SEL: a Unified Algorithm for Entity Linking and Saliency Detection
The Entity Linking task consists in automatically identifying and linking the entities mentioned in a text to
their URIs in a given Knowledge Base. This task is very challenging due to natural language ambiguity. However,
not all the entities mentioned in a document have the same utility in understanding the topics being discussed. Thus,
the related problem of identifying the most relevant entities present in a document, also known as Salient Entities,
is attracting increasing interest.
In this paper we propose SEL, a novel supervised two-step algorithm comprehensively addressing both entity
linking and saliency detection. The first step is aimed at identifying a set of candidate entities that are likely to be
mentioned in the document.The second step, besides detecting linked entities, also scores them according to their
saliency. Experiments conducted on two different datasets show that the proposed algorithm outperforms state-ofthe-art
competitors, and is able to detect salient entities with high accuracy. Furthermore, we employed SEL for
Extractive Text Summarization. We found that entity saliency can be incorporated into text summarizers to extract
salient sentences from text. The resulting summarizers outperform well-known summarization systems, proving
the importance of using the Salient Entities information
keywords: Entity Linking, Salient Entities, Machine Learning, Text Summarization
Publication: Article
1624014950122
June 18, 2021
/research/publications/sel-a-unified-algorithm-for-entity-linking-and-saliency-detection
The Entity Linking task consists in automatically identifying and linking the entities mentioned in a text to
their URIs in a given Knowledge Base. This task is very challenging due to natural language ambiguity. However,
not all the entities mentioned in a document have the same utility in understanding the topics being discussed. Thus,
the related problem of identifying the most relevant entities present in a document, also known as Salient Entities,
is attracting increasing interest.
In this paper we propose SEL, a novel supervised two-step algorithm comprehensively addressing both entity
linking and saliency detection. The first step is aimed at identifying a set of candidate entities that are likely to be
mentioned in the document.The second step, besides detecting linked entities, also scores them according to their
saliency. Experiments conducted on two different datasets show that the proposed algorithm outperforms state-ofthe-art
competitors, and is able to detect salient entities with high accuracy. Furthermore, we employed SEL for
Extractive Text Summarization. We found that entity saliency can be incorporated into text summarizers to extract
salient sentences from text. The resulting summarizers outperform well-known summarization systems, proving
the importance of using the Salient Entities information - Salvatore Trani, Claudio Lucchese, Raffaele Perego, David E. Losada, Diego Ceccarelli, Salvatore Orlando - 10.1111/coin.12147
publications_en