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A few‑shot approach for COVID‑19 
screening in standard and portable 
chest X‑ray images
Daniel Cores 1,5, Nicolás Vila‑Blanco 1,4,5, María Pérez‑Alarcón 3, Anxo Martínez‑de‑Alegría 3, 
Manuel Mucientes 1,2,4 & María J. Carreira 1,2,4*

Reliable and effective diagnostic systems are of vital importance for COVID-19, specifically for triage 
and screening procedures. In this work, a fully automatic diagnostic system based on chest X-ray 
images (CXR) has been proposed. It relies on the few-shot paradigm, which allows to work with small 
databases. Furthermore, three components have been added to improve the diagnosis performance: 
(1) a region proposal network which makes the system focus on the lungs; (2) a novel cost function 
which adds expert knowledge by giving specific penalties to each misdiagnosis; and (3) an ensembling 
procedure integrating multiple image comparisons to produce more reliable diagnoses. Moreover, 
the COVID-SC dataset has been introduced, comprising almost 1100 AnteroPosterior CXR images, 
namely 439 negative and 653 positive according to the RT-PCR test. Expert radiologists divided the 
negative images into three categories (normal lungs, COVID-related diseases, and other diseases) 
and the positive images into four severity levels. This entails the most complete COVID-19 dataset in 
terms of patient diversity. The proposed system has been compared with state-of-the-art methods 
in the COVIDGR-1.0 public database, achieving the highest accuracy (81.13% ± 2.76%) and the most 
robust results. An ablation study proved that each system component contributes to improve the 
overall performance. The procedure has also been validated on the COVID-SC dataset under different 
scenarios, with accuracies ranging from 70.81 to 87.40%. In conclusion, our proposal provides a good 
accuracy appropriate for the early detection of COVID-19.

Since the early 2020s, the world has experienced an unprecedented crisis due to the rapid spread of the Coro-
navirus disease (COVID-19)1. Although the number of cases since the beginning of the pandemic has led to 
notable levels of seroprevalence, it has been proven that herd immunity is not the best way to control COVID-
192. Moreover, developed countries have inoculated the population with highly effective vaccines, but there are 
vast differences among regions3, and therefore mobility still plays a crucial role in the spread of the virus4. In 
this regard, all efforts to identify and isolate new cases are key to controlling the pandemic. Therefore, it is highly 
desirable to speed up the diagnosis of COVID-19 as much as possible.

Currently, the gold standard method for detecting COVID-19 cases is the reverse transcription polymerase 
chain reaction (RT-PCR) test, which detects SARS-CoV-2 RNA from nasopharyngeal or oropharyngeal swabs 
with high sensitivity and specificity5. The examination of CT or CXR scans has also proved to be a useful method 
for the screening, diagnosis, and management of patients with COVID-196,7 via identification of abnormalities 
that are present in patients with the disease. In this regard, different authors studied some of these characteristic 
visual indicators, which include bilateral and interstitial abnormalities8, and ground-glass opacity9.

CT refers to a computerized X-Ray imaging procedure that combines scans from different angles, produc-
ing 3D radiographic images in which chest findings can be analyzed in great detail. Although the diagnosis of 
COVID-19 based on CT scans has slightly higher sensitivity than RT-PCR testing10, in low-prevalence regions 
there is a high false positive rate and this test has a low positive predictive value. On the other hand, CXR imag-
ing has some advantages in the context of this global pandemic11, such as a quick scanning time, equipment 
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accessibility, and the availability of portable acquisition devices. In practice, both CT and CXR techniques can 
complement each other when diagnosing COVID-19.

Some studies compared the sensitivity of CXR and RT-PCR to assess the value of this diagnostic method. In11, 
sensitivities of 91% for initial RT-PCR tests versus 69% for CXR were reported. Although later works12 reported 
higher sensitivities—89%, similar to CT analysis—, these results are influenced by the high COVID-19 preva-
lence during the first peak of the pandemic, and the authors report a disease spectrum skewed to severe cases.

In this context, computer-aided diagnosis methods can help to analyze a large number of scan images in a 
short time, thus assisting radiologists in effectively diagnosing COVID-1913,14. More concretely, Convolutional 
Neural Networks (CNNs) are particularly interesting due to their capacity to infer the high level features needed 
to classify the CXR scan images.

In this regard, training robust deep learning (DL) models requires large amounts of data, which caused the 
research community to put substantial effort in creating datasets to build COVID-19 diagnosis systems15,16. How-
ever, COVID-19 examples used to build most of these datasets are too heterogeneous and highly biased towards 
severe cases, and so many recent works reported unusually high sensitivities—far above those achieved by expert 
radiologists11. The clinical value of these models will be limited due to the biased training data, as their perfor-
mance will drop for detecting patients with low to moderate severity—the true target of these triage systems.

At this moment there are very few high-quality datasets to build robust systems to detect COVID-19 based 
on CXR scan images17. Moreover, the size of the datasets is currently limited, mainly due to the medical staff 
high workload during all this time. Thus, researchers have had to apply techniques to increase the datasets arti-
ficially or specific machine learning algorithms to deal with this data scarcity. In this regard, few-shot learning 
algorithms have proven to be highly effective18.

The image classification problem is traditionally solved by training a deep CNN over a large number of labeled 
images per each category of interest. Through this learning process, the CNN weights are optimized to detect the 
most common patterns for each image category. Thus, applying this technique with a limited number of images 
per category would lead to overfitting as the identified patterns would be biased towards the peculiarities of the 
few training examples rather than general category traits. To address this issue, few-shot frameworks propose 
to implement a meta-learning strategy. Instead of identifying the main patterns for each image category, the 
objective is to learn what makes each category different and, consequently, if two images belong to the same 
category. In this approach, a set of labeled support images is used to compare with each input query image. The 
category of the support image with more affinity to the query image is the classification output. As the system 
learns to differentiate categories in general, the targeting categories in the testing stage can be different from the 
ones used in the training stage.

In this work, we present a novel approach for detecting the COVID-19 condition in CXR images. It is based 
on few-shot learning techniques, so it can deal with new small databases. The main contributions of this work are:

•	 A lung-aware region proposal network that extracts randomly distributed regions of interest targeting the 
lungs. It removes context information that is not meaningful for the classification task.

•	 A new cost function specifically designed for this classification problem in which image categories are ordered 
in different severity levels.

•	 A novel any-shot experimental setting. In addition to the standard few-shot definition, we propose to use 
a set of support sets to increase the classification performance when enough data is available. Therefore, 
our framework can be trained with a limited amount of images per category, but it also benefits from larger 
datasets.

•	 A new CXR dataset annotated by expert radiologists that contains COVID positive and negative examples 
including the severity level for the positive cases. Moreover, negative examples also include patients with 
COVID-related diseases and other unrelated diseases. To the best of our knowledge, this is the first dataset 
that contains information about different COVID severity levels and negative examples with other conditions.

•	 An external validation, with a series of experiments conducted in a publicly available dataset19 proving that 
our method outperforms previous approaches in terms of classification accuracy.

Related work
Since the pandemic outbreak, the scientific community has been making a great effort to ease and/or improve the 
COVID-19 diagnosis. However, as in any emerging condition, the available data to develop automated models 
is still scarce, and the legal issues derived from the massive publication of private medical records hinder the 
release of high quality public CXR datasets. As it can be seen in Table 1—column Single source—, the approach 
followed by the researchers was initially the aggregation of datasets of different sources and sizes15,20. In further 
works, curated single-source datasets were published19,21,22.

Regarding the different conditions present in the datasets-columns Non-COVID and Other diseases in 
Table 1, there are some databases focused on COVID-only CXR images21–23; other datasets provide also images 
belonging to healthy patients19,24; finally, others included additional images of other conditions, such as pneu-
monia or lung fibrosis15,20,25–27.

In terms of patient positioning when acquiring the CXR image-column View in Table 1, most datasets mix 
PosteroAnterior (PA) and AnteroPosterior (AP) projections, being each image labeled with the corresponding 
view. There are, however, some cases where the view is not reported20,26,27. The only case where all images were 
recorded through the same view is COVIDGR, where only the PA view is available. It is worth noting that some 
datasets report not only the RT-PCR COVID result but also the severity level based on a radiographic diagnosis-
column Severity levels in Table 1. For example, BrixIA Covid-19 dataset provides the Brixia score along with 
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the images, and COVIDGR includes a severity label according to the Radiographic Assessment of Lung Edema 
(RALE) index modified for the COVID-19 quantification28.

Overall, the aggregated datasets provide heterogeneous images with a potential bias towards the predominant 
patient severity and the radiographic view present in each subset. Furthermore, the development of a COVID 
detection system requires, at least, the presence of both COVID and non-COVID images to establish a refer-
ence, so the COVID-only datasets are not useful for this purpose. To the best of our knowledge, COVIDGR is 
the most complete dataset available at this moment, as it provides high-quality images, a good balance between 
positive and negative samples, and information of severity levels. However, it does not include images of patients 
affected by other diseases, which would allow for a more realistic experimentation.

Regarding the computational models, a variety of approaches for COVID-19 detection in CXR images have 
been followed, mainly based on deep learning techniques. Some of them relied on popular network architectures, 
such as VGG29, Xception30, or CapsNets31. Other authors proposed novel architectures aimed specifically at 
detecting COVID disease. Specifically, Wang et al.26 proposed COVID-Net, which combines lightweight residual 
blocks and densely connected layers to enhance the representational capacity while maintaining a high efficient 
pipeline. In the same way, Ouchicha et al.32 developed CVDNet, a CNN composed of two interconnected paths 
with different kernel sizes to capture local and global features.

With the aim of improving the results of the detection models, multiple techniques have been used. Simple 
image enhancement has proven to increase the COVID-19 detection performance33. Ensemble techniques lead 
to more robust diagnoses through the combination of multiple heterogeneous models34–36. To force the detection 
method to focus only on lung regions, lung segmentation algorithms have been widely used either to preprocess 
the input images19 or to guide the learning algorithm37.

Most researchers tried to overcome the problem of working with small datasets. The simplest approach was 
the use of primitive image transformations to increase the dataset variability29. As an alternative, a multi-view 
representation adding manually designed features to reduce overfitting was explored in38. A more elaborated 
solution in this regard is the inclusion of Generative Adversarial Networks (GAN) to extend the available datasets 
with synthetically generated images39,40. Transfer learning has also been used effectively in most studies by using 
a network pretrained on a larger dataset, not necessarily composed of similar images35,40.

Perhaps the most innovative approach when working with small datasets is the use of few-shot classification 
techniques41, a specific subset of meta-learning algorithms where the learner is aimed at extracting image features 
which are relevant for differentiating between classes rather than class-specific features. In this way, the methods 
generalize better to unseen classes. Few-shot has been successfully used for general medical image processing42, 
and also to specifically detect COVID-19 in CXR images18,43.

The available methodologies are aimed at detecting a variable number of classes, which mainly depends on 
the available categories in the input dataset. Although the simplest approach is a binary classification between 
COVID-19 and non-COVID-1919,39, some works proposed a three-class objective—COVID-19, pneumonia 
and normal29,35. Other studies even split the pneumonia class into viral and bacterial to end up with a four-class 
problem30,40.

The performance reported by the different studies has to be cautiously interpreted because of several reasons. 
For instance, multi-view datasets are commonly biased so that images belonging to severe patients are acquired 
with an AP CXR for practical reasons. This may lead detection algorithms to focus on device-specific features 
rather than COVID-19 characteristics44,45. Furthermore, most publicly available datasets contain a systematically 
high number of severe COVID-19 cases, compared to those in mild or moderate condition. As a result, some 
studies have reported abnormally high COVID-19 detection accuracy and sensitivity, with many works exceed-
ing 95% accuracy. Nevertheless, the generalization of the proposed methods to other datasets is questionable17.

Table 1.   Main COVID-19 CXR datasets.

Dataset #Images
Single
source

Severity
levels Non-COVID

Other
diseases View

COVID-19 image data collection15 761 (305 COVID) ✗ ✗ ✓ ✓ PA/AP/AP supine/
Lateral

Actualmed COVID-19 CXR Dataset 
Initiative24 238 (58 COVID) ✓ ✗ ✓ ✗ PA/AP

Figure 1 COVID-19 CXR Dataset 
Initiative25 55 (35 COVID) ✓ ✗ ✓ ✓ PA/AP/AP supine

COVID-19 Image Repository23 243 (243 COVID) ✓ ✗ ✗ ✗ PA/AP

COVIDx26 16352 (2358 COVID) ✗ ✗ ✓ ✓ –

BrixIA Covid-1921 4703 (4703 COVID) ✓ ✓ ✗ ✗ PA/AP

RICORD COVID-19 dataset22 1257 (1257 COVID) ✓ ✗ ✗ ✗ PA/AP

COVID-19 Radiography Database20 21165 (3616 COVID) ✗ ✗ ✓ ✓ –

COVIDGR-1.019 852 (426 COVID) ✓ ✓ ✓ ✗ PA

BIMCV-COVID19(+/−)27 10762 (3141 COVID) ✓ ✗ ✓ ✓ –

COVID-SC 1092 (653 COVID) ✓ ✓ ✓ ✓ AP
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COVID‑SC dataset
This work led to the compilation of a high-quality dataset of CXR images. The acquisition, annotation, and storage 
protocols were defined both by computer scientists of the Research Center on Intelligent Technologies (CiTIUS) 
and experienced radiologists of the University Hospital of Santiago (CHUS). Both protocols were approved by 
the Galician Research Ethics Committee (approved on June 23, 2020; approval code: 2020/308 DL-COVIDRX) 
and followed the principles of the Helsinki Declaration of 1975 as revised in 1983.

The acquisition process was carried out during 2020 and 2021 by emergency, intensive care and pneumol-
ogy units. All images were acquired through an AP view by using the same type of portable device, and the 
RT-PCR was confirmed within 24 hours after the acquisition. Furthermore, the images belonging to positive 
patients were labeled by six trained thoracic radiologists according to the scoring system proposed in28. First, 
each lung was divided into four regions of equal size. The extension of the consolidations and ground-glass 
opacity was evaluated according to those regions, resulting in a score between 0 (no regions affected) and 4 (all 
regions affected). Finally, the score of both lungs was summed up, which yielded a score out of 8. This score was 
translated into four different levels of severity: P_NORMAL (RALE=0), P_MILD (RALE={1,2}), P_MODERATE 
(RALE={3,4,5,6}) and P_SEVERE (RALE={7,8}). The negative images were also analyzed visually, establishing 
three different categories: normal lungs (N_NORMAL), covid-related conditions—like pneumonia or interstitial 
lung disease—(N_RELATED), and other conditions (N_OTHER).

The total number of collected images was of 1092, distributed in 439 negative and 653 positive. Specific details 
are given in Table 2.

Methodology
Figure 1 shows the proposed image classification architecture for automatic COVID-19 diagnosis based on CXR 
images. Our method can be trained on a limited number of images, resulting in a suitable tool to face the diag-
nosis of a new disease for which high quality public available data is scarce. Few-shot classification methods are 

Table 2.   Distribution of images in COVID-SC database. F:female; M:male.

RT-PCR result # Expert visual diagnosis # Label Age (µ± σ) Sex (% F/M)

Negative 439

Normal lungs 229 N_NORMAL 54.0 ± 19.9 54.5/45.5

Covid-related diseases 77 N_RELATED 70.9 ± 21.8 51.7/48.3

Other diseases 133 N_OTHER 70.6 ± 18.5 57.6/42.4

Positive 653

Normal lungs 115 P_NORMAL 55.0 ± 20.3 53.3/46.7

Mild condition 142 P_MILD 66.6 ± 15.9 52.5/47.5

Moderate condition 294 P_MODERATE 69.4 ± 14.6 69.5/30.5

Severe condition 102 P_SEVERE 77.8 ± 11.7 55.6/44.4

Figure 1.   Image classification pipeline for one support set. First, a proposal generator calculates M regions 
of interest from the images in the support set and the query image, respectively. Then, per-region deep 
feature maps xi are calculated for both the support set and query images. These per-region feature maps are 
concatenated, resulting in a per-image feature map. Support feature maps for every image in each category Ci 
are aggregated calculating a per category prototype. Finally, the query image feature map (query prototype) is 
compared with per category support feature maps to obtain the affinity vectors ai.
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specifically designed to be applied in scenarios in which a traditional image classification approach would fail due 
to this limited data availability. In a few-shot implementation, each incoming query image is classified according 
to the similarities with the images of the support set. To this end, per-category prototypes are calculated to com-
pare with the query prototype. These prototypes are based on deep feature maps extracted by a CNN backbone.

First, we propose a lung-aware region proposal network to generate a set of regions of interest targeting the 
lungs for both the query image and the support set images (Fig. 1a). This allows the network to focus on the most 
significant regions for COVID-19 diagnosis. More details about this component are given in next subsection.

Then, a CNN backbone is used to extract semantically strong representations for each proposed region in 
the query and support set images. Per-region feature maps are concatenated to generate a per-image feature 
map. The network head aggregates features from every support set image that belongs to the same category by 
calculating the mean feature map (Fig. 1b shows this process for classes C1 and CN ). Finally, per-category feature 
maps are further optimized through gradient descent to calculate strong prototypes that can be used to establish 
the affinity of each query image to the different classes. This similarity is calculated through the Earth Mover’ 
Distance (EMD)46, which gives the pairwise distance between the prototypes of the query and support regions. 
Thus, the regions yielding the lower distance are supposed to be the most similar ones.

Traditional few-shot image classifiers use a very small number of support images, with 1-shot and 5-shot 
settings—one and five images per category, respectively—being the most common scenarios. However, these 
settings are not realistic in this application as the number of annotated images in every dataset highly exceeds 
these numbers. Thus, instead of randomly selecting one support set with k-shot images per category, we propose 
to use a group of S k-shot support sets to reduce the effect of each support image. This process is described in 
the next Support set ensemble subsection.

In this implementation, four ordered object categories are considered for training: negative, mild, moderate, 
and severe conditions. Therefore, classification errors must contribute differently depending on the distance 
between the correct and the predicted categories. Taking this into account, we propose a new cost function that 
includes expert knowledge to guide the training process. Following subsection Misdiagnosis-sensitive learning 
describes this approach.

Lung‑aware region proposal network.  The lungs are the most affected organs in the COVID-19 dis-
ease, and so they are used as the main radiological diagnostic indicator. Furthermore, patient positioning when 
acquiring CXR images may be constrained by patient severity or external monitoring devices. Ultimately, this 
leads to heterogeneous lung position, scale, and rotation within the image, which may hinder the diagnostic 
capabilities. To overcome this issue, a lung-aware region proposal network is used to focus the classification 
process in the significant regions of the image regardless of the position of the lungs.

The proposal generation process shown in Fig. 1a represents the first step of the overall architecture. This is 
shown in detail in Fig. 2. First, a segmentation Deep Neural Network based on the so-called U-net architecture 
is used to obtain the lung masks47. Then, the Minimum Containing Rectangle (MCR) is calculated as the smallest 
horizontal rectangle that contains all pixels classified as belonging to the lung area. The MCR is then increased 
by 5% in each dimension for safety reasons. However, the radiopacity of the lung regions which are severely 
diseased, most often in the lower part of the lungs, may end up disturbing the lung segmentation and so the 
MCR calculation. To prevent the loss of these areas, the MCR is enlarged on the lower side up to a maximum 
aspect ratio of 1:1. Then, the refined box is used to constrain a random region generation process, so every image 
patch lies within these boundaries. The proposal network returns M regions of interest for each input image.

Support set ensemble.  Image augmentation is a simple yet effective way of increasing the performance of 
a machine learning method, especially when few data are available for the training step. It can be applied either at 
training time or at inference time. While the former increases the variability of the dataset to enrich the learned 

Figure 2.   Lung-aware proposal network. First, the lung mask is obtained through a U-net network. The MCR is 
then calculated and enlarged both by an overall margin of 5% and a bottom margin to get an aspect ratio of 1:1. 
The final region is used to generate random patches of the original image.
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features, the latter is used to aggregate the predictions of slightly different versions of the same image to boost 
the overall performance.

Following a similar idea, we select S static support sets to conduct the whole test process. Thus, every query 
image is compared with each support set, resulting in multiple class affinity vectors asi , where i ={1, . . . ,N} is 
the class index, and s ={1, . . . , S} is the support set index. In a further step, the probability that a given image 
belongs to a given class Ci is calculated by aggregating the affinity vectors through a weighted voting mechanism:

where pi is the output probability for the i-th class, and asi is the affinity value given by s-th support set to the 
i-th class.

Misdiagnosis‑sensitive learning.  As in other diseases, the testing systems for COVID-19 show different 
diagnosis performance. Usually, the cheapest tests are characterized by a high rate of negative patients testing 
positive, what is also known as a high number of false positives. Although the maximum accuracy is always 
desired, these results yield a reasonably good triage approach where the positive results can be refined in a fur-
ther step with high accurate, yet more expensive, testing procedures.

Our objective is to solve a binary classification problem, i.e., to distinguish between negative and positive 
COVID-19 CXR images. To improve the training process, we leveraged the additional categories available in 
COVID-SC and COVIDGR-1.0 datasets. Regarding the former, we initially split the negative/positive images 
into seven classes, according to the expert visual diagnosis explained in Table 2. However, both negative and 
positive images with no visual affection may be very similar. Furthermore, the images of negative patients with 
COVID-related diseases, like pneumonia, can be confused with positive images. To overcome these problems 
that could confuse the network learning, both the negative patients affected by COVID-related diseases and those 
positive patients with no visual lung affection are not included in the classifier training step—they are only taken 
into account for testing the classifier. As a result, a 4-class training setup problem is defined with the following 
classes: N_NORMAL, P_MILD, P_MODERATE and P_SEVERE. As for the COVIDGR-1.0 dataset, we used 
the four available categories, which exactly match those finally used with COVID-SC.

With a point to improve the actual automatized triage systems, the diagnosis procedure developed in this work 
aims at minimizing the loss of positive COVID diagnosis through a misclassification penalty. This term depends 
both on the visual distance between the classes and the clinical cost of each wrong classification. Intuitively, 
the greatest penalization should be given to a COVID patient with severe lung affection classified as a negative 
patient, as both the visual distance between classes and the clinical cost of a false negative are maximum. On 
the contrary, a COVID patient with moderate lung affection classified as a positive patient with severe affection 
should be penalized to a lesser extent, as both classes are very similar visually and the clinical cost is zero.

To include all this expert knowledge, we introduce a cost matrix M designed and validated by experienced 
radiologists in the original formula (see Table 3) of Cross Entropy Loss. The value Mij represents the extra cost 
of a patient belonging to the i-th class classified within the j-th class. As can be seen, the greatest penalties are 
given to patients with mild and severe COVID conditions who are incorrectly classified as COVID negative, as 
these are the cases with the highest cost in case of misclassification.

Therefore, the cost of classifying a patient of the i-th class is:

where C′ is the set consisting of all classes except the class Ci.

Ethical approval.  This study was performed in line with the principles of the Declaration of Helsinki. 
Approval was granted by the Galician Research Ethics Committee (approval date: June 23, 2020; approval code: 
2020/308 DL-COVIDRX). As it is mandatory in this approval, informed consent was obtained from all subjects.
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Table 3.   Cost matrix M included in the new loss function (2).

Predicted

Negative Mild Moderate Severe

Real

Negative 0 0.1 0.2 0.3

Mild 0.3 0 0.1 0.2

Moderate 0.4 0.1 0 0.1

Severe 0.5 0.075 0.025 0
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Experiments
Datasets.  We analyze the performance of our framework in a wide range of scenarios using the new COVID-
SC dataset. The availability of detailed information regarding severity level and other non-COVID and COVID-
related findings allows us to evaluate the classification accuracy in different challenging real life use cases.

Moreover, we also evaluate our model in the publicly available COVIDGR-1.0 dataset19 to compare the 
outcome of our system with state-of-the-art automatic COVID-19 diagnosis systems based on CXR images. 
This dataset contains 852 labeled images with 426 positive examples and 426 negative examples. It also provides 
information about the severity level following the RALE index. Although this dataset does not have images with 
other findings, it contains RT-PCR positive examples labeled as normal by experts. For other methods, we pro-
vide the results reported in19. To perform a fair comparison, the same validation setup—5 times repeated 5-fold 
cross-validation—was used to evaluate our method.

Evaluation metrics.  In the experiments, we report the binary classification performance using the follow-
ing metrics to evaluate and compare our model with the state-of-the-art:

being TP the number of true positives, TN the true negatives, FP the false positives and FN the false negatives. 
It is worth noting that F1 metric can be calculated either for positive or negative categories by using positive or 
negative precision and recall metrics, respectively.

Achieving a high sensitivity (Eq. 4) is crucial for any triage system, as it means that a high percentage of 
positive cases are detected. However, a trade-off between specificity (Eq. 3) and sensitivity (Eq. 4) is required to 
minimize the false positives rate. Otherwise, a system that classifies almost every example as positive would be 
useless. The F1 (Eq. 7) metric also takes into account this balance as it is based on the recall and the precision 
for each specific category.

The accuracy (Eq. 8) represents the global classification precision measuring the percentage of images cor-
rectly classified. Therefore, it is also a useful metric to compare different classification approaches.

Implementation details.  The feature extractor of the few-shot architecture was implemented as a 
ResNet-12 pretrained on the miniImageNet dataset41. Input image regions were generated following the method 
described in previous subsection Lung-aware region proposal network and rescaled to 128× 128 pixels. The num-
ber of sampled regions per image (M) was set to 9. The support set size was set to 5 images per category (5-shot) 
by default. One randomly selected support set was used in each meta-learning iteration (episode), while 5 static 
support sets, with 5 images per category each, were used in validation and test. Support images for validation and 
test were randomly selected from the training set keeping the same support sets for both tasks. We performed 
a 5-fold cross-validation for all the experiments, showing both the mean and the standard deviation for every 
metric.

The U-net model for lung segmentation was trained on both the Montgomery and SCR datasets48,49. The 
segmentation results on these public databases exceeded 95% both in terms of Intersection over Union and Dice 
score. The performance of the segmentation network was also validated on both COVID-SC and COVIDGR-1.0 
datasets through a visual examination by expert radiologists.

With the aim of increasing the diagnosis performance, the image categories which can potentially lead to 
confusion with respect to other opposite-diagnosis categories were removed from the training set. This affects the 
classes N_RELATED and N_OTHER—which can be confused with every positive class— and P_NORMAL—
which is highly similar to N_NORMAL. To keep a realistic evaluation scenario, however, those classes were not 
removed from the validation or test sets.

We trained our network following a meta-learning approach in which the network learns to differentiate 
images from different categories rather than focusing on the specific features of each category. The maximum 
number of episodes was set to 5000 with a validation step each 50 episodes. The initial learning rate was set to 

(3)specificity =N_recall =
TN

TN + FP

(4)sensitivity =P_recall =
TP

TP + FN

(5)N_precision =
TN

TN + FN

(6)P_precision =
TP

TP + FP

(7)F1 =2 ·
precision · recall

precision+ recall

(8)accuracy =
TP + TN

TP + FP + TN + FN
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0.5× 10−3 with a reduction by a factor of 0.5 after every 500 episodes. The best validation iteration was selected 
measuring the validation performance VP as:

Therefore, we maximize both the accuracy as a metric of global classification error, and the sensitivity which is 
crucial for any triage system. Optimal values for α and β parameters were calculated through a Grid Search setup 
on the training set, being 0.3 and 0.7, respectively.

Ablation studies.  We conducted a series of ablation studies to assess the influence of each novel component 
on the final classification accuracy. These experiments were performed on just one cross-validation repetition 
from the COVIDGR-1.0 dataset to keep a reasonable experimentation time.

Table 4 shows the classification accuracy and the standard deviation for the different scenarios. The baseline 
accuracy, without the inclusion of the proposed improvements, is almost 76.5%, being the standard deviation 
over 7%. First, the addition of support ensembling increases the mean accuracy by around 1.5% while the 
standard deviation is decreased by more than 2%. Second, the misdiagnosis-sensitive learning has a less notice-
able impact, yet it also improves the overall accuracy and reduces its variability. Finally, the lung-aware region 
proposal network boosts the accuracy by 1.5% and reduces the standard deviation to only 2.82%, making the 
system outcome more predictable. Overall, the proposed additions yield an accuracy increase of 3% and a devia-
tion reduction of 4.48%.

Results.  Table 5 shows the results of our system on the COVID-SC dataset. We defined a baseline experiment 
in which we removed from the test set RT-PCR positive examples labeled as normal by experts (P_NORMAL) 
and negative examples with other COVID-related conditions (N_RELATED) and non-related conditions (N_
OTHER). In this ideal scenario, we achieve a 87.40% accuracy with a 91.42% sensitivity and 77.95% specificity.

We designed a series of experiments to evaluate how more challenging real world scenarios affect the per-
formance of our system in comparison with the ideal baseline. The same network weights were used for all 
experiments.

Adding negative cases with other conditions (N_OTHER) mostly affects the specificity. Thus, the precision 
in the positive class also drops around 10%, proving that more negative images are being classified as positive. In 
fact, the results are slightly worse in the COVID related case, with around 2% less sensitivity. However, the fact 
of adding examples with unseen conditions has a bigger impact than confusing negative patients with positives 
due to the visual similarities between their previous conditions and COVID-19.

On the other hand, adding P_NORMAL hinders the classification in the positive class. In this case, the sen-
sitivity decreases to 82.49% and the precision in the negative class drops to 59.66%. Thus, as these images are 
more visually similar to negative examples than the positive ones, the network tends to classify them as negative.

Finally, the last row in Table 5 represents the most challenging setting considering the complete test set. The 
sensitivity drops from 91.42 to 74.40% while the accuracy decreases around 17% getting 70.81%. It proves the 
necessity of new datasets such as COVID-SC to evaluate automatic triage systems in more realistic scenarios.

(9)VP = α ∗ sensitivity + β ∗ accuracy

Table 4.   Ablation studies.

Support set ensemble Misdiagnosis-sensitive learning Lung-aware Accuracy

✓ 77.93 ± 5.03

✓ ✓ 78.05 ± 4.56

✓ ✓ ✓ 79.48 ± 2.82

Table 5.   Performance on different COVID-SC testing setups: baseline experiment and, in following rows, the 
effect on performance of adding other categories.

Specificity N_Precision N_F1 Sensitivity P_Precision P_F1 Accuracy

base categories
N_NORMAL
P_MILD
P_MODERATE
P_SEVERE

77.95 ± 5.14 79.93 ± 4.78 78.64 ± 1.68 91.42 ± 3.07 90.80 ± 1.73 91.05 ± 0.92 87.40 ± 1.10

+ N_OTHER 63.03 ± 4.72 83.59 ± 3.95 71.75 ± 3.66 91.59 ± 2.33 78.70 ± 2.07 84.64 ± 1.69 80.11 ± 2.26

+ N_RELATED 62.40 ± 7.57 79.32 ± 9.32 69.05 ± 5.02 89.78 ± 6.75 80.95 ± 2.44 84.96 ± 3.11 79.85 ± 3.52

+ P_NORMAL 72.63 ± 11.87 59.66 ± 5.04 64.89 ± 5.68 82.49 ± 4.89 89.89 ± 3.65 85.86 ± 2.29 79.93 ± 2.91

+ N_OTHER
+ P_NORMAL 62.44 ± 10.44 63.30 ± 2.06 62.25 ± 5.58 79.71 ± 4.58 79.64 ± 3.21 79.49 ± 0.96 73.57 ± 1.30

+ N_OTHER
+ P_NORMAL
+ N_RELATED

58.96 ± 8.80 65.81 ± 3.99 61.54 ± 3.48 78.80 ± 6.27 74.40 ± 2.87 76.28 ± 1.69 70.81 ± 0.87
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Table 6 shows the results by severity level. All severe patients, 95.96% patients with moderate condition, and 
78.50% patients with mild condition are classified as positive. These findings prove that our method is not only 
capable of correctly classifying patients with moderate and severe conditions, but it also achieves good results in 
the P_MILD subset. In this table, we consider P_NORMAL as a different severity level to independently evalu-
ate the results in this challenging subset. This subgroup contains positive cases labeled as negatives by experts. 
Therefore, the visual information given by CXR images is not sufficient to correctly detect these positive cases. 
Moreover, the results obtained in the different COVID-negative categories prove that the inclusion of patients 
with other radiologically visible diseases (both N_OTHER and N_RELATED categories) can affect the perfor-
mance of COVID detection negatively. This negative effect is more noticeable in the N_RELATED case, in which 
the radiological findings are very similar to those of COVID-positive examples.

Table 7 shows the performance comparison between a conventional CNN architecture—ResNet-50— and 
the proposed approach in a testing setup where all four levels of severity are included. As can be seen, the archi-
tecture proposed in this work outperforms ResNet-50 in every single comparison. The most notable differences 
were obtained in the metrics related to the classification of COVID-positive patients. Specifically, the sensitivity 
was improved from 71.62 to 91.42% and the precision of the positive class was boosted from 62.81 to 90.80%. 
In this regard, we consider that our approach is more reliable as an automatic triaging system, as it is capable of 
detecting more COVID-positive patients.

We also compare our model with state-of-the-art automatic triage systems for COVID-19 based on CXR 
images on the COVIDGR-1.0 dataset19. Among the specific architectures designed for COVID-19 diagnosis we 
also include a generic ResNet-50 as a baseline. This network is fed with the whole image—ResNet-50 without seg. 
in Table 8—, and with the region of the lungs calculated using a lung segmentation network—ResNet-50 with 
seg. in Table 8. Moreover, we provide the results of two different versions of our approach to assess the impact of 
the support size in the model performance. Specifically, a 5- and 10-shot setups (5 and 10 images per category, 
respectively) are tested.

Table 8 shows how our approach generally achieves the best results on COVIDGR-1.0 with an accuracy of 
77.35% on average using a support set with 5 images per category and 79.10% if the support set is increased up 
to 10 images per category. It improves the previous best model, COVID-SDNet, by 1.17% and 3.00% respectively. 
In terms of sensitivity, which is a key metric for every triage method, our method with the 10-shot setup outper-
forms every other previous method by a large margin, ranging the differences from 11.37% (COVID-SDNet) 
to 37.14% (COVIDNet-CXR).

Table 9 shows the comparison of the best previous method, COVID-SDNet, and the same two versions of 
our approach presented in Table 8. The results are presented independently for each severity level in the COV-
IDGR-1.0 dataset. Both 5- and 10-shot configurations of our network outperform COVID-SDNet in every 

Table 6.   Accuracy results by category on COVID-SC.

N_NORMAL N_OTHER N_RELATED P_NORMAL P_MILD P_MODERATE P_SEVERE

82.75 ± 3.62 38.43 ± 10.41 25.41 ± 13.96 38.26 ± 11.80 78.50 ± 11.37 95.96 ± 4.30 100.00 ± 0.00

Table 7.   Results on COVID-SC testing with four levels of severity: P_NORMAL, P_MILD, P_MODERATE 
and P_SEVERE. Bold values indicates the best results for each metric.

Specificity N_Precision N_F1 Sensitivity P_Precision P_F1 Accuracy

ResNet-50 73.73 ± 5.07 79.46 ± 1.72 76.45 ± 3.40 71.62 ± 2.07 64.81 ± 4.89 67.94 ± 3.24 72.88 ± 3.40

ours 77.95 ± 5.14 79.93 ± 4.78 78.64 ± 1.68 91.42 ± 3.07 90.80 ± 1.73 91.05 ± 0.92 87.40 ± 1.10

Table 8.   Results on COVIDGR-1.0 testing with four levels of severity: P_NORMAL, P_MILD, P_
MODERATE and P_SEVERE. Bold values indicates the best results for each metric.

Specificity N_Precision N_F1 Sensitivity P_Precision P_F1 Accuracy

COVIDNet-CXR26 88.82 ± 0.90 3.36 ± 6.15 73.31 ± 3.79 46.82 ± 17.59 81.65 ± 6.02 56.94 ± 15.05 67.82 ± 6.11

COVID-CAPS31 65.74 ± 9.93 65.62 ± 3.98 65.15 ± 5.02 64.93 ± 9.71 66.07 ± 4.49 64.87 ± 4.92 65.34 ± 3.26

ResNet-50 without seg.19 79.87 ± 8.91 71.91 ± 3.12 75.40 ± 4.91 68.63 ± 6.08 78.75 ± 6.31 72.69 ± 3.45 74.25 ± 3.61

ResNet-50 with seg.19 78.41 ± 7.09 73.36 ± 4.66 75.46 ± 2.97 70.80 ± 8.26 77.17 ± 4.79 73.40 ± 4.01 74.60 ± 2.93

FuCiTNet50 80.79 ± 6.98 72.00 ± 4.48 75.84 ± 3.19 67.90 ± 8.58 78.48 ± 4.99 72.35 ± 4.76 74.35 ± 3.34

COVID-SDNet19 79.76 ± 6.19 74.74 ± 3.89 76.94 ± 2.82 72.59 ± 6.77 78.67 ± 4.70 75.71 ± 3.35 76.18 ± 2.70

ours (5-shot) 83.05 ± 7.60 75.22 ± 4.93 78.51 ± 2.46 71.64 ± 8.84 81.67 ± 5.70 75.73 ± 3.71 77.35 ± 2.45

ours (10-shot) 75.12 ± 6.50 85.30 ± 3.72 79.68 ± 3.88 83.96 ± 4.87 73.80 ± 4.87 78.37 ± 3.14 79.10 ± 3.41



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21511  | https://doi.org/10.1038/s41598-022-25754-6

www.nature.com/scientificreports/

severity level. Both methods achieve better results in patients with moderate and severe conditions, decreasing 
the accuracy in patients with mild severity. Nevertheless, our method outperforms COVID-SDNet in this chal-
lenging case by more than 10% with the 5-shot setup and by more than 16% with the 10-shot setup.

Discussion and conclusions
COVID-19 has had a big impact both in population health and the global economy. Since the pandemic out-
break, the governments have put a lot of effort into stopping the spread of the virus, which has been carried out 
by mobility restrictions, health security protocols, increasing the detection rate of asymptomatic patients and 
improving the workflow of health services. In this regard, triage plays a crucial role in the optimization of health 
resources. To avoid the overcrowding of health centers, some options were made available to the population, 
such as hotlines or drive-through testing. However, when the symptoms are more pronounced and the patient 
potentially requires medical care, in-hospital triage is needed.

Given that the affection for COVID-19 in symptomatic patients is radiologically observable in the lungs, 
imaging techniques are widely used as a reliable triage system51. Among the several X-ray systems that are 
currently developed, CXR images are the main election regarding triage, mainly because of the low cost and 
the portability of the acquisition devices. Nevertheless, the evaluation of an X-ray image is a time-consuming 
process, as an experienced radiologist has to perform a thorough examination and identify features that are in 
line with the imaging spectrum of COVID-19. The automation of this process can, thus, lead to a better use of 
human resources and so a better triage procedure.

In this work, we developed a fully automatic approach to detect COVID-19 in CXR images. It is based on 
few-shot learning and so enables for high performance with small datasets, which is the case of every newly 
discovered condition such as COVID-1917. On top of a base few-shot topology, we proposed three main addi-
tions with a view to adapt the learning workflow to this specific domain and thus improve the performance. 
Specifically, we included a region proposal network to force the detector to focus only on lung areas. This was 
achieved by combining a lung segmentation network and a random patch generator. Furthermore, we pro-
posed a combination of support sets to yield multiple estimations per image and then combine them through a 
weighted voting mechanism. Finally, we leveraged the severity scores provided in the assessed datasets to treat 
the COVID-19 detection as a multiclass problem, and included specific classification penalties to model the 
clinical misdiagnosis costs.

To assess the performance of this approach, we used the COVIDGR public database19, which contains more 
than 800 images. In addition, we developed COVID-SC, a database of 1,092 CXR images, comprising 439 
negative and 653 positive images according to the RT-PCR results. To the best of our knowledge, this database 
entails the most realistic clinical scenario for several reasons: it contains images acquired with the same type of 
portable device; it includes not only the RT-PCR diagnosis, but also the severity according to the RALE score, 
which allows for a fine-grained analysis; as opposed to databases that only contain normal CXR in the negative 
class19,21,23,24, it provides images belonging to patients affected by other observable diseases, classified into those 
related to COVID-19 and those which are not.

Every contribution was analyzed individually to assess the performance impact in the COVIDGR public 
database. The lung-aware region proposals and the misdiagnosis-sensitive learning helped to improve the results 
by a significant margin, both in terms of overall accuracy and standard deviation. Although the detection of the 
lung region has already been used by other authors as a preprocessing step19,36, we incorporated a more elaborated 
lung patch generation module logic into the few-shot architecture so it can work directly with the raw images.

The addition of multiple support sets also yielded a significant improvement with respect to the baseline 
model. This represents a new paradigm of ensembling approaches. Instead of combining different heterogene-
ous models—which has already led to successful COVID-19 detection methods34,35—, our method can be seen 
as a data ensembling procedure, which consists in the execution of multiple comparisons against different class 
prototypes by using the same model. This produced not only an overall accuracy improvement, but also a dra-
matic reduction of the diagnosis variability.

The proposed method was compared with other approaches in the same public dataset19. Our method pro-
duced the most balanced performance and the best overall accuracy. Furthermore, the reported performance 
across the different COVID-19 severity levels confirms that the proposed method outperforms the best previ-
ous model in every case. It is also worth noting that the greatest difference is achieved in the mild cases, whose 
detection is crucial in a triage process52.

We leveraged the wide range of categories present in the COVID-SC database to assess the performance of 
the proposed method in the most realistic scenario. Under the most favorable setting—negative images with 
no observable condition, and mild, moderate and severe positive images—, the overall accuracy was 87.4%. As 
expected, COVID-related and non-related diseases hindered the detection of negatives. However, every triaging 

Table 9.   Results by severity level on COVIDGR-1.0.

COVID-SDNet19 Ours (5-shot) Ours (10-shot)

P_NORMAL – 31.82 ± 18.25 41.63 ± 13.13

P_MILD 46.00 ± 7.10 56.20 ± 16.20 62.40 ± 9.91

P_MODERATE 85.38 ± 1.85 86.08 ± 7.15 89.38 ± 6.18

P_SEVERE 97.22 ± 1.86 98.47 ± 3.25 99.50 ± 1.70
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system is required to detect as many positive patients as possible, so it is preferable to lose negative detections 
if positive patients are better detected. In the same way, images belonging to positive yet asymptomatic patients 
worsened the detection of positives, which is clinically consistent given that even expert radiologists are not able 
to diagnose a positive patient if there are no radiologic findings.

The reported results also pointed out the noticeable performance difference of the same method in two 
different datasets, even if the databases are well documented, large, and presumably not biased regarding the 
acquisition device or the severity of the patients. In this regard, future work should involve the validation of 
the proposed approach in a wider corpus of CXR databases through a cross-dataset validation scenario, that is, 
the assessment of the performance obtained in datasets different from the ones used for the training process.

Moreover, the use of lung patches to make the predictions could be exploited to develop a visual explana-
tion mechanism, in which heatmaps can be generated to highlight those regions that contribute the most to the 
classification outcome. This would help the experts to easily check the behavior of the automatic classifier and 
validate it more thoroughly by comparing the heatmaps to clinical findings reported in the literature.

In conclusion, we proposed an accurate and fully automatic method for detecting COVID-19, which is based 
on deep learning and few-shot techniques. It was validated in a public database, outperforming the previous 
proposed methods in terms of detection accuracy. Furthermore, we developed COVID-SC, a novel CXR database 
with more than 1000 images organized into three non-COVID categories and four COVID categories, with a 
view to representing a realistic triage scenario. We also provided baseline results for the proposed system in this 
database, concluding that it could be useful for triage procedures and patient follow-up.

Data availability
The COVID-SC database is publicly available under request at https://​citius.​usc.​es/t/​covid-​sc.
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