3D ‘atomistic’ simulations of dopant induced variability in nanoscale implant free In0.75Ga0.25As MOSFETs
A detailed simulation study of the impact of quantum effects on random dopant induced fluctuations in a 15 nm gate length, implant free In0.75Ga0.25As MOSFET is carried out using parallel 3D finite-element drift-diffusion (DD) device simulations and a mesh with atomistic resolution. The DD device simulations are calibrated against finite element heterostructure ensemble Monte Carlo simulations. Three figures of merit for the off-state have been investigated: threshold voltage, off-current, and sub-threshold slope. Quantum confinement effects are taken into account through the density gradient approximation meticulously calibrating carrier density in the channel against 1D Poisson–Schrödinger solutions. We have shown that the net result of including quantum effects, while considering statistical dopant fluctuations, is a decrease in both threshold voltage fluctuations and threshold voltage shift. These results show the opposite trend generally seen in bulk Si MOSFETs simulated using 3D quantum corrected DD simulations with random discrete dopants in the channel region.
keywords: Implant free III–V MOSFETs, Random dopant variability, Drift-diffusion, Density gradient, Threshold voltage, Off-current, Sub-threshold slope