Fully automatic teeth segmentation in adult OPG images
This work addresses the problem of teeth segmentation in panoramic dental images, specifically the detection of the adult-stage mandibular teeth. Random Forest Regression-Voting Constrained Local Models (RFRV-CLM) were used to train individual teeth shape models. In order to fully automatically initialise the teeth shape search process, RFRV-CLM model was trained from a set of mandible and teeth key landmark points, and the predicted keypoints were used to estimate the initial pose of each tooth shape. Furthermore, a method to detect present/missing teeth has been proposed, based on the quality of each tooth shape segmentation. The results of this two-step approach, evaluated using a set of 346 annotated images, show good performance in present/missing teeth detection and state-of-the-art accuracy for both correct teeth localisation and shape segmentation, with an average median point-to-curve error of 0.2mm.
keywords: teeth segmentation, panoramic dental images, random forest regression-voting, machine learning
Publication: Congress
1624015050304
June 18, 2021
/research/publications/fully-automatic-teeth-segmentation-in-adult-opg-images
This work addresses the problem of teeth segmentation in panoramic dental images, specifically the detection of the adult-stage mandibular teeth. Random Forest Regression-Voting Constrained Local Models (RFRV-CLM) were used to train individual teeth shape models. In order to fully automatically initialise the teeth shape search process, RFRV-CLM model was trained from a set of mandible and teeth key landmark points, and the predicted keypoints were used to estimate the initial pose of each tooth shape. Furthermore, a method to detect present/missing teeth has been proposed, based on the quality of each tooth shape segmentation. The results of this two-step approach, evaluated using a set of 346 annotated images, show good performance in present/missing teeth detection and state-of-the-art accuracy for both correct teeth localisation and shape segmentation, with an average median point-to-curve error of 0.2mm. - N. Vila-Blanco, T. Cootes, C. Lindner, I. Tomás, M.J. Carreira - 10.1007/978-3-030-11166-3_2
publications_en