Smart Environmental Data Infrastructures: Bridging the Gap between Earth Sciences and Citizens
The monitoring and forecasting of environmental conditions is a task to which much effort and resources are devoted by the scientific community and relevant authorities. Representative examples arise in meteorology, oceanography, and environmental engineering. As a consequence, high volumes of data are generated, which include data generated by earth observation systems and different kinds of models. Specific data models, formats, vocabularies and data access infrastructures have been developed and are currently being used by the scientific community. Due to this, discovering, accessing and analyzing environmental datasets requires very specific skills, which is an important barrier for their reuse in many other application domains. This paper reviews earth science data representation and access standards and technologies, and identifies the main challenges to overcome in order to enable their integration in semantic open data infrastructures. This would allow non-scientific information technology practitioners to devise new end-user solutions for citizen problems in new application domains.
keywords: smart data, semantic web, environmental data, geospatial data, linked data, semantic integration, open data