Numerical optimisation and recombination effects on the vertical-tunnel-junction (VTJ) GaAs solar cell up to 10,000 suns
Ultra-high concentrator photovoltaic systems (UHCPV), usually referred to CPV systems exceeding 1000 suns,
are signalled as one of the most promising research avenues to produce a new generation of high-efficiency and
low-cost CPV systems. However, the structure of current concentrator solar cells prevents their development due
to the unavoidable series resistance losses at such elevated concentration ratios. In this work, we investigate the
performance of the so-called vertical-tunnel-junction (VTJ), recently introduced by the authors, by using advance
TCAD. In particular, we carry out an optimisation procedure of the key parameters that affect its performance
and conduct a deep investigation of the impact of the main recombination mechanisms and of sun
concentration up to 10,000 suns. The results indicate that the performance of the novel structure is not significantly
affected by these two factors. A record efficiency of 32.2% at 10,000 suns has been found. This
represents a promising way to obtain state-of-the-art efficiencies above 30% for single-band-gap cells, and offers
a new route towards the development of competitive CPV systems operating at ultra-high concentration fluxes.
keywords: Vertical solar cells, Series resistance, Gallium arsenide (GaAs), Tunnel diode, Concentrator photovoltaics
Publication: Article
1624014959464
June 18, 2021
/research/publications/numerical-optimisation-and-recombination-effects-on-the-vertical-tunnel-junction-vtj-gaas-solar-cell-up-to-10000-suns
Ultra-high concentrator photovoltaic systems (UHCPV), usually referred to CPV systems exceeding 1000 suns,
are signalled as one of the most promising research avenues to produce a new generation of high-efficiency and
low-cost CPV systems. However, the structure of current concentrator solar cells prevents their development due
to the unavoidable series resistance losses at such elevated concentration ratios. In this work, we investigate the
performance of the so-called vertical-tunnel-junction (VTJ), recently introduced by the authors, by using advance
TCAD. In particular, we carry out an optimisation procedure of the key parameters that affect its performance
and conduct a deep investigation of the impact of the main recombination mechanisms and of sun
concentration up to 10,000 suns. The results indicate that the performance of the novel structure is not significantly
affected by these two factors. A record efficiency of 32.2% at 10,000 suns has been found. This
represents a promising way to obtain state-of-the-art efficiencies above 30% for single-band-gap cells, and offers
a new route towards the development of competitive CPV systems operating at ultra-high concentration fluxes. - Celia Outes, Eduardo F. Fernández, Natalia Seoane, Florencia Almonacid, Antonio J. García-Loureiro - 10.1016/j.solener.2020.04.029
publications_en