
UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Departamento de Electrónica e Computación

PhD Thesis

REPRESENTATION TECHNIQUES FOR REAL-TIME
VISUALIZATION OF HYBRID TERRAIN MODELS

Presented by:
Enrique González Paredes

PhD Advisors:
Montserrat Bóo Cepeda
Margarita Amor López

Santiago de Compostela, November 2013

Montserrat Bóo Cepeda, Profesora Titular de Universidad del Área de Arquitectura y Tecnología de

Computadores de la Universidad de Santiago de Compostela

Margarita Amor López, Profesora Titular de Universidad del Área de Arquitectura y Tecnología de

Computadores de la Universidad de A Coruña

Javier Díaz Bruguera, Profesor Catedrático de Universidad del Área de Arquitectura y Tecnología de

Computadores de la Universidad de Santiago de Compostela

HACEN CONSTAR:

Que la memoria titulada REPRESENTATION TECHNIQUES FOR REAL-TIME VISUALIZA-
TION OF HYBRID TERRAIN MODELS ha sido realizada por D. Enrique González Paredes bajo

nuestra dirección en el Departamento de Electrónica e Computación de la Universidad de Santiago de

Compostela, y constituye la Tesis que presenta para optar al título de Doctor.

Santiago de Compostela, 29 de noviembre de 2013

Montserrat Bóo Cepeda
Codirectora de la tesis

Margarita Amor López
Codirectora de la tesis

Javier Díaz Bruguera
Tutor de la tesis

Enrique González Paredes
Autor de la tesis

Resumen

El uso de modelos digitales del terreno y de bases de datos geográficas ha aumentado de forma
considerable en los últimos años. Este crecimiento, debido principalmente al abaratamiento
de los sensores y los avances en las tecnologías de adquisición de datos geográficos tales como
LiDAR, ha motivado, a su vez, nuevos dominios de aplicación para la información geográ-
fica. Herramientas de planificación del territorio, de gestión de infraestructuras, cartografía,
sistemas de navegación global o aplicaciones de realidad virtual son algunos de los ejemplos
más destacados.

Un modelo digital del terreno es una colección compleja y generalmente extensa de datos
geográficos que almacena información topográfica y geométrica de un área de la superficie
terrestre. Debido a sus grandes dimensiones y a la precisión utilizada, los modelos del terreno
a menudo sobrepasan las capacidades de cálculo y almacenamiento de equipos convenciona-
les. Por ello, es necesario usar técnicas eficientes y estructuras de datos avanzadas para su
procesado, almacenamiento y visualización.

Las dos representaciones más utilizadas para almacenar los datos de elevación de un mo-
delo digital del terreno son las mallas estructuradas cuadradas, o mallas regulares, y las mallas
triangulares irregulares. Los modelos basados en mallas regulares son más sencillos de proce-
sar. Sin embargo, requieren un número de muestras mucho mayor que los modelos irregulares
ya que utilizan una densidad de muestreo fija en todo el modelo, lo cual es especialmente inefi-
ciente para ciertas características del terreno, como áreas planas o superficies regulares. Para
reducir su coste espacial, normalmente se almacena en cada muestra el valor de elevación del
relieve y las coordenadas espaciales se deducen de su posición en la estructura de datos. Ello
impide que se pueden representar algunas características geográficas peculiares como cuevas
y acantilados o salientes en voladizo. Los modelos basados en mallas triangulares (Triangula-

ted Irregular Network o TIN), al contrario, suelen ocupan menos espacio de almacenamiento

vi Resumen

porque la frecuencia de muestreo y el tamaño de los triángulos se adapta a la irregularidad del
terreno, permitiendo representar grandes áreas planas con muy pocas muestras. Sin embargo,
esta mayor flexibilidad en la representación de las muestras requiere de estructuras de datos
más complejas que penalizan la eficiencia de las operaciones de procesado o visualización.

Las técnicas de representación multirresolución se utilizan principalmente para conseguir
visualizar en tiempo real modelos 3D de gran tamaño. Se basan en la generación de diferentes
niveles de detalle para representar los modelos según las necesidades del proceso. Además,
los diferentes niveles de detalle no se aplican de un modo global uniforme sino que se pue-
den asignar de forma independiente a cada zona del modelo, para refinar su representación
en mayor o menor medida según los requisitos específicos de la operación. Durante la vi-
sualización interactiva, por ejemplo, el modelo se refina con mayor detalle en las zonas con
mayor influencia en la apariencia final del modelo, normalmente las más cercanas al punto de
vista, para obtener una imagen final sin una pérdida significativa de calidad en la apariencia
visual de la escena. Los métodos más recientes y eficientes utilizan mallas regulares por la
simplicidad y regularidad de sus estructuras de datos.

Una estrategia complementaria para optimizar la representación de grandes modelos del
terreno consiste en utilizar modelos híbridos que combinen mallas regulares cuadradas y ma-
llas irregulares de triángulos. Un tipo de modelo híbrido especialmente interesante es el que
combina una gran malla base regular junto con mallas irregulares de alta resolución para las
zonas que requieran de mayor detalle. La malla base sirve para representar una gran extensión
del terreno a un nivel de detalle medio mientras que las mallas irregulares modelan zonas
del terreno con accidentes geográficos complejos o estructuras artificiales como edificios y
otras construcciones. De esta forma se produce una descripción geométrica más precisa de las
características morfológicas más relevante del terreno, sin tener que aumentar la resolución
general de toda la malla base.

Pese a sus ventajas teóricas, el uso de modelos híbridos no ha sido apenas estudiado hasta
muy recientemente y apenas existen trabajos de investigación al respecto en el campo de
la visualización interactiva de modelos del terreno. El algoritmo de Mallado Híbrido (HM)
es una de las pocas propuestas recientes que exploran este camino, aunque es un trabajo
principalmente teórico sin aplicación real.

El objetivo de la investigación realizada en esta tesis ha sido desarrollar métodos mejora-
dos para la visualización en tiempo real de modelos híbridos del terreno. Las técnicas desarro-
lladas permiten integrar datos geográficos provenientes de fuentes heterogéneas y combinar

Resumen vii

los beneficios propios de los modelos regulares y de los modelos irregulares. Todo ello sin
necesidad de realizar un proceso de combinación intensivo que forzosamente modificaría los
datos originales para integrar ambas mallas en un nuevo modelo. Estas técnicas son también
compatibles con la aplicación de métodos de visualización con multirresolución, algo esencial
para lograr una visualización interactiva tratándose de modelos del terreno de gran extensión.

Así pues, esta tesis presenta en primer lugar un detallado análisis del algoritmo HM, ori-
ginalmente desarrollado por miembros del grupo de investigación y que sirve como punto de
partida para este trabajo. El algoritmo HM genera un modelo híbrido mediante la combina-
ción ya mencionada de un modelo base regular con una malla TIN de alta resolución que
agrega detalles de alta resolución en áreas específicas del modelo. Esta combinación se obtie-
ne mediante un proceso de triangulación adaptativa a nivel local entre los límites de las mallas
regulares e irregulares. Los triángulos introducidos en el proceso cubren el área limítrofe entre
ambas mallas de tal forma que el modelo híbrido resultante está perfectamente definido y no
contiene huecos ni espacios vacíos en su interior.

Para obtener este modelo continuo es necesario, no sólo generar la malla de triangulación
que une los bordes de las mallas regulares e irregulares entre sí, sino que también hace falta
limitar el área de visualización de las mismas en las zonas en que se superponen. Es decir, la
malla base regular, de menor resolución, no debe visualizarse en las zonas en las que la malla
TIN de alta resolución está disponible. Para ello, las celdas de la malla regular se clasifican
en tres tipos diferentes según su relación con la malla irregular: celdas no cubiertas (NC)
por el TIN, parcialmente cubiertas (PC) y completamente cubiertas (CC). Las celdas NC no
interactuan para nada con la malla irregular así que se visualizan normalmente. Las celdas
CC, en cambio, se eliminarán del resultado final de la visualización ya que son sustituidas
por la malla irregular de mayor calidad. Finalmente, las celdas PC son las celdas en las que
se genera la triangulación adaptativa entre los modelos ya que contienen los vértices y aristas
exteriores del TIN, que deben ser conectados con la malla regular. Para ello se genera la malla
de triangulación entre el borde del TIN y las esquinas no cubiertas de la celda en cuestión.

Este proceso de triangulación adaptativa que une los bordes de ambas mallas está parcial-
mente precalculado, puesto que utiliza información generada en una fase previa a la visualiza-
ción. Durante la visualización se accede a las estructuras de datos precalculadas, que codifican
de forma sencilla y eficiente la información necesaria para generar la parte más compleja de la
triangulación: la transformación del borde del TIN en un polígono localmente convexo dentro
de cada celda regular. A partir de esa información y de unas reglas sencillas para completar-

viii Resumen

la, se generan los triángulos necesarios para el nivel de detalle activo en la malla base en el
momento de visualizarla. El proceso de triangulación es local porque se realiza en el interior
de cada celda de la malla regular que se cruza con el borde del TIN, y es adaptativo ya que
se amolda a los bordes de la malla regular que varían según el nivel de detalle activo en la
malla base. Así pues, la información precomputada y codificada en las estructuras de datos del
algoritmo se basa únicamente en el borde del TIN, ya que no puede depender de que el borde
de la malla regular no varíe según las condiciones de la escena visualizada. Gracias a este
enfoque adaptativo local, el algoritmo HM puede combinarse con diferentes procedimientos
de triangulación y algoritmos de multirresolución, lo que lo convierte en un método potente y
versátil.

El resultado final que se obtiene con este método es un modelo de alta calidad, ya que
utiliza en todo momento la representación del terreno con mayor detalle disponible, perfec-
tamente integrada con el resto del modelo. La importancia de los resultados conseguidos con
este método es aún mayor considerando que no se han encontrado otros métodos de visuali-
zación similares que obtengan modelos híbridos de forma interactiva.

Tras el análisis detallado del algoritmo HM, se presentan a continuación dos propues-
tas diferentes para la visualización interactiva de modelos híbridos del terreno, basadas en la
misma estrategia del algoritmo HM. Dicha estrategia, un proceso de triangulación local adap-
tativa entre los bordes de los modelos con diferente representación, es utilizada por las dos
propuestas para generar un modelo híbrido sin discontinuidades, tal y como hace el algoritmo
HM.

La primera propuesta utiliza un algoritmo estándar de triangulación de polígonos com-
plejos, en este caso el algoritmo de triangulación incremental aleatorio de Seidel [74], para
generar los triángulos de la malla de triangulación adaptativa entre los modelos de una forma
directa y sencilla. Esta propuesta aporta una ventaja importante en cuanto a la simplicidad del
procedimiento, especialmente en la etapa de preprocesado, que es mínima, ya que no utiliza
ninguna estructura de datos precomputada para codificar información previa sobre la conve-
xificación del borde del TIN. Durante la fase de visualización se utiliza el algoritmo de Seidel
para generar la triangulación del polígono formado por los bordes de las mallas en el interior
de la celda PC. Así, el polígono a triangular está formado por las esquinas de la celda PC, que
son vértices de la malla regular, y los vértices del borde del TIN. Esta propuesta, aunque es
sencilla y produce resultados de calidad, es menos eficiente en términos de rendimiento, ya
que la malla de triangulación se genera completamente durante la visualización.

Resumen ix

La segunda propuesta es una adaptación del algoritmo HM original a un pipeline gráfico

con una arquitectura hardware convencional. El algoritmo original propone una nueva unidad
hardware para descodificar fácilmente en la propia tarjeta gráfica la información codificada
durante el preprocesado. Como esta propuesta teórica no ha llegado a implementarse en hard-
ware, en esta tesis se ha evaluado la posibilidad de realizar una implementación software del
algoritmo con una arquitectura convencional. Así pues, esta segunda propuesta implementa
el algoritmo HM sustituyendo la unidad hardware propuesta por una etapa de descodifica-
ción de la información en la CPU. Los resultados obtenidos con esta segunda propuesta son
similares en términos de calidad a los obtenidos con la propuesta anterior con el algoritmo
de Seidel.Además, en un caso general la calidad es similar y el rendimiento de esta segunda
propuesta es muy superior a la anterior, tal y como se muestra en la sección de resultados del
capítulo 3.

A continuación, se presenta el método GPU-HM, un nuevo algoritmo paralelo de visua-
lización de modelos híbridos. Este método utiliza el alto grado de paralelismo existente en
los procesadores gráficos actuales o GPUs (Graphics Processing Unit) para mejorar el rendi-
miento de la visualización interactiva. En este caso, la CPU se libera del proceso de descodi-
ficación y generación de la malla de triangulación adaptativa de las celdas PC, que se realiza
en la GPU. Así, la CPU se encarga de empaquetar los datos precomputados en estructuras
de datos fácilmente accesibles desde los shaders de la GPU, y de enviar los identificadores
de las celdas activas en cada momento para que sean teseladas en la tarjeta gráfica. Como la
triangulación adaptativa se genera a nivel local para cada celda PC, el número de nuevos trián-
gulos generados por celda no es demasiado elevado, así que todo el proceso de generación de
geometría se puede realizar utilizando el geometry shader. Esta etapa de la GPU permite ge-
nerar pequeñas cantidades de primitivas gráficas de una forma mucho más versátil que la más
moderna unidad de teselado que incorporan actualmente los procesadores gráficos.

Esta propuesta basada en el geometry shader tiene varias consecuencias destacables. En
primer lugar, al utilizar una unidad estándar del pipeline gráfico en lugar de usar técnicas de
programación general en la GPU (GPGPU), es fácil de integrar con motores de visualización y
sistemas gráficos que sean compatibles con la especificación de procesadores gráficos Shader

Model 4. En segundo lugar, al no requerir las nuevas capacidades específicas de teselado
introducidas en Shader Model 5, esta técnica es compatible con una gama más amplia de
dispositivos, incluyendo procesadores antiguos o de bajo rendimiento.

x Resumen

Por otra parte, el núcleo del algoritmo de triangulación empleado en la fase de visualiza-
ción para unir la malla regular al TIN presenta varias optimizaciones importantes respecto a
la propuesta HM original. Se han fusionado parcialmente el procedimiento para reconstruir
la convexificación local en el interior de las celdas con la generación de los triángulos com-
plementarios entre la malla regular y el TIN, para reducir pasos innecesarios y aumentar la
eficiencia del algoritmo. Además, el método GPU-HM aplica una reordenación a los vértices
de la malla TIN en el buffer de geometría para mejorar el acceso a los vértices del borde y
eliminar un nivel de indirección en las estructuras de datos. Por último, se han aplicado téc-
nicas convencionales para mejorar el paralelismo en la ejecución de tareas en la GPU, como
desenrollar bucles o eliminar bifurcaciones en el código del shader.

El método GPU-HM ha sido implementado y evaluado con varios modelos de prueba con
resultados satisfactorios en términos de calidad y rendimiento. La implementación consigue
visualizar de forma interactiva modelos con varios millones de triángulos, sin discontinui-
dades geométricas o superposiciones entre las partes. El método GPU-HM es, por tanto, el
primer método paralelo de visualización de modelos híbridos del terreno implementado en la
GPU.

Otro nuevo método para la visualización de modelos híbridos del terreno presentado en
esta tesis es el algoritmo EHM (Extended Hybrid Meshing). Este nuevo método consigue in-
corporar técnicas de visualización multirresolución en la parte de la malla TIN. Es decir, en
el método EHM, tanto la malla regular como el TIN se visualizan mediante técnicas multirre-
solución que reducen dinámicamente el número de triángulos utilizados en el modelo según
las condiciones de la escena, sin que ello afecte a la calidad de la imagen generada. Además,
el algoritmo EHM no depende de ningún método de multirresolución en particular. Puede
combinarse con cualquier método que funcione para mallas triangulares irregulares, siempre
y cuando se pueda restringir parcialmente el orden de eliminación de los vértices del borde
del TIN según unas simples reglas o precondiciones. Cumpliendo esta propiedad se puede ga-
rantizar la reconstrucción correcta de la convexificación local del borde del TIN, sin importar
el nivel de simplificación en que se encuentre.

Las técnicas de multirresolución más utilizadas para mallas irregulares se basan en una
estructura jerárquica en forma de árbol para almacenar tanto las operaciones de simplificación
como las dependencias entre ellas. Así pues, la forma más sencilla de restringir el orden de
las operaciones de simplificación en los vértices del borde consiste en alterar el proceso de
construcción de esta estructura, para que cumpla las restricciones del algoritmo EHM. De

Resumen xi

esta forma, no se introduce ningún coste adicional en el proceso durante la visualización y el
rendimiento del método multirresolución no se ve afectado en absoluto.

Los beneficios de este enfoque son claros, ya que el modelo híbrido al completo se visua-
liza con técnicas multirresolución sin incurrir en penalizaciones de rendimiento adicionales
causadas por el algoritmo de triangulación. De hecho, el coste del algoritmo de triangulación
adaptativa en la fase de visualización es proporcional al número de vértices activos en el bor-
de del TIN, por lo que su rendimiento aumenta a bajos niveles de resolución, como cualquier
otra técnica multiresolución. Por tanto, el algoritmo EHM logra generar un modelo híbrido
del terreno de calidad y sin discontinuidades entre las mallas pese a la geometría variable de
los bordes de los modelos multirresolución.

El algoritmo EHM ha sido implementado y probado con resultados satisfactorios con
modelos de prueba, tal y como se expone en la tesis. El coste de la triangulación adaptativa
resulta ser mínimo respecto al coste de las técnicas multirresolución en el TIN y la malla
regular, así que el rendimiento final del método depende principalmente de la eficiencia de
los algoritmos multirresolución utilizados. La calidad de las mallas obtenidas, igual que en
casos anteriores, es buena y pese a la elevada variabilidad de los bordes de las mallas a unir,
no aparecen discontinuidades ni huecos entre ellas.

Por último, en esta tesis se presenta también un nuevo método para la visualización de
modelos híbridos del terreno que, al contrario que los métodos anteriores, no está basado
en el algoritmo HM original. El algoritmo EDP es una nueva propuesta que presenta varias
mejoras importantes respecto a los enfoques anteriores. Se divide igualmente en dos fases, una
de preprocesado en la que se precomputa y codifica la información necesaria para teselar los
bordes de las mallas eficientemente, y otra de visualización en la que se genera la triangulación
adaptativa y se visualiza el modelo híbrido completo.

La característica más relevante del algoritmo EDP es que puede generar la triangulación
adaptativa entre de las mallas regulares e irregulares sin la inclusión de nuevos vértices adicio-
nales en el borde del TIN. Los métodos basados en el algoritmo HM realizan la triangulación
completamente a nivel de celda y por tanto requieren que el área a teselar de cada celda sea
un polígono perfectamente cerrado e independiente del resto. Para conseguirlo, se introdu-
cen en el borde del TIN vértices adicionales situados en los puntos de intersección entre el
TIN y la malla regular. Estos vértices únicamente dividen en dos partes una arista exterior
del TIN y, por tanto, no alteran la geometría de la malla, pero simplifican mucho el proceso
pues cada arista exterior está completamente contenida en una única celda de la malla regular.

xii Resumen

Sin embargo, estos vértices adicionales también incrementan la complejidad de la triangu-
lación, puesto que aumenta el número de triángulos y vértices que participan en el proceso.
El algoritmo de EDP, en cambio, es capaz de enlazar los bordes de las mallas regulares sin
requerir que las celdas parcialmente cubiertas de la malla regular formen polígonos cerrados
e independientes. Para ello, utiliza como primitiva básica para codificar la información de
triangulación, la arista exterior del borde del TIN. Con esta primitiva se consigue codificar la
triangulación local parcial de cada celda de la malla regular y, al mismo tiempo, permite re-
solver los casos en que una arista atraviesa dos celdas contiguas, aplicando una serie de reglas
basadas en su orientación.

Como líneas de investigación futuras, en esta tesis se proponen diversas rutas de trabajo.
Por una parte, se contempla el estudio de los atributos no geométricos del modelo híbrido,
para mejorar la gestión de características visuales importantes tales como la textura y el color
u otros tipos de datos geofísicos asociados al terreno, como el uso del suelo o la temperatura.
Por otra parte, y más a largo plazo, sería interesante abordar el problema con un enfoque com-
pletamente diferente, usando técnicas en el dominio de la imagen y no en el de la geometría
de los modelos. Sería especialmente interesante en casos donde la precisión geométrica del
modelo no es tan relevante como su apariencia final, o en casos en que la geometría de los
modelos varía constantemente y no se puede aplicar ningún tipo de preprocesado.

A mi familia

“No man is an island,

entire of itself;

every man is a piece of the continent,

a part of the main."

Meditation XVII, John Done

“Less is a possibility."

Generation X, Douglas Coupland

“Una mañana, sin más, decidí hacerlo."

Cuentos premonitorios, Cristof Polo

Acknowledgments

I would like to express my sincere gratitude to the people and institutions which have sup-
ported me during this thesis.

Special thanks goes to my thesis advisors, Montserrat Bóo and Margarita Amor, for their
guidance, patience and support. Their continuous confidence in my work has been decisive
in the completion of this dissertation. My gratitude also extends to Javier Bruguera, former
head of the Department of Electronics and Computer Science at the University of Santiago de
Compostela, for his valuable help and motivation.

I would also like to acknowledge the Department of Electronics and Computer Science,
specially to the Computer Architecture Group, and to the Centro Singular de Investigación en
Tecnoloxías da Información (CiTIUS) at the University of Santiago de Compostela, as well
as the Computer Architecture Group at the University of A Coruña, for providing the physical
resources and technical support required by this project.

My gratitude also goes to Prof. Dr. Jürgen Döllner and the people from the Computer
Graphics Systems Group at the Hasso-Plattner-Institut, University of Potsdam, for their warm
welcome and kind support during my two stages in Potsdam.

At a more personal level, I would like to thank to the many friendly people from Lab 13
at the DEC and from Lab 0.2 at the UDC, for their help, kindness and support, and to the
people at CGS lab at the HPI for making me feel part of their group. I can no forget to thank
to the wonderful people I met in Berlin, specially Arian, Jana, Tassilo and Marie for being my
adoptive family there, and Beatriz for being such a good friend in a cold autumn. My family
and close friends deserve my deepest thanks for their invaluable patience and encouragement
during difficult times through all these years.

Finally, I am also thankful to the following institutions for funding and supporting this
work: Xunta de Galicia under projects 08TIC001206PR, 08SIN011291PR and the Program

xviii Resumen

for Consolidation of Competitive Research Groups ref. 2010/06 and 2010/28; Ministry of
Science and Technology of Spain under contract TIN 2007-67537-C03; and Ministry of Sci-
ence and Innovation of Spain, cofunded by the FEDER funds of the European Union, under
contracts TIN2010-16735 and TIN2010-17541.

Santiago de Compostela, November 2013

Abstract

In recent years, advances in sensing and data processing technologies have led to a continu-
ous growing of geographic datasets. Interest about using this increasingly detailed geographic
information, has consequently arisen in application domains such as urban planning, cartog-
raphy, global navigation systems or virtual reality. However, real-world digital terrain models
demand for efficient techniques for managing and rendering their complex and large-scale
geometric data while, at the same time, may require specific features and operations. An ef-
fective terrain model should therefore maintain a good trade-off between the accuracy with
which the terrain surface is modeled, storage requirements, and real-time rendering.

Multiresolution representations try to solve the problem by reducing the rendering cost
without a significant loss in the visual appearance of the scene. Unnecessary detailed data is
reduced by using alternative representations of the same model with different accuracy, sim-
plifying the polygonal geometry of distant or unimportant portions of the model. A different
strategy, barely studied until recently, is to use hybrid terrain models combining large regular
data sets for large unimportant areas of the terrain, and high-resolution irregular meshes for
topographically complex terrain features and man-made microstructures. A more precise ge-
ometry description of morphologically important terrain features is thus provided, enhancing
the perceptual quality of visualized terrains models without increasing the overall resolution
of the whole mesh.

In this thesis several techniques to generate and visualize 3D hybrid terrain models are
proposed. These techniques can integrate geographic data from heterogeneous sources, com-
bining the benefits of coarse-grained grid-data and fine-grained irregular data without requir-
ing a remeshing process that would modify the original datasets. Multiresolution rendering of
the obtained representations are supported in the large regular areas, and in some cases in the
whole hybrid model. All these methods are based in a local tessellation approach which can

xx Abstract

selectively rebuild the adaptive tessellation between the regular and irregular meshes of the
models during the interactive visualization process. This approach was originally developed
in the Hybrid Meshing algorithm developed by some members of the research group, which
is the departing point of this work.

In particular, this thesis contains an analysis of the Hybrid Meshing algorithm and two
different proposals of an interactive hybrid terrain model renderer based on it. Since the
original algorithm proposes a theoretical hardware unit in the graphics pipeline to assist in
the rendering of the hybrid terrain model, the algorithm have been adapted to a conventional
graphics pipeline in two different ways. One of the methods is complete faithful to the Hybrid
Meshing algorithm, while the other avoids the preprocessing phase by using a conventional
tessellation algorithm. The Hybrid Meshing algorithm has been also enhanced and adapted
to run in a parallel implementation using the Geometry Shader Unit of the GPU. This parallel
proposal incorporates several improvements in the organization of the data lists and in the
interactive visualization phase.

Besides the several extensions and improvements to the Hybrid Meshing algorithm, two
new methods have been developed to overcome the limitations of the previous approaches:
the EHM and the EDP proposals. The EHM algorithm supports multiresolution rendering of
the whole hybrid model, both in the base regular grid as well as in the high resolution irreg-
ular meshes. Therefore, the EHM algorithm is the first method in the literature achieving a
complete view-dependent rendering of a hybrid model without cracks or other visible artifacts
in the visualization of the model. The EDP algorithm proposes the use of the external edges
of the irregular meshes as the fundamental primitive to tessellate the boundaries of both types
of meshes. This approach achieves a better parallelism in the rendering phase while simplifies
the preprocessing phase by minimizing the insertion of vertices in the irregular mesh.

Contents

List of Figures xxv

List of Tables xxxi

1 Introduction 1
1.1 Digital terrain models . 2

1.1.1 Data acquisition . 3
1.1.2 Data organization models . 4

1.2 Interactive 3D visualization . 7
1.2.1 Graphics rendering pipeline . 8
1.2.2 3D object representation . 9

1.3 Adaptive multiresolution rendering . 11
1.3.1 Error metrics for multiresolution rendering 16
1.3.2 Grid-based multiresolution approaches 19
1.3.3 TIN-based multiresolution approaches 22

1.4 Hybrid meshing rendering . 23

2 Hybrid Meshing Algorithm 27
2.1 HM Algorithm overview . 28
2.2 Adaptive tessellation of the grid cells . 31
2.3 Incremental convexification generation . 32
2.4 Hybrid model representation . 34

2.4.1 Grid classification list . 34
2.4.2 TIN boundary . 35
2.4.3 Vertex classification list . 36

xxii Contents

2.5 Rendering hybrid meshes with the HM algorithm 37
2.5.1 Convexification triangles generation 37
2.5.2 Corner triangles generation . 40

2.6 Hybrid extension with sub-cell generation 40
2.6.1 Sub-cell structure: Tree representation 41
2.6.2 Tessellation algorithm . 43

2.7 Analysis of HM algorithm . 44
2.8 Conclusions . 47

3 HM Algorithm: a general framework for rendering hybrid terrain models 49
3.1 Overview of the algorithms . 50
3.2 Implementation based on Seidel’s Incremental Randomized Triangulation

algorithm . 52
3.2.1 Analysis of the Incremental Randomized algorithm 54

3.3 Implementation of the Hybrid Meshing algorithm 56
3.4 Experimental results . 57
3.5 Conclusions . 63

4 GPU-HM: a parallel Hybrid Meshing algorithm using the GPU 65
4.1 Shader-based graphic rendering . 66

4.1.1 Geometry generation in the GPU using the Geometry Shader 67
4.1.2 Geometry generation using the Tessellator Unit 69

4.2 GPU-HM architecture . 73
4.3 GPU and CPU data structures . 75
4.4 Rendering algorithm . 76
4.5 Experimental results . 81
4.6 Contributions of the GPU-based implementation 89

5 EHM Algorithm 91
5.1 Algorithm structure . 92
5.2 Tessellation algorithm for the partially covered grid cells 95
5.3 Multiresolution TIN preprocessing . 100

5.3.1 Multiresolution TIN algorithm . 100
5.3.2 Multiresolution TIN preconditions 102

Contents xxiii

5.4 Implementation and results . 108
5.5 Contributions of the EHM Algorithm . 114

6 Hybrid terrain rendering based on the External Edge Primitive 117
6.1 EDP Algorithm overview . 118

6.1.1 External Edge Primitive . 118
6.1.2 Linking triangles based on orientation edge 122
6.1.3 Culling Grid . 125

6.2 Fussy cases . 128
6.2.1 Global convex fragment . 129
6.2.2 Local convex fragment . 130
6.2.3 Monotone TB fragment between adjacent cells at the same LOD . . 132
6.2.4 Monotone TB fragment between adjacent cells at a different LOD . . 134
6.2.5 Non-monotone fragments between adjacent cells 135

6.3 EDP representation . 138
6.3.1 Convexified TIN boundary data . 139

6.4 EDP visualization . 144
6.5 Results . 148

7 Conclusions 157

Bibliography 163

List of Figures

Fig. 1.1 Standard workflow working with digital terrain models. 3
Fig. 1.2 Digital terrain models representing the same surface: (a) grid; (b) TIN. . . . 5
Fig. 1.3 Example of a hybrid terrain model formed by a base grid and highly detailed

TINs extracted from [4]. A wireframe view of the terrain model is shown at
left, a render of the integrated model in the middle and the same view but
without using the detailed TINs at right. 7

Fig. 1.4 Conceptual rendering pipeline. 8
Fig. 1.5 Geometry processing pipeline. 9
Fig. 1.6 Examples of non-manifold meshes. 11
Fig. 1.7 General workflow of a multiresolution rendering method. 13
Fig. 1.8 Common LOD artifacts: (a) cracks; (b) T-Junctions. 14
Fig. 1.9 View-dependent LOD rendering from [47]. 15
Fig. 1.10 Vertical error introduced in the mesh removing the mid-edge vertex. 17
Fig. 1.11 The object-space approximation error εt defines the size of the wedgie used

for the estimation of the image-space error. 18
Fig. 1.12 Computation of the screen-projected error using a bounding sphere of radius

equal to the object-space error. 19
Fig. 1.13 Partially simplified terrain mesh using a semiregular adaptive method. . . . 20
Fig. 1.14 Geometry clipmap example from [3]: (a) data pyramid and clipmap; (b)

rendered terrain levels. 21

Fig. 2.1 HM algorithm structure. 29
Fig. 2.2 HM algorithm example: (a) base regular mesh; (b) base regular mesh and

detailed TIN mesh; (c) single coherent mesh obtained by the HM algorithm. 29

xxvi List of Figures

Fig. 2.3 HM algorithm rendering steps. 30
Fig. 2.4 Cell tessellation. 32
Fig. 2.5 Incremental convexification of the TIN boundary: (a) original cells; (b) finest

LOD convexification; (c) next LOD convexification. 33
Fig. 2.6 Grid cell types according to the coverage pattern with the TIN silhouette. . . 34
Fig. 2.7 Detail of PC and CC cells contained in a fragment of a real TIN boundary. . 35
Fig. 2.8 Local cell tessellation in the HM algorithm. 37
Fig. 2.9 Pseudocode for the TIN boundary convexification part of the tessellation

algorithm for partially covered grid cells. 38
Fig. 2.10 Pseudocode for the generation of corner triangles part of the tessellation

algorithm for partially covered grid cells. 39
Fig. 2.11 PC subdivision example for the hybrid algorithm. 42
Fig. 2.12 Grid subdivision example for the hybrid algorithm. 42
Fig. 2.13 Tree representation. 43
Fig. 2.14 Hybrid model rendered with the HM algorithm: (a) base grid mesh; (b) grid

and TIN meshes linked during rendering using the HM algorithm. 46
Fig. 2.15 Adaptive tessellation example for both schemes. 46

Fig. 3.1 Local cell tessellation procedure using Seidel’s algorithm: (a) part of the
TIN boundary and the correspondant grid cell; (b) 2D projection of the TIN
boundary over the XY plane; (c) addition of the extra vertices placed in the
cell boundaries; (d) local tessellation of the grid cell. 53

Fig. 3.2 Polygon tessellation using the Incremental Randomized Triangulation
algorithm: (a) descomposition of the input polygon into trapezoids; (b)
descomposition of the formed trapezoids into monotone polygons (using
diagonals); (c) triangulation of the monotone polygons. 55

Fig. 3.3 Hybrid terrain visualizer showing a textured hybrid model. 58
Fig. 3.4 Hybrid test models: (a) scene 1 grid; (b) scene 1 TIN; (c) scene 2 grid; (d)

scene 2 TIN; (e) scene 3 grid; (f) scene 3 TIN. 59
Fig. 3.5 Adaptive tessellations generated by both proposals. Subfigures (a), (c) and

(d) are generated by the proposal based on the incremental randomized
triangulation; subfigures (b), (d) and (f) are generated by the HM based
proposal. 61

List of Figures xxvii

Fig. 3.6 Example of triangles with associated compactness values increasing from 0.1
to 1.0 in 0.1 steps. Extracted from [28]. 62

Fig. 4.1 Direct3D 10 pipeline functional representation from [65]. 68
Fig. 4.2 Direct3D 11 pipeline representation. 70
Fig. 4.3 Direct3D 11 hardware tessellation example using PN Triangles from [52]. . 72
Fig. 4.4 Example of hybrid terrain model obtained with our GPU method: (a) base

regular grid; (b) detailed TIN component mesh; (c) resulting hybrid model
with different components highlighted. 73

Fig. 4.5 Organization of data structures in memory. 75
Fig. 4.6 HM rendering algorithm steps: (a) coarse LOD render; (b) fine LOD render. 77
Fig. 4.7 Coruña model: (a) aerial view of the area from the IDEE [34]; (b) grid

model; (c) TIN model; (d) hybrid model, the TIN mesh is highlighted in
blue. 83

Fig. 4.8 Sil model: (a) aerial view of the area from the IDEE [34]; (b) grid model; (c)
TIN model; (d) hybrid model, the TIN mesh is highlighted in blue. 84

Fig. 4.9 Pmouros model: (a) aerial view of the area from the IDEE [34]; (b) grid
model; (c) TIN model; (d) hybrid model, the TIN mesh is highlighted in blue. 85

Fig. 4.10 HM adaptive tessellation close-up: (a) solid mode; (b) wireframe mode. . . . 87

Fig. 5.1 Example of overlapping problems in the tessellation between the TIN and
grid boundaries when using a multiresolution method in the TIN: (a) original
TIN boundary and grid cells; (b) original TIN boundary locally convexified;
(c) partially simplified TIN boundary; (d) overlapping areas between the
original convexification triangles and the partially simplified TIN boundary. . 93

Fig. 5.2 Tessellation algorithm for the partially covered grid cells. 97
Fig. 5.3 Tessellation algorithm example using a multiresolution TIN boundary: (a)

active TIN LOD; (b) convexification triangles generated by the tessellation
algorithm in the active TIN LOD. 98

Fig. 5.4 Comparison between simplification operators: (a) edge collapse; (b) half-
edge collapse. 101

Fig. 5.5 Examples of TIN boundary simplification inside a PC cell: (a) original TIN
boundary; (b) simplified TIN boundary using an edge collapse operator; (c)
simplified TIN boundary using a half-edge collapse operator. 101

xxviii List of Figures

Fig. 5.6 Example of a conflictive simplification of the TIN boundary: (a) original
full resolution TIN boundary and the associated convexification triangles;
(b) resulting mesh after 4 removal; (c) resulting mesh after 8 removal. 104

Fig. 5.7 Example of an appropriate simplification of the TIN boundary: (a) original
full resolution TIN boundary and the associated convexification triangles; (b)
resulting mesh after 5,6,7,9,10,11 removal; (c) resulting mesh after 3,8,12
removal; (d) Resulting mesh after 4 removal. 105

Fig. 5.8 Example of elimination of cell border points: (a) original mesh; (b)
generation of gaps between neighbor cells. 107

Fig. 5.9 Example of elimination of cell border points: (a) original mesh; (b)
generation of non local triangles. 107

Fig. 5.10 Sample models used in the tests. (a) and (d) Alpine dataset grid and hybrid
models. (b) and (e) GCanyon dataset grid and hybrid models. (c) and (f)
PSound dataset grid and hybrid models. 110

Fig. 5.11 Detail of the tessellated area joining TIN and grid meshes: (a) coarse detailed
model; (b) finer detailed model. 111

Fig. 5.12 Reduction of tessellation triangles using multiresolution TINs: (a) detailed
grid and TIN meshes; (b) coarse grid and fine TIN meshes; (c) coarse grid
and TIN meshes. 112

Fig. 6.1 Convexification triangles (light gray), corner triangles (green) and shift
triangles (blue) used in the local tesellation of a grid cell. 119

Fig. 6.2 Example of a triangle mesh Corner-Table representation from [29]. 120
Fig. 6.3 Locally convexified TB inside a grid cell. 121
Fig. 6.4 Linking TIN boundary edges and grid cell corners based on the edge

orientation: (a) change in the orientation of edge normals is only guaranteed
to be clockwise orientation in convex TB fragments; (b) the cell corner used
to link each external edge of the convexified TIN boundary is defined by the
circle quadrant of the edge normal vector. 123

Fig. 6.5 Generation of shift triangles in the local tessellation of a grid cell: (a) three
shift triangles are needed; (b) previous case solved using only two shift
triangles; (b) two triangles at coarser level; (d) single triangle generation
at the coarsest level. 124

List of Figures xxix

Fig. 6.6 Overlapping between the TIN and grid meshes: (a) the original meshes (b)
the overlapping table tagging the grid cells overlapped by the TIN. 126

Fig. 6.7 Culling of the clipmap against the overlapping table during rendering: (a)
active clipmap to be rendered; (b) overlapping table; (c) TIN and grid meshes
after culling the overlapping grid cells. 127

Fig. 6.8 A globally convex fragment of the TIN boundary which remains convex at
any level-of-detail: (a) finest LOD; (b) medium LOD; (c) coarsest LOD. . . 129

Fig. 6.9 A locally convex fragment of the TIN boundary does not remain convex at
any level-of-detail: (a) finest LOD; (b) medium LOD; (c) coarsest LOD. . . 130

Fig. 6.10 Local convex TIN boundary fragment represented at several levels of detail
with the corresponding convexification triangles: (a) finest LOD; (b) medium
LOD with associated convexification triangles; (c) coarsest LOD with
associated convexification triangles. 131

Fig. 6.11 Holes appearing between two adjacent grid cells when only the local
tessellations of the cells are used. The inter-cells edge is labeled in blue. . . 132

Fig. 6.12 Inter-cells triangles filling the holes around the local convexification of a grid
cell. 133

Fig. 6.13 Inter-cells tessellation between adjacent cells with different even-odd position. 134
Fig. 6.14 Inter-cells tessellation between adjacent cells with different LOD: (a) even

position (b) odd position. 135
Fig. 6.15 Overlapping conflict between a non-monotone TIN boundary inter-cells

fragment and the local convexification of the grid cells. 136
Fig. 6.16 Correct tessellation of an inter-cells hole with a non-monotone fragment. . . 138
Fig. 6.17 Relationships between the different ranges of levels stored in the CTB data

items. 142
Fig. 6.18 Fully tessellated TIN boundary fragment represented at several levels of

detail: (a) level 2 (finest); (b) level 1 (medium); (c) level 0 (coarsest). 143
Fig. 6.19 Terrain geometry data loaded on a set of nested grid levels in Geometry

Clipmaps from [3]. 145
Fig. 6.20 Pseudo-code of the EDP tessellation algorithm during the rendering phase. . 147

xxx List of Figures

Fig. 6.21 Terrain sample models used in the tests: (a) and (b) Alpine dataset, grid and
TIN meshes; (c) and (d) GCanyon dataset, grid and TIN meshes; (e) and (f)
PSound dataset, grid and TIN meshes;(g) and (h) Coruña dataset: grid and
TIN meshes. 149

Fig. 6.22 Detail of the tessellation between the TIN and grid meshes in a hybrid model
generated by the EDP method. (a) Solid mode. (b) Wireframe mode. 151

List of Tables

Tabla 3.1 Structure of two different implementations of a hybrid terrain model renderer. 51
Tabla 3.2 Size and complexity of the test scenes. 60
Tabla 3.3 Results obtained with both proposals. 60
Tabla 3.4 Average compactness value of the triangles obtained with both proposals. . 62

Tabla 4.1 Size of the test models. 82
Tabla 4.2 Detailed description of the test models composition for each grid LOD. . . 86
Tabla 4.3 Performance results obtained with the HM algorithm, measured in FPS,

using GTX480 and GTX280 GPUs. 88

Tabla 5.1 Tessellation algorithm operation for the example shown in Figure 5.3. . . . 99
Tabla 5.2 Sample models information. 109
Tabla 5.3 Render primitives used during the visualization of sample models using the

EHM algorithm. 112
Tabla 5.4 Performance results obtained during the visualization of sample models

using the original HM and the EHM algorithm. 113

Tabla 6.1 Terrain sample models statistics. 148
Tabla 6.2 Increase in the number of the TIN boundary vertices using the HM and the

EDP algorithms. 150
Tabla 6.3 Triangles used in the adaptive tessellation of the sample models at the finest

LOD using the HM and the EDP algorithms. 152
Tabla 6.4 HM algorithm data storage requirements. 153
Tabla 6.5 EDP algorithm data storage requirements. 153

CHAPTER 1

INTRODUCTION

Digital Terrain Models (DTMs) are fundamental components in the geographical information
processing field. They have been used since the 1970s to model, analyze and display the sur-
face form of the Earth [23, 49, 22]. Today, they constitute the basis of a well-established and
increasing number of information systems in both the geoscience and engineering domains
such as Geographic Information Systems (GIS), cartography, urban and landscape planning,
natural disaster management, network planning in telecommunication and energy supply, vir-
tual immersive environments or video games.

In many of these application domains, from the critical monitoring systems to immer-
sive environments and entertainment, a high quality visualization of the terrain models is
required by the users. However, real-time 3D visualization of large terrain models has been
traditionally regarded as a challenging task. Terrain datasets typically include huge amounts
of data which exceed the capabilities of hardware, requiring additional optimization tech-
niques to provide a representation of the original dataset with a reasonable frame-rate. Even
though graphics hardware performance increases continuously, the subject remains open as
the availability of terrain elevation data also rises at fast pace using different technologies [81].
Moreover, the interest in digital terrains is gradually switching from large terrain natural ar-
eas to more complex human environments, often formed by a number of overlapping datasets
acquired over the years with a number of manual and semiautomatic technologies. The in-
tegration of disparate datasets with different data structures, organization and resolutions is
hence an interesting problem and should be considered with more attention.

2 Chapter 1. Introduction

In this thesis we present our work dealing with hybrid terrain models formed by the union
of regular and irregular datasets. Specifically, we have developed different solutions and
optimizations for the real-time rendering of hybrid terrains.

In this chapter the fundamentals of digital terrain modeling and visualization are exposed,
as well as a brief introduction to the Hybrid Meshing algorithm, which is the starting point
of our work. At the end of the chapter, a summary of our contributions to the field and a
presentation of the structure of this thesis report are provided.

1.1 Digital terrain models

Generally speaking, a terrain model is a digital representation of the ground continuous sur-
face. However, this term is used in the literature with different meanings and frequently mixed
with related terms as Digital Elevation Model (DEM) or Digital Surface Model (DSM). Within
the context of GIS, DTMs are generally considered as a digital representation of a landscape
which includes at least the characterization of the relief. In addition to the geomorphological
information, a DTM can also contain additional content about the terrain as aspect, material,
land cover, land use and other geophysical properties [85, 11]. In [51], a classification of
different modeling methods that have been developed in computer graphics and geological
structures is presented.

In this thesis, the term DTM is used as a digital data set describing some attributes of the
terrain surface form. Conversely, a DSM is more appropriately used to denote a representation
of the upper surface of a landscape, including vegetation and buildings, and thus is a slightly
different concept than a DTM.

A DEM, on the other hand, is a specific form of terrain model representing the elevation
of the ground surface as a two dimensional array or matrix of height values. This kind of
raster data sets can be also named as Digital Height Model (DHM) or Digital Terrain Eleva-
tion Data (DTED). A Triangular Irregular Network (TIN) is a different vector-based form of
representing elevation using irregularly distributed elevation samples joined to form a mosaic
of irregularly shaped triangular faces. DEMs, TINs, contour or break lines are the most im-
portant types of DTMs. For example, in the well established CityGML standard [26] terrain
relief may be specified as a regular raster or grid, a TIN, by break lines or by mass points.

A DTM can be created using different approaches: by sampling the real terrain with
different acquisition techniques, by the interpolation or derivation of the data from a previous

1.1. Digital terrain models 3

DTM

interpretation

visualization

application

manipulation

generation

Figure 1.1: Standard workflow working with digital terrain models.

representation of the surface (i.e. cartography), or by generating synthetically the model by
means of a simulation software.

Applications working with DTM deal with a broad set of tasks in addition to the genera-
tion (model construction), such as the storage and transmission, manipulation (modification,
refinement and derivation), interpretation (data analysis and information extraction), visual-
ization (graphical rendering) and domain specific operations (specific functional requirements
in a given application domain). Figure 1.1 shows how these tasks are organized in a standard
workflow for terrain model processing [83]. For large-scale terrain models, the storage, trans-
mission, processing and visualization requirements require an effective encoding and ren-
dering technique to cope with their geometric complexity, specially in real-time interactive
visualization applications.

The following subsections introduce several aspects of the data acquisition for the gener-
ation of DTM and the organizational models used to store and access the model information,
two important topics in the generation of DTMs.

1.1.1 Data acquisition

Data included in a DTM consist of a set of samples about relief elevation and other additional
attributes of the terrain, like photographic images or material definitions. The particular tech-
nique used for the sampling operation basically depends on the efficiency, cost, technological

4 Chapter 1. Introduction

maturity and availability of capturing devices. Real-world terrain data sets are generated from
one or several of the following data sources: manual ground surveys, photogrammetric data
capture, radar or laser altimetry (Laser Imaging Detection and Ranging or LIDAR) and dig-
itized cartographic data [11]. Additionally, synthetic terrain models may be created using
computer simulation software.

DTMs created from ground surveys tend to be very accurate since, during the acquisition,
the most significant relief points are directly measured and collected through field instruments.
However, this process is time consuming and error prone and thus data sets are usually limited
to specific small areas of interest.

Photogrammetric data acquisition is based on the sampling of aerial and satellite pho-
tographs. The DTM is automatically extracted from the imagery using regular or progressive
sampling techniques and digital stereo image correlation. Similar regular sampling methods
are used with elevation data from altimetry instruments. Since photogrammetric as well as
altimetry data capturing techniques use remote sensing, they can be fully automated to mini-
mize the collection effort. Therefore, these techniques are frequently used for large acquisition
projects and public nationwide data. However, when regular sampling is used, an excessive
number of points is collected in homogeneous regions and, at the same time, too few points
are captured in rugged areas. This problem can be partially solved by using a progressive
sampling scheme, where the sampling resolution is increased wherever the accuracy of the
original sampled is not satisfactory.

A lower cost terrain data source for DTM creation is the digitalization of existing analogue
cartographic documents, such as contour maps and profiles. This data collection technique has
been specially used in the past due to its reduced cost. However, it presents several accuracy
problems: contour lines need to be oversampled while flat areas between contours remain
largely empty, precision errors are introduced during the raster scanning and vectorization of
the data, and, moreover, most of the additional information contained in the map is lost.

1.1.2 Data organization models

Once the data acquisition process has finished, the collected data elements are structured for
the construction of a comprehensive DTM. During this construction process the topological
relations between the captured data elements are defined, as well as the interpolation model to
approximate the terrain data in areas where no samples were collected. The data structure of a
DTM is the way the collected data is organized so as to data could be accessed and processed

1.1. Digital terrain models 5

(a) (b)

Figure 1.2: Digital terrain models representing the same surface: (a) grid; (b) TIN.

efficiently. This structure should be selected according to the nature of the collected data and
the purpose of the DTM. For example, a DTM data may be tightly related to a numerical
computation model which needs to be preserved.

A poorly structured model will cause performance and coherence problems during the
processing. Several data structures have been used in the past for the representation of DTMs.
Nevertheless, the majority of the models used today for real-time visualization are structured
as a DEM, i.e. a rectangular elevation grid (see Figure 1.2(a)), or as a TIN, i.e. a network of
irregular triangles with different size, shape and orientation (see Figure 1.2(b)).

Data grids present a matrix structure where the elevation values are arranged in rows
and columns, according to their x and y coordinates. Thus, the grid can be stored as a two-
dimensional array of elevations values –one for each sampled elevation position– as the other
coordinates are easily determined from their relative positions on the data grid. It is easy to
see that data grids, also called height fields, are just discrete parameterizations of a scalar
function defined over the sampled area domain. Thus, topological relations between data
points are implicitly stored and the neighbors of any element can be found with simple index
arithmetics. The main advantage of grids is that their processing and visualization tend to be
relatively straightforward and fast, as working with matrices of data in modern computers and
graphic hardware is a highly optimized operation. Additionally, since this data organization

6 Chapter 1. Introduction

closely resembles a multilayered 2D image, several image processing algorithms can be easily
applied to height fields as processing filters.

On the contrary, one disadvantage of grids is their inability to accommodate the point
density to the complexity of the terrain relief. As a result, gridded data occupies a large
storage space with highly redundant data in flat areas, while abrupt changes in the relief of
rough terrain areas may be under sampled. In this case, the only solution to represent the
terrain for a required level of accuracy is to increase the overall sampling density, which may
generate an excessive number of data points. Another important drawback of using grid terrain
models is that some topographic features forming 3D structures (e.g. overhangs, cliffs, caves,
riverbeds [4], wave-cut platforms or surface-rupturing landforms generated by earthquakes
[84, 87]) cannot be represented by the model. Since these structures involve several elevation
values for the same point in the base plane, it is impossible to characterize them using height
fields.

TIN data structures constitute another common strategy for representing DTMs. In this
case, terrain data is stored as a triangular mesh generated by the tessellation of the sampled
points –usually following an irregular distribution– in the actual terrain. TIN based mod-
els are able to represent any terrain feature without problems, as they are real 3D surfaces.
Consequently, adaptive sampling is also possible by allocating more vertices in the abrupter
regions of the model and a fewer number in the flat homogeneous areas. This ability to store
irregularly sampled terrains contribute to a bigger efficiency in the number of points needed
to faithfully represent the relief. However, it also implies an increased complexity of the data
processing since topological relations have to be computed and recorded explicitly.

The advantages and drawbacks of both structures have been extensively discussed in the
literature [83], concluding that none of them is clearly superior for every kind of processing
tasks involving DTMs. Hence, a real-world digital terrain modeling system needs to work
with both classes of data structures at the same time. For instance, the terrain model defined
in the CityGML standard [26] allows the combination and nesting of different terrain models
delimited by region of interest markers. This type of scenario, where several DTMs from
different data sets are available for the same territory, is not uncommon.The combination of
large scale regional DEMs with finer resolution TINs representing specific geologic structures
or man-made constructions, is a fairly typical case. Hybrid DTMs represent [4, 88, 87], in
this context, an alternative and convenient approach for enhancing large-scale DEMs, without
increasing the grid resolution or transforming the original dataset into a TIN-based represen-

1.2. Interactive 3D visualization 7

Joint Eurographics-IEEE TCVG Symposium on Visualization, May 2000, to appear.

elevation values for points of D(P) by interpolating the height values for data points
of P. The domain of G is defined as D(G) = D(P).

An approximation tree As,d(G) for a terrain model G is represented by a tree; its
nodes are called geometry patches. Each geometry patch N represents a rectangular
region D(N) ⊆ D(G) and approximates the terrain surface G in that region by an ap-
proximating terrain surface G(N) = (P(N), hG(N)). The set P(N) consists of at most s
data points: |P(N)| ≤ s. Furthermore, the four corner points of D(N) must be contained
in P(N). The way the node calculates the data points P(N) depends on the approxima-
tion strategy adopted by the node. For example, a grid-based node will select evenly
spaced points from a grid data set, whereas a TIN-based node will select points from
an arbitrary data set based on an error criterion.

The geometric approximation error ε(N) of a geometry patch N is defined by the
maximal vertical distance between the terrain models G(N) and G:
ε(N) = maxp ∈ D(N)|hG(N)(p) – hG(p)|.

Each terrain patch N can have at most d child nodes. The child nodes are con-
structed as follows: If the geometric approximation error ε(N) exceeds a certain
threshold ε ≥ 0, the domain D(N) is decomposed into a set of at most d rectangular,
disjoint subdomains D(Ni). The strategy for decomposing a patch depends on the type
of the node: a grid-based node applies a quadtree-like subdivision, whereas a TIN-
based node is subdivided by a line parallel to the x- or y-axis. For each subdomain
D(Ni), a child node Ni of N is constructed which approximates the terrain surface in
that subdomain. The domain of the root node of the approximation tree As,d(G) is
D(G) covering the whole domain of the terrain G.

3.2 Multiresolution Data Structure for Terrain Textures

Multiresolution modeling for texture data in the context of multiresolution terrain
models is motivated by the following observations:
• Visualization applications are likely to use texture data up to several hundreds of

megabytes, for example, in cartographic applications. However, graphics hardware
imposes constraints on the size of textures. For example, common OpenGL im-
plementations can process textures up to 1024 x 1024 pixels and constrain the ac-
tual size to a power of 2, i.e., 2m x 2n pixels.

• The selection of a level-of-detail texture depends on the texture approximation

Fig. 1. Hybrid terrain model specified by a reference grid and partially refined by TINs (left),
view of the terrain model with TINs (center) and without TINs (right)Figure 1.3: Example of a hybrid terrain model formed by a base grid and highly detailed TINs
extracted from [4]. A wireframe view of the terrain model is shown at left, a render of the
integrated model in the middle and the same view but without using the detailed TINs at right.

tation. Hybrid data model can thus represent really complex terrain models by integrating
information from different sources to detail specific regions of interest. As an example see
Figure 1.3 where the grid cells describes the DEM and the TIN is included for topographically
complex or interesting terrain parts like the riverbed shown in this case.

1.2 Interactive 3D visualization

The visualization or rendering of three-dimensional (3D) models consists in the generation
of a recognizable visual representation – usually a photorealistic image – of the digital data
stored by the model. If this visual representation is generated within strict time constraints
since any of the parameters of the visual representation change (i.e. lightning, model attributes
or viewpoint position), the process is labeled as real-time visualization. The process becomes
interactive if the main aspects of the visual representation can be directly controlled by the
user process.

The core component of real-time visualization systems is the graphics rendering pipeline

[1]. The pipeline is the standard organization of the processes involved in the generation of
images from a 3D scene description containing models, lights, and virtual camera definitions.
The resulting image produced by the pipeline is determined by the geometry and the material

8 Chapter 1. Introduction

Figure 1.4: Conceptual rendering pipeline.

properties of the models, the lightning definition, and the placement of the virtual camera in
the scene. This topic is covered in more detail in the next sections.

1.2.1 Graphics rendering pipeline

The concept of a rendering pipeline may be implemented in many different forms. Concep-
tually, however, the pipeline is composed by three main stages: application, geometry, and
rasterizer. This structure is depicted in Figure 1.4. Those three stages are also composed
by several substages forming a pipeline in itself, which may be implemented by software
components or by a hardware graphics accelerator. Ideally, this pipeline architecture is able
to execute pipeline stages in parallel, producing a noticeable increase in performance only
limited by the pace of the slowest stage.

The application stage represents the rendering application program, running on the CPU
and feeding commands to the graphics subsystem. The geometry stage performs per-vertex
and per-primitive operations such as coordinate transformations, lighting, texture coordinate
generation, and clipping. An example of the operations included in this stage is depicted in
Figure 1.5. Finally, the rasterizer subsystem performs per-pixel operations, like writing the
final color values into the framebuffer, or other complex operations like depth buffering, alpha
blending, and texture mapping. Nowadays, the geometry and rasterizer stages are usually

1.2. Interactive 3D visualization 9

Screen mappingCulling and clippingProjection

Lighting

Model transform (object and world space)

View transform
(world and camera space)

Figure 1.5: Geometry processing pipeline.

performed by specific hardware, denominated Graphic Processing Unit (GPU), that contains
many programmable cores instead of the traditional fixed-operation hardware.

1.2.2 3D object representation

A 3D object is a collection of geometric primitives representing an entity in the scene consid-
ered for rendering. Consequently, a scene is the collection of all the models in the environment
to be rendered, also including other attributes as material descriptions, lighting, and the view
definition. 3D objects can be described in terms of the volume they occupy (volumetric rep-
resentation) or by the external surface of the model which marks the separation between the
object and the surrounding space (surface representation). Volumetric representations are not
used for terrain models, since terrain models already represent an actual surface.

In computer graphics, polygonal meshes are widely used for the representation of 3D mod-
els since they present a convenient mathematical simplicity which leads to simple and regular

10 Chapter 1. Introduction

algorithms that embed well in hardware. Thus, they are frequently used as a sort of lowest
common denominator for any model representation. Polygon meshes approximate the surface
shape of an object by specifying a set of points in space, which define the position of vertices
of polygonal faces, and the adjacency relations between them. In practice, triangle meshes
are almost exclusively used, since triangles are simple and convenient convex polygons and
all their vertices reside in a single plane in a 3D space. Furthermore, any polygonal mesh can
be transformed into a triangle mesh since every polygon with n vertices that does not inter-
sect with itself can be triangulated using n− 2 triangles. Several algorithms [40, 74, 75, 55]
have been developed for the triangulation of a point set with different time complexities and
properties in the results obtained. For instance, some triangulating algorithms are less prone
to produce thin or sliver triangles than others, which is a desirable property since the area of
sliver triangles is almost null and they may pose numeric problems in computations or intro-
duce artifacts during visualization. Hence, the mesh geometry is stored by the mesh vertices,
and the topology is represented by the connectivity between the mesh points, that is, by the
edges and faces of the mesh. Different edge-based and triangle-based [1] strategies exist to
store the connectivity, such as triangles list, triangle fans, triangle strips, shared vertex rep-
resentation or half-edges. Nevertheless, current graphics hardware is only capable of dealing
with triangle-based ones.

An important issue for avoiding rendering artifacts related to polygonal meshes is the
two-manifold property. A polygonal mesh is said to be two-manifold if every point in the
mesh has a neighborhood topologically equivalent to an open disk of E2 (Euclidean space).
Intuitively, two-manifolds are non-selfintersecting, closed surfaces. Consequently, a mesh is
a two-manifold with boundary if every point has a neighborhood topologically equivalent to
an open disk of the two-dimensional euclidean space E2, except points on the edge of an
open surface patch. Intuitively speaking again, two-manifolds are non-selfintersecting, open
surfaces. Figure 1.6 shows some examples of non-manifold meshes.

Rendering applications are constrained by a tradeoff between representation detail and
performance. Note that the accuracy obtained modeling a surface with a triangle mesh model
is directly related to the storage cost and computation time required to process it. Even though
hardware computing power grows up quite fast, specially in graphics related hardware, the
complexity of the rendered 3D models has continuously increased due to technological im-
provements of the sensing technology. Naturally, a model capturing very fine surface details
is desirable for ensuring the best quality results in numerical processing, but the storage and

1.3. Adaptive multiresolution rendering 11

Figure 1.6: Examples of non-manifold meshes.

transmission costs for high-quality models rises dramatically for finer sampling resolution.
Furthermore, when the model is rendered from a distant viewpoint the detail of the entire ob-
ject is highly redundant, unnecessary and wasteful. Since many applications require far less
detail, specially those with time constraints as interactive visualization, it is often desirable
use a simpler approximation of the original model to achieve interactive rendering and mean-
ingful results at the same time. This conflict between rendering quality and speed is handled
with adaptive rendering techniques, to cope with the wide range of viewing conditions in a
consistent manner.

1.3 Adaptive multiresolution rendering

The main objective of this dissertation is rendering high quality hybrid models without cracks
or holes. Our second objective is achieved interactive rendering of these models. Therefore,
a balance of the competing requirements of realism and frames per second is chosen. In this
section, we describe briefly the most common multiresolution approaches for terrain render-
ing. A more detailed description can be read in [57].

Realistic representations of geometrically complex scenes may easily use as far as millions
of polygons, specially in the case of terrain models. In these context, occlusion and view
frustum culling techniques [1] are not sufficient for meeting the performance requirements
of interactive visualization systems and high quality final images.Adaptive multiresolution
techniques use different representations of a dataset during the rendering process constrained
by user imposed time or quality requirements. The strategy of using several representations
of a geometric object with different levels of accuracy and complexity is denominated Level-

12 Chapter 1. Introduction

Of-Detail (LOD) modeling. This technique, first exposed in [15], manages to reduce the
rendering cost of a scene without significant loss in the visual appearance of the rendered
image. Even though the most common applications of LOD modeling use polygonal meshes,
the essential concepts may be applied to other model representations as well.

The simplest implementation of a LOD representation system consists in using a collec-
tion of meshes of different sizes, each one of them representing the object at a given resolution.
LOD meshes can be built easily by the repeated application of any simplification algorithm
with different quality targets. This basic approach, called discrete LOD, is similar to the orig-
inal concept proposed by [15] and it is easy to implement, easy to generate and generally
quite fast. However, this simple LOD approach present some practical limitations. First, the
number of levels is limited by storage constraints since each mesh is stored independently.
Second, the transitions from one level to a different one are abrupt, hence causing unpleasant
popping effects during the visualization. The third main drawback of discrete LODs is that
the resolution of each level mesh is uniform, meaning that there is no possibility of tuning the
resolution of very large objects spanning several ranges of distance from the viewpoint within
the same view. To overcome the first two problems mentioned above continuous LOD ap-
proaches were developed. The view-dependent or anisotropic LOD methods were developed
to solve the third one.

A continuous LOD model is generated creating a range of simplified representations of
the original model, in order to capture a continuous spectrum of levels of detail that could
be reconstructed on demand. An usual approach to create these multiresolution structures
is to store a hierarchical sequence of coarser and coarser versions of the model, automati-
cally generated by surface simplification methods. Note that although surface simplification
and multiresolution model generation algorithms are related in some aspects, their aims are
completely different. In polygonal surface simplification the goal is to generate a simplified
model from the input polygonal mode. On the contrary, the multiresolution model generation
process has a more complex goal: to build a new representation of the original model which
allows quick generation of adaptive approximations of the original model.

Using a multiresolution data structure allows the real-time extraction of finely tuned rep-
resentations during rendering to fulfill the requirements of the visualization system. The basic
workflow is followed by these techniques during rendering is depicted in Figure 1.7. At the
beginning of each frame generation the multiresolution structure is queried to obtain the cus-

1.3. Adaptive multiresolution rendering 13

Original model

Initialization

Simplified model

Rendering

Multiresolution
structure

Selective refinement
method

Rendered
model

Query parameters
(viewpoint, error...)

Figure 1.7: General workflow of a multiresolution rendering method.

tomized representation of the model that will be used in the frame according to the active view
parameters.

Several publications [58, 46, 42, 43, 67, 68] have characterized the key properties to obtain
a valid multiresolution scheme. Despite some minor differences depending on the author’s
point of view, they can be summarized in the following points:

– Efficient information processing. The algorithm for retrieving data from the model
should be capable of extracting any of the different LODs existing in the structure in a
short period of time. Hence, information should be stored according to an optimized
strategy for the extraction of data on request.

14 Chapter 1. Introduction

Cracks

(a)

T-Junctions
(b)

Figure 1.8: Common LOD artifacts: (a) cracks; (b) T-Junctions.

– Small storage penalty. The storage cost of the multiresolution representation should not
be significantly larger than the original object. A limited constant factor of increment
is accepted and, actually, unavoidable.

– Continuous surface. None of the approximations retrieved from the multiresolution
model should present any inconsistencies or holes in the surface. A common prob-
lematic situation in multiresolution models is when adjacent triangles exist at different
levels of detail. In this situation, some cracks may appear along the edge, since the
higher LOD introduces extra vertices that are not present on the lower LOD. During
rendering these cracks can cause holes and annoying artifacts in the rendered image.
Another related artifact appears when the vertex from a higher LOD triangle does not
share a vertex in the adjacent lower LOD triangle, forming a T-junction. This can also
result in visible shading differences across such edges. Figure 1.8 illustrates both of
these cases.

– Smooth transition between consecutive approximations. Transition from one simplified
approximation to another (either to increase or to decrease detail) should be carried out
smoothly, avoiding abrupt changes and popping effects.

– Avoiding loss of information. The multiresolution model should be also capable of
representing the original object accurately.

1.3. Adaptive multiresolution rendering 15

(a) (b)

Figure 1.9: View-dependent LOD rendering from [47].

Discrete and continuous LODs are designed to work well when the graphic scene con-
tains a large number of small objects. View-dependent LOD approaches, on the other hand,
are useful for rendering very complex models representing physically large objects, such as
terrains, that cannot be adequately simplified without view-dependent techniques. Rendering
very large scale terrain data poses an additional issue that need to be specifically addressed:
since the model cover large areas of terrain, the viewpoint is simultaneously very close and
very far away from the terrain surface. Using a uniformly detailed multiresolution model in
this case is not sufficient to obtain a good quality visualization. The solution is to use an
anisotropic or view-dependent multiresolution model. In a view-dependent multiresolution
model, the same object can span multiple levels of simplification at the same time. For exam-
ple, nearby portions of the object will be shown at higher resolution than distant ones. Hence,
when applied to DTMs, terrain areas lying nearer the viewpoint could have a finer resolution
than ones farther away. Figure 1.9 shows an example of this technique: at left, Figure 1.9(a)
shows a high quality rennder of a terrain model obtained with a view-dependent method; at
right, Figure 1.9(b) depicts exactly the same scene but rendered from top and also showing
the view frustum with red lines. As it is expected, triangle density is much higher near the
viewpoint and it becomes progressively lower at larger distances from it. This leads to an
optimized use of the resources since geometry primitives are allocated where they are most
needed within objects, avoid the aliasing effects associated to the different spatial precisions
visible in the image. Therefore, a view-dependent simplification criteria is used to select dy-

16 Chapter 1. Introduction

namically the most appropriate level-of-detail for any model region taking into account the
features of the region and the viewpoint location.

The key benefit of this approach is the local adaptation of the model geometric complexity
to continuously changing view parameters. However, this dynamic re-tessellation adds a run-
time overhead which should be considered, as the performance gain obtained because of the
better simplification has to be greater than the additional time spent in the selection algorithm.

Geovisualization applications were among the first where those ideas were adopted and
implemented, due to the huge size of the models. In the next subsections a brief overview
of the different error metrics used in the generation and rendering of multiresolution models
is presented first, and then a review of the most important grid-based and TIN-based mul-
tiresolution methods. For a exhaustive review of the field we recommend [25, 48, 57] as well
established references.

1.3.1 Error metrics for multiresolution rendering

Using multiresolution methods in a geovisualization system means that some kind of progres-
sive approximation of the original model is used to increase the performance or viability of
the system, since the original model would be too large to be appropriately handled by the ap-
plication [57]. Consequently, the coarser approximations used in the visualization introduce
errors in the output that need to be adequately measured and managed to control the quality
of the visualization. For this purpose, different error metrics have been developed in the liter-
ature, largely classified in two main approaches: those measuring the geometric error of the
approximation in the object-space or those measuring the error produced in the image-space
of the output. Both approaches are not mutually exclusive and they are often combined in the
same multiresolution algorithm.

The object-space metric can be used to select the appropriate simplified representation in
non-view dependent multiresolution method, as it measures the actual geometric deviation
from the original models. However, an object-space geometric error metric is not sufficient to
adaptively simplify terrain models. Due to the typical large extension of this kind of models,
far away regions must be simplified more aggressively than nearby areas. As this depends on
the camera position, which is continually changing in interactive rendering session, the metric
used to select an approximation for rendering must adapt dynamically to the view conditions.

Therefore, object-space error metrics are most typically used during the generation of the
hierarchical data structures for the multiresolution representation of a model. In this phase,

1.3. Adaptive multiresolution rendering 17

ε

Figure 1.10: Vertical error introduced in the mesh removing the mid-edge vertex.

the error produced by every simplification operation must be measured and accounted. An
error metric is used to select the most appropriate simplification operation for each step. A
common choice for terrain elevation models was proposed in [76] as the vertical distance
of a removed vertex with respect to the resulting height interpolated from its parent nodes,
as shown in Figure 1.10. In a formal way, the error (ε) of omitting the data point in the
simplified representation is difference between the elevation on the reference surface F(x,y),
and the elevation of the data in the final representation sz:

ε =‖ sz−F(x,y) ‖ (1.1)

Note that the error metric must use the original surface as reference to measure the error
at each point and not the immediate parent nodes.Errors are accumulated during the iterative
construction process, and thus the final error could be larger than the specified threshold, even
if the threshold is respected at every simplification step.

Another question associated to the error metric for the simplification operations is the
storage of the computed error values. In a per-triangle approach, the error is stored for each
triangle appearing in the multiresolution tessellation of the model, which is quite costly in
terms of memory usage. In a per-vertex approach, however, only one error value is stored for
model vertex, largely reducing the memory cost of the metric. Additionally, using a technique
called error saturation, those per-vertex error values can be also used to enforce different
constraints on multiresolution hierarchies, such as dependencies between simplification oper-
ations or topology preservation. The error saturation consists in associate to each vertex the
maximum error value of all its dependencies and its own computed error, which guarantees
that dependency resolution is naturally handled during of the traversal of the multi resolution
hierarchy

18 Chapter 1. Introduction

Survey on semi-regular multiresolution models for interactive terrain rendering 15

Other geometric distance metrics, instead of the verti-
cal offset measure, must be treated in a similar way to pre-
serve monotonicity for an efficient output sensitive top-down
adaptive mesh refinement approach.

An object-space geometric approximation error metric
is defined in [13] by calculating for each triangle t in the
bin-tree hierarchy the thickness et of a bounding wedgie that
encloses all children of its subtree as shown in Figure 32.
This measure bounds the maximal deviation of a simplified
mesh with respect to the full resolution input data, however,
has to be computed and stored for every triangle that can
possibly be defined by the multiresolution hierarchy. This
basic object-space approximation bound is input to a view-
dependent image-space error metric as discussed in the fol-
lowing section.

11

possibly be defined by the multiresolution hierarchy. This
basic object-space approximation bound is input to a view-
dependent image-space error metric as discussed in the fol-
lowing section.

FIGURE 28. The thickness of a bounding wedgie defines an
object-space geometric approximation error.

5.2 Image-Space Approximation Error
A static object-space geometric error metric is not sufficient
to adaptively simplify terrain for perspective rendering. This
is because far away regions must be simplified more aggres-
sively than nearby areas. As this depends on the observer’s
location and changes continually, the error metric must be
defined dynamically and view-dependently.

In [LKR+96] the definition of an efficient view-depen-
dent image-space error metric has been proposed that deter-
mines removal or inclusion of vertices for a given
viewpoint. As illustrated in Figure 29, the basic idea of this
error metric is that triangle pairs can be merged if the
change in slope εv at the removed base vertex v projected
into screen space is smaller than a given threshold τ. The
line segment between the removed base vertex v
and its linear interpolation is perspectively
projected onto the screen space viewing plane as ρv. If ρv is
smaller than the tolerance τ then the vertex v can be
removed and the corresponding triangle pairs merged. Note
that the projected delta segment ρv is not defined with
respect to the highest resolution mesh or the current LOD
mesh but rather based on the adjacent vertices vl and vr of
the next lower resolution in the quadtree. Therefore,
although hardly noticeable in practice, the metric as defined
in [LKR+96] suffers from the same limitations as the error
computation of the bottom-up triangulation method pre-
sented in [SS92] and does not provide a guaranteed error
bound on the final triangulation. For this, the error metric
must either be saturated correctly, or defined and maximized
on each triangle with respect to the full resolution mesh.

FIGURE 29. Vertical distance δbetween removed base
vertex v and its linear interpolation v.

For efficient block-based mesh simplification, the view-
dependent image-space error metric is extended to entire
quadtree blocks in [LKR+96]. In particular, if for a quadtree
region R the maximum delta projection of all higher resolu-
tion vertices within R is smaller than the threshold τ then
they can be ignored. For an axis-aligned bounding box of a
quadtree block R and given viewing parameters, one can
compute the smallest elevation delta εl and largest εh of that

box that when projected onto screen may exceed τ. There-
fore, if the maximum vertical error εmax of all vertices
is smaller than εl then R can be replaced by a lower LOD
block, and if εmax is larger than εh then R has to be refined
into smaller blocks. Otherwise the screen space projected
errors ρv of all vertices have to be computed and com-
pared to τ individually.

The thickness εt of a bounding wedgie as introduced in
[DWS+97] (see Figure 28) can be used to estimate the maxi-
mal image-space distortion ρt of a triangle t for view-depen-
dent simplification similar to the approach presented in
[LKR+96]. Consequently, for any given triangulation T, its
image-space distortion can be bounded by the maximum
projected length ρt of εt of all triangles . Additionally
to this image-space distortion error metric, [DWS+97] pro-
poses several other mesh refinement and simplification
measures such as: backface detail reduction, surface normal
distortion, texture-coordinate distortion, silhouette preserva-
tion, view frustum culling, atmospheric or depth attenua-
tion, and region of interest.

In [LP01] and [Ger03] it has been observed that also
view-dependent error metrics can, in a sense, conservatively
be saturated similar to [Paj98a, Paj98b] for object-space
measures. This works if the image-space error metric ρv of a
vertex v is based on a static geometric approximation error
εv which is perspectively projected into image-space
(divided by dv given the distance dv of the vertex v to the
viewer). For this to work, additionally to εv, a conservative
bounding sphere radius rv is needed for each vertex. This
attribute rv defines a nested bounding sphere hierarchy on
the restricted quadtree vertex dependency graph [LP01]. A
vertex v will be selected for the current LOD triangulation if its
conservative image-space error is larger than the
given threshold τ.

In SMART [BPS04] the same basic error metric and view-
dependent vertex selection criterion gives rise to a
τ-sphere defined for each vertex by the radius .
Hence vertex selection is simplified to all vertices whose τ-
spheres contain the viewpoint. Further it is elaborated in
[BPS04] that a so called τ-save-distance can dynamically be
maintained, which bounds for each vertex the deviation of the
viewpoint that does not change the LOD level of the vertex.
This concept allows for optimized LOD computations as well
as efficient vertex caching, and results in significantly
improved LOD meshing and rendering performance.

6. Cluster Triangulations
The impressive improvement of graphics hardware in terms
of computation and communication speed is reshaping the
real-time rendering domain. A number of performance and
architectural aspects have a major impact on the design of
real-time rendering methods.

Todays GPUs are able to sustain speeds of hundreds of
millions of triangles per second; this fact has two important
implications for real-time rendering methods. First of all, to

εt

εv v v–=
v vl vr+() 2⁄=

v

εv

vr

vl

v

v R∈

v R∈

t T∈

ρv
ε

dv rv–
---------------=

dv
εv
τ---- rv+<

rv
τ εv

τ---- rv+=

Fig. 32 The thickness of a bounding wedgie defines an object-space
geometric approximation error.

6.2 Image-Space Approximation Error

A static object-space geometric error metric is not sufficient
to adaptively simplify terrain for perspective rendering. This
is because far away regions must be simplified more aggres-
sively than nearby areas. As this depends on the observers
location and changes continually, the error metric must be
defined dynamically and view-dependently.

In [34] the definition of an efficient view-dependent
image-space error metric has been proposed that determines
removal or inclusion of vertices for a given viewpoint. As
illustrated in Figure 33, the basic idea of this error metric
is that triangle pairs can be merged if the change in slope
ev at the removed base vertex v projected into screen space
is smaller than a given threshold t . The line segment
e = v� v between the removed base vertex v and its linear
interpolation v = (vl + vr)/2 is perspectively projected
onto the screen space viewing plane as rv. If rv is smaller
than the tolerance t then the vertex v can be removed and
the corresponding triangle pairs merged. Note that the
projected delta segment rv is not defined with respect to
the highest resolution mesh or the current LOD mesh
but rather based on the adjacent vertices vl and vr of the
next lower resolution in the quadtree. Therefore, although
hardly noticeable in practice, the metric as defined in [34]
suffers from the same limitations as the error computation
of the bottom-up triangulation method presented in [58]
and does not provide a guaranteed error bound on the
final triangulation. For this, the error metric must either
be saturated correctly, or defined and maximized on each
triangle with respect to the full resolution mesh.

11

possibly be defined by the multiresolution hierarchy. This
basic object-space approximation bound is input to a view-
dependent image-space error metric as discussed in the fol-
lowing section.

FIGURE 28. The thickness of a bounding wedgie defines an
object-space geometric approximation error.

5.2 Image-Space Approximation Error
A static object-space geometric error metric is not sufficient
to adaptively simplify terrain for perspective rendering. This
is because far away regions must be simplified more aggres-
sively than nearby areas. As this depends on the observer’s
location and changes continually, the error metric must be
defined dynamically and view-dependently.

In [LKR+96] the definition of an efficient view-depen-
dent image-space error metric has been proposed that deter-
mines removal or inclusion of vertices for a given
viewpoint. As illustrated in Figure 29, the basic idea of this
error metric is that triangle pairs can be merged if the
change in slope εv at the removed base vertex v projected
into screen space is smaller than a given threshold τ. The
line segment between the removed base vertex v
and its linear interpolation is perspectively
projected onto the screen space viewing plane as ρv. If ρv is
smaller than the tolerance τ then the vertex v can be
removed and the corresponding triangle pairs merged. Note
that the projected delta segment ρv is not defined with
respect to the highest resolution mesh or the current LOD
mesh but rather based on the adjacent vertices vl and vr of
the next lower resolution in the quadtree. Therefore,
although hardly noticeable in practice, the metric as defined
in [LKR+96] suffers from the same limitations as the error
computation of the bottom-up triangulation method pre-
sented in [SS92] and does not provide a guaranteed error
bound on the final triangulation. For this, the error metric
must either be saturated correctly, or defined and maximized
on each triangle with respect to the full resolution mesh.

FIGURE 29. Vertical distance δbetween removed base
vertex v and its linear interpolation v.

For efficient block-based mesh simplification, the view-
dependent image-space error metric is extended to entire
quadtree blocks in [LKR+96]. In particular, if for a quadtree
region R the maximum delta projection of all higher resolu-
tion vertices within R is smaller than the threshold τ then
they can be ignored. For an axis-aligned bounding box of a
quadtree block R and given viewing parameters, one can
compute the smallest elevation delta εl and largest εh of that

box that when projected onto screen may exceed τ. There-
fore, if the maximum vertical error εmax of all vertices
is smaller than εl then R can be replaced by a lower LOD
block, and if εmax is larger than εh then R has to be refined
into smaller blocks. Otherwise the screen space projected
errors ρv of all vertices have to be computed and com-
pared to τ individually.

The thickness εt of a bounding wedgie as introduced in
[DWS+97] (see Figure 28) can be used to estimate the maxi-
mal image-space distortion ρt of a triangle t for view-depen-
dent simplification similar to the approach presented in
[LKR+96]. Consequently, for any given triangulation T, its
image-space distortion can be bounded by the maximum
projected length ρt of εt of all triangles . Additionally
to this image-space distortion error metric, [DWS+97] pro-
poses several other mesh refinement and simplification
measures such as: backface detail reduction, surface normal
distortion, texture-coordinate distortion, silhouette preserva-
tion, view frustum culling, atmospheric or depth attenua-
tion, and region of interest.

In [LP01] and [Ger03] it has been observed that also
view-dependent error metrics can, in a sense, conservatively
be saturated similar to [Paj98a, Paj98b] for object-space
measures. This works if the image-space error metric ρv of a
vertex v is based on a static geometric approximation error
εv which is perspectively projected into image-space
(divided by dv given the distance dv of the vertex v to the
viewer). For this to work, additionally to εv, a conservative
bounding sphere radius rv is needed for each vertex. This
attribute rv defines a nested bounding sphere hierarchy on
the restricted quadtree vertex dependency graph [LP01]. A
vertex v will be selected for the current LOD triangulation if its
conservative image-space error is larger than the
given threshold τ.

In SMART [BPS04] the same basic error metric and view-
dependent vertex selection criterion gives rise to a
τ-sphere defined for each vertex by the radius .
Hence vertex selection is simplified to all vertices whose τ-
spheres contain the viewpoint. Further it is elaborated in
[BPS04] that a so called τ-save-distance can dynamically be
maintained, which bounds for each vertex the deviation of the
viewpoint that does not change the LOD level of the vertex.
This concept allows for optimized LOD computations as well
as efficient vertex caching, and results in significantly
improved LOD meshing and rendering performance.

6. Cluster Triangulations
The impressive improvement of graphics hardware in terms
of computation and communication speed is reshaping the
real-time rendering domain. A number of performance and
architectural aspects have a major impact on the design of
real-time rendering methods.

Todays GPUs are able to sustain speeds of hundreds of
millions of triangles per second; this fact has two important
implications for real-time rendering methods. First of all, to

εt

εv v v–=
v vl vr+() 2⁄=

v

εv

vr

vl

v

v R∈

v R∈

t T∈

ρv
ε

dv rv–
---------------=

dv
εv
τ---- rv+<

rv
τ εv

τ---- rv+=

Fig. 33 Vertical distance ev between removed base vertex v and its
linear interpolation v.

For efficient block-based mesh simplification, the view-
dependent image-space error metric is extended to entire
quadtree blocks in [34]. In particular, if for a quadtree re-
gion R the maximum delta projection of all higher resolu-
tion vertices within R is smaller than the threshold t then
they can be ignored. For an axis-aligned bounding box of
a quadtree block R and given viewing parameters, one can
compute the smallest elevation delta el and largest eh of that
box that when projected onto screen may exceed t . There-
fore, if the maximum vertical error emax of all vertices v 2 R
is smaller than el then R can be replaced by a lower LOD
block, and if emax is larger than eh then R has to be refined
into smaller blocks. Otherwise the screen space projected
errors rv of all vertices v 2 R have to be computed and com-
pared to t individually.

The thickness et of a bounding wedgie as introduced in
[13] (see Figure 32) can be used to estimate the maximal
image-space distortion rt of a triangle t for view-dependent
simplification similar to the approach presented in [34].
Consequently, for any given triangulation T , its image-space
distortion can be bounded by the maximum projected
length rt of et of all triangles t 2 T . Additionally to this
image-space distortion error metric, [13] proposes several
other mesh refinement and simplification measures such
as: backface detail reduction, surface normal distortion,
texture-coordinate distortion, silhouette preservation, view
frustum culling, atmospheric or depth attenuation, and
region of interest.

In [35,36] and [20] it has been observed that also view-
dependent error metrics can, in a sense, conservatively be
saturated similar to [42,42] for object-space measures. This
works if the image-space error metric rv of a vertex v is
based on a static geometric approximation error ev which
is perspectively projected into image-space (divided by dv
given the distance dv of the vertex v to the viewer). For this
to work, additionally to ev, a conservative bounding sphere
radius rv is needed for each vertex. This attribute rv defines a
nested bounding sphere hierarchy on the restricted quadtree
vertex dependency graph [35,36]. A vertex vwill be selected
for the current LOD triangulation if its conservative image-
space error rv = e

dv�rv is larger than the given threshold t .
In SMART [5] the same basic error metric and view-

dependent vertex selection criterion dv < ev
t +rv gives rise to

a t-sphere defined for each vertex by the radius rt
v = ev

t +rv.
Hence vertex selection is simplified to all vertices whose t-
spheres contain the viewpoint. Further it is elaborated in [5]
that a so called t-save-distance can dynamically be main-

Figure 1.11: The object-space approximation error εt defines the size of the wedgie used for
the estimation of the image-space error.

As stated above, an image-space error metric is required for the extraction of an optimal
approximation of the original model in the rendering of terrains. Since this metric provides a
visual fidelity error value taking into account the camera parameters at the rendered frame, it is
used to guide the selection of elements from the multiresolution hierarchy to present a faithful
representation of the original model without noticeable differences. It does so by estimating
the visual error produced by the rendering of the selected approximation compared to the
rendering of the original model, that is the number of pixels affected by the simplification.
Since in the rendering process the object-space of the model is transformed and projected
into image-space using a perspective transform, this screen-space error depends both on the
object-space error of the approximation and on the current viewing parameters, such as the
viewpoint location or the field of view. Consequently, objects far away of the camera are less
significant since, due to the way the perspective transform works, error is larger for objects
close to the viewpoint.

Using the perspective transform, the relation between the 3D object-space surface devia-
tion ε and the screen-space deviation measured in pixel units p, can be generally estimated
for as:

p =
εx

2d tan θ
2

(1.2)

where θ is the total field of view of the camera, x is the screen horizontal resolution and d is
the distance in the viewing direction from the viewpoint to the object.

In [19] a bounding wedgie with a height equal to the object-space error of the approxima-
tion, as shown in Figure 1.11, is introduced for every triangle to estimate its view-dependent
error. Therefore, the image-space error of a triangulation is the maximum projected length
of the bounding wedgies of the triangles involved in the triangulation. Another well-known

1.3. Adaptive multiresolution rendering 19

ε

screen-projected error

viewpoint

Figure 1.12: Computation of the screen-projected error using a bounding sphere of radius
equal to the object-space error.

metric was presented in [44], using a bounding sphere instead of a wedgie to compute the
image-space error valued based on the geometric error, as depicted in Figure 1.12. This metric
can be conservatively saturated to simplify the view-dependent refinement of the multiresolu-
tion model. This error metric or other similar approaches are very frequently used, however,
they only consider the visual error caused by the geometric deviation of the extracted model.
More refined metrics take also into account appearance issues introduced by changes in non
geometric attributes of the model as colors or textures of the original model.

1.3.2 Grid-based multiresolution approaches

The approaches dealing with regularly distributed height samples are by far the most common
approach to the multiresolution rendering of terrain models. A particularly successful and
widely used strategy consists in the generation of a regular multiresolution hierarchy which is
used during rendering to extract a semiregular adaptive triangulation exclusively composed by
isosceles right triangles (an example is depicted in Figure 1.13). Depending on the definition
of the strategy made by each author, this strategy may be considered as a quadtree or triangle
bin-tree triangulation. In practice, it is accepted that both of them produced the same kind
of triangulations. The first methods exploring this strategy were developed by the influential
works by Lindstrom [43] and Duchaineau [19]. Other authors followed and refined the same
methodology in several works developed in the next years such as [58, 72, 6, 80, 82, 44, 45].

This kind of algorithms focused on reducing the number of triangles needed to render a
representation of the model in each frame, assuming that the bottleneck of the system was
triangle processing. However, the continuous improvement of the graphics hardware and the

20 Chapter 1. Introduction

Figure 1.13: Partially simplified terrain mesh using a semiregular adaptive method.

increasing size of the terrain models changed the bottleneck to the CPU, since the refining
algorithm selecting the adequate tessellation triangles to be rendered was not fast enough to
feed the GPU at convenient rate. Thus, new algorithms appeared reducing the CPU load
by adopting a similar scheme of the previous technique but applying the selection algorithm
on pre-assembled optimized triangle batches instead of on basic triangles. Namely, [66, 41]
are two extensions of the previous work by Duchaineau [19] using this primitive batching
approach. Another more recent and performant algorithm following this approach is described
in [18].

A different approach for grid-based terrain multiresolution besides the adaptive quadtree-
based techniques mentioned above is inspired by texture and image LOD techniques. The al-
gorithms usually combine standard 2D data compressors methods with multiresolution schemes
to reduce data transfer bandwidths and memory footprints. In particular, [73] partitions the
terrain mesh into square patches tessellated at different resolutions. Each finer level is repre-
sented by all coarser level vertices plus the additional ones. Since only the additional vertices
need to be sent, the required bandwidth is largely reduced improving the overall communi-
cations between CPU and GPU. The main challenge for this method, as for all tiled block
techniques, is to stitch block boundaries at run-time.

Another very successful algorithm was presented in [46] and later optimized in [3]. This
method organizes the terrain height data in a pre-filtered mipmap pyramid, as illustrated in

1.3. Adaptive multiresolution rendering 21

(a)

(b)

Figure 1.14: Geometry clipmap example from [3]: (a) data pyramid and clipmap; (b) rendered
terrain levels.

22 Chapter 1. Introduction

Figure 1.14. View-dependent approximations are created by stitching together nested rectan-
gular extents of the pyramid, cached in video memory and incrementally refilled with data
as the viewpoint moves, using as refinement criteria the 2D distance from the pyramid cen-
ter. The technique works best for wide field of views and nearly planar geometry, since the
pyramidal scheme limits the adaptivity of the method. The LOD transition scheme works by
smoothly blending height data between levels and stitching the level boundaries using zero-
area triangles to avoid T-junctions.

1.3.3 TIN-based multiresolution approaches

There is a smaller amount of work devoted to multiresolution terrain rendering using irregular
data meshes. Since the generalization of powerful GPU hardware, most of the developed
method focused on regular meshes, since they fit better to be optimized by the hardware.

One of the first methods using TIN-based multiresolution was described in [67, 16], par-
tially based on the previous work of the authors in pyramidal and hierarchical terrain models.
This MultiTriangulation model is actually a very general framework with works by progres-
sively refining or simplifying an initial TIN through a series of local updates, such as adding
or removing vertices from the mesh, and retriangulating the results. Dependency relationships
between mesh elements, represented as a directed acyclic graph, provide a way to enforce the
creation of continuous meshes. There are several algorithms and data structures that have
been adapted to this method, providing a quite large number of features and capabilities, as
frame coherence or out-of-core data management.

Another important work was developed in [31], and is actually a refinement of his previous
works [32, 30] in view-dependent LOD rendering. The method was specially adapted to
large terrain meshes by partitioning the model into separate blocks which are combined at
run-time. To avoid tears or cracks between adjacent blocks, the simplification of vertices
lying on a block boundary are not allowed. After the preprocessing step, a coarse base mesh
together with an ordered list of vertex split operations are obtained, which allows the local
refinement or simplification of the surface vertices. A screen-space criterion was employed
as error metric for the refinement operations. Since this algorithm was very successful at that
time, in the following years different authors developed similar or derived methods, such as
[21, 35, 33].

The same idea of combining a hierarchy of binary trees or quad-trees with cached groups
of geometric primitives, featured by some grid-based multiresolution method, as mentioned

1.4. Hybrid meshing rendering 23

above, has been also employed with irregular datasets. The BDAM method described in
[13, 14] is one of the most relevants and efficient algorithms. In BDAM the nodes of the
regular hierarchy are formed by precomputed irregular patches of small surface region. Sim-
ilarly, in [39], a previous work featuring an efficient quadtree triangulation hierarchy over an
irregularly sampled point set presented in [59] was extended to use a hierarchy of blocks with
pre-calculated triangulations instead of a hierarchy of vertices.

1.4 Hybrid meshing rendering

Multiresolution modeling is an intelligent strategy for dealing with the processing and ren-
dering of large terrain models. However, using LOD representations of high-resolution grid-
based terrain surface models is not always optimal to represent terrain areas with very irregular
features. The grid terrain models commonly used in multiresolution modeling can only ap-
proximate these features if the resolution largely increases, which implies much larger storage
requirements and memory accesses, even when view-dependent multiresolution optimizations
are employed. TIN models, on the other hand, are more topologically and geometrically pre-
cise in representing complex structures. Using hybrid terrain models combining the benefits
of both representations seems a more natural and efficient way of dealing with this kind of
terrains.

However, direct rendering of hybrid terrain models can generate meshes with holes and
geometric discontinuities between the borders of the different parts. Thus, some kind of strat-
egy is needed to attain a coherent mesh during the visualization. In [5], for instance, it is
pointed out that component meshes of a hybrid terrain model should be locally adapted in or-
der to avoid artifacts at the boundaries. In [20], the authors suggested an adaptive tessellation
procedure to avoid discontinuities in the borders between the different representation models.
In order to connect the meshes, they suggest generating new triangles joining their bound-
aries, but they do not propose any specific tessellation algorithm to perform the task. A more
specific approach for the generation and visualization of hybrid terrain models of geological
faults is presented in [87]. This method, which is also able to cope with heterogeneous data
sources, uses a combination of multiple planes to approximate the complicated surfaces and
geometric shapes of geological faults.

Since the advantages of using hybrid models to integrate heterogeneous terrain data sets
have been barely studied in the literature, the objective of this thesis is to develop a hybrid

24 Chapter 1. Introduction

terrain model approach for the interactive visualization of terrains integrating heterogeneous
data sources. An additional benefit derived of the followed approach consists in the preser-
vation of the original data integrity, since it does not require the modification of the original
datasets. Hence, the original Hybrid Meshing (HM) algorithm with the extensions developed
in this thesis, as well as the new EDP algorithm, the other important line of research followed
during the development of this work, represent a valuable contribution to the geovisualization
and terrain rendering research fields. This dissertation first focus on the HM algorithm and the
work developed to improve and optimize the algorithm, and then presents the work around the
new method for the visualization of hybrid terrain models developed in this thesis, the EDP
algorithm.

Chapter 2 contains a complete review and analysis of the original HM algorithm based
on previous publications [9, 2, 8], as the departing point of this thesis. The HM algorithm
is a modern approach for integrating a base grid model with high resolution TIN meshes
from different datasets in a single, coherent, crack-free hybrid terrain model. It supports
multiresolution rendering in the large grid part and achieves interactive rendering of the whole
hybrid model by using a local tessellation strategy, based on the grid cells, and assisted by
a new theoretical hardware unit in the graphics pipeline. A local adaptive tessellation of
the partially overlapped grid cells is partially precomputed in a preprocessing phase, and
encoded with a LOD-independent data encoding technique. Thus, the local tessellation can
be selectively reconstructed during the interactive visualization and a coherent hybrid model
is obtained without requiring an explicit remeshing of the original data.

Chapter 3 presents two different approaches of a hybrid terrain model visualization soft-
ware. The first approach is based on the HM algorithm, adapting the original method to a
conventional graphics pipeline, without requiring the proposed hardware extension. The sec-
ond implementation presented in this chapter uses a conventional tessellation algorithm to
generate a coherent hybrid model during the visualization process. This method does not re-
quire the partial precomputation of the local tessellations in the grid cells, but also manages
to visualize a crack-free hybrid model. This work has been published in [60]

Chapter 4 describes the GPU-HM method, a parallel implementation of a hybrid terrain
model visualizer running on the GPU. This proposal is based on the original HM algorithm
but adds several enhancements such as a more compact encoding of the preprocessed data
lists, an optimized memory access pattern, a more efficient decoding of the data and, the

1.4. Hybrid meshing rendering 25

most important, it manages to perform several local adaptive tessellation in parallel using the
Geometry Shader unit of the GPU. This work has been published in [62].

Chapter 5 introduces the EHM algorithm, a new method to visualize hybrid models sup-
porting multiresolution rendering of the high resolution TIN meshes as well as the base grid.
The EHM method achieves the complete multiresolution view-dependent rendering of a hy-
brid model by ensuring that the precomputed local tessellation of the TIN boundary can be
reconstructed although some vertices are missing. This is enforced by simple preconditions
during the generation of the multiresolution representation of the TIN part. The work related
to the EHM algorithm has been published in [61].

Chapter 6 details the EDP algorithm, a new approach for generating hybrid terrain models
not related to the HM algorithm. The EDP method overcomes some limitations of the HM
algorithm by using edges as the new basic primitive to join the boundaries of the regular grid
and the irregular high-resolution TIN meshes. This approach manages to avoid the insertion
of additional vertices in the irregular mesh as well as simplifies the preprocessing phase and
achieves a better parallelism during the rendering phase. The work related to this algorithm is
in the process to be submitted to publication[63].

CHAPTER 2

HYBRID MESHING ALGORITHM

The interactive rendering of hybrid terrain models is a barely studied subject in the field of
terrain visualization. The Hybrid Meshing (HM) algorithm was presented in [9] by members
of the Computer Architecture Group in University of A Coruña and University of Santiago
de Compostela, in collaboration with Prof. Dr. Jürgen Döllner of the Computer Graphics
Systems in the Hasso-Plattner-Institut. It is, to our knowledge, the first method for the real-
time rendering of hybrid terrain models that does not require the elaboration of a complete
new model based on the geometry of the source models. The HM algorithm is capable of
rendering multiresolution hybrid models formed by a base multiresolution regular grid mesh
with highly detailed TIN meshes embedded.

The HM algorithm uses an efficient data representation scheme which is not dependent on
the selected LOD for the multiresolution regular part. Instead, an adaptive tessellation is gen-
erated to join the regular and irregular parts of the model. This adaptive tessellation is partially
computed during a preprocessing stage, and encoded using a specifically data structure which
allows the reconstruction on demand during rendering. Since the tessellation is computed in
local patches and generation is made on demand fashion, the adaptive tessellation may adapt
to different cell sizes in the regular part.

The original approach proposed an implementation of the method using a new simple
hardware extension in the graphic pipeline to achieve interactive visualization of high quality
hybrid terrains [2]. This thesis takes the HM algorithm as the starting point to develop an
efficient proposal for rendering hybrid terrain models. During this thesis, the HM method has
been implemented, evaluated and improved in terms of performance (an efficient implemen-

28 Chapter 2. Hybrid Meshing Algorithm

tation using GPUs) and flexibility (a new approach using multiresolution rendering methods
in both the base grid and the TIN meshes). Furthermore, a new different approach has been
proposed to solve some of the limitations detected in the original algorithm.

Since the HM algorithm is the starting point of this thesis, this chapter is devoted to ex-
plain the algorithm in detail. Furthermore, a deep knowledge of the HM algorithm is needed
to understand the problems solved in this work and the new features and enhancements de-
veloped. An overview of the structure and the different phases of the algorithm is presented
first. Next, the specific steps of the processing performed at each phase are explained, as well
as the model representation and the encoding of the data structures. At the end of the chapter,
a detailed analysis of the algorithm is presented.

2.1 HM Algorithm overview

The HM algorithm works following a local strategy to perform an adaptive tessellation be-
tween the borders of the different parts of the model, which is simple and fits well for LOD
rendering. Taking into account that the regular grid can be represented with different resolu-
tions, computing and sending the tessellations required for a specific LOD would not be effi-
cient. In the solution HM algorithm proposes, a unified representation of all LOD-dependent
tessellations is generated. This information is employed by the proposed hardware extension
in the GPU to decode the adaptive tessellation required for a specific LOD.

This is schematically depicted in Figure 2.1. The TIN and grid meshes are sent to the
graphics pipeline together with the unified tessellation representation. The primitives asso-
ciated with the adaptive tessellation are decoded and generated in the GPU, which performs
among other tasks the joint of the borders between the non overlapped parts of the input mod-
els. Moreover, only the existing vertices in the LOD approximation of the grid selected for
the rendering are employed in the process.

Appropriate tessellations for joining every LOD of the grid model are computed and en-
coded using a cell-based strategy, following an efficient and level independent scheme, during
an initialization phase. Then, during visualization, the triangles required for the selected LOD
are decoded on demand from this unified representation, as represented in Figure 2.1. The
final hybrid model is formed by the union of the view-dependent refinement of the grid and
the single-resolution TIN, linked in a single, coherent mesh.

2.1. HM Algorithm overview 29

CPU
(Model Codification)

GPU
(Model Rendering)Grid + TIN

Hybrid Model Data

Figure 2.1: HM algorithm structure.

(a) (b) (c)

Figure 2.2: HM algorithm example: (a) base regular mesh; (b) base regular mesh and detailed
TIN mesh; (c) single coherent mesh obtained by the HM algorithm.

Therefore, the final hybrid model is formed by the union of the view-dependent refinement
of the grid, the single-resolution TIN, and the local adaptive tessellation between their borders.
Furthermore, this method does not alter the original data and it also supports multiresolution
rendering in the grid model. Figure 2.2 depicts an example of the source regular (a) and
irregular (b) parts of the model and the final mesh rendered by the HM algorithm (c).

The rendering steps followed by the algorithm for every frame are summarized in Fig-
ure 2.3. First, the new level-of-detail approximation of the grid mesh is computed depending
on the view conditions and the regular multiresolution algorithm employed. Note that the HM

30 Chapter 2. Hybrid Meshing Algorithm

GC = { 11, 11... 0 }

VC = { (4, 9)(2,1)... (0, 5)(2, 2) }

TB = { 0(1), 1(14)... 8(1) }

Figure 2.3: HM algorithm rendering steps.

algorithm does not rely in any specific implementation detail of the multiresolution rendering
approach providing it is a cell-based method. Once this step is finished, the grid cells Non
Covered by the TIN (NC cells) are sent to the next step in the rendering pipeline, while the
completely covered grid cells (CC cells) are discarded, as they will be replaced by the more
detailed TIN data. Finally, the TIN part is also rendered and the partially covered grid cells
(PC cells) where the borders of the TIN lay, are adaptively tessellated to join both parts.

To perform the tessellation of the PC cells, the HM algorithm is based on local convexifi-
cation of the TIN boundary inside each cell. The convexification of triangle meshes is a well
studied but complex subject for which several solutions have been developed [74, 55]. In the
HM proposal, the convexification for the different levels of detail are computed and encoded
in a compact and efficient way as a pre-processing step in the CPU. This is possible because
the convexification is performed incrementally from the finest to the coarsest level-of-detail

2.2. Adaptive tessellation of the grid cells 31

associated with the grid. This strategy permits the generation of a unified representation of all
convexification levels and, on the other hand, permits the generation of coherent transitions
between contiguous cells corresponding to different LODs.

Therefore, rendering procedure used in the HM algorithm consists of two steps: the local
convexification of the TIN boundary (TB) and inclusion of additional triangles to to join the
grid cells and the resulting local convex hull of the TIN. Triangles associated to the convexifi-
cation of the TB are generated during the run-time visualization by means of simple decoding
operations of the precomputed data structure. Once the TB is turned into a convex structure,
the remaining connection between TB and PC cell corners is easy to accomplish by generating
corner triangles between the cell corner vertices and the convex TB.

In the following subsections all these steps are explained. For the sake of clarity, the order
is deliberately change to begin with the final tessellation process performed after the TIN
boundary has been convexified.

2.2 Adaptive tessellation of the grid cells

Assuming that the TIN has been previously convexified, corner tessellation triangles are
formed during the tessellation process to join the uncovered corners of the cell with con-
secutive vertices of the convex TIN border. The tessellation algorithm starts connecting the
vertices of the already convexified TB with the first uncovered corner of the cell in clockwise
order. This starting corner is stored in one of the different lists encoding the relevant informa-
tion of the ongoing process of tessellation. Then, it continues linking consecutive vertices of
the TB while the introduced triangle does not overlap with the TIN. When this happens, a shift

in clockwise order to the next cell corner is made before continuing with the triangulation.
Since the TIN boundary is at this point of the process a convex structure, it is easy to detect

the overlapping situation by evaluating the angles between the corner and the consecutive
vertices of the TIN, which is implemented in a effective way testing the sign of the cross
product of consecutive edges in the TIN boundary.

Figure 2.4 shows an example where a PC cell and the corresponding convex TIN silhouette
are depicted. The TIN boundary vertices (1,2,3,4,5) and the cell corners uncovered by the
TIN (c3,c0,c1) are processed in clockwise order. The tessellation algorithm connects the
list of corners with the list of vertices, following a sequential order. Hence, c3 corner is
consecutively connected with the vertices of the boundary until an overlap in the mesh is

32 Chapter 2. Hybrid Meshing Algorithm

TIN mesh
1

2
3

4
5

c1

c0

c3
Shift

Figure 2.4: Cell tessellation.

detected. In this example, corner c3 is connected with vertices 1, 2 and 3, but not with 4
because the new triangle (c3,3,4) would overlap with the TIN. Consequently, corner c0 is
selected and connected with 3 and 4.

2.3 Incremental convexification generation

In the previous section has been explained the final procedure of the adaptive local tessella-
tion algorithm, which requires a properly convexified TIN to perform the triangulation of the
PC cells. Since the local convexification of the irregular boundary of the TIN is a potentially
costly operation, it is only calculated once in the preprocessing phase. The resulting convex
border is stored in a simple, efficient and lightweight data structure, encoded for all the differ-
ent detail levels of the grid, as is described in the following section. Similar procedures were
previously proposed in the context of non-convex tetrahedralmesh visualization [38, 37].

The convexification of the TIN is performed incrementally for each PC cell between the
regular and irregular part of the model, starting from the finest grid resolution level. For
each cell at the current level-of-detail the convex hull of the TIN boundary is computed. To
simplify the operation, the HM algorithm assumes that a TIN boundary vertex exists in the
intersection point between the TIN and grid cell boundaries. If it is not the case, these ver-
tices are trivially included before the beginning of the procedure. After this, the concave parts
in the local convex hull of the TB or caves, are identified and triangulated. The generation
of these triangles inside the caves may be performed indifferently by any tessellation algo-
rithm [40, 74, 55]. Finally, the following coarser levels are processed using an incremental

2.3. Incremental convexification generation 33

11
12

13

14

15

16

1719

1820
21

2223

25

24

26

27

28

TIN

(a)

11
12

13

14

15

16

1719

1820
21

2223

25

24

26

27

28

TIN

(b)

11
12

13

14

15

16

1719

1820
21

2223

25

24

26

27

28

TIN

(c)

Figure 2.5: Incremental convexification of the TIN boundary: (a) original cells; (b) finest
LOD convexification; (c) next LOD convexification.

strategy that preserves the triangles generated during the convexification of previous levels.
This incremental procedure continues for each cell of each level of the grid, till the coarsest
level-of-detail is completed.

Figure 2.5(a) shows four cells corresponding to the finest resolution level of a grid and
the corresponding TIN silhouette covering the area; TIN is depicted in gray and the TIN
boundary is explicitly marked using circles to indicate the vertices. In this example, local
convex hulls are delimited by vertices {11,12,15} (down-right cell), {15,21,22} (up-right
cell), {22,26} (up-left cell) and {26,27,28} (down-left cell). For the sake of clarity, TIN
boundary vertices are represented in the examples by their indexes in the TB array. The
triangulation of the caves after preprocessing the finest LOD are displayed in Figure 2.5(b).
In 2.5(c), the following coarser level-of-detail is analyzed and the new local convex hull is
determined by vertices {11,28}. New convexification triangles are shown with a different
color of the ones generated in previous steps.

Note that following this incremental convexification approach, the convexification trian-
gles corresponding to the different levels of detail may be efficiently encoded in a unified
representation. Furthermore, since cell borders are attached to preserved vertices of the TIN
boundary, transitions between different levels of detail in contiguous cells can be handled
without discontinuities.

34 Chapter 2. Hybrid Meshing Algorithm

NC cell

PC cell

CC cell

Figure 2.6: Grid cell types according to the coverage pattern with the TIN silhouette.

2.4 Hybrid model representation

In the HM algorithm the adaptive tessellations are mostly pre-computed and the resulting
triangles can be efficiently encoded in a unified representation. This information, together
with the grid and the TIN, is sent to the graphics card to generate all the adaptive tessellations
required for any LOD. In the following, the additional information to be pre-processed and
sent from the CPU to the graphics card is indicated.

2.4.1 Grid classification list

The relationship and overlapping pattern of the regular and irregular parts of the hybrid model
is determined by the classification of the grid cells as PC, NC and CC, as it is depicted in
Figure 2.6. Since these different kind of cells will be processed in different ways, they have
to be easily identified. The Grid Classification List (GC) is employed for this purpose.

The GC list is the sequence of codes of the different cells of the regular grid for a given
LOD. As usually the TIN only cover small sections of the terrain model, a variable length
code is used, assigning the shortest code associated to the NC cells: 0 code for NC cells, 10
for CC cells and 11 for PC cells.

2.4. Hybrid model representation 35

Figure 2.7: Detail of PC and CC cells contained in a fragment of a real TIN boundary.

As an example of a real GC list, the four cells of Figure 2.7 could be represented as (in
row order, from left to right):

GC = {11,11,11,0} (2.1)

This list indicates that the first three cells have to be adaptively tessellated while the fourth
one can be directly rendered.

2.4.2 TIN boundary

The encoding of the convexification triangles is accomplished by means of the list of TB ver-
tices together with some additional connectivity information. Assuming that the TB is stored
following a clockwise ring structure, the connectivity associated to each vertex indicates the
distance, that is, the number of vertices between that vertex and the most distant one in the
ring connected to it. This way, if connectivity of vertex vi is j, it means that the farthest ver-
tex in the ring connected to it is vi+ j. This connectivity value is the only additional piece of
information to be stored per boundary vertex.

36 Chapter 2. Hybrid Meshing Algorithm

Let us consider again the example described in Figure 2.5 to illustrate this storing strategy.
The TB corresponding to the TIN depicted in that figure can be represented with the TB list:

T B = { . . . 11(17),12(16),13(1),14(1),15(11),16(2),17(1),18(2),19(1),
20(1),21(5),22(4),23(1),24(1),25(1),26(1),27(1) . . . }

(2.2)

where connectivity value of each vertex is indicated within brackets. For example, vertex 15,
with a connectivity value of 11, is connected with vertex 26 and all the vertices between them
not placed inside a nested cave. Nested caves are simply detected by looking for vertices with
connectivity values greater than one, which indicates that the vertex is the beginning of a cave.
In this case, connectivity values indicate three caves: between 16 and 18, between 18 and 20
and between 21 and 26. The algorithm assumes a sequential connection of the cave starting
vertex to the following vertices until the cave ending, but this connecting structure is broken
if nested caves exist. For this example, vertex 15 is connected to all vertices between 16 and
26 not belonging to a nested cavity, that is: {16,18,20,21,26}.

Note that the connectivity values of the coarsest LOD can be also used for the tessellation
of a different LOD, as it is explained in [9]. Hence, this unified representation of the local tes-
sellation data triangles may be employed for the reconstruction of TB convex hull at different
levels of detail.

2.4.3 Vertex classification list

Finally, one complementary list is used to classify the vertices implied in the local PC cell
tessellations: the Vertex Classification (VC) list. This list maps the TIN Boundary vertices to
the corresponding cell of the grid to be employed in the local tessellation.

That is, since the TB vertices, as well as the cell corner vertices, are sequentially numbered
in clockwise order, the information related to a PC cell can be encoded as a 4-tuple {A,L,C, I},
where A represents the first TB vertex falling into the cell, L is the total number of TB vertices
present in the cell, C is the first corner vertex not covered by the TIN mesh, and finally I is
the number of uncovered corners in the cell. Note that the corners notation employed is: 0
(up-left), 1 (up-right), 2 (down-right) and 3 (down-left).

For example, the PC cell depicted in Figure 2.8 can be represented, following this scheme,
as the tuple {10,7,1,3}, since it contains the TB vertices from 10 to 16 and the uncovered
cell corners from c1 to c3.

2.5. Rendering hybrid meshes with the HM algorithm 37

TIN
c1

c2c3

10

11

1213
14

15
16

c0

Figure 2.8: Local cell tessellation in the HM algorithm.

2.5 Rendering hybrid meshes with the HM algorithm

Due to the efficient encoding of the most complex tessellation operations using the connec-
tivity indices, the HM algorithm is able to generate the adaptive tessellation and rendering
the content of a PC cell by using simple decoding operations. The structure of this PC cell
rendering algorithm is shown in the pseudo-code listing of Figures 2.9 and 2.10.

2.5.1 Convexification triangles generation

The algorithm involved in the reconstruction of the triangles associated with the convexifica-
tion is presented first (see the algorithm pseudocode in Figure 2.9). In the listing, the TIN
boundary vertices inside the cell are represented as {vn, . . . ,vn+L−1} and their connectivity
values as {vn.c, . . . ,vn+L−1.c}. In addition, T1 , T2 and T3 denote the vertices of each triangle
T forming part of the generated tessellation. The starting vertex of each nested cavity under
construction is stored in an array called Sk with k > 0. Sk.count temporally stores the already
processed vertices inside a cavity once a nested cavity k is opened.

The TIN boundary vertices forming part of the cell are sequentially processed {vn, . . . ,

vn+L−1} (line 2). The vertices not included in any cavity are considered part of the convex
hull (lines 4 and 5). Once a cavity starts, the following vertices build the triangles in the
cavity under construction (lines 7 to 13). Additionally, when a vertex closes a cavity, the
starting vertex of the cavity is eliminated from the S list and an additional external triangle
is identified (lines 14 to 26). Finally, if the connectivity of the vertex is larger than one it is

38 Chapter 2. Hybrid Meshing Algorithm

1: k← 0
2: count← 0
3: triangle←{ , , }
4: S← []
5: Send← []
6:
7: {– TIN boundary convexification –}
8: for all vertex i with i = n, . . . ,n+L−1 do
9: count← count +1

10: if k = 0 then
11: AddToConvexHull(vertex i)
12: else {– Building triangles inside cavities –}
13: if (vertex i).conn = 1 then
14: if triangle is complete then
15: Generate(triangle)
16: else
17: AddToTriangle(vertex i, triangle)
18: end if
19: end if
20: while count >= (vertex Sk).conn do {– Closing a cavity –}
21: triangle←{vertex Sk−1,vertex Sk,vertex i}
22: Generate(triangle)
23: end while
24: k← k−1 {– Eliminating starting vertex –}
25: count← count +Sendk {– Updating count of current starting vertex –}
26: AddToTriangle(vertex i, triangle)
27: if k = 0 then
28: AddToConvexHull(vertex i)
29: end if
30: end if
31:
32: if (vertex i).conn 6= 1 and (vertex i).conn+ i < n+L−1) then {– Starting a cavity –}
33: Sendk← count {– Storing previous counter –}
34: k← k+1
35: Sk← i {– Starting vertex storage –}
36: count← 0
37: end if
38: end for

Figure 2.9: Pseudocode for the TIN boundary convexification part of the tessellation algo-
rithm for partially covered grid cells.

2.5. Rendering hybrid meshes with the HM algorithm 39

1:
2: {– Generation of corner triangles –}
3: triangle←{hullVertex 0,corner 0,hullVertex 1} {– First triangle –}
4: Generate(triangle)
5:
6: j← 0 {– Corner index –}
7: m← Length(ConvexHull)
8: for all vertex i with i = 1, . . . ,m−2 do {– Intermediate triangles –}
9: triangle1← vertex i

10: sign1← Sign(CrossProduct(vertex i− corner j,corner j+1− corner j)z)
11: sign2← Sign(CrossProduct(vertex i− corner j,vertex i+1− corner j)z)
12: if sign1 = sign2 then
13: triangle2← corner j
14: triangle3← vertex i+1
15: Generate(triangle)
16: else {– Corner shift –}
17: triangle2← corner j
18: triangle3← corner j+1
19: j← j+1
20: i← i−1
21: Generate(triangle)
22: end if
23: end for
24: while j < r−1 do {– Remaining triangles –}
25: triangle1← vertex m−1}
26: triangle2← corner j
27: triangle3← corner j+1
28: Generate(triangle)
29: j← j+1
30: end while

Figure 2.10: Pseudocode for the generation of corner triangles part of the tessellation algo-
rithm for partially covered grid cells.

40 Chapter 2. Hybrid Meshing Algorithm

included in the S list as starting point of a new nested cavity (lines 30 to 38). It can be derived
from looking the algorithm pseudo-code, the computational requirements are quite low, since
only additions and comparisons are involved.

2.5.2 Corner triangles generation

The corner tessellation procedure receives the TIN boundary vertices of the convex hull (after
the convexification procedure) together with the sorted corners for the tessellation procedure
(information contained in the VC list). The tessellation algorithm involves different steps in-
dicated in the pseudo-code of Figure 2.10. Note that the vertices of the convex hull have been
relabelled with consecutive superindices to simplify the explanation. We employ superindices
to emphasize that convex hull vertices do not necessarily correspond to consecutive vertices
of the TIN boundary. We consider m vertices vi with i = {0, . . .m−1} in the convex hull. The
r uncovered corners are also relabelled for simplicity as c j with j = {0, . . .r−1}.

The first triangle is composed of the first corner and the first two vertices (lines 1 to 5).
After this the following vertices of the convex hull (line 8) are processed to compose the
intermediate triangles.

The corner shift control is performed through the evaluation of the sign of the z-coordinate
of two cross products (lines 10 and 11). When no corner shift is required, the triangle is built
by the current corner and two consecutive vertices (lines 12 to 15). When a corner shift is
required, the triangle is built by the two corners and the current vertex (lines 16 to 22). This
vertex is reemployed as part of the following triangle (line 19).

Once all convex hull vertices have been processed, the remaining non-processed corners
have to be considered (lines 24 to 28). The final triangles are composed of the last vertex of
the convex hull and two consecutive corners.

This simple procedure permits the reconstruction of the triangles associated with the con-
vex hull of the TIN boundary and the corner cells. The computational requirements of the
algorithm are very low, as they are mainly associated with the corner shift control.

2.6 Hybrid extension with sub-cell generation

The original HM algorithm also features an extension to generate a hybrid structure per cell
with sub-cells and triangles. The only additional requirement is the pre-computation of a tree

2.6. Hybrid extension with sub-cell generation 41

storing a sub-cell hierarchy and, as result, this additional information permits two different
tessellation procedures.

The new procedure is based on the hierarchical/recursive subdivision of partially covered
cells into sub-cells. The subdivision is repeated until the size of the grid cell size achieves the
size of the finest LOD resolution. Then, to complete the procedure, the unit PC sub-cells are
tessellated into triangles. The triangles generated represents the area not covered by the TIN
and connect the sub-cell corners with the TIN boundary vertices.

The objective of this combined system is to preserve the original grid information where
possible and adapting the structures only in close proximities of the TIN boundary. Thus, this
technique attains the exploitation of the information offered by both representations limiting
the areas of interconnection and manipulation of the original data.

Let us consider the example of Figure 2.11(a) to explain the extension. In this figure a PC
cell of the grid and the TIN silhouette inside it are depicted. Let us label the current LOD of the
grid representation as LOD 2 and let us assume that there are only two finer resolution LODs
for the grid (LOD 1 and LOD 0). This means that the cell has to be recursively subdivided
two times until the unit cell size (LOD 0) is achieved. In the first subdivision procedure
(see Figure 2.11(b)) two PC and two NC sub-cells are identified. The NC sub-cells can be
directly rendered while the PC sub-cells are subdivided again. As result (see Figure 2.11(c)),
three NC and five PC unit size sub-cells are additionally generated. The NC sub-cells are
sent to the graphics pipeline while the PC unit sub-cells are triangulated. This is indicated in
Figure 2.11(d).

The tessellation of each unit size sub-cell is based on the already explained TIN convexifi-
cation and corner tessellation procedures. This means that extending the methodology previ-
ously presented to this new tessellation procedure can be directly performed if a procedure for
sub-cell generation is included. Note that due to the complexity of the algorithm involved, this
proposed extension is performed as a pre-processing step and the result is efficiently encoded,
following the standard HM algorithm strategy.

2.6.1 Sub-cell structure: Tree representation

The recursive subdivision to be performed in each PC cell can be efficiently stored in a tree
representation. As an example let us consider the system of four cells and a TIN structure
depicted in Figure 2.12(a). The GC list associated to this system is 0,11,0,11 where the
cells are sequentially listed following a row order. As was previously indicated, each PC sub-

42 Chapter 2. Hybrid Meshing Algorithm

(a) (b)

(c) (d)

Figure 2.11: PC subdivision example for the hybrid algorithm.

(a) (b) (c)

Figure 2.12: Grid subdivision example for the hybrid algorithm.

2.6. Hybrid extension with sub-cell generation 43

Figure 2.13: Tree representation.

cell is subdivided into four sub-cells and the procedure is recursively repeated until the finest
resolution. Let us assume in this example that there are two finer LODs. The result of the first
step of subdivision is depicted in Figure 2.12(b). That is, the up-right cell is subdivided into
four sub-cells that are classified as (NC,PC,PC,PC) that is (0,11,11,11), and the right-down
cell is subdivided into four sub-cells (PC,NC,PC,NC), that is (11,0,11,0). Each PC sub-cell
is subdivided again obtaining the structure of Figure 2.12(c).

This structure can be efficiently represented in a tree structure. Each node of the tree
represents a cell/sub-cell and each row of the tree a step in the subdivision process. For this
example the tree is depicted in Figure 2.13. This tree can be schematically represented by the
sequence of nodes in each row. Specifically for this example:

Tree = (0,11,0,11)(0,11,11,11)(11,0,11,0)(0,0,11,0)(0,0,0,11)
(11,0,11,0)(11,11,11,0)(11,0,0,0)

This tree contents all required information for the subdivision of each cell into sub-cells.
This information, together with the local information for local convexification and corner
tessellation of each unit size sub-cell permits the hybrid representation.

2.6.2 Tessellation algorithm

The tree storing the sub-cell structure is generated as pre-processing step. This information
is employed during the rendering process to identify the PC cells, to subdivide them into CC

sub-cells (to be eliminated), NC sub-cells (to be sent to the graphics pipeline) and PC unit
sub-cells. The PC sub-cells are further subdivided. The process is repeated till the finest
resolution level. The final PC unit sub-cells are tessellated according to the convexification
and corner tessellation procedure previously presented.

44 Chapter 2. Hybrid Meshing Algorithm

Each cell subdivision implies the computation of the coordinates of five new points. To
avoid cracks among cells simple linear interpolations are performed to generate the new sub-
cells corners. This implies that the subdivision procedure only implies decoding the tree
information and linear interpolation operations. Once the unit-size PC sub-cells are gener-
ated and identified, the convexification and corner tessellation procedure are performed (see
Section 2.5).

2.7 Analysis of HM algorithm

In this section, the properties of the two tessellation variants of the HM algorithm, the HM
based on triangle generation and the HM with sub-cells tessellation algorithms, are analyzed.
They share the same core structure to perform the adaptive tessellation between the partially
overlapped grid cells and the contour of the TIN: local convexification of the TIN boundary
and corner tessellation inside the partially overlaped cells. The method is based on a mixed
strategy where part of the information is pre-computed and only simple operations are per-
formed during rendering, which leads to the efficient generation of an adequate tessellation
for any level-of-detail in the regular mesh.

In terms of storage requirements, the data structures generated by the HM algorithm are
strongly dependent on the input models. Thus, the size and structure of the TIN, particularly
the number of the boundary vertices, are the most determining variables for the computation of
these requirements. In the normal HM tessellation algorithm, based on triangles generation,
the convexification and corner tessellation procedures require the computation of the TIN
boundary (vertices and connections) and the GC and VC lists. The TIN boundary information
is independent of the level-of-detail selected so that the information is calculated only once. In
this case, the data structures storage depends on the number of vertices on the boundary of the
TIN and the connectivity structure between them. The connectivity index range is determined
by the maximum number of TIN boundary vertices per cell, therefore, assuming a maximum
number of vertices Lmax, the connectivity index associated with each TIN boundary vertex
would require log2(Lmax) bits. For example, considering up to Lmax = 256 only 8 additional
bits per TIN boundary vertex are required.

Regarding the GC list, the information to identify each cell as PC, CC or NC is needed.
Since there are only 3 different types of cells to encode, a variable length code of up to two
bits per cell is employed. The VC list stores additional information required per PC cell. This

2.7. Analysis of HM algorithm 45

information includes two fields, one for the addressing of the TIN boundary array (A,L), and
the other for indicating the corners involved in the tessellation (C, I). The A value is deter-
mined by the number of vertices in the TIN boundary and depends directly on the TIN model.
For example, working with a TIN model whose boundary contains 65k vertices, 16 bits are
required to address a specific vertex. On the other hand, log2(Lmax) bits are required for en-
coding the section length. Continuing with the previous example, if Lmax = 256 vertices only
8 bits are required. With respect to the corner information, 4 bits are required for encoding
the C and I fields. In summary, in this case 24 bits per PC cell would be required for the VC
list. These requirements are small if we take into account that 32 bytes are usually required
for a vertex in a standard triangular mesh.

In the sub-cells tessellation algorithm, an additional tree structure has to be included for
storing the sub-cells. Analyzing the storage requirements associated to this tree, we can see
that the subdivision of one PC cell into sub-cells could generate up to 4i PC sub-cells in each
subdivision step(i= 0, . . . ,N−1). As 2 bits are required per sub-cell, the storage requirements
for the PC cells of the coarsest regular grid is up to: ∑

N−1
i=0 2 ·4i, considering a regular grid with

N different LODs. For example, in the case of N = 3, the maximum number of bits per PC cell
for the tree representation would be 42 bits. This in an upper limit representing the situation
in which each PC sub-cell is subdivided recursively into four PC sub-cells. The requirements
associated with the tree grow exponentially with the number of LODs. However, due to
the low number of PC cells and PC sub-cells these requirements should be low in practical
situations.

With respect to the quality of the models generated, the benefits of the two HM tessellation
strategies are clear taking into account the increment in quality when the DEM representation
is enriched with the available TIN meshes representing detailed areas of the terrain (see as an
example Figure 2.14). The subdivision strategy generates finely detailed tessellations featur-
ing a smoother transition between the grid and TIN parts and thus the user can choose between
two tessellation procedures in real-time following quality criteria.

However, the HM with sub-cell generation algorithm generates also more triangles and
requires a larger amount of data and pre-computations. The adaptive tessellation generated
for both algorithms is noticeably different as it can be seen in the models represented in Fig-
ure 2.15. Three levels of detail were depicted for both algorithms, from finest (left) to coarsest
(right). The first algorithm generates less primitives for rendering, while the second one re-
duces the area of triangle generation to the locality of the TIN contour. For example, for

46 Chapter 2. Hybrid Meshing Algorithm

In this paper, we present a new proposal for hybrid terrain representation
combining multiresolution grids with high resolution TINs. Our proposal allows the
dynamic change of the relative position between TIN and grid, a facility that can be
exploited for the generation of synthetic realistic terrain on-the-fly. With this, we
extend the usability of the algorithm to those applications for synthetic terrain design
(Zhou et al. 2007) (for example, for landscape and urban design). As a consequence,
there are numerous applications that would benefit from the resulting synthetic
terrain obtained (for example, feature film, special effects and computer games).

Our proposal is based on the algorithms presented in Bóo et al. (2007) and
maintains part of its nature, but eliminating/reducing most of the precomputations
required. The key idea of Bóo et al. (2007) is the realization of the local
convexification of the TIN as a preprocessing step. Specifically, in this step, the
fragment of TIN lying on a given grid cell is locally convexified (convexification
inside that grid cell). This local convex structure, as will be detailed in Section 2,
assures an easy tessellation algorithm to connect the TIN and grid structures. The
relocation of the TIN in another position demands a new convexification procedure
as the TIN fragment inside each grid cell changes.

Figure 1. Hybrid terrain model: (a) grid; (b) grid with texture; (c) hybrid model; (d) Hybrid
model with texture.

Dynamic hybrid terrain representation 419

Do
wn

lo
ad

ed
 B

y:
 [

Un
iv

er
si

ty
 o

f
Po

ts
da

m]
 A

t:
 0

8:
58

 9
 O

ct
ob

er
 2

00
9

(a) (b)

Figure 2.14: Hybrid model rendered with the HM algorithm: (a) base grid mesh; (b) grid and
TIN meshes linked during rendering using the HM algorithm.

triangle
scheme

hybrid
scheme

LOD 0

LOD2LOD1

Figure 2.15: Adaptive tessellation example for both schemes.

2.8. Conclusions 47

the coarsest level-of-detail the number of triangles generated with the first algorithm is about
50% the number of primitives generated by the second algorithm. Moreover, for the second
algorithm, at very coarse levels of detail the application would probably not represent the
TIN since this level of quality is not required. Also note that although a reduced number of
primitives for coarser levels of detail is usually desired, as this corresponds to areas that will
be depicted with low resolution, using fewer triangles in the tessellation implies that triangles
generated by the first algorithm are typically larger and narrow, and thus more likely to be
conflictive sliver triangles. Hence, the benefits of the subdivision strategy are specially rele-
vant when the difference in the size of the grid cell and TIN boundary edges is really evident,
as it provides a more gradual transition between them. Since this is the major contribution of
this strategy, and the same problem is better solved by the new EHM approach (see Chapter
4) developed in this thesis, the subdivision approach has not been considered as a useful in
this research.

2.8 Conclusions

The HM algorithm achieves the hybrid representation of terrain models, where a multiresolu-
tion grid together with a high resolution TIN can be combined into a unified model, by per-
forming the adaptive tessellation of each grid cell partially covered by the TIN, solely based
on the TIN boundary information. High quality rendering is obtained, as no discontinuities
are generated between representations. The method is based on the efficient representation
of the information to be sent from the CPU to the graphics pipeline. The representation we
propose can be easily extended to include different tessellation procedures. The operations to
be performed to decode and complete the tessellation structure are very simple.

Although hybrid representation of terrains combining different data sets is of great in-
terest, the traditional solution is the disconnected representation of the data sets or the pre-
processing in software of the combined structure. These strategies are not appropriate when
quality or real-time rendering are the objectives. We did not find any proposal in the bibliog-
raphy that attempts to solve the challenge of real-time rendering of a multiresolution hybrid
representation composed by TINs and DEMs. In this sense, no comparisons in terms of qual-
ity with other proposals can be performed.

CHAPTER 3

HM ALGORITHM: A GENERAL

FRAMEWORK FOR RENDERING HYBRID

TERRAIN MODELS

The HM algorithm, exhaustively reviewed in the previous chapter, is an efficient method for
the interactive rendering of hybrid terrain models. The algorithm attains a perfectly watertight
mesh by performing a local adaptive tessellation of the multiresolution grid cells placed in the
boundary between the grid and TIN models.

The original HM algorithm, introduced in [9], was a proposal to render hybrid terrain
models using the GPU to decode specially designed data lists, previously encoded in the
CPU. Due to the lack of programmability of old GPUs, a new theoretical hardware unit was
designed in [2]. In this chapter, the HM algorithm is used as the base component to build
visualization software running in standard CPUs. The local adaptive tessellation approach
followed by the HM algorithm is quite adaptable, as different algorithms can be implemented
to join the TIN and grid boundaries inside the partially covered cells. Thus, two different
implementations are presented in this chapter, both of them following the core HM proposal
but attaining the local cell tessellation by different ways.

The first one follows the same approach used by the HM algorithm of joining both com-
ponent meshes by generating local triangulations between their boundaries. However, this
implementation uses a regular polygon triangulation algorithm to generate dynamically the
adaptive tessellation triangles, instead of decoding a precomputed data structure representing

50 Chapter 3. HM Algorithm: a general framework for rendering hybrid terrain models

the convexification triangles, as the HM algorithm does. The second implementation tries to
implement as faithfully as possible the original HM algorithm. It means that the complete
execution of the algorithm is performed in the CPU and final mesh is sent to the standard
graphic pipeline.

The results obtained for different hybrid models have been analyzed and compared for
both implementations at the end of the chapter. Results confirm that the convenient properties
of the original HM algorithm are accurately preserved by the software implementation, and
the superior performance obtained by a hybrid terrain visualizer using the HM tessellation
algorithm against one using a regular polygon tessellation algorithm. These two implementa-
tions were originally presented in [60].

3.1 Overview of the algorithms

The two visualizer implementations presented in this chapter manage to perform visually
pleasant representations of a hybrid model formed by regular and irregular meshes following
a local cell-based strategy.

The local strategy used in these implementations generates the hybrid mesh by perform-
ing a local tessellation of the grid cells containing the frontier between the meshes bound-
aries. This approach brings many advantages to the visualizer: it does not interfere with the
rendering of the component meshes and thus can be used in conjunction with LOD rendering
techniques; it is flexible since any tessellation method can be used to generate the triangles of
the local tessellations; the resulting model uses the maximum resolution mesh available for
every part of the terrain and, finally, since any kind of full remeshing procedure for the whole
mesh is avoided, the approach is lighter in computational terms and also non-destructive,
since the original data from the different meshes is not modified but integrated in a coherent
whole. Moreover, an additional benefit associated to the local tessellation approach is that
it does not enforce a strong dependency between the component meshes; thus, even if the
high-resolution meshes were not temporally available, the visualizer could work by drawing
on the low-resolution representation.

Thus, to generate the local tessellations of the cells containing the boundaries of the com-
ponent meshes two different methods have been tested. The first one computes the additional
triangles using a standard tessellation algorithm. There is a large number of tessellation meth-
ods to choose from since polygon tessellation is an important subject in computational ge-

3.1. Overview of the algorithms 51

Seidel based implementation Original HM

Preprocessing Compute and encode preprocessed
data:

– Overlapping cells mask (GC
list)

Compute and encode preprocessed
data:

– Extraction of TB boundary

– Creation of GC list

– Incremental convexification:
VC and TB lists

Visualization Render TIN and NC grid cells
For every PC cell:

– Generate trapezoidal decom-
position

– Partition in monotone poly-
gons

– Triangulate polygons

Render TIN and NC grid cells
For every PC cell:

– Convexification (TB array
decoding)

– Linking (VC list decoding)

Table 3.1: Structure of two different implementations of a hybrid terrain model renderer.

ometry [55]. In this case, the incremental randomized triangulation algorithm for polygons
developed by Seidel [74] has been used, since is a well-known, simple and efficient method.

The second method adapts as close as possible the HM algorithm —explained in detail in
Chapter 2— to a software implementation using conventional hardware. Note again that the
original HM algorithm was developed as a hardware-based method using a new theoretical
tessellation unit in the graphic processor.

These two implementations are based on the HM algorithm but they use different ap-
proaches to obtain valid tessellations of the hole between the grid and TIN meshes and thus
differing on both the preprocessing and rendering phases. In the preprocessing phase, the
Seidel based implementation computes the covering information between the grid and TIN
models. On the other hand, the HM implementation uses the preprocessing phase to compute
the incremental convexification of the TIN boundary, encoding the results using the efficient
HM data lists.

52 Chapter 3. HM Algorithm: a general framework for rendering hybrid terrain models

Both implementations follow the same pattern of the HM algorithm in the rendering phase:
first, the entire TIN and the non-covered cells of the grid (NC cells) are directly rendered; next,
completely covered grid cells (CC cells) are eliminated as they will be replaced for the more
detailed TIN data; finally, those grid cells partially covered (PC cells) by the TIN are adap-
tively tessellated and rendered. However, the adaptive tessellation between the TIN and grid is
attained by different ways depending on the implementation. In the Seidel based implementa-
tion the rendering phase involves a heavy processing since the local tessellations are actually
computed in this phase. The HM implementation generates the corner triangles according to a
simple procedure and the convexification triangles by decoding the precomputed lists, which
is an efficient and light-weight process.

An evaluation of the performance and the quality of the results obtained with the two
implementations is presented at Section 3.4.

3.2 Implementation based on Seidel’s Incremental Randomized
Triangulation algorithm

The implementation based on the Seidel’s Incremental Randomized Triangulation Algorithm
does not use precomputed data structures besides the overlapping list used to mark the parts
of the grid covered by the high-resolution TIN. This direct approach to the problem implies
that, instead of decoding the convexification triangles first and then generating the corner
triangles, the whole adaptive tessellation between the component meshes boundaries needs to
be completely computed in the visualization phase.

In the preprocessing phase, the non-covered and partially covered parts of the grid are
just identified and tagged. In the visualization phase, the same process is repeated for every
frame: first, the multiresolution grid is updated according to the scene conditions; then the grid
is rendered using the preprocessed coverage information to discard the covered and partially
covered grid cells; once the non-covered grid cells have been rendered, it is turn for the whole
TIN mesh; finally, Seidel’s triangulation algorithm is used to generate the tessellation between
both meshes.

As mentioned above, the tessellation process is performed in a local basis for the partially
covered cells. The first step is the identification of the polygon to be triangulated formed by
the non-covered cell corners and the vertices of the TIN boundary contained in the cell; that
is, the points whose projection over the XY plane fall in the interior of the cell. An example

3.2. Implementation based on Seidel’s Incremental Randomized Triangulation algorithm 53

(a)

TIN

(b)

TIN

(c)

TIN

(d)

Figure 3.1: Local cell tessellation procedure using Seidel’s algorithm: (a) part of the TIN
boundary and the correspondant grid cell; (b) 2D projection of the TIN boundary over the XY
plane; (c) addition of the extra vertices placed in the cell boundaries; (d) local tessellation of
the grid cell.

54 Chapter 3. HM Algorithm: a general framework for rendering hybrid terrain models

of the whole process is depicted in Figure 3.1. Part of the TIN boundary and the original
grid cell are shown in Figure 3.1(a) and then projected in the XY plane in Figure 3.1(b));
then, additional inter-cells vertices —represented in yellow in Figure 3.1(b))— are added to
the TIN boundary; finally, the Seidel tesellation algorithm is used to generate the triangles
linking the TIN boundary vertices and the grid cell corners, depicted in blue in Figure 3.1(d).

Once the polygon representing the hole between both boundary meshes has been identi-
fied, the tessellation algorithm is used to generate a triangle decomposition which is immedi-
ately sent to the render pipeline. Obviously, since the cell vertices forming part of the polygon
depend on the active LOD in the grid, the tessellations are recalculated every frame.

With real-time rendering in mind, the Incremental Randomized Triangulation algorithm
[74] was chosen for this implementation among all other polygon tessellation algorithms. The
algorithm is explained in detail in the next subsection.

3.2.1 Analysis of the Incremental Randomized algorithm

This algorithm has been widely implemented due to its simplicity and efficiency and presents
some convenient theoretical features. It runs in almost linear time for any simple polygon
with n vertices, despite the theoretical complexity is O(n· log∗n). Let log(i)n denote the ith
iterated logarithm, i.e. log(0)n = n and for i > 0 we have log(i)n = log(log(i−1)n). For n > 0
let log∗n denote the largest integer l so that log(l)n ≥ 1, and for n > 0 and 0 ≤ h ≤ log∗n let
N(h) be shorthand for dn/loghne.

In practice, it shows a linear runtime performance for simple polygons of n vertices, even
though the theoretical complexity of the algorithm is higher. The Incremental Randomized
Triangulation algorithm generates a triangulation without creating new vertices by decom-
posing the polygon in n− 2 triangles. Using this method the triangulation of a polygon P is
performed by creating first a trapezoidal decomposition of P, from which is easy to perform a
triangulation of the original polygon in linear time. This trapezoidal decomposition is some-
times referred to horizontal visibility map, since edges of P that are horizontally visible are
connected by segments. The following is a detailed description of the algorithm.

The algorithm proceeds in three progressive steps as is depicted in Figure 3.2. First, it de-
compose the polygon into trapezoids, next decompose the trapezoids into monotone polygons
and, finally, triangulate the monotone polygons, which can be performed in linear time by
using a greedy algorithm which progressively eliminates the convex corners of the polygon.

3.2. Implementation based on Seidel’s Incremental Randomized Triangulation algorithm 55

(a) (b) (c)

Figure 3.2: Polygon tessellation using the Incremental Randomized Triangulation algorithm:
(a) descomposition of the input polygon into trapezoids; (b) descomposition of the formed
trapezoids into monotone polygons (using diagonals); (c) triangulation of the monotone poly-
gons.

1. Decomposition of the input polygon into trapezoids. The first phase consists in the
analysis and decomposition of the input polygon (see Figure 3.2(a)).

Let S be a set of non-horizontal, non-intersecting line segments of the polygon. The ran-
domized algorithm is used to create the trapezoidal decomposition of the X −Y plane
arising due the segments of set S. This is done by taking a random ordering s1 · · ·sN

of the segments in S and adding one segment at a time to incrementally construct the
trapezoids. This divides the polygon into trapezoids (which can degenerate into a trian-
gle if any of the horizontal segments of the trapezoid is of zero length). The restriction
that the segments be non-horizontal is necessary to limit the number of neighbors of any
trapezoid. However, no generality is lost due to this assumption as it can be simulated
using lexicographic ordering. That is, if two points have the same y-coordinate then the
one with larger x-coordinate is considered higher. The number of trapezoids is linear in
the number of segments. Seidel proves that if each permutation of s1 · · ·sN is equally
likely then trapezoid formation takes O(n· log∗n) expected time.

56 Chapter 3. HM Algorithm: a general framework for rendering hybrid terrain models

2. Decomposition of the formed trapezoids into monotone polygons. In this phase, each
one of the trapezoids computed in the previous step are divided in monotone polygons,
if needed (see Figure 3.2(b)).

A monotone polygon is a polygon whose boundary consists of two y-monotone chains.
These polygons are computed from the trapezoidal decomposition by checking whether
the two vertices of the original polygon lie on the same side. This is a linear time
operation.

3. Triangulation of the monotone polygons. Once the monotone polygons have been cre-
ated the final triangulation process becomes simple and convenient. The strategy con-
sists in drawing diagonals from vertices in the left or right boundary of the polygon in
consecutive order (see Figure 3.2(c)).

A monotone polygon can be triangulated in linear time by using a simple greedy algo-
rithm which repeatedly cuts off the convex corners of the polygon [24]. Hence, all the
monotone polygons can be triangulated in O(n) time.

Results obtained with this proposal are included and analyzed in section 3.4. As will be
shown in that section, good results in terms of quality are obtained following this cell-based
strategy.

3.3 Implementation of the Hybrid Meshing algorithm

The second implementation of a hybrid terrain viewer uses an adapted version of the HM
algorithm for a coherent and crack-free visualization of hybrid models. The HM algorithm,
as it was explained in the previous chapter, was initially designed as a hardware assisted
method to achieve high performance with good quality results in the interactive visualization
of hybrid terrains. In this case, the additional hardware unit has been replaced by a software
decoding step computed by the CPU.

In this implementation, the regular and irregular models are linked together to form a
single coherent mesh in the visualization phase, using the data lists precomputed in the pre-
processing. Note that this approach is basically the opposite of the previous implementation:
it runs the heavier computational tasks in the preprocessing phase and encodes the results in
a convenient representation, to allow a fast decoding during the visualization step.

3.4. Experimental results 57

The HM algorithm relies on two main operational cores: the local convexification of the
TIN boundary for each active PC grid cell in the current LOD, and the adaptive tessellation
of the hole between the convexified TIN boundary and the grid cell corners.

In the first row of Table 3.1 the computational and encoding tasks performed in the prepro-
cessing phase are exposed. The first step is the extraction and clockwise ordering of the TIN
mesh vertices placed in the boundary. The resulting polyline representing the TIN boundary
is then projected on the base plane of the grid, that is, the XY plane, since the elevation mea-
sures are considered as distance values in the Z axis. The GC list is computed using the 2D
footprint of the TIN boundary, tagging those grid cells containing any point of the footprint
as PC cells, those entirely placed in the interior of the polyline as CC cells, and the remaining
cells as NC cells, since they do not interact with the TIN mesh.

The final task in the preprocessing is performing the incremental convexification of the
TIN boundary and encoding the results in the TB array and the VC list. At the beginning of
the process, inter-cells vertices are added to the TIN mesh when needed, to ensure that the
TIN vertices and grid edges form a delimited polygon in every PC Cell. Then, the convexifi-
cation process begins from the coarsest LOD to the finest one, preserving the convexification
triangles computed in previous levels. For every PC cell in the grid model some info is col-
lected and encoded in the VC list (the enter and exit vertices TB vertices and the uncovered
corners) and the newly generated convexification triangles added to the TB array.

In the visualization phase, the same general process of the previous implementation is
repeated for every frame: first, the grid LOD is updated to the current viewpoint; next, the TIN
mesh and the non-covered grid cells are sent to the rendering pipeline; finally, the adaptive
tessellation of the hole between the meshes boundaries is efficiently rebuilt in the active PC
cells from the preprocessed information. The needed triangles are generated in run-time by
simple decoding operations and this will result, as it will be shown in the following sections,
in good results in terms of execution time for this algorithm.

3.4 Experimental results

In this section, the results obtained testing the two different implementations of a hybrid
terrain model are exposed and analyzed. The two strategies presented in Section 3.2 and Sec-
tion 3.3 have been implemented and tested in the same hybrid terrain visualization application.
The software can visualize interactively regular and irregular models on their own and, when

58 Chapter 3. HM Algorithm: a general framework for rendering hybrid terrain models

Figure 3.3: Hybrid terrain visualizer showing a textured hybrid model.

both meshes are loaded at the same time, the adaptive triangulation may be activated to render
the resulting hybrid model without cracks using any of the proposed methods.

Multiresolution rendering of regular grid models is provided using a standard quad-tree
approach based on the method described in [72]. The software has been designed accord-
ing to the classic Model-View-Controller architectural software pattern [10], which separates
the management of the model data from the user interaction. The implementation has been
coded in C language, using GTK as the GUI library and OpenGL 2.0 as the graphic API. A
screenshot of the application is depicted in Figure 3.3.

The hardware system used for testing has been a PC workstation with an Intel Core 2 Duo
E6600 processor, 2 GB of RAM memory and a GeForce 8800GT 512 MB graphic card. Four
different scenes have been used in our testing. The first three scenes, depicted in Figure 3.4,
are formed by a regular grid partially covered by a TIN. The fourth scene is a synthetic model
consisting of five copies of the meshes present in Scene 3 to validate the application when

3.4. Experimental results 59

(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Hybrid test models: (a) scene 1 grid; (b) scene 1 TIN; (c) scene 2 grid; (d) scene
2 TIN; (e) scene 3 grid; (f) scene 3 TIN.

60 Chapter 3. HM Algorithm: a general framework for rendering hybrid terrain models

Table 3.2: Size and complexity of the test scenes.

Grid cells TIN triangles
Scene 1 400 3144
Scene 2 400 1563
Scene 3 1089 9872
Scene 4 5445 49360

Table 3.3: Results obtained with both proposals.

Triangles Inc. triang. based HM based
generated proposal proposal

Scene 1 186 442 fps 1356 fps
Scene 2 158 523 fps 1776 fps
Scene 3 444 308 fps 753 fps
Scene 4 2220 46 fps 132 fps

using several meshes at the same time. The final number of grid cells and TIN triangles of
each scene is shown in Table 3.2.

The main results obtained with the two proposals are summarized in Table 3.3. The num-
ber of triangles generated to connect the different representation models (second column) is
the same for the two methods. This is coherent with the fact that the polygons to be triangu-
lated are the same no matter which method is employed. Provided that degenerated triangles1

are not generated, the number should always be the same since every triangulation of an poly-
gon formed by n vertices is composed by n−2 triangles.

As is shown in the table, the HM based proposal (fourth column) clearly outperforms the
one based on Incremental Randomized Triangulation (third column). HM method is, in the
worst scenery, 2.44 times faster, and it reaches the maximum difference in the Scene 1, where
it is 3.40 times faster. This is a direct consequence of using the preprocessed connectivity
information of the TIN boundary in the HM algorithm, to generate the adaptive tessellation
during run-time. In this case, the triangles associated to the convexification procedure in
the HM algorithm are precomputed. In run-time these triangles are extracted from the TB
information and only the final triangles forming the cell corners and the convex TIN vertices
have to be really computed. As the method based on the incremental randomized triangulation

1Triangles having two or three vertices repeated and therefore topologically similar to a line or a point

3.4. Experimental results 61

(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Adaptive tessellations generated by both proposals. Subfigures (a), (c) and (d) are
generated by the proposal based on the incremental randomized triangulation; subfigures (b),
(d) and (f) are generated by the HM based proposal.

62 Chapter 3. HM Algorithm: a general framework for rendering hybrid terrain models

Figure 3.6: Example of triangles with associated compactness values increasing from 0.1 to
1.0 in 0.1 steps. Extracted from [28].

Table 3.4: Average compactness value of the triangles obtained with both proposals.

Inc. triang. HM based
based proposal proposal

Scene 1 0.53 0.49
Scene 2 0.53 0.47
Scene 3 0.49 0.49

does not perform any preprocessing of the meshes, the tessellation is computed directly from
the selected vertices of the boundaries for each grid cell.

With respect to the quality of the triangulation, high quality models can be generated with
both methods. An example of application is shown in Figure 3.5. These are the resulting
models when a detailed TIN is applied to scenes 1, 2 and 3. For both algorithms the meshes
are softly joined and the connections are performed locally to each cell.

Even though the triangles generated by the two methods are different, in both cases the
holes or cracks in the mesh are eliminated and the visual quality obtained is quite similar. To
compare quantitatively the quality of the final triangles we use the compactness value [27] is
an indication of the triangles shape, usually employed as a measure of quality, being zero for
a degenerated triangle and one for an equilateral triangle as shown in Figure 3.6. The formal
definition of the compactness c of a triangle is:

c =
4
√

3a
l2
0 + l2

1 + l2
2

(3.1)

where a is the positive area of the triangle and (l2
0 + l2

1 + l2
2) are the lengths of the three

sides. Table 3.4 shows the average compactness values obtained for the two implementa-
tions. In some tests, triangles obtained with the incremental randomized triangulation method

3.5. Conclusions 63

seem slightly more compact and regular than the triangles generated with the HM algorithm,
however, the results presented in this table verify that the triangulations obtained with both
algorithms are very similar.

In summary, the results obtained in terms of execution times and the quality of the visual-
ization using the HM algorithm implementation make this proposal a more suitable solution
for the problem of hybrid terrain rendering. Although the proposal using Seidel’s tessellation
algorithm may produce marginally better quality tessellations in some specific cases, the bet-
ter performance of the HM algorithm implementation allows for rendering much larger and
more complex hybrid models.

3.5 Conclusions

In this chapter we have presented two different contributions to the field of the interactive
visualization of hybrid terrain meshes. Both proposal are based on the local approach fol-
lowed by the HM algorithm, and thus an adaptive local tessellation is generated between the
boundaries of the multiresolution regular part and the irregular TIN parts.

The first proposal uses a standard polygon triangulation algorithm for the task —in this
case, the Seidel’s Incremental Randomized Triangulation [74]— to generate the tessellation
in a straightforward way. In this simple, both models are connected using the tessellation
algorithm to directly generate the triangles between the grid cell corners and the TIN boundary
vertices during visualization.

On the contrary, the second proposal follows a more elaborated approach: it precom-
putes the most demanding tasks of the tessellation process during the preprocessing, and then
uses this information to rebuild the needed triangles using only lightweight operations. This
proposal also manages to implement the original HM algorithm, which used a proposed a
unit hardware unit in the graphics hardware, to a software implementation using conventional
hardware.

The two proposals have been implemented and tested in our own visualization software.
The results of our tests indicate that both methods can obtain high quality meshes, without
holes or any other triangulation artifacts. In terms of performance, however, the HM imple-
mentation is far more efficient and faster than the standard polygon triangulation strategy due
to the efficiently encoded representation of the convexification information in the TIN bound-

64 Chapter 3. HM Algorithm: a general framework for rendering hybrid terrain models

ary, used in the HM algorithm. This means that part of the triangles are precomputed and can
be decoded in run-time with very simple operations.

CHAPTER 4

GPU-HM: A PARALLEL HYBRID MESHING

ALGORITHM USING THE GPU

Developing applications that make efficient use of parallel graphics hardware is a complex
and time consuming task. Several factors have to be considered, such as the underlying hard-
ware architecture, the selected programming paradigm or the specific compiler and the APIs
(Application Programming Interfaces) available on each platform —which usually make de-
bugging and performance tuning even harder. As a result, the development process is highly
dependent on the hardware advances, especially in domains that change as fast as modern
GPUs, and it is difficult to select the optimal strategy for each problem.

In this chapter the GPU-HM method is presented; to our knowledge, the first parallel
implementation of a hybrid terrain model renderer. The GPU-HM algorithm achieves the
parallelization of the hybrid model rendering method by adapting the original HM algorithm
strategy to the Geometry Shader unit of the GPU. Therefore, the GPU-HM method exploits
the GPU computational resources by combining the inherent thread parallelism of the GPU
with an efficient memory access pattern to the data structures placed in device memory.

A brief introduction to the standard graphic rendering pipeline and the GPU hardware ar-
chitecture is first presented. Following that, the new GPU-based implementation is explained
in detail, the results obtained in the experimental tests are analyzed and, finally, the conclu-
sions of our work are discussed. The work presented in this chapter was originally introduced
in [62].

66 Chapter 4. GPU-HM: a parallel Hybrid Meshing algorithm using the GPU

4.1 Shader-based graphic rendering

Over the past decade, graphics hardware has suffered an accelerated evolution from par-
tially configurable implementations of a fixed-function pipeline, to highly programmable units
where developers can implement specific algorithms. This flexibility has been achieved by
means of programmable Shaders, that is programmable logical units running on the GPU.
They were introduced to provide a way to replace the fixed functionality of the existing hard-
ware rendering pipeline with user-generated code. The first versions of the shader-based
rendering pipeline contained only vertex and fragment shaders, although additional types of
shaders have been included in more recent generations of graphic hardware.

Vertex shaders enables various operations (including transformations and deformations)
to be performed on each vertex. Similarly, the pixel shader processes individual pixels, al-
lowing complex shading equations to be evaluated per pixel. Therefore, by installing custom
shader programs in the GPU programmable shader units, the user can completely override the
fixed implementation of core per-vertex and per-pixel behavior. Since GPUs typically have
many processing units, multiple shader threads can execute in parallel potentially performing
a broad list of tasks, from procedural geometry and non-photorealistic lighting to advanced
textures, fog, shadows, raycasting, and visual effects.

Graphic hardware supporting Shader Model 4 or higher use an unified-shader approach.
This means that the vertex, pixel, and other types of shaders share the same programming
model, providing a powerful and extensible mechanism for programming the processing
stages of the GPU pipeline using C-like shading languages such as High Level Shader Lan-
guage (HLSL) [77], C for Graphics (Cg) [50], or OpenGL Shading Language (GLSL) [71].

HLSL is the shading language developed by Microsoft to set up the programmable 3D
pipeline in DirectX 9. Before DirectX 10, the compiler generated the assembly instructions
directly from the source code. However, starting from DirectX 10, an intermediary represen-
tation is generated during compilation and later translated to the native hardware instruction
set of the particular GPU where the shader is executed.

Cg is a high-level GPU shader language developed by NVIDIA. The language is said to
layer on top of OpenGL and DirectX since the Cg compiler may directly generate GPU as-
sembly, or high-level GLSL and HLSL code in the different formats supported by the graphics
APIs. Although the Cg Language Specification is open and may be implemented and used it
by other vendors, in practice, is primarily supported by NVIDIA tools.

4.1. Shader-based graphic rendering 67

The OpenGL Shading Language is a high-level procedural language designed for use in
OpenGL [86]. It is designed to take advantage of the capabilities of programmable graph-
ics hardware. Using OpenGL Shading Language for shader development brings important
benefits such as built-in access to existing OpenGL state, reuse of API entry points that are
already familiar to application developers, and a close coupling with the existing architec-
ture of OpenGL. Note that in this case no intermediate languages are used; thus, conforming
OpenGL implementations that support the OpenGL Shading Language will compile and exe-
cute properly the source code provided by the application at runtime.

Although some minor differences still exist in performance and functionality of the shader
programs depending on the shader language used, all of them provide a flexible approach to
leverage the power of the very capable modern graphic hardware. A more important aspect,
related to the visualization of hybrid terrain models using a shader-based rendering approach,
is to decide the method for the geometry generation, since current shading models offer dif-
ferent possibilities. Actually, this is the most critical aspect of the implementation since using
one pipeline stage or another to create the adaptive tessellation between the boundaries of the
models, implies using completely different strategies.

In the following subsections, the two shader units which currently have the capability of
generate new geometry in the pipeline —the Geometry Shader and the Tessellator Unit— are
reviewed in detail. Note that these units belong to different hardware generations and, since
the Geometry Shader was developed first, it is supported by a broader range of GPU hardware.

4.1.1 Geometry generation in the GPU using the Geometry Shader

The Geometry Shader is a functional stage of the rendering pipeline introduced with Direct3D
10 [7] which habilitates the generation and destruction of geometric data at primitive level on
the graphics processor. In OpenGL, the Geometry Shader was first introduced in the form of
an extension [53] and then made part of the OpenGL core specification in the OpenGL 3.2
revision.

Figure 4.1 depicts a functional view of the rendering pipeline in Direct3D 10. The tasks
performed of the programmable stages, represented as rounded corner boxes, are defined by
the developer using shader programs. The fixed stages moves data output from one pro-
grammable stage to the the next one performing the necessary interpolations and adaptations
between them. The Geometry Shader stage is placed just after the primitive assembly stage
and before the rasterizer. The Stream Output stage is a new functionality in Direct3D 10

68 Chapter 4. GPU-HM: a parallel Hybrid Meshing algorithm using the GPU

Stream Output

Input Assembler

Vertex Shader

Primitive Assembly

Geometry Shader

Rasterizer

Output Merger

Pixel Shader

Fixed stage

Programmable stage

Memory

Buffer

Figure 4.1: Direct3D 10 pipeline functional representation from [65].

located just before the rasterization stage, whose purpose is to stream vertex data from the
geometry-shader stage to buffers in GPU memory. Data streamed out to memory can be read
back into the pipeline in a subsequent rendering pass, or can be copied to CPU main memory.

The Geometry Shader stage is a new programmable stage that is executed in the middle
of the two original programmable stages: the vertex and fragment shader. In contrast to the
other shader types that can only access information about the input element —and thus are
strictly one-in, one-out programs— the Geometry Shader runs once per input primitive and
has access to all the vertex data for the vertices that form the input primitive being processed.

A Geometry Shader program can also produce additional elements, i.e., it is able to add or
delete some elements in the geometry stream sent to the rendering pipeline in a programmatic

4.1. Shader-based graphic rendering 69

way, by using explicit functions (EmitVertex() and EndPrimitive()) to produce vertices and
primitives (this is called amplification). The vertex shader cannot generate new vertices nor
it can stop the vertex from being processed further in the pipeline. Similarly, the fragment
shader processes a single fragment at a time, cannot create new fragments, and can only
destroy fragments by discarding them. In DirectX 11 hardware, Tessellation Shaders are also
able to increase or decrease the amount of work in the pipeline, but only implicitly by setting
the tessellation level for the patch (see Section 4.1.2).

Note also that geometry shaders, unlike vertex and fragment shaders, are an optional part
of the rendering pipeline. When no geometry shader is present, the rendering pipeline oper-
ates normally using the outputs from the vertex shader, interpolated across the primitive being
rendered, as inputs to the fragment shader. However, if a geometry shader is present between
vertex and fragment shader, the outputs of the vertex shader become the inputs to the geom-
etry shader, and the outputs of the geometry shader are what are interpolated and fed to the
fragment shader.

The Geometry Shader accepts different primitives as inputs and produce a list of primitives
as outputs, which can be of a different type and with a different number of vertices of the
input one. Furthermore, geometry shader can be used with a special kind of input primitives
containing vertices that are not part of the ordinary primitives, but neighboring vertices that
are adjacent to the two line segment end points or the three triangle edges. These vertices can
be accessed by geometry shaders and used to match up the vertices emitted by the geometry
shader with those of neighboring primitives.

Thus, the Geometry Shader can discard the input geometry or insert new primitives into it.
Adjacency information and texture data are also available from within the Geometry Shader,
so that for each triangle the information of neighboring triangles can be accessed.

4.1.2 Geometry generation using the Tessellator Unit

Direct3D 11 [12], the renewed version of the Microsoft’s graphics API, provided access to
important new features of modern graphics hardware. One of those features is support for
an extended pipeline including several tessellation stages performed in the GPU. Figure 4.2
depicts in light blue color the new pipeline stages: the Hull Shader, the Tessellator Unit and
the Domain Shader. Note that the Tessellator unit is represented as a fixed stage because it is
not directly programmed by the developer, although the developer can control the tessellation

70 Chapter 4. GPU-HM: a parallel Hybrid Meshing algorithm using the GPU

Input Assembler

Vertex Shader

Tessellator

Geometry Shader

Rasterizer

Output Merger

Pixel Shader

Hull Shader

Domain Shader

Stream Output

Memory

Buffer

Fixed stage

Programmable stage

Figure 4.2: Direct3D 11 pipeline representation.

4.1. Shader-based graphic rendering 71

pattern through parameters. The main goal of these new pipeline stages is to enable efficient
rendering of higher order surfaces, such as approximations to subdivision surfaces.

The new stages stand between the Vertex Shader and the Geometry Shader. As their name
implies, the Hull Shader and Domain Shader are programmable stages, while the Tessellator
Unit, although fairly flexible and configurable, is a fixed function stage. Direct3D 11 also
introduces a new primitive type for using when the tessellation stages are enabled: the patch.
Actually, patches are the only primitive type that is supported in the tessellation pipeline. This
new primitive type have an arbitrary number of vertices between 1 and 32 and do not have
any implied topology; a patch is just a disconnected set of vertices. This means, for instance,
that a patch with three vertices is not necessarily a triangle. The interpretation of the patch
vertices corresponds to the programmer writing the shaders.

In the tessellation pipeline the Vertex Shader is still the first programmable stage, basi-
cally used to transform vertices from object to world space. After the Vertex Shader, the Hull
Shader is invoked for each patch with all its transformed vertices. The Hull Shader can per-
form per primitive operations and has a fixed output that has to be declared in advance. The
Hull Shader serves for computing per edge tessellation factors later provided to the Tessellator
Unit. Additionally, the Hull Shader may also perform computations that are invariant for all
the vertices that will be generated in the Domain Shader as, for example, transform the input
vertices from one basis to another, in case of the input representation is not useful for direct
evaluation.

The following stage is the Tessellator, which is the component were the data expansion is
actually performed. The Tessellator generates a semi-regular tessellation pattern for the set of
edges and interior tessellation factors computed in the Hull Shader. The actual pattern used
can be partially configured by the developer. The generated tessellation patterns are symmetric
along the edges and both the triangle and quad domains are supported. The tessellator can
generate triangles in clockwise or counter-clockwise order.

Finally, the Domain Shader takes the parametric coordinates of the vertices generated by
the Tessellator and the control points output by the Hull Shader and uses them to evaluate the
surface. In this stage, one thread is created for each generated vertex, in order to parallelize
the evaluation the surface. Furthermore, it is necessary to use a surface representation that is
amenable for direct evaluation. That is, given a parametric coordinates, it should be possi-
ble to evaluate at least the position and normal of the surface at that location. In addition to
position and normal, texture coordinates and sample textures can also be interpolated by the

72 Chapter 4. GPU-HM: a parallel Hybrid Meshing algorithm using the GPU

Figure 4.3: Direct3D 11 hardware tessellation example using PN Triangles from [52].

Domain Shader to apply displacement maps. Finally, the Domain Shader also runs other tasks
traditionally performed by the Vertex Shader, as projecting the vertex position to screen, or
transforming normals and light vectors to the same space. Once the vertices have been trans-
formed by the Domain Shader, the primitives generated by the Tessellator may be optionally
processed by the Geometry Shader or directly sent to the triangle setup stage for rasterization.

An example of this process is depicted in Figure 4.3. In this case, the Tessellator stages
perform a triangle tessellation using PN (Point-Normal) Triangles and Bézier surface to smooth
a low-resolution mesh. The Hull Shader computes the interpolation control points for the ge-
ometry and normals of the the input triangle while the Tessellator stage effectively subdivides
the input triangle and creates new vertices. The final smoothed geometry patch is generated
by the Domain Shader by using the control points to alter the attributes of the vertices in the
subdivided geometry patch.

4.2. GPU-HM architecture 73

(a) (b)

(c)

Figure 4.4: Example of hybrid terrain model obtained with our GPU method: (a) base regular
grid; (b) detailed TIN component mesh; (c) resulting hybrid model with different components
highlighted.

4.2 GPU-HM architecture

Several parallelization strategies were considered for the development of this method. The
hardware tessellation pipeline described in the previous section seemed at first a promising
and powerful approach. The Shader Model 5 hardware tessellation pipeline described in the
previous section seemed a promising and powerful approach but it was discarded due to sev-
eral incompatibilities of this approach with the requirements of an adaptive tessellation for
hybrid terrain models. The most important drawback is that the Tessellator unit does not sup-
port a free adaptive tessellation approach, which is key for the local adaptive tessellation of
the PC grid cells. Other noticeable limitations for our purposes are that the hardware tessella-

74 Chapter 4. GPU-HM: a parallel Hybrid Meshing algorithm using the GPU

tion approach requires primitives supporting arbitrary parametric evaluation, which is hard to
achieve in this case, and that the Domain Shader operates on a single parametric location, pre-
venting the use of incremental schemes and therefore to reuse local computations and memory
accesses.

A Geometry Shader based approach was the best option to parallelize the HM algorithm.
In the GPU-HM method, the Geometry Shader is used to decode the precomputed data struc-
tures and to generate the triangles needed for the tessellation of each PC cell without the
severe limitations of using a regular Tessellator pattern. Both the local TIN boundary convex-
ification and the corner triangles generation steps can be efficiently implemented by using the
Geometry Shader and exploiting the local coherence of the process at cell level, which can
not be easily leveraged in any of the new DirectX 11 pipeline steps. The GPU parallelism is
automatically exploited as several cell tessellations are executed at the same time in multicore
GPUs. To obtain better performance during rendering, an optimized version of the original
data structures is used to improve the memory access.

A completely different approach for the parallelization of the HM algorithm is to use
GPGPUs (General-Purpose Computation on Graphics Processing Units) frameworks such as
NVIDIA CUDA [36] or OpenCL [78], a standard programming language for heterogeneous
computing. A GPGPU strategy was also considered, since it has become a relevant and very
common solution for the parallelization of some tasks —mainly sustained by the increasing
computational power, good scalability and comparatively lower cost of GPU hardware. The
specialized hardware design of modern GPUs can perform much faster than a normal CPU.

Although CUDA or OpenCL kernels should be as efficient as shading programs and are ar-
guably more flexible for general parallel computations -allowing some synchronization prim-
itives and shared memory between different threads- shading languages tend to be more ef-
ficient for graphics processing applications since GPUs are originally designed for graphics.
For example, when using shading languages most of the boilerplate rendering code is already
implemented in the fixed steps of the graphic pipeline and the number of running shader in-
stances is automatically selected based on the screen resolution. Moreover, some graphics
specific functionalities such as Mipmapping, fast evaluation of mathematical functions or fast
data down-sampling and up-sampling are only available when using shading programs.

The next subsections present a detailed description of our proposal. The optimized data
structures are presented first and then the tessellation and rendering phase of the algorithm are
described.

4.3. GPU and CPU data structures 75

GPU Memory TB List VBO

tb0 tb1 tb2 tb3 ... TB List
PC Cells VBO

pc0 pc1 pc2 pc3 ... PC List

GS

v0v1v2v3 ...

v0 v1v2v3 ...

TIN

Grid

Geometry VBO

{Vertex
attributes

TBO

TBO

Figure 4.5: Organization of data structures in memory.

4.3 GPU and CPU data structures

The main data structures used by the original HM algorithm were presented in Chapter 2:
the GC list, the list of PC cells and the TB list. Since in the GPU-HM proposal the rendering
phase of the HM algorithm is performed by the Geometry Shader, every shader thread needs to
access some of these structures, as well as the meshes’ geometric data. However, the original
HM data layout can not be efficiently accessed from the GPU. Thus, in our proposal, the data
structures are stored and accessed in different ways, depending upon their accessing pattern.
A visual diagram showing the location and access methods used for the data structures is
depicted in Figure 4.5.

The GC list is only needed to identify the covered, uncovered and partially covered cells
during the rendering of the grid mesh. Once one grid cell has been identified, it is rendered,
discarded or tessellated using the GPU. Thus, the GC list is not used by the Geometry Shader
(labeled as GS in the figure) during the PC cells tessellation.

During the PC cell tessellation stage the HM rendering algorithm uses the geometric data
of the TB vertices and the grid cell being tessellated, together with the TB data and the list of
PC cells. Consequently, these data structures have to be maintained in GPU memory. They
are all stored in different Vertex Buffer Objects (VBO), but they are accessed by the shader
in different ways. The geometry data and the TB list need an array-like access, since the

76 Chapter 4. GPU-HM: a parallel Hybrid Meshing algorithm using the GPU

processing of one PC cell may involve reading non adjacent elements in random order. Hence,
in our implementation, Texture Buffer Objects (TBO), associated to the corresponding VBOs,
are used to read this data within the shader.

Texture Buffer Objects [54] are a common and efficient way to obtain array-like access to
large data buffers residing in the GPU memory. They provide a convenient interface to the
data, simulating a 1D texture where the tex coordinate corresponds to the offset in the buffer
object. Furthermore, accessing latencies can be effectively hidden by overlapping the readings
with data processing operations, as in the HM rendering stage there are several processing
operations.

An additional optimization attaining superior data locality in accesses to the TB list has
been implemented in our proposal. The TIN mesh vertices have been reordered in the vertex
buffer, to guarantee that the TB boundary vertices are stored at the beginning of the vertex
buffer containing the geometry data. In this way, the offset of the vertex data in the buffer
object represents its position in the TB list. Thus, vertex information can be accessed by only
using its TB index, reducing one level of indirection regarding to the original data structures.
Another relevant consequence of this optimization is that adjacent vertices in the TB are now
also adjacent in the buffer object, improving the cache behavior due to a better data locality.

The PC list, on the other hand, is made available to the shader through normal input vertex
attributes. There is a one-to-one relationship between PC cells and vertex shader threads;
therefore, packing the items in the PC list as input vertex attributes is the most effective way
to send the right information for every shader thread. Moreover, data transfer between CPU
and GPU during rendering is reduced, given that we can use indexed draw calls to indicate
the active PC cells being tessellated every frame, as the data are already stored in the GPU
memory. This list of active PC cells is easily constructed on-the-fly by the CPU, according
to the view-dependent grid LOD, and its small size allows a efficient communication with the
GPU.

4.4 Rendering algorithm

Our GPU-HM proposal consists of two main phases: preprocessing and rendering. In the
preprocessing phase, the auxiliary data structures are computed and encoded following the
steps described in Section 4.3. Then, during the rendering phase, these data structures are
used to guide the visualization process.

4.4. Rendering algorithm 77

GS

Vertex Indices
i0 i1 i32 i1 i2 ...

NC cells

TIN

PC cells

PC cells indexes

Step 1

Step 2

Step 3

pc4 pc7

(a)

GS

Vertex Indices
i0 i1 i32 i1 i2 ...

NC cells

TIN

PC cells

Step 1

Step 2

Step 3

PC cells indexes

pc8pc9

pc2pc6

(b)

Figure 4.6: HM rendering algorithm steps: (a) coarse LOD render; (b) fine LOD render.

78 Chapter 4. GPU-HM: a parallel Hybrid Meshing algorithm using the GPU

The main steps of the HM rendering phase are similar to those exposed in Chapter 2. An
overview of the process for a sample terrain is represented in Figure 4.6. The visualization of
a coarse grid LOD is shown in Figure 4.6(a) while a finer LOD is used in Figure 4.6(b). Note
that the TIN mesh is the same in both cases, but the PC grid cells depend on the grid LOD and
thus different cells are rendered. In those figures, the input grid and TIN meshes are rendered
following the order indicated by the numerical labels. The additional parameters needed are
represented as inputs for each step.

The process begins by identifying the active NC, CC, and PC cells, i.e., the cells belonging
to the selected grid LOD in the current frame. Once this is done, the NC cells are rendered
by indexed draw calls (Step 1 in Figures 4.6(a) and 4.6(b)), as the vertices data are already
stored in the GPU memory. Then, CC cells are discarded and replaced by the whole TIN
mesh (Step 2 in the same figures). This operation is lightweight since TIN meshes are static,
usually cover around 20-30% of the grid extension and the geometry data are also stored in
the GPU memory, which makes the rendering very efficient.

Finally, the Geometry Shader which performs the PC cells adaptive tessellation is loaded
and the list of active PC cells are sent to the GPU, where the actual tessellation is computed
(Step 3 in the same figures). The input of each shader thread is the tessellation data of the
PC cell that is going to be processed: every data field encoded in a different vertex attribute.
By the time the Geometry Shader finishes the processing, all the convexification and corner
triangles have been generated, and therefore the PC cell is tessellated.

During the rendering, each one of the several Geometry Shader threads processes the TB
vertices in the PC cell sequentially. Listing 4.1 shows a fragment of the GPU-HM geometry
shader main function and Listing 4.2 reproduces relevant parts of the triangle generation code.

Vertex connectivity values greater than one mark the beginning of a cave in the local
convex hull (line 34 in the Listing 4.1). Then, the associated convexification triangles are
reconstructed and emitted by the Geometry Shader, according to the original tessellation al-
gorithm. This is performed in the shader function generateTbTriangle() (line 21 in the Listing
4.2). The coordinates of the convexification triangle points are directly read from a Vertex
Buffer in the GPU memory using a Texture Buffer Object (texelFetchBuffer() commands at
lines 22, 26 and 29) and, after applying the correspondant ModelView transformation matrix,
the triangle is emitted by the shader (line 33). Note that the V DATA_IT EM_OFFSET is a
simple constant value encoding the size of every TB data item in memory.

4.4. Rendering algorithm 79

Listing 4.1: Fragments of the main function in the hmshader source

1 void main() {
2 ... // Initialize temp data
3

4 int k = 0;
5 int starti = int(alciData.x); // START_TB
6 int i = starti;
7 int top = i + int(alciData.y); // COUNT_TB
8 int lastHullvIdx = 0;
9

10 for(; i < top; i++) {
11 int vIdx = int(mod(i, tbSize));
12 int conn;
13 readTbInfo(vIdx, conn);
14

15 // Close caves
16 while ((k > 0) && (i >= startVertexLast[k - 1]))
17 k--;
18

19 if ((k > 0) && (i + conn < top)) {
20 // Inner point. Tessellate cave if it is inside the cell
21 int vIdx2 = int(mod(i + conn, tbSize));
22 int conn2;
23 readTbInfo(vIdx2, conn2, vIdx2);
24 generateTbTriangle(startVertexIdx[k - 1], vIdx, vIdx2);
25 }
26 else {
27 // Point in convex hull. Join to grid corner
28 if (i > starti)
29 generateLink(lastHullvIdx, vIdx);
30 lastHullvIdx = vIdx;
31 }
32

33 // Begin a new cave
34 if (conn > 1) {
35 startVertex[k] = i;
36 startVertexIdx[k] = vIdx;
37 startVertexLast[k] = i + conn;
38 k++;
39 }
40 }
41

42 vec3 vActiveCorner = readActiveCorner();
43 vec3 vLastHull = (texelFetchBuffer(vArrayTex, vOffsetTin +lastHullvIdx

* VDATA_ITEM_OFFSET)).xyz;
44 while (activeCorner != topCorner) {
45 vec3 vPreviousCorner = vActiveCorner;
46 activeCorner = int(mod(activeCorner + 1, 4));
47 vActiveCorner = readActiveCorner();
48 emitTriangle(vPreviousCorner, vLastHull, vActiveCorner);
49 }
50 }

80 Chapter 4. GPU-HM: a parallel Hybrid Meshing algorithm using the GPU

Listing 4.2: Fragments of the triangle generation functions in the hmshader source

1 void generateLinkTriangles(in int lastHullvIdx, in int vIdx) {
2 vec3 vActiveCorner = readActiveCorner();
3 vec3 vLastHull = (texelFetchBuffer(vArrayTex, vOffsetTin +lastHullvIdx

* VDATA_ITEM_OFFSET)).xyz;
4 vec3 vActiveHull = (texelFetchBuffer(vArrayTex, vOffsetTin +vIdx *

VDATA_ITEM_OFFSET)).xyz;
5

6 // Check if corner shit is needed
7 float cpz = (cross(vLastHull - vActiveCorner, vActiveHull -

vActiveCorner)).z;
8 while ((sign(cpz) <= 0.0) && (activeCorner != topCorner)) {
9 // Generate ’shift’ triangle

10 vec3 vPreviousCorner = vActiveCorner;
11 activeCorner = int(mod(activeCorner + 1, 4));
12 vActiveCorner = readActiveCorner();
13 emitTriangle(vPreviousCorner, vLastHull, vActiveCorner);
14 cpz = (cross(vLastHull - vActiveCorner,
15 vActiveHull - vActiveCorner)).z;
16 }
17

18 emitTriangle(vLastHull, vActiveHull, vActiveCorner);
19 }
20

21 void generateTbTriangle(in int idx0, in int idx1, in int idx2) {
22 vec4 pos = texelFetchBuffer(vArrayTex, vOffsetTin +idx0 *

VDATA_ITEM_OFFSET);
23 vec4 origPos = pos;
24 gl_Position = gl_ModelViewProjectionMatrix * pos;
25 EmitVertex();
26 pos = texelFetchBuffer(vArrayTex, vOffsetTin + idx1 *

VDATA_ITEM_OFFSET);
27 gl_Position = gl_ModelViewProjectionMatrix * pos;
28 EmitVertex();
29 pos = texelFetchBuffer(vArrayTex,
30 vOffsetTin + idx2 * VDATA_ITEM_OFFSET);
31 gl_Position = gl_ModelViewProjectionMatrix * pos;
32 EmitVertex();
33 EndPrimitive();
34 }

4.5. Experimental results 81

Vertices belonging to the local convex hull of the TIN boundary are also connected to
the grid cell vertices, by generating additional corner triangles in the shader function gener-

ateLinkTriangles() (line 1 in the Listing 4.2). In this case, the TIN points are read from the
Vertex Buffer using the same texelFetchBuffer() command (lines 3 and 4) and then the grid
vertex coordinates are read from the buffer with this same mechanism at line 12. Since the
index of the grid point needs to be calculated from its relative position, the texelFetchBuffer()

command is encapsulated in the readActiveCorner() function which performs both operations
at the same time.

In our proposal, the sequential tessellation operations have been reordered and optimized
for GPU execution. Several optimization techniques have been applied, resulting in an im-
plementation of the algorithm with fewer conditional branch statements, only one iteration
over the TB vertices (the main loop at line 10 in the Listing 4.1) and a reduced number of
memory reading operations. Other optimization techniques have been additionally used when
possible, such as loop unrolling and transformation of complex conditional expressions into
arithmetic expressions or several simpler expressions for faster evaluation. Another relevant
performance improvement derives from the reordering of the TIN vertices in the vertex buffer.
Due to this optimization, the data of a TB vertex is accessed with the same index in the TB
list and in the vertex buffer, eliminating the pointer to the geometry data position used in
the original TB list (lines 11 and 21 in the Listing 4.1). With this optimization, not only are
data reading operation reduced to almost one half of the original number, but also many read
operations in the same thread could benefit from data locality and attain much better cache
behavior.

The implementation strategy presented in [9] shows that the decoding and generation of
the incremental convexification triangles, and the generation of corner triangles are performed
in two stages. The GPU-HM method succeeds in merging those different stages together,
reducing the overall complexity of the source code and the number of conditional evaluations
of our implementation.

4.5 Experimental results

The results of our tests with the GPU implementation of the HM algorithm are shown in this
section. The software application used for testing has been coded in C++ language and GLSL
in the shaders, since OpenGL is the hardware acceleration API. The results were collected in

82 Chapter 4. GPU-HM: a parallel Hybrid Meshing algorithm using the GPU

Model Grid cells TIN ∆ TB elems.
Coruña 998K 1739K 17K

Sil 998K 657K 14K
Pmouros 998K 656K 16K

Table 4.1: Size of the test models.

a Ubuntu Linux system with an Intel Core2 Quad 2.6 GHz processor. Two different Nvidia
GeForce graphic cards, an GTX480 and a GTX280, were used in the tests. The Geforce GTX
480 video card is equipped with a GPU with 480 cores running at a maximum clock speed of
700 MHz and 1.5 GB of GDDR5 video memory. It offers support for DirectX 11 and OpenGL
4. On the other hand, the GTX280 has 240 cores running at 600 MHz and 1 GB of GDDR3
memory.

For the tests, three sample models of locations in the region of Galicia were generated from
freely available data in the Spanish GIS database (IDEE) [34]: Coruña, Sil and Pmouros. The
Coruña model shown in Figure 4.7 represents the Coruña bay area: an aerial view of the area
is depicted in Subfigure 4.7(a), a rendered image of the grid model in Subfigure 4.7(b), the
TIN model in Subfigure 4.7(c) and the obtained hybrid model in Subfigure 4.7(d). The Sil

model (see Figure 4.8) corresponds to part of the canyon formed around the Sil river; as in the
previous figure an aerial view of the area is depicted in Subfigure 4.8(a), a rendered image of
the grid model in Subfigure 4.8(b), the TIN model in Subfigure 4.8(c) and the obtained hybrid
model in Subfigure 4.8(d). The Pmouros model (see Figure 4.9) represents the area around
the Portodemouros dam. Again, an aerial view of the area is depicted in Subfigure 4.9(a), a
rendered image of the grid model in Subfigure 4.9(b), the TIN model in Subfigure 4.9(c) and
the obtained hybrid model in Subfigure 4.9(d).

The global sizes of the models are summarized in Table 4.1. The first column contains the
number of cells in the maximum resolution version of the base grids, the second one shows
the number of triangles forming the TIN meshes and the final one represents the number of
vertices in the TB.

In Table 4.2, the number of PC, CC and NC cells are shown for each grid LOD from the
coarsest level (L0) to the finest one (L3). The ratio of each one of this cell types over the total
number of cells is also indicated in parentheses. Since the cells are smaller at finer levels of
detail, it may be seen that the ratio of PC cells decreases while, at the same time, the ratio of
NC and CC cells raises.

4.5. Experimental results 83

(a) (b)

(c) (d)

Figure 4.7: Coruña model: (a) aerial view of the area from the IDEE [34]; (b) grid model; (c)
TIN model; (d) hybrid model, the TIN mesh is highlighted in blue.

84 Chapter 4. GPU-HM: a parallel Hybrid Meshing algorithm using the GPU

(a) (b)

(c) (d)

Figure 4.8: Sil model: (a) aerial view of the area from the IDEE [34]; (b) grid model; (c) TIN
model; (d) hybrid model, the TIN mesh is highlighted in blue.

4.5. Experimental results 85

(a) (b)

(c) (d)

Figure 4.9: Pmouros model: (a) aerial view of the area from the IDEE [34]; (b) grid model;
(c) TIN model; (d) hybrid model, the TIN mesh is highlighted in blue.

86 Chapter 4. GPU-HM: a parallel Hybrid Meshing algorithm using the GPU

Coruña
L0 L1 L2 L3

PC cells 517 (3.36%) 1058 (1.71%) 2142 (0.86%) 4233 (0.43%)
NC cells 14418 (93.77%) 58606 (94.52%) 236079 (94.81%) 949668 (95.16%)
CC cells 441 (2.87%) 2337 (3.76%) 10780 (4.33%) 44100 (4.42%)

Rendered ∆ 1787K 1876K 2231K 3661K
PC cells ∆ 19K (1,06%) 19K (1,01%) 20K (0,89%) 22K (0,60%)

Sil
L0 L1 L2 L3

PC cells 857 (5.57%) 1775 (2.86%) 3510 (1.41%) 7630 (0.76%)
NC cells 13428 (87.33%) 54666 (88.17%) 217694 (87.43%) 904681 (90.65%)
CC cells 1091 (7.10%) 5560 (8.97%) 27797 (11.16%) 85690 (7.10%)

Rendered ∆ 701K 784K 1111K 2489K
PC cells ∆ 17K (2,38%) 17K (2,17%) 19K (1,66%) 23K (0,90%)

Pmouros
L0 L1 L2 L3

PC cells 821 (5.34%) 1697 (2.74%) 3329(1.34%) 7912 (0.79%)
NC cells 13640 (88.71%) 55752 (89.92%) 225396 (90.52%) 906434 (90.83%)
CC cells 915 (5.95%) 4552 (7.34%) 20276 (8.14%) 83655 (8.38%)

Rendered ∆ 704K 804K 1128K 2497K
PC cells ∆ 20K (2,87%) 36K (4,44%) 20K (1,80%) 27K (1,09%)

Table 4.2: Detailed description of the test models composition for each grid LOD.

The last two rows show the total number of triangles used for rendering the model and
the portion of them corresponding to the adaptive tessellation of the PC cells. Note that
the number of PC cells is similar for the three models, which is an usual indicator of the
boundaries of the TIN models have similar lengths over the grid. However, in the Coruña

model, around twice the number of triangles are rendered, since the TIN mesh is much higher
detailed than in the other models. Also note that there is an important increment in the number
of triangles used for the most detailed levels: 3.5 times more triangles in the the Sil and
Pmouros model and around 2 times for the Coruña model.

In the tests, the performance of the GPU implementation as well as the quality of the
rendered hybrid models have been evaluated. In terms of quality, the GPU implementation
of the HM algorithm improves substantially the visualization of the hybrid terrain models,
since the component meshes are effectively joined, without any discontinuities in the borders.
Figure 4.10 shows an detail image of the rendered Sil hybrid model in solid and wireframe

4.5. Experimental results 87

(a)

(b)

Figure 4.10: HM adaptive tessellation close-up: (a) solid mode; (b) wireframe mode.

88 Chapter 4. GPU-HM: a parallel Hybrid Meshing algorithm using the GPU

GTX 480
Method L0 L1 L2 L3

Coruña
NC + TIN 330.90 319.73 283.64 192.91

HM 232.20 (29.83%) 233.62 (26.93%) 213.31 (24.80%) 155.42 (19.43%)

Sil
NC + TIN 758.97 707.51 561.93 293.89

HM 407.83 (46.27%) 409.74 (42.09%) 353.59 (37.08%) 216.00 (26.50%)

Pmouros
NC + TIN 813.42 754.78 591.35 313.56

HM 276.58 (66.00%) 256.32 (66.04%) 348.41 (41.08%) 210.86 (32.75%)
GTX 280

Method L0 L1 L2 L3

Coruña
NC + TIN 90.30 87.99 79.15 62.02

HM 76.06 (15.77%) 87.61 (0.43%) 78.99 (0.20%) 61.82 (0.32%)

Sil
NC + TIN 306.06 283.13 213.35 125.66

HM 196.54 (35.78%) 194.82 (31.19%) 156.93 (26.44%) 101.49 (19.23%)

Pmouros
NC + TIN 354.43 322.90 233.64 134.77

HM 142.74 (59.73%) 148.63 (53.97%) 159.75 (31.63%) 94.43 (29.93%)

Table 4.3: Performance results obtained with the HM algorithm, measured in FPS, using
GTX480 and GTX280 GPUs.

mode (see Figures 4.10(a) and 4.10(b), respectively). TIN mesh is depicted in blue, and the
adaptive triangles automatically generated by the HM shader, in green.

The performance results of the GPU-HM implementation are shown in Table 4.3. This
table contains the averaged FPS obtained, for every test model, using the GPU-HM algorithm
and also the FPS obtained rendering only the NC grid cells and the TIN mesh. Note that
the final terrain achieved with the GPU-HM method is a perfectly tight hybrid model, while
the result presented by the NC + TIN rendering is a non-coherent model with holes in the
boundary region (although it manages to avoid the overlapping between the TIN and the
grid meshes). The two values are shown as a way to evaluate properly the performance of the
tessellation algorithm performed in the GPU, without taking into account the small processing
involved to discard the overlapping grid cells, since it is similar in both cases. Thus, the
relative performance drop of the renderer when using the GPU-HM to generate the adaptive
tessellation between the meshes boundaries is shown in parentheses. For each sample model,
the tests results are divided according the active LOD in the grid (L0−L3) for a more detailed
view.

As can be seen in the results table, the GPU-HM test implementation achieves the ren-
dering of large terrain models at interactive frame rates. The performance of the PC cells

4.6. Contributions of the GPU-based implementation 89

tessellation performed in the geometry shader is quite good and allows a reliable interactive
rendering, although it depends heavily on the number and the LOD of the PC cells being
rendered.

Thus, the best performance results are obtained when the coarser LOD (L0) is selected.
For finer LODs, performance tends to decrease, as the total number of rendered triangles is
much higher. The cost of the HM algorithm implementation, however, is usually higher for
coarser grid LODs, which have a low degree of parallelism. As shown in Table 4.2, the number
of PC cells nearly doubles for consecutive finer LODs, while the number of PC tessellation
triangles rises only marginally. Since a new parallel thread is used for the tessellation of a PC
cell, this difference in the number of PC cells directly affects to the degree of parallelism in
the implementation, and thus the global performance. This also explains that the performance
gain using the more powerful GTX 480 graphic card (480 cores) compared to the GTX 280
(280 cores) is not as large as expected at very high frame rates. Since the GTX 480 has a
larger number of cores, at coarser LODs some cores may remain unused.

In conclusion, the application is able to render the largest test model, Coruña bay, at the
maximum available detail (roughly 3.7 millions of triangles) at 155 FPS using the GTX480
card. Hence, the GPU implementation of the HM algorithm represents a simple and efficient
solution for improving the interactive rendering of hybrid terrain models.

4.6 Contributions of the GPU-based implementation

This chapter has introduced the GPU-HM algorithm: a new parallel method for hybrid terrain
model rendering based on the original HM algorithm. The method leverages the GPU paral-
lel hardware using a straightforward shader based approach which can be easily included in
rendering pipelines compatible with Shader Model 4 specification, as it does not use the more
recent Tessellator unit.

The method follows a two phases approach similar to the HM algorithm. Therefore, the
hardest and most expensive computations are moved to the preprocessing phase and their
results encoded in simple data structures. During the interactive rendering phase, these struc-
tures can be easily decoded in the GPU where are also generated the adaptive tessellation
triangles needed to join both component meshes.

Besides the modifications needed to adapt the HM algorithm to the Geometry Shader unit,
the GPU-HM method features additional improvements as the reordering of the TB vertices in

90 Chapter 4. GPU-HM: a parallel Hybrid Meshing algorithm using the GPU

the TIN geometry buffer, which reduces the storage requirements of the method and improves
the data locality; the combination of the convexification and linking steps in the visualization
phase to reduce the overall complexity and nesting of the process; and the application of
conventional strategies to enhance shaders performance as loop unrolling and the elimination
of bifurcations in the shader code.

The performance of the implementation, as well as the quality of the rendered hybrid mod-
els, has been demonstrated in several tests, as shown in the results subsection. The GPU-HM
implementation manages to render models of several millions of triangles, without geometric
discontinuities or overlapping, at interactive frame rates. To our knowledge, no other hybrid
terrain rendering algorithm has been implemented using GPUs.

CHAPTER 5

EHM ALGORITHM

HM algorithm is a valuable approach for visualizing hybrid terrains, as has been analyzed
in previous chapters. It is simple, efficient, inherently flexible —due to the independence of
the multiresolution method used in the regular part of the model— and obtains good qual-
ity tessellations on the dynamically generated mesh. However, on the HM algorithm level-
of-detail techniques are exploited only on the base grid, while TIN models are used to add
supplementary details to especially relevant areas. Thus, the number of rendered primitives
is unnecessarily incremented by processing the full detailed TIN models in conditions where
such a highly detailed models are unnecessary. In these situations, e.g., when the TIN model
is placed far from the viewpoint, the number of vertices processed in the TIN mesh will be
disproportionate.

In this chapter we introduce a new Extended Hybrid Meshing (EHM) algorithm we have
developed to add support for multiresolution TIN models. Overcoming the limitation of using
single-resolution TIN models poses a significant challenge since a multiresolution TIN model
implies the dynamic simplification of the TIN boundary, which is indeed a key structure in the
original tessellation process. Our proposal, presented in [61], is based on an approach similar
to the original method, that is, encoding the precomputed local tessellations for any level-of-
detail in the model, but in this case both TIN and grid LODs are considered. Furthermore, a
new tessellation algorithm has been developed, managing to detect which boundary vertices
are active in the current LOD and then consequently readjusting the generation of the tes-
sellation triangles. This dynamic reconfiguration of the precomputed tessellation is possible
due to some convenient restrictions in the order of elimination of the TIN boundary vertices,

92 Chapter 5. EHM Algorithm

enforced during the preprocessing. Therefore, our proposal retains most of the interesting
properties of the original HM algorithm, like the small memory overhead, high quality local
tessellation and preservation of the original data without alterations, and it furthermore deliv-
ers a complete multiresolution rendering method of hybrid models. In our solution, the grid
and TIN parts are dynamically simplified depending upon the view point and the resulting
hybrid model preserves all the visible details and, at the same time, reduces the number of
rendered triangles.

In the following sections the EHM algorithm is introduced and discussed. First, the overall
strategy of the method is presented. Next, each of the algorithm phases is explained, starting
with the visualization phase and the tessellation algorithm, and following with the discus-
sion of the preprocessing phase and the data encoding strategy. Then, the results of some
performance and quality tests performed with the EHM algorithm are exposed. Finally, the
contributions of the new method are summarized in the last section.

5.1 Algorithm structure

The key point in the original HM algorithm is the unified representation of the convexification
triangles for all the levels of detail in the grid, encoded in a unified representation: the TB list.
The objective of the EHM algorithm is to extend the capabilities of the HM algorithm, to
allow the multiresolution rendering in the grid and TIN parts.

Including a multiresolution TIN in the EHM framework entails dynamic changes in the
grid and TIN boundaries during interactive visualization. Thus, only the TB vertices existing
in the selected LOD of the TIN mesh are rendered. In this case, a TIN boundary substan-
tially different from the full resolution version will be generated, complicating the tessellation
procedure between the models.

If all the vertices in the original TB list are used for generating the convexification tri-
angles, undesired overlapping artifacts will appear. By way of example, Figure 5.1 shows
the result of the original tessellation procedure when applied to a multiresolution TIN. The
original TIN boundary shown in Figure 5.1(a) can be locally convexified by adding the local
convexification triangles portrayed in Figure 5.1(b) in a darker tone. The local convexification
of the example has been performed according to the TB list:

T B = { . . . 11(17),12(16),13(1),14(1),15(11),16(2),17(1),18(2),19(1),
20(1),21(5),22(4),23(1),24(1),25(1),26(1),27(1) . . . }

(5.1)

5.1. Algorithm structure 93

11
12

13

14

15

16

1719

1820

21

2223

25

24

26

27

28

TIN

(a)

11
12

13

14

15

16

1719

1820

21

2223

25

24

26

27

28

TIN

(b)

11
12

13

14

15

16

1719

1820

21

2223

25

24

26

27

28

TIN

(c)

11
12

13

14

15

16

1719

1820

21

2223

25

24

26

27

28

TIN

(d)

Figure 5.1: Example of overlapping problems in the tessellation between the TIN and grid
boundaries when using a multiresolution method in the TIN: (a) original TIN boundary and
grid cells; (b) original TIN boundary locally convexified; (c) partially simplified TIN bound-
ary; (d) overlapping areas between the original convexification triangles and the partially
simplified TIN boundary.

94 Chapter 5. EHM Algorithm

Figure 5.1(c) reflects the changes in the TIN boundary when some of the vertices are not ren-
dered in a different TIN resolution level. In this figure, inactive vertices (i.e., vertices that
are not visible in the current level-of-detail of the TIN) have been crossed out and the new
simplified TIN shape is depicted; note that, in this case, the grid resolution has not changed.
Finally, Figure 5.1(d) shows the overlapping problems that appear if the HM algorithm is di-
rectly applied to this TIN resolution level. Following the original convexification instructions
encoded in the TB list, some invalid triangles containing inactive TB vertices will overlap the
TIN mesh in the regions marked with a stripe pattern. Therefore, proceeding with the original
tessellation strategy produces a model with meshing artifacts around the vertices which have
been removed from the TIN boundary in the selected LOD.

Our solution combines precomputed multiresolution TINs and dynamic tessellation of the
boundaries to discard the invalid convexification triangles generated from the original TB
list. In a similar spirit to the HM method, the strategy basically comprises of two phases:
preprocessing and visualization. The main steps of the EHM algorithm are:

– Preprocessing. During this phase, which occurs only once at the beginning of the pro-
cess, the data structures needed by the EHM and the multiresolution algorithms are
initialized in the following order:

1. Construction of auxiliary level-of-detail structures used by the grid.

2. Precomputation of the EHM lists such as the TB list.

3. Construction of TIN multiresolution hierarchy which is required by most mul-
tiresolution TIN methods [30, 21, 35]. Since this hierarchy must comply with
the simplification preconditions required by the EHM algorithm, it needs to be
created after the EHM lists, as will be explained in detail in Section 5.3.

– Rendering. For each rendered frame, the following processing steps are performed:

1. Extract view-dependent grid: the grid multiresolution method is used for the ex-
traction of a new level-of-detail according to the current viewing parameters.

2. Extract view-dependent TIN: again, using the standard multiresolution method
applied in the TIN, a new level-of-detail is extracted for the TIN part.

3. Render visible NC grid cells belonging to the computed level-of-detail.

4. Render the computed TIN level-of-detail (corresponding to the CC cells area).

5.2. Tessellation algorithm for the partially covered grid cells 95

5. Tessellate and render PC cells using the EHM tessellation algorithm to join both
level-of-detail models. The EHM tessellation algorithm is carefully designed to
generate the appropriate triangles for the extracted grid and TIN LODs. There-
fore, information in the TB list is not blindly processed to generate triangles, but
interpreted according to the refined models.

Hence, the EHM algorithm incorporates view-dependent rendering of the TIN mesh and
can be regarded as a new solution for achieving a full multiresolution hybrid model. The
next section presents the PC cells tessellation algorithm, which corresponds to the final step
in the rendering phase. This step is explained before the preprocessing phase for reasons of
clarity, since it is easier to understand the requirements in the preprocessing and encoding
after having seen the rendering phase.

5.2 Tessellation algorithm for the partially covered grid cells

The EHM algorithm is based on local tessellations by means of the real-time decoding of pre-
computed data structures. Using multiresolution TINs, however, means that dynamic modi-
fications will occur in the TIN boundary. Therefore, a new tessellation algorithm supporting
dynamically simplified TB lists has been developed and is presented in the current section.

The EHM tessellation algorithm generates the two kind of triangles used in the PC cells
tessellation: convexification triangles filling the caves in the TB convex hull, and corner tes-
sellation triangles effectively linking the TIN convex hull with the grid cell corners.

In the incremental convexification procedure, the vertices of every triangle generated in-
side a cave present the form:

{caveStart, i, i + conn(i)} (5.2)

where caveStart is the TB index of the cave starting point and i corresponds to the index of
any inner vertex of the cave. Defining the TB index of a cave ending point as caveEnding, the
property caveStart < i < caveEnding stands true for every triangle. The third term, conn(i),
represents the connectivity value of the i-th TB vertex. Based on this property, a proper
convexification of the TIN boundary is achieved for any active resolution level in the TIN
mesh. In this way, two cases can be considered for each TB encoded convexification triangle,
according to the currently active vertices on the TB: skip the triangle generation or continue
with the generation adapted as needed to the TIN boundary. Triangles skipped are those whose

96 Chapter 5. EHM Algorithm

caveStart or i component vertices —the first or second vertex indexes following the TB list
order as in Expression 5.2— are inactive in the current TIN boundary. Those triangles are not
needed because they are connecting an inactive vertex and instead of filling some area inside
a TB cave, they can actually overlap the current TIN mesh. However, when the only inactive
vertex in a triangle is the last one (i+ conn(i)), the triangle is needed to fill the cave and
thus it is generated using the next active vertex in TB as ending vertex. Note that the indices
of vertices in TB list are maintained throughout the entire process, to avoid invalidating the
connectivity based scheme of the tessellation. Additionally, it is guaranteed that any view-
dependent TB computed by the TIN multiresolution algorithm will be compatible with this
scheme, due to the preconditions imposed in the construction of the multiresolution hierarchy,
which ensures that TIN vertices are removed in a compatible order (see Section 5.3.2).

In addition to the TB convexification triangles, the tessellation algorithm also generates
corner tessellation triangles linking the TIN mesh with the grid cell corners. These triangles
follow the scheme of the original algorithm, i.e., they are sequentially connected to the first
uncovered cell corner while the generated triangle does not overlap the mesh. When overlap-
ping is detected, the next cell corner is used to generate the triangle until a new overlapping
arises or the process finishes.

An outline of the tessellation algorithm processing each PC cell of the model is shown in
Figure 5.2. Basically, the algorithm iterates through the TB vertices contained in the cell and
generates the required triangles as needed. Some auxiliary lists to maintain cave related infor-
mation are initialized at the beginning and conveniently updated in each iteration, before and
after the geometry generation stage. In this geometry stage, only one kind of convexification
or corner tessellation triangle is generated in a single iteration.

Examining the algorithm in detail, the first step is to verify that the current iteration vertex
i is active (line 7), otherwise the processing is skipped. Then, if vertex i is found to be an
endpoint of a previously opened cave in the local TIN convex hull (line 11), the opened caves
counter k is updated. Next, comes the actual geometry generation step, where a new convex-
ification triangle is emitted (line 22) only when it is needed. This condition is determined by
checking whether the vertex belongs to the cell convex hull (line 19), which means that the
cave is not active. In this case, the vertex is processed as a convex hull point and thus the
required corner tessellation triangles are emitted to link the point to the cell corners; other-
wise the convexification triangle is safely generated. Finally, if also marks the beginning of
a new or a nested cave (line 25), the cave beginning and ending indices are stored in startL

5.2. Tessellation algorithm for the partially covered grid cells 97

Require: 0≤ N < T B.size and L > 0
1: {N = index of the first TB vertex in cell}
2: {L = total number of vertices in cell}
3:
4: k← 0 {counter of currently opened caves}
5: startL← [] {list of cave starting points}
6: endL← [] {list of cave ending points}
7:
8: for all i such that N ≤ i < N +L do
9: {– Skip processing for inactive vertices –}

10: if vertex i is not active then
11: continue
12: end if
13: {– Update counters for this iteration –}
14: while k > 0 and i≥ conn(endLk) do {Determine if cave ending has been reached}
15: k← k−1
16: end while
17: next← i+1 {Look for next active vertex}
18: while vertex next is not active do
19: next← next + conn(next)
20: end while
21: {– Geometry generation –}
22: if k = 0 or i+ conn(i)≥ N +L then {Process convex hull vertices}
23: LinkToCellCorners(vertex i)
24: else {Process cave inner vertex}
25: MakeTriangle(startLk, vertex i, vertex next)
26: end if
27: {– Update counters for next iteration –}
28: last← i+ conn(i)
29: if conn(i)> 1 and is_active(vertex last) then
30: {Init new cave if ending is active}
31: k← k+1
32: startLk← i
33: endLk← i+ conn(i)
34: end if
35: end for

Figure 5.2: Tessellation algorithm for the partially covered grid cells.

98 Chapter 5. EHM Algorithm

11
12

13

14

15

16

1719

1820

21

2223

25

24

26

27

28

TIN

(a)

11
12

13

14

15

16

1719

1820

21

2223

25

24

26

27

28

TIN

(b)

Figure 5.3: Tessellation algorithm example using a multiresolution TIN boundary: (a) active
TIN LOD; (b) convexification triangles generated by the tessellation algorithm in the active
TIN LOD.

and endL lists, and the opened cave counter k is increased. It should be noted that caves are
always considered as opened, even if the ending point belongs to a different cell and that cave
is later ignored.

Let us illustrate the operation of the algorithm by considering the tessellation of the par-
tially refined TIN mesh presented in Figure 5.1. For convenience, the TIN mesh is pictured
again in Figure 5.3(a), while the obtained convexification is represented in Figure 5.3(b). Note
that connectivity values of the TB vertices remain unaltered, although some of the original TB
vertices are inactive in the current TIN resolution:

T B = { . . . 11(17),12(16),13(1),��ZZ14(1),
15(11),16(2),��ZZ17(1),��ZZ18(2),��ZZ19(1),
20(1),21(5),22(4),23(1),��ZZ24(1),

��ZZ25(1),26(1),27(1) . . . }

Table 5.1 shows the operation of the algorithm during the sequential processing of ver-
tices from 11 to 26 in the TB list, divided into three blocks, corresponding to each one of the
grid PC cells. The algorithm avoids meshing problems by ignoring the processing of input
vertices or generating tessellation triangles when appropriate. For example, let us follow the
processing of first vertices in the example TB list. Vertex 11 is active and is not inside any

5.2. Tessellation algorithm for the partially covered grid cells 99

Vertex i k startL endL TB Conv. Triangles TB Convex Hull
11 1 [11] [28] – [11]
12 2 [11,12] [28,28] – [11,12]
13 2 [11,12] [28,28] (12,13,15) [11,12]
��ZZ14 – – – – –
15 3 [11,12,15] [28,28,26] – [11,12,15]
15 1 [15] [26] – [15]
16 1 [15] [26] (15,16,20) [15]
��ZZ17 – – – – –
��ZZ18 – – – – –
��ZZ19 – – – – –
20 1 [15] [26] (15,20,21) [15]
21 2 [15,21] [26,26] – [15,21]
22 3 [15,21,24] [26,26,26] – [15,21,22]
22 1 [22] [26] – [22]
23 1 [22] [26] (22,23,26) [22]
��ZZ24 – – – – –
��ZZ25 – – – – –
26 0 [] [] – [22,26]

Table 5.1: Tessellation algorithm operation for the example shown in Figure 5.3.

previously opened cave, thus, it is added to the convex hull. It also has a connectivity value of
17, meaning that a large cave ending in the vertex 28 is opened here; corresponding values are
added to the starting (startL) and the ending (endL) lists. The same processing is performed
with vertex 12 and a new nested cave is opened. Then, a new convexification triangle with
vertices {12,13,15} is generated during the processing of the vertex 13, which has a connec-
tivity value of 1. As the third vertex of the triangle should be {13+ conn(13)} = 14, which is
inactive, vertex 15 is used instead, avoiding any overlapping or meshing problems. Vertex 14
is then ignored, since it is inactive, and the processing continues with vertex 15.

Hence, this strategy of ignoring inactive vertices while proceeding with the cell tessel-
lation may deal transparently with simplified vertices in the TIN boundary. In fact, it also
reduces the tessellation overhead since inactive vertices are omitted. This simple tessella-
tion scheme is independent of the TIN and grid multiresolution methods, and works even in
complicated scenarios, such as a section of the TB with multiple nested caves and randomly
simplified vertices. Moreover, part of the tessellation complexity is eliminated during the pre-
processing phase, imposing some preconditions to the TIN multiresolution model which allow

100 Chapter 5. EHM Algorithm

us to simplify the runtime algorithm making convenient assumptions about the simplified TB,
as explained in the following section.

5.3 Multiresolution TIN preprocessing

The EHM method does not rely on any particular multiresolution TIN approach. However,
the performance and complexity of the EHM algorithm depends partially on the adaptation
of its TB-based approach to the multiresolution methods used in the model, as discussed in
this section. The first issue to examine is related to the simplification operators used in the
preprocessing of the multiresolution TIN model and it is exposed in Subsection 5.3.1. In
Subsection 5.3.2, the effects for the EHM algorithm of the preprocessed vertices removal
order are analyzed, and two preconditions are derived to guarantee that a valid hybrid model
is generated in any case.

5.3.1 Multiresolution TIN algorithm

In the EHM method, as mentioned above, LOD rendering is achieved by using multireso-
lution models for the grid and TIN meshes. Multiresolution models are generally built by
recording a series of simplification operations successively applied on the original geometric
data from the terrain dataset. These operations are then organized into a hierarchical data
structure, where the coarsest version of the model is at the root, and the fully detailed model
in the leaves. Later, during real-time rendering, a view-dependent mesh is extracted from this
structure by applying a set of compatible operations. There are many different approaches
based on this basic idea [48], using different operators and different methods to build and
access the multiresolution hierarchy. Some operators simply delete the faces, edges or ver-
tices of the mesh and do not introduce new elements, while others, replace elements of the
original model with a simplified version with lower precision but similar characteristics. A
comparative example of both types is shown in Figure 5.4: in Subfigure 5.4(a) a new vertex is
introduced with a full edge collapse operator during the simplification of edge va−vb; in Sub-
figure 5.4(b), using a half-edge collapse operator, the same edge is simplified by collapsing
the edge endpoint va into the other endpoint vb, without inserting any new vertex.

In fact, the introduction of new vertices in the TB list gives rises to serious consequences
for any TB-based approach, such as the EHM algorithm. For example, Figure 5.5 depicts a

5.3. Multiresolution TIN preprocessing 101

va

vb
edge

collapse

vnew

(a)

va

vb
half-edge
collapse

vb

(b)

Figure 5.4: Comparison between simplification operators: (a) edge collapse; (b) half-edge
collapse.

5

4

9

8
7

6

1

2

3

(a)

5

4

Vnew

9

8
7

6

1

2

3

(b)

5

44

9

8
7

6

1

2

3

(c)

Figure 5.5: Examples of TIN boundary simplification inside a PC cell: (a) original TIN bound-
ary; (b) simplified TIN boundary using an edge collapse operator; (c) simplified TIN boundary
using a half-edge collapse operator.

102 Chapter 5. EHM Algorithm

PC cell where a TIN boundary edge inside a PC cell is removed using different operators. The
TB information of the original cell in Figure 5.5(a), can be represented as the following array:

T Boriginal = { 1(1),2(1),3(3),4(1),5(1),6(1),7(1),8(1) . . . }

In Figure 5.5(b) the TB edge formed between vertices 4 and 5 is collapsed using a full
edge collapse operator, while in Figure 5.5(c) the same operation is performed using a half-
edge collapse operator. In the first case, a new vertex is introduced in the TIN boundary,
which would force the updating of the TB list during visualization to reflect this change:

T Bcollapsed_edge = { 1(1),2(1),3(3),��HH4(1),NewVertex(1),��HH5(1),6(1),7(1),8(1) . . . }

In the second case, the half-edge collapse operator proceeds by removing the vertex 5
endpoint of the edge, without introducing new points in the mesh. The resulting TB list
would be:

T Bhal f _collapsed_edge = { 1(1),2(1),3(3),4(1),��HH5(1),6(1),7(1),8(1) . . . }

The original TB list is not preserved in any case, but using half-edge collapse operators it
becomes possible to develop a strategy for ignoring the collapsed vertices during the genera-
tion of the convexification triangles, as seen in Section 5.2.

In conclusion, the introduction of new vertices into the original mesh implies that the
TIN boundary must be completely recalculated during visualization for each frame. Thus,
it becomes clear that operators introducing new elements in the boundaries are difficult to
integrate with our approach, due to the implied performance penalty and overall complexity
increasing. Using half-edge collapse operators, on the other hand, is compatible with our
approach. Therefore, any half-edge collapse based multiresolution algorithm may be used
in the TIN mesh, provided that the multiresolution TIN models were built according to the
preconditions exposed in next subsection.

5.3.2 Multiresolution TIN preconditions

As stated above our approach does not enforce the use of any particular method, as long as it
uses a half-edge collapse operator during simplification. However, to prevent the appearance
of any conflictive cases during the tessellation process, we need to guarantee that the dynam-
ically refined TIN boundary complies with certain assumed propositions regarding the vertex

5.3. Multiresolution TIN preprocessing 103

removal order. These propositions can be formalized as preconditions in the resulting TIN
multiresolution hierarchy.

Those required preconditions only affect the boundary vertices of the TIN and they do not
restrain the elimination of any vertex; i.e. during the construction of the hierarchy the precon-
ditions only modify collapse operations priority, intentionally delaying or bringing them for-
ward, when it is needed. Using this approach the border of any view-dependent refined mesh
transparently preserves the consistency of the EHM algorithm. Basically, when a multireso-
lution hierarchy is built according to these preconditions, any view-dependent refinement of
the boundary assumes an inside-out order: the removal of points within the cave before its
endpoints is forced, and nested caves are simplified before parent caves, etc. The tessella-
tion algorithm is capable of obtaining a well-formed hybrid model with this simple strategy.
The preconditions are presented along with their motivations and reasoning, in the following
subsections.

Cave vertices collapse precondition

The first step in the tessellation of the PC cells is to generate the convexification triangles
of the TIN boundary. Following the EHM scheme, new triangles are formed for every cave
connecting the inner vertices with the beginning endpoint (the initial vertex of the cave in
the TB list order), as it is visible from every other vertex in the cave. Vertices belonging to
nested caves are not taken into account, as they are joined to their respective beginning cave
endpoint.

When the process finishes, generated triangles cover the caves consecutively from be-
ginning endpoints to ending ones. Therefore, all the convexification triangles rely on the
corresponding cave beginning vertex and, if it is removed before intermediate vertices in the
cave, it will be impossible to complete the convexification of the remaining part of the cave.
Furthermore, if the removed vertex marks the beginning of a nested sub-cave, overlapping
and wrong oriented convexification triangles are generated from the beginning endpoint of
the parent cave. Figure 5.6 shows an example grid cell with the corresponding TB list:

T B = { 1(12),2(10),3(1),4(4),5(1),6(1),7(1),
8(4),9(1),10(1),11(1),12(1),13(1) . . . }

This list indicates that several nested caves appear in the cell TB; the cave between vertices
2−8, for example, contains two sub-caves in vertices 2−4 and 4−8.

104 Chapter 5. EHM Algorithm

2

7 6

54

3

8

9

1011

1

12

13

(a)

2

7 6

5
3

8

9

1011

1

12

13

(b)

2

7 6

5

3

9

1011

1

12

13

(c)

Figure 5.6: Example of a conflictive simplification of the TIN boundary: (a) original full
resolution TIN boundary and the associated convexification triangles; (b) resulting mesh after
4 removal; (c) resulting mesh after 8 removal.

As previously noted, vertex 4 (having conn(4) = 4) initiates a simple nested cave ending
in 8. These two vertices are the endpoints of the cave, while interior vertices between 5 and 7
are connected only to their next consecutive vertices. If vertex 4 is removed before the interior
points of the cave, as indicated in Figure 5.6(b), the origin for the remaining convexification
triangles of the cave is lost and hence incorrect overlapping triangles, signaled in red in the
figure, are formed from the parent cave beginning, vertex 2 in this case. Removing vertex
8, which marks the beginning of the nested cave in vertices between 8 and 12, leads to a
similar situation, as shown in Figure 5.6(c). On the other hand, when the cave endpoints are
the last ones to be simplified in the cave, conforming convexification triangles can be gener-
ated for any partially simplified cave, as illustrated in Figure 5.7. In this figure, the original
TIN boundary with the same previously indicated TB list is depicted in Figure 5.7(a). In
Figure 5.7(b), vertices 5,6,7,9,10,11 have been eliminated. With the removal of the interior

5.3. Multiresolution TIN preprocessing 105

2

7 6

54

3

8

9

1011

1

12

13

(a)

2

4

3

8

1

12

13

(b)

2

4

1

13

(c)

2

1

13

(d)

Figure 5.7: Example of an appropriate simplification of the TIN boundary: (a) original full
resolution TIN boundary and the associated convexification triangles; (b) resulting mesh after
5,6,7,9,10,11 removal; (c) resulting mesh after 3,8,12 removal; (d) Resulting mesh after 4
removal.

vertices, the cave between vertices 8 and 12 becomes empty and those endpoint vertices can
be also removed if not needed. The next simplification step is shown in Figure 5.7(c), where
the cave in vertices 8 and 12 finally disappears since the endpoint vertices 4, 8, and the interior
vertex 3 have been removed. After this step vertex 4 is not longer necessary, as the interior
vertex 3 is not present in the TB, and the simplification procedure may continue. Figure 5.7(d)
shows the resulting TB after the removal of vertex 4.

It becomes evident that endpoints are essential for the correct operation of the original
HM algorithm, and they must be preserved in the view-dependent refined mesh until all the
other vertices of the cave are removed. This requirement can be maintained with no visual-
ization cost, if the relationship is enforced in the multiresolution data structure computed in
the preprocessing phase. Thus, we need to set a precondition stating that whatever irregular
multiresolution model is used for the TIN mesh, every interior vertex in a cave must be always

106 Chapter 5. EHM Algorithm

simplified before the corresponding endpoints of the cave. Note that this precondition main-
tains the general flexibility of the algorithm and the precise removal order for every vertex in
the cell is not predefined and still depends on the dynamically changing view conditions.

Cell boundaries preservation precondition

Once the TIN boundary has been locally convexified, the second step in the cell tessellation
process is the generation of the linking triangles between the borders of both models. As in the
previous step, when using a multiresolution TIN model, the vertices of the boundary may be
unpredictably simplified during the rendering phase. Although our new tessellation algorithm
is capable of handling the absence of some boundary vertices, an additional precondition
related to the cell intersection points must be established to avoid the appearance of unsolvable
conflicts in the adaptive tessellation.

Tessellation is performed locally on each PC cell of the grid. At a mesh level, TB vertices
are introduced at the intersection points with the cell borders to avoid gaps, as in the original
HM approach. Since these intersection vertices belong to neighbor cells, the last vertex of the
TB array inside a cell is also the first one in the adjacent one, and thus the cell triangulations
are transparently joined and the final mesh does not contain any hole.

However if those intersection vertices are not cave endpoints, they may be removed before
other boundary vertices of the cell, leading to the creation of gaps in the resulting mesh.
A tessellation example showing gaps between the cells is depicted in Figure 5.8. In this
example the TIN already has a convex structure inside each cell so that the tessellation can be
performed directly by connecting the TB vertices with the uncovered cell corners of that cell.
The tessellation algorithm will proceed joining uncovered cell corners (squares) with active
TB vertices (dots) in a cell-by-cell basis.

In this figure vertices 1,5,8,11,13 are intersection vertices and, as will be shown below,
their elimination could produce undesired results. For the cell delimited by the vertices from
1 to 5, in case (a) as of yet no vertex has been simplified and thus the algorithm will generate
triangles linking the three uncovered corners with the TIN convex hull vertices. If vertex 5 is
removed, as in case (b), the algorithm will halt the process at vertex 4. Consequently, in the
next cell the process will start on vertex 6 and the space falling between vertices 4 and 6 will
not be tessellated, giving rise to a hole in the mesh.

An additional problem caused when very different degrees of simplification are computed
for the TIN and grid parts should be also considered. During visualization the multiresolution

5.3. Multiresolution TIN preprocessing 107

(a) (b)

Figure 5.8: Example of elimination of cell border points: (a) original mesh; (b) generation of
gaps between neighbor cells.

TIN may locally remove a large number of vertices in the TIN boundary causing active PC
grid cells to be left empty of TIN vertices. In this case, linking triangles between both models
should be large enough to cross cell boundaries, in order to tessellate the gap between borders.
Nonetheless, our algorithm works locally to every cell, and thus operations involving more
than one grid cell are not possible. An example is shown in Figure 5.9, where a large cross-cell
triangle should be generated. Since in (b) all the TB points between vertices 1 and 11 have
been simplified, including intersection vertices 5 and 8, a large triangle should be generated
linking vertices 1 and 11 with the respective grid cell corner. Note that this is a fairly simple
example, but when using real models with irregular borders, non-local triangles could be

(a) (b)

Figure 5.9: Example of elimination of cell border points: (a) original mesh; (b) generation of
non local triangles.

108 Chapter 5. EHM Algorithm

much larger, connecting non neighbor cells and possibly leading to complex boundaries easily
overlapped.

To avoid the non-local generation of triangles and holes, a new proposition is derived: cell
intersection TB vertices have to be preserved in any view-dependent refinement of the TIN.
In our case TIN meshes are considerably more detailed than the base regular grid and many
TIN vertices fall in the same grid cell, so this requirement is barely noticeable. Furthermore,
TIN meshes are not rendered when very coarse grid LODs are selected for the area of the
regular model covered with the TIN, as this implies that the highly detailed geometry added
by them is not needed in the current view conditions. Thus, the number of TB vertices needed
to preserve the coherence of the final model is small, regardless of which LOD is active in the
grid object.

EHM algorithm can be safely used with multiresolution TIN hierarchies fulfilling these
two fairly simple preconditions. The conjunction of the real-time tessellation algorithm prop-
erties and multiresolution hierarchies built according to the preconditions presented in this
section, is enough to guarantee that a well-formed hybrid mesh will be extracted and ren-
dered. In the next section we shall analyze some results obtained in our tests with the EHM
algorithm.

5.4 Implementation and results

A test application has been developed to validate the EHM algorithm and evaluate the quality
of the hybrid models generated. The application has been programmed in C++ language, using
OpenGL and OpenSceneGraph for managing the interactive rendering. OpenSceneGraph is
a cross-platform high performance 3D graphics toolkit implemented in C++ and OpenGL. It
provides high-level rendering features not found in the OpenGL API as bulk culling on the
host CPU, state change minimization, cross-platform access to input devices and file I/O with
support for many 2D and 3D model file formats.

The application works as an interactive hybrid terrain models viewer. It loads the prepro-
cessed data structures and the TIN and grid models at startup, and then generates an interactive
visualization of the resulting hybrid model. Since the component meshes are rendered by a
multiresolution method and both meshes are joined at real-time by the EHM algorithm, the
displayed model shows an adaptive level-of-detail depending on the point of view and a visu-
ally pleasant appearance.

5.4. Implementation and results 109

Table 5.2: Sample models information.

Model Grid #vertices TIN #vertices TIN #triangles
Alpine 4225 193586 385339

GCanyon 16641 34331 68032
PSound 16641 54462 108009

This implementation involves an important complexity in both the preprocessing and ren-
dering phases. Thus, only the TB and GC list management functions of previous HM imple-
mentations could be reused. In the preprocessing phase, the application generates the data
structures used by the two multiresolution methods employed in the grid and TIN meshes,
besides the computation of the EHM data structures. The modification of the preprocessing
phase of the TIN multiresolution algorithm to enforce the preconditions detailed in previ-
ous sections was specially complex and required a deep understanding of the multiresolution
method.

Three sample models, depicted in Figure 5.10, have been used in the tests. These mod-
els, synthetically generated from high resolution terrain DEMs, present the typical scenario
considered in our approach: a hybrid model formed by a base regular grid and a very highly
detailed TIN mesh, covering a extension around the 20-30% of the total model area. The
original datasets for the GCanyon and PSound models were obtained from the Georgia Tech
repository [79] and the Alpine dataset from Viewfinder Panoramas DEM site [17]. The num-
ber of vertices in the grid and TIN parts of each model can be found in Table 5.2. Note that
all the TIN meshes have a much higher number of vertices than their respective base grids.

All the tests were performed on a standard PC system equipped with a Pentium IV Quad
Core 3 GHz processor, 4GB of RAM and a Nvidia GeForce GTX280 graphic card with 512
MB of video memory.

The multiresolution method used in the grid mesh is a simple quad-tree based approach
derived from [72]. Regarding to the TIN mesh, our application employs the View-Dependent
Progressive Meshes (VDPM) framework [31]. VDPM is an effective, well known approach
for the LOD rendering of irregular meshes with several different implementations, such as
[35] or [56]. Furthermore, the VDPM method has been adapted to parallel graphic hardware
in [33]. Since a GPU implementation of the EHM algorithm is planned as future work, this
was the main reason for choosing the VDPM method. The implementation of the method is

110 Chapter 5. EHM Algorithm

(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Sample models used in the tests. (a) and (d) Alpine dataset grid and hybrid
models. (b) and (e) GCanyon dataset grid and hybrid models. (c) and (f) PSound dataset grid
and hybrid models.

5.4. Implementation and results 111

(a) (b)

Figure 5.11: Detail of the tessellated area joining TIN and grid meshes: (a) coarse detailed
model; (b) finer detailed model.

based on the approach followed by Kim and Lee [35] since it achieves more abrupt changes
between different parts of the refined mesh.

Good quality results were attained in all our tests. The EHM algorithm generated an
adaptive tessellation of the area between both meshes boundaries without any visible prob-
lems, such as holes or cracks. By way of example, Figure 5.11 shows a detail of the dynamic
tessellation (colored in green) generated during the interactive rendering of a hybrid model at
two different resolutions. As can be seen in the figure, the tessellation is well adapted to the
meshes and, moreover, there is no evidence of reduced quality in the border of the TIN mesh,
caused by the modifications introduced in the multiresolution data generation to comply with
the EHM preconditions.

The EHM approach is used to dynamically refine both grid and TIN meshes. The obtained
tessellation is generated according to the view conditions of the scene and to the overall level-
of-detail of the model. In this way, the level-of-detail of the tessellation is coherent with the
resolution of both meshes, presenting a tessellation with an adequate density and proportion-
ally sized triangles. By way of example, Figure 5.12 shows the variation in the size of the
tessellation triangles depending on the level-of-detail selected on the grid and TIN meshes.
Much larger and thinner triangles are generated when using a high resolution version of a TIN
with a coarse detailed grid in Figure 5.12(b) (HM approach), while more reasonable sized tri-
angles are obtained with the view-dependent rendering of the TIN in Figure 5.12(c) (EHM
approach).

112 Chapter 5. EHM Algorithm

(a) (b) (c)

Figure 5.12: Reduction of tessellation triangles using multiresolution TINs: (a) detailed grid
and TIN meshes; (b) coarse grid and fine TIN meshes; (c) coarse grid and TIN meshes.

Table 5.3: Render primitives used during the visualization of sample models using the EHM
algorithm.

Model grid #tri TIN #tri EHM #tri

Alpine

Full 8192 385339 2114
High 5803 271994 1705
Med 2016 96609 1223
Low 396 20740 1109

GCanyon

Full 32768 68032 980
High 22588 48100 791
Med 7909 17067 628
Low 1495 3473 569

PSound

Full 32768 108009 1200
High 23646 74412 1021
Med 8023 28355 786
Low 1913 5248 682

5.4. Implementation and results 113

Table 5.4: Performance results obtained during the visualization of sample models using the
original HM and the EHM algorithm.

Model FPS TIN gen time % EHM gen time %

Alpine

Full TIN 25.54 − −
High 4.0 88.87% 0.14%
Med 13.5 89.65% 0.44%
Low 87.5 83.81% 2.07%

GCanyon

Full TIN 131.8 − −
High 42.8 89.65% 0.72%
Med 115.8 83.30% 1.28%
Low 469.4 71.62% 2.62%

PSound

Full TIN 89.0 − −
High 23.6 93.17% 0.48%
Med 68.8 86.99% 1.20%
Low 373.8 75.32% 2.48%

The results obtained during our tests are shown in Tables 5.3 and 5.4. Table 5.3 summa-
rizes the number of primitives generated during the rendering. Each sample model has been
tested in three different view configurations, labeled as High, Medium and Low, using around
70%, 25% and 5% of the original model triangles, respectively. The three columns in the table
contain the average number of triangles used in the grid, TIN and EHM component meshes.
Here, we should stress that using the EHM method it is possible to render the whole hybrid
model using the 5% of the original grid and TIN triangles. The small overhead claims of the
EHM algorithm are also verified in this table. Note that only around 2100 new primitives were
needed by the EHM algorithm to join the grid and TIN meshes in the worst case, which cor-
responded to the fully detailed configuration of the Alpine model. Compared to the complete
size of the model, this number is almost negligible and is a reasonable trade off for obtaining
well-formed hole-free hybrid meshes.

Table 5.4 shows the frames-per-second (FPS) obtained during the visualization of the
test models using the EHM algorithm. The performance of the EHM algorithm in the High,
Medium and Low view configurations are compared with the performance obtained using the
HM algorithm with the full resolution TIN. The first column shows the average FPS obtained
during visualization. The second and third columns show the fraction of time spent in the
generation of the view-dependent TIN mesh, and in the tessellation of the PC cells. It is
patent visible that the performance overhead introduced by the EHM tessellation algorithm in

114 Chapter 5. EHM Algorithm

our experiments is small, representing only a 2.62% of the frame rendering time, in the worst
case. The overall gain of the EHM algorithm is highly significant when a low resolution TIN
is extracted, e.g., a 4x speed up is obtained for the PSound model in the best case.

The table also shows that the TIN refinement operation is the bottleneck in the visual-
ization phase, since is the most time consuming stage in the rendering pipeline. As men-
tioned above, the multiresolution rendering of the TIN was implemented following [35],
which achieves a more flexible view-dependent refinement than most of the similar methods.
However, it is clear that this additional flexibility comes with a cost in performance. Pajarola
and DeCoro’s implementation, for example, is reported to be five times faster than Kim and
Lee’s one on a slower machine [56]. Thus, although the general performance of the viewer
application allows interactive rendering of large hybrid meshes, using a faster multiresolution
rendering implementation for the TIN part would greatly speed up the overall performance,
since the specific overhead of the EHM tessellation is almost negligible.

5.5 Contributions of the EHM Algorithm

In this chapter we have presented a new method for rendering multiresolution hybrid terrain
models. Our work is based on the original HM algorithm, which supports a multiresolution
method only in the regular base mesh of the model, while the finely detailed TIN parts are
statically rendered. This new EHM algorithm succeeds in enhancing the original algorithm
by adding view-dependent rendering of the TIN meshes, in a simple and lightweight manner.

The method we present works by constraining the simplification order of the TIN bound-
ary vertices, so that tessellation of the region between the meshes boundaries can be per-
formed, regardless of the simplification step of the TIN. These constraints are fairly straight-
forward to meet, and are enforced during the construction of the view-dependent refinement
data structures. Since all these computations take place in the preprocessing phase, no ad-
ditional time-demanding tasks are performed during real-time visualization. Thanks to this
feature, the benefits of our approach are clear, as the whole multiresolution hybrid model
can be rendered without incurring in supplementary performance penalties to deal with the
varying geometry of multiresolution models. Thus, we have developed and tested a com-
plete framework for the full rendering of multiresolution hybrid terrain models. Using this
approach high-quality meshes are obtained, while performance allows for practical applica-
tions, as has been presented in the results section. Those results show that the EHM algorithm

5.5. Contributions of the EHM Algorithm 115

performs high quality rendering of complex multiresolution hybrid models involving regular
and irregular meshes, in an efficient way and without a heavy performance penalty.

CHAPTER 6

HYBRID TERRAIN RENDERING BASED ON

THE EXTERNAL EDGE PRIMITIVE

The previous HM and EHM methods use the TB vertices as the key pieces to perform the
adaptive tessellation between the regular and the irregular meshes. Therefore, convexification
triangles are encoded using just a connectivity value associated to each vertex, while the tri-
angles linking the boundaries of the convexified TIN and the grid cell vertices are generated
using the PC list information. Although this technique is efficient in terms of memory space, it
presents some inconveniences. For instance, the TB vertices array must be processed sequen-
tially during the tessellation of a grid cell to avoid incoherences in the mesh. This approach
also requires the computation of the VC and GC lists during the preprocessing phase, and the
creation of vertices in the TIN boundary at the intersection points of the TIN with the edges
of the grid cells. Adding these intersection vertices does not modify the overall shape of the
tessellation or its quality, but it has a performance penalty in the algorithm, since there are
more TB elements to process during the generation of the tessellation, and involves complex
calculations in the preprocessing phase to introduce the intersection vertices.

In the External Edge Primitive (EDP) method, the TIN boundary vertices are also con-
secutively numbered in clockwise order and the convexification process is performed pro-
gressively from the finest LOD to the coarsest one. However, TIN boundary vertices are not
longer the operational units in the process. Instead, we used the external edges of the con-
vexified TB triangles as the fundamental pieces of the procedure to avoid the aforementioned
inconveniences of using single vertices.

118 Chapter 6. Hybrid terrain rendering based on the External Edge Primitive

This chapter begins with an overview of the EDP proposal introducing the key concepts
of the new method: the External Edge Primitive, the procedure to link the grid and the TIN
boundaries based on the orientation of the external edges, and the culling grid strategy. Next
section explains the most conflictive cases that may arise during the visualization as well as
the techniques developed to solve them. Both the codification of the precomputed data in
the preprocessing and the decodification during the visualization step are explained in the
following sections. The results of our experiments with the EDP implementation are shown
at the end of the chapter.

6.1 EDP Algorithm overview

The EDP proposal is a new hybrid terrain model visualization method built on a new key
primitive, the external edge, and new strategies for the creation of the corner triangles and
the computation of the overlapped parts of the meshes. This proposal shares some common
aspects with the HM and EHM methods, but achieves better rendering performance and also
reduces the cost of the preprocessing step due to the changes introduced in the linking primi-
tive used and in the strategy employed to generate the triangles in the visualization phase.

The external edge primitive is used as the basic unit for the generation of an adaptive
tessellation between the convexified TIN and the grid mesh. For the creation of the corner
triangles, a new strategy has been developed, based on the orientation of the external edges of
the convexified TIN mesh. Finally, the computation of the overlapped parts of the meshes is
performed in a simple yet effective way, using a new culling grid approach. These feature are
described in more detail in the following subsections.

6.1.1 External Edge Primitive

The EDP proposal introduces the external edge primitive as the base element for the encoding
and reconstruction of the adaptive tessellation between the TIN and grid meshes. The use of
this primitive simplifies the generation of the triangles at rendering and, as mentioned above,
overcomes some limitations of the HM and EHM algorithms, as the limited parallelization of
the decoding step. Moreover, using a external edge based encoding for the convexification
triangles, minimizes the preprocessing step.

The strategy presented in this chapter requires the precomputation of the local 2D convex-
ification of the TIN boundary for every grid cell at every LOD. This means that the external

6.1. EDP Algorithm overview 119

Figure 6.1: Convexification triangles (light gray), corner triangles (green) and shift triangles
(blue) used in the local tesellation of a grid cell.

boundary of the TIN mesh is projected over the grid base plane to obtain a closed 2D poly-
gon. According to their position on the plane, the TIN boundary vertices belong to different
cells in the grid. Thus, each grid cell contains a polygonal chain formed by the vertices and
edges belonging exclusively to the cell, which is an open subchain of the closed TIN boundary
polygon. Since the EDP method requires the local convexification of these chains, additional
triangles are computed during the preprocessing step in the exterior part of the chain until they
become strictly convex polygonal chains. Since these convexification triangles are combina-
tions of the existing vertices in the chain, the convexification does not introduce new points in
the mesh.

An external edge of a convexification triangle is labeled as a boundary edge when it be-
longs to the locally convexified TIN boundary for a certain LOD, i.e., the edge is not hidden
by another convexification triangle. Thus, an edge is external with regard to the triangle and to
the boundary at the same time. The EDP method uses the external edges of the locally convex-

ified TB (CTB) as the basic encoding and building elements to generate the local tessellation
between the convexified TIN and the grid cells.

The information of the external edges is stored in the CTB data array, as it is explained
below in Section 6.3. This structure uses a representation of each convexification triangle
based on its middle vertex element and its opposite edge. Since every convexification triangle
is formed by three vertices belonging to the TB array, they can be defined by the TB indexes
of these three vertices, such as < i−m, i, i+ n > (where m and n can be different than 1).

120 Chapter 6. Hybrid terrain rendering based on the External Edge Primitive

A more compact representation of a k-mesh may store for each m-cell the m+1 references to its bounding (m–1)-cells which in turn store
references to their bounding (m-2) cells and so on recursively and may also cache for each k-cell the k+1 references to its adjacent k-cells
(set to nil when the adjacent cells do not exist) and also star references from each vertex to all incident k-cells. Symbolic depiction, of such
representation for tetrahedral and triangle meshes are shown in Figure 1, where the number of references per cell is indicated next to the
corresponding arrow. For example, in a tetrahedral mesh, a tetrahedron has 4 references to its faces and 4 references to its adjacent
tetrahedra. A vertex has an average of 26 references to incident tetrahedra. A face had 3 references to its edges. An edge has 2 references to
its vertices. Such representations would require around 20 references per tetrahedron (since the number of faces nF is about twice the
number of tetrahedra nT, the number of vertices nV is about one sixth of nT and the number of edges nE is about the same as nT. Therefore
we require 4nT + 4nT + 3nF + 2nE + 26nV = 20nT). For the triangle representation scheme in Figure 1 (right) requires about 12 references per
triangle (since the number of vertices nV is about half of number of triangles nT, number of edges nE is about 3nT/2. Therefore we require
3nT + 3nT + 2nE + 6nV = 12nT).

Figure 1: Number of references required per tetrahedron (T), face (F), edge (E), vertex (V) (left). Likewise for triangle (T), edge (E), vertex
(V) (right). The tetrahedral scheme requires about 20 references per tetrahedron, and the triangle scheme requires about 12 references per
triangle.

In contrast, we discuss here representations that provide the additional functionality, yet require only 3 references per triangle for 2-meshes
or 4 references (+9 service bits) per tetrahedron for 3-meshes.

1.3 Contributions
The representations of k-meshes discussed here are based on the concept of a corner, which is the reference of a k-cell to one of its
bounding vertices. Hence, a k-mesh with t k-cells has t(k+1) corners. Each corner of a triangle (resp. tetrahedral) mesh corresponds to two
(resp. 6) n-tuples in Brisson’s representation.
The Corner Table (CT) promoted by Rossignac et al. [41, 42] provides a simple and efficient representation of triangle meshes, storing 6
integer references per triangle (3 vertex references in the Vertex table and 3 references to opposite corners in the Opposite table). The
Compact Half Face (CHF) representation proposed by Lage et al. extends CT to tetrahedral meshes, storing 8 references per tetrahedron (4
in the Vertex table and 4 in the Opposite table). We use the term Vertex Opposite Table (VOT) to refer to both CT and CHF.
For each corner c of each triangle (resp. tetrahedron), the Vertex Opposite Table (VOT) stores the references V[c] to the corresponding
vertex and the reference O[c] to the opposite corners in an adjacent triangle (resp. tetrahedron) as shown in Figure 2, if one exists. It does
not store any references from vertices to corners or to incident triangles (resp. tetrahedra).

Figure 2: Left: The orange edge e(c) is the opposite edge of corner c. Right: Corners 0 and 3 are opposite corners: O[0] = 3 and O[3] =
0, i.e. opposite edges e(0) and e(3) are the same.

E

4

4

3 26

2

T F

V
E

3

3 6

2

T

V

c 0 1 5

4 3

q

2

v

r s

p

T[0]

T[1]

G x y z

p !"# $"# %"#

q xq yq zq

r xr yr zr

s xs ys zs

C V[c] O[c]

0 p 3

1 q 1

2 r 2

3 s 0

4 r 4

5 q 5

T[0]

T[1]

Figure 6.2: Example of a triangle mesh Corner-Table representation from [29].

Consequently, each triangle can be represented solely by vertex i and its opposite edge |i−
m, i+n|. This representation is encoded in the CTB data array by storing the edge |i−m, i+n|
in the position i corresponding to the middle vertex.

This encoding of the convexified TB is both simple and bijective, as each convexifica-
tion triangle has exactly one representation and each represented element corresponds to one
convexification triangle. In next sections, it will be shown how this representation allows an
important simplification of the preprocessing and rendering phases.

This representation, based on associating each convexification triangle with its middle
vertex and its opposite edge, follows a similar strategy to the Corner Table [69, 70] approach,
also called Vertex Opposite Table [29], to define a triangle mesh. The Corner Table struc-
ture represents the connectivity of a manifold triangle mesh by defining the association of a
triangle with one of its bounding vertex as a corner. For each corner c of each triangle, the
Corner Table stores the references to the corresponding vertex and to the opposite corner in
an adjacent triangle, if one exists. Figure 6.2 shows an example of two triangles, T [0] and
T [1], encoded using this technique. In triangle T [0], the orange edge e(c) is the opposite edge
of corner c. In triangle T [1], corners 0 and 3 share the same opposite edges, e(0) and e(3),
meaning that they are opposite corners.

An example of a locally convexified TB inside a grid cell is shown in Figure 6.3. The
following list represents a simplified version of the CTB array including only the vertices in
each triangle of the TIN depicted in the figure:

CT B =

{
. . . ,
|1,4|

2
,
|2,4|

3
,
|1,7|

4
,
|4,6|

5
,
|4,7|

6
,
|7,9|

7
,
|7,9|

8
, . . .

}
where the lower index indicates the position of the opposite edge in the CTB data list. In this
case, two different kinds of edges appear in the convexification triangles: interior edges of
triangles a, b, d and e and external edges of triangles c and f .

6.1. EDP Algorithm overview 121

1
2

34

56
7

89

a
b

de
c

f

Figure 6.3: Locally convexified TB inside a grid cell.

It is essential to differentiate which triangles are external at each level, because only the
external edges of the convexified TB are linked to the grid cell corners in order to generate the
linking tessellation of the grid and TIN meshes.

The convexification process is performed level by level, from the finest detailed LOD to
the coarsest one, preserving the generated triangles between levels, as in the HM and EHM
algorithms. Using this incremental approach, the convexification triangles generated in each
cell of a given LOD exist in the local convexifications of the cells in coarser LODs. How-
ever, in coarser LODs they will probably not have the external edge in the convexified TIN
boundary, since they will be covered by larger convexification triangles of coarser LODs.
Therefore, it is required to distinguish which edges are external at each particular LOD, as it
will be explained in following subsections.

In conclusion, the result of the preprocessing step in the EDP algorithm is the convex-
ification of the TIN boundary for each LOD of the grid, encoded with the opposite edge
representation. For a given vertex i only one triangle < s, i,e > contains i as its middle vertex.
Consequently, a given edge |s,e| appears only external edge of the CTB item i. Besides the
identification of the s and the e vertices, some additional data is needed for each triangle, for
example the activation LOD or the LOD where the triangle is no longer an exterior triangle
of the TB. The data structures and the rendering phase will be described with more detail in
Section 6.3.

122 Chapter 6. Hybrid terrain rendering based on the External Edge Primitive

6.1.2 Linking triangles based on orientation edge

In a hybrid terrain model the TIN mesh partially overlaps the base regular grid. In the HM and
EHM methods, grid cells were classified according to the covering condition as Completely

Covered (CC) cells, those falling in the interior of the the TIN projection; Partially Covered

cells, those intersected by the boundary of the TIN mesh; and Non-Covered (NC) for every
other cell in the grid. In the EDP proposal, the PC cells are tessellated to effectively link the
grid and TIN boundary vertices. This section introduces the cell tessellation algorithm that
generates the linking triangles between the grid cell corners and the convexified TIN vertices.

Being Cc a non-covered corner of the cell, and |s,e| an external edge of the TB with s and
e vertices as starting and ending points, both elements can be linked together by a triangle
< s,e,c > if it is a well-formed triangle that does not overlap the TIN nor intersect any other
corner triangles. In a general case, this condition may be complex to evaluate since its result
depends on the global shape of the TB and on the position and orientation of the edge related
to the grid corner. In this case, however, the global shape of the TB is irrelevant since the
potentially overlapping area is the space inside the PC cell, that is, the area between a convex
polygon (the TB fragment in the cell) and a rectangular container (the grid cell). Thus, the
previous condition can be reduced to a much simpler problem: the selection of the appropriate
cell corner to be used in a corner triangle linking a TB edge to a grid cell. The technique used
in this proposal only requires the evaluation of the edge orientation.

The orientation of a TB edge can be determined using the normal vector of its 2D footprint
on the base grid plane. Comparing this normal vector with the oriented cell diagonal vectors,
the minimal angle difference between them happens when both vectors are placed on the
same quarter of the unit circle divided by the x and y axis, that its, on the same quadrant.
Linking each edge to this cell corner ensures a non-overlapping tessellation while favoring the
generation of compact triangles. Note that this simple strategy works when the TIN boundary
is properly convexified, since the orientation of the boundary edges in convex polygons always
evolves in clockwise direction.

An illustration of the process is depicted in Figure 6.4. At left, Figure 6.4(a) shows how
the orientation of the edge normal vector may change in counterclockwise direction in non-
convex TB fragments, while in convex fragments it is guaranteed to be clockwise. At right,
Figure 6.4(b) shows how the edge normal vector ~n forms the minimal angle difference with
the oriented diagonal of the corner placed in the respective circle quadrant of the edge, ~C0 in
the example.

6.1. EDP Algorithm overview 123

convex

non-convex

(a)

c1
c0

c3 c2

c0 c1

c2c3

n

(b)

Figure 6.4: Linking TIN boundary edges and grid cell corners based on the edge orientation:
(a) change in the orientation of edge normals is only guaranteed to be clockwise orientation
in convex TB fragments; (b) the cell corner used to link each external edge of the convexified
TIN boundary is defined by the circle quadrant of the edge normal vector.

Using this criteria is easy to decide which cell corner must be used in the linking trian-
gle between the TIN and grid meshes during visualization. In the implementation, the actual
computation of the edge normal vector is not required since the orientation can be directly
inferred from the signs of the horizontal and vertical components of the oriented edge. The
computational cost of the implementation is thus minimal. Additionally, to avoid the gener-
ation of holes in the tessellation when the grid cell corner used for the tessellation changes
between consecutive TIN boundary edges, some shift triangles should be generated at this
external edge of the TIN boundary. Shift triangles are formed by the two consecutive cell cor-
ners implicated in the shift and the TB vertex shared between the two TB edges with different
orientations. Linking triangles and shift triangles are the complementary pieces that together
build the local tessellation of a grid cell. Thus the number of shift triangles in each cell is
fixed by the number of uncovered cell edges.

Figure 6.5 depicts three cells at different LODs which have been tessellated using a differ-
ent number of shift triangles. In Figure 6.5(a) there are three uncovered edges in the PC grid
cell and, consequently, three shift triangles (depicted in blue) would be generated at the start
point of edge |7,8|. Since edges |6,7| and |7,8| are inter-cells edges, both are oriented toward

124 Chapter 6. Hybrid terrain rendering based on the External Edge Primitive

1

2

34

56

7

0

8

9

(a)

1

2

34

56

7

0

8

9

(b)

1

2

34

56

7

0

8

9

(c)

1

2

34

56

7

0

8

9

(d)

Figure 6.5: Generation of shift triangles in the local tessellation of a grid cell: (a) three shift
triangles are needed; (b) previous case solved using only two shift triangles; (b) two triangles
at coarser level; (d) single triangle generation at the coarsest level.

6.1. EDP Algorithm overview 125

the shared cell corner (see Section 6.2.3 for additional details) and thus the orientation change
from C1 (NE direction) to C0 (NW direction). Therefore, three shift triangles would be linked
to the vertex 7, the vertex shared between both implied TB edges. Actually, this very par-
ticular case where none of the grid cell corners are covered is the only situation where three
shift triangles would be required. To reduce the unnecessary complexity introduced by this
unusual case, we have opted to eliminate this case at the preprocessing stage, by introducing
an intercells vertex to convert it to a conventional case as shown in Figure 6.5(b). In this way,
any linking triangle is associated to a maximum of two shift triangles.

The local tessellation of the cell in Figure 6.5(c) uses only two shift triangles, also con-
nected to vertex 7. In this case, the TB edges orientation changes from C2 (SE) at edge |4,7|
to C0 (NW) at edge |7,8|. The simplest local tessellation is exposed in 6.5(d): since the ori-
entation changes from C3 (SW) direction at edge |1,6| to C0 (NW) at edge |7,8|, one single
shift triangle is needed to link the C3 and C0 cell corners to TB vertex 7.

Different implementation strategies can be used to store the preprocessed information
about the shift triangles. For example, our implementation uses an additional tag associated
to each TB edge in the CTB can be used to indicate how many shift triangles (from 0 to 2)
need to be generated prior to linking the edge to the cell corner. Another option, prioritizing
the spatial cost over the efficiency, would be to compute the shift triangles during visualization
by evaluating the orientation of the neighbor edges at the same LOD.

Therefore, the information needed to generate the tessellation triangles associated to any
vertex of the TIN boundary is contained in the CTB structure or may be directly derived from
it without using additional data lists, unlike the HM and EHM methods which use several
lists. This important property not only improves cache and memory coherence by using a
more localized data structure but also makes the rendering process embarrassingly parallel
since each external edge may be processed in truly independent way, and not grouped in cell
batches as in the HM method.

6.1.3 Culling Grid

In the EDP proposal, the use of additional data lists have been reduced as much as possible.
Therefore, the overlapping information between the grid and TIN meshes is not longer en-
coded in a similar way of the HM algorithm, as a list (GC list) indicating the coverage type
(PC, CC or NC) for each grid at each level, computed during the preprocessing for every

126 Chapter 6. Hybrid terrain rendering based on the External Edge Primitive

(a) (b)

Figure 6.6: Overlapping between the TIN and grid meshes: (a) the original meshes (b) the
overlapping table tagging the grid cells overlapped by the TIN.

LOD. Instead, our proposal is based on using a culling method [1] to compute efficiently the
grid areas covered by the TIN mesh which is called Culling Grid.

Furthermore, due to the massive amount of data pressumably contained in the grid, our
proposal employs a multi-resolution rendering algorithm for the visualization of the grid. The
Geometry Clipmaps algorithm renders a regular surface mesh as a collection of nested regular
square patterns, with decreasing detail from the center of the clipmap, usually choosen as the
viewpoint position. Once the center of the clipmap is known, is easy to determine the LOD
of any cell in the grid mesh using the 2D distance in the mesh base plane.

Our culling method exploits this property to cull the grid cells overlapped by the TIN
before they are sent to the rendering pipeline. Our approach uses a binary mask that encodes
the 2D footprint of the TIN to render only the non-covered cells of the grid.

The 2D footprint of an irregular TIN mesh may be a really complex polygon, which makes
impossible to find a simple implicit way of encoding the exact correspondence between the
grid and the TIN mesh. The bounding box of the TIN is useful to mark the limits of the
overall conflicting area between the models but an overlapping table, computed only once
at the preprocessing phase, is definitely needed to label the grid cells covered by the TIN.

6.1. EDP Algorithm overview 127

(a) (b)

(c)

Figure 6.7: Culling of the clipmap against the overlapping table during rendering: (a) active
clipmap to be rendered; (b) overlapping table; (c) TIN and grid meshes after culling the
overlapping grid cells.

128 Chapter 6. Hybrid terrain rendering based on the External Edge Primitive

This table only needs to store the overlapping of the grid cells contained by the TIN boundary
box, as it is obvious that external cells will not be covered. Moreover, it is not necessary
to discriminate between partially and completely covered cells in the grid, since the table is
just used to cull away the overlapped grid triangles from the render patterns generated by the
geometry clipmap in the rendering phase.

An example of this culling technique is shown in Figure 6.6. The original TIN and grid
meshes are shown in Figure 6.6(a). The overlapping table encoding the footprint of the TIN
model is shown in Figure 6.6(b). The grid cells where the TIN cover the grid and consequently
the grid cells must be culled during rendering are colored in red. The non-overlapped cells
included in the mask are labeled in light orange.

Finally, the rendered result of our multiresolution culling procedure is shown in Figure 6.7:
the clipmap is matched against the overlapping mask (in Figure 6.7(b)) before rendering the
current clipmap (shown in Figure 6.7(a)) and thus the culled clipmap does not overlap with
the TIN mesh, as it is finally shown in Figure 6.7(c). Since the overlapping mask does not
depend on the active grid LOD and remains constant during the rendering, the culling process
can be performed in a simple and efficient way.

6.2 Fussy cases

The previous sections explain the strategy followed by the EDP algorithm to link the con-
vexified TIN boundary with the grid vertices efficiently. This section explains how the EDP
algorithm deals with some cases originated by the convoluted union of the TIN and the mul-
tiresolution grid minimizing the added complexity to the decoding and rendering process.

Two different kind of complications may arise during the tessellation of the grid and TIN
boundaries. The first one is related to the generation of the linking triangles during the local
tessellation of the grid cells and involves two different subcases. Sections 6.2.1 and 6.2.2
explain in detail these cases.

The second complication is related to the union of adjacent locally tessellated cells, since
some holes may appear in the frontiers between them. Subsections 6.2.3, 6.2.4 and 6.2.5
explain how the EDP algorithm avoid this holes without introducing additional vertices.

6.2. Fussy cases 129

(a) (b) (c)

Figure 6.8: A globally convex fragment of the TIN boundary which remains convex at any
level-of-detail: (a) finest LOD; (b) medium LOD; (c) coarsest LOD.

6.2.1 Global convex fragment

A globally convex fragment of the TIN boundary is defined when all of the TB edges are
external for every LOD. An example is shown in Figure 6.8 where the fragment of the TIN
boundary is convex in every cell at each of the three different LODs represented.

Thus, an already convex TIN boundary fragment poses a problem since our proposal uses
the external edges of the convexification triangles as building elements for the adaptive tessel-
lation between the grid and TIN models. Each external edge is associated to the inner vertex
of the TIN convexification triangle which it belongs to. Therefore, no convexification trian-
gles are generated in a globally convex fragment and the grid cell corners should be linked to
the original edges of the TIN boundary.

Our proposal manages to solve this case at no cost using the normal CTB data structure:
degenerated convexification triangles < i, i, i+1 > are created in the global convex fragment.
This degenerated triangles provide the required external edges |i, i+ 1| to link both meshes
without adding new geometry in the mesh, since during rendering the degenerated triangles
are automatically discarded by the GPU. Note that degenerated triangles are completely valid
and regular triangles from the point of view of the EDP method; they do not introduce side
effects or exceptions to the general case and are only used to generate the appropriate linking
triangles between the TIN boundary to the grid cell corner.

130 Chapter 6. Hybrid terrain rendering based on the External Edge Primitive

(a) (b) (c)

Figure 6.9: A locally convex fragment of the TIN boundary does not remain convex at any
level-of-detail: (a) finest LOD; (b) medium LOD; (c) coarsest LOD.

6.2.2 Local convex fragment

Another complicated case appears when fragments of the original TIN boundary are convex
only at the finest LODs but become not convex at coarser levels. Although it may seem similar
to the issue exposed in the previous section, this case is different and it needs to be specifically
addressed in a different way.

A locally convex part of the boundary can be defined as a subset of the TIN boundary
edges forming a locally convex polyline inside a grid cell at a specific LOD. When considering
the same TB edges at coarser LODs, the polyline does not remain convex. Figure 6.9 contains
an example of a TIN boundary with several fragments of the TB being locally convex at the
finest LOD, as depicted at Figure 6.9(a), and becoming non-convex at coarser LODs as shown
in Figure 6.9(b) and Figure 6.9(c), where the convexification triangles inside the non-convex
caves are colored in red.

In the general case, a convexification triangle < i−m, i, i+ n >, is formed by a external
edge |i−m, i+ n|, and two inner edges |i−m, i|, |i, i+ n|. In the case that m > 1 and n > 1,
the inner edges do not belong to the original TIN boundary and thus they are, at the same
time, external edges of other convexification triangles previously generated. At levels where
the convexification triangle is being rendered and external, the external edge |i−m, i+ n| is
linked to the correspondent cell corner. On the opposite case, edges |i−m, i|, |i, i+n| are the
elements linked to the grid during the processing of the convexification triangles. In locally
convex fragments of the TIN boundary, these edges are not external edges of any previous

6.2. Fussy cases 131

1

23

4

5
68

0

7

(a)

a

b

1

23

4

5
68

0

7

(b)

c

d

a

b

1

23

4

5
68

0

7

(c)

Figure 6.10: Local convex TIN boundary fragment represented at several levels of detail with
the corresponding convexification triangles: (a) finest LOD; (b) medium LOD with associated
convexification triangles; (c) coarsest LOD with associated convexification triangles.

convexification triangles as seen in the previous section. However, degenerated convexifica-
tion triangles can not be used in this case since real convexification triangles are needed at
coarser levels. Therefore, this specific situation has to be considered at the rendering phase
when the associated convexification triangle is not active.

The proposed solution does not increase the complexity of the EDP data structures. A
simple evaluation of the TB indices of the edge endpoints can detect if the edge is an original
TIN boundary edge, that is, if the endpoints are consecutive vertices of the boundary, such
as |i, i+ 1|. In the case that a convexification triangle containing one or two original edges
as inner edges is not active, the original edge or edges are considered to be external and thus
used to generate the appropriate linking triangles. Note that this will not result in overlapping
linking triangles if both inner edges are original edges, since in that case one of them is an
inter-cells edge, or the convexification triangle would be active.

Figure 6.10 illustrates this case and the presented solution. The TIN boundary is locally
convex at the finest LOD as shown in Figure 6.10(a), meaning that every edge of the TIN
boundary is labeled as external although there are not associated convexification triangles
and then linked to the grid boundary using the degenerated triangles technique exposed in
Section 6.2.1. However, at the next coarse level depicted in Figure 6.10(b), the edges are still
external but now two convexification triangles, a and b, are also active and thus their external
edges |1,3| and |4,6| are used in the linking process. Finally, at the coarsest LOD shown in

132 Chapter 6. Hybrid terrain rendering based on the External Edge Primitive

1

2

34
5

6

7

8

9
10

11

12

13

14

1516

17

18
19

Figure 6.11: Holes appearing between two adjacent grid cells when only the local tessellations
of the cells are used. The inter-cells edge is labeled in blue.

Figure 6.10(c), more convexification triangles are active covering the external edge of triangle
b, which is not longer labeled as external.

6.2.3 Monotone TB fragment between adjacent cells at the same LOD

This section presents the fussy cases involving inter-cell edges, that is, edges crossing cell
boundaries, since the EDP algorithm does not introduce new intersection vertices as the orig-
inal HM algorithm did.

Inter-cells edges are TIN boundary edges whose endpoints belong to adjacent cells. These
edges connect the locally convexified TIN boundaries in both cells. For example, Figure 6.11
depicts an inter-cells edge, in blue, between two convexified cells. In the figure, the convex-
ification triangles appear in red and the linking triangles in green. A hole in the tessellation
is clearly visible between the two locally convexified TB fragments in each cell. Since those
edges do not fully belong to none of both cells, a slightly different strategy is employed to
link them to the cell corners adjusted to the particular conditions of both cells.

The detection of the inter-cells edges during rendering is a simple test operation to check
if the edge endpoints are placed at two different cells. Moreover, since the identification of

6.2. Fussy cases 133

A

B

1

2

4 3
5

0

Figure 6.12: Inter-cells triangles filling the holes around the local convexification of a grid
cell.

the cell positions and the currently active LODs of the edge endpoints are performed at the
beginning of the edge processing, the inter-cells edges are detected right from the beginning.

Once an inter-cells edge has been identified, it is processed in different ways depending
on the active LOD of the two involved cells. In the most simple case, when both adjacent cells
are rendered at the same LOD, the inter-cells edge is linked to the grid in the render phase by
generating a new triangle < i, i+1,Cnearest >, similarly to any other external TB edges. The
Cnearest vertex selected to connect the grid to the inter-cells edge is the non-covered corner
shared by both cells, that is, the nearest one to the edge. In this case, the orientation of the
edge is not taken into account, since only the relative positions of the two involved cells are
relevant.

An example of the inter-cells triangles generated with this procedure is depicted in Fig-
ure 6.12, where two inter-cells triangles A,B are generated to fill the holes around the grid
cell with the linking triangle generated from the edge |2,3|. In this case, inter-cells triangle A

links the |3,4| edge with the uncovered corner at the bottom of the shared edge between the
horizontally adjacent cells, while triangle B links the |1,2| edge to the same corner, since it is
also the uncovered corner in the shared edge between the vertically adjacent cells.

134 Chapter 6. Hybrid terrain rendering based on the External Edge Primitive

ceven ceven

cevenceven

codd

codd codd

codd

codd

(2i, 2j)

(2i+1, 2j+1)

Figure 6.13: Inter-cells tessellation between adjacent cells with different even-odd position.

6.2.4 Monotone TB fragment between adjacent cells at a different LOD

A more complex case involving inter-cells edges appears in the boundaries between different
LODs. In our method, the difference between adjacent LODs is exactly of one level as in
most of the grid multiresolution rendering methods [48]. This one-level difference, fairly
usual in regular multiresolution methods, limits the number of exceptional cases and allows a
straightforward solution.

Thus, a cell at level l having (i, j) as its lower index coordinates, generates four subcells
at the following finer level l+1 with indices (2i,2 j),(2i,2 j+1),(2i+1,2 j),(2i+1,2 j+1).
The corner vertices placed in a position with odd indexes are not present at level l, e.g.
(2i,2 j+ 1), but vertices with even indexes, for example (2i,2 j) and (2(i+ 1),2(j+ 1)), re-
main present on both levels. Figure 6.13 depicts two adjacent grid cell at two different reso-
lution levels; in the figure even vertices appear at both levels while odd vertices only appear
at the finer level.

When the cell at the finer LOD is placed on a even position, this cell and the cell at the
coarser LOD share one non-covered even vertex. Therefore, this vertex is used as a connection
element, analogously to the previous case explained in Section 6.2.3. A more serious conflict
arises when the connection element is placed in an odd position. Blindly using the previous

6.2. Fussy cases 135

1

2
34

5

1

2
34

5

(a)

1

2
34

5

(b)

Figure 6.14: Inter-cells tessellation between adjacent cells with different LOD: (a) even posi-
tion (b) odd position.

strategy in this situation would led to a tessellation with a hole in one of the cells. In order
to avoid holes in the result, two additional triangles —instead of only one— are generated by
the algorithm to connect the endpoints of the inter-cells segment with the appropriate corners
of both cells:

< i,Codd , i+1 >

< i+1,Codd ,Ceven >

where Codd is the odd vertex and Ceven is an even vertex at the finer LOD. Each one of these
triangles tessellates the hole in its respective cell in a coherent way with the rest of the tessel-
lation and following the same pattern of the normal case.

Figure 6.14 depicts an example of this technique comparing the case where the connection
element is an even position (see Figure 6.14(a)) and the case where the connection element is
an odd position (see Figure 6.14(b)). In this case, the two inter-cells triangles, shown in blue,
manage to tessellate the hole between the local respective local convexifications by linking
the TIN boundary with the corners of both cells.

6.2.5 Non-monotone fragments between adjacent cells

Previous subsections presented the general strategy to fill the inter-cells gaps in the adaptive
tessellation of the meshes boundaries and its application in different subcases. The strategy is
based on generating linking triangles from the two endpoints of each inter-cells edge and the

136 Chapter 6. Hybrid terrain rendering based on the External Edge Primitive

1

2

34
5

6

7

8

910

11

12

13

14

1516

17

18
19

Figure 6.15: Overlapping conflict between a non-monotone TIN boundary inter-cells frag-
ment and the local convexification of the grid cells.

selected cell corners. However, this solution does not consider the possibility that triangles
generated to fill the inter-cells gap overlap other parts of the TIN, as it is shown, for example,
in Figure 6.15, where the linking triangle generated from edge |9,10| to the shared corner
between the adjacent cells overlaps partially the convexified TIN boundary.

In the example depicted in Figure 6.15, it is visible a break in the monotonicity of the
TIN boundary with respect to the parallel grid cells border between the two locally convex
cells. The reason is that despite the fragments are locally convex in their respective cells,
they are not longer monotone with respect to the grid cells borders. The monotonicity of the
TIN boundary breaks whenever the orientation of the local convex hull advances too much in
clockwise direction and surpasses the orientation of the inter-cells edge. This monotonicity
break means that a line perpendicular to the cell borders has more than one intersection point
with the TIN.

Actually, examining in detail the configuration of the tessellation, it becomes clear that the
monotonicity is only broken when the final edges of the TIN boundary are oriented towards
an uncovered corner of the cell, as it also happens in Figure 6.15. A new condition is thus
introduced to avoid this problem in a convenient and straightforward way: the TIN boundary
fragment contained in adjacent grid cells must be monotone with respect to the grid border

6.2. Fussy cases 137

which is linked to. This monotonicity condition is a convenient and straightforward way to
avoid potentially conflictive cases.

A common definition of monotonicity for a connected sequence of line-segments or polyg-
onal chain C, extracted from [64] says that C is monotone with respect to a line L if there is at
most one intersection point between C and any sweep line Ls perpendicular to the sweeping

direction determined by L. The more common definition of monotonicity is related to closed
polygons, but in this case it is not used since only the fragment of the TIN boundary contained
by the two adjacent cells is involved and not the entire TIN boundary. Thus, establishing the
sweeping direction L as the boundary grid edge parallel to the TIN boundary fragment, then it
is guaranteed by the monotonicity requirement that two important conditions are true: every
linking triangle connected to the grid corner shared by the two cells would be a proper triangle
not intersecting the TIN, and every external edge of the TIN boundary is oriented towards not
covered grid cell corners. The first condition is obviously true since, by definition, there are
not other TIN boundary edges in the area between the inter-cells edge and the grid boundary.
The second condition is also true because the monotonicity requirement restricts the orienta-
tion of the external TIN boundary edges avoiding precisely to be oriented toward a covered
corner.

In case that the inter-cells fragment joining two local cell convexifications is not already
monotone with respect to the grid boundary, the strategy to enforce the monotonicity of the
TIN boundary consists in a reconstruction of the monotonicity by generating additional con-
vexification triangles. First, the monotonicity is checked by examining the orientation of the
external TIN boundary edges in the two involved cells, starting from the edges placed nearest
to the inter-cell. The monotonicity is broken when the checked edge is not oriented toward the
same corner than the inter-cells edge or a previous one, clockwise ordered. Whenever an edge
is found that fulfills the monotonicity requirement of being oriented to the inter-cells corner,
the search is stopped, as the convex nature of the TIN boundary guarantees that any previous
edge will also point to this corner or a previous one.

Once the non-monotone edges have been detected, additional convexification triangles
involving the non-monotone edges are generated until the inter-cells chain becomes monotone
with respect to the grid boundary. The additional convexification triangles would be formed
in any case at a coarser LOD, since both TIN fragments would belong to the same coarse
cell convexified TIN boundary. Hence, a simple encoding for this solution consists in labeling
these triangles as active at the finer level where they are required to preserve the monotonicity.

138 Chapter 6. Hybrid terrain rendering based on the External Edge Primitive

1

2

34
5

6

7

8

910

11

12

13

14

1516

17

18
19

Figure 6.16: Correct tessellation of an inter-cells hole with a non-monotone fragment.

Note that this simple technique manages to fix the problem in the preprocessing phase, without
increasing the run time load at all.

Figure 6.16 shows the proper tessellation of the inter-cells holes previously presented
in Figure 6.15. The new triangles, pictured in yellow, have been generated to rebuild the
monotonicity of the TIN boundary. Although those extra convexification triangles would be
generated anyway at a coarser LOD, they are not strictly needed for the local convexification
of the cell at the current LOD, but for preserving the monotonicity property and thus simpli-
fying the tessellation of the inter-cells holes. In the rendering phase, the triangles are decoded
and rendered as usual, relying only in the precomputed data of the selected edges. With this
strategy, the new inter-cells edge |7,11| is monotone with respect to the direction toward the
cell corner and thus can be easily connected with the adequate grid corner.

6.3 EDP representation

The hybrid terrain model is defined in the EDP proposal by the geometry of the TIN and grid
meshes, and the supplementary data structures used during rendering to rebuild the adaptive
tessellation between the models boundaries. The terrain surface of the TIN model is defined,
as usual, by the geometry and connectivity data of the surface mesh, i.e., the vertices positions
and triangles definitions.

6.3. EDP representation 139

The data structures used by the EDP algorithm to generate the adaptive tessellation joining
the grid and TIN meshes, are simple and regular structures, as previously explained. They are
computed only once during the pre-processing phase and do not require a computing intensive
process. In the visualization phase the tessellation algorithm reads the precomputed data to
rebuild the triangles of the adaptive tessellation adapted to the currently active LOD on the
grid model.

6.3.1 Convexified TIN boundary data

This data structure encodes the local convexification triangles in the TIN boundary. It con-
tains not only the reference of the vertices forming the convexification triangle but also the
information associated to the LOD dependent tessellation, such as the activation and linking
levels, and the required extra shift triangles.

The CTB data is an array of items with the convexification information associated to each
of the N boundary vertices in the TIN model. Since the TIN is a closed surface mesh, the
CTB is a circular array (in clockwise order, due to the orientation of the mesh faces) where
the last element N−1 is followed by the first one 0.

As mentioned in previous sections, the external edge primitive associates each convex-
ification triangle with a boundary vertex, meaning that each element i in the array actually
stores the information of the convexification triangle associated to the TB vertex i. The CTB
array encodes simultaneously the incremental convexification of the TIN boundary and the
linking between both models boundaries. Thus, this single piece of information contains all
the information dealing with the tessellation connecting the grid and TIN meshes.

A convexification triangle is defined by two different pieces of information, both of them
encoded as a pair of integer values: the two additional TB vertices in the triangle (corre-
sponding to the external edge endpoints), and the range of LODs where the triangle is active
and external. Moreover, since the CTB array also collects the linking information, one extra
item is require to encode the range of LODs where shift triangles are used. Shift triangles
are generated when needed at the starting vertex of the TB edge in the linking triangle. They
join the current linking triangle to the previous one, closing the hole in the cell tessellation.
Consequently, they are only required when consecutive linking triangles are oriented toward
different cell corners.

Let us examine the data encoded in the CTB array. Each item i, corresponding to the con-
vexification triangle whose inner medium vertex is the i-th vertex in the TB, has the following

140 Chapter 6. Hybrid terrain rendering based on the External Edge Primitive

structure:

CT B =

· · · , |s,e|(A,B)[shi f t1,shi f t2]︸ ︷︷ ︸
i

, · · ·

The s (start) and e (end) fields encode the positions in the TB of the external edge end-

points associated to this convexification triangle. As it was said, the middle vertex corresponds
to the vertex in the same position i of the CTB item and thus it is already implicitly encoded.
Note that s is a previous vertex in the clockwise ordered TB boundary ring while e is a subse-
quent one.

To understand the meaning of the A (active) and B (boundary) fields, let us examine first
the usual level ranges in a general case. The generation of the convexification triangles follows
an incremental level-by-level approach from the finest level (L−1) towards the coarsest one
(0). Therefore, triangles generated in a level A will stay active in any level coarser than
A, since they form part of the convexification. On the other hand, when a convexification
triangle is external, its |i−m, i+n| edge is part of the external TB, and thus it is used to link
the convexified TIN boundary to the appropriate cell corner by a linking triangle. A external
convexification triangle may remain external for several coarser levels from the same level
A at which it was activated. However, if a covering triangle is activated at a coarser level
C, making the previously external triangle to stop being in the TIN boundary, it can not be
external again for coarser levels, since the covering triangle will also remain active.

Thus, there are two different indications associated to a range of LODs in a convexification
triangle: the range of levels at which the triangle is active and the range of levels at which
the triangle is external. A convexification triangle activated at level A remains active for any
coarser level; thus the range of activation levels is [0,A]. A regular convexification triangle
can only be external if is already active and not covered by another convexification triangle.
For instance, if a triangle activated at level A is covered by a coarser triangle at level C, the
range of valid external levels for the triangle is (C,A]. Naming the next finer level to C as B,
that is, B =C+1, the inclusive interval of levels where the triangle is placed at the boundary
is [B,A]. Thus, the criteria to establish if a triangle < i−m, i, i+n > is active and part of the
boundary at a LOD l can be formalized as:

l > Ai⇒ inactive

Bi ≤ l ≤ Ai⇒ active and boundary

l < Bi,(Bi ≤ Ai)⇒ active and not boundary

6.3. EDP representation 141

Therefore, the A field encodes the range of levels where the convexification triangle is
active, that is, the levels where the triangle should be recreated in the rendering step. Due to
the incremental convexification approach followed in the preprocessing step, convexification
triangles computed at a certain LOD remain valid and active at every coarser LOD. Therefore,
storing only the finest level of the range, LOD A, is enough to encode the whole range since
it goes from the coarsest level (LOD 0) to the level indicated by A. During the visualization
phase, the convexification triangle is generated when the LOD at that cell corresponds to the
level stored in A or a coarser one.

The B (boundary) field encodes the range of levels where the convexification triangle
forms part of the convexified TIN boundary, that is, it is not covered by any other convexifi-
cation triangle and thus it should be linked to the grid during the rendering.

Note that both the inner edges and the external edge of the convexification triangle can
be used to join the grid and TIN meshes. In the most usual case, when the convexification
triangle is active, the external edge of the triangle |s,e| will be linked to the correspondent
grid cell corner if the active cell LOD is not coarser than the LOD stored in the B field. In the
particular case that the convexification triangle is not active and the inner edges of the triangle
are original edges of the TIN boundary, they need to be linked to the grid, as it was explained
in Section 6.2.2.

Finally, the shift fields [shi f t1,shi f t2] indicate at which levels the tessellation algorithm
needs to generate 1 or 2 additional shift triangles at the starting vertex of the associated link-
ing triangle to avoid holes between the current linking element and the previous one. Since
the generation of shift triangles is also an incremental process, at coarser levels, more convex-
ification triangles are active and thus the orientation of consecutive edges changes in a less
abrupt manner. Therefore, some shift triangles required at finer levels are not longer needed.
On the other hand, a switch triangle used at some specific LOD is also needed at every finer
level. The shi f t1 field indicates the coarsest level where generation of the first extra triangles
is necessary, and the shi f t2 field indicates the same for a second switch corner triangle in case
it is needed. Note that those extra triangles are not needed for every CTB item, in which case
these fields will tagged with an invalid level value.

A complete overview of the relationships between the CTB data fields and the LODs is
depicted in Figure 6.17. Only one endpoint of the range of levels is explicitly stored as the
other always agrees with the coarsest or finest level. Note that the active level affects both to
the active and external ranges, since it is an endpoint of both at the same time. On the other

142 Chapter 6. Hybrid terrain rendering based on the External Edge Primitive

Le
v
e
ls

X

-1

Coarsest (0)

Finest (n)

2

1

n-1

... Active

External

External
original edges

Shift11

Shift2

Figure 6.17: Relationships between the different ranges of levels stored in the CTB data items.

hand, when the shift triangles exist, they are not limited by the convexification range. Since
they are only affected by the change in orientation between consecutive linking triangles,
regardless of whether the linking triangles are generated by original or external edges.

As an example, let us examine the codification of the convexified TIN boundary fragment
depicted in Figure 6.10, reproduced again fully tessellated in Figure 6.18.

CT B =

|0,1|(2,0)[0,2]︸ ︷︷ ︸
0

, |1,1|(−1,X)[X ,X]︸ ︷︷ ︸
1

, |1,3|(1,0)[X ,X]︸ ︷︷ ︸
2

, |3,3|(−1,X)[X ,X]︸ ︷︷ ︸
3

,

|3,8|(0,0)[1,2]︸ ︷︷ ︸

4

, |4,6|(2,1)[2,X]︸ ︷︷ ︸
5

, |4,7|(0,X)[X ,X]︸ ︷︷ ︸
6

, |4,8|(0,X)[2,X]︸ ︷︷ ︸
7

, · · ·

As it is shown in the figure, triangles a and b are associated to CTB items 2 and 5. There-

fore, the item number 2 in the CTB array encodes the starting and ending vertices of triangle
a as |1,3|, that is, vertices 1 and 3 respectively. The middle vertex of the triangle corresponds
to its own CTB index 2. The activation and boundary ranges are encoded as (1,0), meaning
that it gets active at level 1 and remains active and present in the convexified TIN boundary
until level 0. This encoding is verified in Figure 6.18(b) and Figure 6.18(b), where triangle a

6.3. EDP representation 143

1

23

4

5
68

0

7

(a)

a

b

1

23

4

5
68

0

7

(b)

c

e

d

a

b

1

23

4

5
68

0

7

(c)

Figure 6.18: Fully tessellated TIN boundary fragment represented at several levels of detail:
(a) level 2 (finest); (b) level 1 (medium); (c) level 0 (coarsest).

144 Chapter 6. Hybrid terrain rendering based on the External Edge Primitive

is both active and external in levels 1 and 0. Finally, the encoding [X ,X] indicates that shift
triangles are not required at the starting vertex 1, as it is again visible in the figure.

Triangle b, encoded in CTB item number 5, is formed by vertices < 4,5,6 >, that is,
the middle vertex corresponds to its own CTB index and the starting and ending vertices
are indicated by the external edge encoded as |4,6|. Regarding the activation and external
ranges, the encoding (2,1) shows that the convexification triangle gets active at level 2, which
seems wrong since at this level the triangle spreads over two different grid cells. However,
the example is right: the convexification triangle is activated on a finer level on purpose to
solve the non-monotone intercells egde problem explained in Section 6.2.5. The encoding
also exposes that triangle b remains external only until level 1 and, as Figure 6.18(c) shows,
at level 0 triangle b is covered by several other triangles and is not longer external. Shift
triangles are encoded as [2,X] meaning that only one shift triangle is required at the starting
vertex, in this case vertex 4, at level 2 or finer levels. Actually, only the CTB item number 4
(corresponding to triangle e at the coarsest level) requires multiple shift triangles: two shift
triangles at level 2, one at level 1, and none at the coarsest level, as encoded in the pair [1,2].

6.4 EDP visualization

This section presents the main algorithm steemps to be performed for the basic algorithm
used in the EDP proposal to render a crack-free hybrid terrain model. This phase includes the
rendering of the TIN and grid meshes as well as the reconstruction of the adaptive tessellation
linking the boundaries of the meshes from the precomputed data structures.

The render phase of the EDP algorithm takes place during the interactive visualization of
the hybrid model. For each rendered frame, the algorithm updates the models according to
the scene and camera conditions and then generates the tessellation of the space between the
boundaries of the regular and the irregular meshes. The general sequence of steps followed
by the method is:

1. The data required by the multiresolution method of the regular grid model —Geometry
Clipmaps— is updated according to the new position of the viewpoint.

2. The grid cells covered or overlapped by the TIN mesh are culled from the rendering
pipeline since they will be substituted by the finely detailed TIN meshes. The remaining
cells of the grid are rendered following the normal procedure of the multiresolution
method.

6.4. EDP visualization 145

28

The geometry clipmap framework (Losasso and Hoppe 2004) treats the terrain as a
2D elevation image, prefiltering it into a mipmap pyramid of L levels as illustrated in
Figure 2-1. For complex terrains, the full pyramid is too large to fit in memory. The
geometry clipmap structure caches a square window of nqn samples within each level,
much like the texture clipmaps of Tanner et al. 1998. These windows correspond to a
set of nested regular grids centered about the viewer, as shown in Figure 2-2. Note that
the finer-level windows have smaller spatial extent than the coarser ones. The aim is to
maintain triangles that are uniformly sized in screen space. With a clipmap size
n � 255, the triangles are approximately 5 pixels wide in a 1024q768 window.

Only the finest level is rendered as a complete grid square. In all other levels, we render
a hollow “ring,” which omits the interior region already rendered at finer resolutions.

As the viewer moves, the clipmap windows are shifted and updated with new data. To
permit efficient incremental updates, the clipmap window in each level is accessed
toroidally, that is, with 2D wraparound addressing (see Section 2.4).

One of the challenges with the clipmap structure is to hide the boundaries between suc-
cessive resolution levels, while at the same time maintaining a watertight mesh and
avoiding temporal popping artifacts. The nested grid structure of the geometry clipmap
provides a simple solution. The key idea is to introduce a transition region near the outer
perimeter of each level, whereby the geometry and textures are smoothly morphed to
interpolate the next-coarser level (see Figure 2-3). These transitions are efficiently imple-
mented in the vertex and pixel shaders, respectively.

Chapter 2 Terrain Rendering Using GPU-Based Geometry Clipmaps

Figure 2-1. How Geometry Clipmaps Work
Given a filtered terrain pyramid of L levels, the geometry clipmap caches a square window at each
resolution level. From these windows, we extract a set of L nested “rings” centered about the
viewer. The finest-level ring is filled in.

102_gems2_ch02_new.qxp 1/24/2005 12:36 PM Page 28 SECOND PROOFS

Figure 6.19: Terrain geometry data loaded on a set of nested grid levels in Geometry Clipmaps
from [3].

3. TIN meshes are sent to the pipeline and rendered.

4. Finally, the tessellation between the boundaries is rebuild by decoding the active con-
vexification triangles at each grid cell and linking the external boundary edges to the
corner grid cells.

In the HM and EHM algorithms the multiresolution method was not enforced by the al-
gorithm, but selectable by the user as long as it permitted to identify the non-covered, par-
tially covered and completely covered cells. The EDP approach specifically uses Geometry
Clipmaps [46], since it follows a regular approach easily leveraged by the EDP algorithm to
simplify the data structures and the tessellation algorithm during the visualization phase. Ge-
ometry Clipmaps uses a set of nested regular grids centered on the view position which are
incrementally updated when this position changes. All data levels contains the same number
of samples but, since the resolution doubles on each consecutive level, the terrain extension
covered by the data is also larger, and the coarsest level contains a very coarse version of the
whole terrain. Thus, coarser levels work also as lower resolution fallback versions of finer
levels terrain data in case that the update procedure is not finished on time for the frame ren-
dering. Figure 6.19 depicts the extension of the geometry data loaded on every resolution
level, on the left, and the final composition of the rendered mesh using using increasingly
coarser geometry data from the viewpoint position on the right.

146 Chapter 6. Hybrid terrain rendering based on the External Edge Primitive

After updating the data structures required by the multiresolution method, the first step
in the process is rendering the non-overlapped parts of the grid mesh and the whole TIN. In
this step the overlapping table information is used to cull the grid cells overlapped by the
TIN mesh from the hierarchy of nested regular grids of the geometry clipmap. Except for
this culling step, the procedure for rendering the geometry clipmap is identical to the original
procedure described in [46] and thus not detailed here.

Once the multiresolution grid has been updated, culled and rendered, the TIN mesh is sent
to the graphic pipeline without additional processing. Then, the adaptive tessellation between
boundaries of the meshes is generated to avoid holes in the final hybrid model. The CTB
array is accessed to generate all the convexification, linking and shift triangles. Each item i in
the CTB array contains precomputed information about vertex i, the convexification triangle
< s, i,e >, and the external edge |s,e|. The CTB array also includes precomputed information
about the grid levels, which is compared with the current active LOD of the related grid cells
to determine if the precomputed elements are active.

A high level outline of the algorithm is exposed in Figure 6.20. The first step of the
tessellation for a CTB vertex i is to identify the grid cell which the vertex belongs to and the
active LOD (lines 4–7). Using Geometry Clipmaps this can be immediately computed from
the x,y coordinates of the point. The grid cell is derived from the distance of the CTB vertex
to the origin of the grid model and the sampling resolution, while the current cell LOD is
defined by the distance from the TB vertex to the current clipmap center and by the nested
level resolution.

Once the grid cell containing the CTB vertex has been identified, it is time to test if the
conditions for the generation of the new triangles are met. To determine if the convexification
triangle is active and, therefore, it should be rendered, the current LODs of the cells containing
the s, i and e vertices are compared with the A level saved in the CTB array (line 10). If the
coarser level of the three vertices is not finer than the A level, then that convexification triangle
is actually needed for the convexification of the TIN boundary, and thus it is generated and
sent to the render pipeline.

The next step is to check if some linking triangles are also required. If the convexification
triangle has been generated, then the external edge of the new triangle may be a boundary
edge and thus the active LOD of the grid cell it is compared with the precomputed B level
stored in the CTB array (line 12). On other case, only the original TB edges (such as |i−1, i|)
may originate a linking triangle (line 16).

6.4. EDP visualization 147

Require: N = total number of items in CTB
1:
2: for all i such that 0≤ i < N do
3: {– Compute the grid cell and the current level –}
4: start_level← GetLOD(vertex s - clip_center, clip_size)
5: middle_level← GetLOD(vertex i - clip_center, clip_size)
6: end_level← GetLOD(vertex e - clip_center, clip_size)
7: current_level←Min(start_level, middle_level, end_level)
8:
9: {– Generate convexification triangle –}

10: if current_level ≤ Ai then
11: MakeTriangle(s, i, e)
12: if current_level ≥ Bi then
13: link_edges← |s,e|
14: end if
15: else
16: link_edges← inner_edges which are external_edge
17: end if
18: {– Generate initial shift triangles –}
19: if current_level ≥ shi f t1

i then
20: MakeShiftTriangle(i, 1)
21: if current_level ≥ shi f t2

i then
22: MakeShiftTriangle(i, 2)
23: end if
24: end if
25: {– Generate linking triangles –}
26: for all edge in link_edges> do
27: MakeLinkTriangle(edge)
28: end for
29: end for

Figure 6.20: Pseudo-code of the EDP tessellation algorithm during the rendering phase.

148 Chapter 6. Hybrid terrain rendering based on the External Edge Primitive

Model Grid #verts TIN #verts TIN ∆ TB #verts
Alpine 4225 193586 385339 1831

GCanyon 16641 34331 68032 628
PSound 16641 54462 108009 913
Coruña 1000K 878K 1739K 13361

Table 6.1: Terrain sample models statistics.

Finally, the initial shift triangles are also tested and generated at the appropriate levels
(lines 19–24), and in case that some linking triangles have been considered active, they are
also generated (line 27).

6.5 Results

An implementation of the EDP algorithm described in this chapter has been included in a
terrain visualization application to evaluate the results produced with several sample terrain
models. The implementation, developed in C++ language, uses OpenGL for the hardware
accelerated rendering and the Qt Framework as cross-platform user interface layer. For the
non real-time geometric preprocessing of the terrain models, the GEOS Geometry Engine and
several polygon tessellation libraries were used. Our visualization application uses a CPU
implementation based on the original work by Lossaso and Hoppe [46]. We have decided
to use a CPU implementation instead of a more capable GPU version to avoid issues with
the GPU during the initial development phase of the EDP algorithm and also to simplify the
debugging and testing.

The sample terrain models employed in the testing are depicted in Figure 6.21. These
models have been specifically selected to compare the results with the HM-based approaches,
as they have been also used in previous chapters of this thesis. As it was documented in
Chapters 3, 4 and 5, the datasets for the GCanyon and PSound models are publicly available
through the Georgia Tech repository [79], the Alpine dataset was obtained from the Viewfinder
Panoramas DEM site [17] and the Coruña model from the Spanish GIS database (IDEE) [34].
Figure 6.21 shows a basic wireframe view of the models. Their respective sizes and data
elements counts are compiled once again in Table 6.1.

The hybrid models generated by the EDP method are perfectly closed and the adaptive
tessellation between the TIN and grid models do not contain any cracks or holes. In Fig-

6.5. Results 149

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.21: Terrain sample models used in the tests: (a) and (b) Alpine dataset, grid and TIN
meshes; (c) and (d) GCanyon dataset, grid and TIN meshes; (e) and (f) PSound dataset, grid
and TIN meshes;(g) and (h) Coruña dataset: grid and TIN meshes.

150 Chapter 6. Hybrid terrain rendering based on the External Edge Primitive

Original HM EDP
Model TB Verts. # TB Verts. # TB increase % TB Verts. # TB increase %
Alpine 1831 1967 7.43 % 1833 0.11 %

Gcanyon 628 801 27.55 % 645 2.71 %
PSound 913 1052 15.22 % 919 0.66 %
Coruña 13361 17307 29.53 % 13361 0 %

Table 6.2: Increase in the number of the TIN boundary vertices using the HM and the EDP
algorithms.

ure 6.22 is shown an example of the adaptive tessellation obtained using the EDP method in
a hybrid terrain model. In the figure, the different types of triangles are marked with different
colors: convexification triangles are colored in red, corner link triangles in green and corner
shift triangles in blue. Note that although the TIN triangles are much finer than the grid cells,
the adaptive tessellation between the borders is perfectly closed. Furthermore, the tessellation
remains coherent even in the boundaries between adjacent cells, using the convexified TIN
external edges as link elements between the meshes without including new vertices in the
intersections.

In our tests, the visualization application uses the EDP algorithm to dynamically tessellate
and render the hybrid terrain models according to the conditions of the scene and the view-
point. The involved steps are not very different of the HM algorithm but the overall results
differ greatly in the number of rendered primitives used in the adaptive tessellation between
the models boundaries. This difference is mainly a direct consequence of the reduction in
the number of TIN boundary elements generated by the EDP algorithm compared with the
HM algorithm. The EDP algorithm does not need to create a TIN boundary vertex in the
intersection point between two adjacent grid cells, as the HM algorithm does. Thus, using
the EDP algorithm, new TIN boundary vertices are only inserted in the case that the TIN
boundary footprint crosses a grid cell which does not contain any TIN boundary points. Table
6.2 shows a comparison between the original number of TIN boundary vertices of the sample
models and the number of elements generated by the HM and the EDP algorithms. The HM
algorithm inserts a number of additional TIN boundary vertices directly proportional to the
number of PC grid cells in the hybrid model.

Test results also show the differences in the number of graphic primitives rendered dur-
ing the visualization of the models depending on the algorithm used. Table 6.3 collects the

6.5. Results 151

(a)

(b)

Figure 6.22: Detail of the tessellation between the TIN and grid meshes in a hybrid model
generated by the EDP method. (a) Solid mode. (b) Wireframe mode.

152 Chapter 6. Hybrid terrain rendering based on the External Edge Primitive

Model HM ∆ EDP ∆ EDP reduc. % Shift ∆ real EDP reduc. %
Alpine 2111 1977 6.35 % 144 6.81 %

Gcanyon 977 821 15.97 % 176 19.48 %
PSound 1202 1069 11.06 % 150 12.64 %
Coruña 21281 17335 18.54 % 3974 22.80 %

Table 6.3: Triangles used in the adaptive tessellation of the sample models at the finest LOD
using the HM and the EDP algorithms.

numbers of triangles used in the adaptive tessellation between the meshes boundaries. The
second and third columns contain the total number of triangles needed by each algorithm,
while the fourth column explicits the triangle reduction achieved with the EDP algorithm.
However, note that the number of shift triangles (shown in the fifth column) depends only in
the uncovered grid vertices of the PC cells and thus remains constant no matter the algorithm
used for the tessellation. Hence, the real reduction in the number of triangles obtained by the
EDP algorithm is larger, since it should be measured without taking into account this constant
triangles, as shown in the sixth column of the table.

The exposed results clearly confirm that the EDP algorithm introduces less unnecessary
points in the TIN mesh and consequently a smaller number of triangles is used during render-
ing. This reduction is mainly due to the change in the precomputed data encoding/decoding
strategy during the precomputation and visualization phases.

In the original HM algorithm, each item in the TB array contained a vertex handle —
the index of the vertex in the vertex buffer— and the connectivity value. An optimization
was later introduced in the GPU-HM and the EHM algorithms which managed to remove
the vertex handle from the TB data item, by reordering the mesh vertices buffer. Thus, the
position of a vertex in the TB array is the actual index of the vertex in the buffer, making the
handle field redundant and unnecessary. In addition to the TB array, the HM algorithm used
two lists, the PC and the GC lists, which encoded the tessellation information for each PC cell
and the correspondence between models, respectively.

Table 6.4 exposes the storage requirements of the specific HM algorithm data structures,
that is, the TB array and the PC list since the GC list is equivalent to the overlapping table used
in the EDP algorithm. It is important to note that the number of the TB items corresponds with
the TB size, and the number of PC cells is the sum of the PC grid cells for all the grid levels,
and not only the finest one. Table 6.5 shows the storage requirements of the equivalent data

6.5. Results 153

HM Algorithm
Structure Field Size

PC cell

A unsigned int (32 bits)
L unsigned short (16 bits)
C char (8 bits)
I char (8 bits)

Total 64 bits

TB item connectivity unsigned short (16 bits)

Total 16 bits

Table 6.4: HM algorithm data storage requirements.

EDP Algorithm
Structure Field Size

CTB array

s unsigned short (16 bits)
e unsigned short (16 bits)
A char (8 bits)
B char (8 bits)

shi f t [+1,+2] 2× char (8 bits)

Total 64 bits

Table 6.5: EDP algorithm data storage requirements.

154 Chapter 6. Hybrid terrain rendering based on the External Edge Primitive

structure in the EDP algorithm: CTB data array. Although smaller data types could be used to
reduce space requirements for small models, for the sake of generality, the table shows fields
sizes encoded with regular data types typically used in an efficient implementation supporting
large models. Therefore, 32-bit integers are used for encoding absolute indices and 16-bit
integers for relative indices, since related elements will never be so far to require a 32-bit
integer to encode the offset between them. For the rest of the elements will suffice with a
8-bit char.

In the EDP algorithm, the CTB array, which can be arguably seen as an equivalent struc-
ture of the TB array, stores much more information and thus is clearly larger than the HM
structure. However, there are two particularities of the EDP algorithm to consider before
assuming it requires more memory storage. The first one is that, as it has been previously
shown, the EDP algorithm introduces a minimum number of points in the TIN boundary, and
thus the TB is consistently smaller in the EDP algorithm, sometimes by a large factor (see
Tables 6.2 and 6.3). The second one is that the EDP algorithm does not need any equivalent
structure to the PC list, since the CTB array contains all the required data to generate the
adaptive tessellation during the visualization.

The size of the PC list is related to the number of PC cells in the grid. Although this
number is typically be small in comparison to the size of the TB array at the finest LOD,
the total number of PC cells in the model is not negligible. Moreover, when the resolution
of the TIN mesh is only marginally better than the grid resolution (around 4-6 TIN vertices
by grid cell, for example) the additional cost introduced by the HM algorithm as additional
intersection vertices and PC cells data structures is much larger than the cost of the reduced
CTB array.

The EDP and the HM algorithms have moderate storage requirements, although it greatly
depends on the number of PC cells in the model, that is, in the shape of the TIN mesh. In typ-
ical cases, the EDP approach present a marginally larger but roughly equivalent memory cost
for the data structures than the HM. For example, the Coruña model using the HM approach
contains 17307 TB items, 4233 PC cells at the finest level, and a total number of 7950 PC
cells adding up PC cells across all levels. The total required space for the HM data structures
includes 2 bytes (16 bits) per item in the TB array and 8 bytes (64 bits) by item in the PC cell
list. Therefore:

HM data structures size = 17307×2 bytes+7950×8 bytes = 98214 bytes

6.5. Results 155

On the other hand, the required space used by the EDP approach only includes the CTB array,
with a cost of 8 bytes (64 bytes) by item. In this case, the total space used would be:

EDP data structures size = 13361×8 bytes = 106888 bytes

In this example, the EDP data structure is just a 9% larger than the equivalent data struc-
tures in the HM algorithm. However, this small difference is negligible compared to the much
larger size of the meshes. The EDP algorithm uses the original TIN mesh of the Coruña

model without any additional vertex, while the HM algorithms requires the introduction of
3946 new inter-cell vertices, as shown in Table 6.2. Assuming a minimum cost of at least
24 bytes per mesh vertex (using three 32-bit floats for the position and three 32-bit floats for
the normal vector), the extra space cost required by the TIN mesh used in the HM algorithm
would be:

HM additional mesh size = 3946×24 bytes = 94704 bytes

And thus, the total memory cost of both approaches is:

HM total memory cost = 98214+94704 = 192918 bytes

EDP total memory cost = 106888 bytes

The HM algorithm presents a total memory cost about an 80% larger than the EDP al-
gorithm. Therefore, the EDP algorithm is clearly superior to the HM algorithm, since the
HM algorithm introduces a considerable number of vertices in the boundary of the TIN mesh,
which becomes larger and heavier.

In summary, the EDP algorithm it is an effective method to generate high quality hybrid
models without holes between the boundaries of the regular and irregular meshes. Com-
pared to the the several implementations of the HM algorithm it becomes clear that uses less
triangles to obtain an adaptive tessellation of the hybrid model. Additionally, the storage re-
quirements of the EDP algorithm are lower than the HM algorithm, since the particular data
structures are in both cases very light, but the meshes used in the HM algorithm are heavier
due to the added vertices in their boundaries.

CHAPTER 7

CONCLUSIONS

With the increasing availability of geographic datasets, a large number of systems, in several
application domains, demand for interactive manipulation and visualization of terrain models.
The massive size of these models and their particular data representation scheme poses signif-
icant challenges for their interactive visualization. Hence, this field has been broadly studied
in the literature and several techniques exist to deal with the representation and visualization
of terrain models. Most of them using some kind of multiresolution scheme over the original
data. Multiresolution methods organize the contents of a dataset at different resolutions or
level-of-details, normally using some kind of hierarchical data structure, so as to select the
most suitable representation at rendering time, depending on the quality requirements and
performance constraints in the particular view conditions.

Interactive terrain rendering methods typically use a terrain representation based on irreg-
ular meshes of triangles or on regularly sampled height fields defining the surface elevation.
Recent methods tend to focus on regular grids, since multiresolution approaches perform bet-
ter with regular grids due to the efficient indexing of their regular data structures. However,
grids are not efficient representing flat areas or regular surfaces with much redundancy, since
the same sampling density is used all over the model. Furthermore, height fields can not
model some geographic features as caves or overhangs, since they represent terrain surfaces
as a parametrization of the terrain elevation over a base plane and not as surface in a 3D space.
Models formed by irregular triangle meshes, on the other hand, are less efficient in terms of
performance but can represent any geometry and also excel at removing redundancies in ho-
mogeneous areas of the surface.

158 Chapter 7. Conclusions

A hybrid terrain model combining the strengths of both approaches can be a valuable
addition to the field, but this possibility has been hardly considered in the literature until
recently. The HM algorithm is one of the few proposals exploring this path, but in its original
form, it is mostly a theoretical work without a real implementation. Hence, the objective of
the research developed during this thesis was to develop enhanced methods for the real-time
visualization and manipulation of hybrid terrain models, by either extending previous methods
on the field or developing new approaches.

This dissertation has presented a detailed analysis of the original HM algorithm, arguably
the first serious step in the interactive visualization of hybrid terrain models. The HM algo-
rithm generates a hybrid model by the combination of a regular base grid with high-resolution
TIN meshes, which are used to add fine-grained detail to specific areas of the terrain or to
represent geophysical features impossible to model with a regular grid. An adaptive tessella-
tion procedure is applied, locally, between the boundaries of the regular and irregular meshes
to obtain a watertight hybrid model which does not contain holes or cracks. This tessellation
is partially pre-computed and encoded in lightweight data lists that are consulted during the
visualization to recreate the tessellation. Since the algorithm is compatible with a multiresolu-
tion rendering for the large grid, the partially encoded tessellation must be independent of the
grid LOD used in rendering. Thus, the encoding is solely based on the boundary of the TIN.
Furthermore, the HM algorithm works with different tessellation procedures and multiresolu-
tion rendering methods, which makes the algorithm a powerful and versatile approach.

Directly based on the strategy of the HM algorithm —a local adaptive tessellation process
between the boundaries of the regular and irregular meshes— this thesis introduces two dif-
ferent proposals of a hybrid terrain model visualizer. Both proposals are capable of generate a
coherent crack-free hybrid model due to the tessellation of the meshes boundaries part and the
irregular TIN parts. The first proposal combines a standard polygon triangulation algorithm,
the well-known Incremental Randomized Triangulation algorithm developed by Seidel [74],
to generate the adaptive tessellation between the models. In this proposal, it is not necessary
to precompute and encode any information since the whole tessellation between the grid cell
corners and the TIN boundary vertices is computed during the visualization. The second pro-
posal is a faithful implementation of the HM algorithm using the standard graphic pipeline.
Therefore, the most demanding tasks of the tessellation process are precomputed during the
preprocessing, and then this information is used to rebuild the tessellation triangles in the
interactive visualization phase.

159

These methods have been tested and results indicate that both methods generate high
quality water-tight meshes at interactive frame-rates. However, the proposal based on the
faithful implementation of the HM algorithm is much faster than the proposal using a standard
polygon triangulation strategy, proving that the HM algorithm strategy of preprocessing and
encoding part of the tessellation is not only valid, but extremely efficient.

This thesis also introduces a new parallel method for hybrid terrain model rendering: the
GPU-HM method. Based on the original HM algorithm, GPU-HM exploits the computational
power and strong parallelism of GPUs by implementing a considerably optimized version of
the HM algorithm using the geometry shader unit. This geometry shader based architecture
brings two important consequences: first, its inclusion as a standard additional step in ren-
dering engines pipelines is quite simple, provided that rendering codes is compatible with
the now well established Shader Model 4 specification; secondly, it can be used with a wider
range of GPU hardware as it does not require the more recent Tessellator unit, which is not
present in low performance hardware, as some integrated CPUs or GPUs for mobile devices.

The method also follows a two phases approach similar to the HM algorithm, preprocess-
ing and encoding the most expensive computations. In the interactive rendering phase, data
lists are decoded and recreated on the GPU. This process is performed in parallel for multiple
boundary cells at the same time, since the GPU features multiple processing units. Further-
more, the tessellation algorithm employed in the visualization for generating the GPU-HM
method presents several important optimizations over the original proposal mainly due to the
reorganization of the instructions in the geometry shader and the reduction of the data lists
for attaining a more efficient processing. Finally, conventional strategies to enhance paral-
lelism gainings in the GPU have been also applied, as loop unrolling or the elimination of
bifurcations in the shader code.

The GPU-HM has been implemented and tested with several hybrid models with satis-
factory results in terms of quality and performance. The implementation manages to render
models of several millions of triangles, without geometric discontinuities or overlapping, at
interactive frame rates. This is, to our knowledge, the first hybrid terrain model rendering
algorithm implemented on the GPU.

The EHM algorithm is another important enhancement of the HM algorithm also devel-
oped in this thesis. This new method succeeds in adding view-dependent rendering to the
generated hybrid model. Therefore, not only the regular grid mesh is rendered depending
on the view conditions while the finely detailed TIN parts are statically rendered, as in the

160 Chapter 7. Conclusions

previous approaches, but the irregular TIN meshes are also dynamically adapted to the scene.
The EHM algorithm may work with any multiresolution TIN approach based on successive
refinements of a hierarchical arrangement of triangles, but requires to perform a minor mod-
ification to constrain the simplification order of some TIN boundary vertices. This small
requirement guarantees that the adaptive tessellation between the meshes boundaries can be
performed, regardless of the simplification step of the TIN. The requirement is implemented
by enforcing some preconditions during the construction of the view-dependent refinement
data structures. Since all these computations take place in the preprocessing phase, no addi-
tional time-demanding tasks are performed during real-time visualization.

The benefits of this approach are clear, as the whole multiresolution hybrid model can
be rendered without incurring in supplementary performance penalties to deal with the vary-
ing geometry of multiresolution models. This approach has been implemented and tested
with satisfactory results regarding the high-quality of obtained meshes and the interactive
performance shown by the algorithm, although mainly dependent on the performance of the
multiresolution algorithms used.

Finally, this thesis also introduces the EDP algorithm, a completely new proposal for the
interactive visualization of hybrid terrain models. This method, which is not based on the HM
algorithm, presents several important enhancements to the previous approaches.

The most relevant feature of the EDP algorithm is the ability to perform the adaptive
tessellation on the boundaries of the regular and irregular meshes without the inclusion of
new additional points in the TIN boundary. HM-based algorithms treat the partially covered
cells as perfectly closed polygons which can be tessellated independently. However, to fulfill
this requirement, additional vertices were inserted in the intersections between the grid and
the TIN boundary edges. Although the additional vertices do not modify the geometry of
the TIN mesh, they do increment the complexity of the tessellation, with a larger number of
triangles and vertices involved in the process. The EDP algorithm is able to join the regular
and irregular meshes boundaries in a cell based way but uses a different basic primitive in
the process —the external edge of the meshes— which presents a smaller complexity in the
regular case. Moreover, it allows to leverage the spatial orientation of the edges to simplify
the process. This proposal also deals with some particularly fussy cases by using efficient and
simple techniques.

This thesis proposes several techniques for the interactive visualization and manipulation
of hybrid terrain models. Since this research field has been barely studied in the literature,

161

plenty of opportunities exist to explore the problem and provide alternative solutions. More-
over, continuous advances in graphics hardware will provide further chances for the develop-
ment of new techniques to exploit hardware features.

Regarding the research developed in this thesis, the most promising path to continue with
the work consists in the extension of the EDP algorithm. One planned extension is to include a
multiresolution rendering algorithm in the TIN mesh. Using an adequate method for handling
the rendering of the irregular mesh, the whole hybrid model will be rendered depending on the
conditions of the scene, as the EHM already manages to do, but preserving all the advantages
of the EDP proposal. Another planned extension is to migrate the tessellation process of the
boundaries to the GPU, to rely as much as possible in the GPU for the rendering process.

Another interesting line of research for the future is the study of the non geometric at-
tributes of the hybrid model, to find appropriate methods to handle the visual attributes such
as texture and color, and even non-visual attributes representing different kinds of data asso-
ciated to the terrain, such as land use, temperature or other physical properties.

A long-term research line will certainly consider a change of paradigm, to include ap-
proaches capable of generating a visually pleasant representation of a hybrid model even if
the model is not perfectly tessellated or contains crack. For situations where the geometry of
the model does not need to be watertight, image domain techniques could be used in the frag-
ment shader to mix the images from the regular and irregular meshes and mask the artifacts
in the boundaries with a really low cost in performance.

Bibliography

[1] T. Akenine-Möller, E. Haines and N. Hoffman. Real-Time Rendering, 3rd ed. A. K.
Peters, Ltd., 2008.

[2] M. Amor and M. Bóo. A New Architecture for Efficient Hybrid Representation of
Terrains. Journal of Systems Architecture, 54(1-2):145–160, 2008.

[3] A. Asirvatham and H. Hoppe. Terrain Rendering using GPU-based Geometry
Clipmaps. In GPU Gems 2, chap. 2, pp. 27–46. Addison-Wesley, 2005.

[4] K. Baumann, J. Döllner and K. Hinrichs. Integrated Multiresolution Geometry and
Texture Models for Terrain Visualization. In Proceedings of Joint Eurographics–IEEE

TVCG Symp. on Visualization, 2000, pp. 157–166.

[5] K. Baumann, J. Döllner, K. Hinrichs and O. Kersting. A Hybrid, Hierarchical Data
Structure for Real-Time Terrain Visualization. In Proceedings of the Int. Conf. on

Computer Graphics (CGI ’99), 1999, pp. 85–92.

[6] J. Blow. Terrain Rendering at High Levels of Detail, 2000. In Proceedings of the 2000

Game Developers Conference, 2000.

[7] D. Blythe. The Direct3D 10 System. ACM Transactions on Graphics (TOG), 25(3):
724–734, 2006.

[8] M. Bóo and M. Amor. Dynamic Hybrid Terrain Representation based on convexity
limits identification. International Journal of Geographical Information Science,
23(4):417–439, Apr. 2009.

[9] M. Bóo, M. Amor and J. Döllner. Unified Hybrid Terrain Representation based on
Local Convexifications. GeoInformatica, 11(3):331–357, Feb. 2007.

164 Bibliography

[10] S. Burbeck. Applications Programming in Smalltalk-80: How to Use Model-
View-Controller (MVC). Tech Report Smalltalk-80 v2. 5. ParcPlace. http://st-
www.cs.uiuc.edu/users/smarch/st-docs/mvc.html

[11] B. Carlisle. Digital Elevation Model Quality and Uncertainty in DEM-Based Spatial

Modelling. Ph.D. dissertation, University of Greenwich, 2002.

[12] I. Castaño. Next-Generation Hardware Rendering of Displaced Subdivision Surfaces.
In Exhibition Tech. Session at the SIGGRAPH’08 Conf., 2008.

[13] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio and R. Scopigno. BDAM
- Batched Dynamic Adaptive Meshes for High Performance Terrain Visualization.
Computer Graphics Forum, 22(3):505–514, Sep. 2003.

[14] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio and R. Scopigno. Planet-
Sized Batched Dynamic Adaptive Meshes (P-BDAM). In Proceedings of the 14th IEEE

Conf. on Visualization (VIS’03), 2003, pp. 147–155.

[15] J. H. Clark. Hierarchical Geometric Models for Visible Surface Algorithms.
Communications of the ACM, 19(10):547–554, Oct. 1976.

[16] L. De Floriani, P. Magillo and E. Puppo. Efficient Implementation of Multi-
Triangulations. In Proceedings of the Conf. on Visualization (VIS’98), 1998, pp. 43–50.

[17] J. DeFerranti. Digital Elevation Models in Viewfinder Panoramas, 2005.
http://www.viewfinderpanoramas.org.

[18] M. Duchaineau, L.M. Hwa and K. I. Joy. Real-Time Optimal Adaptation for Planetary
Geometry and Texture: 4-8 Tile Hierarchies. IEEE Transactions on Visualization and

Computer Graphics, 11(4):355–68, 2005.

[19] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. PC. Miller, C. Aldrich and
M.B. Mineev-Weinstein. Roaming Terrain: Real-Time Optimally Adapting Meshes.
In Proceedings of the 8th Conf. on Visualization (VIS ’97), 1997, pp. 81–88.

[20] J. Dykes, A. M. MacEachren and M.-J. Kraak. Exploring Geovisualization. Elsevier,
2005.

Bibliography 165

[21] J. El-Sana and A. Varshney. Generalized Vew-Dependent Simplification. Computer

Graphics Forum, (18): 83–94, 1999.

[22] I. S. Evans. An Integrated System of Terrain Analysis and Slope Mapping. Dept. of
Geography, Univ. of Durham, Tech Report on Grant DA-ERO-591-73-G0040, 1979.

[23] I. S. Evans. General Geomorphometry, Derivatives of Altitude and Descriptive
Statistics. In Spatial analysis in Geomorphology, chap. 2, pp. 17–90, Methuen Co.,
1972.

[24] A. Fournier and D. Y. Montuno. Triangulating Simple Polygons and Equivalent
Problems. ACM Transactions on Graphics, 3(2):153–174, Apr. 1984.

[25] M. Garland. Multiresolution Modeling: Survey & Future Opportunities. In
Proceedings of Eurographics, State of the Art Report, pp. 111–131, 1999.

[26] G. Gröger, T.H. Kolbe, A. Czerwinski and C. Nagel. City Geography Markup

Language (CityGML), OpenGIS Encoding Standard, 2008. http://www.citygml.org/.

[27] A. Gueziec. Surface Simplification with Variable Tolerance. 2nd Annual Int. Symp. on

Medical Robotics and Computer Assisted Surgery (MRCAS ’95), 1995, pp. 132–139.

[28] A. Guéziec. Surface Simplification inside a Tolerance Volume. IBM Research Division.
T.J. Watson Research Center, Technical Report, 1997.

[29] T. Gurung and J. Rossignac. SOT: Compact Representation for Triangle and
Tetrahedral Meshes. School of Interactive Computing. Georgia Institute of Technology,
Technical report, 2010.

[30] H. Hoppe. View-Dependent Refinement of Progressive Meshes. In Proceedings of the

24th annual Conf. on Computer Graphics and Interactive Techniques ()SIGGRAPH

’97), 1997, pp. 189–198.

[31] H. Hoppe. Smooth View-Dependent Level-of-Detail Control and its Application to
Terrain Rendering. In Proceedings of the Conf. on Visualization (VIS ’98), 1998, pp.
35–42.

[32] H. Hoppe. Progressive Meshes. In Proceedings SIGGRAPH ’96, 1996 pp. 99–108.

166 Bibliography

[33] L. Hu, P. V. Sander and H. Hoppe. Parallel View-Dependent Refinement of Progressive
Meshes. In Proceedings of the 2009 Symp. on Interactive 3D Graphics and Games,
2009, pp. 169–176.

[34] Infraestructura de Datos Espaciales de España (IDEE). Digital Elevation Models, 2002.
http://www.idee.es.

[35] J. Kim and S. Lee. Truly Selective Refinement of Progressive Meshes. In Proceedings

of Graphics Interface, 2001, pp. 101–110.

[36] D. Kirk. NVidia CUDA Software and GPU Parallel Computing Architecture. In
Proceedings of the 6th Int. Symp. on Memory Management, 2007, vol. 21, pp. 103–
104.

[37] M. Kraus and T. Ertl. Cell-Projection of Cyclic Meshes. In Proceedings of the Conf.

on Visualization (VIS ’01), 2001, pp. 215–559.

[38] M. Kraus and T. Ertl. Simplification of Nonconvex Tetrahedral Meshes. In Hierarchical

and Geometrical Methods in Scientific Visualization, pp. 185–196. Springer-Verlag,
2000.

[39] R. Lario, R. Pajarola and F. Tirado. Hyperblock-QuadTIN: Hyper-Block Quadtree
based Triangulated Irregular Networks. In Proceedings of IASTED Visualization,

Imaging and Image Processing Conference (VIIP ’03), 2003, pp. 733–738.

[40] D. T. Lee and B. J. Schachter. Two Algorithms for Constructing a Delaunay
Triangulation. International Journal of Computer & Information Sciences, 9(3):219–
242, Jun. 1980.

[41] J. Levenberg. Fast View-Dependent Level-of-Detail Rendering using Cached
Geometry. In Proceedings of the Conf. on Visualization (VIS ’02), 2002, pp. 259 –
265.

[42] P. Lindstrom, D. Koller and L. F. Hodges. Level-of-Detail Management for Real-Time
Rendering of Phototextured Terrain. Georgia Institute of Technology, Technical Report,
1995.

Bibliography 167

[43] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust and G. A. Turner.
Real-Time, Continuous Level of Detail Rendering of height fields. In Proceedings

of SIGGRAPH ’96 Conf., 1996, pp. 109–118.

[44] P. Lindstrom and V. Pascucci. Visualization of Large Terrains Made Easy. In
Proceedings of the Conf. on Visualization (VIS ’01), 2001, pp. 363–371.

[45] P. Lindstrom and V. Pascucci. Terrain Simplification Simplified: A General Framework
for View-Dependent Out-of-Core Visualization. IEEE Transactions on Visualization

and Computer Graphics, 8(3):239–254, 2002.

[46] F. Losasso and H. Hoppe. Geometry Clipmaps: Terrain Rendering using Nested
Regular Grids. In Proceedings of the Int. Conf. on Computer Graphics and

InteractiveTechniques, 2004, pp. 769–776.

[47] D. Luebke. A Developer’s Survey of Polygonal Simplification Algorithms. Computer

Graphics and Applications, (Jun.):24–35, 2001.

[48] D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson and R. Huebner. Level of

Detail for 3D Graphics. Morgan Kaufmann, 2002.

[49] D. M. Mark. Geomorphometric Parameters: a Review and Evaluation. Geografiska

Annaler. Series A. Physical Geography, pp. 165–177, 1975.

[50] W. R. Mark, R. S. Glanville, K. Akeley and M. J. Kilgard. Cg: A System for
Programming Graphics Hardware in a C-like Language. In ACM Transactions on

Graphics, 22: 896–907, 2003.

[51] M. Natali, E. M. Lidal, J. Parulek, I. Viola and D. Patel. Modeling Terrains and
Subsurface Geology. In EuroGraphics 2013 State of the Art Reports (STARs), pp.
155–173, 2013.

[52] T. Ni, I. Castaño and J. Peters. Efficient Substitutes for Subdivision Surfaces. In
SIGGRAPH ’09 Courses, 2009, Article no. 13.

[53] OpenGL.org. OpenGL Geometry Shader 4 Extension Specification, 2008.
http://www.opengl.org/registry/specs/ARB/geometry_shader4.txt.

168 Bibliography

[54] OpenGL.org. OpenGL Texture Buffer Object Extension Specification, 2009.
http://www.opengl.org/registry/specs/
EXT/texture_buffer_object.txt.

[55] J. O’Rourke. Computational Geometry in C, 2nd ed. Cambrige University Press, 1998.

[56] R. Pajarola and C. DeCoro. Efficient Implementation of Real-Time View-Dependent
Multiresolution Meshing. IEEE Transactions on Visualization and Computer

Graphics, 10(3):353–68, 2004.

[57] R. Pajarola and E. Gobbetti. Survey of Semi-Regular Multiresolution Models for
Interactive Terrain Rendering. The Visual Computer, 23(8):583–605, 2007.

[58] R. Pajarola. Large Scale Terrain Visualization using the Restricted Quadree
Triangulation. In Proceedings of the conference on Visualization (VIS ’98), pp. 19–
26, 1998.

[59] R. Pajarola, M. Antonijuan and R. Lario. QuadTIN: Quadtree Based Triangulated
Irregular Networks. In Proceedings of the Conference on Visualization (VIS ’02), pp.
395–402, 2002.

[60] E. G. Paredes, C. Lema, M. Amor and M. Bóo. Hybrid Terrain Visualization based
on Local Tessellations. In Proceedings of the Int. Conf. on Computer Graphics Theory

and Applications (GRAPP ’09), pp. 64–69, 2009.

[61] E. G. Paredes, M. Bóo, M. Amor, J. D. Bruguera and J. Döllner. Extended Hybrid
Meshing Algorithm for Multiresolution Terrain Models. International Journal of

Geographical Information Science, 26(5):771–793, 2012.

[62] E. G. Paredes, M. Bóo, M. Amor, J. Döllner and J. D. Bruguera. GPU-Based
Visualization of Hybrid Terrain Models. In Int. Conf. on Computer Graphics Theory

and Applications (GRAPP 2012), pp. 254–259, 2012.

[63] E. G. Paredes, M. Amor, M. Bóo, J. D. Bruguera and J. Döllner. Hybrid Terrain
Rendering based on External Edge Primitive. IEEE Transactions on Visualization and

Computer Graphics (To be submitted).

[64] S. C. Park and H. Shin. Polygonal Chain Intersection. Computers & Graphics,
26(2):341–350, Apr. 2002.

Bibliography 169

[65] S. Patidar, S. Bhattacharjee, J.-M. Singh and P. J. Narayanan. Exploiting the Shader
Model 4.0 Architecture. Technical report, Center for Visual Information Technology,
IIIT Hyderabad, 2007.

[66] A. A. Pomeranz. ROAM using surface triangle clusters (RUSTiC). Ph.D. dissertation,
University of California, 2000.

[67] E. Puppo. Variable Resolution Triangulations. Computational Geometry, 11(3-4):219–
238, Dec. 1998.

[68] M. Reddy, Y. Leclerc, L. Iverson and N. Bletter. TerraVision II: Visualizing Massive
Terrain Databases in VRML. IEEE Computer Graphics and Applications, 19(2):30–38,
1999.

[69] J .Rossignac. 3D Compression made Simple: Edgebreaker with Zip&Wrap on a
Corner-Table. In Proceedings of the Int. Conf. on Shape Modeling and Applications

(SMI ’01), pp. 278–283, 2001.

[70] J .Rossignac. Surface Simplification and 3D Geometry Compression. In Handbook of

Discrete and Computational Geometry (Discrete Mathematics and Its Applications),

3rd ed. Chapman and Hall, 2004.

[71] R. J. Rost, B. Licea-Kane, D. Ginsburg, J. M. Kessenich, B. Lichtenbelt, H. Malan and
M. Weiblen. OpenGL Shading Language, 3rd ed. Addison-Wesley Professional, 2009.

[72] S. Röttger, W. Heidrich, P. Slusallek and H. P. Seidel. Real-Time Generation of
Continuous Levels of Detail for Height Fields. In Proceedings of the Int. Conf. on

Central Europe Computer Graphics, Visualization and Computer Vision (WSCG ’98),
pp. 315–322, 1998.

[73] J. Schneider and R. Westermann. GPU-Friendly High-Quality Terrain Rendering.
In Proceedings of the 14th Int. Conf. in Central Europe on Computer Graphics,

Visualization and Computer Vision 2006 (WSCG ’06), pp. 49–56, 2006.

[74] R. Seidel. A Simple and Fast Incremental Randomized Algorithm for Computing
Trapezoidal Decompositions and for Triangulating Polygons. Computational

Geometry, 1(1):51–64, 1991.

170 Bibliography

[75] J. R. Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator. Lecture Notes in Computer Science, 1148:203–222, 1996.

[76] R. Sivan and H. Samet. Algorithms for Constructing Quadtree Surface Maps. In
Proceedings of the 5th Int. Symposium on Spatial Data Handling, pp. 361–270, 1992.

[77] S. St-Laurent. The Complete Effect and HLSL Guide. Paradoxal Press, 2005.

[78] J. E. Stone, D. Gohara and G. Shi. OpenCL: A Parallel Programming Standard for
Heterogeneous Computing Systems. Computing in science engineering, 12(3):66–73,
May 2010.

[79] G. Turk and B. Mullins. Large Geometric Models Archive at Georgia Institute of
Technology, 1998. http://www.cc.gatech.edu/projects/large_models/.

[80] T. Ulrich. Continuous LOD Terrain Meshing using Adaptive Quadtrees, Feb. 2000.
Gamasutra article. http://www.gamasutra.com

[81] P. van Oosterom, S. Zlatanova, F. Penninga and E. Fendel. Advances in 3D

Geoinformation Systems. Lecture Notes in Geoinformation and Cartography. Springer
Berlin / Heidelberg, 2008.

[82] L. Velho and J. Gomes. Variable Resolution 4-k Meshes: Concepts and Applications.
Computer Graphics Forum, 19(4):195–212, 2000.

[83] R. Weibel and M. Heller. Digital Terrain Modelling. Oxford Univ. Press, 1993.

[84] R. Westerteiger, T. Compton, T. Bernadin, E. Cowgill, K. Gwinner, B. Hamann,
A. Gerndt and H. Hagen. Interactive Retro-Deformation of Terrain for Reconstructing
3D Fault Displacements. IEEE Transactions on Visualization and Computer Graphics,
18(12):2208–2215, Dec. 2012.

[85] J. D. Wood. The Geomorphological Characterisation of Digital Elevation Models.
Ph.D. dissertation, University of Leicester, UK, 1996.

[86] R. S. Wright, N. Haemel, G. Sellers and B. Lipchak. OpenGL SuperBible:

Comprehensive Tutorial and Reference. Addison-Wesley Professional, 5th ed., 2010.

[87] Q. Wu and H. Xu. An Approach to Computer Modeling and Visualization of Geological
Faults in 3D. Computers & Geosciences, 29(4):503–509, May 2003.

Bibliography 171

[88] B. Yang, W. Shi and Q. Li. An Integrated TIN and Grid Method for Constructing Multi-
Resolution Digital Terrain Models. International Journal of Geographical Information

Science, 19(10):1019–1038, Nov. 2005.

	Portada
	Índice general
	List of Figures
	List of Tables
	Introduction
	Digital terrain models
	Data acquisition
	Data organization models

	Interactive 3D visualization
	Graphics rendering pipeline
	3D object representation

	Adaptive multiresolution rendering
	Error metrics for multiresolution rendering
	Grid-based multiresolution approaches
	TIN-based multiresolution approaches

	Hybrid meshing rendering

	Hybrid Meshing Algorithm
	HM Algorithm overview
	Adaptive tessellation of the grid cells
	Incremental convexification generation
	Hybrid model representation
	Grid classification list
	TIN boundary
	Vertex classification list

	Rendering hybrid meshes with the HM algorithm
	Convexification triangles generation
	Corner triangles generation

	Hybrid extension with sub-cell generation
	Sub-cell structure: Tree representation
	Tessellation algorithm

	 Analysis of HM algorithm
	 Conclusions

	HM Algorithm: a general framework for rendering hybrid terrain models
	Overview of the algorithms
	Implementation based on Seidel's Incremental Randomized Triangulation algorithm
	Analysis of the Incremental Randomized algorithm

	Implementation of the Hybrid Meshing algorithm
	Experimental results
	Conclusions

	GPU-HM: a parallel Hybrid Meshing algorithm using the GPU
	Shader-based graphic rendering
	Geometry generation in the GPU using the Geometry Shader
	Geometry generation using the Tessellator Unit

	GPU-HM architecture
	GPU and CPU data structures
	Rendering algorithm
	Experimental results
	Contributions of the GPU-based implementation

	EHM Algorithm
	Algorithm structure
	Tessellation algorithm for the partially covered grid cells
	Multiresolution TIN preprocessing
	Multiresolution TIN algorithm
	Multiresolution TIN preconditions

	Implementation and results
	Contributions of the EHM Algorithm

	Hybrid terrain rendering based on the External Edge Primitive
	EDP Algorithm overview
	External Edge Primitive
	Linking triangles based on orientation edge
	Culling Grid

	Fussy cases
	Global convex fragment
	Local convex fragment
	Monotone TB fragment between adjacent cells at the same LOD
	Monotone TB fragment between adjacent cells at a different LOD
	Non-monotone fragments between adjacent cells

	EDP representation
	Convexified TIN boundary data

	EDP visualization
	Results

	Conclusions
	Bibliography

