
Future Generation Computer Systems 174 (2026) 107989 

A
0

 

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs  

NetQIR: An extension of QIR for distributed quantum computing
F. Javier Cardama a ,∗, Jorge Vázquez-Pérez a,c, César Piñeiro a,b, Tomás F. Pena a,b,
Juan C. Pichel a,b, Andrés Gómez c
a Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
b Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
c Galicia Supercomputing Center (CESGA), Avda. de Vigo S/N, Santiago de Compostela, 15705, Spain

A R T I C L E  I N F O

Keywords:
Distributed quantum computing
Quantum intermediate representation
Quantum internet
Compilers
Teledata
Telegate
Distributed quantum applications

 A B S T R A C T

The rapid advancement of quantum computing has highlighted the need for scalable and efficient software 
infrastructures to fully exploit its potential. Current quantum processors face significant scalability constraints 
due to the limited number of qubits per chip. In response, distributed quantum computing (DQC) — achieved 
by networking multiple quantum processor units (QPUs)— is emerging as a promising solution. To support this 
paradigm, robust intermediate representations (IRs) are needed to translate high-level quantum algorithms into 
executable instructions suitable for distributed systems. This paper presents NetQIR, an extension of Microsoft’s 
Quantum Intermediate Representation (QIR), specifically designed to facilitate DQC by incorporating new 
instruction specifications. NetQIR was developed in response to the lack of abstraction at the network and 
hardware layers identified in the existing literature as a significant obstacle to effectively implementing 
distributed quantum algorithms. Based on this analysis, NetQIR introduces new essential abstraction features 
to support compilers in DQC contexts. It defines network communication instructions independent of specific 
hardware, abstracting the complexities of inter-QPU communication. Although the proposed work allows 
abstraction of the underlying network, it is important to note that it is intended for the development of 
high-performance code on future modular quantum architectures. Leveraging the QIR framework, NetQIR 
aims to bridge the gap between high-level quantum algorithm design and low-level hardware execution, thus 
promoting modular and scalable approaches to quantum software infrastructures for distributed applications. 
Furthermore, its design may serve as a foundational component for future implementations of distributed 
quantum standards such as the Quantum Message Passing Interface (QMPI).
1. Introduction

The evolution of computing has progressed from simple mechanical 
calculators to modern-day classical computers, that have significantly 
transformed numerous fields, including science, engineering, and ev-
eryday life. Despite these advances, classical computers face limitations 
in solving certain complex problems efficiently, such as factoring large 
numbers, simulating quantum systems, or optimizing large-scale sys-
tems [1,2]. This has led to the emergence of quantum computing, 
which leverages the principles of quantum mechanics to process in-
formation in fundamentally new ways, offering the potential to solve 
these intractable problems more efficiently than classical computers 
can achieve [3,4].

Over the last few years, the development of a comprehensive soft-
ware stack for quantum computing has gained importance in allowing 
the programming of quantum devices in a scalable and easy way. 
This software stack includes quantum high-level languages, compilers, 
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and runtime environments designed to enable the programming and 
execution of quantum algorithms on quantum devices [5,6]. High-
level quantum programming languages such as Q# [7], Quipper [8], 
or Qiskit [9] facilitate the development of quantum algorithms by 
abstracting the complexities of quantum hardware [10].

For the efficient execution of these algorithms, quantum code com-
pilers play a crucial role. A compiler is a software program that 
translates high-level languages into low-level instructions that quantum 
processors can execute [11]. In classical computing, the concept of 
IR was introduced as an abstract-machine code to facilitate the de-
velopment of new compilers [12]. This concept was extended in the 
world of quantum computing to allow a common IR as an intermediate 
step between high-level and back-end languages. The main objective 
of using an IR is to facilitate the optimization of quantum codes and, 
simultaneously, to ensure their compatibility with different hardware 
backends [13,14].
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One of the critical challenges in quantum computing remains the 
scalability and noise of the qubits. Current quantum hardware is limited 
by the number of qubits that can be reliably maintained and manip-
ulated on a single chip, thus complicating the development of more 
complex algorithms [15]. These limitations have led to the develop-
ment of new computing approaches, one of which is the design of 
modular architectures based on DQC. In these architectures, multiple 
quantum processing units (QPUs) are networked together to work 
on a problem collaboratively [16–18]. DQC uses both quantum and 
classical communications to distribute and synchronize computations 
across QPUs, thereby potentially overcoming the scalability constraints 
of individual quantum chips [19–21].

DQC introduces a level of complexity over monolithic quantum 
computing systems (systems consisting of a single QPU) due to the 
management of classical and quantum networks and its complexi-
ties [22]. Because of this, an abstraction model of the complete process 
of a DQC algorithm, from its high-level specification to the specific 
back-end where it is supposed to run, must be defined to facilitate 
the development of tools according to their specific use. Additionally, 
this need highlights the importance of defining an IR that not only 
enables the efficient programming of quantum algorithms within this 
abstraction framework but also addresses the specific challenges inher-
ent to DQC, such as optimized communication protocols and precise 
synchronization mechanisms across QPUs [23].

In the context of DQC, it is essential to distinguish it from the 
concept of the Quantum Internet [24,25]. While DQC uses a quantum 
interconnection network, its focus is on a form of future distributed 
quantum computing, thus allowing the user to abstract themselves from 
both classical and quantum networks [26]. Therefore, it is crucial to 
abstract away the complexities of quantum networking and, instead, 
define the appropriate high-level instructions within an IR to ensure 
its efficient utilization. Currently, a wide range of tools are available 
for simulating quantum communication networks (network-level simu-
lators) [27], such as SquidASM [28] and Simulaqron [29], as well as 
discrete event simulation for quantum communication at the physical 
level, including NetSquid [30] and SeQuence [31]. There are also 
simulators specifically designed for distributed quantum computing, 
such as QuNetSim, which follows a more point-to-point model, with 
network simulation handled by the in-process EQNS simulator [32].

In response to the problems encountered in the literature, this paper 
proposes two main contributions to the state of the art:

• The definition of a layered abstraction model for the correct 
implementation of IRs for DQC by collecting information from the 
literature, both from standards followed in classical computing 
and from attempts at quantum computing. This objective will 
allow other developers to implement new IRs following a model 
whose efficiency will be demonstrated later.

• The proposal of an IR that implements the abstraction layer model 
proposed in the previous objective. Our proposal, NetQIR, extends 
Microsoft’s QIR [33], augmenting it with advanced communi-
cation and distributed computation directives to support inter-
operability and scalability, thereby facilitating robust quantum 
algorithm development in distributed quantum environments and 
hybrid programming. As IR, the objective is to be a common lan-
guage that unites different and future optimization, compilation, 
or scheduling tools.

It is important to note that both the layered abstraction model and 
the proposed IR aims to contribute to the set of tools for future dis-
tributed quantum computing, abstracting from any type of underlying 
network. The proposed work is not a compiler or an optimizer; it is 
a specification of an IR designed to facilitate the integration and use 
of other tools. Therefore, automatic circuit or task partitioning is not 
within the scope of NetQIR or the proposed work, in the same way that 
MPI does not automate data or task parallelism.
2 
Fig.  1 illustrates the advantages of using NetQIR as an IR for DQC, 
highlighting its extension of QIR and, consequently, LLVM. This figure 
illustrates DQC tools compiled to various quantum network simulators. 
In the initial approach, without the use of IRs, the number of required 
compilers is 𝑛 × 𝑚. However, by leveraging an IR such as NetQIR, 
this complexity is significantly reduced to 𝑛 + 𝑚, streamlining the 
compilation process.1

The paper is structured as follows: initially, Section 2 reviews the 
related work, focusing on existing IRs and programming languages for 
DQC. Then, Section 3 introduces a layered abstraction model, essential 
for DQC. It presents the development and network layers, detailing the 
specific components required to achieve a modular and interoperable 
architecture for DQC. In addition, Section 4 presents the topics related 
to the proposed IR, including its specification and the tools developed 
to facilitate the design of new software for future developers. Subse-
quently, Section 5 presents a discussion related to the DQC languages 
analyzed in the related work, along with an evaluation of the different 
characteristics of the network layer to justify its abstraction in the 
proposed abstraction layer model. Finally, Section 6 concludes the work 
and specifies future work.

2. Related work and background

2.1. Background on distributed systems

At the core of any modern computing system lies the operating 
system (OS), which provides a set of fundamental abstractions to 
manage hardware complexity and support application execution. The 
most relevant abstractions include [34]:

• Processes: isolated execution contexts with their own memory 
space and scheduling policies.

• Memory management: virtual memory abstraction, page swap-
ping, and memory protection.

• Input/Output (I/O): abstract representations of devices, filesys-
tems, and network interfaces.

In distributed systems, these abstractions are replicated and localized 
across multiple physical nodes, each typically running its own instance 
of a full-fledged operating system. This design choice allows each node 
to manage its own resources — CPU, memory, and I/O devices — 
independently, leveraging existing OS-level capabilities and simplifying 
low-level hardware interactions. Fig.  2 shows the levels of a distributed 
system.

However, distributed applications often require coordination, syn-
chronization, and data exchange across these independent nodes. To 
support such tasks, a middleware layer is introduced above the OS 
layer. This middleware provides a programming interface that abstracts 
away many of the complexities of distributed execution, enabling devel-
opers to orchestrate high-level parallel applications without managing 
low-level networking or hardware-specific details.

One of the most successful and widely adopted middleware stan-
dards in classical high-performance computing (HPC) is the Message 
Passing Interface (MPI). In classical HPC, MPI is the de facto standard 
for scalable parallelism across distributed systems. An MPI process is an 
independent instance of a program with its own local memory, typically 
mapped to a logical compute unit or hardware core. Each process is 
assigned a unique rank and operates within a communicator—a named 
group of processes that can coordinate using collective or point-to-point 
communication primitives such as send and recv or scatter and
gather [36–38].

This abstraction of rank and communicator implies a subsequent 
mapping by the compiler from logical resource (e.g. rank) to physical 

1 With 𝑛 as the number of front-ends and 𝑚 of backends.
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Fig. 1. Comparison between the integration of NetQIR as DQC IR in a compilation scheme between DQC programming frameworks and quantum simulator backends.
Fig. 2. Levels of a distributed system defined in [35].

resource (e.g. processing unit) typically performed by the compiler or 
operating system. Work is already underway in the literature on oper-
ating systems that allow quantum applications to be run on quantum 
network nodes such as [39].

Therefore, these abstractions allow the user to exchange messages 
between the different processes of the distributed system with the aim 
of collaborating to divide data or tasks. This division is not automati-
cally generated, in any case, by MPI, with the user being responsible 
for adapting their sequential program to the distributed version.

The goal of the proposed work with NetQIR is the same; NetQIR 
allows representing circuit partitioning, but it is the user who must 
modify their sequential circuit to adapt it to a distributed version using 
the additional features introduced by NetQIR.

NetQIR adapts these ideas to distributed quantum computing, ab-
stracting quantum communication into a clean interface that can co-
exist with classical workloads and allow for transparent compiler-level 
optimizations in hybrid quantum–classical applications.

A similar approach is adopted by Quantum Message Passing Inter-
face (QMPI), as proposed by Haner et al. [6]. As its name implies, it 
is an adaptation of the classical Message Passing Interface (MPI) [36] 
for quantum communications, achieved by defining analogous point-to-
point and collective operations for the quantum pipeline. One of the key 
differences between NetQIR and QMPI lies in their approach to commu-
nication semantics. While NetQIR adopts an MPI-inspired programming 
style to organize distributed interactions, QMPI replicates classic MPI 
primitives directly. This direct copying stems from direct problems with 
the characteristics of quantum computing, in this case, with the no-
cloning theorem, as it is not possible to perform copying operations 
3 
(e.g., broadcast operation). Instead, NetQIR introduces communication 
abstractions specifically designed to address the unique challenges of 
distributed quantum computing, as will be detailed in the following 
sections.

2.2. Related work about intermediate representations in quantum comput-
ing

In DQC, the software stack lacks sufficient tools. From high-level 
languages to lower-level representations — and even development
libraries — the literature offers few possibilities, as demonstrated by 
the state-of-the-art review conducted by Barral et al. [21]. This becomes 
even more evident when compared to the monolithic case, in which 
numerous programs, libraries and other software are available for 
developing quantum applications.

Focusing on the IRs in the monolithic quantum computing case, 
MLIR [40,41] or SQIR [42] are found, along with QIR [33], backed by 
the QIR alliance2 — from now on, it will be referred to as
QIR —. The latter is based on the LLVM IR [43] in an attempt to 
integrate quantum computation into the LLVM infrastructure.3 In fact, 
QIR aims to integrate quantum directives with the classical compilation 
stack, leveraging the advanced LLVM tools to facilitate the generation 
of highly efficient quantum instructions. In this work QIR will be 
extended and, therefore, the LLVM IR will be further extended by 
introducing the necessary directives to perform quantum communica-
tions. Throughout this manuscript, this extension will be explained and 
exemplified.

For DQC, the two most popular specifications in the literature are In-
QuIR [44] and NetQASM [28]. The first one, InQuIR, is developed from 
the starting point solely as an IR for DQC. Their primary motivation 
stemmed from the absence of a dedicated IR for distributed quantum 
systems. InQuIR stands out for formally defining the grammar of the 
IR. Using this formalism, InQuIR defines the operational semantics of 
the IR, which allows it to define and predict how the InQuIR programs 
will behave under several circumstances. The authors propose some 
important examples, such as deadlocks and qubit exhaustion, and a 
roadmap for solving these inconveniences. But InQuIR provides a too 
low-level approach with explicit generation of the Einstein-Podolsky-
Rosen (EPR) pairs and instructions that acknowledge the architecture 
of the machine, having less control over the form of quantum links.

2 https://www.qir-alliance.org/.
3 LLVM is a versatile framework for building compilers and code trans-

formation tools. It lets developers write high-level language code that can 
be efficiently compiled into machine code for various architectures, with 
extensive code optimization and analysis support.

https://www.qir-alliance.org/
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As an alternative, as mentioned, NetQASM [28] presents an ab-
stract architecture model composed of an application layer, which is 
responsible for the classical communications between nodes, and a 
so-called quantum network processing unit (QNPU), which handles 
quantum computations and communications. This highlights the scope 
of NetQASM: the Quantum Internet. It is specifically designed for 
quantum networks, setting aside inter-core communication, which does 
not require the additional layers that NetQASM introduces. Moreover, 
NetQASM presents a basic language, called vanilla, and a set of varia-
tions specially designed for the different quantum architectures, called
flavors. The authors state that the vanilla version acts as an IR, and the 
different flavors act as assemblies. The main disadvantage of NetQASM, 
like IR for DQC, is that its architecture is network-oriented rather 
than computation-oriented being a proposal closer to the sockets API 
than to computing communication functions. It also does not consider 
conditional gates, which are constantly employed in quantum com-
munication protocols, as part of the IR. What is actually done is to 
perform a measurement, send the result to the application layer and 
wait until the application layer returns a subroutine with the gate —if 
the measurement was 1— or without the gate —in the opposite case—.

After discussing the related work about the IRs, it is important to 
note that NetQIR will not extend QIR arbitrarily. Rather than propos-
ing an ad hoc language, NetQIR builds upon the LLVM-based QIR 
specification to leverage existing classical optimization and compila-
tion pipelines. This design choice enables hybrid applications to ben-
efit from decades of compiler research, optimization techniques, and 
mature toolchains originally developed for classical high-performance 
computing (HPC). By embedding quantum–classical interfaces within 
an LLVM compatible IR, NetQIR facilitates seamless integration into 
HPC workflows and heterogeneous computing environments.

In summary, both InQuIR and NetQASM exhibit certain aspects 
that may represent drawbacks for an IR. Additionally, QMPI defines 
a high-level standard that is strongly coupled with the classical MPI, 
introducing various complications and intricacies. NetQIR seeks to 
address these issues and this manuscript will detail the approach taken 
to achieve that goal and justify the decisions made in order to do so.

3. Layered abstraction model for distributed quantum computing

Software architectures nowadays strongly rely on abstraction mech-
anisms as a core principle. These simplify the development of new 
algorithms, platforms, compilers and tools. DQC architectures follow 
the same principle. As in the monolithic–and even classical–case, any 
new IR targeting this paradigm should be hardware-independent and 
compatible with diverse quantum computing platforms. To achieve 
this, it is essential to first define a layered abstraction model before 
designing the DQC IR. To achieve this, it is essential to first define a 
layered abstraction model before designing the DQC IR.

Fig.  3 depicts the abstraction layers relevant for executing algo-
rithms in a DQC environment. This paper focuses on the computational 
part of distributed quantum, Therefore, two key layers are defined in 
our proposed model: the development layer and the network layer. 
The development layer provides users the necessary tools to design 
and implement DQC algorithms and software. Meanwhile, the network 
layer acts as an interface between the development layer and the 
quantum interconnection network, ensuring seamless interaction while 
managing its underlying characteristics. Additionally, the network layer 
interacts with lower layers as needed, further abstracting the physical 
complexities of the quantum network.

3.1. Network layer

As discussed above, the network layer aims to abstract the partic-
ularities of the quantum interconnection network to the development 
layer. For this purpose, it is necessary to identify this layer’s main com-
ponents, which are the quantum interconnection network, the quantum 
communication channel and the communication protocols.
4 
Fig. 3. Abstraction layers relevant to the development of an abstract IR for DQC.

The quantum interconnection network abstracts the communication 
between different quantum computing nodes. This network can be 
composed of different types of connections, such as quantum network 
devices, QLANs, or the Quantum Internet. Fig.  4 illustrates a com-
plex example that interconnects quantum computing nodes of different 
QLANs via the Quantum Internet. This network architecture comprises 
several QLANs interconnected through the Quantum Internet, allowing 
quantum computing nodes to communicate with each other. While 
the quantum interconnection network can abstract a wide spectrum of 
quantum communication infrastructures — from local optical links to 
long-range quantum internet protocols — the layered model proposed 
is specifically designed with a DQC perspective. This implies that, 
analogously to how the MPI is capable of operating over the Internet 
but is fundamentally optimized for tightly-coupled HPC clusters, the 
abstraction model focuses on practical, low-latency interconnections 
between QPUs within modular or co-located quantum systems.

The main objective of introducing this abstraction layer is not to 
support long-range quantum communications, but rather to enable ef-
ficient and scalable interconnection of modular QPU architectures [45]. 
In these systems, multiple quantum processors — each with limited 
qubit capacity — are physically co-located and interconnected to jointly 
execute a quantum algorithm. Supporting such modular systems re-
quires a flexible software model that can abstract the communication 
between QPUs without exposing hardware-specific constraints to the 
developer.

A concrete example of this architectural direction is Xanadu’s recent 
modular quantum computing system, which connects 35 photonic chips 
using 13 km of optical fiber to construct a distributed quantum proces-
sor [46]. Although physically integrated within a local infrastructure, 
such systems rely on quantum communication channels between QPUs 
to function as a cohesive unit.

The quantum communication channel, as its name indicates, rep-
resents the abstraction of the quantum channel responsible of the 
connection between two quantum nodes. It enables the exchange of 
quantum information between quantum computing nodes and exploits 
the principles of quantum mechanics, particularly qubit entanglement. 
Fig.  4 shows the quantum channel next to a classical channel, which 
allows operations such as state teleport — an operation that requires 
both a quantum and a classical channel — to be implemented.

And the last component of the network layer is also its central 
element: quantum communication protocols. They define the fundamental 
building blocks for exchanging quantum information between quantum 
computing nodes. Two of the most important communication proto-
cols are teledata [47] and telegate [48]. These protocols exploit qubit 
entanglement to enable the exchange of quantum information. Both 
techniques utilize an entangled EPR pair, where one qubit of the pair 
resides on a QPU and the other is located on a physically separated 
QPU. These EPR pairs create a link between the two QPUs, allowing 
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Fig. 4. Complex quantum network architecture interconnecting quantum computing 
nodes of different QLANs via the Quantum Internet.

quantum data to travel from one QPU to the other by exchanging clas-
sical information resulting from measurements of specific qubits. While 
this work focuses on teledata and telegate, other communication 
protocols are also available in the literature [49,50]. Both were selected 
for this study because they represent two fundamental and widely stud-
ied paradigms for distributed quantum communication: quantum state 
transfer and remote gate application. Their contrasting characteristics 
make them ideal benchmarks for evaluating abstraction models and 
compiler decision-making. However, the proposed abstraction model 
is extensible and can incorporate additional protocols in future work.

Fig.  5 shows the basic structure of the teledata (see Fig.  5(a)) and 
the telegate (see Fig.  5(b)) protocols. In both techniques, starting from a 
state |𝑎⟩ = 𝛼|0⟩+ 𝛽|1⟩ in the local QPU1, it is necessary that the remote 
QPU2 can compute using this information via an EPR pair |𝛷+

⟩. Each 
protocol is elaborated below:

• Teledata protocol transmits the state of the qubit |𝑎⟩ in QPU1 to 
an empty qubit in QPU2. This transmission involves teleportation 
of the quantum state, causing the original qubit to collapse upon 
measurement and transferring its state to the destination qubit.

• Telegate protocol generates a pair in the state 𝛼|00⟩ + 𝛽|11⟩, where 
the first qubit is in QPU1 and the second qubit is in QPU2. The second 
qubit is used as a control qubit for a controlled operation. Considering 
that the control qubit is in the state |𝑎⟩ = 𝛼|0⟩+𝛽|1⟩, using the second 
qubit of the pair achieves the same effect as performing a controlled 
operation in QPU2 with the state of the qubit in QPU1.

The main difference between teledata and telegate is that in tele-
data, the state is transferred, and computation is performed locally at 
the receiving QPU, whereas in telegate, the state is not transferred; 
instead, quantum gates are controlled remotely. Table  1 compares both 
techniques by evaluating four key characteristics. It is important to 
understand the difference between performing an operation ‘‘Locally’’ 
and ‘‘Remotely’’. A local operation does not require the use of either 
quantum or classical communications. On the other hand, a remote 
operation involves the use of quantum or classical communications 
with other QPUs.

1. Collapsed qubit : indicates whether the source qubit collapses 
once the protocol is executed, requiring a qubit reset.

2. Entanglement result : refers to the scope affected by the entan-
glement generated between the remote and local qubits. This 
entanglement can be local to the computation node or global to 
the distributed system.
5 
Table 1
Comparative features between teledata and telegate techniques.
 Protocol Collapsed qubit Entangl.result Measures Numbersyncs 
 Teledata Yes Local Local - Local 1  
 Telegate No Global Local - Remote 2  

3. Measurements: describes how the measurements are performed 
to implement the protocol.

4. Number of synchronizations: the number of synchronizations be-
tween the QPUs required to execute the communication proto-
col.

As observed, in the teledata protocol, the qubit collapses when 
sending the information, necessitating a reset of the qubit afterwards. 
This occurs because the quantum state is entirely transferred to the 
target node; thus, operations are performed locally at the destination, 
and the resulting entanglement is local to the target QPU. Additionally, 
measurements are performed simultaneously on two qubits local to the 
QPU1, requiring only a single synchronization between the two QPUs.

In contrast, in the telegate protocol, the quantum information is 
shared as a reference without measuring the original qubit, eliminating 
the need to reset it. Sharing a reference implies that the generated 
entanglement is global to the distributed system — this means that 
qubits from different QPUs have been entangled —. Furthermore, an 
initial measurement is performed at the QPU1, and a final measurement 
is conducted on the remote QPU2, requiring two separate synchroniza-
tions between the QPUs, known as Cat-Entangler and Cat-DisEntangler
(see Fig.  5(b)). The compiler determines the timing of the second 
synchronization (Cat-DisEnt), especially when the qubit is no longer in 
use.

Both protocols have advantages and disadvantages, and there is no 
clearly superior option. The choice between them depends on the prob-
lem to be solved; therefore, the specification of a layered abstraction 
model will allow the compilation tools to be developed to make an 
informed decision.

3.2. Development layer

In this subsection, the development layer is introduced, designed 
to provide users with the necessary instructions to work with DQC 
algorithms while abstracting away the complexities of the network 
layer. Specifically, two key components for the development layer, 
shown in Fig.  3: the Data Structure for Logical Topology and the High-
Level Quantum Communication Instructions. The first component aims 
to abstract the Quantum Interconnection Network and part of the 
Quantum Channel by introducing a logical topology data structure 
that simplifies the development of distributed quantum programs. This 
logical topology is designed to expose only the number and identity 
of available quantum processing units (QPUs) to the user, intentionally 
omitting intermediate network devices such as routers or switches. The 
second component focuses on abstracting the Quantum Communica-
tion Protocols and, to some extent, the Quantum Channel as well, by 
hiding the implementation details of how communication qubits are 
generated, through high-level quantum communication instructions.

It is important to note that, as in any abstraction model, the com-
pilation tool aims to translate the code from the development layer to 
physical hardware and the network layer. IRs are developed with the 
aim of abstracting the underlying hardware and providing a common 
interface for the development of new applications that can subsequently 
be used in modern compilers. Therefore, this work seeks to define a 
model and an IR that performs a complete and correct abstraction of 
the underlying hardware, providing users with the necessary tools to 
create their DQC applications. The proposed work is not a compiler.

This allows the different responsibilities involved in running DQC 
applications to be decoupled, enabling new OSs such as [39] or new 
application execution environments such as [51] to be developed using 
a common interface.
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Fig. 5. Examples of teledata and telegate circuits for the application of CZs.
Fig. 6. Relationship between development layer abstractions and physical network structures of the network layer.
3.2.1. Data structure for logical topology
In this context, a process represents a logical execution entity as-

signed by the OS to a QPU, which participates in the distributed 
computation. Inspired by the classical HPC model, such as MPI, each 
process in the abstract model is assigned a rank and can be organized 
into groups and communicators. These data structures represent logical 
reorganizations of processes; therefore, a process may belong to multi-
ple communicators or groups. This abstraction enables coordination of 
distributed tasks independently of the physical network configuration.

Fig.  6 shows the relationship between the network layer and the 
proposed development layer. Fig.  6(a) shows a simplified quantum 
interconnection network, which would be used by the development 
layer to generate a logical process topology, as shown in Fig.  6(b). It is 
important to note that we are talking about an abstraction of processes, 
not QPUs or network devices, as these should be abstract to the user.
6 
This abstraction means that users do not need to have a view of 
the physical topology of the network, which can be highly variable 
depending on the context and is not always interesting or useful for 
developing computer programs. In this way, the developer works only 
with an abstract view of the topology between their running processes. 
The network layer then manages and optimizes the actual connec-
tions within the network, providing an effective interface between the 
development layer and the physical infrastructure.

Therefore, the IR that implements the development layer abstrac-
tions does not need to manage the network layer features, in order to 
decouple responsibilities. In this case, there are certain operations for 
translating from the development layer to the network layer that are 
the subject of the OS.

Fig.  6(c) shows the assignment of processes to processing units, 
in the case of the DQC, QPUs. This process abstraction is managed 
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by the OS of each distributed node, as indicated in Section 2.1. Fig. 
6(d) shows the logical topology related to the physical topology once 
processes have been assigned to QPUs, with the aim of showing that 
some connections between processes are closer than others.

Finally, if we focus on end-user development, Fig.  6(e) shows an 
example of point-to-point communications between processes, where it 
can be seen that the instruction does not take into account the physical 
topology, but simply seeks to comply with the logical topology between 
processes. Fig.  6(f) shows the physical path followed for the execution 
of these instructions.

In the following, these high-level instructions for sending quantum 
messages are cited in more detail.

3.2.2. High-level quantum communication instructions
High-level directives conform the last piece of abstraction of the 

development layer. With a clearly defined semantic behavior, they are 
able to abstract the underlying communication protocols in DQC. This 
approach offers two key advantages: first, it enables the development of 
distributed quantum algorithms while abstracting the complexity of the 
underlying communication mechanisms; second, it provides the com-
piler with precise semantic information for each function, facilitating 
both optimization and the selection of the most suitable communication 
protocol. These instructions should prioritize fundamental computa-
tional operations, such as data transmission, reception and collective 
processing, rather than exposing lower-level physical or network mech-
anisms like entanglement generation, which should remain transparent 
to the user. It is important to note that blocking communication func-
tions involve synchronization, as do other instructions such as the 
Barrier instructions. These operations are the responsibility of the OS 
of the distributed system.

These semantic instructions also allow to improve the management 
of the OS and the compiler, for example, to improve the fidelities of the 
result. When using quantum networks, as in the classical counterpart, 
not only is there an overhead due to communications, but additional 
noise is incorporated into the result. In the case of quantum computing 
this is crucial, since an intense use of quantum connections can cause 
the fidelity of the result to decrease. Using high-level instructions to-
gether with the logical topology between processes allows the operating 
system to better manage its allocation of processes to QPUs, minimizing 
communications as much as possible.

As an example of how a lack of abstraction can negatively im-
pact both performance and software quality, consider the entSwap
instruction defined by InQuIR. This instruction explicitly specifies the 
entanglement swapping procedure, which enables the connection of 
two quantum nodes that are not directly linked. However, this is 
fundamentally a low-level problem, as the development layer should 
not have to manage the connectivity of quantum nodes. Exposing this 
detail to the development layer might lead users to invoke entSwap
unnecessarily, resulting in inefficient calls. Allowing the network — 
and even lower-level layers — to handle connectivity issues would 
contribute to more robust software, as these unneeded calls would not 
be performed.

4. NetQIR: a quantum intermediate representation for distributed 
quantum computing

This section introduces the IR proposed in this paper: NetQIR, 
an extension of QIR for DQC. NetQIR is defined according to the 
layered abstraction model presented in Section 3. NetQIR aims to fulfill 
the development layer by abstracting from the underlying network, 
being useful for future distributed quantum computing in any classical-
quantum interconnection network. The responsibilities of managing the 
physical resources would be left to the OS, as discussed above. It is im-
portant to emphasize that an IR is fundamentally a formal specification 
intended for future developers. To that end, a specification has been 
created and a Python Software Development Kit (SDK) developed to test 
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and work with it. This approach allows users to fully understand the 
specification by experimenting with actual code, thereby facilitating 
the production of software that employs NetQIR as an IR. Moreover, 
a grammar has also been developed in ANTLR to allow programmers 
to translate NetQIR code to specific backends, such as simulators or real 
systems.

4.1. NetQIR specification

This subsection details the NetQIR specification. In doing so, NetQIR 
defines both data structures and functions. The data structures in-
clude two components: %Comm and %Group, which correspond to 
the Communicator and Group described in Section 3.2.1, respectively. 
Regarding functions, NetQIR defines a set of state functions, data 
structure functions, and communication functions — the core focus of 
this work —. It is important to note that the state functions do not 
relate to the quantum state of the system but rather to the internal state 
of the NetQIR execution environment. In addition to this document, 
the authors provide a more comprehensive specification and detailed 
documentation on GitHub [52].4

4.1.1. State functions
State functions serve as breakpoints where the underlying layers 

of NetQIR’s abstraction can be defined. For example, these functions 
provide a point where the compiler can determine when to query and 
establish connections between different quantum or classical devices. 
NetQIR introduces two state functions inspired by similar solutions 
in classical distributed computing frameworks, such as MPI. These 
functions are:

• __netqir__initialize(), which initializes the execution 
environment.

• __netqir__finalize(), which terminates the environment.
These functions establish a structured workflow for DQC, ensuring 

proper initialization and finalization of the execution context.

4.1.2. Operate datatypes functions
In order to abstract from the physical topology, as the development 

layer explained in Section 3 aims, NetQIR needs to implement a logical 
topology. For this purpose two already mentioned data structures have 
been added: %Comm and %Group. These will allow the organization 
of the processes in groups and the establishment of logical topologies 
that the processor will then be able to link with its physical version. 
In this abstract model, a process refers to a logical unit of execution 
associated with a QPU, responsible for performing computations and 
participating in distributed tasks. This concept, inspired by the notion 
of processes in classical HPC frameworks like MPI, enables the grouping 
and coordination of distributed quantum operations. Additionally, data 
type functions are defined to create or modify the described types and 
to obtain information about their content at runtime.

NetQIR, as it has been spurred along this work, works akin to 
MPI. Here another example of the similarities arises, because two key 
variables are associated with the so-called comm_world: the process
rank and the communicator size. Consequently, both functions will 
be included:

• __netqir__comm_rank: returns the process rank inside the 
specified communicator.

• __netqir__comm_size: operation which, from a %Comm ob-
ject, returns the number of nodes in that communicator.

Moreover, there are also functions established to create, modify 
or delete %Comm and %Group, and, in addition, operations to estab-
lish new logical network topologies. For further information on these 
functions and their use, the reader is referred to the specification [52].

4 https://netqir.github.io/netqir-spec/.

https://netqir.github.io/netqir-spec/
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Table 2
NetQIR functions: point-to-point and collective.
 Point-to-point communication functions
 Sending functions Receiving functions
 __netqir__qsend_array (Array*, i32, i32, Comm*) __netqir__qrecv_array (Array**, i32, i32, Comm*)  
 __netqir__qsend_array_teledata (Array*, i32, i32, Comm*) __netqir__qrecv_array_teledata (Array**, i32, i32, Comm*)  
 __netqir__qsend_array_telegate (Array*, i32, i32, Comm*) __netqir__qrecv_array_telegate (Array**, i32, i32, Comm*)  
 __netqir__qsend (Qubit*, i32, Comm*) __netqir__qrecv (Qubit**, i32, Comm*)  
 __netqir__qsend_teledata (Qubit*, i32, Comm*) __netqir__qrecv_teledata (Qubit**, i32, Comm*)  
 __netqir__qsend_telegate (Qubit*, i32, Comm*) __netqir__qrecv_telegate (Qubit**, i32, Comm*)  
 __netqir__measure_send_array (Array*, i32, i32, Comm*) __netqir__measure_recv_array (i1*, i32, i32, Comm*)  
 __netqir__measure_send (Qubit*, i32, Comm*) __netqir__measure_recv (i1*, i32, i32, Comm*)  
 Collective communication functions
 __netqir__scatter (Array*, i32, Array*, i32, i32, Comm*) __netqir__expose (Qubit*, i32, Comm*)  
 __netqir__scatter_teledata (Array*, i32, Array*, i32, i32, Comm*) __netqir__expose_array (Array*, i32, i32, Comm*)  
 __netqir__scatter_telegate (Array*, i32, Array*, i32, i32, Comm*)  
 __netqir__gather (Array*, i32, Array*, i32, i32, Comm*) __netqir__reduce (Array*, i32, Array*, i32, i32, Comm*) 
 __netqir__gather_teledata (Array*, i32, Array*, i32, i32, Comm*) __netqir__reduce_teledata (Array*, i32, Array*, i32, i32, Comm*) 
 __netqir__gather_telegate (Array*, i32, Array*, i32, i32, Comm*) __netqir__reduce_telegate (Array*, i32, Array*, i32, i32, Comm*) 
4.1.3. Communication functions
NetQIR proposes a large set of semantic instructions to improve 

the construction of DQC algorithms without the need to know the 
underlying communication protocols. Operations are defined to send 
and receive classical data, and, within quantum communications, two 
large sets are created: point-to-point instructions and collective commu-
nication routines. These functions are defined in Table  2 and explained 
below.

Collective communication operations are particularly relevant in 
distributed quantum algorithms, as they enable efficient coordination 
among multiple QPUs. NetQIR extends classical collective patterns, 
such as scatter and gather, to the quantum domain, while introducing 
new abstractions tailored for quantum-specific needs. Among them, 
the expose operation stands out as a novel contribution. This directive 
allows multiple QPUs to act upon a shared logical qubit without trans-
ferring its state explicitly, leveraging global entanglement to minimize 
resource consumption. By abstracting the communication protocol and 
leaving the implementation details to the compiler, expose exploits the 
layered model’s advantages to reduce synchronization overhead and 
optimize the use of communication qubits in distributed computations.
4.1.3.1. Point-to-point communication. Point-to-point communication
in quantum computing parallels that in classical computing, where 
one node sends or receives information to or from another node. 
The primary difference is that in the classical case, the information 
is purely classical, whereas in quantum computing, the information 
can be classical or quantum. Table  2 lists the directives responsible 
of communication in quantum computing divided into two subgroups: 
sending and receiving functions. Each sending function corresponds to 
a receiving one, both of which block the execution of the quantum 
program. This design ensures that for each send operation at a node 
there is a corresponding receive operation that unblocks it at the 
destination node, and vice versa. Mismatches between these could 
cause an incorrect behavior or compilation errors.

The most basic sending function is __netqir__qsend, repre-
senting the part of the circuit on the sending QPU. Additionally, the 
function __netqir__measure_send corresponds to sending a clas-
sical bit resulting from a measurement, enabling users to develop 
custom quantum communication protocols. Each of these functions 
has an array variant for sending or receiving arrays of qubits. It is 
also important to highlight that the abstraction introduced throughout 
this work enables the compiler to select the most appropriate commu-
nication protocol based on the execution context. If the user wishes 
to specify a particular protocol, they can use the specific version of 
the selected function, for example __netqir__qsend_teledata in 
case of wanting to use the teledata protocol at sending.5
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4.1.3.2. Collective communication. While the qubit sending and receiv-
ing functions are essential primitives, they may not always be the 
most efficient choice. Collective communication directives address this 
by involving multiple QPUs in coordinated operations. They resemble 
those in classical distributed computing, aiding comprehension for HPC 
computing users. These functions include scatter, gather, reduce
and expose.

• __netqir__scatter function distributes an array of qubits 
from one QPU to several others, enabling parallel processing.

• __netqir__gather function collects qubits from multiple
QPUs into a single QPU.

• __netqir__reduce directive allows collecting information 
from multiple remote qubits and applying an operation to obtain 
a final result. Using reduce simplifies code complexity and 
enhances computational efficiency compared to sequences of
qsend and qrecv.

• __netqir__expose directive, which shares a reference to a 
qubit with other QPUs, allowing modifications visible to the 
entire distributed system. This is particularly useful in operations 
where all nodes need to use a qubit as a target or control, 
such as in the distributed Quantum Fourier Transformation (QFT) 
algorithm [53], as illustrated in Fig.  8. In this circuit, a se-
quence of controlled-phase gates is applied between one target 
qubit and several control qubits located in different QPUs. Using
expose, the target qubit can be made available to all control 
units without physically transferring its state, allowing each QPU 
to apply its operation as if the qubit were local. Additionally, 
Fig.  9 shows a possible implementation of the expose operation 
using a GHZ state to connect the QPUs, achieving the state 
𝛼|00…00⟩ + 𝛽|11…11⟩ with the exposed state being 𝛼|0⟩ + 𝛽|1⟩. 
This implementation is not part of the development layer but 
represents one of the strategies available to the compiler could 
choose depending on the underlying physically network.

Similar to point-to-point functions, collective directives have tele-
data and telegate variants. Fig.  7 illustrates the use of scatter and gather 
operations using the teledata protocol.

5 Notably, if a node uses __netqir__qsend_teledata to send, 
the receiving node must use __netqir__qrecv_teledata to receive. 
Mismatched protocols lead to incorrect behavior. The general functions
__netqir__qsend and __netqir__qrecv offer flexibility by not 
specifying a protocol, allowing the other node to define it.
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Fig. 7. An example of using a scatter teledata operation on a qubit array (steps 1 to 
2) and the inverse gather teledata operation (steps 2 to 3) between 4 QPUs (labeled 
in each square).

Fig. 8. Use case for the __netqir__expose directive on the |𝑞1⟩ qubit, as it serves 
as the target for the other remote qubits.

Fig. 9. Possible implementation of the __netqir__expose directive on the qubit 
|𝜓⟩𝑄𝑃𝑈1

, which is the target of the rest of the remote qubits. Distributed operations 
would be performed between cat-ent and cat-dis.

4.2. NetQIR SDK: PyNetQIR

The NetQIR specification constitutes the central core of an IR, 
serving as the common starting point for developers in the field of 
distributed quantum computing. To support developers in building 
distributed quantum applications, the NetQIR specification is accom-
panied by an open-source Python SDK designed to facilitate the gener-
ation of NetQIR code in Python-based environments. This tool, named 
PyNetQIR, is available in the project’s GitHub repository.6

This SDK enables the generation of NetQIR code from high-level 
Python scripts, following a structured execution model composed of 

6 https://github.com/netqir/netqir-sdk.
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three main components: Operations, Scopes, and Executors. This is pro-
vided as a summary, for more information please consult the open 
source code repository.

• Operations represent the basic actions of a NetQIR program. 
These may include quantum instructions (such as gate applica-
tions or qubit transmissions) as well as classical instructions (like 
conditionals or communicator queries), allowing for hybrid pro-
gramming. This hybrid approach extends the LLVM framework 
to integrate quantum semantics while maintaining compatibility 
with classical logic.

• Scopes are hierarchical structures that group operations logically, 
similar to blocks in traditional programming. The SDK provides 
builders (e.g., MainScopeBuilder) to construct these scopes 
and manage their contents efficiently.

• Executors are responsible for interpreting or compiling the op-
erations within a scope. In the example shown in Fig.  10, a
PrinterExecutor is used to emit the resulting NetQIR code, 
although other executors could target simulators or hardware 
backends in future implementations.

The typical flow of a NetQIR program using this SDK begins by 
initializing the program and obtaining the global scope and communi-
cator. Fig.  10 shows an example of this process, where a quantum state 
is transferred from one QPU to another using the qsend and qrecv
directives. Within the main scope, the NetQIR environment is initialized 
and the rank and size of the communicator are retrieved. By leveraging 
ranks and communicators, the SDK mirrors the structure of classical 
distributed frameworks like MPI, allowing developers to adopt familiar 
patterns when building quantum programs.

A conditional operator based on the process rank is defined: if 
the rank is 0, the process performs a quantum send (qsend); if it 
is 1, it performs a quantum receive (qrecv).7 The environment is 
then finalized and the program is executed using the Executor. This 
example demonstrates how NetQIR supports modular and semantically 
clear construction of distributed quantum applications using a model 
inspired by classical distributed computing.

4.3. NetQIR ANTLR grammar

Once the NetQIR specification has been defined and an SDK for 
translating Python code into NetQIR has been implemented, it becomes 
essential to provide future developers with a tool for extending NetQIR. 
This includes developing new high-level languages that compile to 
NetQIR and translating NetQIR into low-level machine instructions for 
quantum devices. To facilitate this, a formal grammar definition is 
introduced, leveraging the ANTLR [54,55] specification to enable struc-
tured parsing and transformation of NetQIR code. The primary advan-
tage of defining this grammar is that future developers can choose the 
target programming language for their NetQIR parser. ANTLR provides 
automatic code generation from its grammar definitions, supporting 
a wide range of well-known high-level programming languages. This 
flexibility facilitates the integration of NetQIR into diverse software 
ecosystems, enabling seamless adoption across different development 
environments. The grammar defined for NetQIR is encoded in the 
GitHub repository netqir-grammar.8 It is important to note that this 
grammar aims to classify the different categories of NetQIR functions 
specified earlier. This approach allows developers to generate more 
specialized listeners for the generated AST tree, providing, for instance, 
information on whether they are programming a qsend function with 
modifiers such as teledata or array.

7 Several examples, including this one, are available in the repository: 
https://github.com/NetQIR/netqir-sdk/tree/main/python/examples.

8 NetQIR grammar: https://github.com/NetQIR/netqir-grammar/.

https://github.com/netqir/netqir-sdk
https://github.com/NetQIR/netqir-sdk/tree/main/python/examples
https://github.com/NetQIR/netqir-grammar/
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Fig. 10. Generation of NetQIR code of teleportation circuit using PyNetQIR.
Fig. 11. NetQIR Grammar for the classification of functions in its specification.

Fig.  11 presents a syntax tree illustrating the structure of the defined 
grammar, where bold elements represent lexical tokens. It can be 
observed that both quantum and classical communication functions 
support modifiers, such as ‘‘array’’ for sending quantum or classical 
arrays, and protocol specifications like ‘‘telegate’’ or ‘‘teledata’’. 
It is important to note that both modifiers are optional (hence the use 
of the ? symbol). If no protocol is explicitly specified, the compiler 
will automatically select the most optimal one based on the execution 
context.

5. Discussion

This section presents two complementary analyses to support the 
design rationale behind NetQIR and to evaluate its relevance for dis-
tributed quantum computing.

Since it is not feasible to perform a quantitative comparison between 
IRs — given that they are formal language specifications without 
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associated compilers or optimizers for benchmarking — in this section 
we conduct a qualitative comparison of various languages designed 
for distributed quantum computing, followed by a justification of the 
abstraction layer model through an evaluation of different communica-
tion protocols and quantum interconnection networks. In this case, the 
goal is not to develop a tool that directly improves fidelity, memory 
management, or execution time. Instead, we propose a model and an 
IR intended to support the future development of software stack tools 
for distributed quantum computing.

Therefore, it is proposed a qualitative comparison of different lan-
guages designed for distributed quantum and, subsequently, a justifica-
tion of the abstraction layer model by evaluating different communica-
tion protocols and quantum interconnection networks.

First, a comparative analysis with state-of-the-art languages is 
performed to assess how existing DQC intermediate representations and 
frameworks align with the layered abstraction model proposed in this 
work. This comparison identifies the extent to which each solution 
abstracts the complexities of distributed quantum execution at the 
network and development layers.

Second, a justification of the layered abstraction model is pro-
vided, with a focus on the benefits introduced by collective communica-
tion directives. In particular, this analysis demonstrates how high-level 
operations, such as scatter, gather, or the novel expose, em-
power the compiler to select the most appropriate communication strat-
egy depending on the system’s topology or the specific requirements of 
a given algorithm. Rather than prescribing low-level instructions, these 
abstractions enable optimization and adaptation to the execution con-
text, ultimately leading to more efficient resource usage and scalability. 
It is important to point out that the objective is to show the reader 
how the compiler and the OS can use one communication protocol or 
another depending on the problem to be solved.

Together, these two analyses highlight the practical and conceptual 
value of adopting a layered abstraction model and the role of NetQIR in 
bridging high-level algorithm design with efficient distributed quantum 
execution.
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Table 3
Qualitative comparison table between the different languages selected for DQC programming.
 Language Network layer Development layer Other characteristics
 Quantum 

channel
Q. Interconnection 
network

Communication 
protocols

High-level quantum 
comm. instructions

Data structure for 
logical topology

Real quantum 
computing inspired

Hybrid 
programming

 

 NetQASM ∼ ∼ 7 7 7 3 7  
 InQuIR ∼ 7 7 7 7 3 7  
 QMPI 3 3 3 3 3 7 ∼  
 NetQIR 3 3 3 3 3 3 3  
5.1. Comparison with state-of-the-art languages

This section presents a comparative analysis of existing DQC lan-
guages and IRs, focusing on their alignment with the layered abstrac-
tion model proposed in Section 3. This model defines essential elements 
across two layers — the network layer and the development layer 
— designed to facilitate the efficient development of DQC tools. The 
evaluation criteria include key aspects such as the ones outlined below:
Network layer: the network layer contains the necessary characteris-
tics to define a correct quantum–classical connection between different 
nodes, abstracting from the underlying physical complexities, like:

• Quantum Channel Abstraction: evaluates whether the language 
abstracts the quantum channels used for inter-node communication, 
essential for managing quantum information transfer.

• Quantum Interconnection Network: assesses the language’s abil-
ity to abstract the structure of quantum interconnection networks 
connecting multiple QPUs, a foundational aspect for scalable QPU 
architectures.

• Communication Protocols: identifies whether the abstraction of the 
communication protocol is allowed or has to be defined by the user 
when programming. Abstraction is essential to allow the compiler to 
optimize techniques according to the context.

Development layer: programming languages for DQC must incor-
porate features that provides users to perform distributed quantum 
computing while abstracting away the complexities of the underlying 
quantum network.

• High-Level Quantum Communication Instructions: considers
whether the language provides high-level commands to simplify 
distributed quantum operations, facilitating programming efficiency 
and code readability. These instructions allow the compiler to provide 
functions with semantic context, allowing it to perform optimizations 
between the different possible physical implementations.

• Data Structures for Logical Topology: determines the language’s 
support for data structures that abstract the physical topology of the 
distributed system over a logical topology, allowing easier specifica-
tion of quantum node relationships and delegating to the compiler 
the responsibility for matching the code to the target topology.

Other characteristics: key features for an IR to enable the correct and 
efficient development of new tools.

• Real Quantum Computing Inspired: specifies whether the language 
is intended to perform real quantum computation or only simulated 
quantum computation. This feature aims to eliminate all languages 
that include instructions that are not allowed in the quantum model, 
such as perfect copying of generic states.

• Hybrid programming: this feature is crucial for enabling the orches-
tration between classical and quantum computing devices, facilitating 
tasks such as optimization problems.

Table  3 shows the comparison between the different languages 
discussed in Section 2 (related work) together with the IR proposed 
in this work: NetQIR.
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In particular, NetQASM and InQuIR do not fully abstract the quan-
tum channel. InQuIR requires the programmer to explicitly call op-
erations such as genEnt to create entangled pairs and entSwp to 
perform entanglement swapping between QPUs. This exposes the phys-
ical routing of qubits and limits the flexibility of the compiler to adapt 
to different network configurations. Similarly, NetQASM uses cre-
ate_epr to establish entanglement between nodes, providing only a 
minimal abstraction and restricting the channel model to EPR-based 
links, without considering other communication resources such as GHZ 
states or multi-party entanglement.

Regarding the quantum interconnection network, both approaches 
offer at best a partial abstraction. Although entanglement-based com-
munication is used, the fact that the programmer must manage the 
flow of entangled pairs (e.g., through manual swapping or addressing 
specific qubits) means that the logical network structure is not decou-
pled from the physical implementation. For instance, in InQuIR, if a 
QPU wants to communicate with a non-adjacent node, the user must 
explicitly define a chain of entSwp instructions. This introduces rigid 
dependencies on the physical topology and prevents the compiler from 
transparently handling the routing of quantum information.

Concerning the communication protocols, there is no abstraction 
in this feature because the programmer has to decide how to interact 
with the communication qubits. Furthermore, the development layer is 
not implemented as neither quantum communication instructions nor 
structures to define a logical topology are defined. Hybrid programming 
is not allowed in languages such as NetQASM or InQuIR which are 
specific to quantum device programming.

With respect to QMPI, it allows abstraction in the fields indicated, 
except that it is not intended for real quantum computation because 
it has collective operations that are not meaningful due to the non-
cloning theorem, such as the Allscatter or Allgather operation. 
It is also important to specify that QMPI is a message passing interface, 
so it is not an IR, just as MPI is not an IR. On the other hand, QMPI, 
being a message passing interface and not an IR, could allow this type 
of programming depending on its future implementations.

Finally, NetQIR, the intermediate representation for DQC proposed 
in this paper, would meet the above requirements by abstracting each 
part of the layered model. NetQIR, by extending QIR, which in turn 
extends LLVM, ensures hybrid programming by integrating quantum 
and classical programming in the same IR.

5.2. Justification of the layered abstraction model

This section aims to analyze the use of different communication 
protocols such as teledata or telegate against collective operations 
such as ‘‘expose’’. Additionally, it also looks at the comparison be-
tween different network topologies. This will allow us to analyze how 
the computational resources consumed can vary depending on the 
communication protocol used on different network topologies.

The analysis focuses on how resource consumption varies depend-
ing on the selected communication protocol, the physical topology 
of the quantum network, and the number of QPUs involved. By ab-
stracting these aspects through semantic directives and delegating the 
decision-making to the compiler, the model allows for adaptation to 
the underlying infrastructure and algorithmic needs, improving overall 
efficiency.
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Fig. 12. Circuit for the calculation of the Quantum Fourier Transformation (QFT), 
where 𝑛 calculations are performed on 𝑛 qubits.

Two main metrics are considered: the total number of communi-
cation qubits consumed during circuit execution, and the number 
of communication qubits each QPU must reserve to support the 
communication process. These results serve to highlight the benefits 
of decoupling communication details from the algorithmic description, 
as promoted by the layered abstraction model.

To do this, the circuit in Fig.  12 was used, which represents the 
computation of a QFT using 𝑛+1 qubits. This process can be separated 
into 𝑛 epochs, where in epoch 𝑖 controlled gates are applied to qubit 
|𝑥𝑖⟩, equivalent to an expose function. In this use case, the QPU 𝑖
is assigned the qubit |𝑥𝑖⟩. Therefore, the growth of QPUs will imply a 
growth in the number of qubits in the circuit.

It is important to note that this partitioning is done on an ‘‘ad hoc’’ 
basis for the evaluation. No circuit partitioning strategy is used. The 
objective is to assign a qubit to a QPU in order to maximize the number 
of communications in the circuit. In this case, QFT is selected as the 
circuit to be tested as it is resource intensive in terms of gating all the 
qubits. Therefore, by having each qubit in a distributed QPU, it forces 
the consumption of communication qubits by having to perform the 
controlled gate remotely.

On the other hand, the topologies to be tested are shown in Fig.  13, 
which are the direct connection option and the interconnection option 
via a communicator.

• Direct interconnection: this type of connection is peer-to-peer so 
that each QPU is connected to each of the other QPUs. This allows 
a direct connection between each pair of QPUs without unnecessary 
hops but has the disadvantage of having a tightly coupled network, 
making it problematic to add new nodes and requiring a large number 
of communication qubits.

• Topology via one communicator: In this case, access to the dis-
tributed system is managed through a quantum communicator (or 
quantum router). Each QPU is connected only to this central node, 
which is responsible for relaying quantum information between them. 
One of the main advantages of this abstraction is that it allows 
the compiler to choose the most suitable strategy depending on the 
context. In some situations, the communicator may assist the routing 
process by performing entanglement swapping between QPUs. In 
other cases, the communicator might directly establish entanglement 
links with the target QPU and transfer the qubit’s state or apply 
remote operations, acting as an active participant in the communica-
tion. This flexibility highlights the benefit of leaving implementation 
decisions to the lower layers of the stack.

Continuing with the communication protocols evaluated, the anal-
ysis considers the use of teledata, telegate, and expose in both 
topologies. For the expose function, the implementation shown in Fig. 
9 is used, where a GHZ state is generated to connect all involved QPUs.

In the case of teledata, the source QPU must send the qubit 
to the destination node, allow the operation to be performed, and 
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then retrieve the updated state — requiring two EPR pairs per opera-
tion. The telegate protocol, which executes the operation remotely 
without moving the qubit, requires only a single EPR pair. Lastly, 
the expose directive leverages a shared GHZ state, allowing multiple 
QPUs to access the same logical qubit. This significantly reduces the 
number of required communication qubits, especially as the number of 
QPUs increases, since the cost of GHZ generation is shared across the 
participants.

Fig.  14 shows the results obtained, always from the perspective 
of resource consumption on a single QPU in the system. As can be 
seen in Figs.  14(a) and 14(b), the number of qubits consumed for a 
QPU increases with the QPUs connected, as it implies a higher number 
of communications between the circuit. With regard to protocols, for 
both topologies, the protocol with the highest qubit consumption is
teledata, followed by telegate, and finally expose, which shows 
the lowest consumption. This highlights the importance of selecting 
an appropriate communication protocol for each specific task. By us-
ing high-level semantic functions, the compiler gains the flexibility 
to optimize communication by selecting the most efficient strategy 
based on the topology and algorithmic context. This case is particularly 
comprehensive as QFT has been selected as the test circuit, as it has 
controlled gates between all the qubits.

On the other hand, Fig.  14(c) shows the number of communication 
qubits each QPU must reserve to communicate with the distributed 
system. As expected, this number grows linearly in the case of a directly 
connected topology, requiring one or two additional communication 
qubits for each new QPU added to the system. In contrast, in the via 
one communicator topology, this requirement remains constant, as only 
one or two communication qubits are needed per QPU, regardless of the 
system size, since the quantum communicator handles the interconnec-
tions. As shown in Figs.  14(a) and 14(b) above, this also implies that 
the consumption of communication qubits is higher, as the information 
has to flow through the communicator.

It is important to contextualize the resource usage of NetQIR or the 
IRs in general. While custom low-level code can, in theory, achieve 
superior performance, this comes at the cost of portability, main-
tainability, and development complexity. The primary advantage of 
adopting an IR lies in its ability to act as a unifying abstraction across 
multiple frontends and backends. This enables the reuse of mature, 
optimized compiler infrastructures and promotes rapid prototyping and 
code generation from high-level languages.

NetQIR inherits these advantages by offering a structured IR for dis-
tributed quantum computation, allowing the integration of quantum-
specific optimizations without sacrificing compatibility with classical 
toolchains (due to the extension of QIR and LLVM). In practice, the 
abstraction introduced by NetQIR empowers developers to generate 
code more efficiently and consistently across architectures, while still 
enabling backend-specific optimizations through lower layers. There-
fore, while the raw performance of hand-optimized code may remain 
unmatched, the productivity and correctness benefits of IR-based de-
velopment — especially in complex distributed environments — make 
NetQIR a scalable alternative.

Overall, these results reinforce the value of the proposed layered 
abstraction model. By abstracting protocol and topology details through 
collective operations, the compiler is empowered to make optimal 
decisions, improving scalability and resource efficiency in distributed 
quantum systems.

6. Conclusions

This work addresses two key objectives aimed at mitigating some 
of the challenges identified in the literature regarding the development 
of compilation frameworks and software tools for distributed quantum 
computing.

Firstly, the need to establish a common framework for the develop-
ment of new IRs related to DQC is addressed by proposing the layered 
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Fig. 13. Examples of different quantum network topologies for connecting QPUs within a QLAN.
Fig. 14. Comparison of the number of communication qubits consumed and needed for the QFT circuit, in function of the number of connected QPUs, the communication protocol 
used and the existing physical topology. It is important to note that, because of how the partitioning of the distributed circuit has been defined, one qubit has been assigned to 
one QPU, therefore the number of connected QPUs is equal to the number of qubits used exclusively for the QFT.
abstraction model. This model not only provides a scalable architecture 
but also establishes a foundation for optimization opportunities in 
DQC. By implementing functions that facilitate quantum data distribu-
tion across logical topologies, NetQIR reduces the complexity of DQC 
programming, allowing compilers to dynamically optimize based on 
high-level semantic directives. This model effectively addresses chal-
lenges observed in other IRs, such as NetQASM and InQuIR, which 
either lack flexibility in protocol handling or are too closely tied to 
specific network assumptions.

Secondly, an IR has been proposed in this work that meets the 
requirements objectively specified in the abstraction layer model, called 
NetQIR. It is an innovative extension of QIR for DQC, designed to 
address current limitations in scalability and interoperability in dis-
tributed quantum environments, allowing the hybrid programming and 
the use of LLVM common tools. NetQIR offers a flexible IR designed to 
handle quantum and classical communications across multiple QPUs 
by introducing high-level abstractions and communication directives. 
Unlike previous solutions, NetQIR integrates high-level quantum com-
munication functions — such as point-to-point (qsend, qrecv) and 
collective operations (scatter, gather, reduce, expose) — en-
abling developers to program complex distributed algorithms with ease. 
This design abstracts the underlying network layer, allowing NetQIR 
to efficiently map communication protocols such as teledata and tele-
gate based on the topology and specific requirements of the quantum 
network.

In this work, an abstraction model and IR are proposed, aiming to 
improve the software stack for DQC. Therefore, a compiler or optimizer 
that improves results such as fidelities or computational resource usage 
is not being proposed. This implies that, instead of working with 
empirical results, the focus has been on a discussion of the different 
existing languages for communication or quantum computing and, on 
the other hand, the evaluation of the impact on computational resource 
consumption of different communication protocols in a real problem.

The comparison between languages allows us to observe that not 
all of them define a direct abstraction like the one proposed in the 
abstraction layer model in this work. This is important, as the goal is 
to propose a system similar to the one already used in classical HPC 
environments, but incorporating the characteristics and constraints of 
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quantum computing (especially since alternatives like QMPI propose 
operations that do not comply with the no-cloning theorem).

Moreover, being able to evaluate different communication proto-
cols in various interconnection networks has also made it possible to 
highlight how important it is to abstract away from these features 
— belonging to the network layer — so that the operating system or 
compiler can manage which protocol or routing strategy to use.

Although hand-optimized low-level implementations may achieve 
maximum performance, the use of an IR such as NetQIR offers a more 
practical trade-off between abstraction and efficiency. By enabling the 
reuse of mature compilation toolchains and supporting code genera-
tion from high-level languages, NetQIR accelerates development and 
enhances portability across platforms. This abstraction layer is par-
ticularly valuable in DQC, where complexity and heterogeneity make 
manual low-level programming impractical at scale.

It is important to point out that NetQIR aims to establish an IR to 
develop the necessary tools for the future DQC, which in the NISQ 
era is not yet available due to the accumulated errors in quantum 
communication networks for computing. The main objective is to work 
on having the right languages and tools for when the FTQC era is 
reached.

Future work on NetQIR should prioritize developing tools that 
simplify its integration into new software projects. Additionally, test-
ing its interoperability with various quantum backends and exploring 
advanced optimization techniques would be valuable. A well-designed 
toolchain could improve the management of distributed resources in 
NetQIR, potentially reducing communication costs and enhancing qubit 
allocation strategies to further boost efficiency and scalability in dis-
tributed quantum systems.
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