Statistical and Wavelet based texture features for fish oocytes classification
The study of biology and population dynamics of fish species requires the estimation of fecundity parameters in individual fish in many fisheries laboratories. The traditional procedure used in fisheries research is to classify and count the oocytes manually on a subsample of known weight of the ovary, and to measure few oocytes under a binocular microscope. With an adequate interactive tool, this process might be done on a computer. However, in both cases the task is very time consuming, with the obvious consequence that fecundity studies are not conducted routinely. In this work we develop a computer vision system for the classification of oocytes using texture features in histological images. The system is structured in three stages: 1) extraction of the oocyte from the original image; 2) calculation of a texture feature vector for each oocyte; and 3) classification of the oocytes using this feature vector. A statistical evaluation of the proposed system is presented and discussed.
keywords: Image analysis, Texture classification, Fish oocyte, Statistical classifiers, Classification trees, Neural networks