Retinal verification using a feature points based biometric pattern
Biometrics refers to identity verification of individuals based on some physiologic or behavioural characteristics. The typical authentication process of a person consists in extracting a biometric pattern of him/her and matching it with the stored pattern for the authorised user obtaining a similarity value between patterns. In this work an efficient method for people authentication is showed. The biometric pattern of the system is a set of feature points representing landmarks in the retinal vessel tree. The pattern extraction and matching is described. Also, a deep analysis of similarity metrics performance is presented for the biometric system. A database with samples of retina images from users on different moments of time is used, thus simulating a hard and real environment of verification. Even in this scenario, the system allows to establish a wide confidence band for the metric threshold where no errors are obtained for training and test sets.
keywords: authentication system, fingerprint, registration, orientation
Publication: Article
1624014930772
June 18, 2021
/research/publications/retinal-verification-using-a-feature-points-based-biometric-pattern
Biometrics refers to identity verification of individuals based on some physiologic or behavioural characteristics. The typical authentication process of a person consists in extracting a biometric pattern of him/her and matching it with the stored pattern for the authorised user obtaining a similarity value between patterns. In this work an efficient method for people authentication is showed. The biometric pattern of the system is a set of feature points representing landmarks in the retinal vessel tree. The pattern extraction and matching is described. Also, a deep analysis of similarity metrics performance is presented for the biometric system. A database with samples of retina images from users on different moments of time is used, thus simulating a hard and real environment of verification. Even in this scenario, the system allows to establish a wide confidence band for the metric threshold where no errors are obtained for training and test sets. - M. Ortega, M.G. Penedo, J. Rouco, N. Barreira, M.J. Carreira - 10.1155/2009/235746
publications_en