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Abstract: Colorectal cancer (CRC) is one of the most common types of cancer worldwide. The KRAS
mutation is present in 30–50% of CRC patients. This mutation confers resistance to treatment with
anti-EGFR therapy. This article aims at proving that computer tomography (CT)-based radiomics
can predict the KRAS mutation in CRC patients. The piece is a retrospective study with 56 CRC
patients from the Hospital of Santiago de Compostela, Spain. All patients had a confirmatory
pathological analysis of the KRAS status. Radiomics features were obtained using an abdominal
contrast enhancement CT (CECT) before applying any treatments. We used several classifiers,
including AdaBoost, neural network, decision tree, support vector machine, and random forest,
to predict the presence or absence of KRAS mutation. The most reliable prediction was achieved
using the AdaBoost ensemble on clinical patient data, with a kappa and accuracy of 53.7% and
76.8%, respectively. The sensitivity and specificity were 73.3% and 80.8%. Using texture descriptors,
the best accuracy and kappa were 73.2% and 46%, respectively, with sensitivity and specificity of
76.7% and 69.2%, also showing a correlation between texture patterns on CT images and KRAS
mutation. Radiomics could help manage CRC patients, and in the future, it could have a crucial role
in diagnosing CRC patients ahead of invasive methods.

Keywords: KRAS mutation; colorectal cancer; texture analysis; radiomics; radiogenomics

1. Introduction

The carcinogenesis of colorectal cancer is a heterogeneous process encompassing
a series of genetic, epigenetic, and molecular changes in the cells that line the colonic
mucosa [1,2]. These changes are influenced by dietary, environmental, and microbiotic
factors and the host’s immune response [3,4]. The successive activation of oncogenes
(KRAS, NRAS, BRAF, PIK3CA, ERRB2) while inactivating tumor suppressor genes (APC,
TP53, PTEN, TGF-β, DCC) guides the adenoma–carcinoma transition [5,6]. KRAS is a gene
of the RAS/MAPK pathway. RAS proteins are a family of proteins expressed in all cells
within the intracellular cascade associated with tyrosine-kinase receptors. This pathway
stimulates cell proliferation, differentiation, adhesion, apoptosis, and migration [7]. Up to
60–80% of colorectal cancers overexpress EGFR (epidermal grow factor receptors), which
are tyrosine-kinase receptors, and this is an important component in the initiation and
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progression of colorectal cancer [8,9]. Anti-EGFR antibodies (cetuximab or panitumumab)
have a therapeutic effect in patients with colorectal cancer. When there is a mutation in
this pathway, such as the KRAS mutation, these therapies cannot be employed because
they confer resistance to EGFR antibodies. The KRAS mutation is present in 30–50% of
colorectal cancers [9], and this mutation is associated with worse survival, so it is considered
a negative prognostic factor [10,11].

Radiomics is the transformation of radiological images into structured data that can
be used to support decision-making in day-to-day clinical practice. Data that are not
visible to the human eye are taken into account through radiomic analysis of a radiological
image [12,13]. The development of radiomics is more pronounced in the field of oncology.
There have been several studies published in recent years using radiomics in different
cancers and using different imaging modalities, such as magnetic resonance imaging (MRI),
ultrasound, and CT.

This article aims to predict the presence of KRAS mutation in colorectal cancer patients
using a CT-based radiomics model.

A second objective of this article is to explore the performance of clinical data and
whether it can improve the radiomic model when both are combined.

To achieve these objectives, it is necessary to extract the radiomics features from the CT
images and automatically classify the patients as KRAS+ or KRAS− using machine learning
algorithms belonging to different classifiers families, such as support vector machine,
neural network, linear discriminant analysis, decision trees, and ensembles, among others.
Data such as tumor location, presence of hepatic or pulmonary metastases, as well as tumor
stage and differentiation are included in the analysis. The results were compared with
the anatomopathological analysis of the tumor using Cohen’s Kappa statistic, sensitivity,
and specificity.

Anatomopathological analysis of the tumor is the gold standard for determining KRAS
mutation, but it is an invasive test, and it only analyses a portion of the tumor. Radiomics
is a non-invasive method that can help determine KRAS status by localizing the area of the
tumor most likely to have a KRAS mutation and guiding the biopsy.

2. Materials and Methods
2.1. Radiomics Workflow

A radiomics workflow consists of five sequential steps: image acquisition, pre-processing,
region of interest segmentation, feature extraction, and analysis (Figure 1) [13,14].
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2.2. Patient Selection and Obtaining Imaging

For this retrospective study, 56 patients from the Santiago de Compostela Health
District were selected. The inclusion criteria were defined as follows: (1) colorectal cancer
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patients with anatomopathological confirmation of KRAS status by biopsy between 2016
and 2019 (30 KRAS+ and 26 KRAS-patients, respectively); (2) intravenous CECT performed
before any treatment; (3) CT images with a slice thickness of less than 5 mm. The exclusion
criteria were as follows: (1) patients with colorectal cancer in which the anatomopatho-
logical analysis was performed after any type of treatment; (2) CT with a slice thickness
other than that specified; (3) patients with a tumor difficult to delineate. The conduct of
this research was approved by the Ethics Committee.

2.3. Segmentation

Manual segmentation was performed by an expert abdominal radiologist. The soft-
ware used for the segmentation was the Sectra IDS7 visualization program (version
24.2.14.6022, Linköping, Sweden), used routinary by the radiology department of the
Clinic Hospital of Santiago de Compostela.

Three slices of the tumor were selected: the slice with the largest tumor area (central
slice) and the slices immediately cranial and caudal to that central slice. For each slice, 4
images were obtained, 2 of them with the tumor manually segmented. A total of 12 images
were obtained for each patient. The images were saved in “.tiff” format (Figures 2 and 3).

Biomedicines 2023, 11, x FOR PEER REVIEW 3 of 14 
 

2.2. Patient Selection and Obtaining Imaging 

For this retrospective study, 56 patients from the Santiago de Compostela Health Dis-

trict were selected. The inclusion criteria were defined as follows: (1) colorectal cancer 

patients with anatomopathological confirmation of KRAS status by biopsy between 2016 

and 2019 (30 KRAS+ and 26 KRAS-patients, respectively); (2) intravenous CECT per-

formed before any treatment; (3) CT images with a slice thickness of less than 5 mm. The 

exclusion criteria were as follows: (1) patients with colorectal cancer in which the anato-

mopathological analysis was performed after any type of treatment; (2) CT with a slice 

thickness other than that specified; (3) patients with a tumor difficult to delineate. The 

conduct of this research was approved by the Ethics Committee. 

2.3. Segmentation 

Manual segmentation was performed by an expert abdominal radiologist. The soft-

ware used for the segmentation was the Sectra IDS7 visualization program (version 

24.2.14.6022, Linköping, Sweden), used routinary by the radiology department of the 

Clinic Hospital of Santiago de Compostela.  

Three slices of the tumor were selected: the slice with the largest tumor area (central 

slice) and the slices immediately cranial and caudal to that central slice. For each slice, 4 

images were obtained, 2 of them with the tumor manually segmented. A total of 12 images 

were obtained for each patient. The images were saved in “.tiff” format (Figure 2,3). 

 
(a) (b) 

Figure 2. A 58-year-old patient with KRAS-mutated CRC. (a) Tumor without any segmentation. (b) 

Tumor manually segmented by an expert abdominal radiologist. Figure 2. A 58-year-old patient with KRAS-mutated CRC. (a) Tumor without any segmentation. (b)
Tumor manually segmented by an expert abdominal radiologist.

Biomedicines 2023, 11, x FOR PEER REVIEW 4 of 14 
 

 
(a) (b) 

Figure 3. (a) Manually segmented non-mutated KRAS tumor. (b) Abdominal contrast-enhancement 

CT of the same patient. 

2.4. Pre-Processing and Feature Extraction 

Texture is a visual image property related to the spatial distribution of the gray level 

of pixels [15], which may be used for image classification. Feature extraction algorithms 

transform an image or region of interest (ROI) in the image into a feature vector, which 

will be used to carry out the classification. Some of the techniques provided in the litera-

ture can only be applied to rectangular or even squared regions, and they are not suitable 

for our problem, in which the cancer tumors are irregular regions. In previous works, 

some popular texture extraction techniques were adapted to operate over irregular ROIs 

[16]. For example, frequency techniques, such as Gabor or Fourier filters, are global tech-

niques and cannot be adapted to operate on irregular regions. Among the statistical tech-

niques we used in this study are Haralick coefficients and local binary patterns (LBP), 

which are described in our previous work [17]. Let G = {0, 1, …, Ng−1} be the number of 

grey levels, S a finite set of pixels specifying the region of interest (ROI) to be analyzed (in 

our case, the tumor), and I(x, y) ∈ G the grey level in the pixel (x, y) ∈ S. To compute 

Haralick coefficients [17], the gray level cooccurrence matrix, M, counts the occurrence of 

pixel (xi, yi) ∈ S and (xj, xj) ∈ S with a gray level gi and gj ∈ G in a specific orientation θ and 

scale, i.e., different distance, d = {1, 2, 3}, from one pixel to each other. The matrices M, of 

dimension Ng × Ng, are calculated for different orientations θ and scales d. Normally, the 

matrices M for different orientations are averaged in order to achieve rotation invariance. 

The energy, correlation, contrast, homogeneity, and entropy are derived from the matrix 

M for each scale. Eight Haralick vectors Hfdm are calculated varying the distance d, to be d 

= {1, 2, 3} pixels, alongside with another vector concatenating the previous three distances, 

labeled as d = 123, and the number of Haralick coefficients m = {4, 5} depending of entropy 

coefficient is included or not: {Hfdm, d = 1, 2, 3, 123, m = 4, 5}. 

The local binary patterns (LBP) algorithm extracts the dependence of pixels in a 

neighborhood by comparing the gray level of the central pixel with the surrounding ones 

[18]. Among the variants proposed in the literature, we used the LBP uniform patterns, 

i.e., patterns which a limited number of transitions from 0 to 1 or vice versa, lower, or 

equal to two. Four texture feature vectors, called LBPR, one for each radius R = {1, 2, 3}, 

were used with a neighborhood of p = 8 pixels. The LBPR contains 10 features for each 

scale or radius, representing a histogram of the number of transitions in the pixels (x, y) ∈ 

Figure 3. (a) Manually segmented non-mutated KRAS tumor. (b) Abdominal contrast-enhancement
CT of the same patient.



Biomedicines 2023, 11, 2144 4 of 13

2.4. Pre-Processing and Feature Extraction

Texture is a visual image property related to the spatial distribution of the gray level
of pixels [15], which may be used for image classification. Feature extraction algorithms
transform an image or region of interest (ROI) in the image into a feature vector, which will
be used to carry out the classification. Some of the techniques provided in the literature
can only be applied to rectangular or even squared regions, and they are not suitable for
our problem, in which the cancer tumors are irregular regions. In previous works, some
popular texture extraction techniques were adapted to operate over irregular ROIs [16].
For example, frequency techniques, such as Gabor or Fourier filters, are global techniques
and cannot be adapted to operate on irregular regions. Among the statistical techniques
we used in this study are Haralick coefficients and local binary patterns (LBP), which are
described in our previous work [17]. Let G = {0, 1, . . ., Ng−1} be the number of grey levels,
S a finite set of pixels specifying the region of interest (ROI) to be analyzed (in our case,
the tumor), and I(x, y) ∈ G the grey level in the pixel (x, y) ∈ S. To compute Haralick
coefficients [17], the gray level cooccurrence matrix, M, counts the occurrence of pixel
(xi, yi) ∈ S and (xj, xj) ∈ S with a gray level gi and gj ∈ G in a specific orientation θ and
scale, i.e., different distance, d = {1, 2, 3}, from one pixel to each other. The matrices M, of
dimension Ng × Ng, are calculated for different orientations θ and scales d. Normally, the
matrices M for different orientations are averaged in order to achieve rotation invariance.
The energy, correlation, contrast, homogeneity, and entropy are derived from the matrix
M for each scale. Eight Haralick vectors Hfdm are calculated varying the distance d, to be
d = {1, 2, 3} pixels, alongside with another vector concatenating the previous three distances,
labeled as d = 123, and the number of Haralick coefficients m = {4, 5} depending of entropy
coefficient is included or not: {Hfdm, d = 1, 2, 3, 123, m = 4, 5}.

The local binary patterns (LBP) algorithm extracts the dependence of pixels in a
neighborhood by comparing the gray level of the central pixel with the surrounding
ones [18]. Among the variants proposed in the literature, we used the LBP uniform
patterns, i.e., patterns which a limited number of transitions from 0 to 1 or vice versa, lower,
or equal to two. Four texture feature vectors, called LBPR, one for each radius R = {1, 2, 3},
were used with a neighborhood of p = 8 pixels. The LBPR contains 10 features for each scale
or radius, representing a histogram of the number of transitions in the pixels (x, y) ∈ S. The
feature vector LBP123, with 30 features, is the concatenation of the previous three LBPR
vectors: {LBPR, R = 1, 2, 3, 123}.

The discrete wavelet transform (DWT) is another very popular spectral technique
for texture extraction, which is normally applied on a squared region whose side is a
power of 2. Multi-scale decomposition is obtained by applying recursively low-pass and
high-pass filters and downsampling to the image. Statistical measures over the transform
coefficients for each sub-band and decomposition level are normally used to encode texture
information. The measurements used are mean, energy, entropy, and standard deviation
calculated in the pixels (x, y) ∈ S. We computed the vector DWT using three levels of
decomposition and calculated the energy, entropy, mean, and standard deviation measures
over all subbands, developing a vector with 52 features.

We also derived texture descriptors from the wavelet decomposition in different ways
(see our reference [19] for a detailed description):

1. Applying Haralick coefficients over the different wavelet decomposition levels using
a distance d = 1, due to the scale being implicitly included in the downsampling. We
computed four vectors, called WDCFfm, varying the number of Haralick coefficients
m = {4, 5} and the type of decomposition f = {LL, All} using a distance d = 1: {WDCFfm,
f = LL, All, m = 4, 5}.

2. Another way to capture multiscale information would be calculating the cooccurrence
matrices on the first level of decomposition. We computed the following six vectors
(WCFdm) varying the distance d = {1, 2, 3} to calculate the cooccurrences matrices and
the number of Haralick’s coefficients m = {4, 5}: {WCFdm, d = 1, 2, 3, m = 4, 5}.



Biomedicines 2023, 11, 2144 5 of 13

3. The multiscalar information can also be captured by calculating the LBP signature
using a radius of one pixel over low-pass wavelet decompositions of the original
image. Specifically, the four vectors LBPs considering one level of wavelet de-
composition s = {1, 2, 3} were computed, developing feature vectors of 10 features.
The concatenation of the three previous vectors is called LBP123 with 30 features:
{LBPs, s = 1, 2, 3, 123}.

2.5. Machine Learning Models

Machine learning is widely used in medicine to predict different indicators. Our
attempt is the prediction of KRAS status, in which there are two possible labels, patients
with KRAS+ or KRAS−, the former considered as a “positive event” to be detected. So,
this prediction is a case of binary classification (i.e., with 2 classes). We selected a reduced
collection of best-performing classifiers of different families proposed in the literature.
These classifiers are trained to learn from the input data (texture features and patient
clinical information, see below) how to predict the output (KRAS+ or KRAS−). In this
training process, the classifier used a collection of examples composed of input data and the
desired output (gold standard). The trained classifier was expected to predict, with more or
less reliability, the genetic disease of unseen patients. In the current experimental work, we
used a collection of 34 classifiers implemented in the programming languages MATLAB,
Octave, Python, and R, belonging to the families: support vector machine, neural network,
decision tree, bagging, ensemble, and linear discriminant analysis, among others. Table 1
lists the information about the classifiers used in this work.

Table 1. List of classifiers with their implementation language, function, and module/package used
and values used for hyper-parameter tuning (the notation 1:2:5 means values from 1 to 5 with step 2).

Family Classifier Language Function (Module): Hyperparameter Tuning (If Any)

Discriminant Analysis

lda: linear discriminant analysis

Octave Function train_sc with option LD2, package NaN

Matlab Function fitcdiscr

Python Function LinearDiscriminantAnalysis,
module sklearn.discriminant_analysis

R Function lda, package MASS

dlda: diagonal LDA Matlab Function fitcdiscr, option DiscrimType = diaglinear

qda: quadratic
discriminant analysis Matlab Function fitcdiscr,

option DiscrimType = pseudoquadratic

kfd: kernel Fisher discriminant Python Function Kfda, package kfda 1

Neural
Network

mlp: multilayer perceptron
Matlab

Function fitcnet, nh = 10, h1 = max(1,bN/(I + C)c),
h0 = max(1,bh1/nhc),∆ = max(1,(h1-h0)/nh),

h (number of hidden neurons) = h0:∆:h1
N = no. training patterns, I = no. features

Python Function MLPClassifier, module sklearn.neural_network, same h

nnet: multilayer perceptron R Function nnet, package nnet, same h,
weight decay = {0, 0.0001, 0.001, 0.01, 0.1}

neuralnet: multilayer perceptron R Function neuralnet, package neuralnet, same h

elm: extreme learning machine Octave Ad hoc implementation,
h (hidden neurons): 20 values in 1.bN/(I + Cc)

Support
Vector

Machine
svm

Octave LibSVM library 2, functions svcmtrain/svmpredict,
λ (regularization) = 2−5:2:10, γ (RBF spread) = 2−15:2:10

Python Function SVC, module sklearn.svm, same tuning

R Function ksvm, module kernlab, same tuning

K-nearest
neighbors knn

Matlab Function fitcknn, k (no. neighbors) = 1:2:15

R Function knn, package class, same k
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Table 1. Cont.

Family Classifier Language Function (Module): Hyperparameter Tuning (If Any)

Ensemble

adaboost

Matlab Function fitcensemble, option method = AdaBoostM1
T (no. trees) = 10:10:50

Python Function AdaboostClassifier, same T,
learning rate = 0.1:0.1:0.9

bagging R Function fitcensemble, option method = Bag

rf: random forest Python Function RandomForestClassifier, package sklearn.ensemble, T = 5:5:31,
F (max. features) = 3:2:I

gbm: gradient boosting machine Python
Function GradientBoostingClassifier, package sklearn.ensemble,

T = {50,100,150,200},
D (max. depth) = {1,3,6,9}

avNNet: committee of neural
multilayer perceptrons R Function avNNet, package caret, H = 1..9 and as nnet,

decay = 0, 0.1, 0.01, 0.001, 0.0001

Regularized linear
regression

lasso Matlab Function fitcecoc, option Learners = templateLinear with Learner = svm
and Regularization = lasso or ridge,

λ (regularization) = 2−3:0.2:3ridge Matlab

sgd: stochastic gradient descent Python Function SGDClassifier, module sklearn.linear_model
α (regularization) = {10−i}i = 1

−5, {5 · 10−i}i = 1
5

Logisticregression logreg
Matlab Function mnrfit

Python Function LogisticRegression,
module sklearn.linear_model

Decision tree
ctree: classification tree

Matlab Function fitctree

Python

FunctionDecisionTreeClassifier,
module sklearn. tree,

criterion = {Gini,entropy},splitter = {best,random},
max. features = 3, 4, I, I/4, I/2,

√
(I), log2(I)

R Function ctree, package party,
max. depth = 1.5, min. criterion = {0.01, 0.5, 0.745, 0.99}

rpart: recursive partitioning R Function rpart, package rpart

Naive Bayes nb
Matlab Function fitcnb

R Function NaiveBayes, package klaR

1 https://github.com/concavegit/kfda, accessed on 14 June 2023; 2 https://www.csie.ntu.edu.tw/cjlin/libsvm,
accessed on 14 June 2023.

The classifier performance was assessed by Cohen’s kappa value, which measures
the agreement between the true and predicted class labels excluding the agreement by
chance [20]. Other performance metrics are the accuracy, sensitivity, or recall, specificity,
positive predictivity, or precision, F1, and area under the receiver operating curve (AUC).
See our reference [17] for a description of these measures.

3. Experimental Setup and Results
3.1. Experimental Setup

The information related to each patient is of two types:

1. Vector clinical, containing information related to the patient’s life and their histopathol-
ogy status before any treatment, composed of the following nine values: liver metas-
tasis, pulmonary metastasis, sex (dicotomical variable), age, location of the tumor,
T staging (0, 1, 2, 3, or 4), N staging (0, 1, or 2), M staging (0 or 1), and tumor
differentiation (stages 1 to 4).

2. Texture feature vectors, with features extracted from each slice of the CT as explained
in Section 2.4; in our case, three slices of the tumor for each patient (56 patients
multiplied by three cuts per patient).

Classifier performance was assessed using the leave-one-patient-out cross-validation
approach. This methodology uses one patient (i.e., three cuts) to test the model and the
remaining ones to train the model and to adjust its tunable hyper-parameters (see in Table 1
the values of the tunable parameters of each model). All the inputs are pre-processed to
have zero mean and a standard deviation of one. This process is repeated as many times
as there are patients, each time using a different test patient. Finally, the performance is

https://github.com/concavegit/kfda
https://www.csie.ntu.edu.tw/cjlin/libsvm
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calculated by comparing the label predicted by the classifier and the gold standard for
determining KRAS mutation for each patient. In the case of texture feature vectors, we
obtained an input vector for each cut of the patient’s tumor and then a classifier output (or
prediction) for each cut. Classifier prediction was selected as the most voted among the
three predictions, one for each cut.

3.2. Results

We developed experiments applying the 34 classifiers as input: (1) the clinical vector;
(2) the 27 texture feature vectors; (3) combinations of the clinical vector and the 27 texture
feature vectors. The texture feature vectors used are: eight Haralick vectors Hfdm, {Hfdm, d
= 1, 2, 3, 123, m = 4, 5}, four LBPR, {LBPR, R = 1, 2, 3, 123}, four LBPs, {LBPs, s = 1, 2, 3, 123},
vector DWT, six WCFdm, {WCFdm, d = 1, 2, 3, m = 4, 5}, and four WDCFfm vectors {WDCFfm,
f = LL, All, m = 4, 5}. Overall, we performed 34·(1 + 27 + 27) = 1870 experiments.

Table 2 shows a list of the top 10 best combinations of feature vectors and classifiers
to predict KRAS mutation. The highest kappa value (53.7%) and accuracy (76.8%) were
achieved by the AdaBoost (adaptive boosting ensemble) classifier implemented in Python,
using the clinical vector. The best performance using only feature texture vectors (image
information) was provided using the combination of wavelet and Haralick’s coefficients
(feature vector WDCFfm with f = All bands and m = 4), achieving kappa = 46% and accuracy
= 73.2%. The combination of clinical and imaging information did not exceed the results
achieved by the clinical information alone.

Table 2. A list of the top 10 best combinations of feature vectors and classifiers, which achieved the
highest kappa and accuracy values to predict the KRAS mutation.

Position Kappa (%) Accuracy (%) Dataset Classifier Language

1 53.7 76.8 clinical AdaBoost Python

2 46.0 73.2 Hfd123m4 +
clinical mlp Python

3 46.0 73.2 WDCFfm (m
= 4, f = All) rpart R

4 46.0 73.2 WDCFfm (m
= 5, f = All) rpart R

5 45.7 73.2 WCFd3m5 +
clinical ridge Matlab

6 44.9 73.2 Hfd3m4
+clinical ridge Matlab

7 42.9 71.4 clinical mlp Python
8 42.6 71.4 clinical elm Octave

9 42.6 71.4 Hfd2m4
+clinical lda Octave

10 42.3 71.4 Hfd2m4
+clinical logreg Matlab

A compilation of the complete results (minimum, median, mean, and maximum
kappa achieved by each classifier over all the datasets) is reported in Table S1 of the
Supplementary Materials. The highest median, mean, and maximum kappa values were
achieved, respectively, by ctree (median of 27.6%), lasso (mean of 15%), and AdaBoost
(maximum of 53.7%). Figure S1 of the Supplementary Materials plots the kappa distribution
(as a box plot) for each classifier over the datasets, sorted by decreasing median values.
ctree and the four implementations (in MATLAB, Octave, Python, and R) of lda achieved
the first positions.

Table 3 shows the confusion matrix for the best performance using clinical and imag-
ing information (rows identify true class labels, named Biopsy, while columns identify
predicted labels, named Computer). Although the differences between both confusion
matrices are small, they lead to a large difference in kappa, 53.7% and 46% using clinical
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(up) and WDCFfm (down), although the difference in accuracy (76.8% and 73.2%) is smaller.
In the best result, achieved by AdaBoost using the clinical vector (up), the terms outside
the diagonal (five and eight false negatives and positives, respectively) are much smaller
than terms in the diagonal (22 and 21 true positives and negatives, respectively).

Table 3. Confusion matrix for the prediction of KRAS mutation using the clinical and imaging
information (input vectors clinical and WDCFfm, respectively). Position 1 and 3 in Table 2.

Computer (AdaBoost)

Dataset KRAS+ KRAS−

clinical vector kappa = 53.7%
acc = 76.8%

Biopsy KRAS+ 22 (39.3%) 8 (14.3%)
KRAS- 5 (8.9%) 21 (37.5%)

Computer (rpat)

WDCFfm (f = All)
kappa = 46% acc = 73.2%

Biopsy KRAS+ 23 (41.1%) 7 (12.5%)
KRAS- 8 (14.3%) 18 (32.1%)

Other performance metrics for the best classification are reported in Table 4. Specifi-
cally, AdaBoost achieved high sensitivity (73.3%), specificity (80.8%), and area under the
receiver operating curve (ROC); that is, (in %) 77.8%. The sensitivity and specificity of the
best model (kappa = 53.7%) were calculated from the upper confusion matrix in Table 3.
The left panel of Figure 4 plots this curve, which is quite near the upper left corner that
identifies the ideal classification. The red square locates the working point achieved by Ad-
aBoost. The right panel plots the lift curve, where the black line inside the gray shadowed
area is also fairly near the left border of this area, identifying the ideal classification.

Table 4. Performance metrics (in %) achieved by the best classifier (AdaBoost) and feature vector
(clinical patient information).

Kappa Accuracy Sensitivity
or Recall Specificity Precision or Positive

Predictivity Value (PPV) F1 AUC

53.7 76.8 73.3 80.8 81.5 77.2 77.8
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In order to analyze the behavior of different texture feature families, Table 5 shows
the best performance achieved by a vector of each descriptor family. The highest kappa
(46%) and accuracy (73.2%) were achieved by the combination of Haralick coefficients
and wavelets using all bands (WDCFfm vector with f = All and m = 4 or m = 5) using
the rpart classifier (recursive partitioning decision tree), implemented in the R language.
Indeed, four of the six best results in Table 5 were achieved by classification trees (ctree and
rpart). The other way to compute Haralick coefficients over wavelet decomposition (vectors
WCFdm) achieved much lower performance (kappa = 28.2%). The local binary patterns
(LBPR and LBPS vectors) provided similar results (kappa = 35% and 36.9%, respectively)
but also much lower than the WDCFfm vector. The worst texture descriptor was the DWT
vector (kappa = 12% using diagonal linear discriminant analysis).

Table 5. Highest kappa (in %) achieved by each family of texture descriptors, with the best classifier
and its implementation language.

Texture Descriptor Kappa(%) Configuration Classifier Language

Hfdm 24.7 d = 123, m = 5 ctree R
LPBR 35.0 R = 1 ctree Python
DWT 12.0 -- dlda Matlab
LBPs 36.9 s = 2 ridge Matlab

WCFdm 28.2 d = 1 rpart R
WDCFfm 46.0 f = All, m = 4 rpart R

Table 6 shows the performance achieved using clinical and texture feature vectors
concatenated as input to the classifier. The performance increased in almost all the texture
families, but it was still lower than the performance achieved using only the clinical vector.
The highest kappa was achieved by the combination of clinical and Hfdm vectors (using
d = 123 and m = 4) and the mlp (multilayer perceptron) classifier implemented in Python.
Nevertheless, all the combinations provided quite similar results (kappa value higher than
42%), except for DWT (kappa = 34.7%) and WDCFfm (38.8%). It is a surprise that WDCFfm
concatenated with clinical vector decreased its performance compared to WDCFfm alone
(kappa = 46% in Table 5 and 38.8% in Table 6).

Table 6. Highest kappa (in %) achieved by concatenating the texture descriptor of each family with
the clinical vector.

Texture Descriptor Kappa(%) Configuration Classifier Language

Hfdm 46.0 d = 123, m = 4 mlp Python

LBBR 42.0 R = 3 AdaBoost Python

DWT 34.7 -- gbm Python

LBPs
42.0 s = 1 neuralnet R

42.0 s = 3 AdaBoost Python

WCFdm 45.7 d = 3, m = 5 mlp Python

WDCFfm 38.8 f = LL, m = 4 sgd Python

4. Discussion

This study demonstrates that it is possible to predict KRAS mutation in CRC patients
using CT-based radiomics features. There is a relationship between the quantitative features
obtained from the images and the KRAS oncogene mutation. The value of Cohen’s kappa
coefficient shows that the relationship is not simply justified by chance. Compared to our
previous investigations, we increased the number of patients and tried a larger and more
diverse collection of classifiers, including patient clinical features. In the current work, the
results achieved using only clinical information, only radiomics information, and combined
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(clinical and radiomics) were similar but slightly better using only clinical information.
This demonstrates that clinical variables also provide useful information that can be unified
with radiomic data to create a more effective combined model. The implementation of
clinical data into radiomic studies has been a growing field in recent years. Studies that
combine clinical and radiomics features are becoming increasingly common. These studies
often show improved results with clinical—radiomic association. For instance, Yuntai
Cao et al. [21] developed a model that combines radiomic parameters with other clinical
parameters such as age, CEA (carcinoembryonic antigen) level, and clinical stage for the
prediction of KRAS status. They achieved results similar to ours. Their area under the
curve (AUC), sensitivity, and specificity were higher with the combined model (77.2%,
79.2%, and 64.6%, respectively). Our results, together with those published in the literature,
reflect the need for further research into the development of a combined model and the
search for the best clinical–radiomic combination.

Studying KRAS status is an expanding field. There were numerous studies published
on this topic between 2018 and 2022. In December 2022, Jia et al. [22] performed the
first meta-analysis on this topic, including 29 articles published between February 2014
and March 2022. Approximately 60% were recent (2020 and 2021). This review reflects
the multiple imaging modalities to which KRAS status analysis is applicable (CT, PET,
and MRI). MRI was the most widely used, but the meta-analysis concluded that the
diagnostic performance of CT is higher. Only one prospective design was included. The
main criticisms of meta-analysis studies can be summarized in two aspects: low quality
and heterogeneity. The sample size and segmentation methods are sources of variability
between studies. The conclusion is that radiomics is at an early stage in terms of predicting
KRAS status; therefore, prospective multicenter studies with standardized protocols are
needed to achieve effective implementation in routine clinical practice.

Comparing with other similar studies, several aspects of our research should be
highlighted. All the studies compared are retrospective. The sample size of our study is
similar to other similar published studies, such as that of Taguchi et al. [23], who created a
model to predict KRAS mutation in CRC. They obtained an AUC between 40% and 70%
with 40 patients. Slice thickness varies between 1 and 5 mm, depending on the study. KRAS
is the oncogene analyzed in all the studies, but Yang et al. [24] analyzed NRAS and BRAF
mutations as well. They obtained an AUC, sensitivity, and specificity of 86.9%, 75.7%, and
83.3%, respectively. Yu Li et al. also sought to detect perineural invasion. They obtained an
AUC of 79.3% and 86.2% in the prediction of perineural invasion and KRAS mutation [25].

Anatomopathological analysis will remain the gold standard for mutational analysis.
However, it has limitations that could be solved if complemented by radiomic analysis.
Radiomics based on CT images would cover the entire tumor area and possible metastatic
sites, thus avoiding the false negatives associated with analyzing a single tumor frag-
ment [26]. There is also a percentage of patients with primary resistance to anti-EGFR
monoclonal antibodies. In addition, almost all of those who initially respond to these
therapies will eventually become refractory to treatment [27]. Therefore, serial radiomic
CT scans throughout the course of the disease would offer the possibility of detecting new
mutations in KRAS that cause this resistance.

The limitations of our study do not differ from those mentioned by other authors.
Firstly, we started from a small sample size obtained retrospectively from the records of a
single center. Secondly, despite having an advanced electronic medical record system, it is
difficult to filter which patients could meet the inclusion criteria for the study, as there are
no databases of patients diagnosed with colorectal cancer in our autonomous community.
This could lead to patient selection bias and hinder the applicability of radiomics in the
future. Regarding technical parameters, over the years, the reconstruction of the images
has evolved. The first slices compiled for this study were 5 mm and became less than 2.5
mm. The trend is to use increasingly thinner slices, as this is one of the parameters that
provide the greatest variability in radiomic studies. Finally, segmentation is manual, which
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is associated with a high time consumption in the delimitation of the regions of interest
and a high level of subjectivity.

Lastly, we should consider extending the mutational analysis to other genes such as
BRAF, NRAS, mismatch repair genes, and even to other sites such as metastases. This
approach would be more integrative and would facilitate the use of radiomics throughout
the entire period of the disease, from diagnosis to the evolution of metastases.

5. Conclusions

In this manuscript, we were able to predict the KRAS oncogene mutation using three
different prediction models with TC-based radiomics features and clinical data.

The first prediction model considers only radiomic data, and its results have improved
over those obtained in our previous work, with a Cohen’s kappa and accuracy of 46% and
73.2%, respectively. These results demonstrate the correlation between texture patterns and
KRAS mutation status.

The second prediction model is a combined model that incorporates clinical and
radiomic data from patients. The results obtained with this model were similar to those of
the radiomic model, with improvement in some classifiers, but with the same results in
terms of best accuracy and best Cohen’s kappa.

Finally, the third prediction model was based on clinical data alone. The clinical
parameters obtained were the presence of liver or lung metastases, tumor location, N and
M staging, and tumor differentiation. The best results achieved by the AdaBoost ensemble
classifier were an accuracy and Cohen’s kappa of 53.7% and 76.8%, with a sensitivity and
specificity of 73.3% and 80.8% and AUC of 77.8%.

The results obtained with the different models showed that: (1) there is a correlation
between radiomic features and KRAS mutation status, with the CT-based radiomic model
predicting KRAS oncogene mutation with 73% accuracy; (2) the clinical data provide
important information that should be considered in our trials. The results obtained, together
with those of other research groups, show that they can improve the performance of the
model based on radiomic data alone. Of course, the small size of the sample (56 patients) is
a limitation of this study.

KRAS mutation detection is based on anatomopathological analysis and does not take
into account the patient’s clinical data, but the results show that radiomics features and
clinical data can provide valuable information for the management of patients with CRC.
The clinical data should also be incorporated in the form of a combined model, as reflected
in the literature consulted, where combined models perform best. In this case, the reason
why our results are better with the clinical model than with the combined model requires
further research.

The KRAS oncogene is a prognostic factor in patients with colorectal cancer. Anato-
mopathological analysis of these tumors is performed after the tumor has been diagnosed
and localized by a surgical procedure (excision or biopsy). In addition, anatomopatholog-
ical analysis only covers part of the entire lesion, which may not be the area where the
mutation is present. Radiomic analysis offers two possible solutions to these drawbacks
of classical pathological analysis. First, it is a non-invasive analysis that can be performed
at the time of diagnosis. Second, radiomic analysis can cover the entire tumor tissue and
localize the areas of the tumor that are most likely to carry the mutation. At this stage,
radiomics are not intended to replace pathological analysis but to guide it to the areas of
the tumor where a biopsy would be most cost-effective.

On the other hand, radiomic analysis has a number of limitations. Firstly, there is
still a need to standardize the feature acquisition process and the automatic classification
methods used. For this, it is essential to share the methodology used and to search for the
best-performing models. Another limitation of radiomic analysis is the lack of prospective
studies. In this sense, the application of radiomics in tumor pathology has not contributed
to the possibility of carrying out these prospective studies because the diagnostic pathways
in oncology patients are very well optimized. Therefore, the use of radiomics in pathologies
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where diagnostic pathways are not well defined or standardized could facilitate the possi-
bility of prospective and standardized studies. Finally, although manual segmentation is
the gold standard, it is very time-consuming for the radiologist. Therefore, semi-automated
or automated segmentation should take over and become the reference in future studies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines11082144/s1, Table S1: Minimum, median, mean and
maximum kappa achieved by each classifier over all the datasets; Figure S1: Boxplot of the kappa
values achieved by each classifier over all the datasets.
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