t

end
i ] with tend

i = tini
i + W − 1. Note that the

nd tend
i depend on the particular patient, since the

onous and our database was collected throughout

wed input data for the i-th patient is given by

X̄i =
[
xtini

i
i , · · · , xtend

i
i

]
∈ RD×W ,

red, has the same size across patients.
nal convenience, we will use x̄t

i ∈ RD with t =
enote the t-th column of X̄i and xd

i ∈ RW with
to denote the d-th row of X̄i. This way, the vector
D values of the features of the i-th patient in the

2.1.2. Mechanisms for FS
FS, oftentimes disregarded as a minor task, is es

data-science pipelines. The elimination of input fea
are extremely noisy or redundant is critical to enha
sification performance, avoid overfitting and boost ge
tion [33, 34]. In addition, and equally important for cl
plications where a substantial amount of information is
(so that the value of D can be very high), FS provid
ciplined data-driven approach to identify the key fea
the task at hand, providing insights on the problem,
ing redundant features and contributing to enhancin
terpretability of models and results. Mathematicall
MTS amounts to designing a set D′ with cardinality
thatD′ ⊆ D = {1, 2, ..,D} and D′ < D. The setD′ con
features to be kept andD\D′ those to be eliminated; h
smaller the value of D′, the more aggressive the selecti
anism is. We note that the value D′ can be set befor
alternatively, generated by the FS algorithm. Suppose
the FS algorithm produces as output the setD′ = {d1, d
where, without loss of generality, we assume that dn

that the elements of D′ are ordered. Leveraging D′, w
the binary selection matrix SD′ ∈ {0, 1}D′×D such that:
ery row, all the entries are zero except for a single on
for the n-th row, the entry whose value is one is that co
ing to the dn-th column. That is, [SD′ ]n,dn = 1 for n = 1
and zero everywhere else. With this notation at hand
patient i, the original MTS input X̄i ∈ RD×W is repla
the reduced-dimensionality input SD′X̄i ∈ RD′×W , w
emphasize that SD′ is the same for all i.

Next, we discuss three sounded and widely-adopte
ods and describe how those methods can deal with M
experiments will implement the three of them, analyz
differences, and comparing their classification perform
but not least, rather than choosing the method with
classification performance, the paper advocates a voti
anism considering the three FS methods to enhance t
fication results.

Confidence intervals with bootstrap
Bootstrap resampling is a non-parametric techniqu

estimate the distribution of a statistic (e.g., the mean v
ing samples from a population without replacement [3
strapping considers that the empirical and actual dis
are not too different, is appropriate when the actual di
is unknown, and does not make any assumption relat
properties of the actual distribution function [36].

In our work, we use bootstrap resampling to ass
value of a particular feature for the AMR population
icantly different from the value of the same feature in
AMR population performing a hypothesis test. More
let SAMR be the set (population) of AMR patients and
the set of non-AMR patients. The intermediate goal is
tify the difference between µAMR (the mean value of
feature in the population SAMR) and µnon−AMR (the me

3
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tients in SAMR and Snon−AMR and comparing the
terministic) number obtained to a pre-specified
implement a more statistically robust resampling
oach. Thus, we resample each of the populations
ining the sets {S(r)

AMR}Rr=1 for AMR patients and
for non-AMR ones. As explained in the exper-
ns, we use R = 3, 000 and set the cardinality of
sets to be the same (balancing the classes) and

of the size of the minority class. Then, the mean
puted across features and resamples, obtaining

re the values {µ(r)
AMR}Rr=1 and {µ(r)

non−AMR}Rr=1. Third,
difference between the statistic in both popula-
resample, generating ∆(r) = µ(r)

AMR − µ(r)
non−AMR

· · ,R. Fourth, we build the histogram of ∆ and
lculate the 95% CI for ∆, denoted as CI∆. We
he null hypothesis H0 (the feature being not rele-
ve) is true if 0 ∈ CI∆. In other words, if there is

significant difference between the mean of the
two considered populations, the feature is not

ontrast, the alternate hypothesis H1 (the feature
) is considered true if 0 < CI∆, indicating that
ifference between the mean of both populations
a result, the feature is added to the setD′.
trapping-based FS process described above as-
features are one-dimensional scalars. However,
vironment, the problem to solve is, given the
atrices {X̄i}Ii=1 and focusing on a particular fea-
-th one), whether to keep or remove the d-th row
trices for all the patients in the dataset. In other
h and every d = 1, ...,D, we need to decide if

ional vectors {xd
i }Ii=1 are selected to be part of the

d to our ML architectures. In this work, we have
= ∥µ(r)

AMR − µ(r)
non−AMR∥ for each of the W entries

d
i , assessing the relevance of each of the W en-
and, then, implementing a majority-rule scheme
feature is selected if more than half of the values
dow were deemed relevant.

utual Information
ormation (MI) is directly related to the well-known
ed Shannon entropy [37]. The Shannon entropy
ndom variable X, which is denoted as H(X), is an
etric related to the probability of occurrence of
[38]. A high value of entropy means that every

the same probability of occurrence, while a low
hat the probability of occurrence of each event
ith X denoting all the values the (discrete) ran-
can take, the entropy of X is defined as H(X) =

g(p(x)), where p(x) is Pr{X = x}. If another
considered, the joint entropy can be computed
−∑x∈X

∑
y∈Y p(x, y)log(p(x, y)), with p(x, y) =

y}. We can define the conditional entropy as

(X|Y) = −
∑

x∈X

∑

y∈Y
p(x, y)log(p(x|y)), (1)

information between both variables, and is expressed

I(X,Y) = H(X) −H(X|Y) = H(Y) −H(Y |X) = I(Y, X

In other words, the MI is the amount of information
able X has about variable Y . Lastly, the conditional
expected value of the MI of two random variables
value of a third [39, 40]. The conditional MI can be d

I(X,Y |Z) = H(X,Z) −H(Y |Z) −H(X,Y,Z) − I(Z
When using MI for FS, the goal is to select the setD′ ⊆
of D′ features that maximizes the MI between the redu
SD′X̄ and the associated label y. Such an optimizatio
hard and, hence, suboptimal schemes must be adop
approach in this paper is to use a greedy-selection sch
chooses the features in D′ one-by-one using an iterat
optimization of the MI metric. From an algorithmic
view, this entails initializing D[0]

sel = ∅ and D[0]
non−sel =

running the following D′ steps, with j denoting the
index and starting with j = 0:

1. Evaluate I
(
y, xd

∣∣∣∣{xd′ }d′∈D[ j]
sel

)
for all d ∈ D[ j]

non−sel

2. Select the feature d[ j]
∗ with the highest MI and u

setsD[ j+1]
sel = D[ j]

sel
⋃{d[ j]

∗ } andD[ j+1]
non−sel = D[ j]

non−s
accordingly.

3. Set j = j + 1. If j = D′, stop and return D′ =
not, go to step 1.

The approach to estimating I
(
y, xd

∣∣∣{xd′ }d′∈D[ j]
sel

)
for

dataset requires simply considering that the output is b
that Y = {0, 1}), that the inputs are W-dimensional ve
that X is the Cartesian product of the value sets for ea
W entries), and that the probabilities need to be estima
the population sets (SAMR for y = 1) and (Snon−AMR fo

Group LASSO
LASSO stands for Least Absolute Shrinkage and

Operator and it is a popular regularization and FS
method [41]. The three main advantages of LASSO
its ability to search for the best set of features jointly
the need to resort to a greedy algorithm; ii) a sound th
motivation; and iii) the existence of computationally
algorithms [42]. The LASSO is formulated as an opt
problem, and it can be used both in regression and c
tion tasks. While the regression form is presented here
plicity, the generalization to classification tasks is st
ward. Let us suppose that we have a set with I inp
pairs {(xi, yi)}Ii=1, with the output being a scalar and th
having D dimensions. LASSO assumes that the pred
put ŷi is estimated linearly as x⊤i α, where α = [α1, α2
is a vector with the D linear coefficients of the predi
optimal value of α (denoted as α∗ is then obtained as

min
α∈RD

1
2

I∑

i=1

(
yi − x⊤i α

)2
+ λ

D∑

d=1

|αd |

4
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where ∥α∥1 = ∑D
d=1 |αd | is the ℓ1 norm of α, and λ > 0 is a regu-

larization parameter. The objective combines a data fitting term
with a regular
sion variables,
higher the num
an FS perspec
different value
ther the fitting
then, construc
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izer that penalizes the coefficients of the regres-
shrinking some of them to zero. The larger λ, the
ber of coefficients α∗d that are set to zero. From

tive, the approach is to solve the optimization for
s of λ, select the proper value of λ based on ei-
error or the number of active coefficients and,

t the feature setD′ with the indexes of the vector
with the non-zero coefficients after the shrinking

is work we deal with MTS, the input data are not
atrices, and this calls for using a generalization

method referred to as Group LASSO [42]. In-
ing, group LASSO splits the input features into
ps and then either activates or sets to zero all
ithin each group. Mathematically, we are given

d define the vector αd = [αd
1, α

d
2, ..., α

d
W ] whose

ociated with the W samples recorded for feature
ave D of those vectors, the total number of co-
arn is DW, which coincides with the number of
input X̄i. Recalling that xd

i is a vector collecting
the d-th row of X̄i, the optimal regularized linear
he MTS case can be obtained as the solution to

D
d=1

1
2

I∑

i=1

yi −
D∑

d=1

(xd
i )⊤αd


2

+ λ

D∑

d=1

∥αd∥2, (5)

((αd
1)2 + ... + (αd

W )2)1/2 ≥ 0 is the ℓ2 norm of αd.
ion resembles that in Eq. (4), but accounting for
nsional nature of the input and replacing |αd | with
ay, if the optimal solution sets αd

∗ = [0, 0, ..., 0]⊤,
ow of matrices {X̄i}Ii=1 is not selected.

ies to handle imbalance data
ry) classification architectures are trained assum-
mber of samples in each class is approximately
. However, there are many real-world applica-
ally in the healthcare domain, where that is not
, in the task tackled in this paper, the number of
is lower than the number of non-AMR patients.
is performed with unbalanced classes, models

to the majority class and led to poor generaliza-
ce [44].

different strategies to deal with imbalance classes
g data-level approaches or cost-sensitive meth-
ork, we focus on two simple but effective meth-
mpling the majority class, and ii) defining asym-
sification costs. When following an undersam-
samples from the majority class are randomly

l the number of elements in the majority and mi-
ions is similar. The cost function used in this
odels applying undersampling is the Binary Cross-

) cost.
-sensitive approach, errors in a sample from the
are penalized more heavily than those from the

of the well-known binary cross-entropy cost function [
specifically, upon setting the value of the weight β ∈
BBCE cost is defined as

− 1
I′

I′∑

i=1

(
βyi log (ŷi) + (1 − β) (1 − yi) log (1 − ŷ

where I′ is the number of patients in the training s
training set is balanced, then β = 0.5, and Eq.(6) is
cost function. When yi = 1 is associated with the
class, then β must be chosen closer to one. On the ot
if yi = 0 is the minority class, then β must be chosen
zero. Following this approach, the value of β in this
been set as the number of samples of the majority clas
by the number of total samples.

2.1.4. Strategies to handle missing values in MTS
Missing values, which affect most real-world dat

pervasive when dealing with time series. In the clin
text, data is recorded irregularly, with measurement f
varying between patients and even over time. More
values are typically not missing at random but reflec
tient’s health status or decisions by caregivers [47].
important, when working with windowed data, there
cases where the window length is larger than the leng
patient’s record and, hence, one has to decide how
initial (or last) part of the record.

Common approaches to deal with missing value
filling missing values with zeros, (linear) interpolatio
tistical imputation approaches [6]. Given that most of
features are binary and partially inspired by the met
proposed by Lipton et al. [48] for RNN-based predict
missing values in clinical data, we consider three stra
handle missing values in X̄i:

1. Remove from the populations the patients with
data (“Removing”). This (filtering) approach
the problem altogether, but reduces the number
ing samples, hence impacting generalization. A
it is more suitable in setups with an abundant n
training examples.

2. Impute with zeros the missing values, including
the beginning of the window (“Zero Padding”)
an extremely common approach, especially dea
binary data where the 0 value represents the “by
state (e.g., absence of a medical condition or a
being prescribed to a patient).

3. Use advanced ML architectures able to apply
ing scheme that accounts explicitly for missin
(“Masking”). This strategy is suitable for the thr
based architectures (GRU, LSTM, and Bi-LS
implement a modified version that, for each in
ple, uses as an additional input a mask indicatin
sitions of the input vector with missing values [

5
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ir ability to deal with discrete data and unveil
inear dependencies, artificial NNs are ML approa-
sed to deal with classification tasks [50]. There-
s our binary classification task (i.e., predicting if
ected by an AMR bacteria in the ICU), we con-
NN architectures. We start with a simple MLP,

rve as a baseline, and then describe three more
NN-based deep architectures that are able to ac-

equential (time) structure present in our MTS.

ayer Perceptron
is a feed-forward NN formed by 3 types of layers:
one (or more) hidden layers, and an output layer.
the hidden layer computes the output of a scalar

ction whose input is a linear combination of the
previous layer and some linear weights. The

nable during the learning process, which is per-
imizing a non-convex (data-fitting error) cost us-
gradient-based approaches [50]. MLPs are fully

hitectures (meaning that there exists a weight be-
of neurons) and, as the number of neurons grows,

rsal approximators capable of implementing any
pping [50]. In this paper, we have set the num-
layers of the baseline MLP to one, considered the
[51] as the scalar non-linear activation function,
dam algorithm to optimize the cost function [52].
ted an early-stopping technique to avoid overfit-
the learning rate as a hyperparameter. At every

ly-stopping procedure evaluates the evolution of
cost in the validation set (20 % of the training

k) and stops the training if the cost deteriorates or
o, a dropout rate has been used as a regularization
duce overfitting to the training set.
tant to emphasize that both the training cost and
on algorithmic approach (Adam with early stop-
d here for the MLP are also used for the NN ar-
scribed in Secs. 2.2.2 and 2.2.3.

tworks
a type of NNs where the layers (i.e., the con-

een the neurons) form a directed path along a se-
ring them suitable to deal with time series. Sim-
lters, RNNs use an internal state to preserve an
ory’ of the previous inputs [53]. However, stan-

hibit problems when dealing with long MTS, due
ive application of gradient steps that either de-
xponentially (see, e.g., for more details on the
shing gradient problem [53]).
ntext, GRUs are a gating mechanism aimed at
radient’s problems of RNNs [54]. A “gate” is an
tween two consecutive elements of the sequence
NN whose purpose is to regulate the flow of in-
g along the sequence chain. Taking this into ac-

an be used, e.g., to amplify a gradient that is van-
teeing that the error goes through all the elements

vious time steps that is not incorporated into the hid
(i.e., the input of the gate is the output of the previous
the input associated with the current time step); and i
date gate is in charge of generating the output of the
deciding what information to throw away and what n
mation to add. GRU networks require fewer parame
other RNNs and this is a desirable feature in clinica
tions, where the number of samples is typically limite

2.2.3. LSTM and Bi-LSTM networks
The LSTM network, another RNN-based architect

the definition of a GRU one step further by consideri
mechanism to transfer information from previous ti
(the cell state) and a new gate (the output gate) [10].
state provides the model with a memory of past even
longer than that of the hidden state. To handle the
LSTM cell implements the three different gates: the fo
the input gate, and the output gate. The forget gate de
information from the previous cell state that has to be
Once the non-relevant information from the previous
has been eliminated, the input gate chooses the new inf
to store in the current cell state. Finally, the output g
is in charge of computing the final output of the neuro
is a combination of the current cell state and the curr
time step. While more sophisticated than their GRU
part, LSTMs have more parameters to learn and, as
require larger training datasets.

The last NNs considered in this work are Bi-LSTM
are MTS-processing architectures consisting of two LS
The first LSTM processes the MTS in a forward direct
the second one carries out the processing in a back
rection. As in classical smoothing methods for tim
stochastic processes, the main benefit of the Bi-LST
ability to leverage information from both the past and t
While this additional ability tends to boost estimatio
mance, the number of parameters in Bi-LSTM models
and, as a result, performance gains must be expected o
number of training samples is sufficiently high.

2.3. Model validation

This section presents the figure of merit considered
suring the goodness of the generated models, both
of performance and interpretability. Performance con
ability of a model to make correct predictions, while in
ity concerns to what degree the model allows for hu
derstanding. Models exhibiting the former property
times more complex and opaque, while interpretabl
may lack the necessary accuracy. The trade-off betwe
racy and interpretability for predictive models is cons
paramount concern for pragmatic purposes.

2.3.1. Performance
Performance metrics evaluate the ability of a mode

correct predictions. Accuracy measures the ratio bet

6
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correctly classified samples and all the samples under consider-
ation, and it is defined as follows:
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Accuracy =
T P + T N

T P + FP + T N + FN
(7)

ue Positives) are samples labeled as AMR and
ified; TN (True Negatives) are samples labeled

and correctly classified; FP (False Positives) are
d as non-AMR but wrongly classified as AMR;
egatives) are samples labeled as AMR but wrongly

on-AMR.
, we have considered two complementary met-

dwide in the context of binary classification prob-
ity and Sensitivity.
e hand, Specificity, also known as TN rate, mea-
of non-AMR patients correctly classified by the

AMR. On the other hand, Sensitivity, also known
asures the ratio of AMR patients actually classi-

ty =
T N

T N + FP
S ensitivity =

T P
T P + FN

(8)

Receiver Operating Characteristics (ROC) curve,
Under such a Curve (AUC), measures the abil-
el under study to deal properly with both classes
n-AMR). Thus, ROC AUC provides additional
ow Specificity and Sensitivity interact.

etability
ility metrics evaluate the ability of a model to be
humans [55]. It is worthy to note that measuring
is a challenging task that depends on the inher-

cy and complexity of the model (what is usually
tructural interpretability) but also depends on the
d expertise of the person who is expected to in-
model. Accordingly, there are neither a univer-
or interpretability metrics universally recognized

dwide.
, in the case of models that are deemed as in-
design, structural interpretability is measured in
lexity. For example, the number of parameters in
, the number of nodes and leaves in decision trees,
of premises and rules in rule-based systems.
er hand, in the case of black-box models, such as
ks, there are two main trends: i) extrinsic evalu-
oc interpretability; and ii) intrinsic evaluation of
of surrogate models.
er, we evaluate the post-hoc interpretability of
HAP [28], which is inspired by Game Theory1.
Shapley values assign a contribution ϕ j(xt

j) to
t
j. SHAP is a model-agnostic approach for gener-
lanations as linear combinations of binary vari-
tures are ranked in terms of their relevance for
ssification. SHAP is distributed as open source2.

for SHapley Additive exPlanations.
software at https://github.com/slundberg/shap

interpretable by design and ready to generate local (an
factual (and counterfactual) explanations in natural l
Among the algorithms provided by ExpliClas for g
interpretable models, we have selected the C4.5 Qui
gorithm [59] and the Fuzzy Unordered Rule Inducti
rithm (FURIA) [60]. ExpliClas provides us with a
approximation of models that can be exported into
format complying with the IEEE Std 1855-2016 for f
tems modeling [61]. These linguistic models are endo
global semantics thanks to the use of meaningful and
sense linguistic terms that are defined by strong fuzzy
and grounded on clinical expert knowledge. Accord
models satisfy all required constraints to be deemed
pretable [58]. In addition, each model includes a list of
IF-THEN fuzzy rules (e.g., “IF Feature j is Small AND
is Big THEN class is AMR”). Such rules and their in
can be analyzed in depth by clinicians with the assi
GUAJE, which provides them with visual and textual
tions. Moreover, GUAJE offers several metrics for m
the interpretability of the given linguistic models. In t
we will report the number of rules and the total rule le
the total number of premises and conclusions in the ru

3. Dataset and pre-processing

This section describes the clinical data in detail a
rates on the pre-processing techniques adopted.

3.1. Dataset description

The data analyzed in this work corresponds to clin
recorded for ICU patients at the University Hospital
labrada in Madrid, Spain. Data were registered for
from 2004 to 2020 (both included), counting a total of
tients (627 of them were identified as AMR). For det
the AMR acquisition, the result of a clinical procedu
antibiogram is considered together with the patient c
test if a bacterium is resistant to one or more antibioti
getting the antibiogram result can take more than 48 h
a single patient may have several cultures with mult
bacteria throughout his/her stay, we limit our resear
first culture identified as multiresistant. Moreover, g
our focus is on early prediction of AMR using clinica
ries, we discarded two kinds of patients: i) non-AMR
with an ICU length stay shorter than 24 hours, and ii)
tients whose multiresistance was detected in the first
in the ICU. Taking into account the previous considera
dataset is made up of 3,178 patients (433 with AMR).

The families of the antibiotics taken by the pati
ing their ICU stay are: Aminoglycosides (AMG), An
(ATF), Carbapenemes (CAR), 1st generation Cepha
(CF1), 2nd generation Cephalosporins (CF2), 3rd g
Cephalosporins (CF3), 4th generation Cephalosporin
unclassified antibiotics (Others), Glycyclines (GCC), G
tides (GLI), Lincosamides (LIN), Lipopeptides (LIP),

7
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(MAC), Monobactamas (MON), Nitroimidazolics (NTI), Mis-
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enicillins (PEN), Polypeptides (POL), Quinolones
ides (SUL), and Tetracyclines (TTC). We also
“Others” to identify any other antibiotic not be-
previous list. For any given patient (say the i-th
re associated with each family of antibiotics (say
is a sequence of binary variables xd

i ∈ {0, 1}Ti

ther the patient has taken (or not) that family of
ing each of the Ti 24-hour periods that the patient
U. Regarding mechanical ventilation, it is repre-
uence of binary variables, each of them denoting

atient has been connected (or not) to a breathing
y time during the 24-hour period at hand.
re, we characterize the ICU occupation and a sum-
eatment provided to the rest of the ICU patients
ring the same time interval as the one considered
who is being characterized. Thus, a total of 17
eric features were created: the number of neigh-

ient, the number of patients identified with AMR
AMR neighbors), and the number of neighbors
the 15 antibiotic families listed before. To avoid
between the time series describing if the i-th pa-
rticular drug and that describing the number of
of i taking the same drug, we use the subscript
atures referring to neighbors (e.g., AMG is the
ing if the patient took the drug and AMGn is the
g how many of his/her neighbors took the drug).

eteness, we detail next the clinical criteria con-
tify multi-drug resistance for the most common
ICU at HUF: Pseudomonas, Stenotrophomonas,

, Enterobacter, Acinetobacter, Staphylococcus Au-
rococcus. In general, Pseudomonas were consid-
g resistant when they were resistant to three or
llowing families: CF4, CAR, QUI, AMG, POL
ylococcus aureus was resistant to OXA; Ente-
resistant to vancomycin (GLI Family); whereas
onas and Acinetobacter were considered resistant
earance, regardless of the antibiogram result.

windowing

am and boxplots of the elapsed time (in days) from the ICU
ICU discharge. Gray color is associated with non-AMR pa-
he ICU for more than 24 hours. The green color is used for
ose first culture flagged as positive occurs at least 24 hours
mission.

elapsed time from the ICU admission to: i) the ICU
for non-AMR patients, and ii) the first AMR culture
patients. From these representations, we concluded
identification of the first AMR usually occurs within
few days of the AMR patients’ stay. It can be obse
50% of the AMR patients have the first culture flagge
tive before the fifth day after ICU admission. This val
close to the median of the duration of the stay for n
patients (4 days). Taking into consideration these valu
conducting the experiments we considered four diffe
dow lengths: W = 3, W = 4, W = 5, and W = 6 days.

To gain insights on the drugs administered during
tion of the windowing, we show in Figure 3 the proport
of AMR patients taking each drug (green bars) and
terpart for non-AMR patients (gray bars). Each rate
computed over a different number of patients: 433
patients, and 2,745 for non-AMR ones.

Moreover, since four different windows are conside
{3, 4, 5, 6}), four subplots are provided.

Note that these figures do not carry information
temporal nature of each family of antibiotics, only th
ence/absence (‘1’/‘0’) during the window length. Th
reveal that antibiotics like CAR, GLI, or ATF are adm
in higher proportion to AMR patients, while PEN is
quently administered to non-AMR patients. No signifi
ferences are observed for QUI, LIP, and PAP.

For a more detailed explanation about the constr
the data-patient matrix in Eq. (1), Figure 4 sketches
poral windowing with W = 5 for two patients (patie
is AMR, and patient j, who is non-AMR). Each obser
the time series is defined by a 24-hour interval, with th
time depending on the patient. More specifically, for th
tient, we consider the last time instant of the window
associated with the day where the culture flagged as A
taken and, then, defining the W − 1 remaining days ba

For the j-th patient and provided that his/her stay in
was longer than W, the first slot of the window tini

j cor
to the day the (non-AMR) patient was admitted to th
both cases, if the duration of the patient’s stay is shorte
window length (W), we set to zero the values associ
the first slots of the time series (“Zero Padding”). As al
plained, temporal patient features contain information
evolution of the patient during his/her stay in the ICU
the rows of the data matrix X̄i represent: a) the fam
tibiotics taken by the patient during the time instants a
with the window, b) if the patient was under mechani
lation, c) the number of patients in the ICU during the
stant associated with the window, and d) the number o
in the ICU taking each of the antibiotics. Finally, we
ated a new W-dimensional binary variable called “mas
entries indicate if the patient was indeed present in the
ing those W days. The default value for all the entries i
= 1 and, as a result, if one of the entries of the “mas
(say the t-th one) is zero, the meaning is that the pa
not present in the ICU that day. This readily implies th
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f AMR and non-AMR patients taking each family of antibiotics for different window lengths: (a) W = 3, (b) W = 4, (c) W = 5, (d) W
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al feature matrix construction with a time window of 5 con-
4 hours. For the i-th AMR patient (upper panel), tend

i repre-
ociated with the first AMR culture, whereas tini

j represents the
the j-th non-AMR patient (bottom panel).

orresponding t-th column of X̄i will be zero, ac-
(zero-padding) imputation procedure described
left-most column of patient i in Figure 4).

ts and results

n starts by defining and discussing the experi-
We then present and discuss the FS results. After
ze the prediction performance of the different ML

models considered. Finally, we close the section by a
the interpretability of the generated models.

4.1. Experimental setup and parameter tuning

The dataset was randomly split into two indepen
sets, the training set (70% of the samples) and the test
of the samples). The training set was used to design th
while its performance was evaluated with the test set.
evaluated several strategies to deal with imbalance cla
dersampling and cost-sensitivity learning) and to han
ing values in MTS (“Removing”, “Zero padding”, “M

Table 1 shows the total number of patients for eac
As expected, the number of patients changes in terms
the “Removing” approach, we only consider patients w
in the ICU W days for non-AMR patients, or who stay
ICU at least W days before the first AMR. The numb
tients in the training set decreases when W increases
W = 3 and 234 for W = 6). With “Zero Padding” or “M
we discard those patients who did not take any drug
not connected to a breathing machine during the win
under consideration. For this reason, the number o
in the training set increases when the window length i
For comparison purposes, the number of patients in th
is the same for a specific window length regardless t
dure used for dealing with missing values. The size o
set decreases as W increases (908 patients with W
with W = 4; 653 with W = 5; 531 with W = 6).

In the training set, a 5-fold cross-validation appr
followed to select the hyperparameters minimizing e
BCE or the BBCE cost function. The hyperparamet
ciated with the MLP, GRU, LSTM, and Bi-LSTM ne

9



Journal Pre-proof
W

=3
   

W
=4

   
 W

=5
   

W
=

6
W

=3
   

W
=4

   
 W

=5
   

W
=6

V
   

   
W

=3
   

W
=4

   
W

=5
  W

=6

Figure 5: Matrix green cells
represent the sele

Dataset

Stra
to h

imbala

Training

Unders

BB

Test

Table 1: Total num
ering different win
(undersampling a
MTS (“Removing

chitectures are
dropout rate {
the hidden lay
for the MLP a
ing number of
70} and for the
35} architectur
to have zero m

4.2. FS result

We shift n
the features s
in Sec. 2.1.2 f
A green box m
a gray box tha
to obtain the fi
we consider th
or more value
jority rule sche
as relevant if i

Figure 5 s
bootstrap resa
features out of

at Group
o the pa-
related to
ity of the

lengths.
were se-
ics taken
LI, NTI,
d 11 fea-
atients, #

n, PAPn,
s consid-
arly pre-
deemed

ia for the
Sec. 3.1)
ntibiotics
w length
F3, PAP,
validated
lternative

of AMR
plication

h W = 5,
dmission
ure 2 for
of con-

RU, and
ling class
Jo

ur
na

l P
re

-p
ro

of

of features (in columns) and FS approaches (Bootstrapping, Contitional MI and Group LASSO, detailed by window length W). The
cted features whereas the gray cells represent the non-selected features.

tegies
andle
nce data

Strategies
to handle

missing values in MTS W = 3 W = 4 W = 5 W = 6

ampling
Removing 354 319 269 234

Zero Padding 428 448 453 447
Masking 428 448 453 447

CE
Removing 1470 1246 1008 836

Zero Padding 1660 1687 1696 1704
Masking 1660 1687 1696 1704

- - 908 773 653 531

ber of patients for specific training and test sets when consid-
dow lengths, several strategies to deal with imbalance classes

nd cost-sensitivity learning) and to handle missing values in
”, “Zero Padding”, “Masking”).

the learning rate {0.1, 0.01, 0.001, 0.0001}, the
0.0, 0.1, 0.2, 0.3} and the number of neurons in
er. Since the dimension of the input is different
nd RNN-based models, we explored the follow-
neurons for the MLP {30, 35, 40, 45, 50, 55, 60,
LSTM/GRU/Bi-LSTM {3, 5, 10, 15, 20, 25, 30,

es. Before training, each feature was normalized
ean and unitary standard deviation [50].

s

ow our attention to Figure 5, which indicates
elected by each of the three methods presented
or four different window lengths W ∈ {3, 4, 5, 6}.
eans that feature was selected by the method and
t it was not. A two-fold strategy was considered
nal feature setD′. Firstly, for each FS approach,
e d-th feature as relevant if it was selected by two
s of W. Secondly, we implemented another ma-
me where the d-th feature was finally considered

t was selected by two or more FS methods.
hows that the method using the CI obtained by
mpling selected a higher number of features (40
50) compared to Conditional MI or Group LASSO

(19 features were selected for each approach). Note th
LASSO selected a high number of variables related t
tient, whereas Conditional MI selected more features
the ICU environment. It is also remarkable the stabil
Group LASSO results across the different time window
After voting across methods, a total of 26 features
lected, being 14 of them associated with the antibiot
by the patients (AMG, ATF, CAR, CF1, CF3, CF4, G
OXA, PAP, PEN, POL, QUI, and Others), the MV, an
tures associated with the ICU environment (# of p
of AMR patients, CARn, CF3n, GCCn, GLIn, MON
POLn, TTCn and Othersn). Since feature importance i
ered a way of endowing explainability to make an e
diction of AMR, we discuss in detail which ones are
clinically relevant to train the models.

All antibiotic families involved in the clinical criter
appearance of AMR germs (cf. the last paragraph in
were considered. Also, it is observed how some a
were always identified as relevant, despite the windo
and the FS method considered (among them, ATF, C
MV, # of AMR patients, and CARn). Clinicians have
these results, concluding that they can be a suitable a
for building appropriate data-driven models.

4.3. Early prediction of AMR using NNs

The purpose of this work is the early prediction
with MTS recorded in the EHR before the actual com
occurs. Therefore, we pay attention first to MTS wit
i.e., the median of the elapsed time from the ICU a
until the first AMR culture for AMR patients (see Fig
details). We compare the classification performance
ventional NNs (MLP) and RNN approaches (LSTM, G
Bi-LSTM) using different methods for a) FS, b) hand
imbalance, and c) dealing with missing values.
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Data
Source

Strategies to
handle imbalance

Strategies to
handle missing values Models Accuracy Specificity Sensitivity ROC AUC

MLP 64.15 ± 7.76 66.1 ± 11.08 53.1 ± 14.3 59.6 ± 3.52

Table 2: Mean ± considering
a 5-days window ing”, “Zero
Padding” and “M The highest
performance for e

Table 2 sh
partitions prov
curacy, Specifi
keep the comp
sidered when
can be drawn
achieved when
ison, the mean
results was co
better perform

If we shift
data, we note
than BBCE (t
respectively).
patients is a c
using a larger
importance of
that “Masking

the oth-
C (mean
“Remov-
ely). The
OC AUC
eme with
66.73%.

le for Ac-
formance
mpling.
h LSTM,
ith those

GRU and
e perfor-
nsitivity,

es after a
hermore,
reviously
Jo
ur

na
l P

re
-p

ro
ofNon-FS

Undersampling

Removing GRU 61.99 ± 3.99 62.91 ± 4.44 56.08 ± 4.21 59.50 ± 3.24
LSTM 61.98 ± 4.32 62.92 ± 4.7 55.64 ± 11.28 59.28 ± 5.97

Bi-LSTM 63.91 ± 6.28 65.65 ± 7.48 53.33 ± 6.86 59.49 ± 4.74

Zero Padding

MLP 59.36 ± 2.26 59.15 ± 2.57 61.08 ± 4.5 60.11 ± 2.56
GRU 59.74 ± 2.66 59.48 ± 3.71 61.1 ± 4.02 60.29 ± 0.75

LSTM 59.14 ± 2.02 59.06 ± 3.18 59.84 ± 8.32 59.45 ± 3.14
Bi-LSTM 57.99 ± 1.84 57.41 ± 2.19 61.73 ± 3.82 59.57 ± 2.16

Masking
GRU 67.38 ± 2.59 68.91 ± 3.69 57.51 ± 7.01 63.21 ± 2.48

LSTM 65.92 ± 1.79 67.38 ± 2.19 56.3 ± 1.98 61.84 ± 0.99
Bi-LSTM 65.34 ± 2.74 66.92 ± 2.63 54.95 ± 3.06 60.94 ± 2.81

BBCE

Removing

MLP 56.33 ± 6.22 54.0 ± 7.86 71.52 ± 5.41 62.76 ± 2.4
GRU 57.78 ± 7.58 57.18 ± 10.33 62.42 ± 10.62 59.8 ± 2.07

LSTM 55.54 ± 11.97 54.26 ± 14.95 65.12 ± 11.06 59.69 ± 3.27
Bi-LSTM 55.38 ± 8.89 53.55 ± 11.45 68.75 ± 11.77 61.15 ± 1.95

Zero Padding

MLP 55.47 ± 3.24 54.29 ± 3.15 63.57 ± 7.49 58.93 ± 4.66
GRU 57.80 ± 4.58 56.12 ± 5.98 69.58 ± 6.4 62.85 ± 2.02

LSTM 57.02 ± 3.58 55.71 ± 3.46 65.70 ± 4.74 60.70 ± 3.98
Bi-LSTM 59.97 ± 7.31 59.57 ± 10.64 63.88 ± 14.82 61.73 ± 3.52

Masking
GRU 67.03 ± 2.74 68.52 ± 3.92 57.51 ± 7.01 63.01 ± 2.35

LSTM 60.86 ± 3.35 60.2 ± 4.12 65.67 ± 3.71 62.93 ± 1.60
Bi-LSTM 59.52 ± 3.90 58.75 ± 5.33 65.01 ± 6.32 61.88 ± 1.49

FS

Undersampling

Removing

MLP 59.92 ± 2.97 60.19 ± 2.79 58.42 ± 5.79 59.31 ± 3.93
GRU 60.32 ± 6.07 60.52 ± 6.66 59.16 ± 6.14 59.84 ± 5.03

LSTM 64.24 ± 3.19 65.35 ± 3.71 57.12 ± 2.12 61.23 ± 1.95
Bi-LSTM 60.9 ± 5.45 61.1 ± 6.65 59.17 ± 6.85 60.13 ± 3.91

Zero Padding

MLP 63.11 ± 5.48 63.42 ± 6.9 62.14 ± 6.69 62.78 ± 2.55
GRU 61.95 ± 2.88 62.26 ± 4.04 60.38 ± 6.59 61.32 ± 2.23

LSTM 65.93 ± 1.71 66.64 ± 2.78 61.72 ± 7.32 64.18 ± 2.67
Bi-LSTM 63.1 ± 5.38 63.36 ± 6.36 61.54 ± 4.89 62.45 ± 3.53

Masking
GRU 64.08 ± 4.1 64.14 ± 5.85 64.16 ± 8.29 64.15 ± 1.65

LSTM 69.23 ± 2.28 70.79 ± 3.30 59.41 ± 6.22 65.10 ± 2.18
Bi-LSTM 68.62 ± 2.35 70.35 ± 2.69 57.18 ± 3.76 63.76 ± 1.99

BBCE

Removing

MLP 57.91 ± 7.52 57.01 ± 9.54 65.34 ± 8.24 61.17 ± 2.85
GRU 59.11 ± 4.37 57.58 ± 5.79 69.52 ± 5.81 63.55 ± 1.74

LSTM 57.15 ± 6.06 55.75 ± 8.35 66.92 ± 9.91 61.34 ± 1.05
Bi-LSTM 53.84 ± 11.01 51.33 ± 14.48 70.8 ± 12.48 61.07 ± 2.19

Zero Padding

MLP 66.24 ± 2.32 66.89 ± 2.82 62.37 ± 5.27 64.63 ± 2.54
GRU 58.01 ± 4.22 56.22 ± 5.13 69.68 ± 3.92 62.95 ± 2.56

LSTM 60.81 ± 3.83 60.43 ± 5.01 63.45 ± 6.39 61.94 ± 2.29
Bi-LSTM 55.59 ± 3.97 53.61 ± 4.93 69.19 ± 4.35 61.40 ± 1.27

Masking
GRU 63.01 ± 2.93 61.95 ± 4.17 69.94 ± 5.75 65.95 ± 1.29

LSTM 65.40 ± 3.94 64.88 ± 5.31 68.58 ± 6.43 66.73 ± 1.80
Bi-LSTM 63.33 ± 2.47 62.98 ± 3.37 65.89 ± 4.04 64.44 ± 0.78

standard deviation of the performance (Accuracy, Specificity, Sensitivity, and ROC AUC) on 5 test partitions when training NNs
with: non-FS and with FS (first row); undersampling and BBCE as strategies to handle class imbalance (second column); “Remov
asking” strategies to handle irregular MTS (third column); and MLP, GRU, LSTM, and Bi-LSTM as classifiers (fourth column).
ach figure of merit is in bold.

ows the mean and the standard deviation on 5 test
ided by different NNs models in terms of Ac-
city, Sensitivity, and ROC AUC. Note that, to
arison fair, the same 5 test sets have been con-

evaluating all the methods. Several conclusions
from this table. In general, better performance is

considering an FS strategy. For ease of compar-
of the ROC AUC obtained for non-FS and FS

mputed (60.84 vs 62.09), verifying that FS offers
ance.
focus now to the strategies to handle imbalance
that undersampling the training set works better
he mean ROC AUC values are 63.95 and 62.30,

However, in this work, the limited number of
ritical problem, and BBCE has the advantage of
number of patients to train without neglecting the
the class imbalance problem. It can be seen also
” is the best approach of the three strategies to

handle missing values in MTS, slightly outperforming
ers approaches in all experiments in terms of ROC AU
ROC AUC value for “Masking” is 63.66, whereas for
ing” and “Zero Padding” is 60.56 and 61.58, respectiv
ML classifier with the best results (considering the R
as the most relevant figure of merit) is the LSTM sch
BBCE and “Masking”, achieving a ROC AUC level of
It is also the best in terms of Sensitivity (68.58%), whi
curacy (66.54%) and Specificity (64.88%) the best per
was achieved when BBCE was replaced with undersa

Since, in general, better results are obtained wit
for completeness, we compare the obtained results w
provided with different windowed modelings for the
Bi-LSTM models. Figure 6 shows the boxplots of th
mance on five test partitions in terms of Specificity, Se
and ROC AUC when considering the selected featur
voting strategy and training with a BBCE cost. Furt
we explore strategies to handle irregular MTS. As p
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t of the performance on 5 test partitions in terms of Specificity, Sensitivity and ROC AUC when considering FS, BBCE as strateg
ifferent window lengths (W = 3, W = 4, W = 5, and W = 6), and different MTS classifiers: (a) GRU; (b) LSTM; and (c) Bi-LSTM.

number of patients changes with the length of the
erefore, though the comparison of results among

ows does not allow us to conclude which the best
h is, it allows us to know which one works best
lar problem. The four and five-day windows ob-
erformance than three-day and six-day windows
. Also, we can conclude that models based on
M perform slightly better than Bi-LSTM based

underperformance of the Bi-LSTM may be due
the architecture is to complex or because joint

of past and future data is not relevant to our clas-
lem.

st-hoc interpretability

ious section, we concluded that the LSTM archi-
6 input features, W = 5 and “Masking” provided

good performance for both undersampling and BBC
ever, LSTM networks are not easy to interpret. Ther
present here the results of an LSTM post-hoc interp
analysis based on SHAP (see Sec. 2). We have explore
tential of SHAP to characterize the entire population
patients) according to the model prediction. The fir
analysis was carried out for the LSTM built with W
dersampling and “Masking”. Then, we paid attention
havior of individual patients when considering LSTM
with different window lengths (W = 3, W = 4, W = 5
undersampling and “Masking”. We calculated the Sha
ues related to the contributions of all time steps for ea
patient separately and then computed their average.

Figure 7 shows a SHAP graph with the distributi
Shapley values generated from the LSTM model tra
undersampling and “Masking” (considering all the
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ously selected features). Features are depicted in order of rel-
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the real value
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of the feature, and the position of the dot in the
nts the contribution this feature has to the model
f the Shapley values). The further a point devi-
mean of predictions (which is 0 in this case), the
his particular feature has on the model output for
or example, the Shapley values associated with

re positive when the Mech.Vent. value is high.
r prediction model, by SHAP interpretation, we
hat AMR patients are more likely to appear when
are receiving Mech.Vent. Accordingly, in short,
important features are Mech.Vent., ATF, CF1,

tients and GLIn. These results are in agreement
’ intuition and fit well with the literature. Notice
g the isolation of patients with AMR germs and
es are crucial tasks in tackling multi-resistance.
well known that the use of drugs such as CF1 is
e the chance of patients to become AMR. Inter-
act is pointed out by our SHAP analysis.

0.04 0.02 0.00 0.02 0.04 0.06 0.08
SHAP value (impact on model output)

Low

High

Fe
at

ur
e 

va
lu

e

tion of Shapley values generated from the LSTM model with
d “Masking” with the 26 features selected by FS.

hows the model output values and the Shapley
r different patients. The selected patients repre-

(“full data”) and with stays shorter than 5 days (“no fu
Once again, our SHAP analysis pays attention to LST
els that were trained with undersampling and “Maskin
considering different time windows and all the 26 fea
viously selected). Features are ranked and depicted in
relevance, with the one in the top being the most rele
ture. Gray vertical lines represent the base values a
with the underlying SHAP models. Each colored li
sponds to one specific patient. It is easy to observe how
tribution of each single feature to the model predicti
from one patient to another. All contributions togethe
baseline values form the final model outputs (see the t
each panel).

When joinly analyzing the four panels (each one a
with a different window length), even though slight di
exist, the following features emerge as the most relev
# of AMR patients, Mech.Vent. and some drugs such
AMG and OXA. We observe that all models, except
4, correctly classify (model output greater than 0.5)
patient full data, whereas the AMR patient with no fu
correctly classified only by models with W = 5 and
A similar effect occurs with the non-AMR patients: th
non-full data is correctly classified (model output lo
0.5) by all models except for the model with W = 6,
patient with full data is only correctly classified by mo
W = 3 and W = 4. These findings illustrate that sele
right window length is a very challenging task.

4.5. Linguistic interpretability
With the aim of providing readers with a quantitativ

ment of the balance between interpretability and per
in our proposal, we built two interpretable by desig
(a decision tree generated with the C4.5 algorithm [5
fuzzy rule-based classifier with the FURIA algorithm
the case of FS, undersampling and “Zero Padding” w
that according to clinicians was the simplest to expla
all previously reported (see Table 2). Both models are
with linguistic interpretability, i.e., the original tree (C
rule list (FURIA) are translated into two explainable f
tems as described in Sec. 2.3.2. Both linguistic models
same global semantics, which is expressed by the sam
tic terms (Very small, Small, Medium, Big, Very big) a
with the same underlying strong fuzzy partitions (wh
carefully defined in agreement with a clinician for ea
feature to be meaningful). As a result, the knowledg
ded in this kind of model is described by a list of
IF-THEN rules easy to understand by humans.

Table 3 quantifies the structural interpretability of
erated models in terms of their number of rules (NR)
rule length (TRL). These models were generated and
with the same training and test datasets that were cons
Table 2. Nevertheless, for the sake of explainability,
poral information was first aggregated to produce m
features. For example, “# of AMR patients std” is the
deviation (std) of the number of patients (# of AMR
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utput values and Shapley values associated with the LSTM model trained with undersampling and “Masking”, with the 26 selected f
length: (a) W = 3; (b) W = 4; (c) W = 5; (d) W = 6. The gray vertical line represents the base value of the SHAP models, and each
e patient. Features are ranked and depicted in terms of relevance, being the top one the most relevant one. “Full data” represents pa
rresponding window (i.e., Ti > W), whereas “no full data” represents cases where Ti < W.
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Model Accuracy ROC AUC NR TRL
C4.5 56.18 ± 2.96 55.38 ± 0.99 76.8 ± 5.9 772 ± 57

FURIA 52
MLP 63

Table 3: Mean ±
AUC) and interpre
ing the linguistic
= 5. NR is the nu
FURIA). TRL sta
all premises and
Table 2 and are in
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temporal valu
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time instant an
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THEN
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R7: IF CF4

AND G

These rule
is complemen
the 7 rules des
features in Fig
top-5 ranking
was identified
sidering single

the interaction of the next four top features (ATF, Others, # of
AMR patients and CF4) is also very relevant. Moreover, remind

y pointed
hods (see

ose illus-
ample, in
ure 8(c),
n, which
rmation:
the third

ion of the
R if such
r hand, in
1 is fired
patient is
cause in
when the
ery small
R if such
that this
different
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(20-30 %
e epicen-
dies have
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rticularly
posure to
currence
ration of
age [65].
the inap-
that were
eal with,

ed a high
tient sur-
m caused
aches are

ted to the
of detec-
the num-
e health-
breaking
nce it al-
ession of

patterns
and chal-
appropri-
, we have
, LSTM,
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.77 ± 3.37 56.76 ± 2.31 8.8 ± 3.03 32.8 ± 18.3

.11 ± 5.48 62.78 ± 2.55 - -

standard deviation of the performance (Accuracy and ROC
tability metrics (NR and TRL) on 5 test partitions when train-

models with FS, undersampling and “Zero Padding” with W
mber of leaves (in decision trees) and the number of rules (in
nds for total rule length. TRL counts all nodes in a tree and
conclusions in FURIA. Values reported for MLP come from
cluded here only for facilitating comparison.

ed time window; GLIn mean is the average of all
es associated with GLIn corresponding to antibi-

ily Glycopeptides (GLI) taken by the neighbors
or GLI cons is ‘1’ if the patient took GLI at any
d ‘0’ otherwise.
rison purposes, we also report performance val-
and ROC AUC) that can be compared to those re-
sly in Table 2. The results reveal that the highest
of FURIA (NR=8.8 and TRL=32.8) comes with
performance. However, it is worth noting that

RIA to C4.5, we observe how the interpretability
arger than the reduction of performance. We car-
iedman Aligned Ranks non-parametric statistical
rsus all with significance level α = 0.05) in order

ficant differences among reported results for Ac-
e 3. The hypothesis H0 (the means of the results
e algorithms are the same) is rejected when com-
versus MLP, and accepted in the rest of compar-

ver, as illustrated below, FURIA rules are fairly
y to interpret by clinicians:

cons is Small AND # of AMR patients std is
all THEN output is non-AMR

cons is Small AND # of AMR patients std is
HEN output is non-AMR

AMR patients std is Big THEN output is AMR

cons is Big THEN output is AMR

AMR patients std is Big AND GLI cons is Big
output is AMR

MR patients std is Big AND Others cons is Big
output is AMR

cons is Big AND CF3n mean is Small

LIn mean is Small THEN output is AMR

s provide clinicians with useful information that
tary to that observed in Figure 7. Interestingly,
cribe the interaction among only 7 out of the 26
ure 7. In addition, four of these features are in the
given by SHAP. Notice that, even if Mech.Vent.
by SHAP as the most relevant feature when con-
contributions, our linguistic analysis reveals that

that ATF and # of AMR patients were also previousl
out as two of the most relevant features by all FS met
Sec. 4.2).

In addition, when considering single cases like th
trated in Figure 8, only specific rules are fired. For ex
the case of the patient with “AMR no full data” in Fig
rule R3 is fired and we obtain the following explanatio
is a mixture of factual and counterfactual pieces of info
The patient is classified as AMR. In accordance with
rule, a patient is AMR in case that the standard deviat
number of AMR patients is big. It would be non-AM
standard deviation were smaller (0.345). On the othe
the case of the patient with “non-AMR full data”, R
and the related textual explanation is as follows: The
classified as non-AMR. It is very likely non-AMR, be
accordance with the first rule, a patient is non-AMR
standard deviation of the number of AMR patients is v
and the consumption of ATF is small. It would be AM
consumption were bigger (1.430). It is worth noting
kind of explanations highlights the interaction among
features, being a useful insight that complements the r
relevance given by SHAP.

5. Discussion and conclusions

The high rate of infections occurring in the ICU
of all ICU admissions) [63] makes this unit one of th
ters of the development of AMR. Previous clinical stu
analyzed the risk factors for getting AMR bacteria [6
concluded that the treatment with invasive devices (pa
the intensity and duration of the treatment) and the ex
antibiotics are the principal causes. Minimizing the oc
of AMR bacteria could be beneficial to reduce the du
invasive devices treatment as well as to optimize its dos

Thus, AMR is nowadays a growing problem due to
propriate use of antimicrobials. Indeed, some bacteria
previously treatable have become now a challenge to d
especially in the ICUs. In these units, AMR has creat
impact on morbidity, hospital costs, and sometimes pa
vival. It is necessary to be aware of the growing proble
by AMR, for which new research, efforts, and appro
needed to prevent the further spread of AMR.

AI models can contribute to solving problems rela
clinical environment. These models reduce the time
tion of infectious diseases, resulting in a reduction in
ber of deaths as well as health economic costs. In th
care domain, there has been a developing interest in
down clinical information as time-series sequences si
lows clinical specialists to better evaluate the progr
the patients. However, the complexity and irregular
present in clinical data render modeling MTS a hard
lenging task. Fortunately, RNNs have arisen as an
ate choice to model and deal with MTS. In this work
explored the use of well-known RNNs such as GRU
and Bi-LSTM. Although RNNs have demonstrated t
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high classification performance, their lack of interpretability is
a bottleneck for developing and deploying clinical MTS-based
decision supp
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ort systems where interpretability is of foremost
e that, for the sake of interpretability, RNNs were
just data within short time windows. This was
agreement with clinicians, who considered that
er windows was harder to justify from a clinical

has paved the way towards comprehensible MTS
context of early AMR prediction in ICUs. We

ifferent FS approaches, in combination with in-
techniques, with the aim of extracting valuable

AMR. Our proposal has been validated with real-
amely, we considered 3,178 patients, with 433

rmed as AMR from 2004 to 2020 at University
enlabrada in Madrid, Spain. With our study, we
ant clinical features for the onset of AMR which

d confirmed by clinicians. For example, our pro-
how the family of antibiotics taken by patients

time each patient has been assisted with mechan-
, turn up as vital indicators to isolate a patient in

hus controlling the spread of the bacteria among
ents.
noting that we have shown how findings provided
terpretability analysis of data-driven models may
to clinical decisions before the antibiogram re-
cisely, we used SHAP to assist clinicians in un-
e outputs given by black-box models. The SHAP
own the importance of mechanical ventilation for
s, which is in accordance with the literature. The
ATF is also noteworthy, with results showing that
took ATF more frequently than non-AMR pa-

of AMR neighbors is relevant in our results: the
AMR neighbors, the higher the AMR probability

e models. In addition, we built explainable fuzzy
ter understand how relevant and meaningful fea-
ly identified with SHAP actually interact. As a re-
ted linguistic IF-THEN rules that described how
ediction can be explained in terms of the interac-
veral features. Moreover, such rules were auto-
preted and translated into narrative explanations
uage to facilitate understanding by clinicians. All
s were satisfied with the reported results and ex-
eir trust in MTS-based AMR results was higher
erstood the model output with the assistance of
d textual explanations.
methodology can save valuable time to start the

ment for an ICU patient. This study was con-
nly MTS related to the antibiotics taken by the
e mechanical ventilation. To generalize the con-
rent MTS should be considered, as well as de-
d clinical data such as age, gender, or diagnoses
s. As future research, we plan to endow with
able NNs that take into account the importance
tep, such as attentional NNs [66] or GRU-D [49].

is expected to make those models more trust-
table by clinicians. Finally, we plan to develop

ing results when using this line of work.

Availability of Data and Materials

Access to the data can be provided upon official
approved by the Committee of Ethics of the University
of Fuenlabrada.

Acknowledgements

This work is supported by the Spanish NSF grants P
106623RB-C41 (BigTheory), PID2019-105032GB-I0
PID2019-107768RA-I00 (AAVis-BMR), RTI2018-0
I00 (ADHERE-U); the Galician Ministry of Education
sity and Professional Training grants ED431F 2018/02
IA) and ED431G2019/04; the Instituto de Salud Carlo
DTS17/00158; as well as the Community of Madrid in
work of the Multiannual Agreement with Rey Juan Ca
versity in line of action 1, “Encouragement of Young
dents investigation” Project Ref. F661 (Mapping-U
gio M. Aguero is a recipient of the Predoctoral Con
Trainees URJC Grant (PREDOC21-036). Jose M. Alo
is a Ramon y Cajal Researcher (RYC-2016-19802).

References

[1] A. A. Funkner, A. N. Yakovlev, S.V. Kovalchuk, Data-drive
of clinical pathways using electronic health records, Procedia
Science 121 (2017) 835-842.

[2] M. Ghassemi, et al., A multivariate timeseries modeling approa
ity of illness assessment and forecasting in ICU with sparse, het
clinical data, in: 29th AAAI Conference on Artificial Intelligen
446-453.

[3] N. P. Tatonetti, P. Y. Patrick, R. Daneshjou, R. B. Altman,
prediction of drug effects and interactions, Science Translation
4 (2012) 125ra31–125ra31.

[4] S. J. Taylor, Modelling financial time series, World scientific, 2
[5] C. Soguero-Ruiz, et al., Predicting colorectal surgical compl

ing heterogeneous clinical data and kernel methods, Journal of
Informatics 61 (2016) 87-96.

[6] C. Soguero-Ruiz, et al., Data-driven temporal prediction of s
infection in: AMIA Annual Symposium Proceedings, 2015, 11

[7] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7
436-444.

[8] T. A. Lasko, J. Denny, M. A. Levy, Computational phenotype d
ing unsupervised feature learning over noisy, sparse, and irreg
data, PloS one 8 (6) (2013) e66341.

[9] K. Cho et al. Learning phrase representations using RNN enco
for statistical machine translation, in: Conference on Empiric
in Natural Language Processing, 2014.

[10] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neu
tation 9 (8) (1997) 1735-1780.

[11] M. Schuster, K. K. Paliwal, Bidirectional recurrent neural netw
Transactions on Signal Processing 45 (11) (1997) 2673-2681.

[12] Z. Lipton, D. Kale, C. Elkan, R. Wetzel, Learning to diagnose
recurrent neural networks, in: Proc. International Conference o
Representations, 2015.

[13] T. Pham, T. Tran, D. Phung, S. Venkatesh, Deepcare: A de
memory model for predictive medicine, in: Pacific-Asia con
knowledge discovery and data mining, 2016, 30-41.

[14] P. Nguyen, T. Tran, S. Venkatesh, Deep Learning to Attend
ICU, in: KHD@ IJCAI, 2017.

16



Journal Pre-proof

[15] C. A. Michael, D. Dominey-Howes, M. Labbate, The antimicrobial resis-
tance crisis: causes, consequences, and management, Frontiers in Public
Health 2 (201

[16] A. P. Magio
and pandrug-
standard defi
fection 18 (3)

[17] I. D. S. of A
recommenda
397-428.

[18] L. Zhang, C
multi-frequen
tional Confer
2149

[19] W. Jenna, et
for health car

[20] S. El-Sappa
A multilayer
able artificial
(2021).

[21] J. He, S. L
implementati
Medicine 25

[22] A. B. Arrie
taxonomies,o
tion Fusion 5

[23] E. Toreini, M
Moorsel, The
learning tech
ness, Accoun

[24] D. Gunning
program, AI

[25] C. Rudin, S
stakes decisio
telligence 1 (

[26] R. Guidotti
dreschi, A su
puting Survey

[27] J. M. Alonso
erating multi
box classifier
2020. doi:10.

[28] S. M. Lundb
dictions, in:
pp. 1–10.
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 Model and analyze multivariate time-series related to antimicrobial multidrug-resistance (AM

in the Intensive Care Unit.  

 Cope with missing values and imbalance data in multivariate time-series. 

 Explore feature selection strategies and design Recurrent Neural Networks (endowed with p

hoc interpretability) for AMR prediction. 

 Build linguistic models to provide a better understanding of the interaction among the most 

relevant features.  

 Validate with clinicians the interpretability of the models for a better model understandabilit

and trustworthiness in AMR prediction. 
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