An Unsupervised Perplexity-Based Method for Boilerplate Removal
The availability of large web-based corpora has led to significant advances in a wide range of technologies, including massive retrieval systems or deep neural networks. However, leveraging this data is challenging, since web content is plagued by the so-called boilerplate: ads, incomplete or noisy text, and rests of the navigation structure, such as menus or navigation bars. In this work, we present a novel and efficient approach to extract useful and well-formed content from web-scraped data. Our approach takes advantage of Language Models and their implicit knowledge about correctly formed text, and we demonstrate here that perplexity is a valuable artifact that can contribute in terms of effectiveness and efficiency. As a matter of fact, the removal of noisy parts leads to lighter AI or search solutions that are effective and entail important reductions in resources spent. We exemplify here the usefulness of our method with two downstream tasks, search and classification, and a cleaning task. We also provide a Python package with pre-trained models and a web demo demonstrating the capabilities of our approach.
keywords:
Publication: Article
1675070663476
January 30, 2023
/research/publications/an-unsupervised-perplexity-based-method-for-boilerplate-removal
The availability of large web-based corpora has led to significant advances in a wide range of technologies, including massive retrieval systems or deep neural networks. However, leveraging this data is challenging, since web content is plagued by the so-called boilerplate: ads, incomplete or noisy text, and rests of the navigation structure, such as menus or navigation bars. In this work, we present a novel and efficient approach to extract useful and well-formed content from web-scraped data. Our approach takes advantage of Language Models and their implicit knowledge about correctly formed text, and we demonstrate here that perplexity is a valuable artifact that can contribute in terms of effectiveness and efficiency. As a matter of fact, the removal of noisy parts leads to lighter AI or search solutions that are effective and entail important reductions in resources spent. We exemplify here the usefulness of our method with two downstream tasks, search and classification, and a cleaning task. We also provide a Python package with pre-trained models and a web demo demonstrating the capabilities of our approach. - Marcos Fernández-Pichel, Manuel Prada-Corral, David E. Losada, Juan C. Pichel, Pablo Gamallo - 10.1017/S1351324923000049
publications_en