
Future Generation Computer Systems 174 (2026) 107989

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

NetQIR: An extension of QIR for distributed quantum computing
F. Javier Cardama a ,∗, Jorge Vázquez-Pérez a,c, César Piñeiro a,b, Tomás F. Pena a,b,
Juan C. Pichel a,b, Andrés Gómez c
a Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
b Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
c Galicia Supercomputing Center (CESGA), Avda. de Vigo S/N, Santiago de Compostela, 15705, Spain

A R T I C L E I N F O

Keywords:
Distributed quantum computing
Quantum intermediate representation
Quantum internet
Compilers
Teledata
Telegate
Distributed quantum applications

 A B S T R A C T

The rapid advancement of quantum computing has highlighted the need for scalable and efficient software
infrastructures to fully exploit its potential. Current quantum processors face significant scalability constraints
due to the limited number of qubits per chip. In response, distributed quantum computing (DQC) — achieved
by networking multiple quantum processor units (QPUs)— is emerging as a promising solution. To support this
paradigm, robust intermediate representations (IRs) are needed to translate high-level quantum algorithms into
executable instructions suitable for distributed systems. This paper presents NetQIR, an extension of Microsoft’s
Quantum Intermediate Representation (QIR), specifically designed to facilitate DQC by incorporating new
instruction specifications. NetQIR was developed in response to the lack of abstraction at the network and
hardware layers identified in the existing literature as a significant obstacle to effectively implementing
distributed quantum algorithms. Based on this analysis, NetQIR introduces new essential abstraction features
to support compilers in DQC contexts. It defines network communication instructions independent of specific
hardware, abstracting the complexities of inter-QPU communication. Although the proposed work allows
abstraction of the underlying network, it is important to note that it is intended for the development of
high-performance code on future modular quantum architectures. Leveraging the QIR framework, NetQIR
aims to bridge the gap between high-level quantum algorithm design and low-level hardware execution, thus
promoting modular and scalable approaches to quantum software infrastructures for distributed applications.
Furthermore, its design may serve as a foundational component for future implementations of distributed
quantum standards such as the Quantum Message Passing Interface (QMPI).
1. Introduction

The evolution of computing has progressed from simple mechanical
calculators to modern-day classical computers, that have significantly
transformed numerous fields, including science, engineering, and ev-
eryday life. Despite these advances, classical computers face limitations
in solving certain complex problems efficiently, such as factoring large
numbers, simulating quantum systems, or optimizing large-scale sys-
tems [1,2]. This has led to the emergence of quantum computing,
which leverages the principles of quantum mechanics to process in-
formation in fundamentally new ways, offering the potential to solve
these intractable problems more efficiently than classical computers
can achieve [3,4].

Over the last few years, the development of a comprehensive soft-
ware stack for quantum computing has gained importance in allowing
the programming of quantum devices in a scalable and easy way.
This software stack includes quantum high-level languages, compilers,

∗ Corresponding author.
E-mail address: javier.cardama@usc.es (F.J. Cardama).

and runtime environments designed to enable the programming and
execution of quantum algorithms on quantum devices [5,6]. High-
level quantum programming languages such as Q# [7], Quipper [8],
or Qiskit [9] facilitate the development of quantum algorithms by
abstracting the complexities of quantum hardware [10].

For the efficient execution of these algorithms, quantum code com-
pilers play a crucial role. A compiler is a software program that
translates high-level languages into low-level instructions that quantum
processors can execute [11]. In classical computing, the concept of
IR was introduced as an abstract-machine code to facilitate the de-
velopment of new compilers [12]. This concept was extended in the
world of quantum computing to allow a common IR as an intermediate
step between high-level and back-end languages. The main objective
of using an IR is to facilitate the optimization of quantum codes and,
simultaneously, to ensure their compatibility with different hardware
backends [13,14].
https://doi.org/10.1016/j.future.2025.107989
Received 18 April 2025; Received in revised form 18 June 2025; Accepted 20 June
vailable online 3 July 2025
167-739X/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
 2025

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
https://orcid.org/0000-0003-4909-9972
mailto:javier.cardama@usc.es
https://doi.org/10.1016/j.future.2025.107989
https://doi.org/10.1016/j.future.2025.107989
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2025.107989&domain=pdf
http://creativecommons.org/licenses/by/4.0/

F.J. Cardama et al. Future Generation Computer Systems 174 (2026) 107989
One of the critical challenges in quantum computing remains the
scalability and noise of the qubits. Current quantum hardware is limited
by the number of qubits that can be reliably maintained and manip-
ulated on a single chip, thus complicating the development of more
complex algorithms [15]. These limitations have led to the develop-
ment of new computing approaches, one of which is the design of
modular architectures based on DQC. In these architectures, multiple
quantum processing units (QPUs) are networked together to work
on a problem collaboratively [16–18]. DQC uses both quantum and
classical communications to distribute and synchronize computations
across QPUs, thereby potentially overcoming the scalability constraints
of individual quantum chips [19–21].

DQC introduces a level of complexity over monolithic quantum
computing systems (systems consisting of a single QPU) due to the
management of classical and quantum networks and its complexi-
ties [22]. Because of this, an abstraction model of the complete process
of a DQC algorithm, from its high-level specification to the specific
back-end where it is supposed to run, must be defined to facilitate
the development of tools according to their specific use. Additionally,
this need highlights the importance of defining an IR that not only
enables the efficient programming of quantum algorithms within this
abstraction framework but also addresses the specific challenges inher-
ent to DQC, such as optimized communication protocols and precise
synchronization mechanisms across QPUs [23].

In the context of DQC, it is essential to distinguish it from the
concept of the Quantum Internet [24,25]. While DQC uses a quantum
interconnection network, its focus is on a form of future distributed
quantum computing, thus allowing the user to abstract themselves from
both classical and quantum networks [26]. Therefore, it is crucial to
abstract away the complexities of quantum networking and, instead,
define the appropriate high-level instructions within an IR to ensure
its efficient utilization. Currently, a wide range of tools are available
for simulating quantum communication networks (network-level simu-
lators) [27], such as SquidASM [28] and Simulaqron [29], as well as
discrete event simulation for quantum communication at the physical
level, including NetSquid [30] and SeQuence [31]. There are also
simulators specifically designed for distributed quantum computing,
such as QuNetSim, which follows a more point-to-point model, with
network simulation handled by the in-process EQNS simulator [32].

In response to the problems encountered in the literature, this paper
proposes two main contributions to the state of the art:

• The definition of a layered abstraction model for the correct
implementation of IRs for DQC by collecting information from the
literature, both from standards followed in classical computing
and from attempts at quantum computing. This objective will
allow other developers to implement new IRs following a model
whose efficiency will be demonstrated later.

• The proposal of an IR that implements the abstraction layer model
proposed in the previous objective. Our proposal, NetQIR, extends
Microsoft’s QIR [33], augmenting it with advanced communi-
cation and distributed computation directives to support inter-
operability and scalability, thereby facilitating robust quantum
algorithm development in distributed quantum environments and
hybrid programming. As IR, the objective is to be a common lan-
guage that unites different and future optimization, compilation,
or scheduling tools.

It is important to note that both the layered abstraction model and
the proposed IR aims to contribute to the set of tools for future dis-
tributed quantum computing, abstracting from any type of underlying
network. The proposed work is not a compiler or an optimizer; it is
a specification of an IR designed to facilitate the integration and use
of other tools. Therefore, automatic circuit or task partitioning is not
within the scope of NetQIR or the proposed work, in the same way that
MPI does not automate data or task parallelism.
2
Fig. 1 illustrates the advantages of using NetQIR as an IR for DQC,
highlighting its extension of QIR and, consequently, LLVM. This figure
illustrates DQC tools compiled to various quantum network simulators.
In the initial approach, without the use of IRs, the number of required
compilers is 𝑛 × 𝑚. However, by leveraging an IR such as NetQIR,
this complexity is significantly reduced to 𝑛 + 𝑚, streamlining the
compilation process.1

The paper is structured as follows: initially, Section 2 reviews the
related work, focusing on existing IRs and programming languages for
DQC. Then, Section 3 introduces a layered abstraction model, essential
for DQC. It presents the development and network layers, detailing the
specific components required to achieve a modular and interoperable
architecture for DQC. In addition, Section 4 presents the topics related
to the proposed IR, including its specification and the tools developed
to facilitate the design of new software for future developers. Subse-
quently, Section 5 presents a discussion related to the DQC languages
analyzed in the related work, along with an evaluation of the different
characteristics of the network layer to justify its abstraction in the
proposed abstraction layer model. Finally, Section 6 concludes the work
and specifies future work.

2. Related work and background

2.1. Background on distributed systems

At the core of any modern computing system lies the operating
system (OS), which provides a set of fundamental abstractions to
manage hardware complexity and support application execution. The
most relevant abstractions include [34]:

• Processes: isolated execution contexts with their own memory
space and scheduling policies.

• Memory management: virtual memory abstraction, page swap-
ping, and memory protection.

• Input/Output (I/O): abstract representations of devices, filesys-
tems, and network interfaces.

In distributed systems, these abstractions are replicated and localized
across multiple physical nodes, each typically running its own instance
of a full-fledged operating system. This design choice allows each node
to manage its own resources — CPU, memory, and I/O devices —
independently, leveraging existing OS-level capabilities and simplifying
low-level hardware interactions. Fig. 2 shows the levels of a distributed
system.

However, distributed applications often require coordination, syn-
chronization, and data exchange across these independent nodes. To
support such tasks, a middleware layer is introduced above the OS
layer. This middleware provides a programming interface that abstracts
away many of the complexities of distributed execution, enabling devel-
opers to orchestrate high-level parallel applications without managing
low-level networking or hardware-specific details.

One of the most successful and widely adopted middleware stan-
dards in classical high-performance computing (HPC) is the Message
Passing Interface (MPI). In classical HPC, MPI is the de facto standard
for scalable parallelism across distributed systems. An MPI process is an
independent instance of a program with its own local memory, typically
mapped to a logical compute unit or hardware core. Each process is
assigned a unique rank and operates within a communicator—a named
group of processes that can coordinate using collective or point-to-point
communication primitives such as send and recv or scatter and
gather [36–38].

This abstraction of rank and communicator implies a subsequent
mapping by the compiler from logical resource (e.g. rank) to physical

1 With 𝑛 as the number of front-ends and 𝑚 of backends.

F.J. Cardama et al. Future Generation Computer Systems 174 (2026) 107989
Fig. 1. Comparison between the integration of NetQIR as DQC IR in a compilation scheme between DQC programming frameworks and quantum simulator backends.
Fig. 2. Levels of a distributed system defined in [35].

resource (e.g. processing unit) typically performed by the compiler or
operating system. Work is already underway in the literature on oper-
ating systems that allow quantum applications to be run on quantum
network nodes such as [39].

Therefore, these abstractions allow the user to exchange messages
between the different processes of the distributed system with the aim
of collaborating to divide data or tasks. This division is not automati-
cally generated, in any case, by MPI, with the user being responsible
for adapting their sequential program to the distributed version.

The goal of the proposed work with NetQIR is the same; NetQIR
allows representing circuit partitioning, but it is the user who must
modify their sequential circuit to adapt it to a distributed version using
the additional features introduced by NetQIR.

NetQIR adapts these ideas to distributed quantum computing, ab-
stracting quantum communication into a clean interface that can co-
exist with classical workloads and allow for transparent compiler-level
optimizations in hybrid quantum–classical applications.

A similar approach is adopted by Quantum Message Passing Inter-
face (QMPI), as proposed by Haner et al. [6]. As its name implies, it
is an adaptation of the classical Message Passing Interface (MPI) [36]
for quantum communications, achieved by defining analogous point-to-
point and collective operations for the quantum pipeline. One of the key
differences between NetQIR and QMPI lies in their approach to commu-
nication semantics. While NetQIR adopts an MPI-inspired programming
style to organize distributed interactions, QMPI replicates classic MPI
primitives directly. This direct copying stems from direct problems with
the characteristics of quantum computing, in this case, with the no-
cloning theorem, as it is not possible to perform copying operations
3
(e.g., broadcast operation). Instead, NetQIR introduces communication
abstractions specifically designed to address the unique challenges of
distributed quantum computing, as will be detailed in the following
sections.

2.2. Related work about intermediate representations in quantum comput-
ing

In DQC, the software stack lacks sufficient tools. From high-level
languages to lower-level representations — and even development
libraries — the literature offers few possibilities, as demonstrated by
the state-of-the-art review conducted by Barral et al. [21]. This becomes
even more evident when compared to the monolithic case, in which
numerous programs, libraries and other software are available for
developing quantum applications.

Focusing on the IRs in the monolithic quantum computing case,
MLIR [40,41] or SQIR [42] are found, along with QIR [33], backed by
the QIR alliance2 — from now on, it will be referred to as
QIR —. The latter is based on the LLVM IR [43] in an attempt to
integrate quantum computation into the LLVM infrastructure.3 In fact,
QIR aims to integrate quantum directives with the classical compilation
stack, leveraging the advanced LLVM tools to facilitate the generation
of highly efficient quantum instructions. In this work QIR will be
extended and, therefore, the LLVM IR will be further extended by
introducing the necessary directives to perform quantum communica-
tions. Throughout this manuscript, this extension will be explained and
exemplified.

For DQC, the two most popular specifications in the literature are In-
QuIR [44] and NetQASM [28]. The first one, InQuIR, is developed from
the starting point solely as an IR for DQC. Their primary motivation
stemmed from the absence of a dedicated IR for distributed quantum
systems. InQuIR stands out for formally defining the grammar of the
IR. Using this formalism, InQuIR defines the operational semantics of
the IR, which allows it to define and predict how the InQuIR programs
will behave under several circumstances. The authors propose some
important examples, such as deadlocks and qubit exhaustion, and a
roadmap for solving these inconveniences. But InQuIR provides a too
low-level approach with explicit generation of the Einstein-Podolsky-
Rosen (EPR) pairs and instructions that acknowledge the architecture
of the machine, having less control over the form of quantum links.

2 https://www.qir-alliance.org/.
3 LLVM is a versatile framework for building compilers and code trans-

formation tools. It lets developers write high-level language code that can
be efficiently compiled into machine code for various architectures, with
extensive code optimization and analysis support.

https://www.qir-alliance.org/

F.J. Cardama et al. Future Generation Computer Systems 174 (2026) 107989
As an alternative, as mentioned, NetQASM [28] presents an ab-
stract architecture model composed of an application layer, which is
responsible for the classical communications between nodes, and a
so-called quantum network processing unit (QNPU), which handles
quantum computations and communications. This highlights the scope
of NetQASM: the Quantum Internet. It is specifically designed for
quantum networks, setting aside inter-core communication, which does
not require the additional layers that NetQASM introduces. Moreover,
NetQASM presents a basic language, called vanilla, and a set of varia-
tions specially designed for the different quantum architectures, called
flavors. The authors state that the vanilla version acts as an IR, and the
different flavors act as assemblies. The main disadvantage of NetQASM,
like IR for DQC, is that its architecture is network-oriented rather
than computation-oriented being a proposal closer to the sockets API
than to computing communication functions. It also does not consider
conditional gates, which are constantly employed in quantum com-
munication protocols, as part of the IR. What is actually done is to
perform a measurement, send the result to the application layer and
wait until the application layer returns a subroutine with the gate —if
the measurement was 1— or without the gate —in the opposite case—.

After discussing the related work about the IRs, it is important to
note that NetQIR will not extend QIR arbitrarily. Rather than propos-
ing an ad hoc language, NetQIR builds upon the LLVM-based QIR
specification to leverage existing classical optimization and compila-
tion pipelines. This design choice enables hybrid applications to ben-
efit from decades of compiler research, optimization techniques, and
mature toolchains originally developed for classical high-performance
computing (HPC). By embedding quantum–classical interfaces within
an LLVM compatible IR, NetQIR facilitates seamless integration into
HPC workflows and heterogeneous computing environments.

In summary, both InQuIR and NetQASM exhibit certain aspects
that may represent drawbacks for an IR. Additionally, QMPI defines
a high-level standard that is strongly coupled with the classical MPI,
introducing various complications and intricacies. NetQIR seeks to
address these issues and this manuscript will detail the approach taken
to achieve that goal and justify the decisions made in order to do so.

3. Layered abstraction model for distributed quantum computing

Software architectures nowadays strongly rely on abstraction mech-
anisms as a core principle. These simplify the development of new
algorithms, platforms, compilers and tools. DQC architectures follow
the same principle. As in the monolithic–and even classical–case, any
new IR targeting this paradigm should be hardware-independent and
compatible with diverse quantum computing platforms. To achieve
this, it is essential to first define a layered abstraction model before
designing the DQC IR. To achieve this, it is essential to first define a
layered abstraction model before designing the DQC IR.

Fig. 3 depicts the abstraction layers relevant for executing algo-
rithms in a DQC environment. This paper focuses on the computational
part of distributed quantum, Therefore, two key layers are defined in
our proposed model: the development layer and the network layer.
The development layer provides users the necessary tools to design
and implement DQC algorithms and software. Meanwhile, the network
layer acts as an interface between the development layer and the
quantum interconnection network, ensuring seamless interaction while
managing its underlying characteristics. Additionally, the network layer
interacts with lower layers as needed, further abstracting the physical
complexities of the quantum network.

3.1. Network layer

As discussed above, the network layer aims to abstract the partic-
ularities of the quantum interconnection network to the development
layer. For this purpose, it is necessary to identify this layer’s main com-
ponents, which are the quantum interconnection network, the quantum
communication channel and the communication protocols.
4
Fig. 3. Abstraction layers relevant to the development of an abstract IR for DQC.

The quantum interconnection network abstracts the communication
between different quantum computing nodes. This network can be
composed of different types of connections, such as quantum network
devices, QLANs, or the Quantum Internet. Fig. 4 illustrates a com-
plex example that interconnects quantum computing nodes of different
QLANs via the Quantum Internet. This network architecture comprises
several QLANs interconnected through the Quantum Internet, allowing
quantum computing nodes to communicate with each other. While
the quantum interconnection network can abstract a wide spectrum of
quantum communication infrastructures — from local optical links to
long-range quantum internet protocols — the layered model proposed
is specifically designed with a DQC perspective. This implies that,
analogously to how the MPI is capable of operating over the Internet
but is fundamentally optimized for tightly-coupled HPC clusters, the
abstraction model focuses on practical, low-latency interconnections
between QPUs within modular or co-located quantum systems.

The main objective of introducing this abstraction layer is not to
support long-range quantum communications, but rather to enable ef-
ficient and scalable interconnection of modular QPU architectures [45].
In these systems, multiple quantum processors — each with limited
qubit capacity — are physically co-located and interconnected to jointly
execute a quantum algorithm. Supporting such modular systems re-
quires a flexible software model that can abstract the communication
between QPUs without exposing hardware-specific constraints to the
developer.

A concrete example of this architectural direction is Xanadu’s recent
modular quantum computing system, which connects 35 photonic chips
using 13 km of optical fiber to construct a distributed quantum proces-
sor [46]. Although physically integrated within a local infrastructure,
such systems rely on quantum communication channels between QPUs
to function as a cohesive unit.

The quantum communication channel, as its name indicates, rep-
resents the abstraction of the quantum channel responsible of the
connection between two quantum nodes. It enables the exchange of
quantum information between quantum computing nodes and exploits
the principles of quantum mechanics, particularly qubit entanglement.
Fig. 4 shows the quantum channel next to a classical channel, which
allows operations such as state teleport — an operation that requires
both a quantum and a classical channel — to be implemented.

And the last component of the network layer is also its central
element: quantum communication protocols. They define the fundamental
building blocks for exchanging quantum information between quantum
computing nodes. Two of the most important communication proto-
cols are teledata [47] and telegate [48]. These protocols exploit qubit
entanglement to enable the exchange of quantum information. Both
techniques utilize an entangled EPR pair, where one qubit of the pair
resides on a QPU and the other is located on a physically separated
QPU. These EPR pairs create a link between the two QPUs, allowing

F.J. Cardama et al. Future Generation Computer Systems 174 (2026) 107989
Fig. 4. Complex quantum network architecture interconnecting quantum computing
nodes of different QLANs via the Quantum Internet.

quantum data to travel from one QPU to the other by exchanging clas-
sical information resulting from measurements of specific qubits. While
this work focuses on teledata and telegate, other communication
protocols are also available in the literature [49,50]. Both were selected
for this study because they represent two fundamental and widely stud-
ied paradigms for distributed quantum communication: quantum state
transfer and remote gate application. Their contrasting characteristics
make them ideal benchmarks for evaluating abstraction models and
compiler decision-making. However, the proposed abstraction model
is extensible and can incorporate additional protocols in future work.

Fig. 5 shows the basic structure of the teledata (see Fig. 5(a)) and
the telegate (see Fig. 5(b)) protocols. In both techniques, starting from a
state |𝑎⟩ = 𝛼|0⟩+ 𝛽|1⟩ in the local QPU1, it is necessary that the remote
QPU2 can compute using this information via an EPR pair |𝛷+

⟩. Each
protocol is elaborated below:

• Teledata protocol transmits the state of the qubit |𝑎⟩ in QPU1 to
an empty qubit in QPU2. This transmission involves teleportation
of the quantum state, causing the original qubit to collapse upon
measurement and transferring its state to the destination qubit.

• Telegate protocol generates a pair in the state 𝛼|00⟩ + 𝛽|11⟩, where
the first qubit is in QPU1 and the second qubit is in QPU2. The second
qubit is used as a control qubit for a controlled operation. Considering
that the control qubit is in the state |𝑎⟩ = 𝛼|0⟩+𝛽|1⟩, using the second
qubit of the pair achieves the same effect as performing a controlled
operation in QPU2 with the state of the qubit in QPU1.

The main difference between teledata and telegate is that in tele-
data, the state is transferred, and computation is performed locally at
the receiving QPU, whereas in telegate, the state is not transferred;
instead, quantum gates are controlled remotely. Table 1 compares both
techniques by evaluating four key characteristics. It is important to
understand the difference between performing an operation ‘‘Locally’’
and ‘‘Remotely’’. A local operation does not require the use of either
quantum or classical communications. On the other hand, a remote
operation involves the use of quantum or classical communications
with other QPUs.

1. Collapsed qubit : indicates whether the source qubit collapses
once the protocol is executed, requiring a qubit reset.

2. Entanglement result : refers to the scope affected by the entan-
glement generated between the remote and local qubits. This
entanglement can be local to the computation node or global to
the distributed system.
5
Table 1
Comparative features between teledata and telegate techniques.
 Protocol Collapsed qubit Entangl.result Measures Numbersyncs
 Teledata Yes Local Local - Local 1
 Telegate No Global Local - Remote 2

3. Measurements: describes how the measurements are performed
to implement the protocol.

4. Number of synchronizations: the number of synchronizations be-
tween the QPUs required to execute the communication proto-
col.

As observed, in the teledata protocol, the qubit collapses when
sending the information, necessitating a reset of the qubit afterwards.
This occurs because the quantum state is entirely transferred to the
target node; thus, operations are performed locally at the destination,
and the resulting entanglement is local to the target QPU. Additionally,
measurements are performed simultaneously on two qubits local to the
QPU1, requiring only a single synchronization between the two QPUs.

In contrast, in the telegate protocol, the quantum information is
shared as a reference without measuring the original qubit, eliminating
the need to reset it. Sharing a reference implies that the generated
entanglement is global to the distributed system — this means that
qubits from different QPUs have been entangled —. Furthermore, an
initial measurement is performed at the QPU1, and a final measurement
is conducted on the remote QPU2, requiring two separate synchroniza-
tions between the QPUs, known as Cat-Entangler and Cat-DisEntangler
(see Fig. 5(b)). The compiler determines the timing of the second
synchronization (Cat-DisEnt), especially when the qubit is no longer in
use.

Both protocols have advantages and disadvantages, and there is no
clearly superior option. The choice between them depends on the prob-
lem to be solved; therefore, the specification of a layered abstraction
model will allow the compilation tools to be developed to make an
informed decision.

3.2. Development layer

In this subsection, the development layer is introduced, designed
to provide users with the necessary instructions to work with DQC
algorithms while abstracting away the complexities of the network
layer. Specifically, two key components for the development layer,
shown in Fig. 3: the Data Structure for Logical Topology and the High-
Level Quantum Communication Instructions. The first component aims
to abstract the Quantum Interconnection Network and part of the
Quantum Channel by introducing a logical topology data structure
that simplifies the development of distributed quantum programs. This
logical topology is designed to expose only the number and identity
of available quantum processing units (QPUs) to the user, intentionally
omitting intermediate network devices such as routers or switches. The
second component focuses on abstracting the Quantum Communica-
tion Protocols and, to some extent, the Quantum Channel as well, by
hiding the implementation details of how communication qubits are
generated, through high-level quantum communication instructions.

It is important to note that, as in any abstraction model, the com-
pilation tool aims to translate the code from the development layer to
physical hardware and the network layer. IRs are developed with the
aim of abstracting the underlying hardware and providing a common
interface for the development of new applications that can subsequently
be used in modern compilers. Therefore, this work seeks to define a
model and an IR that performs a complete and correct abstraction of
the underlying hardware, providing users with the necessary tools to
create their DQC applications. The proposed work is not a compiler.

This allows the different responsibilities involved in running DQC
applications to be decoupled, enabling new OSs such as [39] or new
application execution environments such as [51] to be developed using
a common interface.

F.J. Cardama et al. Future Generation Computer Systems 174 (2026) 107989
Fig. 5. Examples of teledata and telegate circuits for the application of CZs.
Fig. 6. Relationship between development layer abstractions and physical network structures of the network layer.
3.2.1. Data structure for logical topology
In this context, a process represents a logical execution entity as-

signed by the OS to a QPU, which participates in the distributed
computation. Inspired by the classical HPC model, such as MPI, each
process in the abstract model is assigned a rank and can be organized
into groups and communicators. These data structures represent logical
reorganizations of processes; therefore, a process may belong to multi-
ple communicators or groups. This abstraction enables coordination of
distributed tasks independently of the physical network configuration.

Fig. 6 shows the relationship between the network layer and the
proposed development layer. Fig. 6(a) shows a simplified quantum
interconnection network, which would be used by the development
layer to generate a logical process topology, as shown in Fig. 6(b). It is
important to note that we are talking about an abstraction of processes,
not QPUs or network devices, as these should be abstract to the user.
6
This abstraction means that users do not need to have a view of
the physical topology of the network, which can be highly variable
depending on the context and is not always interesting or useful for
developing computer programs. In this way, the developer works only
with an abstract view of the topology between their running processes.
The network layer then manages and optimizes the actual connec-
tions within the network, providing an effective interface between the
development layer and the physical infrastructure.

Therefore, the IR that implements the development layer abstrac-
tions does not need to manage the network layer features, in order to
decouple responsibilities. In this case, there are certain operations for
translating from the development layer to the network layer that are
the subject of the OS.

Fig. 6(c) shows the assignment of processes to processing units,
in the case of the DQC, QPUs. This process abstraction is managed

F.J. Cardama et al. Future Generation Computer Systems 174 (2026) 107989
by the OS of each distributed node, as indicated in Section 2.1. Fig.
6(d) shows the logical topology related to the physical topology once
processes have been assigned to QPUs, with the aim of showing that
some connections between processes are closer than others.

Finally, if we focus on end-user development, Fig. 6(e) shows an
example of point-to-point communications between processes, where it
can be seen that the instruction does not take into account the physical
topology, but simply seeks to comply with the logical topology between
processes. Fig. 6(f) shows the physical path followed for the execution
of these instructions.

In the following, these high-level instructions for sending quantum
messages are cited in more detail.

3.2.2. High-level quantum communication instructions
High-level directives conform the last piece of abstraction of the

development layer. With a clearly defined semantic behavior, they are
able to abstract the underlying communication protocols in DQC. This
approach offers two key advantages: first, it enables the development of
distributed quantum algorithms while abstracting the complexity of the
underlying communication mechanisms; second, it provides the com-
piler with precise semantic information for each function, facilitating
both optimization and the selection of the most suitable communication
protocol. These instructions should prioritize fundamental computa-
tional operations, such as data transmission, reception and collective
processing, rather than exposing lower-level physical or network mech-
anisms like entanglement generation, which should remain transparent
to the user. It is important to note that blocking communication func-
tions involve synchronization, as do other instructions such as the
Barrier instructions. These operations are the responsibility of the OS
of the distributed system.

These semantic instructions also allow to improve the management
of the OS and the compiler, for example, to improve the fidelities of the
result. When using quantum networks, as in the classical counterpart,
not only is there an overhead due to communications, but additional
noise is incorporated into the result. In the case of quantum computing
this is crucial, since an intense use of quantum connections can cause
the fidelity of the result to decrease. Using high-level instructions to-
gether with the logical topology between processes allows the operating
system to better manage its allocation of processes to QPUs, minimizing
communications as much as possible.

As an example of how a lack of abstraction can negatively im-
pact both performance and software quality, consider the entSwap
instruction defined by InQuIR. This instruction explicitly specifies the
entanglement swapping procedure, which enables the connection of
two quantum nodes that are not directly linked. However, this is
fundamentally a low-level problem, as the development layer should
not have to manage the connectivity of quantum nodes. Exposing this
detail to the development layer might lead users to invoke entSwap
unnecessarily, resulting in inefficient calls. Allowing the network —
and even lower-level layers — to handle connectivity issues would
contribute to more robust software, as these unneeded calls would not
be performed.

4. NetQIR: a quantum intermediate representation for distributed
quantum computing

This section introduces the IR proposed in this paper: NetQIR,
an extension of QIR for DQC. NetQIR is defined according to the
layered abstraction model presented in Section 3. NetQIR aims to fulfill
the development layer by abstracting from the underlying network,
being useful for future distributed quantum computing in any classical-
quantum interconnection network. The responsibilities of managing the
physical resources would be left to the OS, as discussed above. It is im-
portant to emphasize that an IR is fundamentally a formal specification
intended for future developers. To that end, a specification has been
created and a Python Software Development Kit (SDK) developed to test
7
and work with it. This approach allows users to fully understand the
specification by experimenting with actual code, thereby facilitating
the production of software that employs NetQIR as an IR. Moreover,
a grammar has also been developed in ANTLR to allow programmers
to translate NetQIR code to specific backends, such as simulators or real
systems.

4.1. NetQIR specification

This subsection details the NetQIR specification. In doing so, NetQIR
defines both data structures and functions. The data structures in-
clude two components: %Comm and %Group, which correspond to
the Communicator and Group described in Section 3.2.1, respectively.
Regarding functions, NetQIR defines a set of state functions, data
structure functions, and communication functions — the core focus of
this work —. It is important to note that the state functions do not
relate to the quantum state of the system but rather to the internal state
of the NetQIR execution environment. In addition to this document,
the authors provide a more comprehensive specification and detailed
documentation on GitHub [52].4

4.1.1. State functions
State functions serve as breakpoints where the underlying layers

of NetQIR’s abstraction can be defined. For example, these functions
provide a point where the compiler can determine when to query and
establish connections between different quantum or classical devices.
NetQIR introduces two state functions inspired by similar solutions
in classical distributed computing frameworks, such as MPI. These
functions are:

• __netqir__initialize(), which initializes the execution
environment.

• __netqir__finalize(), which terminates the environment.
These functions establish a structured workflow for DQC, ensuring

proper initialization and finalization of the execution context.

4.1.2. Operate datatypes functions
In order to abstract from the physical topology, as the development

layer explained in Section 3 aims, NetQIR needs to implement a logical
topology. For this purpose two already mentioned data structures have
been added: %Comm and %Group. These will allow the organization
of the processes in groups and the establishment of logical topologies
that the processor will then be able to link with its physical version.
In this abstract model, a process refers to a logical unit of execution
associated with a QPU, responsible for performing computations and
participating in distributed tasks. This concept, inspired by the notion
of processes in classical HPC frameworks like MPI, enables the grouping
and coordination of distributed quantum operations. Additionally, data
type functions are defined to create or modify the described types and
to obtain information about their content at runtime.

NetQIR, as it has been spurred along this work, works akin to
MPI. Here another example of the similarities arises, because two key
variables are associated with the so-called comm_world: the process
rank and the communicator size. Consequently, both functions will
be included:

• __netqir__comm_rank: returns the process rank inside the
specified communicator.

• __netqir__comm_size: operation which, from a %Comm ob-
ject, returns the number of nodes in that communicator.

Moreover, there are also functions established to create, modify
or delete %Comm and %Group, and, in addition, operations to estab-
lish new logical network topologies. For further information on these
functions and their use, the reader is referred to the specification [52].

4 https://netqir.github.io/netqir-spec/.

https://netqir.github.io/netqir-spec/

F.J. Cardama et al. Future Generation Computer Systems 174 (2026) 107989
Table 2
NetQIR functions: point-to-point and collective.
 Point-to-point communication functions
 Sending functions Receiving functions
 __netqir__qsend_array (Array*, i32, i32, Comm*) __netqir__qrecv_array (Array**, i32, i32, Comm*)
 __netqir__qsend_array_teledata (Array*, i32, i32, Comm*) __netqir__qrecv_array_teledata (Array**, i32, i32, Comm*)
 __netqir__qsend_array_telegate (Array*, i32, i32, Comm*) __netqir__qrecv_array_telegate (Array**, i32, i32, Comm*)
 __netqir__qsend (Qubit*, i32, Comm*) __netqir__qrecv (Qubit**, i32, Comm*)
 __netqir__qsend_teledata (Qubit*, i32, Comm*) __netqir__qrecv_teledata (Qubit**, i32, Comm*)
 __netqir__qsend_telegate (Qubit*, i32, Comm*) __netqir__qrecv_telegate (Qubit**, i32, Comm*)
 __netqir__measure_send_array (Array*, i32, i32, Comm*) __netqir__measure_recv_array (i1*, i32, i32, Comm*)
 __netqir__measure_send (Qubit*, i32, Comm*) __netqir__measure_recv (i1*, i32, i32, Comm*)
 Collective communication functions
 __netqir__scatter (Array*, i32, Array*, i32, i32, Comm*) __netqir__expose (Qubit*, i32, Comm*)
 __netqir__scatter_teledata (Array*, i32, Array*, i32, i32, Comm*) __netqir__expose_array (Array*, i32, i32, Comm*)
 __netqir__scatter_telegate (Array*, i32, Array*, i32, i32, Comm*)
 __netqir__gather (Array*, i32, Array*, i32, i32, Comm*) __netqir__reduce (Array*, i32, Array*, i32, i32, Comm*)
 __netqir__gather_teledata (Array*, i32, Array*, i32, i32, Comm*) __netqir__reduce_teledata (Array*, i32, Array*, i32, i32, Comm*)
 __netqir__gather_telegate (Array*, i32, Array*, i32, i32, Comm*) __netqir__reduce_telegate (Array*, i32, Array*, i32, i32, Comm*)
4.1.3. Communication functions
NetQIR proposes a large set of semantic instructions to improve

the construction of DQC algorithms without the need to know the
underlying communication protocols. Operations are defined to send
and receive classical data, and, within quantum communications, two
large sets are created: point-to-point instructions and collective commu-
nication routines. These functions are defined in Table 2 and explained
below.

Collective communication operations are particularly relevant in
distributed quantum algorithms, as they enable efficient coordination
among multiple QPUs. NetQIR extends classical collective patterns,
such as scatter and gather, to the quantum domain, while introducing
new abstractions tailored for quantum-specific needs. Among them,
the expose operation stands out as a novel contribution. This directive
allows multiple QPUs to act upon a shared logical qubit without trans-
ferring its state explicitly, leveraging global entanglement to minimize
resource consumption. By abstracting the communication protocol and
leaving the implementation details to the compiler, expose exploits the
layered model’s advantages to reduce synchronization overhead and
optimize the use of communication qubits in distributed computations.
4.1.3.1. Point-to-point communication. Point-to-point communication
in quantum computing parallels that in classical computing, where
one node sends or receives information to or from another node.
The primary difference is that in the classical case, the information
is purely classical, whereas in quantum computing, the information
can be classical or quantum. Table 2 lists the directives responsible
of communication in quantum computing divided into two subgroups:
sending and receiving functions. Each sending function corresponds to
a receiving one, both of which block the execution of the quantum
program. This design ensures that for each send operation at a node
there is a corresponding receive operation that unblocks it at the
destination node, and vice versa. Mismatches between these could
cause an incorrect behavior or compilation errors.

The most basic sending function is __netqir__qsend, repre-
senting the part of the circuit on the sending QPU. Additionally, the
function __netqir__measure_send corresponds to sending a clas-
sical bit resulting from a measurement, enabling users to develop
custom quantum communication protocols. Each of these functions
has an array variant for sending or receiving arrays of qubits. It is
also important to highlight that the abstraction introduced throughout
this work enables the compiler to select the most appropriate commu-
nication protocol based on the execution context. If the user wishes
to specify a particular protocol, they can use the specific version of
the selected function, for example __netqir__qsend_teledata in
case of wanting to use the teledata protocol at sending.5
8
4.1.3.2. Collective communication. While the qubit sending and receiv-
ing functions are essential primitives, they may not always be the
most efficient choice. Collective communication directives address this
by involving multiple QPUs in coordinated operations. They resemble
those in classical distributed computing, aiding comprehension for HPC
computing users. These functions include scatter, gather, reduce
and expose.

• __netqir__scatter function distributes an array of qubits
from one QPU to several others, enabling parallel processing.

• __netqir__gather function collects qubits from multiple
QPUs into a single QPU.

• __netqir__reduce directive allows collecting information
from multiple remote qubits and applying an operation to obtain
a final result. Using reduce simplifies code complexity and
enhances computational efficiency compared to sequences of
qsend and qrecv.

• __netqir__expose directive, which shares a reference to a
qubit with other QPUs, allowing modifications visible to the
entire distributed system. This is particularly useful in operations
where all nodes need to use a qubit as a target or control,
such as in the distributed Quantum Fourier Transformation (QFT)
algorithm [53], as illustrated in Fig. 8. In this circuit, a se-
quence of controlled-phase gates is applied between one target
qubit and several control qubits located in different QPUs. Using
expose, the target qubit can be made available to all control
units without physically transferring its state, allowing each QPU
to apply its operation as if the qubit were local. Additionally,
Fig. 9 shows a possible implementation of the expose operation
using a GHZ state to connect the QPUs, achieving the state
𝛼|00…00⟩ + 𝛽|11…11⟩ with the exposed state being 𝛼|0⟩ + 𝛽|1⟩.
This implementation is not part of the development layer but
represents one of the strategies available to the compiler could
choose depending on the underlying physically network.

Similar to point-to-point functions, collective directives have tele-
data and telegate variants. Fig. 7 illustrates the use of scatter and gather
operations using the teledata protocol.

5 Notably, if a node uses __netqir__qsend_teledata to send,
the receiving node must use __netqir__qrecv_teledata to receive.
Mismatched protocols lead to incorrect behavior. The general functions
__netqir__qsend and __netqir__qrecv offer flexibility by not
specifying a protocol, allowing the other node to define it.

F.J. Cardama et al. Future Generation Computer Systems 174 (2026) 107989
Fig. 7. An example of using a scatter teledata operation on a qubit array (steps 1 to
2) and the inverse gather teledata operation (steps 2 to 3) between 4 QPUs (labeled
in each square).

Fig. 8. Use case for the __netqir__expose directive on the |𝑞1⟩ qubit, as it serves
as the target for the other remote qubits.

Fig. 9. Possible implementation of the __netqir__expose directive on the qubit
|𝜓⟩𝑄𝑃𝑈1

, which is the target of the rest of the remote qubits. Distributed operations
would be performed between cat-ent and cat-dis.

4.2. NetQIR SDK: PyNetQIR

The NetQIR specification constitutes the central core of an IR,
serving as the common starting point for developers in the field of
distributed quantum computing. To support developers in building
distributed quantum applications, the NetQIR specification is accom-
panied by an open-source Python SDK designed to facilitate the gener-
ation of NetQIR code in Python-based environments. This tool, named
PyNetQIR, is available in the project’s GitHub repository.6

This SDK enables the generation of NetQIR code from high-level
Python scripts, following a structured execution model composed of

6 https://github.com/netqir/netqir-sdk.
9
three main components: Operations, Scopes, and Executors. This is pro-
vided as a summary, for more information please consult the open
source code repository.

• Operations represent the basic actions of a NetQIR program.
These may include quantum instructions (such as gate applica-
tions or qubit transmissions) as well as classical instructions (like
conditionals or communicator queries), allowing for hybrid pro-
gramming. This hybrid approach extends the LLVM framework
to integrate quantum semantics while maintaining compatibility
with classical logic.

• Scopes are hierarchical structures that group operations logically,
similar to blocks in traditional programming. The SDK provides
builders (e.g., MainScopeBuilder) to construct these scopes
and manage their contents efficiently.

• Executors are responsible for interpreting or compiling the op-
erations within a scope. In the example shown in Fig. 10, a
PrinterExecutor is used to emit the resulting NetQIR code,
although other executors could target simulators or hardware
backends in future implementations.

The typical flow of a NetQIR program using this SDK begins by
initializing the program and obtaining the global scope and communi-
cator. Fig. 10 shows an example of this process, where a quantum state
is transferred from one QPU to another using the qsend and qrecv
directives. Within the main scope, the NetQIR environment is initialized
and the rank and size of the communicator are retrieved. By leveraging
ranks and communicators, the SDK mirrors the structure of classical
distributed frameworks like MPI, allowing developers to adopt familiar
patterns when building quantum programs.

A conditional operator based on the process rank is defined: if
the rank is 0, the process performs a quantum send (qsend); if it
is 1, it performs a quantum receive (qrecv).7 The environment is
then finalized and the program is executed using the Executor. This
example demonstrates how NetQIR supports modular and semantically
clear construction of distributed quantum applications using a model
inspired by classical distributed computing.

4.3. NetQIR ANTLR grammar

Once the NetQIR specification has been defined and an SDK for
translating Python code into NetQIR has been implemented, it becomes
essential to provide future developers with a tool for extending NetQIR.
This includes developing new high-level languages that compile to
NetQIR and translating NetQIR into low-level machine instructions for
quantum devices. To facilitate this, a formal grammar definition is
introduced, leveraging the ANTLR [54,55] specification to enable struc-
tured parsing and transformation of NetQIR code. The primary advan-
tage of defining this grammar is that future developers can choose the
target programming language for their NetQIR parser. ANTLR provides
automatic code generation from its grammar definitions, supporting
a wide range of well-known high-level programming languages. This
flexibility facilitates the integration of NetQIR into diverse software
ecosystems, enabling seamless adoption across different development
environments. The grammar defined for NetQIR is encoded in the
GitHub repository netqir-grammar.8 It is important to note that this
grammar aims to classify the different categories of NetQIR functions
specified earlier. This approach allows developers to generate more
specialized listeners for the generated AST tree, providing, for instance,
information on whether they are programming a qsend function with
modifiers such as teledata or array.

7 Several examples, including this one, are available in the repository:
https://github.com/NetQIR/netqir-sdk/tree/main/python/examples.

8 NetQIR grammar: https://github.com/NetQIR/netqir-grammar/.

https://github.com/netqir/netqir-sdk
https://github.com/NetQIR/netqir-sdk/tree/main/python/examples
https://github.com/NetQIR/netqir-grammar/

F.J. Cardama et al. Future Generation Computer Systems 174 (2026) 107989
Fig. 10. Generation of NetQIR code of teleportation circuit using PyNetQIR.
Fig. 11. NetQIR Grammar for the classification of functions in its specification.

Fig. 11 presents a syntax tree illustrating the structure of the defined
grammar, where bold elements represent lexical tokens. It can be
observed that both quantum and classical communication functions
support modifiers, such as ‘‘array’’ for sending quantum or classical
arrays, and protocol specifications like ‘‘telegate’’ or ‘‘teledata’’.
It is important to note that both modifiers are optional (hence the use
of the ? symbol). If no protocol is explicitly specified, the compiler
will automatically select the most optimal one based on the execution
context.

5. Discussion

This section presents two complementary analyses to support the
design rationale behind NetQIR and to evaluate its relevance for dis-
tributed quantum computing.

Since it is not feasible to perform a quantitative comparison between
IRs — given that they are formal language specifications without
10
associated compilers or optimizers for benchmarking — in this section
we conduct a qualitative comparison of various languages designed
for distributed quantum computing, followed by a justification of the
abstraction layer model through an evaluation of different communica-
tion protocols and quantum interconnection networks. In this case, the
goal is not to develop a tool that directly improves fidelity, memory
management, or execution time. Instead, we propose a model and an
IR intended to support the future development of software stack tools
for distributed quantum computing.

Therefore, it is proposed a qualitative comparison of different lan-
guages designed for distributed quantum and, subsequently, a justifica-
tion of the abstraction layer model by evaluating different communica-
tion protocols and quantum interconnection networks.

First, a comparative analysis with state-of-the-art languages is
performed to assess how existing DQC intermediate representations and
frameworks align with the layered abstraction model proposed in this
work. This comparison identifies the extent to which each solution
abstracts the complexities of distributed quantum execution at the
network and development layers.

Second, a justification of the layered abstraction model is pro-
vided, with a focus on the benefits introduced by collective communica-
tion directives. In particular, this analysis demonstrates how high-level
operations, such as scatter, gather, or the novel expose, em-
power the compiler to select the most appropriate communication strat-
egy depending on the system’s topology or the specific requirements of
a given algorithm. Rather than prescribing low-level instructions, these
abstractions enable optimization and adaptation to the execution con-
text, ultimately leading to more efficient resource usage and scalability.
It is important to point out that the objective is to show the reader
how the compiler and the OS can use one communication protocol or
another depending on the problem to be solved.

Together, these two analyses highlight the practical and conceptual
value of adopting a layered abstraction model and the role of NetQIR in
bridging high-level algorithm design with efficient distributed quantum
execution.

F.J. Cardama et al. Future Generation Computer Systems 174 (2026) 107989
Table 3
Qualitative comparison table between the different languages selected for DQC programming.
 Language Network layer Development layer Other characteristics
 Quantum

channel
Q. Interconnection
network

Communication
protocols

High-level quantum
comm. instructions

Data structure for
logical topology

Real quantum
computing inspired

Hybrid
programming

 NetQASM ∼ ∼ 7 7 7 3 7
 InQuIR ∼ 7 7 7 7 3 7
 QMPI 3 3 3 3 3 7 ∼
 NetQIR 3 3 3 3 3 3 3
5.1. Comparison with state-of-the-art languages

This section presents a comparative analysis of existing DQC lan-
guages and IRs, focusing on their alignment with the layered abstrac-
tion model proposed in Section 3. This model defines essential elements
across two layers — the network layer and the development layer
— designed to facilitate the efficient development of DQC tools. The
evaluation criteria include key aspects such as the ones outlined below:
Network layer: the network layer contains the necessary characteris-
tics to define a correct quantum–classical connection between different
nodes, abstracting from the underlying physical complexities, like:

• Quantum Channel Abstraction: evaluates whether the language
abstracts the quantum channels used for inter-node communication,
essential for managing quantum information transfer.

• Quantum Interconnection Network: assesses the language’s abil-
ity to abstract the structure of quantum interconnection networks
connecting multiple QPUs, a foundational aspect for scalable QPU
architectures.

• Communication Protocols: identifies whether the abstraction of the
communication protocol is allowed or has to be defined by the user
when programming. Abstraction is essential to allow the compiler to
optimize techniques according to the context.

Development layer: programming languages for DQC must incor-
porate features that provides users to perform distributed quantum
computing while abstracting away the complexities of the underlying
quantum network.

• High-Level Quantum Communication Instructions: considers
whether the language provides high-level commands to simplify
distributed quantum operations, facilitating programming efficiency
and code readability. These instructions allow the compiler to provide
functions with semantic context, allowing it to perform optimizations
between the different possible physical implementations.

• Data Structures for Logical Topology: determines the language’s
support for data structures that abstract the physical topology of the
distributed system over a logical topology, allowing easier specifica-
tion of quantum node relationships and delegating to the compiler
the responsibility for matching the code to the target topology.

Other characteristics: key features for an IR to enable the correct and
efficient development of new tools.

• Real Quantum Computing Inspired: specifies whether the language
is intended to perform real quantum computation or only simulated
quantum computation. This feature aims to eliminate all languages
that include instructions that are not allowed in the quantum model,
such as perfect copying of generic states.

• Hybrid programming: this feature is crucial for enabling the orches-
tration between classical and quantum computing devices, facilitating
tasks such as optimization problems.

Table 3 shows the comparison between the different languages
discussed in Section 2 (related work) together with the IR proposed
in this work: NetQIR.
11
In particular, NetQASM and InQuIR do not fully abstract the quan-
tum channel. InQuIR requires the programmer to explicitly call op-
erations such as genEnt to create entangled pairs and entSwp to
perform entanglement swapping between QPUs. This exposes the phys-
ical routing of qubits and limits the flexibility of the compiler to adapt
to different network configurations. Similarly, NetQASM uses cre-
ate_epr to establish entanglement between nodes, providing only a
minimal abstraction and restricting the channel model to EPR-based
links, without considering other communication resources such as GHZ
states or multi-party entanglement.

Regarding the quantum interconnection network, both approaches
offer at best a partial abstraction. Although entanglement-based com-
munication is used, the fact that the programmer must manage the
flow of entangled pairs (e.g., through manual swapping or addressing
specific qubits) means that the logical network structure is not decou-
pled from the physical implementation. For instance, in InQuIR, if a
QPU wants to communicate with a non-adjacent node, the user must
explicitly define a chain of entSwp instructions. This introduces rigid
dependencies on the physical topology and prevents the compiler from
transparently handling the routing of quantum information.

Concerning the communication protocols, there is no abstraction
in this feature because the programmer has to decide how to interact
with the communication qubits. Furthermore, the development layer is
not implemented as neither quantum communication instructions nor
structures to define a logical topology are defined. Hybrid programming
is not allowed in languages such as NetQASM or InQuIR which are
specific to quantum device programming.

With respect to QMPI, it allows abstraction in the fields indicated,
except that it is not intended for real quantum computation because
it has collective operations that are not meaningful due to the non-
cloning theorem, such as the Allscatter or Allgather operation.
It is also important to specify that QMPI is a message passing interface,
so it is not an IR, just as MPI is not an IR. On the other hand, QMPI,
being a message passing interface and not an IR, could allow this type
of programming depending on its future implementations.

Finally, NetQIR, the intermediate representation for DQC proposed
in this paper, would meet the above requirements by abstracting each
part of the layered model. NetQIR, by extending QIR, which in turn
extends LLVM, ensures hybrid programming by integrating quantum
and classical programming in the same IR.

5.2. Justification of the layered abstraction model

This section aims to analyze the use of different communication
protocols such as teledata or telegate against collective operations
such as ‘‘expose’’. Additionally, it also looks at the comparison be-
tween different network topologies. This will allow us to analyze how
the computational resources consumed can vary depending on the
communication protocol used on different network topologies.

The analysis focuses on how resource consumption varies depend-
ing on the selected communication protocol, the physical topology
of the quantum network, and the number of QPUs involved. By ab-
stracting these aspects through semantic directives and delegating the
decision-making to the compiler, the model allows for adaptation to
the underlying infrastructure and algorithmic needs, improving overall
efficiency.

F.J. Cardama et al. Future Generation Computer Systems 174 (2026) 107989
Fig. 12. Circuit for the calculation of the Quantum Fourier Transformation (QFT),
where 𝑛 calculations are performed on 𝑛 qubits.

Two main metrics are considered: the total number of communi-
cation qubits consumed during circuit execution, and the number
of communication qubits each QPU must reserve to support the
communication process. These results serve to highlight the benefits
of decoupling communication details from the algorithmic description,
as promoted by the layered abstraction model.

To do this, the circuit in Fig. 12 was used, which represents the
computation of a QFT using 𝑛+1 qubits. This process can be separated
into 𝑛 epochs, where in epoch 𝑖 controlled gates are applied to qubit
|𝑥𝑖⟩, equivalent to an expose function. In this use case, the QPU 𝑖
is assigned the qubit |𝑥𝑖⟩. Therefore, the growth of QPUs will imply a
growth in the number of qubits in the circuit.

It is important to note that this partitioning is done on an ‘‘ad hoc’’
basis for the evaluation. No circuit partitioning strategy is used. The
objective is to assign a qubit to a QPU in order to maximize the number
of communications in the circuit. In this case, QFT is selected as the
circuit to be tested as it is resource intensive in terms of gating all the
qubits. Therefore, by having each qubit in a distributed QPU, it forces
the consumption of communication qubits by having to perform the
controlled gate remotely.

On the other hand, the topologies to be tested are shown in Fig. 13,
which are the direct connection option and the interconnection option
via a communicator.

• Direct interconnection: this type of connection is peer-to-peer so
that each QPU is connected to each of the other QPUs. This allows
a direct connection between each pair of QPUs without unnecessary
hops but has the disadvantage of having a tightly coupled network,
making it problematic to add new nodes and requiring a large number
of communication qubits.

• Topology via one communicator: In this case, access to the dis-
tributed system is managed through a quantum communicator (or
quantum router). Each QPU is connected only to this central node,
which is responsible for relaying quantum information between them.
One of the main advantages of this abstraction is that it allows
the compiler to choose the most suitable strategy depending on the
context. In some situations, the communicator may assist the routing
process by performing entanglement swapping between QPUs. In
other cases, the communicator might directly establish entanglement
links with the target QPU and transfer the qubit’s state or apply
remote operations, acting as an active participant in the communica-
tion. This flexibility highlights the benefit of leaving implementation
decisions to the lower layers of the stack.

Continuing with the communication protocols evaluated, the anal-
ysis considers the use of teledata, telegate, and expose in both
topologies. For the expose function, the implementation shown in Fig.
9 is used, where a GHZ state is generated to connect all involved QPUs.

In the case of teledata, the source QPU must send the qubit
to the destination node, allow the operation to be performed, and
12
then retrieve the updated state — requiring two EPR pairs per opera-
tion. The telegate protocol, which executes the operation remotely
without moving the qubit, requires only a single EPR pair. Lastly,
the expose directive leverages a shared GHZ state, allowing multiple
QPUs to access the same logical qubit. This significantly reduces the
number of required communication qubits, especially as the number of
QPUs increases, since the cost of GHZ generation is shared across the
participants.

Fig. 14 shows the results obtained, always from the perspective
of resource consumption on a single QPU in the system. As can be
seen in Figs. 14(a) and 14(b), the number of qubits consumed for a
QPU increases with the QPUs connected, as it implies a higher number
of communications between the circuit. With regard to protocols, for
both topologies, the protocol with the highest qubit consumption is
teledata, followed by telegate, and finally expose, which shows
the lowest consumption. This highlights the importance of selecting
an appropriate communication protocol for each specific task. By us-
ing high-level semantic functions, the compiler gains the flexibility
to optimize communication by selecting the most efficient strategy
based on the topology and algorithmic context. This case is particularly
comprehensive as QFT has been selected as the test circuit, as it has
controlled gates between all the qubits.

On the other hand, Fig. 14(c) shows the number of communication
qubits each QPU must reserve to communicate with the distributed
system. As expected, this number grows linearly in the case of a directly
connected topology, requiring one or two additional communication
qubits for each new QPU added to the system. In contrast, in the via
one communicator topology, this requirement remains constant, as only
one or two communication qubits are needed per QPU, regardless of the
system size, since the quantum communicator handles the interconnec-
tions. As shown in Figs. 14(a) and 14(b) above, this also implies that
the consumption of communication qubits is higher, as the information
has to flow through the communicator.

It is important to contextualize the resource usage of NetQIR or the
IRs in general. While custom low-level code can, in theory, achieve
superior performance, this comes at the cost of portability, main-
tainability, and development complexity. The primary advantage of
adopting an IR lies in its ability to act as a unifying abstraction across
multiple frontends and backends. This enables the reuse of mature,
optimized compiler infrastructures and promotes rapid prototyping and
code generation from high-level languages.

NetQIR inherits these advantages by offering a structured IR for dis-
tributed quantum computation, allowing the integration of quantum-
specific optimizations without sacrificing compatibility with classical
toolchains (due to the extension of QIR and LLVM). In practice, the
abstraction introduced by NetQIR empowers developers to generate
code more efficiently and consistently across architectures, while still
enabling backend-specific optimizations through lower layers. There-
fore, while the raw performance of hand-optimized code may remain
unmatched, the productivity and correctness benefits of IR-based de-
velopment — especially in complex distributed environments — make
NetQIR a scalable alternative.

Overall, these results reinforce the value of the proposed layered
abstraction model. By abstracting protocol and topology details through
collective operations, the compiler is empowered to make optimal
decisions, improving scalability and resource efficiency in distributed
quantum systems.

6. Conclusions

This work addresses two key objectives aimed at mitigating some
of the challenges identified in the literature regarding the development
of compilation frameworks and software tools for distributed quantum
computing.

Firstly, the need to establish a common framework for the develop-
ment of new IRs related to DQC is addressed by proposing the layered

F.J. Cardama et al. Future Generation Computer Systems 174 (2026) 107989
Fig. 13. Examples of different quantum network topologies for connecting QPUs within a QLAN.
Fig. 14. Comparison of the number of communication qubits consumed and needed for the QFT circuit, in function of the number of connected QPUs, the communication protocol
used and the existing physical topology. It is important to note that, because of how the partitioning of the distributed circuit has been defined, one qubit has been assigned to
one QPU, therefore the number of connected QPUs is equal to the number of qubits used exclusively for the QFT.
abstraction model. This model not only provides a scalable architecture
but also establishes a foundation for optimization opportunities in
DQC. By implementing functions that facilitate quantum data distribu-
tion across logical topologies, NetQIR reduces the complexity of DQC
programming, allowing compilers to dynamically optimize based on
high-level semantic directives. This model effectively addresses chal-
lenges observed in other IRs, such as NetQASM and InQuIR, which
either lack flexibility in protocol handling or are too closely tied to
specific network assumptions.

Secondly, an IR has been proposed in this work that meets the
requirements objectively specified in the abstraction layer model, called
NetQIR. It is an innovative extension of QIR for DQC, designed to
address current limitations in scalability and interoperability in dis-
tributed quantum environments, allowing the hybrid programming and
the use of LLVM common tools. NetQIR offers a flexible IR designed to
handle quantum and classical communications across multiple QPUs
by introducing high-level abstractions and communication directives.
Unlike previous solutions, NetQIR integrates high-level quantum com-
munication functions — such as point-to-point (qsend, qrecv) and
collective operations (scatter, gather, reduce, expose) — en-
abling developers to program complex distributed algorithms with ease.
This design abstracts the underlying network layer, allowing NetQIR
to efficiently map communication protocols such as teledata and tele-
gate based on the topology and specific requirements of the quantum
network.

In this work, an abstraction model and IR are proposed, aiming to
improve the software stack for DQC. Therefore, a compiler or optimizer
that improves results such as fidelities or computational resource usage
is not being proposed. This implies that, instead of working with
empirical results, the focus has been on a discussion of the different
existing languages for communication or quantum computing and, on
the other hand, the evaluation of the impact on computational resource
consumption of different communication protocols in a real problem.

The comparison between languages allows us to observe that not
all of them define a direct abstraction like the one proposed in the
abstraction layer model in this work. This is important, as the goal is
to propose a system similar to the one already used in classical HPC
environments, but incorporating the characteristics and constraints of
13
quantum computing (especially since alternatives like QMPI propose
operations that do not comply with the no-cloning theorem).

Moreover, being able to evaluate different communication proto-
cols in various interconnection networks has also made it possible to
highlight how important it is to abstract away from these features
— belonging to the network layer — so that the operating system or
compiler can manage which protocol or routing strategy to use.

Although hand-optimized low-level implementations may achieve
maximum performance, the use of an IR such as NetQIR offers a more
practical trade-off between abstraction and efficiency. By enabling the
reuse of mature compilation toolchains and supporting code genera-
tion from high-level languages, NetQIR accelerates development and
enhances portability across platforms. This abstraction layer is par-
ticularly valuable in DQC, where complexity and heterogeneity make
manual low-level programming impractical at scale.

It is important to point out that NetQIR aims to establish an IR to
develop the necessary tools for the future DQC, which in the NISQ
era is not yet available due to the accumulated errors in quantum
communication networks for computing. The main objective is to work
on having the right languages and tools for when the FTQC era is
reached.

Future work on NetQIR should prioritize developing tools that
simplify its integration into new software projects. Additionally, test-
ing its interoperability with various quantum backends and exploring
advanced optimization techniques would be valuable. A well-designed
toolchain could improve the management of distributed resources in
NetQIR, potentially reducing communication costs and enhancing qubit
allocation strategies to further boost efficiency and scalability in dis-
tributed quantum systems.

CRediT authorship contribution statement

F. Javier Cardama: Writing – review & editing, Writing – origi-
nal draft, Visualization, Software, Methodology, Investigation, Formal
analysis, Conceptualization. Jorge Vázquez-Pérez: Writing – review &
editing, Writing – original draft, Supervision, Software, Methodology,
Investigation, Formal analysis, Conceptualization. César Piñeiro: Vi-
sualization, Validation, Supervision. Tomás F. Pena: Writing – review
& editing, Validation, Supervision, Resources, Project administration,

F.J. Cardama et al. Future Generation Computer Systems 174 (2026) 107989
Investigation, Funding acquisition, Conceptualization. Juan C. Pichel:
Writing – review & editing, Validation, Supervision, Resources, Project
administration, Funding acquisition. Andrés Gómez: Writing – review
& editing, Validation, Supervision, Resources, Project administration,
Investigation, Funding acquisition, Formal analysis, Conceptualization.

Declaration of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work the authors used ChatGPT
in order to improve language and readability. After using this tool,
the authors reviewed and edited the content as needed and take full
responsibility for the content of the publication.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Tomas F. Pena reports financial support and article publishing charges
were provided by European Union. Tomas F. Pena reports financial
support was provided by Government of Spain MINECO. Tomas F.
Pena reports financial support was provided by Government of Galicia.
If there are other authors, they declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by MICINN through the European Union
NextGenerationEU recovery plan (PRTR-C17.I1), the Galician Regional
Government through ‘‘Planes Complementarios de I+D+I con las Co-
munidades Autónomas’’ in Quantum Communication, MINECO (grants
PID2019-104834GB-I00, PID2022-141623NB-I00 and PID2022-137
061OB-C22), Consellería de Cultura, Educación e Ordenación Univer-
sitaria Galician Research Center accreditation 2024–2027 ED431G-
2023/04, and the European Regional Development Fund (ERDF).

Data availability

All code is open source and has been indicated by links to the
GitHub repository in the manuscript. Everyone is welcome to contribute
to open source and to contact us with any questions.

References

[1] R.P. Feynman, Simulating physics with computers, Internat. J. Theoret. Phys. 21
(1982) 467–488, http://dx.doi.org/10.1007/BF02650179/METRICS, URL https:
//link.springer.com/article/10.1007/BF02650179.

[2] I.L. Markov, Limits on fundamental limits to computation, Nat. 2014 512:
7513 512 (2014) 147–154, http://dx.doi.org/10.1038/nature13570, URL https:
//www.nature.com/articles/nature13570.

[3] H. Buhrman, R. Cleve, A. Wigderson, Quantum vs. classical communication and
computation, in: Proceedings of the Thirtieth Annual ACM Symposium on Theory
of Computing, 1998, pp. 63–68.

[4] H. Riel, Quantum computing technology, Tech. Dig. - Int. Electron Devices
Meet. IEDM 2021-December (2021) 1.3.1–1.3.7, http://dx.doi.org/10.1109/
IEDM19574.2021.9720538.

[5] B. Koen, A. Sarkar, T. Hubregtsen, M. Serrao, A.A. Mouedenne, A. Yadav, A.
Krol, I. Ashraf, C.G. Almudever, Quantum computer architecture toward full-
stack quantum accelerators, IEEE Trans. Quantum Eng. 1 (2020) http://dx.doi.
org/10.1109/TQE.2020.2981074.

[6] T. Haner, D.S. Steiger, T. Hoefler, M. Troyer, Distributed quantum computing
with QMPI, Int. Conf. High Perform. Comput. Netw. Storage Anal. SC (2021)
http://dx.doi.org/10.1145/3458817.3476172/SUPPL_FILE/TRENDS, URL https:
//dl.acm.org/doi/10.1145/3458817.3476172.

[7] K. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim, V. Kliuchnikov,
M. Mykhailova, A. Paz, M. Roetteler, Q#: Enabling scalable quantum computing
and development with a high-level DSL, in: Proceedings of the Real World
Domain Specific Languages Workshop 2018, in: RWDSL2018, Association for
Computing Machinery, New York, NY, USA, 2018, http://dx.doi.org/10.1145/
3183895.3183901.
14
[8] A.S. Green, P.L. Lumsdaine, N.J. Ross, P. Selinger, B. Valiron, Quipper: A scalable
quantum programming language, ACM SIGPLAN Not. 48 (2013) 333–342, http:
//dx.doi.org/10.1145/2499370.2462177/SUPPL_FILE/PLDI154.ZIP, URL https://
dl.acm.org/doi/10.1145/2499370.2462177.

[9] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim, D. Bucher,
F.J. Cabrera-Hernández, J. Carballo-Franquis, A. Chen, C.-F. Chen, J.M. Chow,
A.D. Córcoles-Gonzales, A.J. Cross, A. Cross, J. Cruz-Benito, C. Culver, S.D.L.P.
González, E.D.L. Torre, D. Ding, E. Dumitrescu, I. Duran, P. Eendebak, M. Everitt,
I.F. Sertage, A. Frisch, A. Fuhrer, J. Gambetta, B.G. Gago, J. Gomez-Mosquera,
D. Greenberg, I. Hamamura, V. Havlicek, J. Hellmers, L. ukasz Herok, H. Horii,
S. Hu, T. Imamichi, T. Itoko, A. Javadi-Abhari, N. Kanazawa, A. Karazeev, K.
Krsulich, P. Liu, Y. Luh, Y. Maeng, M. Marques, F.J. Martín-Fernández, D.T.
McClure, D. McKay, S. Meesala, A. Mezzacapo, N. Moll, D.M. Rodríguez, G.
Nannicini, P. Nation, P. Ollitrault, L.J. O’Riordan, H. Paik, J. Pérez, A. Phan, M.
Pistoia, V. Prutyanov, M. Reuter, J. Rice, A.R. Davila, R.H.P. Rudy, M. Ryu,
N. Sathaye, C. Schnabel, E. Schoute, K. Setia, Y. Shi, A. Silva, Y. Siraichi,
S. Sivarajah, J.A. Smolin, M. Soeken, H. Takahashi, I. Tavernelli, C. Taylor,
P. Taylour, K. Trabing, M. Treinish, W. Turner, D. Vogt-Lee, C. Vuillot, J.A.
Wildstrom, J. Wilson, E. Winston, C. Wood, S. Wood, S. Wörner, I.Y. Akhalwaya,
C. Zoufal, Qiskit: An open-source framework for quantum computing, 2019,
http://dx.doi.org/10.5281/zenodo.2562111.

[10] M.A. Serrano, J.A. Cruz-Lemus, R. Perez-Castillo, M. Piattini, Quantum software
components and platforms: Overview and quality assessment, ACM Comput.
Surv. 55 (2022) 164, http://dx.doi.org/10.1145/3548679, URL https://dl.acm.
org/doi/10.1145/3548679.

[11] A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman, Compilers: Principles, Techniques,
and Tools (2nd Edition), Addison-Wesley Longman Publishing Co., Inc., USA,
2006.

[12] J. Stanier, D. Watson, Intermediate representations in imperative compilers,
ACM Comput. Surv. 45 (2013) http://dx.doi.org/10.1145/2480741.2480743,
URL https://dl.acm.org/doi/10.1145/2480741.2480743.

[13] T.S. Metodi, S.D. Gasster, Design and implementation of a quantum compiler,
in: E.J. Donkor, A.R. Pirich, H.E. Brandt (Eds.), Quantum Information and
Computation VIII, vol. 7702, International Society for Optics and Photonics, SPIE,
2010, p. 77020S, http://dx.doi.org/10.1117/12.852548.

[14] K. Hietala, R. Rand, S.-H. Hung, X. Wu, M. Hicks, Verified optimization in
a quantum intermediate representation, 2019, URL https://arxiv.org/abs/1904.
06319v4.

[15] C.G. Almudever, L. Lao, X. Fu, N. Khammassi, I. Ashraf, D. Iorga, S. Varsamopou-
los, C. Eichler, A. Wallraff, L. Geck, A. Kruth, J. Knoch, H. Bluhm, K. Bertels,
The engineering challenges in quantum computing, Proc. the 2017 Des. Autom.
Test Eur. DATE 2017 (2017) 836–845, http://dx.doi.org/10.23919/DATE.2017.
7927104.

[16] R. Beals, S. Brierley, O. Gray, A.W. Harrow, S. Kutin, N. Linden, D. Shepherd, M.
Stather, Efficient distributed quantum computing, Proc. R. Soc. A: Math. Phys.
Eng. Sci. 469 (2013) http://dx.doi.org/10.1098/RSPA.2012.0686, URL http://
dx.doi.org/10.1098/rspa.2012.0686orvia. http://rspa.royalsocietypublishing.org.

[17] S.W. Loke, From distributed quantum computing to quantum internet computing:
An overview, 2022, URL https://arxiv.org/abs/2208.10127v2.

[18] R. Wakizaka, Towards reliable distributed quantum computing on quantum
interconnects, ACM Int. Conf. Proceeding Ser. (2023) 114–116, http://dx.doi.
org/10.1145/3594671.3594691, URL https://dl.acm.org/doi/10.1145/3594671.
3594691.

[19] R.V. Meter, T.D. Ladd, A.G. Fowler, Y. Yamamoto, Distributed quantum com-
putation architecture using semiconductor nanophotonics, Int. J. Quantum Inf.
8 (2009) 295–323, http://dx.doi.org/10.1142/S0219749910006435, URL http:
//arxiv.org/abs/0906.2686.

[20] S. Rodrigo, S. Abadal, E. Alarcon, C.G. Almudever, Will quantum computers scale
without inter-chip comms? A structured design exploration to the monolithic vs
distributed architectures quest, 2020 35th Conf. Des. Circuits Integr. Syst. DCIS
2020 (2020) http://dx.doi.org/10.1109/DCIS51330.2020.9268630.

[21] D. Barral, F.J. Cardama, G. Díaz, D. Faílde, I.F. Llovo, M.M. Juane, J. Vázquez-
Pérez, J. Villasuso, C. Piñeiro, N. Costas, J.C. Pichel, T.F. Pena, A. Gómez,
Review of distributed quantum computing. From single QPU to high performance
quantum computing, 2024, URL https://arxiv.org/abs/2404.01265v1.

[22] S.-H. Wei, B. Jing, X.-Y. Zhang, J.-Y. Liao, C.-Z. Yuan, B.-Y. Fan, C. Lyu, D.-L.
Zhou, Y. Wang, G.-W. Deng, et al., Towards real-world quantum networks: A
review, Laser & Photonics Rev. 16 (3) (2022) 2100219.

[23] F.T. Chong, D. Franklin, M. Martonosi, Programming languages and compiler
design for realistic quantum hardware, Nature 549 (7671) (2017) 180–187.

[24] S. Wehner, D. Elkouss, R. Hanson, Quantum internet: A vision for the road
ahead, Science 362 (6412) (2018) eaam9288, http://dx.doi.org/10.1126/science.
aam9288, URL https://www.science.org/doi/abs/10.1126/science.aam9288.

[25] J. Illiano, M. Caleffi, A. Manzalini, A.S. Cacciapuoti, Quantum internet protocol
stack: A comprehensive survey, Comput. Netw. 213 (2022) 109092, http://dx.
doi.org/10.1016/j.comnet.2022.109092.

[26] K. Azuma, S.E. Economou, D. Elkouss, P. Hilaire, L. Jiang, H.-K. Lo, I. Tzitrin,
Quantum repeaters: From quantum networks to the quantum internet, Rev.
Modern Phys. 95 (4) (2023) 045006.

http://dx.doi.org/10.1007/BF02650179/METRICS
https://link.springer.com/article/10.1007/BF02650179
https://link.springer.com/article/10.1007/BF02650179
https://link.springer.com/article/10.1007/BF02650179
http://dx.doi.org/10.1038/nature13570
https://www.nature.com/articles/nature13570
https://www.nature.com/articles/nature13570
https://www.nature.com/articles/nature13570
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb3
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb3
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb3
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb3
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb3
http://dx.doi.org/10.1109/IEDM19574.2021.9720538
http://dx.doi.org/10.1109/IEDM19574.2021.9720538
http://dx.doi.org/10.1109/IEDM19574.2021.9720538
http://dx.doi.org/10.1109/TQE.2020.2981074
http://dx.doi.org/10.1109/TQE.2020.2981074
http://dx.doi.org/10.1109/TQE.2020.2981074
http://dx.doi.org/10.1145/3458817.3476172/SUPPL_FILE/TRENDS
https://dl.acm.org/doi/10.1145/3458817.3476172
https://dl.acm.org/doi/10.1145/3458817.3476172
https://dl.acm.org/doi/10.1145/3458817.3476172
http://dx.doi.org/10.1145/3183895.3183901
http://dx.doi.org/10.1145/3183895.3183901
http://dx.doi.org/10.1145/3183895.3183901
http://dx.doi.org/10.1145/2499370.2462177/SUPPL_FILE/PLDI154.ZIP
http://dx.doi.org/10.1145/2499370.2462177/SUPPL_FILE/PLDI154.ZIP
http://dx.doi.org/10.1145/2499370.2462177/SUPPL_FILE/PLDI154.ZIP
https://dl.acm.org/doi/10.1145/2499370.2462177
https://dl.acm.org/doi/10.1145/2499370.2462177
https://dl.acm.org/doi/10.1145/2499370.2462177
http://dx.doi.org/10.5281/zenodo.2562111
http://dx.doi.org/10.1145/3548679
https://dl.acm.org/doi/10.1145/3548679
https://dl.acm.org/doi/10.1145/3548679
https://dl.acm.org/doi/10.1145/3548679
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb11
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb11
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb11
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb11
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb11
http://dx.doi.org/10.1145/2480741.2480743
https://dl.acm.org/doi/10.1145/2480741.2480743
http://dx.doi.org/10.1117/12.852548
https://arxiv.org/abs/1904.06319v4
https://arxiv.org/abs/1904.06319v4
https://arxiv.org/abs/1904.06319v4
http://dx.doi.org/10.23919/DATE.2017.7927104
http://dx.doi.org/10.23919/DATE.2017.7927104
http://dx.doi.org/10.23919/DATE.2017.7927104
http://dx.doi.org/10.1098/RSPA.2012.0686
http://dx.doi.org/10.1098/rspa.2012.0686orvia
http://dx.doi.org/10.1098/rspa.2012.0686orvia
http://dx.doi.org/10.1098/rspa.2012.0686orvia
http://rspa.royalsocietypublishing.org
https://arxiv.org/abs/2208.10127v2
http://dx.doi.org/10.1145/3594671.3594691
http://dx.doi.org/10.1145/3594671.3594691
http://dx.doi.org/10.1145/3594671.3594691
https://dl.acm.org/doi/10.1145/3594671.3594691
https://dl.acm.org/doi/10.1145/3594671.3594691
https://dl.acm.org/doi/10.1145/3594671.3594691
http://dx.doi.org/10.1142/S0219749910006435
http://arxiv.org/abs/0906.2686
http://arxiv.org/abs/0906.2686
http://arxiv.org/abs/0906.2686
http://dx.doi.org/10.1109/DCIS51330.2020.9268630
https://arxiv.org/abs/2404.01265v1
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb22
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb22
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb22
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb22
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb22
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb23
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb23
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb23
http://dx.doi.org/10.1126/science.aam9288
http://dx.doi.org/10.1126/science.aam9288
http://dx.doi.org/10.1126/science.aam9288
https://www.science.org/doi/abs/10.1126/science.aam9288
http://dx.doi.org/10.1016/j.comnet.2022.109092
http://dx.doi.org/10.1016/j.comnet.2022.109092
http://dx.doi.org/10.1016/j.comnet.2022.109092
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb26
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb26
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb26
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb26
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb26

F.J. Cardama et al. Future Generation Computer Systems 174 (2026) 107989
[27] O. Bel, M. Kiran, Simulators for quantum network modelling: A comprehensive
review, 2024, URL https://arxiv.org/abs/2408.11993. arXiv:2408.11993.

[28] A. Dahlberg, B.V.D. Vecht, C.D. Donne, M. Skrzypczyk, I.T. Raa, W. Kozlowski, S.
Wehner, NetQASM—a low-level instruction set architecture for hybrid quantum–
classical programs in a quantum internet, Quantum Sci. Technol. 7 (2022)
035023, http://dx.doi.org/10.1088/2058-9565/AC753F, URL https://iopscience.
iop.org/article/10.1088/2058-9565/ac753f.

[29] A. Dahlberg, S. Wehner, SimulaQron—a simulator for developing quantum
internet software, Quantum Sci. Technol. 4 (2018) 015001, http://dx.doi.org/
10.1088/2058-9565/AAD56E, URL https://iopscience.iop.org/article/10.1088/
2058-9565/aad56e.

[30] T. Coopmans, R. Knegjens, A. Dahlberg, D. Maier, L. Nijsten, J.d. Filho, M.
Papendrecht, J. Rabbie, F. Rozpędek, M. Skrzypczyk, L. Wubben, W. de Jong,
D. Podareanu, A. Torres-Knoop, D. Elkouss, S. Wehner, NetSquid, a NETwork
simulator for quantum information using discrete events, Commun. Phys. 2021
4: 1 4 (2021) 1–15, http://dx.doi.org/10.1038/s42005-021-00647-8, URL https:
//www.nature.com/articles/s42005-021-00647-8.

[31] X. Wu, A. Kolar, J. Chung, D. Jin, T. Zhong, R. Kettimuthu, M. Suchara,
SeQUeNCe: A customizable discrete-event simulator of quantum networks, Quan-
tum Sci. Technol. 6 (2020) http://dx.doi.org/10.1088/2058-9565/ac22f6, URL
https://arxiv.org/abs/2009.12000v1.

[32] S. Diadamo, J. Nötzel, B. Zanger, M.M. Beşe, QuNetSim: A software framework
for quantum networks, IEEE Trans. Quantum Eng. 2 (2021) http://dx.doi.org/
10.1109/TQE.2021.3092395.

[33] QIR Alliance: https://qir-alliance.org. URL https://github.com/qir-alliance/qir-
spec.

[34] A.S. Tanenbaum, H. Bos, Modern Operating Systems, Pearson Education, Inc.,
2015.

[35] G.F. Coulouris, J. Dollimore, T. Kindberg, Distributed Systems: Concepts and
Design, pearson education, 2005.

[36] M.P. Forum, MPI: A message-passing interface standard, 1994.
[37] J. Bruck, D. Dolev, C.-T. Ho, M.-C. Roşu, R. Strong, Efficient message passing

interface (MPI) for parallel computing on clusters of workstations, in: Proceedings
of the Seventh Annual ACM Symposium on Parallel Algorithms and Architectures,
1995, pp. 64–73.

[38] A. Skjellum, N. Doss, K. Viswanathan, A. Chowdappa, P. Bangalore, Extending
the message passing interface (MPI), in: Proceedings Scalable Parallel Libraries
Conference, 1994, pp. 106–118, http://dx.doi.org/10.1109/SPLC.1994.376998.

[39] C. Delle Donne, M. Iuliano, B. Van Der Vecht, G. Ferreira, H. Jirovská, T. Van
Der Steenhoven, A. Dahlberg, M. Skrzypczyk, D. Fioretto, M. Teller, et al., An
operating system for executing applications on quantum network nodes, Nature
639 (8054) (2025) 321–328.
15
[40] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar, R. Riddle,
T. Shpeisman, N. Vasilache, O. Zinenko, MLIR: Scaling compiler infrastructure
for domain specific computation, in: 2021 IEEE/ACM International Symposium
on Code Generation and Optimization, CGO, 2021, pp. 2–14, http://dx.doi.org/
10.1109/CGO51591.2021.9370308.

[41] A. McCaskey, T. Nguyen, A MLIR dialect for quantum assembly languages,
in: 2021 IEEE International Conference on Quantum Computing and Engineer-
ing, QCE, IEEE, 2021, pp. 255–264, http://dx.doi.org/10.1109/QCE52317.2021.
00043.

[42] K. Hietala, R. Rand, S.-H. Hung, X. Wu, M. Hicks, A verified optimizer for
quantum circuits, Proc. ACM Program. Lang. 5 (POPL) (2021) http://dx.doi.org/
10.1145/3434318.

[43] L. Foundation, LLVM Assembly Language Reference Manual, URL https://
releases.llvm.org/2.6/docs/LangRef.html.

[44] S. Nishio, R. Wakizaka, InQuIR: Intermediate representation for interconnected
quantum computers, 2023, URL https://arxiv.org/abs/2302.00267v1.

[45] I. Quantum, Technology for the quantum future: Development roadmap, 2025,
URL https://www.ibm.com/quantum/technology#roadmap. Online, (Accessed
16 June 2025).

[46] S.K. Moore, The future of quantum computing is modular, IEEE Spectr. (2025)
URL https://spectrum.ieee.org/quantum-computers. (Accessed 16 June 2025).

[47] C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters,
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-
Rosen channels, Phys. Rev. Lett. 70 (1993) 1895–1899, http://dx.doi.org/10.
1103/PhysRevLett.70.1895, URL https://link.aps.org/doi/10.1103/PhysRevLett.
70.1895.

[48] D. Gottesman, I.L. Chuang, Demonstrating the viability of universal quantum
computation using teleportation and single-qubit operations, Nature 402 (6760)
(1999) 390–393, http://dx.doi.org/10.1038/46503.

[49] D. Ferrari, A.S. Cacciapuoti, M. Amoretti, M. Caleffi, Compiler design for
distributed quantum computing, IEEE Trans. Quantum Eng. 2 (2021) http:
//dx.doi.org/10.1109/TQE.2021.3053921.

[50] D. Ferrari, S. Carretta, M. Amoretti, A modular quantum compilation framework
for distributed quantum computing, IEEE Trans. Quantum Eng. 4 (2023) http:
//dx.doi.org/10.1109/TQE.2023.3303935.

[51] B. van der Vecht, A.T. Yücel, H. Jirovská, S. Wehner, Qoala: An application
execution environment for quantum internet nodes, 2025, URL https://arxiv.
org/abs/2502.17296. arXiv:2502.17296.

[52] J. Vázquez-Pérez, F.J. Cardama, NetQIR/netqir-spec: v0.0.1, 2024, http://dx.doi.
org/10.5281/zenodo.13142521.

[53] N.M. Neumann, R. van Houte, T. Attema, Imperfect distributed quantum phase
estimation, in: Computational Science–ICCS 2020: 20th International Conference,
Amsterdam, the Netherlands, June 3–5, 2020, Proceedings, Part VI 20, Springer,
2020, pp. 605–615.

[54] T.J. Parr, R.W. Quong, ANTLR: A predicated-LL (k) parser generator, Softw.: Pr.
Exp. 25 (7) (1995) 789–810.

[55] T. Parr, The Definitive ANTLR 4 Reference, The Pragmatic Bookshelf, 2013.

https://arxiv.org/abs/2408.11993
http://arxiv.org/abs/2408.11993
http://dx.doi.org/10.1088/2058-9565/AC753F
https://iopscience.iop.org/article/10.1088/2058-9565/ac753f
https://iopscience.iop.org/article/10.1088/2058-9565/ac753f
https://iopscience.iop.org/article/10.1088/2058-9565/ac753f
http://dx.doi.org/10.1088/2058-9565/AAD56E
http://dx.doi.org/10.1088/2058-9565/AAD56E
http://dx.doi.org/10.1088/2058-9565/AAD56E
https://iopscience.iop.org/article/10.1088/2058-9565/aad56e
https://iopscience.iop.org/article/10.1088/2058-9565/aad56e
https://iopscience.iop.org/article/10.1088/2058-9565/aad56e
http://dx.doi.org/10.1038/s42005-021-00647-8
https://www.nature.com/articles/s42005-021-00647-8
https://www.nature.com/articles/s42005-021-00647-8
https://www.nature.com/articles/s42005-021-00647-8
http://dx.doi.org/10.1088/2058-9565/ac22f6
https://arxiv.org/abs/2009.12000v1
http://dx.doi.org/10.1109/TQE.2021.3092395
http://dx.doi.org/10.1109/TQE.2021.3092395
http://dx.doi.org/10.1109/TQE.2021.3092395
https://qir-alliance.org
https://github.com/qir-alliance/qir-spec
https://github.com/qir-alliance/qir-spec
https://github.com/qir-alliance/qir-spec
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb34
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb34
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb34
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb35
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb35
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb35
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb36
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb37
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb37
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb37
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb37
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb37
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb37
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb37
http://dx.doi.org/10.1109/SPLC.1994.376998
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb39
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb39
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb39
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb39
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb39
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb39
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb39
http://dx.doi.org/10.1109/CGO51591.2021.9370308
http://dx.doi.org/10.1109/CGO51591.2021.9370308
http://dx.doi.org/10.1109/CGO51591.2021.9370308
http://dx.doi.org/10.1109/QCE52317.2021.00043
http://dx.doi.org/10.1109/QCE52317.2021.00043
http://dx.doi.org/10.1109/QCE52317.2021.00043
http://dx.doi.org/10.1145/3434318
http://dx.doi.org/10.1145/3434318
http://dx.doi.org/10.1145/3434318
https://releases.llvm.org/2.6/docs/LangRef.html
https://releases.llvm.org/2.6/docs/LangRef.html
https://releases.llvm.org/2.6/docs/LangRef.html
https://arxiv.org/abs/2302.00267v1
https://www.ibm.com/quantum/technology#roadmap
https://spectrum.ieee.org/quantum-computers
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.70.1895
https://link.aps.org/doi/10.1103/PhysRevLett.70.1895
https://link.aps.org/doi/10.1103/PhysRevLett.70.1895
https://link.aps.org/doi/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1038/46503
http://dx.doi.org/10.1109/TQE.2021.3053921
http://dx.doi.org/10.1109/TQE.2021.3053921
http://dx.doi.org/10.1109/TQE.2021.3053921
http://dx.doi.org/10.1109/TQE.2023.3303935
http://dx.doi.org/10.1109/TQE.2023.3303935
http://dx.doi.org/10.1109/TQE.2023.3303935
https://arxiv.org/abs/2502.17296
https://arxiv.org/abs/2502.17296
https://arxiv.org/abs/2502.17296
http://arxiv.org/abs/2502.17296
http://dx.doi.org/10.5281/zenodo.13142521
http://dx.doi.org/10.5281/zenodo.13142521
http://dx.doi.org/10.5281/zenodo.13142521
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb53
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb53
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb53
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb53
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb53
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb53
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb53
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb54
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb54
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb54
http://refhub.elsevier.com/S0167-739X(25)00284-5/sb55

	NetQIR: An extension of QIR for distributed quantum computing
	Introduction
	Related Work and Background
	Background on Distributed Systems
	Related Work about Intermediate Representations in Quantum Computing

	Layered Abstraction Model for Distributed Quantum Computing
	Network layer
	Development layer
	Data structure for logical topology
	High-level quantum communication instructions

	NetQIR: a Quantum Intermediate Representation for Distributed Quantum Computing
	NetQIR Specification
	State functions
	Operate datatypes functions
	Communication functions

	NetQIR SDK: PyNetQIR
	NetQIR ANTLR grammar

	Discussion
	Comparison with State-of-the-Art Languages
	Justification of the Layered Abstraction Model

	Conclusions
	CRediT authorship contribution statement
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

