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Abstract: Human evaluation of neural models in Natural Language Generation (NLG) re-
quires a careful experimental design in terms of the number of evaluators, number of items
to assess, number of quality criteria, among other factors, for the sake of reproducibility
as well as for ensuring that significant conclusions are drawn. Although there are some
generic recommendations on how to proceed, there is not an established or accepted eval-
uation protocol admitted worldwide yet. In this paper, we address empirically the impact
of the number of items to assess in the context of human evaluation of NLG systems. We
first apply resampling methods to simulate the evaluation of different sets of items by each
evaluator. Then, we compare the results obtained by evaluating only a limited set of items
with those obtained by evaluating all outputs of the system for a given test set. Empirical
findings validate the research hypothesis: well-known resampling statistical methods can
contribute to getting significant results even with a small number of items to be evaluated
by each evaluator.
Keywords: Natural Language Generation, Human Evaluation, Resampling Methods.

Resumen: La evaluación humana de modelos neuronales en Generación de Lenguaje Nat-
ural (GLN) requiere un diseño experimental cuidadoso de elementos como, por ejemplo,
número de evaluadores, número de ı́tems a evaluar, número de criterios de calidad, en-
tre otros, para ası́ garantizar la reproducibilidad de experimentos, ası́ como para asegurar
que las conclusiones extraı́das son significativas. Aunque existen algunas recomendaciones
genéricas sobre cómo proceder, no existe un protocolo de evaluación consensuado, general
y aceptado. En este artı́culo prestamos atención a cómo influye el número de elementos
a evaluar en la evaluación humana de los sistemas de GLN. Aplicamos distintos métodos
de remuestreo para simular la evaluación de distintos conjuntos de ı́tems por parte de cada
evaluador. A continuación, comparamos los resultados obtenidos evaluando sólo un con-
junto limitado de ı́tems con los obtenidos evaluando todas las salidas del sistema para el
conjunto completo de casos de prueba. Las conclusiones derivadas del estudio empı́rico
corroboran la hipótesis de investigación de partida: el uso de técnicas de remuestreo ayuda
a obtener resultados de evaluación significativos incluso con un número pequeño de ı́tems a
evaluar por cada evaluador.
Palabras clave: Generación de Lenguaje Natural, Evaluación Humana, Remuestreo.

1 Introduction

There is debate about the use of automatic
metrics versus human judgement when evaluat-
ing the output of Natural Language Generation
(NLG) systems. Reiter (2018) stated that com-
monly used automatic metrics, such as ROUGE
(Lin, 2004), METEOR (Banerjee and Lavie,

2005), or BLEU (Papineni et al., 2002), do not
correlate well with human judgements for the
evaluation of NLG systems. This is mainly be-
cause the most popular metrics are based on
checking the n-gram overlap of the generated
sentence with a limited set of reference texts that
are considered correct, but do not cover all the
possible text variations that NLG systems may
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produce (e.g., paraphrases, synonyms, or alter-
nate realizations). Accordingly, other metrics
have emerged, such us embeddings-based metric
to measure similarity between reference and can-
didate texts like BERTScore Zhang et al. (2020),
or pre-trained metrics, i.e., neural models trained
to learn how to automatically do an evaluation
task, like BLEURT (Sellam, Das, and Parikh,
2020) or NUBIA (Kane et al., 2020). More re-
cently, there are studies regarding the applica-
tion of ChatGPT for assessing generation tasks
(Wang et al., 2023). However, despite these ef-
forts to produce more and more data-driven au-
tomatic metrics, which are inspired from the ma-
chine learning community, the lack of correla-
tion with human evaluation persists (Moramarco
et al., 2022).

On the other hand, Van der Lee et al. (2021)
recommended some best practices for human
evaluation, and the NLG research community is
doing efforts to set the basis for reproducible hu-
man evaluation (Belz et al., 2023; Belz, 2022).
But, in spite of this, there is still a lack of for-
mal protocol for carrying out NLG human eval-
uation. Furthermore, conducting human evalua-
tion properly is not straightforward, since there
are multiple factors that must be considered, be-
ing among them the textual properties to be as-
sessed, the evaluation criteria that human evalu-
ators must follow, the number of human evalua-
tors, the number of items to evaluate, the number
of questions per item, the statistical tests, tools
for data analysis, etc.

In this paper we focus on validating the fol-
lowing research hypothesis: “well-known resam-
pling statistical methods can contribute to getting
significant results even with a small number of
items to be evaluated by each evaluator”. Thus,
we aim to prove empirically the influence of the
number of items presented to an evaluator in the
context of human NLG evaluation. Starting from
a set of texts generated by an NLG system (i.e.,
a set of items to be evaluated), we research on
the minimal number of texts to be assessed for
ensuring that the evaluation results obtained are
significant.

More precisely, we apply two resampling
methods to simulate multiple evaluations, thus
exploring the effect of different number of items
per evaluation. As far as we know, this is the first
empirical study regarding the impact of the num-
ber of items to assess in NLG human evaluation.
Notice that the concept of “item” may vary de-
pending on the context. In the context of NLG
evaluation, some researchers may understand as

“item” each criteria used to manually evaluate
the text (e.g., coherence, quality, etc.), but in this
paper item refers to each text to be evaluated.

The rest of the manuscript is organized as
follows. Section 2 introduces some preliminary
concepts. Section 3 presents the methods to be
used for the experimentation described in Section
4. Finally, Section 5 concludes the paper with
some final remarks and points out future work.

2 Background
One of the parameters to be set when designing a
human evaluation process is the number of items
(i.e., either the number of questions an evalua-
tor must answer or the number of tasks an eval-
uator must do) to obtain sufficiently reliable and
representative results, while avoiding work over-
load. However, selecting a representative number
of items is not a trivial task and depends on the
type of study you are conducting.

In the field of statistics, there was a tendency
to use the “n=30 rule-of-thumb” and set at least
30 as the default minimal number of questions
or tasks for any study, but, to the best of our
knowledge, without any scientific justification or
empirical evidence. A possible explanation for
this may have its origin in the pre-computer era,
when all the calculations were made by hand.
Student (1908) described how, when calculating
the probable error of correlation coefficients, the
best results were obtained with a sample size of
30 and one of the conclusions was “with samples
of 30 [...] shows that the mean value approaches
the real value [of the population] comparatively
rapidly”. Afterwards, the choice of this “mag-
ical” number as a sufficient sample size to get
sounded results (from a statistical viewpoint) was
maintained for decades, arguing that 30 samples
were enough to hold the central limit theorem.
Years later, in the computer era, this belief was
deprecated in favor of bootstrap-based diagnos-
tics (Hesterberg, 2008).

In the context of NLG human evaluation, Van
der Lee et al. (2021) stated that “there should
also be a sufficient number of outputs, so that a
couple of particularly good or bad items do not
skew the results too much. However, the number
of items to evaluate depends heavily on the di-
versity of the sample, so we cannot give any spe-
cific recommendations here.”. In their analysis of
89 papers, they noted that there was a median of
100 items utilized for human evaluation. How-
ever, the quantity of items varied widely, ranging
from 2 to 5400, indicating a significant disparity.
Thus, there is no general rule to determine the
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number of items that must be evaluated to ob-
tain a reliable evaluation of an NLG system. Of
course, the smaller the number of items required
to get significant results the better. But beware of
the negative oversimplification risk.

3 Methods
We aim to measure empirically the influence of
the number of items when carrying out human
evaluation of an NLG system. Considering that
the number of items in our context refers to the
number of texts to be evaluated when assessing
the goodness of an NLG system, we will start
from a large pool of texts evaluated by humans
(what is taken as the baseline). Then, we will ap-
ply different resampling strategies in the search
for the minimal set of texts taken from the ini-
tial pool that is required to draw sounded conclu-
sions, i.e., to extract insights with a reasonable
statistical significance. Before going in depth
with the experimental study, let us introduce the
resampling methods (see Section 3.1) and statis-
tical tests (see Section 3.2) to be used later in Sec-
tion 4.

3.1 Resampling methods
In statistics, resampling refers to the creation
of new synthetic samples from observed or real
ones. There are different methods to perform re-
sampling such as cross-validation, permutation,
subsampling or bootstrap. The latter is the one
we used in our experiments and is introduced
here to better understand the upcoming sections.

Bootstrap is an approach to statistical infer-
ence proposed by Efron (1979) which translates,
in practice, the construction of different resam-
pling schemes to approximate the sample distri-
bution of a statistic (i.e., a function of the sam-
ple). The basic idea of bootstrap is that it is pos-
sible to make inferences about a given population
from a reduced but representative sample of such
population. If the target population were known,
then we may measure the degree of agreement
between the data distributions associated with the
selected sample and with the entire population.
Imagine that we desired to use answers to a sur-
vey to predict the result of a coming election in a
city. If we may conduct the survey with all peo-
ple who is entitled to vote, then we may have a
high confidence in the predictive power of results
of such survey. However, conducting a survey
with the entire population is very expensive and
sometimes even impossible because some people
may refuse to take part. In practice, we should
look for the smallest sample of the population

that is representative enough of the entire popula-
tion, so we can optimize resources and maximize
the chance of getting significant results. How-
ever, what is the size of the smallest (but yet rep-
resentative, for a certain significance) sample?
Can we say that collecting answers to the survey
by 30 people is enough? There is not a magical
number a priori for the optimal sample size be-
cause the predictive power of the survey is not
only a matter of quantity but also a matter of “in-
ference” quality.

With the bootstrap method, the inferences are
performed regarding synthetic samples, and they
are derived by resampling from the given data
which represents a subset of the target popula-
tion. The true error in a sample statistic against
its population is unknown because the entire pop-
ulation is unknown. However, the quality of in-
ference of each synthetic sample from resampled
data is measurable if we take as baseline the full
initial sample (assuming it represents well the
data distribution in the entire target population).

In short, the procedure to apply bootstrap is
as follows:

1. Obtain a data sample that will be the “pop-
ulation” over which subsampling is applied.

2. Choose the number of synthetic subsamples
(replications) to be generated.

3. Choose a subsample size (s) per
replication.

4. For each replication:

(a) Produce a new synthetic subsample
with replacement of size s.

(b) Estimate the quality of the generated
subsample by computing the desired
statistic.

5. Aggregate statistics for all replications.

It is worth noting that using the bootstrap
method, for each replication, we always get a
sample of the chosen size with replacement. For
example, if the population includes 4 values such
as [a,b,c,d] and we set 3 as subsample size, then
we may obtain something like [a,a,c], where
some values in the generated sample can be re-
peated. Thus, all values in the original popu-
lation have the same probability to be selected
when filling in each position in each new syn-
thetic sample. On the contrary, if we applied
Resampling without Replacement (RWOR), for
each replication, then repetition of values is not
allowed. In our experiment, we will test both
bootstrap and RWOR.
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3.2 ANOVA for discrete distributions
The analysis of variance (ANOVA) is a statistical
test to compare the means of two different groups
or populations (Fisher, 1992). ANOVA produces
as output a number (named as F-statistic) and a p-
value which supports or rejects the null hypoth-
esis. In an ANOVA test, the null hypothesis is
that the means of the groups being compared are
the same, while the alternative hypothesis is that
group means are different. This way, if the p-
value obtained from the test is less than the usual
α significance levels (0.1, 0.05, 0.01), then the
null hypothesis can be rejected, and we can state
that at least one of the means is different from
the others. Then, different post-hoc tests can be
applied to find out for which specific group the
mean is different Otherwise, the null hypothesis
cannot be rejected and therefore, we do not have
enough evidence to say that there is a significant
difference between the groups under comparison.

Even if ANOVA was originally defined for
continuous data, there are some ANOVA exten-
sions to treat properly also discrete data (De Leon
and Zhu, 2008). In our case, we will use a vari-
ation of the ANOVA test which is more suitable
to deal with discrete distributions. Namely, the
function used is called discANOVA, from the
WRS2 package in R (Mair and Wilcox, 2020).
This function checks if the null hypothesis (i.e.,
that for two or more independent groups, the cor-
responding discrete distributions are identical) is
satisfied. More precisely, discANOVA verifies
if the groups have identical multinomial distribu-
tions.

It is worth noting that the power analysis done
with software tools like G*Power (Faul et al.,
2009) helps designers estimate the number of
participants that are required in a user study with
the aim of achieving significant results. How-
ever, as far as we know there is not any power
analysis associated with the estimation of the
number of items to assess by each participant.

4 Experimentation
For testing empirically the influence of the num-
ber of items in an NLG evaluation procedure, we
followed the next steps: (i) we used a real NLG
system to generate some texts (see Section 4.1);
(ii) we proceeded with the human evaluation of
all the generated texts (see Section 4.2); (iii) we
created different prototypical evaluator profiles
(see Section 4.3); and (iv) we tested the influence
of the number of items for each of the evaluator
profiles previously defined (see Sections 4.4 and
4.5).

Figure 1: Example of question in the survey.

4.1 NLG system
We searched in the literature for a neural NLG
system that may be used for generating the pool
of texts to be evaluated, and we found that
González Corbelle et al. (2022) released an NLG
system along with the related dataset. Moreover,
all the resources explained in the paper were
available to reproduce the generation of texts.

The NLG system consists of a neural model
which is adapted for a data to text (D2T) task
in the context of meteorology. It generates short
textual descriptions from meteorological tabular
data. More precisely, it is an adaptation of a
Transformer-based D2T model that initially was
designed to generate chart captions (Obeid and
Hoque, 2020). Regarding the dataset, we used
the same as in the original model, composed of
more than 3000 pairs of meteorological data and
texts. We trained our model from scratch fol-
lowing the instructions given in the original pa-
per (regarding the same parameters as well as the
training, validation, and test partitions). As a re-
sult, we produced a total of 273 texts associated
with the given test partition. These texts consti-
tute the population to be evaluated in the follow-
ing sections.

4.2 Human Evaluation
We designed an evaluation survey for assessing
all the automatically generated texts. Each ques-
tion from the survey was composed with a repre-
sentation of the tabular input given to the system
and the generated text.

The tabular data inputs represent the state of
the sky for 32 different meteorological zones and
3 periods of the day (morning, afternoon, and
night). Interpreting these 96-values table and
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Score levels for evaluation

Very bad The description is not readable
and does not match the data
shown in the images, hallucina-
tions are perceived in the gener-
ated text.

Bad The description is not easy to
read even though the content of
the text is correct, but it ignores
important information.

Fair The description is readable, but
not excessively natural. What is
mentioned in the text is present
in the data, but it is not com-
plete enough.

Good The description is well con-
structed, readable, and natural,
but perhaps it could have men-
tioned some other relevant data
present in the images.

Very Good The description is so readable,
natural, complete, and consis-
tent with the data shown that
could be considered a human
text.

Table 1: Instructions given to the evaluators to
score the texts based on their fluidity, naturalness,
and content.

checking if the generated text describes the data
correctly is a tedious task for an evaluator, so
we opted for a simplified view of the input data.
More precisely, we used the images available in
the original data repository1 instead of providing
evaluators with raw data. For each question in
the survey (see example in Figure 1), evaluators
had to look at 3 meteorological maps (i.e., one
for each period of the day) and rate how well
(in a 5-point Likert scale from “Very Bad” to
“Very Good”) the observed state of the sky is de-
scribed by the given text (which was automati-
cally generated by the D2T system). Before the
evaluation, evaluators were given clear instruc-
tions about how to score the texts, based on their
fluidity, correctness, and content (see Table 1).

1https://gitlab.citius.usc.es/
gsi-nlg/meteogalicia-es

Annotators Cohen’s κ Fleiss’ κ

1 vs. 2 0.2128

1 vs. 3 0.2565 0.2188

2 vs. 3 0.2119

Table 2: Inter-Annotator Agreement coefficients:
pair-wise Cohen’s Kappa and global Fleiss’
Kappa.

Three different evaluators with experience in
the NLG field assessed the 273 texts generated
by the system. Their Inter-Annotator Agreement
was calculated using both the Cohen (1960) and
Fleiss (1971) Kappa coefficients (see Table 2).
Regarding the pair-wise agreement, i.e., the Co-
hen’s Kappa coefficient, we observe how the de-
gree of agreement among the pairs of evaluators
is similar in general (between 0.2 and 0.3). Nev-
ertheless, going more into detail we could con-
clude that annotators 1 and 3 have the best agree-
ment on their responses. Regarding the global
agreement, i.e., the Fleiss’ Kappa coefficient, the
reported value (0.2188) is in the same range of
values reported by the Cohen’s coefficient. Ac-
cording to the Kappa statistic interpretation (Alt-
man, 1991), both the pair-wise and global agree-
ments are in the range 0.21 ´ 0.4, that it is con-
sidered a “Fair Agreement”. However, the co-
efficients obtained are closer to the low part of
the range, especially the Fleiss’ Kappa, which
is far from the 0.41 ´ 0.6 range considered as
“Moderate Agreement” and even further from the
“Good/Substantial Agreement” (0.61 ´ 0.8) that
is deemed as desirable. This highlights the diffi-
culty of the NLG evaluation task.

4.3 Evaluator profiles
For the sake of generality, we designed five dif-
ferent prototypical evaluator profiles taking as
reference the responses collected in the previous
survey. This was done in this way because we
were looking for synthetic but realistic prototyp-
ical profiles.

On the one hand, evaluators with tendency to
score high (“Good” or “Very Good”) most texts
and not to penalize too much bad texts are con-
sidered to belong to a positive profile, while the
evaluators whose tendency is just the opposite,
i.e., to rate low (“Very Bad” or “Bad”) most texts,
are considered as belonging to a negative pro-
file. On the other hand, we can consider “bipo-
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lar” evaluators who tend to both extremes, i.e.,
only use very high and very low scores, or “neu-
tral” evaluators who tend to “Fair” score for most
cases. Bipolar evaluators are associated with a
polarized profile, while neutral evaluators are as-
sociated with a neutral profile. In addition, there
is a random profile which represents evaluators
who vary randomly their scores in each question
without any pre-defined criteria and do not fit in
a specific evaluator profile of those already de-
fined.

Considering these five evaluator profiles (pos-
itive, negative, neutral, polarized, and random),
we proceed to generate their characteristic score
distributions, by simulating as if an evaluator be-
longing to each of the profiles had evaluated all
the cases under study. We take as a starting point
the real scores collected in the previous survey
and the generation procedure is made up of the
following three steps:

1. Transform all the responses from the
three real human evaluators into three
categories: negative, fair, and positive re-
sponses.2 Since we had five possible scores
in a 5-point Likert scale, we aggregated
all responses corresponding to “Very Bad”
or “Bad” in the “negative” category, while
responses associated to “Good” or “Very
Good” go to the “positive” category. The
“fair” category is made up of all responses
with “Fair” scores.

2. Aggregate the three evaluators’ scores
into a global curated score: For each ques-
tion, we apply the majority voting aggrega-
tion rule, i.e., if there are at least two eval-
uators that agree in the category of the re-
sponse (negative, fair, positive), then such
category defines the global score. Other-
wise, the question is discarded from the ag-
gregation process. As a result of the aggre-
gation stage, we have a dataset with 246 cu-
rated cases, i.e., those cases in which there
is at least a two-evaluators agreement.3 The
global distribution of scores is as follows:
89 cases are negative, 35 cases are fair, and
122 cases are positive (see Figure 2d).

3. Create the five prototypical evaluator
profiles: We re-define 5-value distributions
following the evaluation tendencies that are

2Note that here we are talking about response categories
and not about evaluator profiles.

3Due to disagreement among evaluators, 27 cases were
discarded.

characteristic for each prototypical profile.
From the dataset that we curated in the pre-
vious step, depending on the selected pro-
file, we re-assign the cases into a different
percentage for “Very Bad”, “Bad”, “Fair”,
“Good”, and “Very Good” scores. Figure
2 shows the resultant score distribution for
each evaluator profile, based on the pro-
files of the three human evaluators that were
taken as reference. Figure 2d depicts the ag-
gregated global scores from which the dif-
ferent evaluator profiles were generated. To
do that, for each profile, the negative val-
ues are reassigned as “Very Bad” and “Bad”
scores, while the positive values are reas-
signed as “Good” and “Very Good” scores.
All the transformations are made in agree-
ment with the expected tendencies for each
evaluator profile. For example, if we look
carefully at the distribution of cases in the
Positive Profile (see Figure 2i) we can no-
tice that from the 89 negative aggregated
scores (see Figure 2d) 5% of cases are asso-
ciated to the “Very Bad” score and 95% of
cases are associated to the “Bad” score. Re-
garding the 122 positive values in the same
picture, 50% of cases are associated to the
“Good” score and the other 50% of cases
is associated to the “Very Good” score.
This way we produce a synthetic distribu-
tion of scores which is realistic (because it
is grounded on the original human evalu-
ations) but follows the expected tendency
towards positive optimistic scores. Similar
transformations produce the rest of profiles
as depicted from Figure 2e to Figure 2h, al-
ways taking as starting point the aggregated
global scores (Figure 2d) extracted from the
real human evaluations.

4.4 Resampling tests
In this section, we describe how to test the in-
fluence of the number of items in an NLG eval-
uation procedure. Considering the whole set of
texts (S) generated by a system for a given test
partition, if we evaluate a subset of texts S̃ Ă S,
some questions arise:

• How representative is S̃ (with respect to S)?

• Is the score distribution when evaluating S̃
the same as when evaluating S (considering
the same evaluator or at least the same pro-
totypical evaluator profile)?

• Which is the minimum number of samples
in S̃ for yielding results as precise as the
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(a) Evaluator 1. (b) Evaluator 2. (c) Evaluator 3.

(d) Aggregated Global Scores. (e) Random Profile. (f) Polarized Profile.

(g) Negative Profile. (h) Neutral Profile. (i) Positive Profile.

Figure 2: Original scores set by human evaluators (2a-2c), overall aggregated scores (2d), and generated
score distributions for the synthetic prototypical evaluator profiles (2e-2i). The number below the bar
labels is the percentage of negative/positive aggregated scores that were transformed into each level.

ones obtained with the whole set S?

• Does the number of items selected for S̃
have the same influence on different eval-
uators (or at least on different prototypical
evaluator profiles)?

In the search for answers to the previous ques-
tions, the research hypothesis to validate is the
following: we can approximate the “real” score
distribution of an evaluator (i.e., the score ob-
tained when such evaluator evaluates all texts in
S) by evaluating only the items in S̃ and then ap-
plying a resampling method.

With the aim of testing if we can accept/reject
the previous hypothesis, we apply bootstrap and
RWOR resampling methods (as described in Sec-
tion 3.1) on all the distributions shown in Fig-
ure 2. We set α “ 0.1. The number of repli-
cations is set to 1000. The sample size, which
corresponds to the number of items to evaluate,

ranges from 2 to 245. For each number of items
tested in each of the distributions, we get 1000
p-values from the discANOVA output (i.e., one
per replication). For each p-value, if it is lower
than α, then we can say that in the given repli-
cation the resampled set of items S̃ has a distri-
bution deemed as statistically different from the
entire population S. It is worth noting that we
count how many replications (out of 1000) yield
to reject the null hypothesis: “the means of the
groups S and S̃ are the same”.

4.5 Results
Figure 3 summarizes the reported results. The
comparison pays attention to the resampling
methods (i.e., bootstrap and RWOR) and the type
of evaluators (i.e., synthetic prototypical evalua-
tor profiles vs. real evaluators).

The general trend is that for a small number
of items (i.e., less than 30) the hypothesis that
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(a) Bootstrap: human evaluators. (b) Bootstrap: prototypical evaluators.

(c) RWOR: human evaluators. (d) RWOR: prototypical evaluators.

Figure 3: Results of running bootstrap and RWOR. For each number of items in the horizontal axis, 1000
samples were generated, and the picture shows the percentage of samples for which p-value ă 0.1 when
compared to the real distribution using discANOVA.

the two distributions are considered equal is re-
jected more often, no matter either the resam-
pling method or the type of user. In the case of
RWOR, values of 0% of hypothesis rejection are
reached from 120 items on in some of the proto-
typical profiles (see Figure 3d), while for boot-
strap the values tend asymptotically to 0% but
never reach this value (see Figure 3b).

If we stick to reality, getting an exactly equal
distribution from a small number of items is prac-
tically impossible. Therefore, we have estab-

lished as a threshold of acceptance the cases in
which less than 10% of the replications reject the
hypothesis that the distributions are considered
equal. Taking this threshold as a reference, we
can see in Table 3 from what number of items
less than 10% of cases reject the hypothesis, for
each method and evaluator profile. The table also
includes the minimal number of required items
in case of establishing a smaller threshold value
such as 5% or 1%. It is easy to appreciate how
the smaller the pre-defined threshold, the bigger
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the number of items that are required to get sig-
nificant results.

Bootstrap RWOR
Threshold 10% 5% 1% 10% 5% 1%
Eval 1 16 75 240 6 37 75
Eval 2 22 70 235 11 37 80
Eval 3 14 55 220 5 36 75
Positive 23 65 210 10 44 70
Negative 17 70 220 8 38 85
Polarized 18 80 240 9 38 85
Neutral 24 90 245 9 36 90
Random 18 55 210 8 27 65

Table 3: For each human evaluator and for each
prototypical evaluator profile, number of items
from which the % of samples with a p-value ă

0.1 is always lower than a pre-defined threshold
as illustrated in Figure 3 (10%, 5%, 1%).

If we look at the bootstrap method, the evalu-
ator that first reaches the threshold of 10% of re-
jection is the third one (Eval 3 in Figure 3a) with
14 items. In addition, the prototypical profiles
that need the most items to achieve a distribution
equivalent to the original one are the Neutral and
Positive profiles, with 24 and 23 items, respec-
tively (see Figure 3b). This is not the case for
RWOR (see Figure 3c) which yields much lower
numbers, with the distribution of Eval 3 corre-
sponding to the lowest value (5 items), while
Eval 2 is associated with the highest value (11
items).

On the one hand, taking the bootstrap method
as a reference, with a rejection threshold of 10%,
we could say that for any of the tested evaluators
and prototypical profiles, from at least 24 items,
we could obtain a distribution of scores equiva-
lent to performing the complete evaluation of all
the curated 246 test cases. On the other hand,
if we consider the RWOR method for the same
threshold, the number of items to obtain a distri-
bution equivalent to the original one is reduced
to no more than 11, for all evaluators and proto-
typical profiles tested in this experiment.

To sum up with, reported results validate our
research hypothesis for the specific experimen-
tal setting under consideration, i.e., thanks to the
use of resampling methods we can get sounded
evaluation insights while requiring a very small
number of items to be evaluated. The actual num-
bers are detailed in Table 3. For a 10% thresh-
old, in the worst case, only 9.75% of the items
in S needs to be evaluated. In the best case, the

percentage of items to evaluate is only 2%. If a
smaller threshold were required, then the num-
ber of items should be bigger. Moreover, the
number of items required by RWOR is always
much smaller. In the worst case, (i.e., the Neutral
prototypical profile with threshold value equal to
1%) the required number of items is 36.58% of
all the items in S.

5 Final Remarks and Future Work
In this paper we tested the influence of the num-
ber of items in a human evaluation of NLG sys-
tems. To do so, we first carried out an evaluation
with three different raters on a pool of texts gen-
erated by a Data-To-Text neural system. Then,
with the scores obtained from the evaluation of
all the texts, we created different prototypical
evaluator profiles (that are synthetic but realis-
tic because they are grounded on the previous
human evaluations). Finally, using resampling
methods, we simulated evaluations in the search
for the minimal number of items that is required
to get sounded insights.

After carrying out the experimentation and
analyzing the results obtained, we can conclude
that in our case is possible to approximate the dis-
tribution of evaluations of a real set of texts from
a smaller subset of evaluated items. In our exper-
iment, with a test set of 246 items and each text
evaluated in a 5-point Likert scale, it would be
sufficient to evaluate 24 items (i.e., about 10%
of items randomly taken from the entire pool
of texts) to ensure that, no matter the prototyp-
ical evaluator profile, we obtain a score distribu-
tion equivalent to evaluating all the texts gener-
ated by the system in at least 90% of the cases.
This fact validates the research hypothesis under
study: “well-known resampling statistical meth-
ods can contribute to get significant results even
with a small number of items to be evaluated by
each evaluator”.

Regarding the already mentioned “n=30 rule-
of-thumb” we can say that for the specific ex-
perimental setting we achieved good results even
without reaching 30 items in the evaluation.
Nonetheless, the interesting finding is that for
different evaluators and prototypical profiles this
number varies and seems that it is not possible to
have an ideal number of items for all evaluations
beforehand. Considering evaluators with differ-
ent profiles may mean that approximating the ac-
tual distribution of scores requires a higher/lower
number of items to be evaluated. Moreover, the
minimal number of items depends also on the
pre-defined threshold. Thus, the ideal number of
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items to obtain reliable results in an NLG evalu-
ation cannot be generalized.

Anyway, our empirical study represents a step
forward in the search for an evaluation protocol
admitted worldwide. The empirical results high-
light the importance of carefully addressing the
experimental setting in human evaluation stud-
ies for NLG systems. It is crucial to pay special
attention to those parameters chosen in the con-
text of the evaluation process, being the number
of items especially relevant because it can reduce
dramatically the evaluation costs if it is properly
selected. In addition, this work provides readers
with a benchmark for choosing the ideal num-
ber of items for a given evaluation study, since
all related resources are available online as open
access.4

As future work, we plan to extend the empiri-
cal study to other types of evaluations in which
the scoring criteria and scale may vary from
those tested in this work. Also, alternative ap-
proaches or formulas for calculating and deter-
mining the minimum required number of items
to achieve representative results from a sample
will be examined. Moreover, we will consider
how resampling methods can be integrated in the
evaluation procedure to address the lack of re-
sources (e.g., evaluators availability) in NLG hu-
man evaluation.
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