
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

This a post-print of the article “Region-based multispectral image registration on heterogeneous
computing platforms” published in the Proceedings of IGARSS 2024 - 2024 IEEE International
Geoscience and Remote Sensing Symposium.

The published article is available on https://doi.org/10.1109/IGARSS53475.2024.10641884

D. Del Castillo, Á. Ordóñez, D. B. Heras and F. Argüello, "Region-Based Multispectral Image
Registration on Heterogeneous Computing Platforms," IGARSS 2024 - 2024 IEEE International
Geoscience and Remote Sensing Symposium, Athens, Greece, 2024, pp. 1008-1012, doi:
10.1109/IGARSS53475.2024.10641884.

https://doi.org/10.1109/IGARSS53475.2024.10641884

REGION-BASED MULTISPECTRAL IMAGE REGISTRATION ON HETEROGENEOUS
COMPUTING PLATFORMS

Daniel del Castillo1,2, Álvaro Ordóñez1,2, Dora B. Heras1,2, Francisco Argüello2

1 Centro Singular de Investigación en Tecnoloxı́as Intelixentes (CiTIUS),
Universidade de Santiago de Compostela, Spain.

2 Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, Spain.

ABSTRACT

Feature-based methods are widely used for the registra-
tion of remote sensing images because of their robustness
to viewpoint, scale, and light changes. However, they are
computationally demanding, especially when dealing with
multi or hyperspectral images. Hyperspectral Maximally Sta-
ble Extremal Regions (HSI-MSER) is a hyperspectral remote
sensing image registration method based on MSER for fea-
ture detection and Scale Invariant Feature Transform (SIFT)
for feature description. This article presents a first approach
to a parallel implementation of the HSI-MSER algorithm for
the registration of multispectral images on a heterogeneous
computing platform. The results of the registration capabili-
ties under extreme scaling and rotating conditions show that
the proposed parallel implementation obtains a speedup of
3.33× compared to the sequential implementation making it
suitable for applications with execution time constraints.

Index Terms— Multispectral, registration, heteroge-
neous computing, GPU, CUDA.

1. INTRODUCTION

Efficient alignment of remote sensing images captured by
drones or satellites plays a key role in a variety of applica-
tions. This process, known as image registration, involves ad-
justing scale, rotation, and translation to match images from
the same geographic area, crucial for tasks like change anal-
ysis over time or mosaic composition [1]. The registration
of multispectral images captured by drones for mosaic com-
position is a computationally demanding task that involves
aligning tens of high-resolution images of the same scene,
sometimes even requiring co-registration of the bands within
the same image. Managing the huge amount of captured

This work was supported in part by grants TED2021–130367B–I00 and
PID2022–141623NB–I00 funded by MCIN/AEI/10.13039/501100011033
and by “European Union NextGenerationEU/PRTR”. It was also supported
by Xunta de Galicia - Consellerı́a de Cultura, Educación, Formación Pro-
fesional e Universidades [Centro de investigación de Galicia accreditation
2019-2022 ED431G-2019/04 and Reference Competitive Group accredita-
tion, ED431C-2022/16], and by “ERDF/EU”.

data in reasonable time makes necessary the development of
efficient parallel registration techniques.

HSI-MSER is a hyperspectral image registration algo-
rithm based on a process of feature detection, particularly
regions of interest [2]. By efficiently utilizing spatial and
spectral information across different bands, the algorithm
generates descriptors for each region detected in each of the
images to be registered. The descriptors are then matched
between images to determine the best alignment. Despite
their good registration results for real images that present
noise and other alterations, feature-based methods, including
HSI-MSER, require high execution times due to the costly
stages involved in the registrations: feature detection, fea-
ture description, and feature matching. This is particularly
challenging in the case of hyper and multispectral images,
as in these cases searching for features across all spectral
bands is required. This makes it necessary to develop algo-
rithms that are tailored to exploit the computational resources.
One possible option is to exploit the parallelism available in
widespread hardware, like multi-core processors and GPUs.
Different implementations for image registration using GPUs
or multi-core processors have already been proposed in the
literature [3, 4] achieving large speedups. However, none of
them are based on region detection.

This article introduces a first approach to a parallel imple-
mentation of HSI-MSER for registering two high-resolution
multispectral images. The algorithm is implemented for a het-
erogeneous system, integrating a multi-core processor and a
GPU, and utilizes OpenMP and CUDA for efficient hardware
exploitation.

2. PARALLEL REGISTRATION OF
MULTISPECTRAL IMAGES USING HSI-MSER

The original HSI-MSER was specially designed to register
hyperspectral images. For this reason, it includes a band se-
lection stage to select the bands that are more suitable for the
registration process. However, this stage is not necessary for
multispectral images as the number of bands is much lower
and they are not as correlated as in hyperspectral images. For

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works. The final publication is available at
https://doi.org/10.1109/IGARSS53475.2024.10641884

1

https://doi.org/10.1109/IGARSS53475.2024.10641884

Fig. 1. Schematic of the proposed parallel implementation of HSI-MSER to register two multispectral images on a heteroge-
neous computing platform.

this reason, the band selection stage was removed in the im-
plementation presented in this article.

Figure 1 outlines the proposed parallel implementation of
HSI-MSER for the registration of two multispectral images
[2]. The algorithm comprises five stages: (1) extracting re-
gions, (2) describing regions, (3) matching regions, (4) band
combination, and (5) registering the images.

In the first stage, the regions of interest are extracted from
the images using the MSER algorithm [5]. MSER works by
identifying regions that remain stable over a wide range of im-
age intensity thresholds. To do that, a union-find data struc-
ture (implemented as a tree structure) is used to keep track of
the regions as the threshold is increased. All the pixels are
processed in order of intensity (from the darkest to the bright-
est and vice versa) and therefore each pixel is added to the
tree according to the intensity and position of the pixels that
have already been processed. This dependence on the order
of the pixels makes the parallelization of the stage challeng-
ing. If we try to split the image by intensity values or by its
spatial position to build the global tree in parallel, we will get
disjoint trees. For this reason, this stage is implemented by
carrying out parallel MSER detections on different chunks of
the image and joining the results.

Figure 1 illustrates how this is performed. First, the image
is divided into chunks of equal size. In each chunk, indepen-
dent MSER detections are performed in parallel by n threads
running on n cores using OpenMP (tidn−1 in Figure 1). To

avoid losing regions that are located in the boundaries of the
chunks, overlapping areas with the neighbouring chunks (in
grey color in Figure 1) are added. Since region detection does
not modify the image, memory can be shared and there is
no need for explicit communication between threads. Each
thread stores locally the regions it extracts. Finally, the re-
gions of each band are joined together to form the final set of
regions.

The extracted regions are then described using a descrip-
tor consisting of a spatial and a spectral part. The spatial de-
scriptor is computed using the SIFT [6] algorithm, while the
spectral one is the spectral signature of the region. This stage
has been parallelized using CUDA, particularly three main
kernels have been implemented: (1) orientation histograms,
(2) Gaussian blur, and (3) final descriptor. All of them involve
a high number of arithmetic and trigonometric operations that
are very efficiently computed in the GPU.

In the third stage, regions from both images are matched
on GPU using an approximation of the Euclidean distance [4].
This approximation allows to transform the calculation of the
distances between regions of the same band into matrix op-
erations, which have been efficiently parallelized on a GPU
using the cuBLAS library following the approach proposed
in [4]. After obtaining the distances between spatial descrip-
tors, the cosine similarity between the spectral descriptors of
the regions is computed. Finally, the regions are matched if
both the spatial distance and the spectral similarity are below

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works. The final publication is available at
https://doi.org/10.1109/IGARSS53475.2024.10641884

2

https://doi.org/10.1109/IGARSS53475.2024.10641884

a threshold [2].
The fourth and fifth stages are executed sequentially on

the CPU as they do not involve high computational costs. In
the fourth stage, the matches of the regions from all bands are
combined into a single set of matches in order to use all the in-
formation available in the last stage. Finally, in the fifth stage,
an exhaustive search is performed to find the best registration
parameters (scale, rotation, and translation) considering all
the possible pairs of matches [2].

3. RESULTS

The experiments were carried out on a PC with a quad-core
Intel i7-4790 CPU at 3.60 GHz and 24 GB of RAM. The se-
quential code was written in C and C++, and compiled using
the gcc and the g++ 10.5.0 versions with the O3 optimization
level enabled under Ubuntu 22.04. The parallel implementa-
tions were developed using the CUDA 12.3 toolkit. The GPU
used was an NVIDIA GeForce RTX 2070 with 8 GB of mem-
ory. The results of computation times and speedup provided
correspond to the average of ten independent executions.

Three different datasets named Reservoir, Parasol, and
House were considered for the tests1. Each dataset consists
of two images of 1280× 960 pixels and 5 bands captured by
a MicaSense RedEdge MX sensor in 2018 in different UAV
flights over Galician river basins (Spain). Consequently, the
images exhibit variations in scale, rotation, translation, per-
spective, and distortions.

The experiments consist of registering the images of each
dataset using the different implementations of the algorithm.
To evaluate the registration capabilities under extreme condi-
tions, a scaling factor between 1/2× and 5.5× is applied to
the images. For each factor, the images are rotated by 72 dif-
ferent angles between 0◦ and 355◦ with a step of 5◦. This
allows us to increase the dataset size.

Table 1 presents the range of correctly registered scale
factors for each image pair after applying the 72 different an-
gles and the execution times using the sequential and parallel
implementations of the HSI-MSER algorithm. The number
of correctly registered scale factors is shown in parentheses.
The CUDA version executes in parallel only the stages imple-
mented on the GPU (region description and matching), while
the second and third versions also parallelize the region ex-
traction stage using OpenMP with 4 and 8 threads, respec-
tively. The results show that the CUDA version obtains the
same results as the sequential version, while the CUDA +
OpenMP 4 and CUDA + OpenMP 8 versions obtain a slightly
lower number of correctly registered scale factors. The reason
for this decrease is that as the number of threads increases,
so does the number of chunks into which the image is di-
vided. As a consequence, the number of regions extracted de-

1These images were obtained in partnership with the Babcock company,
supported in part by the Civil Program UAVs Initiative, promoted by the
Xunta de Galicia.

creases as we are losing regions located in the boundaries of
the chunks. This can be mitigated by adding an overlapping
area between chunks as illustrated in Figure 2. As a result,
regions located in the boundaries of the chunks are recovered
(in pink color).

The last two columns of Table 1 present the results ob-
tained by adding an overlapping area of 20% and 30% be-
tween chunks. These show that the overlapping area allows
us to recover regions located in the boundaries of the chunks,
and therefore, the number of correctly registered scale factors
increases, particularly 5.3 to 6.3 scales on average.

The second row of Table 1 shows the execution times
needed to register each pair of images using the corresponding
implementation. The figures indicate that the best results are
obtained with the CUDA + OpenMP 8 implementation, which
takes 9.85 seconds on average compared to 42.92 seconds for
the sequential implementation. As can be seen in the penul-
timate column, adding an overlapping area of 20% between
chunks increases the execution time by almost 2 seconds on
average. This is because the overlapping area increases the
number of regions extracted. This results in a higher compu-
tational cost but also a higher number of correctly registered
scale factors.

Finally, Table 2 shows the execution times for each stage
of the registration process using the sequential and the CUDA
+ OpenMP 8 + 20% implementations for one of the datasets,
in particular, the House dataset. The results show that the
region extraction and description stages are the most time-
consuming stages. A speedup of 2.2× and 20.47× is obtained
for these stages, respectively. On average, the speedup ob-
tained for the whole process is 3.33×.

4. CONCLUSIONS

In this work, a first approach to a parallel implementation
of the HSI-MSER algorithm for the registration of high-
resolution multispectral images has been presented. The
algorithm has been implemented on a heterogeneous system
using OpenMP and CUDA. The results show that the pro-
posed parallel implementation achieves a speedup of 3.33×
on average compared to the sequential implementation at
the cost of lower registration capacity. The results also
demonstrate that this effect can be mitigated by adding an
overlapping area between chunks in the region extraction
stage.

As future work, we plan to further investigate the paral-
lelization of the region detection stage, exploring the parallel
construction of the tree to mitigate the loss of regions located
in the boundaries of the chunks.

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works. The final publication is available at
https://doi.org/10.1109/IGARSS53475.2024.10641884

3

https://doi.org/10.1109/IGARSS53475.2024.10641884

Table 1. Range of correctly registered scale factors after applying 72 different angles and execution times (in seconds) for each
pair of images using the sequential and parallel implementations of the HSI-MSER algorithm.

Dataset Sequential CUDA
CUDA +

OpenMP 4
CUDA +

OpenMP 8
CUDA +

OpenMP 8 + 20%
CUDA +

OpenMP 8 + 30%

Reservoir 1/2× to 3.0× (6) 1/2× to 3.0× (6) 1.0× to 3.0× (5) 1/2× to 2.5× (5) 1/2× to 3.0× (6) 1/2× to 3.0× (6)
44.95s 36.61s 13.52s 9.92s 12.18s 12.81s

Parasol 1/2× to 4.5× (9) 1/2× to 4.5× (9) 1/2× to 4.5× (9) 1/2× to 3.5× (7) 1/2× to 3.5× (7) 1/2× to 3.5× (7)
39.95s 31.87s 12.95s 9.15s 10.92s 11.46s

House 1.0× to 5.5× (10) 1.0× to 5.5× (10) 1.0× to 3.0× (5) 1.0× to 2.5× (4) 1.0× to 3.5× (6) 1.0× to 3.5× (6)
42.95s 33.72s 14.27s 10.49s 12.90s 13.79

Average (8.3) (8.3) (6.3) (5.3) (6.3) (6.3)
42.92s 34.07s 13.61s 9.85s 12.00s 12.69s

(a) Without overlapping

(b) 20% of overlapping

Fig. 2. Example of the recovery of regions by adding an overlapping area between chunks in the House images.

Table 2. Execution times (in seconds) for each stage of the registration process using the sequential and parallel implementations
of the HSI-MSER algorithm for the House dataset.

Stage Sequential (s)
CUDA + OpenMP 8

+20% (s) Speedup

Read images 0.04 0.04 -
Copy images
to the GPU - 0.13 -

Region extraction 25.35 11.52 2.20×
Region description 15.12 0.74 20.47×
Region matching 2.45 0.47 5.16×
Registration 0.01 0.01 -
Total 42.96 12.91 3.33×

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works. The final publication is available at
https://doi.org/10.1109/IGARSS53475.2024.10641884

4

https://doi.org/10.1109/IGARSS53475.2024.10641884

5. REFERENCES

[1] Barbara Zitova and Jan Flusser, “Image registration
methods: a survey,” Image and vision computing, vol.
21, no. 11, pp. 977–1000, 2003.

[2] Álvaro Ordóñez, Álvaro Acción, Francisco Argüello, and
Dora B. Heras, “HSI-MSER: Hyperspectral image regis-
tration algorithm based on MSER and SIFT,” IEEE Jour-
nal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 14, pp. 12061–12072, 2021.

[3] Jorge Fernández-Fabeiro, Arturo Gonzalez-Escribano,
and Diego R Llanos, “Distributed programming of a
hyperspectral image registration algorithm for heteroge-

neous GPU clusters,” Journal of Parallel and Distributed
Computing, vol. 151, pp. 86–93, 2021.

[4] Álvaro Ordóñez, Francisco Argüello, Dora B Heras, and
Begüm Demir, “GPU-accelerated registration of hyper-
spectral images using KAZE features,” The Journal of
Supercomputing, vol. 76, no. 12, pp. 9478–9492, 2020.

[5] Jiri Matas, Ondrej Chum, Martin Urban, and Tomás Pa-
jdla, “Robust wide-baseline stereo from maximally stable
extremal regions,” Image and vision computing, vol. 22,
no. 10, pp. 761–767, 2004.

[6] David G Lowe, “Distinctive image features from scale-
invariant keypoints,” International journal of computer
vision, vol. 60, no. 2, pp. 91–110, 2004.

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works. The final publication is available at
https://doi.org/10.1109/IGARSS53475.2024.10641884

5

https://doi.org/10.1109/IGARSS53475.2024.10641884

