MSCF: Multi-Scale Canny Filter to Recognize Cells in Microscopic Images
Fish fecundity is one of the most relevant parameters for the estimation of the reproductive potential of fish stocks, used to assess the stock status to guarantee sustainable fisheries management. Fecundity is the number of matured eggs that each female fish can spawn each year. The stereological method is the most accurate technique to estimate fecundity using histological images of fish ovaries, in which matured oocytes must be measured and counted. A new segmentation technique, named the multi-scale Canny filter (MSCF), is proposed to recognize the boundaries of cells (oocytes), based on the Canny edge detector. Our results show the superior performance of MSCF on five fish species compared to five other state-of-the-art segmentation methods. It provides the highest F1 score in four out of five fish species, with values between 70% and 80%, and the highest percentage of correctly recognized cells, between 52% and 64%. This type of research aids in the promotion of sustainable fisheries management and conservation efforts, decreases research’s environmental impact and gives important insights into the health of fish populations and marine ecosystems.
keywords: Image Segmentation, Microscopic image, Fish gonad, Cell recognition, Histological image, Canny filter
Publication: Article
1696844767058
October 9, 2023
/research/publications/mscf-multi-scale-canny-filter-to-recognize-cells-in-microscopic-images
Fish fecundity is one of the most relevant parameters for the estimation of the reproductive potential of fish stocks, used to assess the stock status to guarantee sustainable fisheries management. Fecundity is the number of matured eggs that each female fish can spawn each year. The stereological method is the most accurate technique to estimate fecundity using histological images of fish ovaries, in which matured oocytes must be measured and counted. A new segmentation technique, named the multi-scale Canny filter (MSCF), is proposed to recognize the boundaries of cells (oocytes), based on the Canny edge detector. Our results show the superior performance of MSCF on five fish species compared to five other state-of-the-art segmentation methods. It provides the highest F1 score in four out of five fish species, with values between 70% and 80%, and the highest percentage of correctly recognized cells, between 52% and 64%. This type of research aids in the promotion of sustainable fisheries management and conservation efforts, decreases research’s environmental impact and gives important insights into the health of fish populations and marine ecosystems. - A. Mbaidin, E. Cernadas, Z.A. Al-Tarawneh, M. Fernández-Delgado, R. Domínguez-Petit, S. Rábade-Uberos, A. Hassanat - 10.3390/su151813693
publications_en