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A B S T R A C T

Conformance checking techniques compare how a process is supposed to be executed according to a model with
how it is executed in reality according to an event log. Alignment-based approaches are the most successful
solutions for conformance checking. Optimal alignments are a way of finding the best match between the
real and the modeled behavior and identifying the differences. However, finding these optimal alignments is
a challenging task, especially for complex cases where the log and the model have many events and paths.
The difficulty lies in the computational complexity required to find these alignments. To address this problem,
we propose an efficient algorithm named reach based on the A* search algorithm. The core components of
the proposal are the use of a partial reachability graph for faster execution of process models for alignment
computation and a set of optimization techniques for reducing the number of states explored by the A*
algorithm. These improve performance by both reducing the required computation time per state and the
number of states to process respectively. To evaluate the performance and scalability, we conducted tests using
227 pairs of logs and models, comparing the results obtained with those from 10 state-of-the-art approaches.
Results show that reach outperforms the other proposals in runtimes, and even aligns logs and models that no
other algorithm is able to align.
1. Introduction

Companies need to automate and digitalize their processes to be-
come more competitive, cut costs and avoid delays in their operations.
In this context, a process is a set of activities with coordination require-
ments among them, which are executed by a set of resources to achieve
an objective (Carmona, van Dongen, Solti, & Weidlich, 2018). These
processes are described by means of process models that clearly detail
the activities to be performed as well as when and which resources
will execute them. However, in practice the execution of the processes
differs from the process models that were designed to automate the
process, making it difficult to understand what is happening in the
process and to take decisions.

Process mining is an emerging discipline whose aim is to get infor-
mation about what is really happening in the execution of a process,
giving an understanding of the real processes that take place in an or-
ganization (van der Aalst et al., 2012). To achieve this, process mining
techniques use an event log as input. An event log is a set of traces,
each containing a sequence of events. Each event has information about
the activity that has been executed, the timestamp of that activity,
the trace identifier, the resource that has performed the activity, and,
optionally, contextual information about the event execution. With this
in mind, three fundamental descriptive process mining techniques have
emerged: (i) process discovery, which aims to retrieve the underlying
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process model that represents the behavior recorded in an event log;
(ii) conformance checking, where a process model is compared with a
log of the same process to analyze and quantify the deviations between
the modeled and the observed behavior, as recorded in the log; and
(iii) process enhancement, where a process model is modified and
improved based on the information from the log. In this paper, we
focus on conformance checking, particularly in the computation of the
alignments between the process model and the log traces.

Several conformance checking approaches have appeared in recent
years. These approaches can be classified in token replay-based (Berti
& van der Aalst, 2021; Rozinat & Van der Aalst, 2008) and alignment-
based (Adriansyah, 2014; de Leoni & van der Aalst, 2013; de Leoni,
Lanciano, & Marrella, 2018; de Leoni & Marrella, 2017; Lu, Fahland,
& van der Aalst, 2015; Taymouri & Carmona, 2016; van Dongen,
2018). The former approaches try to execute all events on the model,
registering all states of the process model and modifying the execution
state when it is needed for a proper event execution on the model
— possibly reporting errors that would be false positives. Alignment-
based approaches are widely regarded as the most effective solutions
for conformance checking, as they return much more accurate results,
pinpointing the optimal model deviations. These methods align each
trace with the closest path allowed by the model, even if they do
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not match perfectly. Some of these techniques (Adriansyah, 2014;
de Leoni & van der Aalst, 2013; de Leoni et al., 2018; Lu et al.,
2015; Taymouri & Carmona, 2016; van Dongen, 2018) are based on
the A* algorithm (Hart, Nilsson, & Raphael, 1968), a graph search
algorithm that uses a heuristic to guide the search while ensuring
optimal results. However, alignment-based approaches encounter chal-
lenges when dealing with intricate models and extensive logs, resulting
in extended processing times and even not being able to compute
some alignments. Several approaches tackle this problem by relaxing
restrictions and returning non-optimal alignments (Leemans, Fahland,
& van der Aalst, 2018; Reißner, Armas-Cervantes, Conforti, et al., 2020;
Reißner, Armas-Cervantes, & La Rosa, 2020; Reißner, Conforti, Dumas,
La Rosa, & Armas-Cervantes, 2017), which might not be suitable for
applications where an exact description of the differences between the
process model and the log is required.

In this paper, we introduce reach, an extension of the A* algorithm
designed to compute optimal alignments efficiently. It incorporates a
series of optimizations to enhance performance and scalability. They
significantly reduce the number of states that need to be explored to
reach the optimal solution and the processing time spent on each state.
The main contributions of the proposal are:

• A new heuristic that quickly finds required activities – activities
that must be executed to reach the end of the model – and
compares them with the remaining trace in order to provide more
accurate estimates and speed up the algorithm without losing its
optimality.

• Techniques for reducing the number of states explored by the A*
algorithm. These include optimizations that check and force the
execution of required moves by exploring the rest of the trace and
the model. Furthermore, a greedy algorithm that returns a sub-
optimal alignment is used as an upper bound of cost for the main
algorithm. These optimizations filter states that will not lead to
the optimal alignment, as another state will lead to an alignment
of less cost. This also removes all neighbors generated by the
ignored states recursively, greatly reducing the computational
cost.

• Efficient execution of process models for alignment computation
using a partial and incremental reachability graph. It works by
saving information about how process models run for alignment
computation. It prevents performing repeated model operations
at each step of the A* algorithm.

The remainder of this article is organized as follows. Section 2
studies and compares previous work. Next, Section 3 defines all the
required concepts on which this work is based. The algorithm is de-
scribed in detail in Section 4. Section 5 describes the experiments and
discusses the results, compared to the current state of the art. Finally,
the conclusions and the future work are presented in Section 6.

2. Related work

Conformance checking is a very active field in process mining.
One of its most popular approaches is token-based replay over Petri
nets (Berti & van der Aalst, 2021; Rozinat & Van der Aalst, 2008). It
involves executing each event of the Petri net as they appear in the
trace. If an event cannot be executed, the tokens required to execute
it are inserted and counted. Once the full trace has been replayed,
all the remaining tokens that are not in a sink place are counted.
The fitness metric, which is a measure of conformance between the
log and the model, is computed based on these counts. Unfortunately,
this technique is less accurate than alignment-based approaches, as
it assumes the model is always correct. Furthermore, the provided
diagnostics are hard to understand for the end-user, as they are tied
to the Petri net model representation and replay. In van den Broucke,
Munoz-Gama, Carmona, Baesens, and Vanthienen (2014) they propose
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a decomposition-based extension of token-based replay that is more
efficient, but it shares the aforementioned disadvantages.

A recent development in this field is stochastic conformance check-
ing (Leemans, van der Aalst, Brockhoff, & Polyvyanyy, 2021), which
involves comparing event logs and process models while recognizing
that logs represent only a subset of possible behaviors. The major
disadvantage of the approach is that stochastic process model discovery
is a necessary prerequisite for applying this technique. It is a compu-
tationally expensive task that has much higher memory requirements
than traditional process discovery techniques. The algorithm depends
on an input parameter (probability mass) that makes the returned
metrics more stable when it is increased. However, the runtime of the
algorithm increases very quickly with respect to this parameter for most
datasets. This is even worse if the model presents concurrency and
looping behavior.

Alignment-based techniques (Adriansyah, 2014) can identify and
explicitly list all discrepancies, enabling the detection of optimal trace
executions through the model. These techniques still rely internally on
the execution of process models, but they can find the path through the
model with the least number of discrepancies possible. There are also
techniques, like behavioral alignments (Garcia-Banuelos, van Beest,
Dumas, Rosa, & Mertens, 2018), that provide textual summaries of con-
formance without actually computing alignments. These descriptions
might be easier for end-users, but they are not as useful as align-
ments. Alignments link event data to the model, and can be used for
post-processing tasks such as fitness calculation, performance analysis,
model repair, or prediction tasks.

Alignments are considered the standard for conformance check-
ing. In order to find the optimal alignments, most approaches use a
pathfinding algorithm like A* for aligning the trace and the model.
A* requires a heuristic, which defines the way to explore the state
space of the problem. On the one hand, simple heuristics lead to faster
exploration but more explored states (Adriansyah, 2014; de Leoni et al.,
2018; Lu et al., 2015), which makes computing alignments for medium
or large models impractical without other states reduction techniques.
On the other hand, complex heuristics focus on reducing the number
of states at the cost of more processing time per state. An illustrative
instance of a complex heuristic is rooted in Integer Linear Programming
(ILP), utilizing constraints extracted from the model, the remaining
trace, and an optimization cost function. Given a state (marking in
the model and remaining trace events), the ILP solver is capable of
determining the minimum cost that a solution may have, so it is suitable
as a heuristic for A* (de Leoni & van der Aalst, 2013; Taymouri &
Carmona, 2016; van Dongen, 2018). However, a drawback of complex
heuristics is that the computational cost for each discovered state often
surpasses the efficiency gained through state reduction.

de Leoni and Marrella (2017) convert the alignment problem to the
Planning Domain Definition Language and use an external automated
planner to compute the alignments. Their algorithm can modify the
planning framework for alignment computation. Nevertheless, their ap-
proach depends on the blind A* heuristic, which guarantees optimality
but significantly underestimates the remaining cost.

Considering the exponential complexity of optimal algorithms, re-
searchers have introduced non-optimal techniques for computing align-
ments. These methods were proposed as a compromise between the
quality of the results and the computational cost. These techniques do
not guarantee that the alignment with the least cost will be found,
but they provide approximations with a quality that depends on the
model and the log. One such technique is (Taymouri & Carmona,
2018), utilizing an evolutionary algorithm to offer improved alignment
approximations, albeit without the assurance of discovering all optimal
alignments. Another approach that uses local search to reduce process-
ing time and memory usage is (Taymouri & Carmona, 2020), with the
added limitation of only being able to return one of the alignments. It is

worth mentioning (van Dongen, Carmona, Chatain, & Taymouri, 2017),
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which also performs an iterative search in order to find a possibly
non-optimal alignment.

A prevalent method for non-optimal alignments involves decom-
posing models into smaller, more computationally efficient parts and
aggregating partial results, even though this may not always result in
optimal alignments (Munoz-Gama, Carmona, & van der Aalst, 2014;
Sani, van Zelst, & van der Aalst, 2020; van der Aalst, 2013). Alterna-
tively, a recomposing technique that is capable of obtaining optimal
alignments from the partial pseudo-alignments was developed in Lee,
Verbeek, Munoz-Gama, van der Aalst, and Sepúlveda (2018), but it
was only executed with manual decompositions of models. Another
decomposing optimal technique is described in Munoz-Gama, Carmona,
and van der Aalst (2013), but it is limited to sound and safe workflow
nets.

Finally, another type of non-optimal technique is based on build-
ing automata capable of aligning the log and the model (Leemans
et al., 2018; Reißner, Armas-Cervantes, Conforti, et al., 2020; Reißner,
Armas-Cervantes, & La Rosa, 2020; Reißner et al., 2017). These ap-
proaches, while non-optimal, give good approximations of the optimal
alignments for most cases. The method in Leemans et al. (2018) splits
the activities into multiple subsets to handle very complex models with
many activities. Consequently, it increases performance on models with
lots of activities at the expense of lower cost accuracy of the resulting
alignments.

The state of the art still struggles when facing complex models and
logs, leading to large runtimes, and even not being able to compute
some alignments. To address this issue, several proposals have relaxed
restrictions and returned non-optimal alignments. However, in this
paper, we present an A*-based algorithm that increases performance
while still providing optimal alignments. This algorithm introduces
several techniques for reducing the number of states of the search
space to be explored: a new heuristics to better guide the states to
explore, a greedy algorithm to find an upper cost bound of the optimal
alignment, and two optimizations that check each state to force certain
mandatory moves instead of generating all possible neighboring states.
Furthermore, our approach introduces an efficient way to execute
process models that relies on a partial and incremental reachability
graph in order to speed up the computation required for each state.
These techniques speed up computation and mitigate the scalability
problem currently present in the state-of-the-art proposals.

3. Preliminaries

To perform conformance checking a log and a process model are
needed. Logs consist of events, organized into traces, with each trace
representing the execution of the associated process model. Every event
must have the execution timestamp, the trace identifier that groups the
events of the same process execution, and the executed activity. Table 1
shows an example of a log with two traces from an e-learning platform,
where each row of the table is an event. For the sake of simplicity,
we define traces as a sequence of executed activities, sorted by the
execution timestamps of each event or in the order of appearance in
the log in case of ties.

Definition 1 (Trace). A trace 𝜎 = ⟨𝑎1,… , 𝑎𝑛⟩ is a sequence of activities
𝑎𝑖 extracted from events that share the case identifier. Each trace or
case contains activities belonging to the same process execution, which
are ordered by the execution timestamp of their event. Note that if two
activities have the same execution timestamp, they are sorted by the
order in which they have been registered. The ++ operator concatenates
two sequences. Given a trace 𝜎, the notation 𝜎[𝑖 ∶] refers to the
subsequence from position 𝑖 (zero-indexed, inclusive) to the end of the
sequence.
3

Table 1
Example of a log corresponding to an e-learning process. A gray font highlights the
events of the trace Case234.

Timestamp Trace ID Activity

2021-09-01 22:16:29 Case234 Enroll
2021-09-03 16:12:24 Case675 Enroll
2021-10-04 08:09:56 Case234 Class
2021-10-19 00:00:13 Case234 Class
2021-11-01 04:10:07 Case675 Class
2021-11-15 02:09:48 Case234 Test
2021-11-29 13:53:30 Case675 Test
2021-12-13 07:24:41 Case675 Class
2022-01-17 23:03:31 Case675 Exam
2022-01-19 06:42:33 Case234 Exam

...

In Table 1, traces refer to the actions of a student in a virtual course.
To track the actions of an individual student, we can extract a trace
by filtering the recorded events (log table rows) with the same trace
identifier. A student executed the activity in the column ‘‘Activity’’
at the moment indicated by the column ‘‘Timestamp’’. For instance,
the trace identified as Case234 documents the sequence of activities
executed by the student: 〈Enroll, Class, Class, Test, Exam〉.

Definition 2 (Log). An event log 𝐿 =
[

𝜎1,… , 𝜎𝑛
]

is a multiset of traces
𝜎𝑖. Each trace corresponds to one execution of the process.

A process model describes the allowed behavior by giving activi-
ties a structure with initial and final states. In the realm of confor-
mance checking, Petri nets are the dominant technique for representing
process models.

Definition 3 (Petri Net). A Petri net is a tuple 𝑃𝑁 = (𝑃 , 𝑇 , 𝐹 , 𝜆) where

• 𝑃 is the set of places.
• 𝑇 is the set of transitions. These may contain silent transitions 𝜏,

which are related to the model structure, and non-silent transi-
tions, which are related to the execution of activities. 𝑇𝑠 denotes
the set of silent transitions and 𝑇𝑛𝑠 = 𝑇 ⧵𝑇𝑠 is the set of non-silent
transitions.

• 𝑃 ∩ 𝑇 = ∅.
• 𝐹 ∈ (𝑃 ×𝑇 )∪ (𝑇 ×𝑃 ) is the set of directed arcs that connect places

to transitions and vice versa.
• 𝜆 ∶ 𝑇𝑛𝑠 ←←→ 𝐴 maps every non-silent transition to a label — an

activity that may appear in the log. Multiple transitions can have
the same label, as our algorithm supports handling duplicate ac-
tivities in the process model. We also use 𝜆𝑟 to perform the reverse
mapping — map an activity to the set of non-silent transitions
with the given label.

Petri nets are directed bipartite graphs where nodes are places and
transitions. We denote ∙𝑡 as the input places (∙𝑡 = {𝑝 ∈ 𝑃 ∣ (𝑝, 𝑡) ∈ 𝐹 })
and 𝑡∙ as the output places (𝑡∙ = {𝑝 ∈ 𝑃 ∣ (𝑡, 𝑝) ∈ 𝐹 }) of a transition
𝑡 ∈ 𝑇 . These are the places directly linked by arcs to and from transition
𝑡, respectively. The same operator can be applied to places to retrieve
the connected transitions. In order to execute Petri nets, it is necessary
to introduce the concepts of token and marking. A place 𝑝 ∈ 𝑃 can
store any number of tokens in the marking 𝑀 , as given by the function
𝑡𝑜𝑘𝑒𝑛𝑠(𝑀,𝑝). Hence, we define a marking as a multiset of places that
represents the number of tokens in each place.

Definition 4 (Marking). Let 𝑃𝑁 = (𝑃 , 𝑇 , 𝐹 , 𝜆) be a Petri net and let 
be the power multiset function. A marking 𝑀 ∈ (𝑃 ) of that Petri net
is a multiset of places. This multiset represents the places that contain
tokens and the number of tokens they contain. 𝑀0 ∈ (𝑃 ) is the initial
marking of the Petri net.
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Fig. 1. Example of a Petri/workflow net that models a very simplified process of an e-learning course. Places are represented as circles and transitions as rectangles — a silent
transition is shown as a thin black rectangle. The filled circles inside some places indicate the number of tokens they contain. The end place is shown with a circumference inside.
Enabled transitions are shown with green borders. In this process, students can enroll in the course and, once enrolled, they can attend any number of classes and/or take tests,
performing at least one of those activities. Lastly, a final exam is required to complete the course. In this example, the Enroll transition is executed, leading the Petri net from its
initial marking (a) to the next marking (b). Due to the execution of Enroll, a token is consumed in the initial place, and one is produced in its output place, enabling the Class
and Test transitions. A complete process execution for this model would be 〈Enroll, Class, Exam〉.
During the execution of Petri nets, tokens are added to and removed
from places. Specifically, at the start of the process, the Petri net is
initialized with the tokens of the initial marking 𝑀0. A transition 𝑡 ∈ 𝑇
is enabled at a marking 𝑀 iff ∀𝑝 ∈ ∙𝑡 ∶ 𝑡𝑜𝑘𝑒𝑛𝑠(𝑀,𝑝) > 0. This condition
means that the transition is enabled when there is at least one token
available for consumption in each place connected to the transition
through an input arc. To execute that transition 𝑡, all input places 𝑝 ∈ ∙𝑡
consume one token; and all output places 𝑝 ∈ 𝑡∙ receive a token. When
a marking including tokens in a place marked as final is reached, the
process is considered as finished. Fig. 1(a) shows an example of a Petri
net.

Workflow nets (van der Aalst, 1996) are a class of Petri nets focused
on modeling processes: they have a single input place and a single
output place, and all transitions are in a path from the start to the end
places.

Definition 5 (Workflow Net). Let 𝑃𝑁 = (𝑃 , 𝑇 , 𝐹 , 𝜆) be a Petri net. It is
a workflow net if and only if:

• There is a single input place 𝑝𝑖 ∈ 𝑃 . ∙𝑝𝑖 = ∅.
• There is a single output place 𝑝𝑜 ∈ 𝑃 . 𝑝𝑜∙ = ∅.
• Adding a transition 𝑡 with ∙𝑡 = 𝑝𝑜 and 𝑡∙ = 𝑝𝑖, would cause the

Petri net to become a strongly connected graph.

A workflow net has proper completion if for any reachable mark-
ing 𝑀 by executing any sequence of enabled transitions ⟨𝑡0,… , 𝑡𝑛⟩,
𝑡𝑜𝑘𝑒𝑛𝑠(𝑀,𝑝𝑜) > 0 ⟹ 𝑀 = [𝑝𝑜], i.e., any sequence of fired transitions
that reach the end will only have one token in the output place.

In practice, process executions frequently deviate from the intended
process models. For instance, in the context of the virtual course from
Fig. 1(a), students are expected to attend classes before taking the
final exam. However, in reality, some students may choose to skip
these lessons and still manage to complete the course, even though
this behavior is not accounted for in the designed process model. This
is shown in Fig. 2. Alignments provide the necessary information to
identify deviations of traces from the process model. An alignment can
be computed for each trace given a process model, as a trace is an
execution of the model. An alignment defines a path that traverses both
the trace and the process model from start to end. It provides detailed
conformance information useful for multiple tasks like model repair,
auditing and prediction, even if the trace and the model do not match
perfectly. This is achieved by associating the executed activities in the
trace with the transitions in the model. Alignments are built from legal
moves, which consume an activity of the trace and execute a non-silent
transition with a matching label in the process model, or perform an
asynchronous move by only executing a transition on the model (model
move) or advancing on the trace (log move).

Definition 6 (Legal Move). Let 𝑀 be the current marking in the model,
let 𝜎 be the trace to align, and let 𝑖 be the first index – zero-based – of
the trace that still needs to be aligned so that 𝜎[𝑖] is the next activity to
align. Furthermore, let 𝑀[𝑡⟩ denote that marking 𝑀 enables transition
𝑡. A legal move is one of the following.
4

• A synchronous move (𝜎[𝑖], 𝑡) is available iff 𝑀[𝑡⟩ and 𝜆(𝑡) = 𝜎[𝑖].
This move will update 𝑖 with the next index of the trace. It will
also update 𝑀 by executing the transition 𝑡, i.e., 𝑀 − ∙𝑡 + 𝑡∙.
Note that if the end of the trace was reached (𝑖 = |𝜎|), no more
synchronous moves can be made.

• A log move (𝜎[𝑖],>>) is available iff 𝑖 < |𝜎|. This will increase 𝑖
by one, advancing on the trace.

• A model move (>>, 𝑡) is available iff 𝑀[𝑡⟩. As a result of this
move, 𝑀 is updated to 𝑀 − ∙𝑡 + 𝑡∙. If 𝑡 is a silent transition 𝜏,
the move is called a silent move.

Log and model moves are referred to as asynchronous moves.

Definition 7 (Alignment). An alignment 𝛾 = ⟨𝛾1,… , 𝛾𝑛⟩ is a sequence
of legal moves (Definition 6). A complete alignment’s moves 𝛾1,… , 𝛾𝑛
advance through the model and the trace. Alignments start from the
initial marking of the model and the start of the trace and reach the
end of the model and the end of the trace.

Definition 8 (Cost Function, Alignment Cost, Optimal Alignment). A cost
function 𝐶 ∶ (𝐴 ∪ {≫}) × (𝑇 ∪ {≫}) → (0,∞) assigns a cost to each
possible legal move, where 𝐴 is the set of activities in the log and 𝑇
is the set of transitions in the process model. Generally, the cost for
synchronous moves is lower than the cost for asynchronous moves.
Each valid alignment is assigned a cost 𝑐𝛾 = 𝑐𝛾1 + ⋯ + 𝑐𝛾𝑛 which is
the sum of all the costs of its moves. Hence, the optimal alignment for
a given trace and model is the one with the minimum cost. There may
be several different optimal alignments.

Fig. 3 shows two alignments for the model depicted in Fig. 1 along-
side a trace. When conducting conformance checking, it is frequently
beneficial to provide quality metrics. These metrics offer a concise
summary of the results, condensing all calculated alignments into a
single, easily interpretable value. One of the most well-established
metrics is fitness. It gives an idea of the similarity between the log and
the model based on the cost of the computed alignment. Fitness can be
calculated for individual alignments or for the entire log. All optimal
alignments of a trace have the same fitness as it is derived from the
cost of the alignment.

Definition 9 (Alignment Fitness). Let 𝛾 be an alignment between the
trace 𝜎 and the model 𝑀 , with cost 𝑐𝛾 (Definition 8). The fitness for
that alignment is defined as:

𝑓𝛾 = 1 −
𝑐𝛾

𝜎𝑐 +𝑀𝑐

where 𝜎𝑐 is the sum of costs for the asynchronous log moves for all
of the trace activities and 𝑀𝑐 is the sum of costs of the asynchronous
model moves required for the minimum cost path through the model
or, in other words, the cost of the optimal alignment of the empty trace
and the model.

Fitness indicates how much the trace matches the model, quantify-
ing all differences. Thus, it compares the cost of the given alignment



Expert Systems With Applications 241 (2024) 122467J. Casas-Ramos et al.
Fig. 2. (a) The process model from our running example and (b) the real process model discovered from the event log.
Fig. 3. Two optimal alignments using the default cost function for the trace Enroll, Exam, Test and the model in Fig. 1. Each column represents a move, indicating the activity
of the trace in the first row and the executed transition of the model in the second row. Moves are executed from left to right to take the trace and the model from the initial
state to the end. >> is used for asynchronous moves indicating that no action is taken. A move in the model uses >> in the trace row to show that only the transition in the
model is executed, and a move in the log uses >> in the model row. These alignments show the user how there was a skipped required activity that could have been either Class
or Test, and the executed activity Test should not have been executed after the final Exam was taken, according to the model. The cost for each of these alignments, assuming a
cost function that assigns a cost of 1 to asynchronous moves and 0 to synchronous moves, is 2 in both cases, and their fitness is 𝑓 = 1 − 2

3+3
= 0.Û6.
Fig. 4. High-level diagram of reach algorithms and their interactions. Continuous arrows show the control flow of the algorithm, while discontinuous ones show the usage of
another algorithm, returning the control flow to the caller.
with the cost of the alignment with only asynchronous moves: it first
traverses the whole model via its shortest path adding the executed
transitions as model moves, and then adds log moves for the whole
trace. A fitness of 1 (perfect fitness) shows that the trace was executed
correctly for the model (fitting trace), while lower fitness values indi-
cate that discrepancies between the trace and the model were found.
To calculate fitness for an entire log, the fitness values of individual
traces are averaged. This gives an idea at a glance of how well the log
conforms to the process model.

Definition 10 (Log Fitness). Let 𝛾𝐿 = [𝛾1, …, 𝛾𝑛] be a multiset of
optimal alignments between each trace of the log 𝐿 =

[

𝜎1,… , 𝜎𝑛
]

and
the model 𝑀 . The fitness of the log (𝑓 ) is the average fitness of the
alignments: 𝑓 =

(

∑𝑛
𝑖=1 𝑓𝛾𝑖

)

∕𝑛, where 𝑓𝛾𝑖 is the fitness of the alignment
𝛾𝑖 (Definition 9).

4. Conformance checking based on alignments

The goal of the reach algorithm is to find the best alignment or
all the best alignments for a model 𝑃𝑁 and each trace in a log 𝐿.
Fig. 4 shows an overview diagram containing the algorithms detailed
in this section and how they relate to each other. Algorithm 1 receives
the inputs and runs the preprocessing steps of Algorithms 8 and 9.
Subsequently, the main search loop commences, iteratively invoking
Algorithm 2 to create neighbors of previously discovered states. Algo-
rithms 3, 6 and 7 are optimizations applied each time a neighbor is
generated. Some algorithms depend on the partial reachability graph
for the execution of operations on the model, as indicated by the
discontinuous arrows of Fig. 4.

Prior to initiating the processing of each log trace, the algorithm
performs some preprocessing tasks. Firstly, once per model, it computes
the shortest path through the model following the cost function (Algo-
rithm 1:3). While this is not required to find the optimal alignments,
5

it is done to properly compute the fitness metric. Once each optimal
alignment is computed, its fitness can be quickly calculated following
Definition 9. Secondly, the log is simplified, detecting and counting
duplicate traces, so that only one of those is processed. This task is
executed only once per log (Algorithm 1:4). Lastly, an optimization
for reducing the number of states generated that will be explained in
Algorithm 8 is initialized.

A* is a complete and optimal search algorithm (Hart et al., 1968).
This implies that, if the problem has a solution, the algorithm will
discover it – complete search algorithm –, and it will always discover
the optimal solution if it exists. It stands out for its optimal efficiency
with the main drawback being its exponential space complexity. It
requires an admissible and consistent heuristic function to select the
best path to pursue while guaranteeing optimality. This algorithm fits
very well the alignment problem. A directed graph where the nodes
are partial alignments is defined, for which each available legal move
(Definition 6) generates a new connected neighbor. The start node is
the empty partial alignment, which contains no moves. Within this state
graph, the algorithm needs to find the minimum cost path between
the start and goal nodes, where a goal node is a complete alignment
— an alignment that reaches the end of the model and the end of
the trace. This is the kind of problem that A* solves with optimal
efficiency, meaning that no other optimal algorithm would find the
solution expanding fewer nodes if provided the same information.

The proposed conformance checking approach (Algorithm 1) is
grounded in the A* algorithm (Adriansyah, 2014), a method for navi-
gating the state space to identify the optimal alignment. Each state is
a (partially) built alignment, meaning an alignment whose sequence of
legal moves begins with the initial marking and the start of the trace.
Concretely, states are defined as 𝑆 = (𝑀 , 𝑖, 𝛾, 𝑐, ℎ), where:

• 𝑀 represents the state of execution of the process model. For Petri
nets, it is the current marking.
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Algorithm 1 reach core algorithm.
Input: The process model 𝑃𝑁 , the log 𝐿 to align to 𝑃𝑁 , and a boolean 𝑜𝑝𝑡 that is true to return all optimal alignments, otherwise one of

them is given.
Output: Optimal alignments.

1: procedure Execute(𝑃𝑁 , 𝐿, 𝑜𝑝𝑡)
2: 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← ∅
3: 𝑃𝑁.𝑙𝑒𝑎𝑠𝑡𝐶𝑜𝑠𝑡 ← ShortestPath(𝑃𝑁) ⊳ Needed for computing fitness
4: 𝐿 ← SimplifyLog(𝐿)
5: LessStatesModelInit(𝑃𝑁) ⊳ Alg. 8
6: for all 𝜎 ∈ 𝐿 do
7: 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 ←Align(𝑃𝑁 , 𝜎, 𝑜𝑝𝑡) ⊳ Align the trace
8: 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← Aggregate(𝑟𝑒𝑠𝑢𝑙𝑡𝑠, 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠) ⊳ Aggregate the results
9: end for
0: return 𝑟𝑒𝑠𝑢𝑙𝑡𝑠
1: procedure ShortestPath(𝑃𝑁)
2: 𝑆 ←Align(𝑃𝑁 , EmptyTrace, 𝑓𝑎𝑙𝑠𝑒)[0] ⊳ Align the empty trace, returning the final state
3: return 𝑆.𝑐 ⊳ Return the cost 𝑐 of the optimal alignment
4: procedure Align(𝑃𝑁 , 𝜎, 𝑜𝑝𝑡)
5: 𝑔𝑟𝑒𝑒𝑑𝑦𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ←AlignGreedy(𝑃𝑁 , 𝜎) ⊳ Alg. 9
6: 𝑚𝑎𝑥𝐶𝑜𝑠𝑡 ← 𝑔𝑟𝑒𝑒𝑑𝑦𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡.𝑐 ⊳ The cost of the greedy alignment limits the optimal cost
7: 𝑆 ←InitialState(𝑃𝑁 , 𝜎)
8: 𝑜𝑝𝑒𝑛 ← ∅ ⊳ Priority queue that stores states
9: Add(𝑜𝑝𝑒𝑛, 𝑆) ⊳ Insert state, sorted by 𝑆.𝑐 + 𝑆.ℎ
0: 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 ← ∅ ⊳ Found optimal alignments
1: while 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 = ∅ || (𝑜𝑝𝑡 && 𝑆.𝑐 + 𝑆.ℎ < 𝑚𝑖𝑛({𝑆.𝑐 ∣ 𝑆 ∈ 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠} ∪ {+𝑖𝑛𝑓}) + 𝑚𝑖𝑛_𝑐) do
2: 𝑆 ← Poll(𝑜𝑝𝑒𝑛) ⊳ Extract the next best state
3: if ¬IsFinal(𝑆) then
4: AddNeighbors(𝜎, 𝑆, 𝑜𝑝𝑒𝑛, 𝑚𝑎𝑥𝐶𝑜𝑠𝑡) ⊳ Alg. 2
5: else
6: 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 ← 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 ∪ 𝑆 ⊳ Record the final state of the optimal alignment
7: end while
8: return 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠
• 𝑖 is the zero-based index of the trace from which the remaining
activities are not yet aligned.

• 𝛾 = ⟨𝛾0,… , 𝛾𝑖−1⟩ is the partial or complete alignment, consisting
of the sequence of legal moves taken.

• 𝑐 is the current cost, which is the sum of the costs of the move-
ments made.

• ℎ is the heuristic value, i.e., an optimistic estimate of the remain-
ing cost to complete the alignment.

Before executing the main algorithm, a greedy search is performed
(Algorithm 1:15-16). If it finds an alignment, it is used as a maximum
cost limit to avoid generating unnecessary states and speed up the
algorithm. The greedy search will be discussed further in Section 4.2.2.
The algorithm begins with the initial state (Algorithm 1:17), which is
an alignment without any move, at the initial marking of the model and
at the first event of the trace, with cost 0. States are kept in a priority
queue that sorts states by increasing order of 𝑆.𝑐+𝑆.ℎ (Algorithm 1:19),
where 𝑆.𝑐 is the cost and 𝑆.ℎ is the heuristic. 𝑆.𝑐 + 𝑆.ℎ is used to
guide the exploration of A*, ensuring optimal results. The main loop
(Algorithm 1:21) explores each state in the order given by the priority
queue while a solution is not found. The algorithm can also retrieve
the set of all optimal alignments by iterating while 𝑆.𝑐 + 𝑆.ℎ is lower
than the cost of any found solution (𝑚𝑖𝑛({𝑆.𝑐 ∣ 𝑆 ∈ 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠} ∪
{+𝑖𝑛𝑓})) plus the minimum cost of an asynchronous move (𝑚𝑖𝑛_𝑐) —
as A* requires synchronous moves to have a negligible cost strictly
greater than 0. At each step, a state is removed from the priority
queue (Algorithm 1:22). If the given state is not final, the algorithm
creates the neighbors of that state by using all the feasible legal moves
(Definition 6). For each neighbor, it is necessary to update the process
model state, the trace progress, the cost, and the heuristic. Otherwise,
if the state is final, it is an optimal alignment and it is added to the
alignments set (Algorithm 1:23-26).
6

The AddNeighbors function detailed in Algorithm 2 adds all the
children states from a parent based on the available legal moves —
called from Algorithm 1:24. Given the set of enabled transitions of the
parent state (Algorithm 2:2), and the next trace activity of the parent
state (Algorithm 2:4), neighbors are created by executing all available
legal moves. Specifically, one neighboring state is generated for each
move:

• A synchronous move for each enabled transition of the model that
shares the label with the next activity of the trace – note that
model transitions can have duplicate labels – (Algorithm 2:6-7).

• An asynchronous movement in the log if the end of the trace is
not yet reached (Algorithm 2:10).

• As many asynchronous movements in the model as transitions
are enabled from the current marking of the model (Algorithm
2:12-13).

The conditions at Algorithm 2:9 and Algorithm 2:11 are optimiza-
tions. These optimizations reduce the exploration of unnecessary states
by skipping certain asynchronous moves in the log and the model
when specific conditions are met (Section 4.2.2). For each move, a
new neighboring state 𝑆 must be created and 𝑆.𝛾 must be updated,
the sequence of legal moves (Algorithm 2:15-22). Each call to AddMove
defines the new state that can advance to the next activity on the
trace, and/or execute a transition in the model, depending on the kind
of move (Algorithm 2:23-26). The cost and heuristic values are then
updated for the new state, just before inserting it in the priority queue,
where it will be sorted by the sum of both values (Algorithm 2:27-31).
The condition at Algorithm 2:30 avoids inserting in the open queue
states that are not capable of reaching the optimal alignment, as they
match a previously discovered state – equal 𝑆.𝑀 and 𝑆.𝑖 values – with
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Algorithm 2 Neighbor generation.
Input: A current or parent state 𝑆 and a priority queue 𝑜𝑝𝑒𝑛 for the new states to be inserted into.
Output: None, it adds neighbors to 𝑜𝑝𝑒𝑛.

1: procedure AddNeighbors(𝜎, 𝑆, 𝑜𝑝𝑒𝑛, 𝑚𝑎𝑥𝐶𝑜𝑠𝑡)
2: 𝑒𝑡𝑟𝑠 ← EnabledTransitions(𝑆.𝑀) ⊳ Alg. 4: enabled transitions from the current state
3: if 𝑆.𝑖 < |𝜎| then ⊳ If the end of 𝜎 was not reached yet
4: 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ← 𝜎[𝑆.𝑖] ⊳ The next activity recorded in the trace
5: 𝑡𝑟𝑠 ← 𝜆𝑟(𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦) ⊳ An activity may map to multiple model transitions
6: for all 𝑡𝑟 ∈ 𝑡𝑟𝑠 ∩ 𝑒𝑡𝑟𝑠 do
7: AddMove(𝜎, 𝑆, 𝑜𝑝𝑒𝑛, Sync, 𝑡𝑟, 𝑚𝑎𝑥𝐶𝑜𝑠𝑡) ⊳ Generate synchronous movements
8: end for
9: if ¬LessStatesLog(𝜎, 𝑆) then ⊳ Alg. 6

10: AddMove(𝜎, 𝑆, 𝑜𝑝𝑒𝑛, Log, 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑚𝑎𝑥𝐶𝑜𝑠𝑡) ⊳ Generate asynchronous log movements

11: if ¬LessStatesModel(𝜎, 𝑆) then ⊳ Alg. 7
12: for all 𝑡𝑟 ∈ 𝑒𝑡𝑟𝑠 do
13: AddMove(𝜎, 𝑆, 𝑜𝑝𝑒𝑛, Model, 𝑡𝑟, 𝑚𝑎𝑥𝐶𝑜𝑠𝑡) ⊳ Generate asynchronous model movements
14: end for
15: procedure AddMove(𝜎, 𝑆𝑝𝑎𝑟𝑒𝑛𝑡, 𝑜𝑝𝑒𝑛, 𝑡𝑦𝑝𝑒, 𝑡𝑟, 𝑚𝑎𝑥𝐶𝑜𝑠𝑡)
16: 𝑆 ← NewState()
17: if 𝑡𝑦𝑝𝑒 = Sync then ⊳ Record the performed legal move in 𝛾 for the current state
18: 𝑆.𝛾 ← 𝑆𝑝𝑎𝑟𝑒𝑛𝑡.𝛾 ++ (𝜆(𝑡𝑟), 𝑡𝑟)

19: if 𝑡𝑦𝑝𝑒 = Log then
20: 𝑆.𝛾 ← 𝑆𝑝𝑎𝑟𝑒𝑛𝑡.𝛾 ++ (𝑡𝑟,>>)

21: if 𝑡𝑦𝑝𝑒 = Model then
22: 𝑆.𝛾 ← 𝑆𝑝𝑎𝑟𝑒𝑛𝑡.𝛾 ++ (>>, 𝑡𝑟)

23: if 𝑡𝑦𝑝𝑒 ≠ Model then ⊳ Synchronous or log movements advance on the trace
24: 𝑆.𝑖 ← 𝑆𝑝𝑎𝑟𝑒𝑛𝑡.𝑖 + 1

25: if 𝑡𝑦𝑝𝑒 ≠ Log then ⊳ Synchronous or model movements advance on the model
26: 𝑆.𝑀 ← ExecuteTransition(𝑆𝑝𝑎𝑟𝑒𝑛𝑡.𝑀, 𝑡𝑟) ⊳ Alg. 5
27: if 𝑡𝑦𝑝𝑒 ≠ Sync then 𝑆.𝑐 ← 𝑆𝑝𝑎𝑟𝑒𝑛𝑡.𝑐 + 1 ⊳ Update cost and heuristic for the new state
28: else 𝑆.𝑐 ← 𝑆𝑝𝑎𝑟𝑒𝑛𝑡.𝑐 + 𝑒𝑝𝑠𝑖𝑙𝑜𝑛

29: 𝑆.ℎ = Heuristic(𝜎, 𝑆) ⊳ Alg. 3
30: if ShouldAdd(𝑆, 𝑜𝑝𝑒𝑛, 𝑚𝑎𝑥𝐶𝑜𝑠𝑡) then ⊳ Add the state to the queue
31: Add(𝑜𝑝𝑒𝑛, 𝑆)
32: return S
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a higher or equal 𝑆.𝑐, or they exceed the 𝑆.𝑐+𝑆.ℎ threshold established
by the greedy algorithm.

To achieve optimality, the A* algorithm employed in reach must
meet three conditions. First, the cost change when advancing to a
neighbor must be strictly positive. To satisfy this requirement, the cost
of synchronous and silent moves is always a negligible value greater
than 0 (𝑒𝑝𝑠𝑖𝑙𝑜𝑛). A standard cost of 1 is applied to all other asyn-
chronous moves. Second, the heuristic must be admissible, meaning
that it must return an underestimate of the remaining cost to the closest
goal node in terms of cost. In third place, the heuristic must also be
consistent – also called monotone – in order to provide optimal results.
A consistent heuristic returns an estimate for any node that is lower
or equal to the least cost of advancing to a neighbor plus its heuristic
estimate, 𝑆𝑝𝑎𝑟𝑒𝑛𝑡.ℎ ≤ 𝑆.𝑐−𝑆𝑝𝑎𝑟𝑒𝑛𝑡.𝑐+𝑆.ℎ, where 𝑆 is a state successor of
𝑆𝑝𝑎𝑟𝑒𝑛𝑡. This is because using a consistent heuristic ensures that once
a node is explored, it will not be reached again with a lower cost.
Note that a consistent heuristic is also admissible. The admissibility and
monotonicity of the proposed heuristic will be discussed in Section 4.1.

4.1. Heuristic

Heuristics substantially affect the performance of the A* algorithm
and, as such, are the focus of many state-of-the-art papers. We propose
a new heuristic, called Model Move Required (MMR) that balances
the time required to compute the heuristic —which would mean a
higher processing time per state—, and the accuracy of the estimates
it provides —which enables reducing the number of states that need
7
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to be explored to achieve optimality. It works by finding a subset of
the required transitions – transitions that must be executed to reach
the end of the model – and by comparing their labels to the remaining
trace activities.

Algorithm 3 presents the MMR heuristic, which calculates an op-
timistic approximation of the cost to complete an alignment from a
given state. The heuristic needs to identify a subset of the non-silent
transitions that are necessary to execute from the current marking
to reach a final state (Algorithm 3:2). The first step is to figure out
the required transitions for the state for which the heuristic will be
computed (Algorithm 3:8). Each token of that state marking is added
to the queue of 𝑝𝑙𝑎𝑐𝑒𝑠 to visit (Algorithm 3:12-14). Then, the main
loop starts visiting each 𝑝𝑙𝑎𝑐𝑒 of that queue until it is empty (Algorithm
3:15). Each visited 𝑝𝑙𝑎𝑐𝑒 is removed from the queue, and already visited
places are skipped or otherwise marked as visited (Algorithm 3:16-19).
Next, 𝑝𝑙𝑎𝑐𝑒∙ is retrieved, i.e., the successor 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 of 𝑝𝑙𝑎𝑐𝑒. If the
ist only contains one transition, it is registered as a required transition
Algorithm 3:20-24). All the successor places of the transition are
dded to the queue of 𝑝𝑙𝑎𝑐𝑒𝑠 to visit (Algorithm 3:25). Fig. 5 presents
n example that illustrates the behavior of the required transitions
rocedure.

When the queue of 𝑝𝑙𝑎𝑐𝑒𝑠 to visit is empty, the algorithm collected
subset of all the required transitions. Following the collection of the

equired transitions, their unique labels are compared with the remain-
ng distinct activities in the trace to calculate the heuristic (Algorithm
:4). For each mandatory model activity that does not appear in the
emaining trace (Algorithm 3:5), the cost of the asynchronous move
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Algorithm 3 Model Move Required heuristic.
Input: An state 𝑆.
Output: The heuristic value.

1: procedure Heuristic(𝜎, 𝑆)
2: 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑇 𝑟𝑠 ← RequiredTransitions(𝑆.𝑀) ⊳ Subset of the required transitions (cached)
3: 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ← {𝜆(𝑡) ∣ 𝑡 ∈ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑇 𝑟𝑠} ⊳ Set of required unique activities of the model
4: 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 ← toSet(𝜎[𝑆.𝑖∶]) ⊳ Set of unique activities of the trace suffix starting at 𝑆.𝑖
5: 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 ← 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ∖ 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 ⊳ Set of required activities not found in the remaining trace
6: 𝑚𝑖𝑛𝐶𝑜𝑠𝑡𝑀𝑜𝑣𝑒𝑠 ← 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 ∖ 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 ⊳ Set of required extra moves, assumed synchronous
7: return |𝑚𝑖𝑠𝑠𝑖𝑛𝑔| + |𝑚𝑖𝑛𝐶𝑜𝑠𝑡𝑀𝑜𝑣𝑒𝑠| ∗ 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ⊳ Heuristic, under the standard cost function
8: procedure RequiredTransitions(𝑀)
9: 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 ← ∅ ⊳ The output of this function is the set of required transitions

10: 𝑝𝑙𝑎𝑐𝑒𝑠 ← ∅ ⊳ Queue that stores places to visit
11: 𝑝𝑙𝑎𝑐𝑒𝑠𝑉 𝑖𝑠𝑖𝑡𝑒𝑑 ← ∅ ⊳ Queue that stores visited places
12: for all 𝑝𝑙𝑎𝑐𝑒 ∈ TokenPlaces(𝑀) do ⊳ For each token place in the current marking
13: Add(𝑝𝑙𝑎𝑐𝑒𝑠, 𝑝𝑙𝑎𝑐𝑒) ⊳ Insert the initial place in the queue to visit it later
14: end for
15: while ¬Empty(𝑝𝑙𝑎𝑐𝑒𝑠) do ⊳ While there are more places to visit
16: 𝑝𝑙𝑎𝑐𝑒 ← Poll(𝑝𝑙𝑎𝑐𝑒𝑠) ⊳ Extract the next place to explore
17: if 𝑝𝑙𝑎𝑐𝑒 ∈ 𝑝𝑙𝑎𝑐𝑒𝑠𝑉 𝑖𝑠𝑖𝑡𝑒𝑑 then
18: continue ⊳ Skip the place if already visited
19: Add(𝑝𝑙𝑎𝑐𝑒𝑠𝑉 𝑖𝑠𝑖𝑡𝑒𝑑, 𝑝𝑙𝑎𝑐𝑒) ⊳ Mark the place as visited
20: 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 ← 𝑝𝑙𝑎𝑐𝑒∙ ⊳ Get the successors of the place
21: if |𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠| ≠ 1 then
22: continue ⊳ Skip the place if it has more than one output arc or no output arcs
23: if ¬IsSilent(𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠[0]) then ⊳ If the transition is not silent
24: Add(𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠[0]) ⊳ Register the transition as required
25: AddAll(𝑝𝑙𝑎𝑐𝑒𝑠, 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠[0]∙) ⊳ Queue each output place for exploration
26: end while
27: return 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠
Fig. 5. Iterations of RequiredTransitions (Algorithm 3:8) for the initial state of the running example. For each iteration – row of the table – of the main while loop (Algorithm 3:15),
the place being explored is highlighted on the left column and the state of the defined variables is shown on the right column. The 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑝𝑙𝑎𝑐𝑒𝑠 and 𝑝𝑙𝑎𝑐𝑒𝑠𝑉 𝑖𝑠𝑖𝑡𝑒𝑑
variables show the values before the iteration, while the 𝑝𝑙𝑎𝑐𝑒 and 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 variables show the values retrieved during the iteration. The initial marking only has one token on
𝑝0, which is added to 𝑝𝑙𝑎𝑐𝑒𝑠. The 𝑝𝑙𝑎𝑐𝑒 to visit in the first iteration (𝑝0) is extracted from 𝑝𝑙𝑎𝑐𝑒𝑠. This iteration checks that the successor of 𝑝0 is only one transition. As this is
true (|𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠| = 1), it marks the transition (𝐸𝑛𝑟𝑜𝑙𝑙) as required and adds all output places of the transition ([𝑝1]) to 𝑝𝑙𝑎𝑐𝑒𝑠. The second iteration processes 𝑝1 as it is the first
element of the 𝑝𝑙𝑎𝑐𝑒𝑠 queue. It has two successors, so it does not add any more places to 𝑝𝑙𝑎𝑐𝑒𝑠. It does not mark them as required as only one of them has to be executed so
neither is mandatory. The 𝑝𝑙𝑎𝑐𝑒𝑠 queue is empty, so the algorithm stops. The only required transition found for this simple example is 𝐸𝑛𝑟𝑜𝑙𝑙.
is added to the heuristic. These activities are required to be executed
in order to reach the end of the model, so not having them in the
remaining trace implies at least another move in the model in order
to reach the end. For each of the unmatched trace activities remaining
(Algorithm 3:6), the cost of a synchronous move is added, as another
move with a minimum cost of a synchronous move has to be made for
each of them in order to complete the alignment.

In order for this heuristic to be valid, there must be only one
reachable final marking of the model: one token in the end place. This
condition, known as proper completion, guarantees that all transitions
identified through the heuristic procedure will be necessary to reach
8

the end of the model. Hence, this heuristic assumes that the model is a
workflow net with proper completion — without the soundness require-
ment. This is a consistent heuristic that uses the standard cost function:
assigns a positive value very close to 0 (𝑒𝑝𝑠𝑖𝑙𝑜𝑛) for synchronous moves
and a cost of 1 to asynchronous moves. The number of unmatched
required activities can only decrease by a maximum of 1 between
parent and child states (𝑆𝑝𝑎𝑟𝑒𝑛𝑡 and 𝑆), and it may only decrease by
1 when the cost increases by 1 by performing an asynchronous move
(𝑆.𝑐−𝑆𝑝𝑎𝑟𝑒𝑛𝑡.𝑐), so the consistency condition (𝑆𝑝𝑎𝑟𝑒𝑛𝑡.ℎ ≤ 𝑆.𝑐−𝑆𝑝𝑎𝑟𝑒𝑛𝑡.𝑐+
𝑆.ℎ) is verified.
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Algorithm 4 Partial reachability graph: enabled transitions.

Input: The current marking 𝑀 . The single partially built reachability graph 𝑝 for the workflow net is received as input even if the calling
pseudocode does not specify it (𝑝 is initialized as an empty map). Assumes that EnabledTransitions is called before ExecuteTransition for any
marking.

Output: The set of enabled transitions of the marking 𝑀 .
1: procedure EnabledTransitions(𝑀 , 𝑝)
2: if 𝑀 ∈ 𝑝 then ⊳ If 𝑀 had its enabled transitions listed previously
3: 𝑒𝑡𝑟𝑠 ← {𝑡 ∣ (𝑡, 𝑚) ∈ 𝑝[𝑀]} ⊳ Retrieve the list of enabled transitions from 𝑝
4: else
5: 𝑒𝑡𝑟𝑠 ← {𝑡 ∣ 𝑀[𝑡⟩} ⊳ Compute the enabled transitions from 𝑀
6: 𝑝[𝑀] ← {(𝑒𝑡𝑟, 𝑛𝑢𝑙𝑙) ∣ 𝑒𝑡𝑟 ∈ 𝑒𝑡𝑟𝑠} ⊳ Record the enabled transitions, mapped to 𝑛𝑢𝑙𝑙
7: return 𝑒𝑡𝑟𝑠
Algorithm 5 Partial reachability graph: execute transition.

Input: The current marking 𝑀 and the transition to execute 𝑡. The single partially built reachability graph 𝑝 for the workflow net is received
as input even if the calling pseudocode does not specify it (𝑝 is initialized as an empty map). EnabledTransitions assumes that EnabledTransitions is
called before ExecuteTransition for any marking.

Output: The new marking 𝑀 ′ after executing 𝑡 on the marking 𝑀 .
1: procedure ExecuteTransition(𝑀 , 𝑡, 𝑝)
2: if 𝑝[𝑀][𝑡] ≠ 𝑛𝑢𝑙𝑙 then ⊳ If 𝑡 was previously executed from 𝑀
3: 𝑀 ′ ← 𝑝[𝑀][𝑡] ⊳ Retrieve the next marking from the partial reachability graph
4: else
5: 𝑀 ′ ← 𝑀 − ∙𝑡 + 𝑡∙ ⊳ Compute the new marking after executing the 𝑡 transition
6: 𝑝[𝑀][𝑡] ← 𝑀 ′ ⊳ Record the transition execution in the partial reachability graph
7: return 𝑀 ′
Fig. 6. Example of the partial reachability graph computed while executing the trace
〈Enroll, Class, Exam〉 on the running example (Fig. 1). Before executing each transition
of the example trace, all enabled transitions of the marking are computed. The nodes of
the graph are markings. Known markings are circles and unexplored ones are diamonds.
Final markings are represented with a double circle. The node contents show a unique
identifier if explored and a question mark otherwise. Each arc between two nodes is
labeled with the enabled transition whose execution generates the target marking from
the source marking.

4.2. Optimizing the algorithm

This section focuses on our contributions to the core A*-based
alignments algorithm: (i) partial reachability graph, and (ii) several
states reduction optimizations.

4.2.1. Partial reachability graph
All state-of-the-art algorithms need to execute the workflow net to

be able to compute optimal alignments. Thus, all algorithms perform
operations over the workflow net for creating an initial marking (Al-
gorithm 1:17), listing all enabled transitions for a marking (Algorithm
2:2), executing a transition (Algorithm 2:26) and checking if a marking
is final (Algorithm 1:23). Those operations affect performance, as they
are executed several times for each iteration of A*. Our approach
introduces a significant difference from the state of the art. We propose
the dynamic construction of a partial reachability graph (PRG) as
new model markings are reached. This change is aimed at leveraging
information from prior model operations to enhance the speed of future
9

iterations. To make the execution of the workflow net faster, a directed
graph is created that shows the different explored states of the system.
This graph is stored in 𝑝, which is initially empty (Algorithm 4). When
explored, each marking is stored as an entry in 𝑝 and represents a vertex
in the graph (Algorithm 4:5-6). When each marking 𝑀 is explored,
each enabled transition from 𝑀 is represented by an entry in the 𝑝[𝑀]
mapping, which maps to the new marking after executing the transition
(Algorithm 5:5-6), or null if it was never executed (Algorithm 4:5-
6). The enabled transitions serve as arcs connecting states within the
graph. This builds at runtime a data structure similar to a reachability
graph (Davidrajuh, 2013). Nevertheless, only the explored states are
generated. Hence, it avoids building the full reachability graph which
would be a computationally intensive task, especially for models with
lots of branching and concurrent transitions. Instead, it only stores
information about states that are needed in the algorithm’s exploration.
Once repeated model operations start occurring, e.g. due to loops in
the model or to the beginning of the alignment computation over a
new trace of the log, the partial reachability graph can quickly access
enabled transitions and new markings (Algorithm 4:2-3 and 5:2-3). This
information is kept while aligning all the traces of the log to the model,
which is the main reason for the speedup. Fig. 6 shows the partial
reachability graph for the running example and a simple trace.

The advantages of this PRG become evident as the algorithm pro-
gresses and repeated model operations become commonplace. For in-
stance, when loops occur within the model or when aligning a new
trace from the log, the PRG swiftly facilitates access to enabled transi-
tions and the corresponding new markings.

4.2.2. State reduction-based optimizations
The primary challenge in computing conformance checking align-

ments using the A* algorithm is the substantial number of generated
states that must be stored and evaluated to ensure optimal results. To
mitigate this problem, we propose new optimizations focused on states
reduction that will alleviate the state explosion that occurs for complex
datasets: (i) States Reduction forcing asynchronous Model moves (SR-
Model), (ii) States Reduction forcing asynchronous Log moves (SRLog),
and (iii) an initial greedy search that finds a cost limit.
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Algorithm 6 LessStatesLog (SRModel).
Input: The trace 𝜎 and an state 𝑆.
Output: A boolean indicating whether to skip generating log move states from 𝑆.

1: procedure LessStatesLog(𝜎, 𝑆)
2: return
3: |EnabledTransitions(𝑆.𝑀)| > 0
4: and |EnabledTransitions(𝑆.𝑀)∩
5:

⋃

{𝜆𝑟(𝑎𝑐𝑡) ∣ 𝑎𝑐𝑡 ∈ 𝜎[𝑆.𝑖∶]}| = 0
Algorithm 7 LessStatesModel (SRLog).
Input: The trace 𝜎 and an state 𝑆, for which AliveActivities returns the alive activities from that state (Alg. 8).
Output: A boolean indicating whether to skip generating model move states from 𝑆.

1: procedure LessStatesModel(𝜎, 𝑆)
2: return
3: ¬LessStatesLog(𝜎, 𝑆) and 𝑖 < |𝜎| and
4: 𝜎[𝑖] ∉ AliveActivities(𝑆.𝑀)
Fig. 7. SRModel optimization example for the trace 〈Enroll, Exam〉 and the model from Fig. 1. The explored state of (a) would normally generate three asynchronous moves:
one model move for each of the enabled model transitions, and one log move on the Exam activity of the trace. However, the SRModel optimization checks whether the enabled
model transitions cannot be executed in the remaining trace. As this is true for the given state, it can force a model move by only generating two of the three neighboring states.
The SRModel optimization is only applicable when seeking a single
optimal alignment, and it effectively reduces the number of generated
neighbors by constraining allowed movements (Algorithm 2:9, Algo-
rithm 6). Thus, if the current state has enabled transitions and their
activities do not appear in the remaining trace (Algorithm 6:5), this
optimization can be activated: the asynchronous move in the log can
be avoided, as the optimal alignment must have a model move on
one of the enabled transitions. This optimization always provides an
optimal alignment because a synchronous or model move is required
to reach the end of the model, but no synchronous move is or will ever
be available – the remaining trace activities do not match the labels
of the currently executable transitions in the model – until a model
move is performed. Forcing the model moves in this situation reduces
the number of states to explore without affecting the optimality of the
algorithm. An example of this optimization is shown on Fig. 7.

Similarly to SRModel, the SRLog optimization reduces the number
of states to explore by studying the remaining trace and model. It
identifies the alive transitions of the model, which are those that can
be enabled from the current marking through valid transition execution
sequences. Alive activities are the unique labels of the alive transitions.
SRLog checks if the next activity of the trace – which must have one
or more activities left – is not one of the alive activities of the current
state. In this case, the algorithm forces an asynchronous movement on
the log (Algorithm 2:11, Algorithm 7) because that movement has to
be made in order to reach a complete alignment. This optimization
always provides an optimal alignment because a synchronous or log
move is required to reach the end of the trace, but no synchronous
move is or will ever be available – the alive activities of the model do
not match the next activity in the trace – until a log move is performed.
By forcing the algorithm to make it as soon as possible, all states that
would otherwise need to be generated later are being avoided. In cases
where both SRModel and SRLog are applicable to a particular state,
we exclusively employ SRModel. The simultaneous application of both
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would result in the filtering out of all neighboring states. SRLog is
applied to the generated neighbors if SRModel is not available for them.
SRLog requires an additional model pre-processing task in which all the
alive activities of all states are stored. This pre-processing task is only
needed once per model, and it is performed in two phases as is shown
in Algorithm 8.

The initial phase of SRLog involves exploring the model and record-
ing all the unique reachable markings within the workflow net. Each
of those markings is associated with a single state, which also includes
information about the activities that are directly enabled, and the
predecessor states (Algorithm 8:2). This exploration phase stops when a
repeated marking or a marking without enabled transitions is reached.

In this phase, a list to store the discovered states that still need to
be processed is used (Algorithm 8:5). Each iteration explores a new
discovered state, and the loop stops when there are no more states
in the queue (Algorithm 8:9-10). The first action for each discovered
state is to check if its marking was previously explored, registering it
otherwise. This is performed by PutIfAbs, which also returns the pre-
viously stored state for that marking if it exists (Algorithm 8:11). This
previously stored state will later be used to merge already discovered
predecessor states and enabled activities into the single state associated
with that shared marking (Algorithm 8:25-27). To further explore new
states, it is necessary to iterate over each enabled transition of the
current state which might lead to a new child state (Algorithm 8:13-
15). It is checked if the current child marking is new by comparing to
previously explored markings. In either case, the label of the transition
is registered as an alive activity of the parent state and the predecessors
of the child state are updated (Algorithm 8:16-22). In the event that the
child state is indeed new, it is added to the state queue to be explored
later (Algorithm 8:23). The final state is also recorded, which will be
the starting point for phase 2 of this algorithm (Algorithm 8:29).

During the second phase of SRLog, the algorithm calculates all alive
activities associated with each marking. These are activities that might
be executed at any point in the future, even if they are not enabled
at this point and require executing other activities first. This is done
by recursively inheriting all the alive activities from states to their
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Algorithm 8 Initialization for LessStatesModel (SRLog).
Input: A process model 𝑃𝑁 .
Output: The map from each reachable marking to the set of alive activities in the model.

1: procedure LessStatesModelInit(𝑃𝑁)
2: 𝑆 ← { 𝑀 ∶ InitialMarking(𝑃𝑁),
3: 𝑎𝑙𝑖𝑣𝑒 ∶ ∅, ⊳ Alive activities from 𝑆
4: 𝑝𝑟𝑒𝑑 ∶ ∅ } ⊳ Predecessor states
5: 𝑠𝑡𝑎𝑡𝑒𝑠 ← list() ⊳ Unexplored state list
6: 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 ← map() ⊳ Marking to state mapping
7: 𝑓𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒 ← 𝑛𝑢𝑙𝑙
8: Add(𝑠𝑡𝑎𝑡𝑒𝑠, 𝑆)
9: while |𝑠𝑡𝑎𝑡𝑒𝑠| > 0 do ⊳ Phase 1: discovery

10: 𝑆 ← PollLast(𝑠𝑡𝑎𝑡𝑒𝑠) ⊳ Retrieve and remove the last element of the 𝑠𝑡𝑎𝑡𝑒𝑠 list.
11: 𝑆𝑝𝑟𝑒𝑣 ← PutIfAbs(𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑, 𝑆.𝑀,𝑆) ⊳ Check if the state already exists and save it otherwise
12: 𝑒𝑡𝑟𝑠 ← EnabledTransitions(𝑆.𝑀) ⊳ Alg. 4
13: for all 𝑒𝑡𝑟 ∈ 𝑒𝑡𝑟𝑠 do ⊳ Explore all enabled transitions
14: 𝑆𝑐 ← NewState(𝑆)
15: 𝑆.𝑀 ← ExecuteTransition(𝑆𝑝𝑎𝑟𝑒𝑛𝑡.𝑀, 𝑡𝑟) ⊳ Alg. 5
16: 𝑆𝑏𝑎𝑐𝑘 ← Get(𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑, 𝑆𝑐 .𝑀) ⊳ Find out if this is a previously explored marking
17: if 𝑆𝑏𝑎𝑐𝑘 ≠ 𝑛𝑢𝑙𝑙 then ⊳ Handle discovered loops to previous states without recursion
18: if 𝑒𝑡𝑟 ∈ 𝑇𝑛𝑠 then 𝑆.𝑎𝑙𝑖𝑣𝑒 ← 𝑆.𝑎𝑙𝑖𝑣𝑒 ∪ {𝜆(𝑒𝑡𝑟)}
19: 𝑆𝑏𝑎𝑐𝑘.𝑝𝑟𝑒𝑑 ← 𝑆𝑏𝑎𝑐𝑘.𝑝𝑟𝑒𝑑 ∪ {𝑆}
20: else ⊳ Handle new states by also updating 𝑎𝑙𝑖𝑣𝑒 and 𝑝𝑟𝑒𝑑, and adding them to 𝑠𝑡𝑎𝑡𝑒𝑠
21: if 𝑒𝑡𝑟 ∈ 𝑇𝑛𝑠 then 𝑆.𝑎𝑙𝑖𝑣𝑒 ← 𝑆.𝑎𝑙𝑖𝑣𝑒 ∪ {𝜆(𝑒𝑡𝑟)}
22: 𝑆𝑐 .𝑝𝑟𝑒𝑑 ← 𝑆𝑐 .𝑝𝑟𝑒𝑑 ∪ {𝑆}
23: AddLast(𝑠𝑡𝑎𝑡𝑒𝑠, 𝑆𝑐 ) ⊳ Queue for exploration by adding them at the end of 𝑠𝑡𝑎𝑡𝑒𝑠
24: end for
25: if 𝑆𝑝𝑟𝑒𝑣 ≠ 𝑛𝑢𝑙𝑙 then ⊳ Merge collected data if returning to a previously explored state
26: 𝑆𝑝𝑟𝑒𝑣.𝑎𝑙𝑖𝑣𝑒 ← 𝑆𝑝𝑟𝑒𝑣.𝑎𝑙𝑖𝑣𝑒 ∪ 𝑆.𝑎𝑙𝑖𝑣𝑒
27: 𝑆𝑝𝑟𝑒𝑣.𝑝𝑟𝑒𝑑 ← 𝑆𝑝𝑟𝑒𝑣.𝑝𝑟𝑒𝑑 ∪ 𝑆.𝑝𝑟𝑒𝑑
28: else if IsFinal(𝑆.𝑀) then ⊳ Remember the final state
29: 𝑓𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒 ← 𝑆
30: end while
31: 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 ← map() ⊳ Marking to state mapping
32: Add(𝑠𝑡𝑎𝑡𝑒𝑠, 𝑓 𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒)
33: while |𝑠𝑡𝑎𝑡𝑒𝑠| > 0 do ⊳ Phase 2: alive activities
34: 𝑆 ← PollLast(𝑠𝑡𝑎𝑡𝑒𝑠)
35: 𝑆𝑝𝑟𝑒𝑣 ← PutIfAbs(𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑, 𝑆.𝑀,𝑆) ⊳ Check if the state already exists and save it otherwise
36: for all 𝑆𝑐 ∈ 𝑆.𝑝𝑟𝑒𝑑 do ⊳ Explore predecessor states
37: 𝑝𝑟𝑒𝑣𝐴𝑙𝑖𝑣𝑒 ← 𝑆𝑐 .𝑎𝑙𝑖𝑣𝑒 ⊳ Remember previously alive activities
38: 𝑆𝑐 .𝑎𝑙𝑖𝑣𝑒 ← 𝑆𝑐 .𝑎𝑙𝑖𝑣𝑒 ∪ 𝑆.𝑎𝑙𝑖𝑣𝑒 ⊳ Inherit previously alive activities from successor
39: if 𝑆𝑝𝑟𝑒𝑣 = 𝑛𝑢𝑙𝑙 or 𝑆𝑐 .𝑎𝑙𝑖𝑣𝑒 ≠ 𝑝𝑟𝑒𝑣𝐴𝑙𝑖𝑣𝑒 then ⊳ Check stop condition
40: AddLast(𝑠𝑡𝑎𝑡𝑒𝑠, 𝑆𝑐 ) ⊳ Mark for exploration
41: end for
42: end while
43: return 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑
predecessors, starting from the recorded final state. The 𝑠𝑡𝑎𝑡𝑒𝑠 list is
initialized to the final state (Algorithm 8:32). The main loop starts,
taking the last state from the 𝑠𝑡𝑎𝑡𝑒𝑠 list as long as it is not empty
(Algorithm 8:33). For each explored state, 𝑆𝑝𝑟𝑒𝑣 is not null if and
only if 𝑆.𝑀 was previously explored, and 𝑆.𝑀 is marked as explored
(Algorithm 8:35). Then, all predecessor states of 𝑆 inherit the alive
tasks from 𝑆 (Algorithm 8:38). The predecessors are appended to the
end of the 𝑠𝑡𝑎𝑡𝑒𝑠 list if they were not previously explored or if new
enabled tasks were found (Algorithm 8:40). Fig. 8 shows step-by-step
the execution of the initialization of SRLog over the running example.
In addition, Fig. 9 shows the execution of the SRLog algorithm, using
the same model and an example trace.

Note that both SRModel and SRLog have no relation to the log-
move-first and model-move-first optimizations defined in Carmona
et al. (2018). The optimizations we introduce involve an analysis of
the remaining trace and/or model, identifying essential moves and
actively enforcing them. This stands in contrast to Carmona et al.
11
(2018) in which only the last alignment move is examined to dictate
the sequence of log and model moves. Both SRModel and SRLog can
be enabled at the same time during the execution of the algorithm
for improved performance, whereas only one of log-move-first or
model-move-first can be applied on each execution. Note that neither
log-move-first nor model-move-first are compatible with the SRModel
or SRLog optimizations.

Before the primary alignments algorithm, the greedy search opti-
mization (Algorithm 9) is employed to quickly establish an upper cost
bound for the optimal alignment. The algorithm starts from the same
initial state as the reach algorithm (Algorithm 9:2-5). It records a tuple
of the visited marking and trace progress to quickly advance avoiding
infinite loops (Algorithm 9:6). It generates the neighbors of the initial
state also following the reach algorithm (Algorithm 2), and adds them
to the newly created 𝑜𝑝𝑒𝑛 queue (Algorithm 9:8-9). Considering only
the neighbors generated on that iteration, the one of minimum 𝑆.𝑐+𝑆.ℎ
is chosen (Algorithm 9:11), i.e., the greedy algorithm performs a Best
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Fig. 8. Execution steps of Algorithm 8 (initialization for SRLog) for the model of the running example. During the first phase, the following information for each state is obtained:
its ID, the IDs of its predecessor states, and the directly enabled activities. The second phase completes the full set of alive activities by inheriting enabled activities from successors.
The S and A subscripts help to distinguish between state and activity IDs respectively.

Fig. 9. SRLog optimization example for the running example from Fig. 1 and the trace 〈Enroll, Enroll, Class, Exam〉. The alive transitions computed using Algorithm 8 (Fig. 8)
for the current state are Class, Test, the silent one, and Exam. The explored state of (a) would normally generate three moves: one model move for each of the enabled model
transitions, and one log move on the Enroll event of the trace. However, the SRLog optimization checks whether the Enroll event is not alive in the model. As this is true for the
given state, it can force a log move by only generating one of the three neighboring states.

Algorithm 9 Greedy alignments algorithm.
Input: The process model 𝑃𝑁 and a trace 𝜎.
Output: The final state of the greedy alignment, or null if no greedy alignment is found.

1: procedure AlignGreedy(𝑃𝑁 , 𝜎)
2: 𝑆 ←InitialState(𝑃𝑁 , 𝜎)
3: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← ∅
4: 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ← 𝑛𝑢𝑙𝑙
5: while 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 = 𝑛𝑢𝑙𝑙 and 𝑆 ≠ 𝑛𝑢𝑙𝑙 do ⊳ Explore states until stop condition is matched
6: Add(𝑣𝑖𝑠𝑖𝑡𝑒𝑑, (𝑆.𝑀,𝑆.𝑖)) ⊳ Mark the tuple of the marking and the trace index as visited
7: if ¬IsFinal(S) then
8: 𝑜𝑝𝑒𝑛 ← ∅ ⊳ Reset the open queue on each iteration, disabling backtracking
9: AddNeighbors(𝑆, 𝑜𝑝𝑒𝑛) ⊳ Alg. 2: consider all neighbors as usual

10: while 𝑆 ≠ 𝑛𝑢𝑙𝑙 do
11: 𝑆 ← Poll(𝑜𝑝𝑒𝑛) ⊳ Extract them by priority
12: if ¬Contains(𝑣𝑖𝑠𝑖𝑡𝑒𝑑, (𝑆.𝑀,𝑆.𝑖)) then ⊳ Ignore already visited neighbors
13: break
14: end while
15: else
16: 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ← 𝑆 ⊳ Use it as the result if final
17: end while
18: return 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡
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Fig. 10. Greedy alignment optimization example for the running example from Fig. 1 and the trace <Enroll, Class, Exam>. The greedy alignment computed using Algorithm 9
is made of three synchronous moves. The explored state of (a) would normally generate four moves: one synchronous move, one model move for each of the enabled model
transitions, and one log move on the Class event of the trace. However, the greedy alignments optimization checks whether the cost of each generated neighbor is greater than the
cost of the greedy alignment. As this is true for all of the asynchronous moves of the given state, it can force a synchronous move by only generating one of the four neighboring
states.
First Search guided by the heuristic. If it was already visited (Algorithm
9:12), it goes back to Algorithm 9:10 to process the next best state.
If the chosen state was not visited before, the algorithm moves to
that state and continues the exploration from there. It does so until
a complete alignment is achieved or until there are no more unvisited
states left to explore (Algorithm 9:5). The cost of this suboptimal greedy
alignment is used as the upper bound of 𝑆.𝑐 + 𝑆.ℎ for the optimal
alignment retrieved by the reach algorithm, filtering states that will
not lead to the optimal solution. Fig. 10 shows an example of how this
filtering is made.

5. Evaluation

We have extensively evaluated our approach and compared it
against other state-of-the-art algorithms. We provide reach as a web
service, as a binary executable and as the original source code1 to allow
the replication of results. In this section, we describe the datasets and
the experiments, discussing the results.

5.1. Setup

To ensure consistency, we developed and tested reach in Java 8,
aligning it with the Java-based implementations of the state-of-the-art
algorithms. All the algorithms have been executed in an Oracle Java 8
Virtual Machine in a computer equipped with an Intel Core i5-9600K,
32 GB RAM, 1024 GB SSD, and Ethernet 1Gb BaseT. For the execution
of each algorithm, a maximum of 24 GB RAM was reserved.

5.2. Logs and process models

The algorithm takes two inputs: a log and a model, referred to as
a log-model pair for the sake of simplicity. We used logs and models
from the following published papers:

• Reißner, Armas-Cervantes, and La Rosa (2020) includes 17 logs
extracted from different years of the Business Process Intelligence
Challenge (BPIC) and from 4TU.ResearchData.2 They are taken
from different domains such as healthcare, government, finance
and IT service management, with different levels of complex-
ity to create a fair test environment for conformance checking
algorithms.
The process models were discovered with the Inductive Miner
infrequent algorithm (Leemans, Fahland, & van der Aalst, 2014).
Discovering models that perfectly fit the log would be too easy to
solve as the optimal alignment would only require synchronous
moves. To increase the difficulty and test the performance limits
of the state of the art, we discover models with various fitness
levels. These models differ in the extent to which they describe
the log behavior, with lower percentages indicating lower fitness
levels. Achieving optimal alignments generally becomes more

1 https://tec.citius.usc.es/reach
2 https://data.4tu.nl/
13
challenging as the fitness decreases. Thus, for each log, 10 models
will be discovered, ranging from 10% to 100% of behavior.3 For
the log BPIC18, the discovery algorithm could not obtain a model
for percentages over 30%, so only 3 models were discovered. The
total of log-model pairs extracted from this source is 163.

• van Dongen (2018) includes logs and models, so no model dis-
covery algorithm was required. The main advantage of including
these log-model pairs is that they include models discovered with
different algorithms and even large artificial models. From this
source, we expanded our dataset with an additional 64 log-model
pairs.

Adding the log-model pairs obtained from Reißner, Armas-
Cervantes, and La Rosa (2020) and van Dongen (2018) results in a
total of 227 log-model pairs. The complete set of logs used in our
evaluation, along with relevant statistics showcasing their diversity, is
presented in Table 2.

5.3. Impact of the optimizations in reach

In this section, we analyze the effect of the proposed optimizations
on the performance of the A* algorithm by selectively enabling and
disabling the optimizations. Note that we always check the optimality
of the algorithm for each experiment by comparing the returned align-
ment costs against other versions of the algorithm or against the state
of the art.

We tested the proposed optimizations of Sections 4.2.1 and 4.2.2.
For each combination of optimizations, we verified that the algorithm
produced alignments of consistent cost and evaluated the enhance-
ments in terms of: (i) the number of states generated before reaching
an optimal solution; and (ii) the processing time. Table 3 shows some
statistics for the complete dataset. If the execution for a single log-
model pair takes longer than 5 min for any combination of optimiza-
tions, we do not consider it to keep the test times reasonable and the
statistics fair.

The partial reachability graph (PRG) optimization is aimed at re-
ducing the computation time required for the workflow net execution.
Hence, it does not change the total number of states that need to be
processed when enabled. It improves execution times by reducing the
number of operations when interacting with the process model. The
PRG optimization demonstrates its maximum effectiveness when no
other optimizations are enabled, particularly when aligning complex
log-model pairs, resulting in an average execution time reduction from
29.0 to 27.8 s. This improvement is reduced when other optimizations
are enabled but, even then, the PRG optimization does not have a
negative effect on the average execution time. It is affected by other op-
timizations as they lower the number of model operations by reducing
the number of discovered states.

The States Reduction forcing asynchronous Model moves (SRModel)
optimization achieves a reduction in the number of states discovered

3 In this paper, when we mention the percentage of considered behavior,
we are referring to the complement of the threshold parameter of the Inductive
Miner infrequent algorithm.

https://tec.citius.usc.es/reach
https://data.4tu.nl/
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Table 2
Logs information. The columns are: number of activities (A), number of traces (T), total number of events (E), minimum number of events per trace (N), and maximum number
of events per trace (X). Note that the S subindex indicates that redundant traces are ignored.

Name A T E TS ES N X

BPIC12 24 13,087 262,200 4,366 182,467 3 175
BPIC13CP 4 1,487 6,660 183 1,810 1 35
BPIC13INC 4 7,554 65,533 1,511 29,010 1 123
BPIC14F 9 41,353 369,485 14,948 232,067 3 167
BPIC15F1 70 902 21,656 295 10,367 5 50
BPIC15F2 82 681 24,678 420 17,820 4 63
BPIC15F3 62 1,369 43786 826 28,553 4 54
BPIC15F4 65 860 29,403 451 16,502 5 54
BPIC15F5 74 975 30,030 446 18,789 4 61
BPIC17F 18 21,861 714,198 8767 333,965 11 113
BPIC18 41 43,809 2,514,266 28,457 1,819,830 24 2,973
BPIC19_1 11 1,044 5,898 148 1,619 2 21
BPIC19_2 38 15,182 319,233 4,228 255,982 1 990
BPIC19_3 39 221,010 1,234,708 7,832 82,611 1 179
BPIC19_4 15 14,498 36,084 281 1,614 1 17
RTFMP 11 150,370 561,470 231 1,891 2 20
SEPSIS 16 1,050 15,214 846 13,775 3 185
sepsis (Mannhardt, 2016) 16 1050 15,214 846 13,775 3 185
Fitting logs (Maruster, Weijters, van der Aalst, & van den Bosch, 2006) 42 4,000 83,402 2,935 76,482 5 102
Noisy logs (Maruster et al., 2006) 42 16,000 322,670 12051 298,281 2 102
Fitting logs (Munoz-Gama, 2013) 317 1,200 49,792 1,126 48,573 14 59
Noisy logs (Munoz-Gama, 2013) 363 5,300 638,555 5149 633,965 15 245
Fitting logs (Munoz-Gama, 2014) 110 34,000 1,062,208 22,649 906,695 12 167
Noisy logs (Munoz-Gama, 2014) 68 32000 1,035,889 22,747 910,515 12 147
bpi12 (van Dongen, 2012) 24 13,087 262,200 4366 182,467 3 175
road_fines (de Leoni & Mannhardt, 2015) 11 150,370 561,470 231 1,891 2 20
Table 3
Impact of the states reduction optimizations and the partial reachability graph optimization (PRG) on the performance of the reach algorithm for the complete dataset.
Performance has been evaluated in terms of the average execution time in milliseconds (time) and the average number of states discovered (states). To better display the
performance increase, both measurements are divided into simple and complex log-model pairs as indicated by the subscript. Simple log-model pairs are those that take
less than 10 s to solve without optimizations. In addition, both metrics are taken as absolute values (a, b) and percentages of improvement with respect to the execution
with no optimizations applied (c).

PRG

SRModel ✓ ✓

SRLog ✓ ✓

statessimple 1,73E+06 1,58E+06 1,47E+06 1,31E+06
statescomplex 2,96E+07 2,47E+07 2,64E+07 2,00E+07
timesimple 3,02E+03 2,96E+03 2,65E+03 2,66E+03
timecomplex 2,90E+04 2,51E+04 1,97E+04 1,73E+04

a Absolute metrics with different optimizations enabled.

PRG ✓ ✓ ✓ ✓

SRModel ✓ ✓

SRLog ✓ ✓

statessimple 1,73E+06 1,58E+06 1,47E+06 1,31E+06
statescomplex 2,96E+07 2,47E+07 2,64E+07 2,00E+07
timesimple 3,02E+03 2,97E+03 2,66E+03 2,66E+03
timecomplex 2,78E+04 2,46E+04 2,00E+04 1,74E+04

b Absolute metrics with different optimizations enabled.

PRG ✓ ✓ ✓

SRModel ✓ ✓

SRLog ✓ ✓

statessimple 8,6 15,1 24,0
statescomplex 16,4 10,5 32,4
timesimple 1,7 12,2 11,9
timecomplex 15,3 31,2 40,1

c Relative improvement (%).
at the cost of increasing the processing time per state. For simple
log-model pairs, which are those solved in under 10 s without any
optimizations, SRModel reduces the average number of states by 8.6%.
For complex problems, the reduction is even more substantial, amount-
ing to 16.4% fewer states. For simple log-model pairs, the reduction
of states is on par with the increased time per state, leading to ap-
proximately the same mean total time (1.7% decrease in execution
time). Nevertheless, it should be noted that this states reduction has
a much greater effect on the complex log-model pairs, resulting in a
reduction of the average time of 15.3%. Note that these percentages are
measured with the PRG optimization enabled, as reach will also enable
ll optimizations. The improvements in states discovered and execution
ime remain consistent with the PRG optimization disabled. This means
hat the SRModel optimization helps reach to solve harder problems,
ithout losing average performance on simple models. The SRModel
ptimization has a greater impact for bigger models, especially when
14
the alignment between the model and the trace is very poor, which
happens when the fitness is lower, i.e., for models that do not support
much behavior of the log.

The States Reduction forcing asynchronous Log moves (SRLog)
optimization reduces the number of discovered states by 15.1% for
simple models and 10.5% for complex models. It outperforms SRModel
in state reduction for simple models, while SRModel achieves better
state reduction for complex models. Nevertheless, SRLog stands out
for its performance improvements for more complex models, reaching
an average reduction of 31.2% of the execution time. SRLog is more
effective in models with many branches since forcing an asynchronous
move in the log will remove all the states generated by each enabled
activity on the model. As SRModel, this optimization has a great impact
on models with low fitness since the probability that the activities of
the remaining trace do not appear in the model is much higher. Its

performance improvement is also evident in simple models, with an
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Table 4
Slowest initialization times in milliseconds for the SRLog optimization, out of all 163
log-model pairs from (Reißner, Armas-Cervantes, & La Rosa, 2020). The model column
indicates what percentage of behavior the model supports.

Log Model Time (ms)

BPIC19_2 100% 89,502
BPIC15F5 60% 18,951
BPIC15F5 70% 18,746
BPIC15F5 50% 18,334
BPIC15F5 100% 13,441
BPIC15F5 80% 12,675
BPIC15F5 90% 12,394
BPIC15F5 40% 11,389
BPIC15F5 30% 10,845
BPIC15F5 20% 8,641
SEPSIS 90% 166

average execution time reduction of 12.2%. This is due to the fact that
a significant portion of the computational cost of SRLog can be executed
during an initialization phase, thereby reducing the time spent on each
state.

The SRLog optimization requires an initialization phase whose ex-
ecution time is generally very low for most of the log-model pairs.
This initialization has been taken into account in the times reported
on Table 3. To further investigate this initialization time, Table 4
shows in descending order the 11 highest execution times for the
initialization of the SRLog optimization for the models from Reißner,
Armas-Cervantes, and La Rosa (2020). For all other log-model pairs, the
execution times of this initialization are less than 100 ms. Therefore,
the SRLog optimization incurs negligible penalties in terms of execution
time. Moreover, it is worth mentioning that in almost all cases in which
the initialization takes more than 200 ms – 8 out of 10 –, the algorithm
would still take more than 5 min to finish if the optimization was
disabled, so SRLog is improving the algorithm’s performance. In the
other 2 log-model pairs – BPIC15F5 with models with 100% and 90%
behavior supported –, the initialization takes less than 15 s while the
algorithm takes around 28 s.

SRModel and SRLog can be combined to complement each other
and avoid redundant tasks. Enabling both optimizations results in an
even better reduction in the number of discovered states —24.0% for
simple models and 32.4% for complex models— and total execution
time —11.9% for simple log-model pairs and 40.1% for complex ones.

In conclusion, the proposed optimizations for reducing the number
of discovered states improve very significantly the efficiency of reach
ver the test dataset, being the cause of its high performance when
ompared to the state-of-the-art proposals.

.4. State of the art comparison

We compare reach with several publicly available algorithms of
he state of the art. We have included techniques that obtain the
ptimal alignments —ProMNoILP (Adriansyah, 2014) (ProM, PNetRe-
layer v6.11.191), ProMILP (de Leoni & van der Aalst, 2013) (ProM,
NetReplayer v6.11.191), ProMLP (Carmona et al., 2018) (ProM, PNe-
Replayer v6.11.191), eMEQ (van Dongen, 2018) (incremental version,
roM, Alignment v6.10.122), RecomposingReplay (Lee et al., 2018)
ProM, DecomposedReplayer v6.9.97), PartialReplayer (Lu et al., 2015)
ProM, PartialOrderReplayer v6.9.177), AutoConf (Reißner et al., 2017)
AutomataConformance v1.2 (Reißner, Armas-Cervantes, & La Rosa,
020))—, and techniques that do not necessarily return the opti-
al alignments —AutoSComp (Reißner, Armas-Cervantes, Conforti,

t al., 2020) (AutomataConformance v1.2), AutoTRSComp (Reißner,
rmas-Cervantes, & La Rosa, 2020) (AutomataConformance v1.2) and
utoHybrid (Reißner, Armas-Cervantes, & La Rosa, 2020) (Automata-
onformance v1.2).

In the experiments, each algorithm is provided with a log in XES
15

ormat, and one of its discovered models, in PNML format, and it o
returns one alignment per trace. All algorithms are configured in multi-
thread mode to get the speedup of parallel processing. Furthermore, for
each log-model pair, we measure the execution time from the moment
the algorithm receives the inputs until it obtains the alignment for each
trace of the log. Hence, we also account for the time needed for parsing
the inputs (log and model) and writing the alignments. This is because
some algorithms may involve pre/post-processing steps that should not
be excluded from the total execution time as it would be unfair to other
algorithms. Finally, once the alignments are obtained, for each trace
we check whether its alignment is valid and, if applicable, whether its
cost is the same as the alignments for that trace returned by the other
optimal algorithms. Note that the alignments returned by non-optimal
algorithms are considered a solution, regardless of whether their cost
for each trace is optimal or not. Although performing the comparison
in this way is unfair for optimal algorithms like reach, the aim is to
show whether they obtain better results even with this disadvantage.

For practical reasons, we set a time limit for the computation
times of the log-model pairs. We have considered two time limits –
10 and 300 s –, and for each of them we analyze the performance
using several visualizations. The first one is a graph that shows the
number of log-model pairs that have been successfully computed –
the algorithm returns the best alignment it has found – over time.
Note that if an algorithm is not able to compute a log-model pair,
e.g., it gets stuck processing a trace or cannot align some structures
and throws an error, it is considered as if the time limit was reached.
The second visualization is a ranking that compares the time taken by
each of the algorithms to align each log-model pair. Furthermore, we
also provide tables that show how the fitness and precision of input
log-model pairs can affect the number of problems solved by each
algorithm, highlighting the algorithm that solves the highest number
of pairs within the given fitness or precision range.

5.4.1. Results with a time limit of 10 s
Fig. 11 shows the results of the algorithms for a time limit of 10 s.

It can be seen that all the algorithms compute the simplest alignments
in less than 1 s. However, after that point, the curve representing
reach sharply rises above those of the other algorithms. This indicates
that reach is able to process a significantly larger number of log-

odel pairs in less time. In just 1.5 s, reach successfully processes
117 pairs. Meanwhile, the second-best algorithm – eMEQ –, which
is also optimal, computes 85 pairs, closely followed by the optimal
algorithm AutoConf and the non-optimal algorithm AutoSComp, both
of which compute 84 pairs in that time. This faster behavior of reach is
ven greater for log-model pairs that require more computation time,
howing the scalability of our approach. Thus, in 9 s reach is able
o successfully complete 204 pairs, while the second-best algorithm –
MEQ – computes 152. Upon reaching the 10-second time limit, reach
as processed 207 out of 227 log-model pairs, whereas the second-best
lgorithm, eMEQ, is only able to complete 164 pairs. Note that the next
est optimal algorithm – ProMNoILP – achieves a solution for 163 log-
odel pairs. Therefore, with a limit of 10 s, reach has a performance

hat is 26% better than the best state-of-the-art algorithm.
Table 5 displays the solved log-model pairs per algorithm in a

imeout of 10 s, categorizing problems by fitness and precision levels.
t should be noted that the algorithm used to compute precision is
lignment Based Precision Checking with one optimal alignment (Adri-
nsyah, Munoz-Gama, Carmona, van Dongen, & van der Aalst, 2013),
nd that this algorithm is not able to compute some log-model pairs
ue to the high execution time and memory requirements — this is
otally independent of the alignment algorithm. This analysis allows us
o examine how fitness and precision can affect the performance of each
lignment algorithm. Regarding fitness, reach consistently outperforms
he state of the art. There is no clear effect on the number of solved
roblems depending on the fitness value. However, no algorithm can
olve log-model pairs fitnesses lower than 0.25 in 10 s or less. This

utcome is expected because these represent the most challenging
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Fig. 11. Solved problems of each algorithm with a time limit of 10 s.
Table 5
Number of solved problems of the tested algorithms with a time limit of 10 s, splitting log-model pairs by fitness and precision.
Algorithm Fitness Precision

0.0–0.25 0.25–0.5 0.5–0.75 0.75–1.0 0.0–0.5 0.5–0.75 0.75–1.0

REACH 0 22 64 121 1 32 62
ProMNoILP 0 16 45 102 1 21 55
ProMILP 0 15 44 99 1 26 52
ProMLP 0 16 42 100 1 24 53
AutoHybrid 0 4 35 85 1 16 40
AutoTRSComp 0 2 31 76 1 16 31
AutoSComp 0 15 42 82 1 19 49
AutoConf 0 9 42 100 1 28 53
eMEQ 0 16 43 105 1 27 60
PartialReplayer 0 14 19 51 1 10 36
RecomposingReplay 0 15 9 62 1 16 35

Number of problems 3 28 66 130 1 33 62
5

r
l
t
i
s
a
a
a
l
a
2
t

a
o
e
f
T
e
e
b
t
h
s
t
c

problems: a lower fitness means a higher cost of the optimal alignment,
and alignments of higher cost – with more misalignments to repair – are
much more difficult to compute. In terms of precision, reach also solves

ore problems than the state of the art, with the exception of precision
alues lower than 0.5, where there is only one example solved by all
lgorithms. Similarly to fitness, the precision level of input log-model
airs does not affect on the number of problems solved by reach.

We have also compared the execution times that each algorithm
eeds to solve each of the 227 log-model pairs. To establish whether
here are statistically significant differences between reach and the

other tested algorithms, we performed a non-parametric test using
the execution times. First, a Friedman’s Aligned Ranks test with a
significance level of 0.05 has been applied. The ranking is calculated by
ordering the execution times of all the algorithms for each log-model
pair – the best algorithm obtains a rank of 1 –, and then averaging
the ranking of each algorithm in all the log-model pairs. The results of
this test are summarized in Table 6. The table clearly shows that reach
chieves the top ranking. In the second position, we find a non-optimal
lgorithm, AutoSComp, followed by the second-best optimal algorithm,
romNoILP.

As the p-value of the Friedman test is lower than 10−5, there are
ignificant differences in performances among the algorithms. Thus,
e applied Holm’s post hoc test to perform a pairwise comparison
etween reach and the tested algorithms. The results of this test confirm
hat there are statistically significant differences between reach and the
ther algorithms, with p-values consistently lower than 10−5. Therefore,
e can conclude that reach is, on average, the fastest algorithm in our

xperiments over 227 diverse log-model pairs.
16
.4.2. Results with a time limit of 300 s
Fig. 12 depicts the results of the algorithms for a time limit of 300 s.

each computes 216 log-model pairs in less than 45 s, reaching the time
imit in only 11 of them. Conversely, other fast algorithms require more
ime to compute alignments, delivering results progressively and near-
ng the 5-minute time limit — and cannot return optimal alignments for
ome log-model pairs for which our approach is successful. Concretely,
fter 45 s of execution, the second-best optimal algorithms —eMEQ
nd ProMNoILP— align 195 log-model pairs, and the next best optimal
lgorithm —ProMILP— solves 194 pairs, while reach aligns 9% more
og-model pairs. When the time limit of 5 min is reached, the fastest
lgorithms after reach are eMEQ, ProMLP and ProMNoILP, with 214,
12, and 210 solved log-model pairs respectively — in the best case,
hey solve 2 log-model pairs less than reach solves in less than 45 s.

For the 227 tested log-model pairs, reach is the fastest optimal
lgorithm in 125 pairs. In the remaining pairs, the computation time
f reach is, at most, 3 s slower than the fastest algorithm for each pair,
xcept for 3 log-model pairs from Noisy logs (Munoz-Gama, 2013),
or which only eMEQ is capable of finishing within the given timeout.
hese models are synthetic with extensive parallelism, leading to an
xcessive number of states that most algorithms cannot efficiently
xplore. As stated in van Dongen (2018), the logs for those models were
uilt with vast amounts of swapped activities towards the end of the
races, which is a known weakness of A*-based methods. The ILP-based
euristic proposed in van Dongen (2018) is very effective in detecting
wapped activities. However, this method spends more time computing
he heuristic on each state, which makes it slower on average in the
omplete test dataset.
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Table 6
Performance ranking of the tested algorithms.

Rank

REACH 3.405
ProMNoILP 5.084
AutoSComp 5.132
AutoConf 5.460
eMEQ 5.518
AutoHybrid 5.597
ProMLP 5.888
ProMILP 6.081
AutoTRSComp 6.319
RecomposingReplay 8.566
PartialReplayer 8.949

Rank

REACH 3.242
ProMNoILP 4.641
eMEQ 4.998
ProMLP 5.390
AutoSComp 5.399
AutoConf 5.678
ProMILP 5.797
AutoHybrid 5.945
AutoTRSComp 6.888
RecomposingReplay 8.980
PartialReplayer 9.042
Fig. 12. Solved problems of each algorithm with a time limit of 300 s.
Table 7
Number of solved problems of the tested algorithms with a time limit of 300 s, splitting log-model pairs by fitness and precision.

Algorithm Fitness Precision

0.0–0.25 0.25–0.5 0.5–0.75 0.75–1.0 0.0–0.5 0.5–0.75 0.75–1.0

REACH 3 22 65 126 1 33 62
ProMNoILP 3 22 64 119 1 30 60
ProMILP 2 22 64 122 1 33 61
ProMLP 3 23 63 123 1 32 61
AutoHybrid 0 4 37 101 1 25 43
AutoTRSComp 0 2 31 94 1 22 38
AutoSComp 0 19 45 101 1 27 55
AutoConf 3 9 45 105 1 29 55
eMEQ 3 22 62 127 1 33 62
PartialReplayer 0 21 60 119 1 32 61
RecomposingReplay 0 17 39 97 1 29 50

Number of problems 3 28 66 130 1 33 62
Our algorithm is the only one capable of computing alignments for
he most complex models of the BPIC15 log. The primary contributor to
he success of these log-model pairs is the SRLog optimization, which
an prevent timeouts on its own. These examples have a large number
f transitions (around 130), of which a considerable amount are silent
ransitions (around 60), leading to the generation of a large number
f model moves needed from each state explored by the A* algorithm.
he proposed optimization benefits from this situation, as it reduces
he number of states when possible by forcing an asynchronous move
n the log and avoiding all those unnecessary model moves.

Table 7 displays the solved log-model pairs per algorithm within a
imeout of 300 s, categorizing problems by fitness and precision levels.
ocusing on fitness, eMEQ and ProMLP solve one more problem than
17

eachin ranges 0.75-1.00 and 0.25–0.50, respectively, but overall, reach
consistently matches the performance of the best state-of-the-art algo-
rithms. We have observed no correlation between the fitness range of
the input problem and the number of problems solved by reach. In terms
of precision, reach is matched by eMEQ, while algorithms like ProMILP,
PromLP or PartialReplayer exhibit very similar performance solving
one or two less log-model pairs than reach. Again, we have observed no
correlation between the precision range of the input problem and the
number of solved problems of reach. As shown in Fig. 12 even though
reach solves almost the same number of problems as some algorithms,
it does so much faster than the state of the art.

In the rankings (Table 6), reach holds a position with a score of
3.242, surpassing the next best algorithm from the state of the art
(ProMNoILP) with a ranking of 4.641. This reinforces the confidence
that reach is much faster, as this rank compares the time to compute
alignments for each log-model pair. To confirm again that there are
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statistically significant differences between reach and the other algo-
rithms for a time limit of 300 s, we have repeated the Friedman’s
and Holm’s tests — based on the ranking from Table 6. Regarding
Friedman’s test, reach has the best ranking with a p-value lower than
10−5, indicating again that there are statistically significant differences
in the performances of the algorithms. Furthermore, Holm’s test allows
the rejection of the null hypothesis in all the pairwise comparisons
between reach and the other algorithms, since the p-values are lower
han 10−5 in all cases.

.5. Limitations

Although reach achieves superior performance compared to state-
f-the-art algorithms, it still presents certain limitations. reach does not
ucceed in solving 11 of the 227 tested log-model pairs due to the
ature of the A* search: the number of states to explore explodes based
n the complexity of the models and logs, as well as the cost of the
ptimal alignment. There are several factors that affect the performance
f the algorithm in those cases, among which we highlight:

• The parallelism allowed by the process model, i.e., the average
number of enabled activities for each reachable marking. Each
of those activities must generate a new neighboring state by
performing a model move when that marking is reached. Each
state added to the search space when exploring the neighbors
of a state exponentially increases the time complexity, as each
generated state is recursively explored if the search algorithm
requests it. This is aggravated by the presence of silent transitions,
which allow reaching different markings of the process model
without increasing the cost, effectively raising the number of
neighboring states. Loops also contribute to this by removing the
length limit of paths through the model.

• The length of each trace directly affects the number of moves
required in the optimal alignment. As alignments are constructed
from start to end, adding a move at each state transition, the
depth of the solution in the search space increases with the
addition of an event to the trace. Increasing the depth of the
explored search space exponentially raises the time complexity
of the algorithm.

• The cost of the optimal alignment, i.e., the minimum number of
errors that must be repaired for the trace to follow a valid path
through the model, forces the A* search to explore more states.
This is because the solution will include more asynchronous
movements of cost 1, compelling the search algorithm to ensure
that there are no complete alignments of lower cost than the
optimal one.

Among the 227 tested log-model pairs, reach was not the fastest
ptimal algorithm in 100 instances. Notably, these cases primarily cor-
espond to the simplest problems in the experiment. This observation
s visually supported by Fig. 11, where it can be seen that reach takes
lightly longer to solve most of the problems that take less than one
econd. The median delay of reach with respect to the fastest optimal
lgorithm for each of these pairs is 204 ms, and the fastest algorithm
s not always the same, varying among ProMNoILP, ProMILP, ProMLP,
utoConf, eMEQ and RecomposingReplay. The delay observed in sim-
le log-model pairs for reach is primarily attributed to the extended
nitialization time required by the proposed optimizations. These opti-
izations have been designed with the aim of enhancing performance

n the context of complex log-model pairs.
Even with all optimizations applied, reach was unable to complete

he alignments computation for 11 of the tested log-model pairs within
ess than five minutes. The only optimal algorithm capable of solving
hree of these pairs is eMEQ (van Dongen, 2018). This algorithm uses
complex heuristic based on Integer Linear Programming (ILP), which
roves more effective than reach at detecting misalignments toward
18
the end of the trace. For each state, the ILP solver can estimate the
minimum cost of a solution without overestimating it, thus suiting A*
heuristics. Although this estimation is computationally expensive, it
is more accurate than reach, making eMEQ capable of solving three
log-model pairs that reach cannot finish within the given time limit.

6. Conclusions and future work

We have presented reach, an A*-based algorithm that computes
in a very efficient way optimal alignments. The main contributions
of our proposal include techniques designed to minimize the number
of states explored by the A* algorithm and the utilization of a par-
tial reachability graph for faster execution of process models during
alignment computation. We have tested our proposal with 227 log-
model pairs from different domains and discovered using different
algorithms. We verified the performance of each contribution of our
algorithm by partially enabling the proposed optimizations, and we
have compared the performance of our proposal with 10 state-of-the-
art conformance-checking algorithms. Results show that reach aligns
95% of the tested log-model pairs in less than 45 s. Remarkably,
our proposed optimizations empower reach to complete alignments in
just 45 s for two log-model pairs that no other algorithm can solve
within a 5-minute time frame. Moreover, for a 10-second time limit,
it also aligns 26% more pairs than all the other optimal state-of-the-art
algorithms. reach exhibits exceptional speed, outperforming all state-of-
the-art approaches by aligning 55% of the log-model pairs more rapidly
than any other algorithm. Our performance improvements enable the
efficient computation of optimal alignments, allowing users to perform
more precise conformance checking. By eliminating the need to rely on
fast but less accurate methods, our approach opens up new possibilities
for the application of conformance checking in real-world scenarios.

However, reach still presents some limitations that should be ad-
ressed in future work. It currently proposes a balanced heuristic
etween accuracy and computing time, but this may not return the
astest solution for some log-model pairs: (i) for some high-complexity
airs, Integer Linear Programming (ILP) can be used to define more
ccurate heuristics (although slower) than our heuristic, or (ii) very
asy to compute optimal alignments, that could be solved faster by
lgorithms that compute simple heuristics very quickly, albeit inaccu-
ately. The SRLog optimization also slightly increases the computation
ime for the simplest problems due to the relatively slow initialization
hase. Therefore, as future work, we plan to develop a more advanced
euristic based on ILP, focusing on reducing the time spent on each
tate. Nevertheless, simpler problems are solved faster when using
impler heuristics and disabling the SRLog optimization. Hence, we will
ropose a new classification technique that, based on the characteristics
f the input log and model, selects the heuristic and optimizations that
est tackle the given problem.
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